
Extending Ecdar 2.0 with a
User-Centered Visual Simulator

Master’s Thesis

Project Group:
deis105f18

Supervisors:
Ulrik Mathias Nyman

Dimitrios Raptis
Group Members:
Casper Møller Bartholomæussen
Rene Mejer Lauritsen

© deis105f18, Aalborg University, Spring semester 2018.

Summary
In this project we build upon the existing tool ECDAR 2.0, an Integrated Modelling
and Verification Environment (IMVE) for the theory of Timed I/O Automata (TIOA).
ECDAR 2.0 is the result of the work done by Bartholomæussen, Gundersen, Lauritsen,
and Ovesen [1] last semester and it introduces IMVE features and the concept of system
views. ECDAR 2.0 is designed to be a new and modern model checker which utilizes the
ECDAR 0.10 backend. It is also a hard fork of the H-UPPAAL project1.

This semester we have turned our focus towards the design and implementation of
a visual simulator for ECDAR 2.0. The main challenge of developing a simulator for
ECDAR 2.0 is designing the user interface for it since the backend is already available
through ECDAR 0.10. We approach this challenge by designing, implementing, and
evaluating the simulator in a user-centered manner. To begin this approach we have, in
the requirements engineering phase, made a questionnaire with questions about which
features are important, based on features we identified in other tools with a visual
simulator. Based on the answers from 18 participants, we identified the most important
features for a visual simulator.

To assist us in the design phase we adopt a user-centered approach inspired by Buxton
[2] and Pugh [3], namely the design funnel. The purpose of the funnel is to sketch
concepts and features in phases of controlled convergence and concept generation i.e. we
start by sketching concepts for each must have feature, choose some of the sketched
concepts, generate new sketches based on the previously chosen sketches, and repeat
the process until we end on a final design of the visual simulator.

We went through three design phases of concept generation and convergence. After
the three design phases, we settled on the final design which serves as the base for
the implementation of the simulator. The final design did undergo changes during the
implementation of the simulator. Some examples of changes in the design: A left-hand
bar has been introduced instead of using tabs for changing modes, the transition chooser
and the trace log have been swapped, an alternative solution for how to show the state
values has been selected, and the "eye" feature has been left out.

We assumed that the ECDAR 0.10 backend worked without any major issues, as we
have not experienced any problems in regards to queries, but that was not the case.
This led us into an extensive reverse engineering process of the communication with the
backend, such that we could identify what went wrong when we tried to advance in a
simulation. After some segmentation faults, countless consultations with the UPPAAL

documentation, and a lot of trial and error, we figured, by coincidence, that calling the
same method multiple times returned an expected answer.

To validate the design choices we have made in regards to the simulator, we have
conducted a usability evaluation. The evaluation was conducted with nine participants

1H-UPPAAL GitHub repository: https://github.com/ulriknyman/H-Uppaal

3

https://github.com/ulriknyman/H-Uppaal

where six of them have used a model checker for at least one project, and three of them
have more than two years of experience using a model checker. The participants carried
out three tasks, which covered all of the must have features, in a random order to balance
against the carry over effect. In total, 18 usability issues were identified with 9 of them
being cosmetic, 6 serious, and 3 critical.

The visual simulator is a great step towards making ECDAR 2.0 a feature complete IMVE,
but the vision does not stop here, there is still plenty of room for features and additions
for ECDAR 2.0. Some of which could be: An improved text editor for declarations, a
new and open engine for ECDAR, fix the critical and frequent usability issues, support for
version control systems, and more.

4

Department of Computer Science
Selma Lagerlöfs Vej 300

DK-9220 Aalborg Ø
http://www.cs.aau.dk

Title:
Extending Ecdar 2.0 with a
User-Centered Visual Simulator

Theme:
Master’s Thesis
Semantics and Verification

Project period:
Spring semester 2018

Project group:
deis105f18

Participants:
Casper Møller Bartholomæussen
Rene Mejer Lauritsen

Supervisors:
Ulrik Mathias Nyman
Dimitrios Raptis

Pages: 57

Date of completion:
June 15, 2018

Abstract:
In this project we extend ECDAR 2.0 with a
user-centered visual simulator.
The main challenge of developing a simu-
lator for ECDAR 2.0, is designing the user
interface for it. We approach this challenge
by designing, implementing, and evaluating
the simulator in a user-centered manner.
We inspect the visual simulators of other
tools, and use questionnaires to understand
the functional requirements for a visual sim-
ulator. The requirements are prioritized us-
ing the MoSCoW method. We use the must
have features as a Minimum Viable Product
(MVP).
We adopt a user-centered approach, namely
the design funnel, where we through three
phases in the funnel, sketch multiple con-
cepts for each must have feature and evalu-
ate them using different methods.
The final design of the visual simulator has
been implemented, and evaluated through
a usability evaluation. We identified 18 us-
ability issues, where 9 of them are cosmetic,
6 serious, and 3 critical.
The visual simulator satisfies the MVP, and it
complies with the user-centered design, and
hereby the main challenge.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the authors.

http://www.cs.aau.dk

Preface
This report is the product of a 4th semester project by two Software Engineering master
students at Aalborg University. This project is the master’s thesis project and contains
the work of 2 � 30 ECTS points. The master’s thesis is based on the work from the
pre-specialization project namely [1].

The reader is expected to possess knowledge of computer science to the same degree
as a 4th semester Software Engineering student at the Master level at Aalborg University,
including basic knowledge about model checking and verification, in order for the reader
to benefit the most from reading this report.

We want to give special thank to our supervisors Ulrik Mathias Nyman and Dimitrios
Raptis for helping us during the project period. We also want to thanks the participants
of the usability evaluation for helping identify usability issues in ECDAR 2.0, as well as
the people answering our questionnaire to find the important features in a simulator.

Reading Guide

The report is written in chronological order and is recommended to be read as such.
Personal pronouns refer to the authors of this report. All figures in the report are made
by the authors unless stated otherwise in the figure caption.

Citation Style

All references throughout the report are in IEEE style. The bibliography can be found at
the end of this report on page 59.

Figures

Figures in this report are centered horizontally. A caption beneath the figure describes
the content of the figure, as well as its reference tag. Figure 0.0 is an example of this.

iii

Figure 0.0: This is an example of a figure

iv

Contents

1 Introduction 1
1.1 Method . 2
1.2 Requirements Engineering . 3
1.3 Related Work . 6

2 Design 11
2.1 First Phase . 11
2.2 Second Phase . 18
2.3 Third Phase . 24

3 Implementation 31
3.1 Reverse Engineering the Communication with the Backend 31
3.2 Architecture . 32
3.3 Overview of the Simulator . 33
3.4 Feature #1 – Manual Stepwise Execution of Simulation 35
3.5 Feature #2 & #4 – Overview of Steps in a Trace & Go Back and Forth in

Trace . 36
3.6 Feature #3 – Inspection of State Values . 37
3.7 Feature #21 – See Traces from Veri�er in the Simulator 38
3.8 Feature #6 – Go to Initial State . 39
3.9 Summary . 40

4 Usability Evaluation 41
4.1 Participants, Setup, and Tasks . 41
4.2 Results . 43
4.3 Summary . 50

5 Discussion and Conclusion 51

6 Future Work 55
6.1 Improved Text Editor for Declarations . 55
6.2 Usability Issues . 55
6.3 New Engine for Ecdar . 55
6.4 Future Work from the Previous Semester . 56

Bibliography 59

Appendix A Tool Inspection 61

Appendix B Feature Selection Sheet 65

v

CONTENTS

Appendix C Sketch Rankings 67

Appendix D Configuration Sketches 69

Appendix E Usability Evaluation � Tasks 73

Appendix F Usability Evaluation - Issues 77

Appendix G Usability Evaluation � Suggestions 79

vi

1 Introduction

In Bartholomæussen, Gundersen, Lauritsen, and Ovesen[1] we introduce and develop
ECDAR2.0, an Integrated Modelling and Veri�cation Environment (IMVE) for composi-
tional real-time systems. ECDAR 2.0 utilizes the engine of ECDAR 0.10 for veri�cation
of models in the Timed I/ O Automata (TIOA) formalism. It intents to improve on the
modelling process, compared toECDAR0.10, by introducing features that prevent invalid
models, improve productivity, and provide feedback to the user. It also introduces system
views for easy creation of compositional systems and veri�cation queries.

ECDAR 2.0 also bene�ts from the Integrated Development Environment (IDE) inspired
features of H-UPPAAL(developed by Mouritzsen and Jensen[4, 5]), as ECDAR 2.0 is built
upon its codebase.ECDAR2.0 is thus a great environment for veri�cation of compositional
systems, but, it is missing a visual simulator in order to make it a more complete IMVE.
Besides, visual simulators are also common in other modelling and veri�cation tools e.g.
the tools in the UPPAALfamily and Petri net tools like CPN Tools.

A visual simulator can be useful in exploring and debugging models. As previously
mentioned, ECDAR2.0 uses the engine ofECDAR0.10 for veri�cation, and that engine
already provides functionality for simulation.

In Mouritzsen and Jensen[5] they considered adding a simulator to H-UPPAAL, and
they state the challenges like this: "The challenge with this (ed. the simulator) is not
retrieving the trace and states from the veri�cation engine, which is already possible
through its interface. Instead the challenge is presenting these states and traces to the
user." — Mouritzsen and Jensen[5] .

Thus, the main challenge is to take the traces and states from the engine, and present
it to the user such that it improves the user experience and productivity when using
ECDAR2.0. Based on our knowledge of the engine, we agree with their assessment of the
challenge. The following description describes how we intend to approach the challenge:

We adopt a user-centered approach to the development of a simulator for
ECDAR2.0. This approach should investigate whether there exists require-
ments for a visual simulator in a model checker, and involve users in order
to understand their needs for such a simulator. The design of the simulator
should follow an approach that inspires creative thinking and evaluation of
ideas. The implementation should be evaluated with participating users to
validate the user-centered design and whether it complies with the found
requirements.

For the �rst step in this approach we will, in the following sections, present a method
for the design process of the simulator, and explore existing tools to identify which
features they provide and how they handle visual simulation.

1

INTRODUCTION: Method

1.1 Method

We adopt a user-centered approach to the design and development of a visual simulator
for ECDAR2.0. The approach is based on sketching and applying divergent and convergent
thinking. We follow this approach to arrive at the right design for our presented problem.

The sketching process is inspired by Buxton[2] . Buxton mentions disposable, plentiful,
and quick to make as some of the attributes that sketches possess[2] . These attributes
make sketches useful in the ideation stage, where we want to explore different types of
designs. Later in the design process, we might want to produce prototypes, that can be
more speci�c and re�ned than the sketches.

The design funnel as proposed by Buxton[2] presents the design process as starting
broad, sketching and exploring ideas, and ending narrow, prototyping ideas for usability
tests. Figure 1.1 presents a version of the design funnel from Buxton[2] , who has
based his work on Pugh[3] . This representation has the bene�t of alternating between
generating and choosing ideas, which is an essential part of the design process. Note
that we do not completely follow the method presented in Pugh [3] , but mainly the
notions of controlled convergenceand concept generation. In Section 1.2 we present our
approach to �nd the functional requirements that can be used as an input to the funnel.
In each phase of the funnel, we generate sketches, based on the previous phase or the
requirements, and convergence on the concepts using different evaluation methods.

Figure 1.1: The design funnel with divergent and convergent phases [2]

2

INTRODUCTION: Requirements Engineering

1.2 Requirements Engineering

As an input to the funnel presented in Figure 1.1, we look to other tools for inspiration on
functional requirements for the simulator and its user interface. To initiate the process, we
search for a number of diverse tools, that include a visual simulator. We look for diversity
in the tools, meaning that we look for tools from different modeling domains e.g. Timed
Automata, Petri Nets, SysML. This diversity might lead to ideas and requirements that are
new to simulators for our domain, TIOA. We inspect some of these tools and collect a list
of features and question users about which of these features they �nd important. Finally,
we evaluate on the users' responses and gather a �nal list of functional requirements
for the design process. Note that we actually collect two different lists of features, one
for the functional features of the simulator and another for the User Interface (UI). The
latter is used for inspiration for the UI and not as an input for the funnel, since that may
limit the creativity of our sketches. Some UI examples of features are the ability to zoom
and use grayed out elements for inactive actions. These UI features are not presented to
any users.

Tools The research for tools has led us to a 16 different tools. Inspecting each of them
is an extensive task, so we instead choose six tools to inspect. When choosing tools we
consider the popularity and maturity, both as a research and enterprise tool. Another
consideration is the domain diversity, to avoid ending up with six different tools from the
same domain. With these considerations in mind, we present the �nal tools for inspection
in Table 1.1.

Tool Domain

UPPAAL Timed automata

Sparx Systems Enterprise Architect SysML: activity diagrams, se-
quence diagrams, state ma-
chines and more

IAR Visual State UML state machines

CPN Tools Colored petri nets

PRISM Discrete- and continuous-time
Markov chains, Markov deci-
sion processes, probabilistic au-
tomata, probabilistic timed au-
tomata

TAPAAL Timed-arc petri nets

Table 1.1: Tools used for inspection and their modelling domain

Inspection The inspection of the tools is performed independently by each member
of this group, resulting in two separate lists of requirements. Doing the inspections

3

INTRODUCTION: Requirements Engineering

independently, we expect to �nd a greater range of requirements, as we may look for
different features in the tools.

We do not intend to make a comprehensive list of all features in each of these tools,
but rather get a general sense of the range of features. Making a comprehensive list
would require us to be experts in each tool, and spend a lot of time inspecting them.
Instead, we time-box the inspections to 30 minutes each. During the inspections, we get
a �rst-hand experience with the tools, but also allow second-hand experiences through
Internet research or videos. The second-hand experience is useful for discovering things
we might have missed since we are newcomers to most of the tools.

After each inspection, we discuss our �ndings and make a joint list of requirements.
The list of �ndings for functional and UI features can be found in Appendix A. The
features are sorted by the number of occurrences across the different tools.

Questionnaire To get an insight into what a user would like from a simulator, we
prepare a simple questionnaire based on the discovered features. For each feature the
user is asked to rank it as eitherimportant or not important. The questionnaire can
be seen in Appendix B. The group of users we question, includes students, professors,
Ph.D. students, etc. from the Department of Computer Science at Aalborg University.
The experiences of the group range from novice to expert users. We require that the
users must have some experience with modeling and simulators e.g. they have used a
simulator as a part of their research.

Results In total, we have questioned 18 people. The questions for feature #4 and #16
were only answered by 17 people. Only 14 people answered the question for feature
#19 unanswered. The reason for leaving the questions unanswered may be that the
person did not understand the feature. The questions that where left unanswered have
been omitted from the calculated percentages in Figure 1.2.

The results of the questionnaire are listed in Figure 1.2. The mean value of all answers
(the average of people answeringimportant) is 60 %. We primarily consider the features
above the mean value as candidate features i.e. features we will consider for the simulator.

Figure 1.2 shows a clear need for the features #1, #2, #3, and #21 as all the users
we asked have picked them asimportant.

In Table 1.2 we present a prioritized list of features that should be considered in the
design of the simulator. The list and prioritization are primarily based on the percentage
of people who marked a feature asimportant and secondly on which candidate features
we believe are interesting features. The prioritization is done according to the MoSCoW
method. Of the 16 candidate features above the mean value, we choose the 12 shown in
Table 1.2, as features we will further explore. We deem the features in themust have
category as a Minimum Viable Product (MVP) for a visual simulator i.e. these are the
features that should be available in a visual simulator (hence themust havecategory)[6] .
The MVP features should be implemented to have a worthwhile usability evaluation.

4

INTRODUCTION: Requirements Engineering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

20

40

60

80

100

Feature number

P
er

ce
nt

ag
e

of
an

sw
er

s
m

ar
ke

d
as

im
po

rt
an

t
Importance Mean

Figure 1.2: Percentage of users that marked a feature as important

Must have:

#1 Manual stepwise execution of simulation

#2 Overview of steps in a trace

#3 Inspection of state values

#4 Go back and fourth in trace

#21 See traces from veri�er in the simulator

#6 Go to initial state

Should have:

#26 Choose values to watch

#16 + #10 Stop criteria / Simulation breakpoints

#20 Keyboard shortcuts in simulator

Nice to have:

#5 Random execution of simulation

#7 Import / export trace

Table 1.2: Prioritized list of features (MoSCoW)

5

INTRODUCTION: Related Work

Figure 1.3: Screenshot of Ecdar 2.0 without the simulator extension

1.3 Related Work

In regards to related work we will in this section present our previous work, ECDAR 2.0,
and the codebase,H-UPPAAL, that it is build on. We also present the process and effort we
have put into searching for research related to designing and developing visual simulators
for model checkers.

1.3.1 Ecdar 2.0

In Bartholomæussen, Gundersen, Lauritsen, and Ovesen[1] we describe the development
of the IMVE, ECDAR2.0, a model checker for Timed I/ O Automata, that uses the backend
of ECDAR0.10, and introduces the concept of system views. As a part of the requirements
engineering for ECDAR 2.0, we conducted two interviews to get an impression of how it
is to work with ECDAR0.10 and what is expected from a model checking tool. During
the interviews it was mentioned that the lack of overview in the simulator of ECDAR0.10
was a source of frustration and that it is tedious to debug a model in ECDAR 0.10 [1] . A
screenshot of ECDAR 2.0 can be seen in Figure 1.3.

We also introduce the concept of Integrated Modelling and Veri�cation Environment
(IMVE) which should, like IDEs, include facilities to help users develop models. The
IMVE facilities that were considered in [1] include: Project management, export models,
enforcement of good practices,inconsistentand universal locations, interaction between
components, and keyboard shortcuts.

Besides the IMVE features we also propose the concept of system views. An example
of a system view is shown in Figure 1.4. System views are designed to give an overview
of a system and remove the tedious work of managing system declarations.

6

INTRODUCTION: Related Work

Figure 1.4: Example of a system view in Ecdar 2.0

1.3.2 H-Uppaal

This section is heavily based on Bartholomæussen, Gundersen, Lauritsen, and Ovesen
[1] and has been included here, with a few changes, to give a complete introduction of
ECDAR 2.0 and what it is based upon. A precondition for ECDAR 2.0, is that it is built on
the codebase ofH-UPPAAL1. H-UPPAALis a different take on the UPPAALGraphical User
Interface (GUI). It improves on some issues related to creating large models inUPPAAL,
for example by dividing the automata model into hierarchical components [4, 5] .

The UPPAAL issues listed in Mouritzsen and Jensen[4] are mostly related to the
complexity and readability of large models. The following are examples of issues they
mention: Properties (e.g. invariants and clock resets) can be graphically placed away
from their location or edge, locations do not have to be named (they are anonymous),
and information can be hidden by overlapping objects. To combat these issues, they
created H-UPPAAL, an IDE with continuous syntax checking, static code analysis, and
background queries.

The representation of hierarchical timed automata in H-UPPAALis presented in Fig-
ures 1.5 and 1.6. Figure 1.5 shows a hierarchical component, which contains sub-
components for Customer , Waitress , and Kitchen . Figure 1.6 shows the Customer

component.

1.3.3 Search for Related Research

As a part of our research process, we have investigated whether there is existing research
on visual simulators for model checkers. However, we could not �nd any work that is

1ECDAR 2.0 is forked from this commit of H-U PPAAL: https:// github.com/ ulriknyman / H-Uppaal/ tr...

7

INTRODUCTION: Related Work

Figure 1.5: Screenshot of a hierarchical component in H-Uppaal [4]

Figure 1.6: Screenshot of a component in H-Uppaal [4]

relevant for this project. This section describes our research process and effort.
We started the research process by looking for material speci�cally about visual sim-

ulators used for model checkers, but as we could not �nd anything this speci�c, we
generalized the topic, so we looked for visual simulators (e.g. for UML or Markov chains),
model checkers, and anything related.

For the research we used different tools to search databases for academic papers, but
also more general Internet searches. Examples of the tools areGoogle Scholar, CiteSeerX,
and Primo. The last tool also searches for books available at the university libraries. For
general Internet searches we usedDuckDuckGoand Google. With those tools we even
looked for informal sources like blogs and videos that could be relevant for our topic.

The keywords used in our search are related to the speci�c �eld of simulators and model

8

INTRODUCTION: Related Work

checking, but also covered model checking tools. Some of the relevant keywords used in
our search include: "model checking", "simulator", "uppaal", "visualstate", "simulation
testing", "model-based simulation", etc. Besides using keywords for search, we also
looked at related papers by researchers behind some of the model checking tools.

A great effort was spent on searching for related work, but none of it yielded any
results. Since we could not �nd any research on visual simulators for model checkers,
we assume there is not much research in this area. Most research in the �eld of model
checking might be spent on the engines and formalism, not the user interface and the
visual simulator.

9

	Cover
	Title Page
	Preface
	Reading Guide
	Contents
	1 Introduction
	1.1 Method
	1.2 Requirements Engineering
	1.3 Related Work

	2 Design
	2.1 First Phase
	2.2 Second Phase
	2.3 Third Phase

	3 Implementation
	3.1 Reverse Engineering the Communication with the Backend
	3.2 Architecture
	3.3 Overview of the Simulator
	3.4 Feature #1 – Manual Stepwise Execution of Simulation
	3.5 Feature #2 & #4 – Overview of Steps in a Trace & Go Back and Forth in Trace
	3.6 Feature #3 – Inspection of State Values
	3.7 Feature #21 – See Traces from Verifier in the Simulator
	3.8 Feature #6 – Go to Initial State
	3.9 Summary

	4 Usability Evaluation
	4.1 Participants, Setup, and Tasks
	4.2 Results
	4.3 Summary

	5 Discussion and Conclusion
	6 Future Work
	6.1 Improved Text Editor for Declarations
	6.2 Usability Issues
	6.3 New Engine for Ecdar
	6.4 Future Work from the Previous Semester

	Bibliography
	Appendix A Tool Inspection
	Appendix B Feature Selection Sheet
	Appendix C Sketch Rankings
	Appendix D Configuration Sketches
	Appendix E Usability Evaluation – Tasks
	Appendix F Usability Evaluation - Issues
	Appendix G Usability Evaluation – Suggestions

