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Reading Guide
Various references are used throughout the report by the use of numbers, i.e. the
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Chapter 1

Introduction

Several different Civil Engineering sectors rely on the accurate prediction of how structures
behave during loading for the safe estimation of how the structures should be constructed.

In the past, analytical solutions have been developed for many varieties of problems
and loading’s, but as structures and development project have grown in both complexity
and size, these analytical solution comes short because of advanced geometries or because
analytical solutions simply does not exists.

In the recent years a huge development of sophisticated software which has had it
main focus in aiding designers and engineers, in solving the problem and challenges of
tomorrow.

In particular within the field of geotechnical engineering, the use of computer based
simulation of soil behaviour is of paramount importance, since even a seemingly simple
geometry can amount to complex analytical equations, if they even exist, and can be
impossible to solve. One example of the advances in geotechnical engineering can be seen
on Figure 1.1 which is a very advanced problem with many facets.

The methodology and design is now based on well established design methodology and
verification as opposed to the past where the design relied merely on the experience of the
engineers. For this reason a large number of commercial software is developed to satisfy

FIGURE 1.1: Example of an advanced structure involving different engineering disciplines.
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the need from engineers and designers, with big companies like PLAXIS, ABAQUS and
COMSOL MULTIPHYSICS, offering solutions to a wide range of problems.

1.1 Finite Element Method
The software developed towards solving the increasingly difficult problems engineers face,
is in most cases based upon the Finite Element Method, FEM, which is a computational
technique in which an approximate solution of a boundary value problem is obtained.
FEM is extremely versatile since the boundary value problem is described by differential
equations, and depending on the branch of engineering, it being chemical-, structural-
mechanical- or electrical engineering, it is just a matter of changing the governing differen-
tial equations to make it suit the needs of the user.

FEM is an approximation of the differential equations which is based on a spacial
discretization of a domain of interest. This domain can have any form or shape, since
it is approximated by elements. Simple shape can require a few elements to properly
approximate the domain whereas complex geometry may require the use of different
shapes and sizes of elements to properly approximate the domain. The discretization can
the approximate the differential equations by means of numerical equations which finally
can be solved by applying numerical methods.

The nature of FEA with the discretization of the domain implies that approximate
solutions are found, when the numerical methods are applied. For this reason a refinement
of the discretization will make the approximated solution converge towards a steady value.
The refinement imposes, along with other factors, an overall increase in the necessary
computational power which subsequently increases the time it takes to produce a result. For
this reason, the development of routines with the intent to reduce the total computational
time, is the focus of several research projects and companies.

1.2 Determination of material parameters
Within geotechnical engineering it is of great importance to be able deduce a soils material
strength and deformation parameters. With these, load bearing capacity and settlement,
which are important behaviour, can be calculated. During the years, many different
methods have been developed with the aim of accurately determining the soils material
parameters. Depending on the structure and the accuracy needed of the material parameters,
the methods range from simple vane and CPT test, which are done in-situ, all the way up
to full-scale on-site loading test and expensive laboratory experiment.

Especially the full-scale on-site loading test and laboratory experiments are of interest.
Performing a full scale test, as illustrated on Figures 1.2 and 1.3, ensures that the on-site
parameters are determined. In the laboratory great accuracy can be attained by carefully
handling and conducting experiments to soil samples, by several different methods. One
of which, the tri-axial apparatus provides excellent knowledge of the soil response during
loading.

By using FEM with geotechnical engineering it is possible to model the behaviour
by using one of many different material models. The choice for which, depends on the
situation at hand and the engineer must be familiar with the benefits and drawback of
different models to be able to apply them correctly. Many complex models exists which
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FIGURE 1.2: Full scale loading test. [1] FIGURE 1.3: Full scale loading test. [1]

are great at describing soil behaviour, but the complexity comes at a cost. A complex
model requires a skilled and seasoned engineering behind the screen to understand in- and
output from a model. This poses a problem for an engineering company, since it can be
difficult and expensive to acquire an experienced engineer.

For the most part however, the more simple Mohr-Coulomb material model can be
applied to a wide variety of soil modelling problems which will also be the material model
used in this thesis.

1.3 Thesis Statement

It is within the scope of this thesis to apply some of the FEM routines which is developed
for geotechnical engineering, on a problem which is extremely computational intensive.
With this in mind, the main thesis statement is formulated as:

The focus will be on developing a Finite Element Method program which can utilise
parallelization in the calculation phase.

The thesis will put special emphasis on optimising, testing and implementing
parallelization. In this regard different ways of parallelization will be investigated and
compared utilising the Central Processing Unit, CPU, or the Graphics Processing Unit,
GPU.

Continuing in the geotechnical engineering field, it will be the task for the author
to create a program which is able to determine material parameters for a soil body, by
using the Mohr-Coulomb yield criterion. The program will be “given” data, in the form
of load-displacement data, and it will then be up the program to calculate the material
parameters which comes as close to the parameters for the soil body, as possible. This
sort of problem can be characterised as an optimisation problem, since a large solution
space is present and thus some form of evaluation of the calculated material parameters is
introduced.
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1.3.1 Project scope
It is within the scope of the project to apply a Mohr-Coulomb material model to a com-
putational intensive problem. It is however not within the scope of the project to apply
any other model or analytical ways of determining settlement or bearing capacity and
thus the result are not compared to analytical methods. The project is purely focused on
the implementation of well established theory such as the finite element method and the
non-associated material model which goes into this.



Chapter 2

Parallelization

In recent years, the clock speed of new processors have stagnated as illustrated by Fig-
ure 2.1 and instead chip manufactures have made great efforts in increasing the number of
transistors in the processor. [2] This increase is achieved by making the transistors smaller,
and by doing do, more cores are added to the processor.

FIGURE 2.1: Evolution of core clock speeds over time. [3, Figure 1.16]

The effect of having more cores directly influence the computing power of the processor
in a positive way and it must be the goal, as programmers and engineers, to take advantage
of this increase in computing power. Usually programs are written in a sequential way,
such that a process is only handled by one core in a multicore processing environment.
This implies for example that one calculation in a loop, needs to finish before another
can be started. However by taking advantage of the computational power in the other
idle processors one could substantially decrease the time it would take to run through
calculations. Therefore, changing the sequential loops to be performed as parallel loops,
could offer a full utilisation of the computing power.
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As one would find out this is however not always straight forward, since it is case
dependent weather or not the implementation is actually achievable and as such a few
requirements can be formulated for the operation to be performed in parallel.

Calculations must be independent Since parallelization does not guarantee any specific
order of execution of loops some higher valued indices might be executed before
some lower indices. This implies that each calculation must be independent of the
previous.

The computer must have more than one core In order to achieve a speedup of the com-
putation there must be more than one core available for the program to distribute
tasks onto. However even if there are only one core, the parallel code will function
since it operates by distributing workload to where resources are available. So even
though only one core is available the parallel code is still able to run, but will do so
with no apparent speedup, compared to sequential programmed loops.

The problem at hand should be "balanced" In order to utilise the full computational
power of the processors, the computation should be as balanced as possible, meaning
that when partitioning workload an even amount of expected work is distributed to
each core. An example of uneven partitioning can be found in [4, Pages 9-12] with
the associated consequences.

2.1 Parallel programming model
There are two fundamental ways to parallelize data, namely through a so called Fork / Join
configuration or through loop distribution. [5]

2.1.1 Fork/Join
Using a Fork/Join parallelization, a master thread creates a so called thread pool, in which
two or more threads are spawned, see Figure 2.2. This is called the fork, since it bears great
resembles to the cutlery. Then the parallel pool executes the statements and commands
which are enclosed in the parallel region. When all threads have finished the assigned
task, a synchronisation happens at the join. Here the parallel pool is closed and the master
thread which initiated to pool, continues its work.

Parallel region

Master thread

Fork Join

Master thread

FIGURE 2.2: Balanced fork/join parallelization. The dashed lines represent work being done by a
thread.
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The fork/join method of parallelization is most effective when the compute load is
balanced and distributed evenly. If this is not the case, and the compute load in unevenly
distributed, then the whole process would need to wait until the slowest thread has finished,
thus hurting compute time. An example of an unbalanced fork/join can be seen on
Figure 2.3.

Parallel region

Master thread

Fork Join

Master thread

FIGURE 2.3: Unbalanced fork/join parallelization. The dashed lines represent work being done
by a thread.

2.1.2 Loop distribution

When the compute load of a single iteration of a loop becomes significantly large for one
thread, an option is the so called loop distribution. With this, the loop execution would
be divided into two or more sections of code which would be handled by an independent
thread. This is illustrated by Figure 2.4

FIGURE 2.4: Loop distribution. [5, Figur 3]

For the case of loop distribution the second half of the original code can only execute
when the first half of the code finished thus demanding it to wait until the first thread has
finished. This is merely an issue in the first iterations, since in the second all threads will
be busy doing work. When doing loop distribution, great care has to be taken as to where
the loop is split. If data is produced in the first part of the code and used in the second part,
this data much be communicated and synchronised to secure correct calculations.

For the project both options were considered but a final choice were made to go with
the fork/join method of parallel programming.
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2.2 Programming languages

Within programming many different languages exists and depending on what a program is
intended to do, the languages should be chosen accordingly. Within the field of number
crunching and application building a few of the many stands out and should be considered.
Just to name a few, languages like PYTON and FORTRAN are highly recommended if
the program is intended to do matrix and algebraic manipulations, whereas C , C++ and
C# are general purpose, all-round languages used in everything from mobile apps to finite
element software. It is especially the implementation of the languages in finite element
software which is of importance for the author, since the main focus of this thesis is to
develop a FEM program.

When dealing with programming languages, a reference to its “level” is often done, in
the sense that a language can either be considered high, medium or low level. This has to
do with the level of abstraction from machine code in which the languages deals with. It
can be quite difficult to characterise a language to be specifically one level, since no clear
guideline is established. However, by following a line of thought that lower level languages
require code that resembles the architecture of the computer and higher level provides an
abstraction, so that the code resembles more the structure of the task the program needs to
solve, a crude distinction can be made.

2.2.1 Choice of language, C#

The choice of programming languages falls upon the C# language which is based upon a
weighing of pros and cons.

Pros

C# can be considered a mid level programming language, meaning that it provides some
abstraction from a computers instruction set architecture. This can be highly preferable for
someone with little to no experience with programming languages other than MATLAB.

The language is strongly typed and uses a compiler, meaning that a compilation
software is used to transform the code into machine code. The compiler has the additional
feature that it checks and flags errors easing the development of the code. Further more it
has highly optimised libraries developed specifically for implementing parallelization and
adding multithreading to a program. These libraries, if not specified otherwise, handles the
scaling of the degree of parallelization dynamically and can thus ensure the most efficient
use of the available processors. These libraries also offer a great level of control as to what
is happening within the loops and provides control of the degree of parallelization.

It has long been the authors wish to learn lower level languages, like C++ , and before
doing so it is recommended to start with languages with some degree of abstraction.

One major benefit of C# is object-oriented style of programming which is the key
to building programs in C# . The object is given some properties and it is then through
the use of methods and actions that the object changes. The should apply well to FEM,
since the soil body is the object of interest as well as the associated material parameters.
Object-oriented programming offers great code reusability, since objects are defined from
so called classes. It is these classes which contain all the methods used to manipulate an
object.
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Cons
It can be difficult to learn new material and one major disadvantage is that the author
does not have much experience within medium and low level languages. For this reason
it is expected that it will take some time getting use to the syntax and the programmatic
structure of the language.

Wanting to work in parallel on a GPU can be facilitated through the NVIDIA CUDA soft-
ware. Different versions, involving different languages has been made, but unfortunately a
direct implementation into C# is not currently available which must be considered as a
major drawback.

2.3 Pitfalls in parallel programming
The concepts of parallelization is simple in concept but actual implementation within a
program must be done with high confidence and knowledge of the program. Without
this, there is a high possibility that the implementation is done incorrectly, with the result
that the program calculates incorrectly. The use of erroneous values in an engineering
phase of a structure could, in the worst possible case, lead to loss of life as a result of
structural failure, which would be catastrophic. With this in mind, care must be taken in
implementation and the following must be considered. [6]

2.3.1 Asynchronous thread safety
When executing computations in parallel great care must be given to shared variables
which takes in results handled in each thread. It is of paramount importance that the
synchronisation between threads are dealt with in a way, that ensures that no two threads
are trying to access the same variable at the same time.

One way this could be done is to simply lock access to a global variable when a thread
is accessing it, meaning that only one thread can use and change the variable. This however
introduces the problem that when the variable is locked all other concurrent tasks need to
wait until the variable is free, thus affecting performance which is not desirable.

2.3.2 Cost of overhead
The initiation and termination of a parallel thread pool incurs a cost of computational time
defined as overhead. This is the product of the master thread having to coordinate and
distribute the work done by the parallel pool, and subsequently the termination in which
synchronisation is done and the threads are shut down.

To investigate this cost, a test program has been made in Appendix A where an increase
in the number of computations need to be done, is increased. The result for which can be
seen on Figure 2.5.

2.3.3 Over-parallelization
Several different computation schemes involve the use of nested loops, meaning that one
or more loops are enclosed within another loop. The programmer should, when trying to
establish the best approach at dealing with nested loops, be careful not to invoke a new
set of parallel threads within a parallel loop. However, if the nested loop is know to be
computationally very expensive, or if the system for which the computations are being
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FIGURE 2.5: Study of computation times from the test example in Appendix A. Computations
performed on a INTEL R© CORETM i7-4710MQ with 20 Gb of DDR3 RAM.

performed on, have enough threads to handle the nested initialisation of threads, it can be
necessary to invoke nested parallel loops. It should be considered carefully, since invoking
each parallel pool of threads incurs the overhead cost of starting up and partitioning work
to each thread.

2.4 Theoretical speedup
The speed of a program is defined as the time that it takes to execute and provide a result.
Adding more threads to a program should decrease the time it takes to execute and by
doing so a speedup should be attained. The speedup must then be defined as the time it
takes for the program to execute in serial, with one thread, divided by the time it take to
execute in parallel.

Having a computer with a multicore processor and steadily increase the number of
threads in the parallel region, cf. Figure 2.2, expecting to see an ever increasing speedup,
will in many situations not satisfy expectations.

This can be explained by Amdahl’s law, Equation (2.1), which takes into account the
fraction of the code that can execute in parallel, P and the number of processors, N. [7]

Speedup =
1

P
N
+(1−P)

(2.1)

With this, a preliminary prediction of the expected speedup can be made and further
it can be used to explain results obtained with a program that has executed in parallel.
FIG. 2.6 illustrates different fractions of parallel code and it can be observed that in order
to obtain a relative high speedup, the fraction of code that should run in parallel should be
close to, or higher than 95 %. With a lower percentage the curves flatten relatively quickly
and adding more than 10 threads does not improve the speedup significantly. It can also be
observed that a code that execute completely in parallel has a linear increase in speedup as
more processors are added which is quite interesting.
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FIGURE 2.6: Expected speedup when considering the number of threads. Plot of EQ. (2.1).

2.4.1 Scalability
In EQ. (2.1) the fraction of the code that can run in parallel, P, can be expressed in total
percentage of code or time. It can in many situations be an advantage to express the
fraction in terms of time due to the fact that it is easy to measure the time spent in the
parallel region. Another advantage of expressing the equation in terms of time, is that an
increasing in the complexity of a certain problem, does not mean that written code needs
changing, but it rather increases computational time.

As an example if solving numerical equations in a domain, which is approximated
with x number of elements, can be done in 60 s parallel and 40 s serial time, meaning that
60 % of the time is spent in parallel. However if the same domain is approximated with
a 1000 times more elements and solving the equations now takes 400 s parallel and 40 s
serial time, meaning that the time spent in parallel is now approximately 93 %. This has
the implication that according to EQ. (2.1) the same scaled problem is relatively more
sensitive with respect to the speeding up, when adding more computational power.

Thus a guideline statement can be formulated as the following: “Problems that increase
the percentage of parallel time with their size are more scalable than problems with a fixed
percentage of parallel time.” [8]
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Objective and Case

As mentioned in
As mentioned in Section 1.3 the main focus of the developed program will be to

determine material parameters for a soil body using a non-associated Mohr-Coulomb
material model which takes in 5 variables. These 5 variables define the elastic and plastic
response, respectively. The variables related to elastic response are

E is the Young’s modulus of the soil skeleton.
ν is Poisson’s ratio of the soil skeleton.

And the 3 variables related to plastic response are
c is the cohesion of the soil.
φ is the friction angle of the soil
ψ is the dilation angle of the soil

For the purpose of simplification a choice were made to use the same value for the friction
and dilation angle. The simplification comes from a significant decrease in the number of
different combinations of the variables which needs to be tested, as well as the fact that
this is common practice, when using the Mohr-Coulomb model. [9] The Mohr-Coulomb
material model is further explained in Appendix D.

3.1 Data to analyse
For the program to determine the parameters for the input variables, some target test values
are needed. Initially, it was thought that actual experimental data would be used, since
the goal of the program was usability within an engineering company. In a company,
experimental data would be provided by e.g. triaxial testing of soil and the program would
determine the soil parameters from this data. However to ensure that correct values would
be determined, this is not the approach which has been taken. The approach taken is that
the data, for which variable parameters are to be determined, is provided by the program
itself, created with a known set of parameters. This will ensure that, depending on the
requirements and bounds for the fitted parameters, see Section 3.2, the program will find at
least one solution of parameters which is exact and more which will deviate slightly.

For the sake of testing the program several sets of parameters are sought and listed
in Table 3.1. This is done in order to investigate the robustness and efficiency of the
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program, but also to see the influence different parameters of the variables have on the
load-displacement curve, and to find variables which have a distinct elastic and plastic
region.

Table 3.1: Sets of parameters for input to the test program.

E [MPa] ν [-] c [kPa] ϕ [deg] ψ [deg] Range increment

Set 1 10−50 0,3 30 20 20 10 [MPa]
Set 2 50 0,1−0,5 30 20 20 0,1 [-]
Set 3 50 0,3 10−50 20 20 10 [MPa]
Set 4 50 0,3 30 20−40 20−40 5 [deg]
Set 5 100 0,1 30 20−40 20−40 5 [deg]
Set 6 100 0,2 30 20−40 20−40 5 [deg]
Set 7 100 0,3 30 20−40 20−40 5 [deg]
Set 8 100 0,4 30 20−40 20−40 5 [deg]
Set 9 100 0,1 10−50 30 30 10 [MPa]
Set 10 100 0,2 10−50 30 30 10 [MPa]
Set 11 100 0,3 10−50 30 30 10 [MPa]
Set 12 100 0,4 10−50 30 30 10 [MPa]

Each of the sets of parameters, listed in Table 3.1, are plotted in Figures 3.2 to 3.13.
The soil body is subjected to a deformation, which is calculated in 50 loads steps, resulting
in a total vertical deformation of u = 100mm. The soil is assumed to have a total saturated
weight of γtotal = 20kN/m3.

Given the relatively simple geometry, a wide variate of different element type can be
applied. For the present project, 6 noded triangular linear strain elements are employed
which have two degrees of freedom pr. node. The mesh is created with a total number of
degrees of freedom, ndo f = 322 and is illustrated on Figure 3.1.

3.1.1 Choice of data
As mentioned the goal is to analyse data which has both an elastic and plastic region.
For the purpose of illustration in the report, pressure is taken as positive, whereas, in the
program, pressure is taken as negative. Looking at the data, Figures 3.2 to 3.13, clear
elastic and plastic response is evident in much of the data. However Figures 3.2 and 3.13
seems to be a bit better, since plastic response is evident in all ranges of the parameters.
For this reason, Set 2 and Set 12 is chosen to be the input to the program.

3.2 Error estimation
Since the issue of determining the parameters of the constitutive model, can be considered
as an optimisation problem, it is necessary to formulate some function which evaluate the
response between the numerical prediction and the experimental results. For this reason
the concept of error estimation is introduced and a few different methods of assessing the
relative error between the calculated response and the data is introduced. The overall goal
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FIGURE 3.1: Initial mesh used for data analysis. Displacement is applied at the top left corner on
the black box.

is to minimise the error such that

Error(x)→min (3.1)

for which x is the set of parameters to be optimised. It must be the goal to minimise these
functions individually, and then be used as a basis for whether the obtained numerical
prediction with one set of parameters are accepted or rejected based on a set of requirements
and / or bound for which the error must lie within.

Function 1
The first and simplest of the error functions takes the following expression [10, Eq. (4)]

Error(x) =
1
N

(
N

∑
i=1

∣∣∣U i
exp−U i

num

∣∣∣) (3.2)

where N is the number of discrete points, U i
exp is the value of the measurement i and U i

num
is the value of the calculation i. The function can be physically interpreted as the absolute
distance between discrete points, which means it has the same units as the data.

Function 2
A further expansion of the error function, Equation (3.2), can be made [10, Eq. (5)]

Error(x) =
1
N

(
N

∑
i=1

(
U i

exp−U i
num

)k
) 1

k

(3.3)

where k is a non-zero positive value with k = 1 for the sum of error at every point and
k = 2 for the least square function. The units of the estimated error, retains the units from
the evaluated data.
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Function 3
The least square method is the basis for the last formulation of an error function. It is
adopted with modifications of 100 percentage and by adding weights to each calculation
point, with a further modification of determining the average difference between the
measured and calculated result [10, Eq. (6)]

Error(x) =

√√√√ 1
N

N

∑
i=1

wi

(
U i

exp−U i
num

U i
exp

)2

×100 (3.4)

where wi is the weight for the calculation at point i. This last method of error estimation
can be considered particularly useful in practical engineering since it has the option of
adding weight to some part of the curve. This could be relevant in two particular situations,
namely the serviceability limit state and the ultimate limit state. For the serviceability limit
state the first elastic part of the curve would be on interest, since it can be used to estimate
the initial displacement of the soil body before yielding happens. For the ultimate limit
state the last part, where plastic deformation occurs, can be used to estimate the ultimate
bearing capacity of the soil.

The output from the function is unitless and thus by multiplying it with 100 the result
is expressed as a percentage.
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Chapter 4

Developed Program

The developed program has its back end primarily based upon the program developed by
Johan Clausen during his PHD thesis [9] which was written in MATLAB. For the reasons
mentioned in Section 2.2, this original program has been translated into C# and the features
and routines needed to determine material properties has been added by the author.

4.1 Structure of program
In order to give readers, who is not proficient in C# , a chance to fully understand the
solution schemes implemented in the program, some form of schematic illustration is
deemed necessary. For this reason, Algorithm 1 is used as illustration. It is a Newton-
Raphson scheme in which a forced displacement is applied in each step k which is an
increment of v f inal divided by nink which is the maximum allowed number of steps. For
each displacement increment, an equilibrium between the external and internal forces,
a residual, are sought by evaluating and minimising the norm of the residual. This
minimisation is done until it is smaller than a tolerance value or until the number of
iterations done to reach an equilibrium exceeds a certain number nglo. In each iteration the
system stiffness matrix K is formed based on constitutive matrices, and finally the stresses
and constitutive matrices are updated.

The domain for which the scheme of Algorithm 1 is applied can be seen on Figure 4.1.
The displacement is applied at the nodes which are at the position where the footing is.
The boundary is assumed to be roller supports which restricts movement perpendicular
towards the supports but allows for movement parallel with the support. This is the type of
boundary conditions which applies to all sides, except the top part of the soil body, which
is free to move in any direction.

When modelling it is important to include a fairly large domain, relative to the applied
deformations, such that the resulting deformations and stresses, which are of importance,
are not lost. For these reasons the Width and Height are taken as Radius ·12 and Radius ·10,
respectively.

When discretizing the domain, it is of importance to mesh the areas, where large
deformation of stress gradients are present, with a large number of elements, relatively
to the boundaries. For this reason, the domain is subdivided into 3 grades of element
refinement; Fine, Medium and Coarse cf. Figure 4.2. The finest mesh refinement happens
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Input:
pk ; /* System load vector. */

1 ∆u ; /* System displacement increment. */
2 for k = 1 to nink do
3 j = 1 ; /* Equilibrium iterations counter. */
4 while ‖rk‖> ε ‖p‖ do
5 Kepc, j

k = Kepc, j
k

(
Depc, j

k

)
; /* Form the tangent stiffness

matrix.
*/

6 r j
k = p−q j

(
σ

j
k

)
; /* Determine force residual, r j

k
from p and internal forces q j.

*/

7 δu j
k =

(
K j

k

)−1
r j

k ; /* Solve the FEM equations. */

8 ∆u j+1
k = ∆u+δu j

k ; /* Update displacement increment. */
9 ∆ε

j+1
k = B ∆u j+1

k ; /* Calculate strain increment. */
10 ∆σ

j+1
k = D ∆ε

j+1
k ; /* Elastic stress increment. */

11 σB = σk +∆σ
j+1

k ; /* Elastic predictor stress. */
12 σ

j+1
k (σB) ; /* Plastic stress update. */

13 Depc, j+1
k

(
σ

j+1
k

)
; /* Constitutive matrix update. */

14 if j > nglo then
15 Break ;

16 j = j+1 ; /* Iterations counter update. */

17 uk = uk +∆u j+1
k ;

18 pk, f ooting = q
(
DOFf ooting

)
−p
(
DOFf ooting

)
Algorithm 1: Schematic principle of global Newton scheme for elasto-plastic FEM. [9,
Table 1.1, Modified]
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Footing

Width

Height

Radius

Centerline

FIGURE 4.1: Geometry and boundary conditions for the computed domain.

at the top part of the domain in an area of Radius ·0.4×Radius ·0.4. The area is dependent
on the size of the radius, but it could just as well be dependent on the final deformation,
however having the area being dependent on the radius, the user faces no risks of being in
a situation in which a wide footing is examined, where the footing would exceed the fine
meshed area.

The input to define the meshed area, is interpreted as the number of elements along
the boundaries. The user controls the mesh density of the coarse area, and the two other
areas, the medium and fine, are dependent on the input to the coarse area. The relation
between the number of coarse elements, nCor, and number of medium elements, nMed,
are nMed = nCor+ 1, and the relation between the number of fine elements, nFine, is
nFine = nMed +1.

4.2 Limitations

Simulating a real world scenario often brings along some choices which makes the model
exactly what it is: A model. This means that choices are made to simplify the real world
into something for which it is possible to calculate. For this reason the program suffers the
following limitations

Stress type

The program calculates in plane strain. It was originally the idea to have both plane strain
and axial symmetric stress types included. However due to some programming error,
which did not get resolved, only plane strain was implemented correctly. This has the
implication that the program is only capable of simulating strip footings and thus circular
footings are not supported.
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Footing
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Height

RadiusCenterline

Width · 0.4 Width · 0.2 Width · 0.4

Height · 0.4

Height · 0.2

Height · 0.4

Fine Medium Coarse

FIGURE 4.2: Illustration of the mesh density division.

Discretization of soil body
The domain is assumed as a homogeneous and uniform soil, meaning that the domain has
the same properties throughout the entire body. This is again an assumption which maps
poorly to a real world scenario, where a soil body can be a mix of different layers which
can have very different properties.

Type of load applied
When performing test on soil, usually a load is applied and the subsequent displacement is
recorded. In the program, only the option of specifying the final displacement is an option.
The reason for not allowing the user to input actual data, is that the program is purely an
experiment, and in order to correctly test and verify the output the, test data had to be made
with precise and known parameters. If the program were to be used in some engineering
company like COWI or ORSTED it would be relatively simple to program the ability to
input actual data.

4.3 Input to program
The input is programmed in such a way that the user need to specify some program options,
which is done through the use of three .TXT files. The user has access to the three files
through the folder PROPERTIES/ and the files are

1_Material Through this file the user must specify the value of the variables E, ν , c, φ

and ψ . It is necessary to specify the values of these because of two reasons. Firstly
the input values are used to generate the target data for which the program does the
optimisation and secondly, to make a convergence analysis based upon the specified
values.

2_FEM Through this file the user sets the first set of settings specifically for the finite
element analysis. The setting that must be specified are the Radius and it is possible
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to manually set the Width and the Height of the domain, illustrated on Figure 4.1. If
the Width and Height is specified as 0 the default values are used, as discussed in
Section 4.1. Further more the user must specify the mesh density along the areas
of the coarse edge. This is done through the nCor variable, and the program makes
sure that the largest concentration of elements are near the footing and subsequently
decreasing the number of elements as the distance to the footing increases. Care
should be taken in specifying the mesh density, since the computational load is
linked to the number of elements in the domain, and thus a large number of elements
increases the computational load and subsequently the time each calculation takes,
which is discussed later in Section 4.5. Last setting, G0 is the number of gauss points
within each element and must be either 1, 3, 4 or 6.

3_Calculation The last file is used for the more specific FEM settings. Through this file
the tolerance, which determines if the global equilibrium iterations has converged,
are set through tol f ac and the number of global equilibrium iterations are specified
through n_glo. The tolerance should ideally be in the order of 1×10−3 to 1×10−5,
and for the sake of speed the number of iterations should be between 10 and 20. If
no number is specified to n_glo, and a very small tolerance is required, there is a
possibility that the loop would not be able to converge. This is avoided by the use of
restrictions on the amount of loop iterations.

The final deformation is specified through v_ f inal along with the number of load
increments n_ink. The number of load increments should be chosen while consid-
ering the final deformation since the calculation is non-linear. In order to be sure
to avoid loosing information in between load steps, each load increments should be
sufficiently small. however one should take care to not make each increment very
small since the number of calculations needed until full deformation has occurred, is
directly tied to the number of increments. This means that a compromise between
the accuracy of the load-displacement curve and the computational time, must be
made.

4.4 Implementation of parallelization
It is the purpose of this thesis to implement parallelization, in some form and thus some
different approaches have been taken. First of all, the parallelization is implemented by
taking advantage of the CPU and is not done using the GPU. To take advantage of the
GPU, the NVIDIA CUDA software would be utilised, but since the author is not proficient
in C++ this was not successful. The implementation was however successful in C# on the
CPU so this is the case discussed hereafter.

4.4.1 Different ways to implement
Before the implementation the requirements for being able to to parallelize a program
were checked and confirmed as they were descriped in the beginning of Chapter 2. As
discussed in Section 2.1 the programming model were established as the fork/join method
which form the basis for the implementation. The pitfalls, discussed in Section 2.3, were
initially checked and remembered and with them in mind the following strategies have
been implemented and tested.
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System stiffness parallelization
The first implementation focused on the formation of the system stiffness, Ksys. A
schematic illustration of the determination of the system stiffness can be seen on Al-
gorithm 2.

1 Ksys = 0 ; /* Initialisation of system
stiffness matrix.

*/

2 for Elemno = 1 to nelem do
3 Kelem = B′ D B w ; /* Determination of element

stiffness.
*/

4 Dofs = Dof [Elemno, :] ; /* D.o.f. associated with element
Elemno.

*/

5 Ksys [Do f s,Do f s] = Ksys [Do f s,Do f s]+KElem ; /* Assembly into
system stiffness
matrix.

*/
Algorithm 2: Schematic principle of determination of system stiffness.

The implementation was mainly tested due to the fact that the formation of the matrix,
agrees well with the following arguments:

Independence The formation of the stiffness matrix agrees very well with the requirement
that each calculation must be independent. The global stiffness matrix is composed
of an assembly of the element stiffness matrices which is completely independent of
each other, and only dependent on the coordinates of the nodes and the constitutive
matrix.

Balanced For the determination of the element stiffness the computations are the same,
no matter the element and thus the computational load is the same for every element.

Scalability Since every element is independent from all others and the computational
load needed to determine the element stiffness is the same for every element, the
scheme should respond very well to an increase in the number of threads used in the
computation.

The parallel implementation in the program of Algorithm 2 is done useing the code in
Listing 4.1.

/ System stiffness determination

1 Parallel.For(0, ToInt32(nelem), elemnr =>
2 {
3 // Create temporary arrays
4 double [] tmpElemX = new double[ElemX.GetLength (1)];
5 double [] tmpElemY = new double[ElemY.GetLength (1)];
6 for (int i = 0; i < tmpElemX.GetLength (0); i++)
7 {
8 tmpElemX[i] = ElemX[elemnr , i];
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9 tmpElemY[i] = ElemY[elemnr , i];
10 }
11

12 double[,,] tmpDeff_array = new double[4, 4, ToInt32(GT.
order)];

13 for (int k = 0; k < GaussOrder; k++)
14 {
15 for (int j = 0; j < 4; j++)
16 {
17 for (int i = 0; i < 4; i++)
18 {
19 tmpDeff_array[i, j, k] = Deff_array[i, j, k

, elemnr ];
20 }
21 }
22 }
23

24 // Calculate element stiffness matrix
25 double[,] ElemK = K_LST(tmpElemX , tmpElemY ,

tmpDeff_array , GT.XI, GT.W, ToInt32(GT.order), 2);
26

27 // Degree of freedom associated with elemnr
28 int[] tmpElemDof = new int[ElemDof.GetLength (1)];
29 for (int i = 0; i < 12; i++)
30 {
31 tmpElemDof[i] = ToInt32( ElemDof[elemnr , i]) - 1;
32 }
33

34 // Load element stiffness into global stiffness matrix
35 for (int dofnr = 0; dofnr < 12; dofnr ++)
36 {
37 for (int dofnrCol = 0; dofnrCol < 12; dofnrCol ++)
38 {
39 SysKelas[tmpElemDof[dofnr], tmpElemDof[dofnrCol

]] += ElemK[dofnr , dofnrCol ];
40 }
41 }
42

43 });

C# code 4.1: Model.cs

Combination of parameter parallelization
The second implementation strategy was to take each set of soil parameters and run them
on their own thread. As with the system stiffness parallelization, this strategy agreed well
with the following arguments:

Independence The formation of the sets of parameters are done ind such a way, that
when a simulation finishes, it simply continues with the next combination, and does



28 Chapter 4. Developed Program

nothing else with the result, than to display it if it meets some requirements, cf.
Section 3.2.

Balanced It is not exactly certain that each simulation takes the same amount of computa-
tional time or demands the same computational power, but since every simulation is
highly independent this does not have that much of an influence. The biggest issue
with an unbalanced loop is that other threads needs to wait until the slowest one
has finished. This will only affect the last simulations, since every combination of
parameters are calculated.

Scalability Since the entire simulation is done on its own thread, it should demonstrate a
high degree of scalability.

Further more this strategy is able to utilise the highly useful feature about C# , namely
the object-oriented programming. Looking at Listing 4.2, it is straight forward to create a
model object with the sets of parameters, in several nested loops, run the model and then
subsequently evaluate the result.

/ Parameter combination
1 Parallel.ForEach(TestE , (iE, loopState) =>
2 {
3 // Loop thorugh the values of Coh
4 for (int iCoh = 0; iCoh < TestCoh.Length; iCoh ++)
5 {
6 // Loop thorugh the values of Nu
7 for (int iNu = 0; iNu < TestNu.Length; iNu++)
8 {
9 // Loop through the value of Phi and Psi

10 for (int iPP = 0; iPP < TestPsi.Length; iPP++)
11 {
12 // Create placeholder for combination

material properties
13 double [] CombMat = new double []
14 {
15 TestE[iE] , // Youngs modulus
16 TestNu[iNu] , // Poisson ratio
17 TestCoh[iCoh] , // Cohesion
18 TestPhi[iPP] , // Friction angle
19 TestPsi[iPP] // Dilation angle
20 };
21 Model DetModel = new Model()
22 {
23 // Material specific
24 E = CombMat [0],
25 nu = CombMat [1],
26 coh = CombMat [2],
27 Mphi = CombMat [3],
28 Mpsi = CombMat [4],
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29 gam_tot = MatSet [5],
30 Material = ModelMaterial ,
31 // FEM specific
32 r_footing = FEMSet [0],
33 h_domain = FEMSet [1],
34 b_domain = FEMSet [2],
35 k_mesh = SoilDeterDensity ,
36 GaussOrder = FEMSet [4],
37 // Calculation specific
38 tolfac = CalSet [0],
39 v_final = CalSet [1],
40 nink = ToInt32(CalSet [2]),
41 n_maxglobal = ToInt32(CalSet [3]),
42 nsigma = ToInt32(CalSet [4])
43 };
44 // Run model in object
45 DetModel.RunModel ();
46 // Determine the relative error
47 double [] RelError = ErrorFuntion(ExData1 ,

DetModel.OutputStressPoints);
48 // Check if an exact solution is found
49

50 // Print the values and relative error in
object

51 if (RelError [0] >= 0 && RelError [0] <= 5 &&
52 RelError [1] >= 0 && RelError [1] <= 2 &&
53 RelError [2] >= 0 && RelError [2] <= 2)
54 {
55 // Print the results to the command

window and files
56

57 }
58 } // End of Phi Psi loop
59 } // End of Nu loop
60 } // end of Coh loop
61

62 });

C# code 4.2: Program.cs

Generally the use of nested loops was a necessity due to the extremely large number of
different combinations of the variables. There are simply so many combinations, depending
on the increment of each variable, that if they were to be put in a single matrix they would
form an array to large to be stored in the computer memory.

4.4.2 Difficulties of the implementation
Both of the aforementioned strategies were tested for their usefulness, but only one of them
made the cut for the final program. The first one, where the determination and assembly of
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the stiffness matrix are done in parallel, showed, in some situations, very strange behaviour
when evaluating the result. After countless trial and error to pinpoint the error, it was
discovered that it was an issue of asynchronous thread safety of the Ksys-variable. As can
be remembered, the determination and assembly is done by multiple threads, and the issue
is not the determination of the individual element stiffness, Kelem, but rather the assembly
to the global stiffness matrix. In some situations, two or more threads were accessing and
writing to the Ksys-variable and in doing so, they would interfere with each other, thus
producing an incorrect stiffness matrix. Some different routines exists to prevent this, but
the one which showed most promising results were locking routines.

The locking routines work by restricting access to variables which are used by one
thread, and will release the variable, when the current thread are done using it. The
locking routines were implemented successfully but they resulted in a significantly slower
executing time. The main cause of this, is that the variable becomes a bottleneck for the
system, meaning that when the variable is locked, all other threads which needs to write to
said variable, will wait. Because of this major increase in computational time, the system
stiffness parallelization approach was abandoned.

This leaves the last parallelization strategy as the option which was used, and illustrated
in Listing 4.2. This strategy really utilises the key programming concept of C# , namely
the object-oriented approach. Each of the threads, in the parallel pool, creates a new
model object, and in doing so, no thread are able to access variables used by other threads,
thereby securing the program against the issue of thread safety. Further more only one
parallel thread pool are initiated versus the first strategy. In that, a new thread pool would
be initiated and closed in each iteration, which would amount to a substantial increase
in computational time due to the overhead associated with initiating a thread pool, as
mentioned in Section 2.4.1.

4.5 Model convergence
When doing numerical modelling, it is of paramount importance to show that, when the
domain is approximated with an increasing number of elements, the model converges
towards a steady value. For this reason, the final load on the footing is used as a reference
for the examination. The number of degrees of freedom is refined in a consistent manner
by steady increasing the number of elements, nCor, along the coarse edge, as discussed in
Section 4.1.

The study can be seen on Figures 4.3 and 4.4, where a consistent refinement is done
from nCor = 2 with an increase of 2 for every refinement, leading up to nCor = 30. The
number of degrees of freedom subsequently starts from nndo f ,nCor=2 = 322 and goes up to
nndo f ,nCor=30 = 5940. The very first mesh is a test mesh created manually with 4 elements
and 30 degrees of freedom.

As expected, when increasing the number of degrees of freedom, some form of trend is
apparent and a steady value appears as the mesh is increasingly refined. The first couple
of refinements appears to converge extremely fast in the first three refinement, then the
following four fluctuates a bit before finally settling at a steady value of around 0.6 MPa.

The convergence however, comes at a significant cost of computational time. For some
reason, and completely against the expectations of the author, the program execution time
is slow, as illustrated in Figure 4.5. This issue poses a big challenge for the whole idea for
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which the project is based upon, since the program is intended to calculate an extremely
large solution space until the closest material parameters are determined. But when just a
single calculation, with a number of degrees of freedom which have converged, takes the
good part of 30 min the program looses its meaning.
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FIGURE 4.5: Degrees of freedom with the associated computational time for the convergence
study.

However, the second refinement step in Figure 4.3 with ndo f ,nCor=2 = 322 offers some
salvation to the issue with the long computation time. Even though the footing load has not
converged to some steady value, it offers a significant improvement to the load estimate
than the very first mesh density. And when comparing with the higher mesh densities, the
footing load fluctuates until final convergence happens at around 5000 degrees of freedom.
With the refinement step ndo f ,nCor=2 = 322 the computation takes approximately 4 s which
must be deemed acceptable.
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4.6 Results
The result part is divided in two parts, namely one where the program is used to evaluate
the material parameters and secondly a part where the significance of the parallelization is
investigated.

4.6.1 Determination of material parameters
In order to get a decent estimation of the material parameters without waiting an un-
reasonable amount of time, the mesh is created with ndo f ,nCor=2 = 322. Three different
combinations of parameters are targeted and are listed in Table 4.1. Compared to the
suggested test sets in Section 3.1, only a portion of the data is used for the parameter
determination.

The combinations listed in Table 4.1 are used as a proof of concept, and if the program
provides decent results for these combinations, it should, in principle, provide decent
results for any combination.

Table 4.1: Material parameters used as input to the material determination. For all combinations
γtotal = 20kN/m3.

Combination E [MPa] ν [-] c [kPa] ϕ [deg] ψ [deg]

1 50 0.2 30 20 20
2 50 0.3 30 20 20
3 50 0.4 30 20 20

When the program compares the fitted parameters with the target data and evaluates
the error, some requirements were mentioned in Section 3.2. For the sake of simplicity the
requirements are kept the same for all three combinations of target data. For Equation (3.2)
the estimated error must be smaller that 1 MPa, for Equation (3.3) it must be smaller than
0.2 MPa and finally for Equation (3.4) the requirement is set at 5 %. These values were
chosen, in some degree of randomness, and in some degree of experience with the program.
During testing some values for the requirement were tried to figure out how many sets of
fitted data the chosen value would output. With the chosen bounds for the requirements, a
substantial number of fitted parameters were found. The number of sets of fitted parameters
are listed in Table 4.2.

Table 4.2: Number of fitted parameters for each combination of the values in Table 4.1.

Combination 1 2 3

Sets of fitted parameters 52 32 17

Since a large number of sets of parameters are found which fulfil the requirement for
the error functions, it was chosen to display only a portion of the sets of fitted parameters,
for some of the data. This is done since it becomes increasingly more difficult to distinguish
the different sets of fitted parameters as more are plotted in the same figure.
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For the case of combination 1 which have 52 sets of fitted parameters, 10 were chosen
at random. For combination 2, 32 sets qualified, but here 15 were chosen, again at random.
Finally, combination 3 had 17 sets, all of which are shown. The three combinations
are shown in Figures 4.6 to 4.8 and all sets of fitted parameters are listed in Appendix
Tables B.1 to B.3.

It is quite interesting to see how well the fit is to the input data. Common for all
combinations is that the fitted parameters fit well to the initial part of the load-displacement
curve. For combination 1 and 2, Figures 4.6 and 4.7, the last part of the fit, in what begins
to exhibit plastic behaviour, is not that good and begins to drift slightly. This is not the
case for combination 3, Figure 4.6, where all the fitted sets does not appear to exhibit any
sort of drift and are well within the requirement of the error functions.
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4.6.2 Significance of parallelization
As mentioned in Sections 2.4 and 2.4.1 a system which responds positive to an increase in
the number of available threads are said to be highly scalable. In order to determine how
scalable the developed program is, a baseline is needed. This baseline is determined by
measuring how much time a set of simulations takes to perform on one thread.

For this case, the finest mesh is chosen in order to speed up the simulations and since
all threads are rated to have the same processing power, it does not matter if the computed
mesh is coarse or extremely fine.

With a baseline of the computation time established it is merely a case of running
the same sets of simulations with a linear increasing thread pool which is illustrated on
Figure 4.9.
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FIGURE 4.9: Measured time for computations as increasing the number of threads. Computations
performed on a INTEL R© CORETM i7-4710MQ with 20 Gb of DDR3 RAM.

In order to determine how much the simulation is speed up, the baseline value of the
computational time with one thread is divided by the computational time with n-number of
threads. This is what is illustrated on Figure 4.10 along with Equation (2.1) and listed in
Table 4.3.

Table 4.3: Number of thread, measured computation time and the calculated relative speedup.

Number of threads [-] 1 2 3 4 5 6 7 8

Computation time [ms] 161.74 91.40 80.95 74.55 73.11 79.86 79.80 73.68
Relative speedup [-] 1 1.76 1.99 2.16 2.21 2.02 2.02 2.19

In order to reach a high level of scalability, the parallel execution time should be above
95 % but it is evident that the program executes the computations between 50 % and 75 %
in parallel. This poses a problem since adding more computational power, does not yield a
significant change in computational time, which is clear supported by Figures 4.9 and 4.10.
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Chapter 5

Conclusion

The conclusions to be drawn from the individual chapters will be summarised.

Chapter 2 In this chapter different key points of the parallel implementation were dis-
cussed and highlighted. Two different programming models were discussed and a
choice of one were made, namely on the so-called Fork/Join model. This program-
ming model forms the basis for the entire parallel implementation.

A choice of programming language were made, which fell upon C# . The advantages
and disadvantages of the choice were discussed and weighed.

Typical pitfalls within parallel programming is highlighted, and an investigation
into the overhead incurred by initiating and terminating parallel pools are made.
The investigation showed that for small problem sizes, sequential loops perform
marginally better than its parallel counterpart. But for large problem sizes the parallel
loop comes out performing significantly better than the sequential loop.

Lastly, the speedup which can be expected, by the parallel implementation, is
determined. This showed that loops need to have a large degree of parallelism in
order to get a significant speedup, when adding more computational power.

Chapter 3 In this chapter the data for the program is initially analysed and a choice of
combinations are recommended. The recommended target data shows both elastic
and plastic behaviour during the load-displacement of the footing.

Three different functions were presented, which were able to estimate the relative
error between the target data and the simulated data. These functions are used to
either reject or accept the simulated data based on a target accuracy.

Chapter 4 The structure of the program is explained and presented in a straight forward
manner. The limitations are shortly explained followed by a thorough walk-through
of the input settings.

Two different schematics of explicit parallel implementation is presented and dis-
cussed. The first one is centred around the determination and assembly of the system
stiffness and the second implementation is focused on creating a model object on
parallel threads. Some issues, which were highlighted in Chapter 2, were present in
the first implementation and thus the second option were chosen with great success.
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An investigation into the validity of the program is done by means of a convergence
analysis. In this analysis the model mesh is consistently refined from an initial state
with 322 degrees of freedom up to the final, converged mesh, of 5986.

The results from this chapter is two fold. Firstly, from Chapter 3, some of the
suggested target data is used for the material determination. The program performed
acceptable and a number of different fitted sets of parameters were found for each
target data. Secondly, the significance of adding more compute threads were analysed.
As discussed in Chapter 2, for the program to be highly scalable, a large portion of
the code must execute in parallel. It is found that the fraction of time which is spend
in parallel is approximately 50-75 % thus resulting in a speedup of around 2.19.

5.1 Further Work
The program shows promising results when fitting values to some target data which is
created manually. However for the program to be applicable in every day work life, some
improvements must be done to make the program execute faster.

Some further improvements could be done in the user interface if the program is to be
used in a company. Although the input is thoroughly explained, it is not intuitive.

An exiting improvement would to get the parallelization to work with the GPU and test
the significance of this. This however requires that it is reprogrammed in another language.
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Appendix A

Parallel test program

To validate the postulate in Chapter 2.3, p. 9, a relatively simple test program has been
written in order to examine the implications which parallel programming leads to. The
program evaluates EQ. (A.1) to an increasingly larger array of numbers, with the goal in
mind, to log the time that it takes.

f (x) =
(

x2
)2

(A.1)

It is expected that evaluating the equation for a relatively small array of numbers will be
faster in sequential but increasing the array to a relatively large size will be done faster in
parallel. This is expected to be due to the fact that starting up and ending a parallel pool
takes some amount of time. Because of this, problems which can be calculated extremely
fast, suffers slightly in parallel versus sequential loops.

In order to make it more clear what has been done, the program has been divided into
parts, with a brief explanation, as presented in the following section.

A.1 Program Code
The block of code is basically a bunch of settings for the program to follow. As can be
observed, these include the maximum size of the array to be evaluated given from lines
1-10. Next is settings for saving when the program is done computing and finally is the
initialisation of diagnostics tools, which are used to log the time it takes for each sequential
and parallel loop to finish.

/ Initialization
1 /// - - - - - - - - - - - -
2 /// Pre set -up
3 int dimension = 980; // Size of the array
4 int[] stopNum = new int[dimension ]; // Pre -allocate array
5 stopNum [0] = 1; // Manually set first value
6 for(int i = 1; i < dimension; i++) // Assign values to the

rest of the array
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7 {
8 if (i<6) { stopNum[i] = stopNum[i - 1] * 10;}
9 else { stopNum[i] = i * 100000; }

10 }
11

12 int tmp = 0;
13 bool Finished = true;
14 string [] txtFilePath = {
15 @"D:\ Programmer\Dropbox\ProjektMapper\MasterThesis\

Programmer\Data\SeqData.dat",
16 @"D:\ Programmer\Dropbox\ProjektMapper\MasterThesis\

Programmer\Data\ParData.dat" };
17

18 /// Diagnostics
19 Stopwatch SWTask = new Stopwatch ();
20 Stopwatch SWSeq = new Stopwatch ();
21 Stopwatch SWPar = new Stopwatch ();
22

23 TimeSpan TSTask = new TimeSpan ();
24 TimeSpan [] TSSeq = new TimeSpan[stopNum.Length ];
25 TimeSpan [] TSPar = new TimeSpan[stopNum.Length ];

C# code A.1: Program.cs

The program now enters a foreach loop which creates an array, y, with the size of
each integer value in stopNum. What follows is first the sequential loop followed by the
parallel loop, each of which evaluates EQ. (A.1) from 0→ size of y. The last part of the
loop is a incremental counter, which are used to place the computation time of each loop,
determined by the diagnostics tools, in the correct position.

/ Primary and secondary loop

26 /// Computing
27 SWTask.Start(); // Stopwatch initiate
28 foreach (int j in stopNum)
29 {
30 // Create array to store values
31 double [] y = new double[j];
32 Console.WriteLine("␣");
33 Console.WriteLine("Problem␣size␣:␣{0}", j);
34

35 // SEQUENTIAL LOOP
36 Console.Write("Sequential␣run␣number␣:␣{0}", tmp);
37 SWSeq.Start();
38 for(int i = 0; i < j; i++)
39 {
40 y[i] = Math.Pow(Math.Pow(i, 2), 2);
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41 }
42 SWSeq.Stop();
43 TSSeq[tmp] = SWSeq.Elapsed;
44 Console.WriteLine("␣␣␣␣␣Finished␣in␣:␣{0}␣ms!", TSSeq[tmp

]. TotalMilliseconds);
45

46 // PARALLEL LOOP
47 Console.Write("␣␣Parallel␣run␣number␣:␣{0}", tmp);
48 SWPar.Start();
49 Parallel.For(0, j, i =>
50 {
51 y[i] = Math.Pow(Math.Pow(i, 2), 2);
52 });
53 SWPar.Stop();
54 TSPar[tmp] = SWPar.Elapsed;
55 Console.WriteLine("␣␣␣␣␣Finished␣in␣:␣{0}␣ms!", TSPar[tmp

]. TotalMilliseconds);
56

57 // Increment counter
58 tmp++;
59 }
60 SWTask.Stop(); // Stopwatch
61 TSTask = SWTask.Elapsed; // Time to execute

C# code A.2: Program.cs

When the program has finished each entry in stopNum it continues to save the obtained
results, given that it has been specified in C CODE A.1. The program finally outputs a
.dat files which can be used in another afsnit.

/ Exporting data to file

61 /// Printing
62 Console.WriteLine("␣");
63 Console.WriteLine("␣Total␣runtime␣:␣{0}␣ms", TSTask.

TotalMilliseconds);
64

65 // Save to file
66 if (Finished)
67 {
68 foreach(string key in txtFilePath)
69 {
70 using (StreamWriter par = new StreamWriter(key))
71 {
72 for (int i = 0; i < tmp; i++)
73 {
74 if (key == txtFilePath [0])
75 {
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76 par.WriteLine("{0}\t{1}",stopNum[i],TSSeq[i
]. TotalMilliseconds);

77 }
78 else if (key == txtFilePath [1])
79 {
80 par.WriteLine("{0}\t{1}", stopNum[i], TSPar[

i]. TotalMilliseconds);
81 }
82 }
83 par.Close();
84 }
85 }
86

87 Console.WriteLine("␣");
88 Console.WriteLine("Data␣is␣save␣to␣:");
89 Console.WriteLine("{0}", txtFilePath [0]);
90 Console.WriteLine("{0}", txtFilePath [1]);
91 }

C# code A.3: Program.cs

A.2 Results
The results were not that surprising and met the expectations quite well and are listed in
TAB. A.1 and illustrated on FIG. A.1 . For smaller sample sizes, the sequential loop is
quicker than the parallel but at an approximate sample size of 106 the parallel execution
is quicker that the sequential execution. It should however be noted that the sample sizes
from 100→ 104 are executed, in parallel, literally in the blink of an eye.

Table A.1: First couple of sample sizes for the computation times also illustrated on FIG. A.1.

Sample size 100 101 102 103 104

Parallel 15.3889 15.4283 15.5194 15.6405 37.4217
Sequential 0.0069 0.0151 0.0303 0.1371 1.1856
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FIGURE A.1: Study of computation times from the test program. Computations are performed on
a INTEL R© CORETM i7-4710MQ with 20 Gb of DDR3 RAM.





Appendix B

Material Parameters

This appendix presents the results from the determination of material parameters for
the combinations in Table 4.1.
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Table B.1: Fitted parameters for combination 1.

E [MPa] ν [-] c [kPa] ϕ [deg] ψ [deg] Err. func. 1 Err. func. 2 Err. func. 3 %

46.00 0.30 20.00 22 22 0.92 0.18 2.17
49.00 0.20 30.00 20 20 0.58 0.09 1.31
49.00 0.25 30.00 19 19 0.79 0.18 1.77
43.00 0.30 30.00 20 20 0.63 0.10 2.85
46.00 0.25 30.00 20 20 0.30 0.05 1.99
40.00 0.35 30.00 19 19 0.77 0.16 3.47
46.00 0.30 30.00 19 19 0.90 0.16 1.92
43.00 0.25 40.00 19 19 0.92 0.19 4.18
46.00 0.20 40.00 19 19 0.64 0.14 2.79
49.50 0.25 20.00 22 22 0.87 0.19 2.07
46.50 0.30 20.00 22 22 0.98 0.18 2.13
49.50 0.20 30.00 20 20 0.29 0.04 0.65
49.50 0.25 30.00 19 19 0.88 0.17 1.94
43.50 0.30 30.00 20 20 0.83 0.13 2.64
40.50 0.35 30.00 19 19 0.72 0.14 3.00
46.50 0.20 30.00 21 21 0.91 0.14 3.12
46.50 0.25 30.00 20 20 0.28 0.04 1.53
46.50 0.20 40.00 19 19 0.78 0.17 2.65
50.00 0.25 20.00 22 22 0.88 0.19 2.02
41.00 0.35 20.00 22 22 0.96 0.18 3.39
50.00 0.20 30.00 20 20 0.00 0.00 0.00
50.00 0.25 30.00 19 19 0.99 0.18 2.28
41.00 0.35 30.00 19 19 0.79 0.14 2.68
47.00 0.20 30.00 21 21 0.78 0.13 2.62
47.00 0.25 30.00 20 20 0.45 0.07 1.32
50.50 0.25 20.00 22 22 0.95 0.19 2.16
41.50 0.35 20.00 22 22 1.00 0.17 3.02
50.50 0.20 30.00 20 20 0.28 0.04 0.65
44.50 0.30 30.00 19 19 0.72 0.17 2.22
41.50 0.30 30.00 20 20 0.82 0.13 4.32
41.50 0.35 30.00 19 19 0.92 0.15 2.56
47.50 0.20 30.00 21 21 0.73 0.14 2.24
47.50 0.25 30.00 20 20 0.69 0.11 1.46
45.00 0.30 20.00 22 22 0.96 0.20 2.80
54.00 0.20 20.00 22 22 0.94 0.20 2.77
45.00 0.25 30.00 20 20 0.92 0.13 3.20
51.00 0.20 30.00 20 20 0.56 0.08 1.30
45.00 0.30 30.00 19 19 0.70 0.16 1.88
42.00 0.30 30.00 20 20 0.61 0.10 3.72
45.00 0.20 40.00 19 19 0.83 0.13 3.54
48.00 0.20 30.00 21 21 0.76 0.16 2.05
48.00 0.25 30.00 20 20 0.96 0.15 1.86
45.50 0.30 20.00 22 22 0.90 0.18 2.41
45.50 0.25 30.00 20 20 0.60 0.09 2.56
45.50 0.30 30.00 19 19 0.78 0.15 1.77
42.50 0.30 30.00 20 20 0.53 0.09 3.23
51.50 0.20 30.00 20 20 0.63 0.09 1.72
45.50 0.20 40.00 19 19 0.69 0.12 3.10
42.50 0.25 40.00 19 19 0.95 0.17 4.51
48.50 0.20 30.00 20 20 0.87 0.13 1.98
48.50 0.20 30.00 21 21 0.92 0.19 2.09
48.50 0.25 30.00 19 19 0.77 0.19 1.83
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Table B.2: Fitted parameters for combination 2.

E [MPa] ν [-] c [kPa] ϕ [deg] ψ [deg] Err. func. 1 Err. func. 2 Err. func. 3 %

55.0 0.20 30.0 21 21 0.91 0.18 1.93
55.0 0.25 30.0 20 20 0.29 0.05 1.95
49.0 0.30 30.0 20 20 0.56 0.08 1.27
46.0 0.35 30.0 20 20 0.68 0.11 1.4
40.0 0.40 30.0 20 20 0.82 0.13 2.98
55.5 0.20 30.0 21 21 0.88 0.19 2.07
55.5 0.25 30.0 20 20 0.48 0.08 2.41
49.5 0.30 30.0 20 20 0.28 0.04 0.63
43.5 0.35 30.0 20 20 0.96 0.14 3.34
46.5 0.35 30.0 20 20 0.94 0.15 1.75
50.0 0.30 30.0 20 20 0 0 0
44.0 0.35 30.0 20 20 0.63 0.1 2.7
56.0 0.25 30.0 20 20 0.72 0.11 2.91
53.0 0.25 30.0 20 20 0.82 0.13 1.53
44.5 0.35 30.0 20 20 0.35 0.06 2.11
50.5 0.30 30.0 20 20 0.27 0.04 0.63
56.5 0.25 30.0 20 20 0.96 0.14 3.43
53.5 0.25 30.0 20 20 0.6 0.1 1.3
45.0 0.35 30.0 20 20 0.29 0.05 1.63
51.0 0.30 30.0 20 20 0.55 0.08 1.25
54.0 0.25 30.0 20 20 0.66 0.11 1.6
45.5 0.35 30.0 20 20 0.45 0.07 1.35
51.5 0.30 30.0 20 20 0.81 0.12 1.87
57.5 0.20 30.0 20 20 0.85 0.13 2.62
58.0 0.20 30.0 20 20 0.69 0.11 2.78
54.5 0.20 30.0 21 21 0.99 0.18 1.96
54.5 0.25 30.0 20 20 0.28 0.04 1.56
48.5 0.30 30.0 20 20 0.85 0.13 1.91
58.5 0.20 30.0 20 20 0.58 0.09 3.03
59.0 0.20 30.0 20 20 0.53 0.09 3.34
59.5 0.20 30.0 20 20 0.52 0.09 3.71
60.0 0.20 30.0 20 20 0.62 0.11 4.1
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Table B.3: Fitted parameters for combination 3.

E [MPa] ν [-] c [kPa] ϕ [deg] ψ [deg] Err. func. 1 Err. func. 2 Err. func. 3 %

49.00 0.40 30.00 20 20 0.51 0.08 1.18
52.00 0.40 30.00 20 20 0.97 0.15 2.31
55.50 0.35 30.00 20 20 0.87 0.13 1.56
49.50 0.40 30.00 20 20 0.25 0.04 0.59
56.00 0.35 30.00 20 20 0.68 0.10 1.41
50.00 0.40 30.00 20 20 0.00 0.00 0.00
50.50 0.40 30.00 20 20 0.25 0.04 0.58
56.50 0.35 30.00 20 20 0.51 0.08 1.46
51.00 0.40 30.00 20 20 0.49 0.08 1.16
57.00 0.35 30.00 20 20 0.38 0.06 1.67
51.50 0.40 30.00 20 20 0.73 0.11 1.74
57.50 0.35 30.00 20 20 0.37 0.06 1.99
48.50 0.40 30.00 20 20 0.77 0.12 1.78
58.00 0.35 30.00 20 20 0.44 0.07 2.38
58.50 0.35 30.00 20 20 0.57 0.10 2.80
59.00 0.35 30.00 20 20 0.73 0.13 3.25
59.50 0.35 30.00 20 20 0.90 0.16 3.71



Appendix C

Finite Element Theory

This Appendix presents the relevant theory which is necessary to understand what
goes on behind the scenes in the program. The relevant theory is based on [11].

In structural mechanics different types of non linearity include the following

Material non linearity Material properties are functions of stress states or strain.

Geometric non linearity Deformations are large enough that equilibrium with respect to
the deformed geometry.

C.1 Non-linear Finite Element formulation
The general linear finite element formulations is given by

[K] {u}= {f} (C.1)

When working with non-linear problems it is not possible to obtain a solution in a
single step. This implies that incremental solutions must be employed such as

[K] ∆{u}= ∆{f} (C.2)

The finite element method can either be used as applying a displacement or a force
increment. In the present case incremental displacement are added and the resulting force
is determined.

When imploying non-linear fem, and solving systems, an equlibrium between internal
and external forces must be established

rk = fint− f = 0 (C.3)

where rk is the residual force vector and f is the external for vector which is establish by

fint = BT
σ w (C.4)
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FIGURE C.1: Newton-Raphson scheme.

where w is the gauss points weight since numerical integration is employed, BT is the
transposed strain interpolation matrix and σ are the stresses.

What is important to realise is that at any step the following quantities are known: The
current displacement, force, strain and stress. The equations of equilibrium for the entire
body are known as global equations and the constitutive equations for a single integration
point are know as local equations.

For the case of the Newton-Raphson scheme, the tangent stiffness is updated in each
iteration which is illustrated on Figure C.1 . The calculation of the matrix is done by

kelem = BT D B w (C.5)



Appendix D

Material Models

This Appendix presents the relevant theory used in the program to model the properties
of the material. The relevant theory is based on [12] and [9].

D.1 The Mohr-Coulomb model
While undergoing plastic straining, the yield surface is fixed in principal and deviatoric
stress space, and for any stress state inside the yield surface the response is elastic. If the
stress state is however located on the yield surface the behaviour of the material changes
and the response becomes plastic and subsequently strains become irreversible. The yield
surface is comprised of six planes in principal stress plane, forming an hexagonal pyramid
structure as illustrated by Figure D.1

By ordering the principal stresses according to the following

σ1 ≥ σ2 ≥ σ3 (D.1)

The Mohr-Coulomb criterion and its corresponding plastic potential in principal stresses

FIGURE D.1: The Mohr-Coulomb yield surface in principal stress space.[13, Figure 4]
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are usually written as

f (σ) = k σ1−σ3−σc (D.2)
g(σ) = m σ1−σ3 (D.3)

where σc is the uniaxial compressive strength given by

σc = 2 c
√

k (D.4)

and

k =
1+ sin ϕ

1− sin ϕ
(D.5)

m =
1+ sin ψ

1− sin ψ
(D.6)

where ϕ is the internal friction, c is the cohesion and ψ is the dilation angle. The model
accounts for non-associated flow, ans is widely used as a result of its simplicity, and as
already mentioned, consists of the five material parameters Young’s modulus, E, Poisson’s
ratio, ν , cohesion, c, friction angle, ϕ and the dilation angle ψ .

D.2 Return Mapping
The basic relation in small strain plasticity is that a strain increment is composed of an
elastic and plastic part:

dε = dε
e +dε

p (D.7)

For perfect plasticity, plastic strains during yielding

f (σ) = 0 (D.8)(
∂ f
∂σ

)T

= 0 (D.9)

with f being the yield function and σ being the stress vector. Stress and strain vectors are

σ =
[
σx σy σz τxy τxz τyz

]T (D.10)

ε =
[
ε ε ε 2εxy 2εxz 2εyz

]T (D.11)

Equation (D.9) describes a surface in stress space, and a stress state inside the surface is
elastic where f (σ)< 0. It is possible to related elastic stress increments to elastic strain
increments by Hooke’s law

dσ = D dε
e (D.12)

= D (dε−dε
p) (D.13)

= D dε−D dε
p (D.14)



D.3 Stress update in principal stress space xv

The constitutive matrix is given by

D =
E

(1+ν) (1−2ν)



1−ν ν ν

ν 1−ν ν

ν ν 1−ν
1
2 −ν

1
2 −ν

1
2 −ν


(D.15)

since linear, isotropic elasticity is considered. A finite stress increment comes from
integration of Equation (D.14)

∆σ = ∆σ
elastic−∆σ

plastic (D.16)

Rewriting Equation (D.16) into the following equation can be illustrated on Figure D.2

σ
C = σ

B−σ
P (D.17)

FIGURE D.2: Principle of return mapping. [9, Figure 3.1]

D.3 Stress update in principal stress space
The predictor stress is transformed into principal stress space and returned to the yield
surface. From here the updated stress is transformed back into the original coordinate
system along with the constitutive matrices, which are also formed in principal stress
space.

When the predictor stress is transformed into principal stress space, and returned
to the yield surface, three different cases of stress returns should be considered for the
Mohr-Coulomb criterion:
• Return to the yield plane.
• Return to a line between two intersecting yield planes.
• Return to the apex point.

No matter which case is considered, the stress must be updated and constitutive matrices
must be formed. This is done by the principle in Figure D.3.
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FIGURE D.3: Return mapping principle. [9, Table 4.1]
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