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Preface 1

Reading guide
The thesis will use the Havard reference style when citing sources.

The definitions, theorems, etc. are colour coded, i.e. there is a bar to the left
to each of these. The colors are: Definition, purple; Theorem, dark blue; Corollary,
blue; Lemma, light blue. Proofs and remarks have no colors, but proofs will end with
◻, while remarks will end with ◂.

In extension of the thesis are two appendixes. Appendix A contains larger ver-
sions of specific images while Appendix B contains the Python scripts and modules
developed throughout the project. Appendix B can be found in Appendix_B.rar, in
which there is a Readme file explaining the content.

The thesis has been written and compiled in LATEX, and all computer based
calculations have been made in Python 3.x.

In the thesis, some symbols are commonly used. Some of these are explained in
the table below.

Symbol Explanation
N,Z,Q,R,C The natural numbers, integers, rational numbers, real numbers

and complex numbers respectively.
χI(x) The indicator function, i.e. the function is 1 ∀x ∈ I and 0 other-

wise.
A Complex conjugate of A ∈ Cn×m.
A∗ Complex conjugate and transpose of A ∈ Cn×m.
● A place holder for the argument in a function.
V The closure of a space V .
⊕ The direct sum of linear spaces.
x☆ The minimizer of an optimization.

Text The text style for scripts, modules and functions in Python.



2 Preface

Danish Summary
Specialet har den danske titel Generaliseret Sampling: Fra Fourier til Wavelet. Her
undersøges generaliseret sampling - både teoretisk og anvendt i praksis. Den prak-
tiske del består af forsøg med syntetiske testsignaler og vil blive gennemført i pro-
grammeringsspoget Python. Målet med specialet er at opnå en dyb og intuitiv
forståelse af emnet og lave en implementation i Python.

Specialet startes med en beskrivelse af motivationen for emnet, samt generalis-
eret sampling i relation til Nyquist-Shannons samplingssætning. Herefter gennemgås
grundlæggende funktionsteori for at opnå en bedre forståelse af teorien for generalis-
eret sampling, som følger umiddelbart efter. Dernæst følger et afsnit om Fourier
frames, der bruges som samplingsrum. Herefter beskrives de valgte rekonstruktion-
srum: Daubechies wavelets. Heri er blandt andet udledt en eksplicit måde at lave
randfunktioner på, både i tids- og frekvensdomænet, som, der efter forfatternes bed-
ste overbevisning, ikke er nogen, der har gjort på denne måde før. Herefter kommer
et afsnit med nogle af de vigtigste sætninger i et praktisk perspektiv. Sætningerne
angiver, hvor mange Fourier samples man skal have til et givent antal wavelet ko-
efficienter samt, hvor tæt man skal sample frekvenserne, for at være sikker på at
generaliseret sampling går godt.

Når den generelle teori for generaliseret sampling er på plads, fokuseres der på det
specifikke tilfælde med konstruktion af en basisskiftmatrix mellem Fourier samples
og wavelet koefficienter. En af ulemperne er, at disse matricer hurtigt bliver meget
store, derfor bliver der beskrevet en måde at lave dette basis skift på, uden at gemme
den egentlige matrix. Disse algortimer skal også bruges i optimeringsmetoder for at
finde de bedste wavelet koefficienter.

Herefter begynder de praktiske eksperimenter. Først undersøges endimensionale
signaler med rekonstruktion i Haar waveletten, efterfulgt af Daubechies 2 wavelet-
ten. Det kan betragtes som en kompression, når man laver basisskiftet, og generelt
er resultaterne gode. Hvis de sammenlignes med en af de klassiske løsninger på kom-
primering af Fourier samples, altså at beholde de N største koefficienter og sætte
resten til nul, ser man en tydelig forbedring. Hvis signalerne, der bliver brugt, er
godt repræsenteret i samplingsrummet, vinder man ikke noget ved basisskiftet.

De gode resultater motiverede forfatterne til at lave nogle simple eksperimenter
med todimensionale signaler, altså signaler der kan betragtes som billeder. Her ses
at de samme ting gør sig gældende som i én dimension.

I diskussionen bliver emner, som oplagt kan udforskes i forlængelse af dette spe-
ciale, diskuteret. Konklusionen beskriver resultatet af specialet: Både forståelsen af
emnet og resultaterne af eksperimenterne.



Chapter 1

Introduction

In the thesis we investigate generalized sampling and its application in signal recon-
struction and compression. We walk the reader through the theory on the topic and
use examples to give a more intuitive understanding of the material. The examples
will focus on Fourier samples and wavelet reconstruction, as this is a classic example
in the use of generalized sampling, [Adcock et al., 2014b], [Jacobsen et al., 2016b]
and [Gataric and Poon, 2016]. The goal of the project is to investigate and under-
stand the theory of generalized sampling and to implement appropriate algorithms
in Python 3.x.

The contribution of this project lies in the application of generalized sampling.
We will describe and implement algorithms which reconstruct a given signal from
its Fourier samples using fewer or the same number of wavelet coefficients. Some
important algorithms are based on [Gataric and Poon, 2016]. The Fourier basis
is well known, [Folland, 1992] and [Christensen, 2008], but for use in generalized
sampling we need a Fourier frame. Such a frame has been described in theory,
[Christensen et al., 2016], but it is unconventional in application. In the thesis, we
describe how to use a Fourier frame to sample the frequency domain in a subset of
R instead of Z, as with the Fourier basis. The systems of Daubechies wavelets are
thoroughly described and widely used, [Daubechies, 1992], [Cohen et al., 1993] and
[Nievergelt, 1999]. In this project we have taken a different approach to boundary
correction, [Jawerth and Sweldens, 1994], than the classic, [Cohen et al., 1993], and
created explicit boundary functions both in the time domain and in the frequency
domain.

Parts of the theory are general, but in order to focus on application we need
to restrict our work in several ways. First of all, we have chosen to sample in a
Fourier frame and reconstruct in a Daubechies wavelet basis. With this choice we
also limit the input signals to signals in the Hilbert spaces L2 and `2. The examples
will mainly include uniformly sampled inputs. All algorithms are able to handle
nonuniform inputs. However, research into what constitutes a good sampling scheme
is outside the scope of this project. Research into this has been done for instance
in [Jacobsen et al., 2016a]. We will limit the work with nonuniform input to testing

3



4 Chapter 1. Introduction

of the algorithms. In the case of two dimensional signals, we limit our examples
to quadratic signals and only attempt to view the problem as a tensor product of
one-dimensional problems.

The layout of the thesis is as follows: In Chapter 2 we motivate the use of
generalized sampling. In Chapter 3 we state the necessary theoretical foundation and
in Chapter 4 the theory specifically related to generalized sampling is introduced.
The use of a Fourier frame as sampling space is derived in Section 4.2. Chapter 5
describes the Daubechies wavelet basis and the derivation of the boundary functions
in the time domain. Chapter 6 describes the construction of the matrix which maps
wavelet coefficients to Fourier coefficients and how to use it to find wavelet coefficients
given the Fourier samples. Examples of generalized sampling used on one dimensional
signals can be found in Chapter 7. Chapter 8 contains the work done with two
dimensional signals and in Chapter 9 we discuss the chosen restrictions and possible
extensions of the project and finally concludes on the project. Larger versions of
a few pictures can be found in Appendix A. All Python files related to the thesis
are collected in Appendix B, which also includes a ReadMe.txt file explaining the
content. Appendix B is not directly included in the thesis but is a separate file.



Chapter 2

Motivation

In this chapter we motivate the use of generalized sampling. First, we will present
a generalization of the well known Nyquist-Shannon sampling theorem. Second, we
will give additional reasons for using a Fourier frame for sampling and a wavelet basis
for reconstruction. Some of the concepts used in this chapter will first be explained
in Chapter 3.

2.1 Generalizing Nyquist-Shannon’s Sampling Theorem
The Nyquist-Shannon sampling theorem, as given in Theorem 2.1, is commonly
used in modern signal processing and is an important theorem in mathematics of
information. It is for instance used in magnetic resonance imaging (MRI). In [Adcock
and Hansen, 2012] it is investigated whether the theorem can be improved and, in
particular, if the reconstruction can be better given the same information. This
depends much on the functions considered, but if a basis for a suitable space is
known, in which the function is well represented, improvement might be possible.

Theorem 2.1 (Nyquist-Shannon Sampling Theorem)
Let x(t) be a signal in L2(R) with bandlimit K > 0, i.e. the Fourier transform,
x̂(ω), satisfies

x̂(ω) = 0 for ∣ω∣ ≥K. (2.1)

Then x(t) is uniquely determined by its samples xs(n) = x(n ⋅ T ), where n =

0,±1,±2, . . . and T is the sampling period, if the sampling frequency ωs = 2
T > 2K.

We can write x(t) as

x(t) =
∞

∑
n=−∞

x(
nπ

K
)2π sin(πn + 2πKt)

πn + 2πKt
. (2.2)

[Oppenheim and Schafer, 2010, p. 170] and [Folland, 1992, p. 230]

5



6 Chapter 2. Motivation

Proof: Let us expand x̂ in a Fourier series on the interval [−K,K] noting that
x̂ ∈ L1. We write −n in place of n for reasons of later convenience,

x̂(ω) =
∞

∑
n=−∞

c−ne
−inπ ω

K , ∣ω∣ ≤K. (2.3)

The Fourier coefficients c−n are given by

c−n =
1

2K ∫

K

−K
x̂(ω)einπ

ω
K dω =

π

K
x(

nπ

K
) . (2.4)

Using (2.3) and (2.4) we get

x(t) = ∫
K

−K
x̂(ω)e2πiωtdω = ∫

K

−K

∞

∑
n=−∞

c−ne
−inπ ω

K e2πiωtdω

= ∫

K

−K

∞

∑
n=−∞

π

K
x(

nπ

K
) e−inπ

ω
K e2πiωtdω

=
π

K

∞

∑
n=−∞

x(
nπ

K
)∫

K

−K
eπiω(

n
K
+2t)dω

=
∞

∑
n=−∞

x(
nπ

K
)
eπiω(

n
K
+2t)

Ki( nK + 2t)
∣

K

−K

=
∞

∑
n=−∞

x(
nπ

K
)2π sin(πn + 2πKt)

πn + 2πKt
,

(2.5)

which concludes the proof. ◻

This is a universal theorem which is widely used in signal processing. If the bandlimit
is all you know about a signal, then ωs is the lower boundary for the sampling
frequency. When trying to reconstruct a signal based on fewer samples than Theorem
2.1 dictates, we have to exploit additional information we have about the signal.

The problem we are looking at is how to reconstruct a signal, f , based on a
finite number of samples in a particular frame, in another frame better suited for the
signal. Let {sk}k∈N denote the sampling frame and {⟨f, sk⟩}k∈N be the samples. Let
{αk}k∈N be coefficients such that

f =
∞

∑
k=1

αkwk, (2.6)

where {wk}k∈N is a frame well suited for the signal. wk is referred to as the recon-
struction frame. The goal is to use a finite number of samples to compute a finite
number of coefficients which reconstruct the signal with a sufficiently small error.

The generalisation of Theorem 2.1 proposed in [Adcock and Hansen, 2012] re-
quires that we introduce infinite matrices and sections thereof. Let U denote the



2.1. Generalizing Nyquist-Shannon’s Sampling Theorem 7

matrix for a change of basis operator from `2(N) to `2(Z) which has the form

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
...

... . .
.

u−1,1 u−1,2 u−1,3 ⋯

u0,1 u0,2 u0,3 ⋯

u1,1 u1,2 u1,3 ⋯

...
...

...
. . .

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ui,j = ⟨si,wj⟩. (2.7)

Let Pn denote the orthogonal projection onto the span of the first n basis vectors for
`2(Z).

The paper propose a change of basis:

A

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α̃1
α̃2
...
α̃n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= PnU
∗Pm

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⟨f, s1⟩
⟨f, s2⟩
...

⟨f, sm⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A = PnU
∗PmUPn∣PnH. (2.8)

Then
f̃ =

n

∑
k=1

α̃kwk. (2.9)

Theorem 2.2 (Abstract Sampling Theorem)
Let H be a separable Hilbert space and S,W ⊂ H be closed subspaces such that
W ∩ S⊥ = {0}. Assume that {sk}k∈N and {wk}k∈N are Riesz bases for S and W
respectively, with frame bounds A,B > 0 for {wk}k∈N and C,D > 0 for {sk}k∈N.
Assume that

f = ∑
k∈N

αkwk, α = {α1, α2, . . .} ∈ `
2
(N), (2.10)

and let n ∈ N. Then there exists an M ∈ N (in particular M = min{σ ∶ 0 is not an
eigenvalue for PnU∗PσUPn∣PnH}) such that for all m ≥M , the solution of (2.8) is
unique. Furthermore, if f̃ is as in (2.9), then

∣∣f − f̃ ∣∣H ≤
√
B(1 +Kn,m)∣∣P ⊥nα∣∣`2(N), (2.11)

where
Kn,m = ∣∣(PnU

∗PmUPn∣PnH)
−1PnU

∗PmUP
⊥
n ∣∣`2(N). (2.12)

[Adcock and Hansen, 2012, Theorem 4.1]

This theorem states that the error we make when using generalized sampling
is bounded. We have some control of this bound with our choice of sampling and
reconstruction space. The factor B in the bound is the upper frame bound of the
reconstructions space which will be defined in Definition 3.6. The factor Kn,m can
be bounded as in Corollary 2.3.
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Corollary 2.3
Let the setup be as in Theorem 2.2 and let n be fixed. Then

∣∣(PnU
∗PmUPn∣PnH)

−1
∣∣`2(N)

m→∞
ÐÐÐ→∣∣(PnU

∗UPn∣PnH)
−1

∣∣`2(N)

≤∣∣(U∗U)
−1

∣∣`2(N) ≤
1
AC

.
(2.13)

Furthermore, if U is an isometry, in particular when {wk}k∈N and {sk}k∈N are
orthonormal, then it follows that

Kn,m
m→∞
ÐÐÐ→ 0. (2.14)

[Adcock and Hansen, 2012, Corollary 4.2]

2.2 Magnetic Resonance Imaging
In generalized sampling the most widely used example is that of magnetic resonance
imaging, MRI, due to several key aspects of this example. First of all, the way
the scanners are made specifies the sampling space and put limitations on possible
sampling schemes. When dealing with MRI we are provided with extra information
about the input which makes it possible to go below the limit dictated by Theorem
2.1, namely that it is an image. It is also worth mentioning that an improvement
in the field of MRI is beneficial in several different ways. Being able to reconstruct
images of equivalent quality using less samples would benefit both financially and
medically. Less samples mean that each patient needs to be in the scanner for a
shorter time. This in turn means that the patients are exposed to less radiation,
there is a smaller chance that the patients move and thereby distort the images and
it is possible to scan more patients per day.

The sampling space specified for the MRI example is a Fourier frame. Since the
signal that needs to be reconstructed is an image, it is known that wavelets would
be a good choice for reconstruction space. For these reasons we choose to focus on
the case of Fourier samples and wavelet reconstruction. Although MR images are in
two or three dimensions we will mainly work on the one dimensional case. This can
be considered as a step on the way to multidimensional signals.



Chapter 3

General Theory

In this chapter we present the theoretical foundation for generalized sampling. The
chapter will cover Hilbert spaces, both specific Hilbert spaces relevant in future
chapters, subspaces of Hilbert spaces and frames for Hilbert spaces.

3.1 Hilbert Spaces

Definition 3.1 (Hilbert Space, H)
Let w,z ∈ C and a,b,c ∈H. A vector space with inner product, ⟨⋅, ⋅⟩, and associated
norm, ∣∣ ⋅ ∣∣ =

√
⟨⋅, ⋅⟩, is called a Hilbert space, denoted H, if

a) ⟨b, a⟩ = ⟨a, b⟩,

b) ⟨za +wb, c⟩ = z⟨a, c⟩ +w⟨b, c⟩,

c) ∣∣za∣∣ = ∣z∣ ∣∣a∣∣,

d) ⟨a, a⟩ > 0 ∀a ≠ 0 and ⟨a, a⟩ = 0 for a = 0

and it is complete w.r.t. convergence in norm.
[Kreyszig, 1978, Definition 3.1-1]

A Hilbert space is separable if it contains a countable dense subspace. Examples of
separable Hilbert spaces will now be given.

Definition 3.2 (`2-space)
Let f and g be complex valued sequences defined on Z. Then the inner product
space of square-summable complex-valued sequences with the inner product

⟨f, g⟩ =
∞

∑
n=−∞

f(n) ⋅ g(n) <∞, (3.1)

9
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and norm

∣∣f ∣∣ = (
∞

∑
n=−∞

∣f(n)∣2)

1
2

<∞, (3.2)

where n ∈ Z is an index, is called `2(Z).
[Vetterli et al., 2014, p. 31]

Lemma 3.3
The space `2 is a separable Hilbert space.
[Kreyszig, 1978, pp. 23, 35]

Proof: We will first show that `2 is a Hilbert space and subsequently that it is
separable. Showing (a)-(d) from Definition 3.1 is trivial. We will show that `2 is
complete, i.e. that all Cauchy sequences converge.

Let {fn}n∈N be a Cauchy sequence in `2, where fn = {fn(1), fn(2), ...}. Then,
given ε > 0, ∃N ∈ N ∶ ∀m,n ≥ N we have

∥fn − fm∥ =
⎛

⎝

∞

∑
j=1

∣fn(j) − fm(j)∣2
⎞

⎠

1
2

≤ ε. (3.3)

From this we get that, ∀j ∈ N,

∣fn(j) − fm(j)∣ ≤ ε.

So, {fn(j)}n∈N is a Cauchy sequence in C, which is known to be complete. This
means that ∃f(j) ∈ C ∶ {fn(j)}

n→∞
Ð→ f(j). We collect all of these limits in a sequence

f = {f(1), f(2), ...}. Let M ∈ N, then from (3.3) we get

⎛

⎝

M

∑
j=1

∣fn(j) − fm(j)∣2
⎞

⎠

1
2

≤ ε,

which implies

ε ≥ lim
m→∞

⎛

⎝

M

∑
j=1

∣fn(j) − fm(j)∣2
⎞

⎠

1
2

=
⎛

⎝

M

∑
j=1

∣fn(j) − f(j)∣
2⎞

⎠

1
2

.

Let M →∞⇒ ∥fn − f∥ ≤ ε,∀n ≥ N , which shows that `2 is complete.
To show separability, we have to find a subspace, Y , which is countable and dense

in `2. For every N ∈ N, we set

YN = {y = {y(1), y(2), ..., y(N),0...} ∶
y(n) = a(n) + ib(n) ∶ a(n), b(n) ∈ Q,∀n = 1,2, . . . ,N}.
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Observe that YN can be identified with QN ×QN which is countable because it is a
Cartesian product of countable sets. We consider

Y =
∞

⋃
N=1

YN . (3.4)

Y is countable since it is a countable union of countable sets.
Now we need to prove that Y is dense in `2. Let f = {f(n)} ∈ `2 and, given ε > 0,

we will prove that B(f, ε) ∩ Y ≠ ∅ (B(f, ε) is the open ball around f with radius ε),
i.e. ∃y ∈ Y ∶ ∥f − y∥ < ε. Since f ∈ `2 its norm is finite, i.e.

∞

∑
n=1

∣f(n)∣2 <∞

and
lim
k→∞

k

∑
n=1

∣f(n)∣2 =
∞

∑
n=1

∣f(n)∣2 <∞.

Additionally, ε > 0⇒ ε2

2 > 0. This leads to the following. ∃N ∈ N ∶ ∀k ≥ N

∣
k

∑
n=1

∣f(n)∣2 −
∞

∑
n=1

∣f(n)∣2∣ <
ε2

2
.

For k = N we get
∞

∑
n=N+1

∣f(n)∣2 <
ε2

2
, (3.5)

i.e. for large enough N the norm of the tail of the sequence becomes arbitrarily small.
Let n = 1,2, ...,N , f(n) ∈ C and y(n) ∈ Q+ iQ. Q+ iQ is dense in C. Additionally,

ε > 0 ⇒ ε√
2N

> 0. So ∃y(n) ∈ Q + iQ ∶ ∣f(n) − y(n)∣ < ε√
2N
⇔ ∣f(n) − y(n)∣2 < ε2

2N .
From this it follows that

N

∑
n=1

∣f(n) − y(n)∣2 < N
ε2

2N
=
ε2

2
. (3.6)

By (3.5) and (3.6) we have that ∃y ∶= {y(1), y(2), ..., y(N),0,0, ...} ∈ Y such that

∥f − y∥ = (
∞

∑
n=1

∣f(n) − y(n)∣2)

1
2

= (
N

∑
n=1

∣f(n) − y(n)∣2 +
∞

∑
n=N+1

∣f(n)∣2)

1
2

< (
ε2

2
+
ε2

2
)

1
2

= ε.

(3.7)

So for this choice of Y we have a countable dense subspace of `2, hence, `2 is sepa-
rable. ◻
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Definition 3.4 (L2-space)
Let f and g be complex-valued functions. Then the inner product space of square
Lebesque integrable complex-valued functions with the inner product

⟨f, g⟩ = ∫
∞

−∞
f(x) ⋅ g(x)dx <∞, (3.8)

and the norm

∣∣f ∣∣ = (∫

∞

−∞
∣f(x)∣2dx)

1
2
<∞, (3.9)

is called L2(R), [Vetterli et al., 2014, p. 31]. An equivalent definition of L2(R)

can be found in [Pedersen, 1999, Definition 2.5]. This states that L2(R) is the
completion of C0(R), the space of continuous functions with compact support.
When limiting to the function with compact support on a fixed interval I we get
L2(I).

Remark 3.5: It is trivial to show that L2(R) is an inner product space and the fact
that it is defined to be the completion of C0(R) implies that it is a Hilbert space.
In [Pedersen, 1999, Theorem 2.8] it is shown that the space of polynomials, with
coefficients in Q, on the interval, P (I), is dense in L2(I). Furthermore, this space
of polynomials is countable and therefore L2(I) is separable. ◂

Note that if nothing else is stated the norm and inner product will always be L2

or `2. It will be clear from the context which of the two it is.

3.2 Frames
In the project the use of frames will be important therefore some theory is necessary.
This section is dedicated to some of this theory. We start by defining frames.

Definition 3.6 (Frame)
A sequence of elements, {fk}k∈N, in a Hilbert space, H, is called a frame for H if
there exists constants A,B > 0 such that

A∣∣f ∣∣2 ≤
∞

∑
k=1

∣⟨f, fk⟩∣
2
≤ B∣∣f ∣∣2, ∀f ∈H. (3.10)

[Christensen, 2008, Definition 1.1.1]

The constants A and B are called framebounds. A special type of frames are
called Riesz bases.
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Definition 3.7 (Riesz Basis)
A family of the form {Uek}

∞
k=1 is called a Riesz basis for H, where {ek}

∞
k=1 is an

orthonormal basis for H and U ∶H →H is a bounded bijective operator.
[Christensen, 2008, Definition 3.3.1]

Remark 3.8: It is easily seen that a Riesz basis is a frame: Any element f ∈H can
be written as:

∞

∑
k=1

∣⟨f,Uek⟩∣
2
=

∞

∑
k=1

∣⟨U∗f, ek⟩∣
2
= ∥U∗f∥2

2 ∼ ∥f∥2
2. (3.11)

This implies that

A∥f∥2
≤

∞

∑
k=1

∣⟨f,Uek⟩∣
2
≤ B∥f∥2, ∀f ∈H. (3.12)

◂

Remark 3.9: If both of the frame bounds A and B, in (3.12), are equal to 1 the
sequence {Uek}

∞
k=1 is orthonormal, [Christensen, 2008, p. 63]. ◂

Definition 3.10 (Frame Operator)
The frame operator is defined as

S ∶H →H, Sf =
∞

∑
k=1

⟨f, fk⟩fk. (3.13)

[Christensen, 2008, p. 100]

The frame operator has several important properties which will be useful in later
sections.

Lemma 3.11
Let {fk}

∞
k=1 be a frame with frame operator S and frame bounds A and B. Then

the following is true:

1. S is bounded, invertible, self-adjoint and positive.

2. {S−1fk}
∞
k=1 is a frame with frame operator S−1 and frame bounds B−1 and

A−1.

3. If A and B are the optimal frame bounds for {fk}
∞
k=1 then the bounds B−1

and A−1 are optimal for {S−1fk}
∞
k=1.

[Christensen, 2008, Lemma 5.1.6]



14 Chapter 3. General Theory

An operator, S, is said to be self-adjoint if ⟨Sf, g⟩ = ⟨f,Sg⟩,∀f, g ∈ H, and it is
said to be positive if ⟨Sf, f⟩ ≥ 0,∀f ∈H.

The next theorem is one of the most important frame results and is called the
frame decomposition. It states that if {fk}

∞
k=1 is a frame for H, then every element

in H has a representation as an infinite linear combination of the frame elements.

Theorem 3.12
Let {fk}

∞
k=1 be a frame with frame operator S. Then

f =
∞

∑
k=1

⟨f,S−1fk⟩fk, ∀f ∈H, (3.14)

and
f =

∞

∑
k=1

⟨f, fk⟩S
−1fk, ∀f ∈H. (3.15)

Both series converge unconditionally for all f ∈H.
[Christensen, 2008, Theorem 5.1.7]

Proof: Let f ∈H. Using the properties of the frame operator in Lemma 3.11,

f = SS−1f =
∞

∑
k=1

⟨S−1f, fk⟩fk =
∞

∑
k=1

⟨f,S−1fk⟩fk,

f = S−1Sf = S−1
∞

∑
k=1

⟨f, fk⟩fk =
∞

∑
k=1

⟨f, fk⟩S
−1fk.

(3.16)

It follows from [Christensen, 2008, Corollary 3.1.5] that the sequences converge un-
conditionally since they are Bessel sequences. ◻

That a sequence converges unconditionally means that a sequence converges to the
same limit no matter the summation order.

3.3 Subspace Angles
In this section we define subspace angles and the subspace condition which is impor-
tant for the stability and optimality of generalized sampling.

Definition 3.13 (Subspace Angle)
Let U and V be closed subspaces of a Hilbert space, H, and PV ∶ H → V be the
orthogonal projection onto V . The subspace angle, θUV ∈ [0, π2 ], between U and V
is given by

cos(θUV ) = inf
u∈U
∣∣u∣∣=1

∣∣PV u∣∣ = inf
u∈U
∣∣u∣∣=1

sup
v∈V
∣∣v∣∣=1

⟨u, v⟩. (3.17)
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[Adcock et al., 2013, Definition 3.1]

For instance, in the case where U and V are one dimensional subspaces of R2,
the subspace angle is the angle between the lines U and V .

Definition 3.14 (Subspace Condition)
Let U and V be closed subspaces of a Hilbert space, H. Then U and V is said
to satisfy the subspace condition if U ∩ V = {0} and U + V is closed in H, or
equivalently, if cos(θUV ⊥) > 0.
[Adcock et al., 2013, Definition 3.3 and Lemma 3.2]

The subspace condition is not very strict and for most cases the first version is
easier to check. The angle between subspaces do play an important role later, so it
is relevant to use that version in some cases.
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Chapter 4

Theory of Generalized Sampling

Generalized sampling can be used for different purposes depending on the input
signal, the sampling space and the reconstruction space. If the samples are fixed we
might get a better representation of the signal by moving it to the reconstruction
space. Generalized sampling can also be used for compression, i.e. we might be
able to represent a signal equally well in the reconstruction space while using less
coefficients.

In this chapter we will present the theory of generalized sampling in the one-
dimensional case. Measures for optimality and stability will be defined and bounds
for these measures will be discussed under different conditions.

We are mainly concerned with functions with compact support in a domainD ⊂ R,
so we define the subspace H = {f ∈ L2(R) ∶ supp(f) ⊆ D} ⊆ L2(R). A sampling
scheme, Ω = {ω1, ..., ωN} ⊆ R, is a finite set of distinct points in which a given
function is sampled. In the one dimensional case it is assumed that ω1 < ω2 < ⋯ < ωN .
Additionally, we need a finite reconstruction space, W ⊆ H. The goal is to compute
an approximation, f̃ ∈ W, to f only using the sampling data. We wish to find a
mapping, F ∶ f → f̃ , depending solely on the sampling data which is both quasi-
optimal and numerically stable.

Definition 4.1 (The Quasi-optimality Constant)
Let F ∶H →W, f ↦ f̃ be a mapping, where H is a subspace of a separable Hilbert
space. The quasi-optimality constant, ν = ν(F ) > 0, is the smallest number such
that

∥f − f̃∥ ≤ ν∥f −PWf∥, f ∈H, (4.1)

where PW is the orthogonal projection onto W. If no such constant exist then
ν = ∞. F is quasi-optimal if ν(F ) is small. If ν = 1 then the mapping F is
equivalent to the orthogonal projection which is optimal.
[Adcock et al., 2013, Definition 2.1]

In the case of MRI we are forced to sample in a Fourier frame, but we know that

17
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images are generally well represented by wavelets. Therefore we choose W to be a
subspace of L2(R) spanned by wavelets. We define the Fourier transform as

f̂(ω) = ∫
R
f(x)e−2πiωxdx, ω ∈ R, f ∈ L2

(R), (4.2)

and denote the sampling data
{f̂(ω) ∶ ω ∈ Ω}. (4.3)

Definition 4.2 (Admissible Sampling Operator)
Let Ω be a sampling scheme, S ∶H →H a bounded linear operator and let W be a
finite-dimensional subspace of H. S is said to be an admissible sampling operator
for the pair (Ω,W) if it satisfies

1. for each f ∈H, Sf depends only on the sampling data {f̂(ω) ∶ ω ∈ Ω},

2. S is self-adjoint with respect to ⟨⋅, ⋅⟩ and satisfies

∣⟨Sf, g⟩∣ ≤
√

⟨Sf, f⟩⟨Sg, g⟩, ∀f, g ∈H, (4.4)

3. there exists a positive constant C1 = C1(Ω,W) such that

⟨Sf, f⟩ ≥ C1∥f∥
2, ∀f ∈W. (4.5)

[Adcock et al., 2014a, Definition 3.1]

C1 is always assumed to be the largest constant satisfying (4.5). Given an ad-
missible sampling operator, S, the constant C2 = C2(Ω) is defined to be the smallest
constant satisfying

⟨Sf, f⟩ ≤ C2∥f∥
2, f ∈H. (4.6)

The sampling operator can be constructed based on the Fourier transform as:

Sf(x) =
N

∑
n=1

√
µnf̂(ωn)e

2πiωn⋅xχD(x), (4.7)

where µn > 0 are particular weights and D is an interval, [Adcock et al., 2014a,
Equation 3.6]. In general the weights are the measure of the Voronoi region for each
sample. In the one dimensional case this reduces to

µn =
1
2
(ωn+1 − ωn−1), n = 1, ...,N, (4.8)

where we set ω0 = ωN − 2K and ωN+1 = ω1 + 2K, where K is the bandwidth of the
sampling scheme.
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For certain conditions on the sampling scheme, which will be given in Theorem
4.12, the sampling operator, S, is the frame operator for a weighted Fourier frame.
In that case C1 and C2 are the frame bounds.

Definition 4.3 (Reconstruction)
Given a sampling scheme, Ω, a finite-dimensional subspace, W, and an admissible
sampling operator, S, we define the generalized sampling reconstruction as

f̃ ∈W, ⟨Sf̃ , g⟩ = ⟨Sf, g⟩, ∀g ∈W. (4.9)

[Adcock et al., 2014a, Equation 3.7]

In our case, with S given by (4.7), the reconstruction is equivalent to the weighted
least-squares problem:

f̃ = arg min
g∈W

N

∑
n=1

µn∣f̂(ωn) − ĝ(ωn)∣
2, (4.10)

[Adcock et al., 2014a, p. 6].

Definition 4.4 (Reconstruction Constant)
Let S be an admissible sampling operator with constants C1 and C2 given by
(4.5) and (4.6) respectively. The ratio C(Ω,W) =

√
C2/C1 is referred to as the

nonuniform generalized sampling reconstruction constant.
[Adcock et al., 2014a, Definition 3.2]

This constant is a measure of numerical stability and is closely related to relative
condition numbers.

Theorem 4.5
Let Ω be a sampling scheme, W a finite-dimensional subspace of H and assume
that S is an admissible sampling operator. Then the reconstruction, F (f) = f̃ ,
exists and is unique for any f ∈H and we have the sharp bound

∥f − F (f)∥ ≤ C̃∥f −PWf∥, f ∈H, (4.11)

where C̃ = sec(θWV ⊥) and V = (S(W))⊥. Moreover C̃ ≤ C(Ω,W).
[Adcock et al., 2014a, Theorem 3.3]
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Proof: First we prove that C̃ ≤ C(Ω,W). From Definition 3.13 we get
1
C̃

= cos(θWV ⊥)

= inf
g∈W
∥g∥=1

∥PS(W)g∥

= inf
g∈W
∥g∥=1

sup
g′∈W
Sg′≠0

∣⟨g,Sg′⟩∣

∥Sg′∥
.

(4.12)

Now set g′ = g and use that S is self-adjoint:
1
C̃

≥ inf
g∈W
∥g∥=1

⟨Sg, g⟩

∥Sg∥
. (4.13)

Recall that ∥Sg∥ = sup h∈H
∥h∥=1

⟨Sg, h⟩, [Christensen, 2008, Lemma 2.3.4]. Hence,

∥Sg∥ = sup
h∈H
∥h∥=1

⟨Sg, h⟩ ≤
√
C2

√
⟨Sg, g⟩, (4.14)

where the inequality comes from (4.4) and (4.6). Applying (4.5) gives

1
C̃

≥

√
C1
C2

⇔ C̃ ≤

√
C2
C1

= C(Ω,W). (4.15)

Now we need to show that the inequality (4.11) holds. Since W and V ⊥ satisfy
the subspace condition, [Adcock et al., 2013, Corollary 3.5] gives

∥QWV f∥ ≤ C̃∥f∥, ∀f ∈H0,

∥f −QWV f∥ ≤ C̃∥f −PWf∥, ∀f ∈H0,
(4.16)

where H0 = W ⊕ V and QWV ∶ H0 → W is the projection with range W and kernel
V .

It now remains to show the following: (i) H0 =H and (ii) f̃ = QWV f , ∀f ∈H.
(i) From [Adcock et al., 2013, Lemma 3.7] we know that H0 =H if dim(S(W)) =

dim(W). If the dimensions are not the same there exist a nonzero g ∈W such that
Sg = 0, but, because S is an admissible sampling operator, this is only true for g = 0:
a contradiction.

(ii) We now know that H =W ⊕ V , this means there is a unique way of splitting
f ∈H, f = fW + fV , so

⟨f,Sg⟩ = ⟨fW + fV , Sg⟩ = ⟨fW , Sg⟩ ∀g ∈W, (4.17)

as fV is orthogonal to Sg by definition of V . QWV is the projection H →W, f ↦ fW
which means that

⟨fW , Sg⟩ = ⟨QWV f,Sg⟩ ∀g ∈W. (4.18)
Since S is self-adjoint, QWV is a reconstruction by Definition 4.3. The reconstruction
is unique due to the unique splitting of f ∈H, f = fW + fV . ◻
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Remark 4.6: Note that C̃ is the quasi-optimality constant per Definition 4.1. From
this and Theorem 4.5 we deduce that the reconstruction constant is an upper bound
for the quasi-optimality constant. ◂

Remark 4.7: In Theorem 4.5 it is implicitly assumed that W and V ⊥ satisfy the
subspace condition from Definition 3.14. Since S is an admissible sampling operator
we have C <∞ and, as we proved, C̃ ≤ C which means that cos(θWV ⊥) > 0. ◂

4.1 The Stable Sampling Rate
The subspace condition, Definition 3.14, is a condition under which we are guaran-
teed stable and quasi-optimal reconstruction. Given that the subspace condition is
satisfied, it is of great importance to know how large the number of samples, M ,
must be for a given number of reconstruction coefficients, N . Or reversed, how large
N is allowed to be for a given M . For instance, if we want to compress a signal to N
coefficients in the reconstruction space, we need to know how many samples to take.

Definition 4.8 (The Stable Sampling Rate)
The stable sampling rate is defined as

Θ(N ; θ) = min{M ∈ N ∶ C(Ω,W) ≤ θ}, N ∈ N, θ ∈ (0,∞) . (4.19)

[Adcock et al., 2013, Definition 5.1]

By choosingM ≥ Θ(N ; θ) the definition gives that C(Ω,W) ≤ θ so the reconstruc-
tion is quasi-optimal and numerically stable up to the magnitude of θ. The condition
M ≥ Θ(N ; θ) is both sufficient and necessary to ensure stable quasi-optimal recon-
struction.

Conversely, the quantity

Ψ(M ; θ) = max{N ∈ N ∶ C(Ω,W) ≤ θ}, M ∈ N, θ ∈ (0,∞) (4.20)

is called the stable reconstruction rate and is used to choose N based on M , [Adcock
et al., 2013, Equation (5.1)].

4.2 Sampling in a Fourier Frame
Suppose a sampling scheme, Ω, is chosen such that it gives rise to a weighted Fourier
frame, i.e.

A∥f∥2
≤ ∑
n∈Z

µn∣f̂(ωn)∣
2
≤ B∥f∥2, ∀f ∈ L2

([0,1]), (4.21)
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for constants 0 < A ≤ B < ∞. The frame operator is well-defined, linear, bounded,
invertible and the truncated operators,

SΛ ∶ f ↦
Λ
∑
n=−Λ

√
µnf̂(ωn)e

2πiωn●, (4.22)

converge strongly to S on L2([0,1]) as Λ→∞, i.e. ∥SΛ − S∥→ 0 as Λ→∞.

Definition 4.9 (Relative Separation)
A sequence of points, ζk ∈ R, k ∈ I ⊆ N, is called separated if ∣ζk − ζj ∣ ≥ η, j ≠ k, for
some η > 0. If {λk}k∈I is a finite union of separated sets, it is called a relatively
separated sequence.
[Adcock et al., 2014a, p. 11]

An example of relative separation: Take two sequences in R: {n}n∈N and {n +
1
n}n∈N. Both of these sequences are separated, but their union is not. However, it is
relatively separated.

Definition 4.10 (The Lower Beurling Density)
For a sequence, {ωn}n∈Z, the lower Beurling density is defined as

D−
= lim
r→∞

n−(r)

r
, n−(r) = min

t∈R
card({n ∈ Z ∶ ωn ∈ (t, t + r)}). (4.23)

[Adcock et al., 2014a, p. 11]

Remark 4.11: In practise the sampling scheme will only cover a finite interval.
When that is the case, the lower Beurling density is calculated as above, but r is
limited by the length of the interval instead of infinity. ◂

The lower Beurling density is a measure of the density in the intervals with the
least number of samples. A small number means that there are large intervals with
few samples. This property can be problematic as stated in the following theorem.

Theorem 4.12
If {ωn}n∈N is relatively separated and D− > 1 then {

√
µne

2πiωn●χ[0,1](●)}n∈Z
forms a weighted frame for L2([0,1]) with weights {µn}n∈Z. Conversely, if
{
√
µne

2πiωn●χ[0,1](●)}n∈Z forms a weighted frame for L2([0,1]) with weights
{µn}n∈Z, then D− ≥ 1 and {ωn}n∈N is relatively separated.
[Adcock et al., 2014a, Theorem 4.7]
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According to the theorem, if the samples are neither too clustered nor too scat-
tered, we have a weighted Fourier frame for the sampling space. When this is the
case, we have en upper bound for the reconstruction constant:

Theorem 4.13
Let W be a finite-dimensional subspace of L2([0,1]). Suppose that ΩΛ = {ωn ∶

∣n∣ ≤ Λ}, where {ωn ∶ n ∈ Z}, gives rise to a weighted Fourier frame with weights
{µn}n∈Z. Then the truncated frame operator,

SΛ ∶ f ↦
Λ
∑
n=−Λ

√
µnf̂(ωn)e

2πiωn●, (4.24)

is admissible for all sufficiently large Λ. Specifically,

C(Ω,W) ≤

√
B

√
A − Ẽ(W,Λ)2

, (4.25)

where A and B are the frame bounds for W and

Ẽ(W,Λ)
2
= sup

⎧⎪⎪
⎨
⎪⎪⎩

∑
∣n∣>Λ

√
µn∣f̂(ωn)∣

2
∶ f ∈W, ∥f∥ = 1

⎫⎪⎪
⎬
⎪⎪⎭

. (4.26)

[Adcock et al., 2014a, Theorem 4.8]

Proof: First we have to show that the sampling operator is admissible, Definition
4.2. Requirement (1) is satisfied because we know the sampling scheme, Ω, and the
sampling data, f̂(ω). µ can easily be calculated from Ω. Requirement (2) is met
because

⟨SΛf, g⟩ = ∫
1

0

Λ
∑
n=−Λ

√
µnf̂(ωn)e

2πiωnxg(x)dx

=
Λ
∑
n=−Λ

√
µnf̂(ωn)∫

1

0
g(x)e−2πiωnxdx

=
Λ
∑
n=−Λ

√
µnf̂(ωn)ĝ(ωn)

=
Λ
∑
n=−Λ

√
µn∫

1

0
f(x)e−2πiωnxdxĝ(ωn)

= ∫

1

0
f(x)

Λ
∑
n=−Λ

√
µne

−2πiωnxĝ(ωn)dx

= ∫

1

0
f(x)SΛg(x)dx = ⟨f,SΛg⟩.

(4.27)
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Using the Cauchy-Schwartz inequality,

∣⟨SΛf, g⟩∣ = ∣⟨S
1
2
ΛS

1
2
Λf, g⟩∣ = ∣⟨S

1
2
Λf,S

1
2
Λg⟩∣ ≤ ∥S

1
2
Λf∥∥S

1
2
Λg∥

=

√

∣⟨S
1
2
Λf,S

1
2
Λf⟩∣

√

∣⟨S
1
2
Λg,S

1
2
Λg⟩∣ =

√
∣⟨SΛf, f⟩∣∣⟨SΛg, g⟩∣

=
√

⟨SΛf, f⟩⟨SΛg, g⟩,

(4.28)

where we drop the absolute value in the end because SΛ is a positive operator. Now
we want to show Requirement (3): ⟨SΛf, f⟩ ≥ C1∥f∥

2. We have a frame with frame
operator S, i.e.

⟨Sf, f⟩ = ∑
n∈Z

√
µn∣f̂(ωn)∣

2,

A∥f∥2
≤ ⟨Sf, f⟩ ≤ B∥f∥2.

(4.29)

Using this and the strong convergence of SΛ, for Λ large enough, we get

⟨SΛf, f⟩ = ⟨Sf, f⟩ − ⟨(S − SΛ)f, f⟩

≥ A∥f∥2
− ∑

∣n∣>Λ

√
µn∣f̂(ωn)∣

2

≥ (A − Ẽ(W,Λ)
2
)∥f∥2,

(4.30)

where

Ẽ(W,Λ)
2
= sup

⎧⎪⎪
⎨
⎪⎪⎩

∑
∣n∣>Λ

√
µn∣f̂(ωn)∣

2
∶ f ∈W, ∥f∥ = 1

⎫⎪⎪
⎬
⎪⎪⎭

, (4.31)

which implies C1 ≥ A − Ẽ(W,Λ)2. This concludes the proof that SΛ is in fact an
admissible sampling operator. The only thing left to show is the upper bound for the
reconstruction constant. We have already found a lower bound for C1 so we need to
estimate a bound for C2.

⟨SΛf, f⟩ ≤ ⟨Sf, f⟩ ≤ B∥f∥2
⇒ C2 = B. (4.32)

By Definition 4.4 the bound for the reconstruction constant becomes

C(Ω,W) =

√
C2
C1

≤

√
B

√
A − Ẽ(W,Λ)2

. (4.33)
◻

4.2.1 Nonharmonic Discrete Fourier Transform

This section describes how to create samples in a Fourier frame based on a signal in
the time domain. We remind the reader that the Fourier transform is defined as

F[f](ω) = ∫
∞

−∞
f(x)e−2πixωdx, f ∈ L2

(R), (4.34)
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where ω ∈ R. We want to implement this in Python. In order to do that, we must
approximate it using only a finite number of calculations performed on a finite set of
data. We base the derivation on the procedure done in [Folland, 1992, pp. 250-251].

Assume that f vanishes outside [0,1]. When this is the case we can replace the
integral over (−∞,∞) with the interval [0,1]. This theory can easily be generalized
to arbitrary finite intervals. Next, F[f](ω) will be calculated in a finite sequence
of points, ωk, in a bounded interval, [−ωmax, ωmax]. Then the sampling theorem,
Theorem 2.1, indicates that F[f] can be completely determined from values at the
points k/T , where k ∈ Z. However, this will not fulfil the requirements for the later
sections, therefore we oversample. The uniform case is described at the bottom of
[Folland, 1992, p. 231]. We sample in the points

ωk =
kε

T
= kε, k ∈ Z, (4.35)

where ε > 0 is called the sampling density and is the distance between two consecutive
sample frequencies. In general we will sample in points ωk such that (D−)−1 = ε. We
will only consider ε−1 ∈ N. Hence, we are calculating

F[f](ωk) = ∫
1

0

√
µkf(x)e

−2πixωkdx, ∣ωk∣ ≤ ωmax. (4.36)

We now replace the integral with a left Riemann sum by dividing the interval [0,1]
into N equal subintervals with the endpoints nT

N = n
N , where n = 0,1, . . . ,N , and we

get

F[f](ωk) ≈
N−1
∑
n=0

√
µkf (

n

N
) e−2πiωk nN

1
√
N

=
1

√
N

N−1
∑
n=0

√
µkf (

n

N
) e−2πiωk nN =∶ f̂(ωk).

(4.37)

Since e−2πik = 1, ∀k ∈ Z, the sequence, {f̂(ωk)}k, is periodic with period ε−1N ,
i.e. f̂(ωk+ε−1N) = f̂(ωk). We have thereby reached a nonharmonic discrete Fourier
transform in (4.37). The inverse nonharmonic discrete Fourier transform is

f (
n

N
) =

1
√
N
∑
k

√
µkf̂(ωk)e

2πiωk nN . (4.38)

We will use the shorthand DFT for (4.37) and IDFT for (4.38).
In Figure 4.1 we compare the nonharmonic discrete Fourier transform to the

analytical Fourier transform. Here we use the function (7.5). It is our interpretation
that the small difference is due to numerical precision.

An implementation of the (inverse) nonharmonic discrete Fourier transform can
be found in the Python module called DFT.py. The functions DFT() and IDFT()
have time complexities of O(MN).
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Figure 4.1: The plots show the nonharmonic discrete Fourier transform of a signal (blue) and the
analytical Fourier transform of the signal (orange) sampled in the same points. The left is the whole
signal and the right is a zoom.

Rank of Transforms

In this section we will investigate inaccuracies which might arise when using the DFT
and IDFT transforms. A key factor is the rank of the transforms. Based on Theorem
4.12, it is assumed that η <M , where M is the number of Fourier coefficients and η
is the number of time samples.

Since the transforms are linear, we can write them in matrix-form. The DFT
has dimension M × η and the IDFT has dimension η ×M . By multiplying these
matrices together, we get that the dimensions are η × η for IDFT⋅DFT and M ×M
for DFT⋅IDFT. Numerically we have found that IDFT⋅DFT= Iη, where Iη is the
identity matrix of size η × η. We believe that it can be proved analytically using
[Folland, 1992, Lemma 7.1].

DFT⋅IDFT is a projection:

DFT ⋅ IDFT ⋅DFT ⋅ IDFT =DFT ⋅ IDFT. (4.39)

The IDFT is not injective, it has range of dimension η, η < M . Therefore, some
error might occur depending on the signal. Signals in the range of IDFT can be
transformed without error. Signals that does not lie in the range will have errors of
varying degree. However, only signals in the kernel will be transformed to zero.

4.2.2 Fourier Frames

In this section the theory for Fourier frames will be investigated further. A weighted
Fourier frame is defined as a system of {√µke2πiωkx}k∈Z satisfying the frame condition
(3.10). If {ωk} = Z we have an orthogonal basis for L2([0,1]). However, we are more
interested in the general frame case for L2([0,1]), where ωk ∈ R. The expansion

f(x) = ∑
k∈Z

√
µkf̂(ωk)e

2πiωkx (4.40)
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in L2(I), where I ⊂ R and ∣I ∣ < ∞, is called a nonharmonic Fourier series. Notice
that (4.40) is very similar to (4.38).

We will now introduce an important frame quantity called the frame radius. The
radius states how large an interval a frame is valid for.

Definition 4.14 (Frame Radius)
For a given real sequence, Ω = {ωk}k∈Z, the frame radius is defined as

R(Ω) = sup{R > 0∣{√µke2πiωkx}k∈Z is a frame for L2
(−R,R)}. (4.41)

[Christensen et al., 2016, p. 232]

It follows immediately from the definition that if {√µke2πiωkx}k∈Z is a frame for
L2(−R,R), for some R > 0, then it is also a frame for L2(−R′,R′), for all 0 < R′ ≤ R.
In the critical case, where R = R(Ω), there are cases where {

√
µke

2πiωkx}k∈Z is a
frame and cases where it is not, [Christensen et al., 2016, p. 233].

Definition 4.15 (Uniform Density)
A seperated seqence, {ωk}k∈Z, is said to have uniform density, ε ∈ (0,∞), if there
exists a number, L > 0, such that

∣ωk −
εk

2π
∣ ≤ L, ∀k ∈ Z. (4.42)

[Christensen et al., 2016, p. 233]

Theorem 4.16
If {ωk}k∈Z is a seperated sequence with uniform density, ε > 0, then {

√
µke

2πiωkx}k∈Z
has a frame radius of at least R ≥ 1

2ε .
[Christensen et al., 2016, Theorem 9.8.1]

A proof for Theorem 4.16 can be found in [Duffin and Schaeffer, 1952].
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Chapter 5

The Reconstruction Space of
Wavelets

Wavelets has been chosen to be the reconstruction basis. This is because wavelet
systems are better suited to represent discontinuities than Fourier systems. Discon-
tinuities are often very important in images and therefore it is important to choose
a basis, in which they are well represented, for the reconstruction. The focus will be
on a specific class of wavelets. This is due to its generally nice properties and the
extended research already done on this class.

5.1 Notation
Wavelets are usually associated with a wavelet function, ψ, and a scaling function,
φ, which are translated and dilated to span the desired space. These operators will
now be defined. For completeness we will also define modulation.

Definition 5.1 (Translation, modulation, dilation)
Let f(●), g(●) ∈ L2(R), let x, x0, ω, ω0 ∈ R and a ∈ R+.
A translation is a time shift:

g(x) = f(x − x0)
FT
←→ ĝ(ω) = e−2πiωx0 f̂(ω). (5.1)

A modulation is a frequency shift:

g(x) = e2πiω0xf(x)
FT
←→ ĝ(ω) = f̂(ω − ω0). (5.2)

A dilation is a scaling:

g(x) =
√
af(ax)

FT
←→ ĝ(ω) =

1
√
a
f̂ (

ω

a
) . (5.3)

[Vetterli et al., 2014, p. 620]

29
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From now on, let Tk denote the operator which translates with k, let Ml denote
the operator which modulates with l and let Da denote the operator which dilates
with a.

5.2 Daubechies Wavelets
A special class of wavelets is the Daubechies wavelets. These have several nice
properties one being that they are dyadic. Dyadic wavelets are special because they
are translated only by integers and scaled only by powers of 2. The wavelet functions
are defined as

ψJ,k(x) = (D2JTkψ) (x) = 2
J
2 ψ (2Jx − k) . (5.4)

In the following, scaling and wavelet functions will often be seen with subscripts J
and k, this refer to a dilation by 2J and translation by k, where J, k ∈ Z.

Daubechies wavelets are generated through a multi resolution analysis.

Definition 5.2 (Multi Resolution Analysis)
A multi resolution analysis for L2(R) consists of a sequence of closed subspaces,
{VJ}J∈Z, of L2(R) and a function, φ ∈ V0, such that

1. . . . V−1 ⊂ V0 ⊂ V1 . . .,

2. ⋃J VJ = L2(R) and ⋂J VJ = {0},

3. f ∈ VJ ⇔D2f ∈ VJ+1,

4. f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z,

5. {Tkφ}k∈Z is an orthonormal basis for V0.

[Christensen, 2008, Definition 3.6.2]

Note that φ, in Definition 5.2, is called the scaling function.
One particular simple Daubechies wavelet is the Haar wavelet, also known as the

Daubechies 1 wavelet.

Definition 5.3 (Haar)
The Haar wavelet function is defined as

ψ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1,

0 otherwise.
(5.5)

Furthermore, the corresponding scaling function is φ = χ[0,1).
[Christensen, 2008, Example 3.6.1 and p. 76]
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In 1910 Haar proved that the functions, {ψJ,k}, constitutes an orthonormal basis
for L2(R) for the choice of ψ as in (5.5). The Haar basis is especially well suited for
representing piecewise constant functions; a class of functions which is generally ill
represented in Fourier systems.

Another important property of Daubechies wavelets is the number of vanishing
moments.

Definition 5.4 (Vanishing Moments)
The number of vanishing moments, a, for a function, f ∈ L2(R), is the highest
value of a such that

∫

∞

−∞
xlf(x)dx = 0, ∀ l = 0,1, ..., a, (5.6)

given that
∫

∞

−∞
∣xl∣∣f(x)∣dx <∞, ∀ l = 0,1, ..., a. (5.7)

[Christensen, 2008, p. 93]

Remark 5.5: It is relevant to note that a Daubechies wavelet basis can be used to
reconstruct any polynomial of degree a − 1 if the number of vanishing moments for
the wavelet is a, [Cohen et al., 1993, p. 55]. ◂

We will denote the Daubechies wavelets ”Dba” based on the number of vanishing
moments, e.g. the Daubechies wavelet with two vanishing moments is called Db2.

5.2.1 The Cascade Algorithm

For Daubechies wavelets of higher order than the Haar wavelet, i.e. with more
vanishing moments, a closed form expression for the scaling function does not exist.
However, the scaling function satisfies the two-scale equation,

φ(x) =
√

2
2a−1
∑
k=0

hkφ(2x − k), (5.8)

and we can use this to evaluate it in specific points. Here, hk are filter coefficients
which are known for specific choices of Daubechies wavelets, [Daubechies, 1992, Table
6.1]. It is possible to use (5.8) to write a system of equations for integer values of x
and solve for the function values. When the function value is known for integer values
of x it can be found for 2−1x and so on. [Ruch and Van Fleet, 2011, Section 6.2]
describes an algorithm to evaluate the scaling function in points 2−Rx for all integer
values of x and all positive integer values of R. The cascade algorithm is iterative,
i.e. we start with a guess φ0 and for each iteration we get a better approximation
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φn. The algorithm use the two-scale equation, (5.8), in the iteration as

φn+1(x) =
√

2
2a−1
∑
k=0

hkφn(2x − k). (5.9)

A good choice for φ0 is the Haar scaling function, χ[0,1). In Figure 5.1, the Daubechies
wavelet with two vanishing moments is plotted after 1, 2, 3 and 15 iterations.

Theorem 5.6
Suppose ∑2a−1

k=0 hk =
√

2. Then the sequence of functions, {φn(x)} defined by (5.9),
with φ0(x) = χ[0,1)(x), converges to a function, φ(x), that satisfies the two-scale
equation, (5.8). Moreover, supp(φn) = [0,2a − 1 − 2−n(2a − 2)] for n ≥ 1 and
supp(φ) = [0,2a − 1].
[Ruch and Van Fleet, 2011, Theorem 6.3]
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Figure 5.1: The cascade algorithm used on the Db2 scaling function.
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5.3 Daubechies Wavelets as Reconstruction Space
In this section the reconstruction space of wavelets will be investigated. The wavelets
considered are limited to Daubechies wavelets on the interval [0,1].

Boundary Wavelets. A higher order wavelet, i.e. with more vanishing moments,
is supported on a larger interval than one of lower order. This is problematic on the
boundary of [0,1]. Therefore, some special functions with smaller support is needed,
these are called boundary wavelets. Boundary wavelets will be investigated further
in Section 5.4.

Assume the scaling function, φ, and the wavelet function, ψ, are supported on the
interval [0,2a−1]; these functions will be dilated with 2J such that they are supported
well within the interval [0,1]. Denote the boundary wavelets at the endpoints 0 and
1 by

φLJ,k, φ
R
J,k, k = 0,1, . . . , a − 1,

ψLJ,k, ψ
R
J,k, k = 0,1, . . . , a − 1,

(5.10)

where L is the left endpoint, 0, and R is the right endpoint, 1. Denote the boundary
corrected scaling and wavelet functions on the interval [0,1] by

φ
[0,1]
J,k (x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

φLJ,k(x), 0 ≤ k < a,
2J/2φ(2Jx − k), a ≤ k < 2J − a,
φR
J,2J−k−1(x), 2J − a ≤ k < 2J ,

ψ
[0,1]
J,k (x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψLJ,k(x), 0 ≤ k < a,
2J/2ψ(2Jx − k), a ≤ k < 2J − a,
ψR
J,2J−k−1(x), 2J − a ≤ k < 2J .

(5.11)

In the case of a = 1 there is no need for boundary correction. However, if one
went through the trouble of creating them, they would be identical to the interior
functions.

Now the reconstruction space for one dimension can be defined. Let N ∋ J ≥

log2(2a). The set

{φ
[0,1]
J,k ∶ k = 0,1, . . . ,2J − 1} ∪

⎛

⎝
⋃
j≥J

{ψ
[0,1]
j,k ∶ k = 0,1, . . . ,2j − 1}

⎞

⎠
(5.12)

forms an orthonormal basis for L2([0,1]), [Gataric and Poon, 2016, p. A1081]. This
basis consists of infinitely many elements, so in practise we will use a finite number.
Define

W
[0,1]
J = span{ψ

[0,1]
J,k ∶ k = 0,1, . . . ,2J − 1} ,

V
[0,1]
J = span{φ

[0,1]
J,k ∶ k = 0,1, . . . ,2J − 1} ,

(5.13)
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thus, L2([0,1]) = V [0,1]
J ⊕ (⊕j≥JW

[0,1]
j ). Order the elements in (5.12) in increasing

order of scale and denote the space spanned by the first N wavelets by WN . Then
for fixed r > J ≥ log2(2a) and N = 2r the reconstruction space is

WN = V
[0,1]
J ⊕W

[0,1]
J ⊕⋯⊕W

[0,1]
r−1 (5.14)

and has dimension N . A special property of Daubechies wavelets is that V [0,1]
J ⊕

W
[0,1]
J = V

[0,1]
J+1 . This can be seen by counting the number of functions in each set

and recalling that all the ψ[0,1]
J,k and φ

[0,1]
J,k functions are orthogonal. Therefore, we

have that WN = V
[0,1]
r .

A function, f(x) ∈WN , can then be written as

f(x) =
2J−1
∑
k=0

cJ,kφ
[0,1]
J,k (x) +

r−1
∑
j=J

2j−1
∑
k=0

dj,kψ
[0,1]
j,k (x), (5.15)

but also
f(x) =

2r−1
∑
k=0

cr,kφ
[0,1]
r,k (x), (5.16)

for some scaling coefficients, cJ,k, and some detail coefficients, dJ,k. We will only
be interested in (5.16) since it is equivalent to (2.9). The function in Python,
which reconstructs from the wavelet coefficients, can be found in the module called
ReconFunctions.py and is called Recon(). The complexity of Recon() is O(N).

5.4 Boundary Wavelets
In this section the construction of dyadic boundary wavelets will be explored. Dyadic
boundary wavelets was first described in [Cohen et al., 1993], we will however use
the approach described in [Jawerth and Sweldens, 1994, Section 11.3].

All polynomials of degree less than or equal to a − 1 can be written as a linear
combination of {φJ,k}k∈Z, but when restricted to a closed interval, say [0,1], this is
no longer the case. To generate all polynomials up to degree a − 1 we need to add
boundary functions, equal to the number of vanishing moments, at each boundary.

It is desirable to have 2J scaling functions when working with [0,1]. If we use a
wavelet with a vanishing moments there are 2J−2a+2 interior functions for sufficiently
large J . This leaves room for a − 1 extra functions at each boundary which gives a
system that can generate polynomials up to degree a−2. If we want degree a−1, like
we have for the corresponding system on (−∞,∞), we have to omit the two outermost
interior functions to make room for extra boundary functions, [Cohen et al., 1993,
p. 70].

As {φJ,k}k∈Z is an orthonormal Daubechies wavelet basis for VJ , all monomials,
xα, α ≤ a − 1, can be written as xα = ∑k⟨xα, φJ,k⟩φJ,k(x). When restricted to [0,1],
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we get

xα∣[0,1] =
⎛

⎝

0
∑

k=−2a+2
+

2J−2a
∑
k=1

+
2J−1
∑

2J−2a+1

⎞

⎠
⟨xα, φJ,k⟩φJ,k(x)∣[0,1]. (5.17)

Define
φLJ,α =

0
∑

k=−2a+2
⟨xα, φJ,k⟩φJ,k(x)∣[0,1],

φRJ,α =
2J−1
∑

k=2J−2a+1
⟨xα, φJ,k⟩φJ,k(x)∣[0,1],

(5.18)

then

xα∣[0,1] = φ
L
J,α +

2J−2a
∑
k=1

⟨xα, φJ,k⟩φJ,k(x)∣[0,1] + φ
R
J,α (5.19)

and {φLJ,α}α≤a−1 ∪ {φRJ,α}α≤a−1 ∪ {φJ,k∣[0,1]}
2J−2a
k=1 forms a basis for L2([0,1]).

Taking a closer look at ⟨xα, φJ,k⟩:

⟨xα, φJ,k⟩ = ∫ xα2J/2φ(2Jx − k)dx, (5.20)

making a change of variable: u = 2Jx − k⇒ x = 2−J(u + k) and dx = 2−Jdu,

= 2−J2
J
2 ∫ (2−J(u + k))αφ(u)du

= 2−J+
J
2 −Jα∫ (u + k)αφ(u)du

= 2−J+
J
2 −Jα∫

α

∑
l=0

(
α
l
)ulkα−lφ(u)du

= 2−J+
J
2 −Jα

α

∑
l=0

(
α
l
)kα−l ∫ ulφ(u)du.

(5.21)

The quantity ⟨xl, φ⟩ is known as the moments of the scaling function. In [Kessler
et al., 2003, Section 5] a recursion relation for the moments is derived: For l = 0 we
have ⟨x0, φ⟩ = ∫ φ(x)dx = 1. For larger l we have

⟨xl, φ⟩ = ∫ xlφ(x)dx

= ∫
1

√
2
(
x

2
)
l 1
√

2
φ(

x

2
)dx

=
1

2l
√

2 ∫
xl∑

k

hkφ(x − k)dx,

(5.22)

were we use the convention for the filter coefficients that ∑k hk =
√

2. Now make a
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change of variable, v = x − k⇒ x = v + k,

=
1

2l
√

2
∑
k

hk ∫ (v + k)lφ(v)dv

=
1

2l
√

2
∑
k

hk
l

∑
m=0

(
l
m

)kl−m∫ vmφ(v)dv

=
1

2l
√

2
∑
k

hk
l−1
∑
m=0

(
l
m

)kl−m∫ vmφ(v)dv

+
1

2l
√

2
∑
k

hk ∫ vlφ(v)dv.

(5.23)

From the above we obtain

∫ vlφ(v)dv −
1
2l ∫

vlφ(v)dv =
1

2l
√

2
∑
k

hk
l−1
∑
m=0

(
l
m

)kl−m∫ vmφ(v)dv

∫ vlφ(v)dv =
1

(2l − 1)
√

2
∑
k

hk
l−1
∑
m=0

(
l
m

)kl−m∫ vmφ(v)dv.

(5.24)

To obtain an orthogonal basis for VJ , the {φLJ,α, φ
R
J,α} needs to be orthogonalized,

they are already orthogonal to φJ,m and linearly independent. One way to orthog-
onalize is the Gram-Schmidt orthogonalization procedure. Orthogonalization will
introduce some numerical error and if the functions are far from co-linear it might be
better not to orthogonalize. We will investigate this with a series of tests in Sections
5.4.1, 6.1.2 and 7.2.2.

5.4.1 Example with Daubechies 2

In this example we will derive boundary wavelets for the Daubechies wavelet with
two vanishing moments. In this case we need two left and two right functions:

φLJ,0 =
0
∑
k=−2

⟨x0, φJ,k⟩φJ,k(x)∣[0,1],

φLJ,1 =
0
∑
k=−2

⟨x1, φJ,k⟩φJ,k(x)∣[0,1],

φRJ,0 =
2J−1
∑

k=2J−3
⟨x0, φJ,k⟩φJ,k(x)∣[0,1],

φRJ,1 =
2J−1
∑

k=2J−3
⟨x1, φJ,k⟩φJ,k(x)∣[0,1].

(5.25)

The calculations are done in Python in the file BoundaryWavelets.py. The four
functions before and after orthogonalization are shown in Figures 5.2 and 5.3. The
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boundary functions are far from co-linear before the orthogonalization, so further
tests are needed to determine whether or not orthogonalization is a good choice.
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Figure 5.2: Daubechies 2 boundary wavelets, the first column shows the left boundary wavelets
and the second column shows the right boundary wavelets.
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Figure 5.3: Orthogonal Daubechies 2 boundary wavelets, the first column shows the left boundary
wavelets and the second column shows the right boundary wavelets.

To check that we are able to reconstruct polynomials up to degree 1, we choose
two functions: a constant function and a first degree polynomial. We try to find
coefficients which gives perfect reconstruction. For both cases we use a scale of
three, i.e. J = 3, and use the non-orthogonal boundary functions.

The functions chosen are f = 1 and g = x + 0.366. All the coefficients have been
found and is written in Table 5.1. The reconstructions using these two sets of coeffi-
cients are shown in Figure 5.4. It visually evident that the reconstructions are very
good. Furthermore, the distance between the true signals and the reconstructions
are ∣∣f(x) − f̃(x)∣∣ = 3.4 ⋅ 10−13 and ∣∣g(x) − g̃(x)∣∣ = 4.293 ⋅ 10−11.

The Python functions, which calculates the coefficients in Table 5.1, can be found
in the module ReconFunctions.py in the test section, and are called TestOfConFunc()
and TestOfLinFunc().
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Table 5.1: Table of coefficients for the functions f and g.

f(x) = 1 g(x) = x + 0.366
α0 1 -1.634
α1 0 8
α2 1 2
α3 1 3
α4 1 4
α5 1 5
α6 1 -1.634
α7 0 8
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Figure 5.4: The left plot shows the constant function and the right shows the first degree polyno-
mial. Both plots shows the true signal (blue) and the wavelet reconstruction (orange).

5.5 Sampling Densities and Sampling Rates
In this section the sampling density for given wavelets are found. Start by setting
the sampling density, ε, to be

ε ≤
1

τ1 + τ2
, (5.26)

where τ1 ≥ 2a − 1 − 1 and τ2 ≥ 2(2a − 1) − 1 in accordance with [Adcock et al., 2014b,
p. 393]. Note that 1

τ1+τ2
is the Nyquist criteria for functions supported on [−τ1, τ2].

Then L2([0,2a − 1]) ⊂W ⊂ L2([−τ1, τ2]).

Remark 5.7: For all ε ≤ 1
τ1+τ2

we have W ⊂ V . So W + V ⊥ is a closed subspace of
H and W ∩ V ⊥ = {0}. Thus the subspace condition, Definition 3.14, of generalised
sampling is satisfied, [Adcock et al., 2014b, Remark 2.7].

This means that if we choose ε according to (5.26) we are guaranteed that the
reconstruction, in the wavelet basis, will be stable and quasi optimal. Hence, if we
choose ε larger than this, we cannot be sure it will produce a stable and quasi optimal
reconstruction.
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Recall that if ε > 1 we no longer have a weighted Fourier frame and the method
will fail. ◂

In Definition 4.8 the stable sampling rate was defined. Now that wavelets are
known objects some theorems will be presented ending with Theorem 5.10, which is
the most important result in practice.

Theorem 5.8
Let W be the wavelet reconstruction space, as defined in Section 5.3, and let S
be the Fourier sampling space, as defined in Section 4.2. Define NR ∶= 2R⌈2a −
1⌉ + (R + 1)(⌈2a − 1⌉ − 1), where R ∈ N. Then ∀θ ∈ (1,∞), there exists Sθ ∈ N,
independent of R, such that for M = ⌈

Sθ2R+1

ε ⌉ we have 1
C(Ω,W)

≥ 1
θ . In particular,

Θ(N ; θ) ≤ ⌈
2SθN
ε⌈2a−1⌉⌉. Hence, Θ(N ; θ) = O(N) for any θ ∈ (1,∞).

[Adcock et al., 2014b, p. Theorem 4.1]

The proof is very technical and can be found in [Adcock et al., 2014b, Section 5].
The theorem states that the stable sampling rate is linear for wavelet reconstructions
from Fourier samples when the wavelets are generated through a multi resolution
analysis.

We now introduce the stable sampling ratio, which has meaning since the stable
sampling rate is linear for wavelets.

Definition 5.9 (Stable Sampling Ratio)
The stable sampling ratio is defined to be

η(θ) ∶= lim sup
N→∞

Θ(N ; θ)
N

, θ ∈ (1,∞). (5.27)

[Adcock et al., 2014b, p. 395]

The stable sampling ratio states how many samples needs to be taken as N →∞,
while Θ(N ; θ) states how many samples at least are needed for a specific choice of
N .

Theorem 5.10
LetW be the wavelet reconstruction space generated by a Daubechies wavelet and
let S be the Fourier sampling space. Define NR ∶= 2R⌈2a − 1⌉ + (R + 1)(⌈2a − 1⌉ −
1), where R ∈ N and a is the number of vanishing moments. Then there exists
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a θ ∈ (1,∞) and R0 ∈ N such that for all R ≥ R0, the stable sampling rate is
Θ(NR; θ) = ⌈2R/ε⌉.

In particular, when ε−1 ∈ N it suffices to let θ > (infω∈[−1/2,1/2] ∣φ̂(ω)∣)
−1. More-

over, for the special case of the Haar wavelet we have that Θ(NR; θ) ≤ ⌈2R/ε⌉ for
all R ∈ N.
[Adcock et al., 2014b, Theorem 4.5]

The proof of Theorem 5.10 is very technical and has been omitted. It can be
found in [Adcock et al., 2014b, Section 7].

Theorem 5.10 states that, in the case of Daubechies wavelets, we are able to
determine the stable sampling rate exactly. This will come in handy when working
on numerical examples in Chapters 7 and 8. Table 5.2 contains the values for ε and
θ which will be used in the examples. Table 5.3 shows the stable sampling rates.

Note that only values of ε such that ε−1 ∈ N will be used.

Remark 5.11: For values of θ and R as in Theorem 5.10, if NR−1 + 1 ≤ N ≤ NR,
then Θ(N ; θ) ≤ ⌈2R

ε ⌉ which implies that

1
ε⌈a⌉

≤ η(θ) ≤ lim
R→∞

⌈2R/ε⌉
NR−1 + 1

=
2
ε⌈a⌉

. (5.28)

However, in [Adcock et al., 2014b, Section 8] the results suggest that the optimal
ratio is (ε⌈a⌉)−1 and it is only achieved when N = NR.
[Adcock et al., 2014b, Remark 4.6] ◂

Table 5.2: Upper bounds for ε based on (5.26) and numerical estimates for θ based on Theorem
5.10. The Python functions, to calculate the values, can be found in the module called Utilities.py.

Daubechies wavelet ε θ−1 θ

1 1 2
π (exact) π

2 (exact)
2 1

7 0.6847 1.460
3 1

13 0.6980 1.432
4 1

19 0.7031 1.422
5 1

25 0.7053 1.417
6 1

31 0.7062 1.415
7 1

37 0.7067 1.414
8 1

43 0.7069 1.414
9 1

49 0.7070 1.414
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Table 5.3: The stable sampling rate Θ (NR; θ) for the Daubechies 2 wavelet. The Python function,
to calculate the values, can be found in the module called Utilities.py.

J Θ (NR; θ) J Θ (NR; θ) J Θ (NR; θ)
1 N/A 6 224 11 7 168
2 N/A 7 448 12 14 336
3 14 8 896 13 28 672
4 28 9 1 792 14 57 344
5 56 10 3 584 15 114 688



Chapter 6

The Change of Basis Matrix

In this chapter we describe how to construct the change of basis matrix for the case
of sampling in the Fourier frame and reconstruction with Daubechies wavelets.

6.1 Derivation of the Change of Basis Matrix
Let φ denote the scaling function of a multi resolution analysis, Definition 5.2. The
scaling function, on scale J ∈ Z+ with translation k ∈ Z, is defined as

φJ,k(x) = 2J/2φ(2Jx − k). (6.1)

Let B be a change of basis matrix and denote the entries by bm,n. Then

bm,n = F [φ
[0,1]
J,n−1] (ωm), ωm ∈ Ω, (6.2)

where Ω is the sampling scheme, [Jacobsen et al., 2016b, p. 5]. For a general scaling
function the following is true:

F[φJ,k](ω) = F[D2JTkφ](ω) = 2−J/2 exp(−2πik2−Jω)F[φ](2−Jω). (6.3)

A general Daubechies scaling function, φ, is defined by filter coefficients, {hk}k∈Z,
where finitely many entries are non-zero. The associated low-pass filter, m0(ω), is
defined as

m0(ω) =
2a−1
∑
k=0

hk exp(−2πikω) (6.4)

and the Fourier transform can be computed as

F[φ](ω) =
∞

∏
j=1

m0(2−jω), (6.5)

where m0(0) = 1 to ensure convergence, [Cohen et al., 1993, p. 54].

43
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6.1.1 The Haar Wavelet

The scaling function for a Haar wavelet is φ[0,1]
J,k = φJ,k, where φ is as in Definition

5.3. The Fourier transform of φ is given by (6.5), where the low-pass filter is m0(ω) =
1
2 +

1
2e

−i2πω, [Cohen et al., 1993, p. 55]. Hence,

F[φ](ω) =
∞

∏
j=1

(
1
2
+

1
2
e−2πi2−jω

) . (6.6)

To get a closed form expression we use Euler’s formula, sin(x)
x = ∏

∞
j=1 cos(2−jx) and

∑
∞
j=1 2−j = 1:

m0(ω) =
1
2
(1 + e−2πiω

) = e−πiω (
eπiω + e−πiω

2
) = e−πiω cos(πω),

∞

∏
j=1

m0(2−jω) =
∞

∏
j=1

e−πi2
−jω cos(πω2−j)

=e−πωi
sin(πω)
πω

= e−πωi
eiπω − e−iπω

2iπω
=

1 − e−2πiω

2πiω
,

(6.7)

implying

F[φ](ω) =

⎧⎪⎪
⎨
⎪⎪⎩

1−exp(−2πiω)
2πiω , ω ≠ 0,

1, ω = 0,
(6.8)

[Jacobsen et al., 2016b, p. 12].

6.1.2 Boundary Wavelets

All boundary functions can be written as a linear combination of φJ,k∣[0,1] since the
Fourier transform is linear. The Fourier transformed boundary wavelets are

F [φLJ,α] =
0
∑

k=−2a+2
⟨xα, φJ,k⟩F [φJ,k(x)∣[0,1]] ,

F [φRJ,α] =
2J−1
∑

k=2J−2a+1
⟨xα, φJ,k⟩F [φJ,k(x)∣[0,1]] ,

(6.9)

where

F [φJ,k] (ω) = 2
−J
2 exp(2πik2−Jω)F [φ] (2−Jω)

= 2
−J
2 exp(2πik2−Jω)

∞

∏
l=1
m0(2−l2−Jω)

= 2
−J
2 exp(2πik2−Jω)

∞

∏
l=1
∑
ν∈Z

hν exp(−2πiν2−l2−Jω).

(6.10)
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Remark 6.1: The sampling scheme is designed to handle functions with support
on the interval [0,1] in the time domain. When such a sampling scheme is used
on F[φJ,k](ω) together with the IDFT the function is zero-padded outside [0,1] in
time.

In [Folland, 1992, p. 250] it is explained how the discrete Fourier transform can
be used on a function, f , with support in [0,Ω] to find Fourier coefficients in the
interval [−C,C]. We exploit this in the opposite direction, i.e. if we sample the
analytically found Fourier transform of a function in the interval [−C,C] then the
IDFT will have support on [0,Ω]. ◂

Due to Plancherel’s theorem, [Christensen, 2008, eq. 2.14], which state that the
Fourier transform is norm preserving, it does not matter if the boundary functions
are orthogonalized before or after the transformation so we choose to do it after.

Example with Db2

In the frequency domain the boundary wavelets for Daubechies 2 are

φLJ,0 =
0
∑
k=−2

⟨x0, φJ,k⟩F [φJ,k] (ω),

φLJ,1 =
0
∑
k=−2

⟨x1, φJ,k⟩F [φJ,k] (ω),

φRJ,0 =
2J−1
∑

k=2J−3
⟨x0, φJ,k⟩F [φJ,k] (ω),

φRJ,1 =
2J−1
∑

k=2J−3
⟨x1, φJ,k⟩F [φJ,k] (ω).

(6.11)

The Python file with the calculations is called FourierBoundaryWavelets.py.
The boundary wavelets have been constructed in the frequency domain sampled
uniformly in the interval [−128,128) with a density of 1

7 and scale J = 2. When
taking the IDFT, as described in Section 4.2.1, they can be compared to the boundary
wavelets constructed in Section 5.4. This comparison can be seen in Figure 6.1.

Remark 6.2: Note that, as described in the end of Section 4.2.1, when starting with
the IDFT, we introduce some error. However, experimentally it has been observed
that the errors are not too severe. ◂
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Figure 6.1: Comparison of boundary wavelets created in the time- (blue) and the frequency (or-
ange) domain. The left plots are the left boundary wavelets and the right plots are the right boundary
wavelets, the top is 0, the middle is 1 and the bottom is a zoom of left 0.
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It is visually evident, in Figure 6.1, that the boundary wavelets from the frequency
domain are very close to functions created in the time domain. The zoom shows that
the functions are not identical, the boundary wavelets, which are created in the
frequency domain, are more smooth. If the boundary wavelets are sampled in a
wider interval in the frequency domain, it will become closer to the time boundary
functions.

When orthogonalizing these two sets of functions some error occur. Part of
the error have been introduced by the IDFT. The orthogonalized functions can be
seen in Figure 6.2. The two sets of functions are clearly different when they are
orthogonalized. We will, however, do a few more tests.
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Figure 6.2: Comparison of orthogonalized boundary wavelets created in the time- (blue) and the
frequency (orange) domain. The left plots are the left boundary wavelets and the right plots are the
right boundary wavelets, the top is 0 and bottom is 1.

6.2 Fast Computations with the Change of Basis Matrix

In [Gataric and Poon, 2016] algorithms, for fast computations with the change of
basis matrix and its adjoint, are derived for the case of Fourier sampling space and
wavelet reconstruction space. These algorithms are valuable in practice as the change
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of basis matrix tends to be very large. In these algorithms it is important that N is
a power of 2, [Gataric and Poon, 2016, beginning of Section 4].

The product of the change of basis matrix with a vector of scaling coefficients
can be written as

βm =
√
µωm

N−1
∑
k=0

αk⟨φ
[0,1]
J,k , eωm⟩, m = 1, ...,M, (6.12)

where αk are the scaling coefficients and eω(x) = e2πiωxχ[0,1](x). Furthermore,

⟨φ
[0,1]
J,k , eωm⟩ =

̂
φ
[0,1]
J,k (ω) =

1
√
N
φ̂(

ω

N
) eω (

k

N
), k = 1, ...,N − 2a. (6.13)

The translation variable k = 1, ...,N − 2a loops over all inner functions which are not
included in the boundary functions. We want αk to be indexed from 0 to N − 1,
therefore we write the translation, in the following, a bit different such that αa is
associated with the translation 1, or in general αk is associated with translation
k − a + 1.

We will split the calculation of β in three operators:

• F ∶ CN → CM :

F (α) = (
1

√
N

N−a−1
∑
k=a

αkeωm (
k − a + 1

N
))

M

m=1
. (6.14)

• D ∶ CM → CM :
D(α̃) = (φ̂(

ωm
N

) α̃m)
M

m=1
. (6.15)

• V ∶ CM → CM :
V (γ) = (

√
µωmγm)

M
m=1. (6.16)

The contributions from the boundary functions are calculated as

β̃L = (
a−1
∑
k=0

αkφ̂
L
J,k (ωm))

M

m=1
, β̃R = (

N−1
∑

k=N−a

αkφ̂
R
J,N−k−1 (ωm))

M

m=1
. (6.17)

This leads to Algorithm 1.
Algorithm 1: Fast computation of Bα

Input: Scaling coefficients α ∈ CN .
Output: Fourier coefficients β ∈ CM .

1 Compute the coefficients at the boundary: β̃L and β̃R;
2 α̃ ← F (α);
3 β̃int ←D(α̃);
4 β̃ ← β̃L + β̃int + β̃R;
5 β ← V (β̃);
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Remark 6.3: This algorithm only works for the case of a ≥ 2. In the case of a = 1
there are no boundary functions so in step 1 we let β̃L = β̃R = 0 and the sum in F (α)
go from 0 to N − 1. ◂

We also want an algorithm for fast computations with B∗. The reason for this
will be clear in Section 6.3. By transposing and conjugating (6.12) we get

γk =
M

∑
m=1

ζm
√
µωm⟨φ

[0,1]
J,k , eωm⟩, k = 0, ...,N − 1. (6.18)

The interior part can be rewritten as

γk =
1

√
N

M

∑
m=1

ζm
√
µωm φ̂(

ωm
N

)eωm (
k − a + 1

N
) , k = a, ...,N − 1 − a. (6.19)

This can be split in three functions similar to the first algorithm:

• V ∶ CM → CM :
V (γ) = (

√
µωmγm)

M
m=1. (6.20)

• D∗ ∶ CM → CM :

D(ζ)∗ = (φ̂(
ωm
N

)ζm)

M

m=1
. (6.21)

• F ∗ ∶ CM → CN :

F (ζ)∗ =
1

√
N

M

∑
m=1

ζkeωm (
k − a + 1

N
) , k = a, ...,N − 1 − a, (6.22)

so γk = F ∗(D∗(V (ζ))), k = a, ...,N − 1 − a. On the boundary we have

γk =

⎧⎪⎪
⎨
⎪⎪⎩

∑
M
m=1 ζm

√
µωm φ̂

L
J,k (ωm), k = 0, ..., a − 1,

∑
M
m=1 ζm

√
µωm φ̂

R
J,k (ωm), k = N − a, ...,N − 1.

(6.23)

Algorithm 2: Fast computation of B∗ζ
Input: ζ ∈ CN .
Output: γ ∈ CM .

1 ζ̃ ← V (ζ);
2 Compute the coefficients at the boundary using (6.23) for

k = 0, ..., a − 1,N − a, ...,N − 1;
3 ζ̃φ ←D∗(ζ̃);
4 γk ← F ∗(ζ̃φ) for k = a, ...,N − 1 − a;

Remark 6.4: In the case of a = 1, where there are no boundary functions, simply
skip step 2 in the algorithm and compute γk as in step 4 for all k. ◂
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Algorithm 1 and 2 are implemented in the file ForwardAndAdjointOperation.py,
and the functions F , F ∗, D, D∗ and V can be found in the file SupportModule.py.
Algorithms 1 and 2 both have complexity ofO (aM +M log (N

ε
)), [Gataric and Poon,

2016, p. A1088].

Remark 6.5: Note that, if the Fourier samples are sampled uniformly with spacing
ε, the weights are µm = ε for all m. ◂

6.3 Optimization
It is assumed that the reader is somewhat familiar with optimization methods and
therefore the theory will not be described rigorously. Some literature on the subject
can be found in e.g. [Nocedal and Wright, 2006] and [Antoniou and Lu, 2007].

The optimization problem, that will be considered here, is

minimize
α

g(α), g(α) = ∣∣Bα − β∣∣22, (6.24)

since this objective function is suggested in (4.10). This is a linear least squares
problem, hence it is a convex problem. The objective function, g, is easily seen to be
continuously differentiable and the gradient of g is

∇g(α) = 2B∗(Bα − β). (6.25)

In order to solve this least squares problem we use an algorithm called the
forward-backward proximal splitting algorithm, or FISTA, [Beck and Teboulle, 2009].
An implementation can be found in the Python package pyunlocbox. Within this
package, the function used, is solvers.forward_backward(). A function which
does the whole optimization procedure can be found the Python module called
Optimization.py. The algorithm has time complexity O ( 1

k2 ), or in worst case
O ( 1

k
), where k is the iteration, [Beck and Teboulle, 2009, p. 186].

In Chapter 8 there will be need for optimization of a matrix instead of vector. The
above described algorithm can easily do this. The only changes are that α ∈ CN×N
and β ∈ CM×M .

Note: In the search for a good optimization method a lot of different implementa-
tions has been considered. The method used here is the optimization method which
was deemed to be the best of those tried. We have not been able to find an im-
plemented method which was made specifically for a setup like this, i.e. a complex
matrix B which were made into a forward algorithm and an adjoint algorithm while
optimizing over α which is a real vector. We believe there are something to be gained
if such a method were found or made, but further research on this topic is outside
the scope of the thesis.



Chapter 7

Examples

This chapter contains examples of different change of basis cases starting with the
Haar case and then continuing to Db2. We have done these examples by sampling
a function in time and then used the discrete nonharmonic Fourier transform from
Section 4.2.1 to get Fourier samples. When Fourier samples are obtained this way
they must be scaled, otherwise the reconstructed signal will be different from the
original signal by a constant factor. Note that we pretend to sample in the frequency
domain and not in the time domain. All test functions used in this chapter can be
found in TestSignals.py.

7.1 Haar
In the case of the Haar wavelet, the Fourier samples must be scaled by a factor
K =

√
ε; this factor has been determined experimentally. In real world cases where a

signal is sampled directly in the frequency domain this constant is without relevance.

7.1.1 Example 1

First we choose the parameters for the example. They are all chosen according to
Theorem 5.10, but M is chosen higher than needed. J were chosen first and the
other parameters afterwards.

J = 9,
N = 2J ,
M = 2J+1,

ε = 1,
x ∈ [0,1)Mε,

(7.1)

where J is the scaling parameter for the scaling function, φJ,k(x), and x is the free
variable. x is sampled uniformly on the interval and sorted such that 0 = x1 < x2 <

51
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. . . < xMε. We choose the function f0(xi) for this example:

f0(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if xi < 0 or xi ≥ 1,
3, if 0 ≤ xi < 0.25,
0.75, if 0.25 ≤ xi < 0.5,
1, if 0.5 ≤ xi < 0.75,
2, if 0.75 ≤ xi < 1.

(7.2)

We find β, the discrete nonharmonic Fourier transform of the function, as described
in Section 4.2.1.

The sampling scheme is Ω = {−512,−511, . . . ,511} because we chose uniform
sampling with ε = 1. The weights of the Fourier samples can easily be calculated
based on the sampling scheme. Since the sampling is uniform, all weights are equal:
µm = ε = 1 for m = 1,2, . . . ,M .

Now the change of basis matrix, B, can be calculated explicitly or we can simply
use the algorithms for matrix vector products, Algorithm 1 and 2, in the upcoming
optimization. Here it is chosen to do the latter.

We wish to optimize the wavelet coefficients, α, as described in Section 6.3. We
need an initial guess which is chosen to be α0 = {1, . . . ,1} of length N . It is important
that N is a power of 2 for the algorithms to work. We optimize for α which results in
α☆. If we calculate Bα☆, we get the Fourier coefficients corresponding to the wavelet
coefficients. These can be seen as the orange graphs in the first column of Figure
7.1. Furthermore, we have that ∣∣Bα☆ − β∣∣ = 1.546 ⋅ 10−3.

In Figure 7.1 it is seen that Bα☆ visually lies very close to β, especially in the low
frequencies and a little less in the high frequencies.

We investigate how well we can reconstruct the original signal, f0(x), from the
wavelet coefficients. Here we use (2.9),

f̃0(x) =
2J−1
∑
k=0

α☆kφJ,k(x), J = 9. (7.3)

The result can be seen in Figure 7.1 in the right column. The blue dots are the
original signal and the orange graphs are the reconstructions from (7.3).

To compare f0(x) and f̃0(x), we calculate the distance between the two sequences:

∣∣f̃0 − f0∣∣ = 0.7796. (7.4)

To this end, the conclusion is that the Haar wavelet can represent a piecewise constant
function very well when using generalized sampling as described.

The green line, in Figure 7.1, is the inverse discrete nonharmonic Fourier trans-
form of the M Fourier coefficients. It is visually evident that this does not represent
the original signal, in between sample points, as well as the Haar coefficients. With
this example we show that, for some signals, we can get both a better representation
of the signal and compress it at the same time.
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Figure 7.1: The left column shows the absolute values of the Fourier samples. The blue graph is
β and the orange graph is Bα☆. The first row is the full signal, the second row is a zoom of the low
frequencies and the third row is a zoom of the high frequencies.
The right column shows the reconstructed signal. The blue points are the original signal, f0, the
orange graph is the reconstructed signal and the green graph is the inverse discrete nonharmonic
Fourier transform of all M = 1024 samples. The first row is the full signal, the second row is a zoom
of one of the constant pieces and the third row is a zoom of a discontinuity.
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Other Ratios between Coefficients

In Figure 7.2 the reconstructions of f0 for some different ratios between the number of
Fourier coefficients and wavelet coefficients have been plotted. The sizes, (N,M), in
the figure are: (512,514), (512,512), (512,256), (512,128), (512,64) and (512,32).
It is visually evident that choosing M just slightly higher than the stable sampling
rate results in a big improvement.

As the number of Fourier coefficients decreases the wavelet reconstruction gets
worse. However not all information is lost.
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Figure 7.2: The reconstructions of f0 for some different ratios between the number of Fourier
coefficients and wavelet coefficients. The sizes (N,M) are as follows (a):(512,514), (b):(512,512),
(c):(512,256), (d):(512,128), (e):(512,64) and (f):(512,32).
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7.1.2 Example 2

As a second example we have chosen the function

f3(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if xi < 0 or xi ≥ 1,
3, if 0 ≤ xi < 0.25,
cos(100πxi), if 0.25 ≤ xi < 0.5,
1, if 0.5 ≤ xi < 0.75,
sin(20πxi), if 0.75 ≤ xi < 1.

(7.5)

We have followed the same procedure as with f0(x) and used the parameters in (7.1).
The function can be seen in the left graph of Figure 7.3. In this example we will
focus on how the system handles high frequency signals. To this end, we will focus
the interval with the 50 Hz trigonometric polynomial which is shown in the right
graph in the figure.

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

Fu
nc

tio
n 

va
lu

e

Samples of original signal, g(x)
IFFT of yhat
Wavelet reconstruction, g(x)

0.37 0.38 0.39 0.40 0.41 0.42
x

1.0

0.5

0.0

0.5

1.0

Fu
nc

tio
n 

va
lu

e

Samples of original signal, g(x)
IFFT of yhat
Wavelet reconstruction, g(x)

Figure 7.3: The plots show f3 (blue dots), f̃3 (orange) and F−1
(f3) (green).

As we saw in the previous example, the Haar basis is very well suited for rep-
resenting constant functions and discontinuities, something which the Fourier frame
is not. Trigonometic polynomials on the other hand is very well represented in the
Fourier frame and less so in the Haar basis. This is visually evident from the right
graph of Figure 7.3.

The top graphs of Figure 7.4 show what happens whenM = 128. The reconstruc-
tion is still visually recognizable, but has similar errors as we saw in Figure 7.2. The
bottom graphs show what happens whenM = 64. In this case we can not reconstruct
the signal. The reason for this, is that the sampling density is kept constant in the
frequency domain and sampled in different frequency intervals. Hence, when taking
64 samples symmetrically around 0 with a density of ε = 1 we only get samples in
the interval [−32,31] Hz and therefore we can not reconstruct a signal of 50 Hz.
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Figure 7.4: The plots show f3 (blue), the samples (dots) and f̃3 (orange). The top plots is the
wavelet reconstruction using 128 Fourier samples and the bottom is using 64 Fourier samples.

Other Sampling Densities

We will calculate the stable sampling rate for the Haar wavelet in this section. The
calculations for Daubechies 2 can be found in Section 7.2.1. Recall that the Fourier
transform of the Haar scaling function is given in (6.8):

F[φ](ω) =

⎧⎪⎪
⎨
⎪⎪⎩

1−exp(−2πiω)
2πiω , ω ≠ 0,

1, ω = 0.

From (5.26) we get that

ε ≤
1

τ1 + τ2

≤
1

(⌈2a − 1⌉ − 1) + (2⌈2a − 1⌉ − 1)

=
1

0 + 1
= 1.

(7.6)
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From Theorem 5.10 we then get

θ > ( inf
ω∈[−1/2,1/2]

∣φ̂(ω)∣)

−1

= ∣φ̂(
1
2
)∣
−1

=

RRRRRRRRRRR

1 − exp (−2πi1
2)

2πi1
2

RRRRRRRRRRR

−1

= ∣
2
iπ

∣
−1

=
π

2
.

(7.7)

For the special case of the Haar wavelet we have that Theorem 5.10 applies when
θ ≥ π

2 . We can now find the stable sampling rate by direct computation of Θ(NR; θ) =
⌈2R/ε⌉ for R ∈ N large enough. We calculate the stable sampling rate for ε1 = 1 and
ε2 =

1
2 and get

Θ(NR; π
2
)
ε1
=

2R
1

= 2R, (7.8)

Θ(NR; π
2
)
ε2
=

2R
1
2

= 2R+1. (7.9)

Thus if we choose NR as in the example, i.e. 29, we get that

Θ(29; π
2
)
ε1
=

29

1
= 29, (7.10)

Θ(29; π
2
)
ε2
=

29

1
2
= 210, (7.11)

meaning that when we have at least Θ (29; π2 ) samples the reconstruction will be
stable.

An example of sampling with other densities will now be presented. Two cases
are being investigated: One where the sample density ε = 0.5, and one where ε = 1.11.
Figure 7.5 shows the reconstruction of the signals in the first row and the sampled
frequencies in the second row. The first column is with every 0.5 Hz and the second
is with 1.11 Hz. According to the theory in Section 5.5 and the calculation in (7.6),
the reconstruction with Haar wavelets should succeed if the density, ε, is less than
or equal to 1. Furthermore if ε > 1 we do not have a weighted Fourier frame, due
to Theorem 4.12, so the method is bound to fail. From the plots in Figure 7.5, it is
visually evident that this is the case. With ε = 0.5 we have reconstructed the signal
and when ε = 1.11 we are unable to reconstruct the original signal.
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Figure 7.5: In the first column ε = 0.5 and in the second column ε = 1.11. The first row shows
the original signal (blue dots) and the reconstruction (orange). The second row shows the original
Fourier coefficients (blue) and the optimized Fourier coefficients (orange).

7.1.3 Summary of Results

We have tested that the algorithms work by choosing M to be two times the stable
sampling rate. For this choice, the Haar wavelet reconstruction is better than the
Fourier reconstruction for signals with discontinuities.

We then fixed the density, ε = 1, and varied the sampling interval. WhenM equals
the stable sampling rate, the reconstruction oscillates around the discontinuities. As
M gets smaller the oscillations around the discontinuities gets worse. If the sampling
interval is narrow enough, we are unable to reconstruct high frequency trigonometric
functions due to the Nyquist-Shannon sampling theorem. Conversely, if M gets
larger, even by only a few samples, better reconstructions are obtained.

Furthermore, we fixed the sampling interval and varied the density, ε. When ε ≤ 1
we reconstruct without problems, but when ε > 1 aliasing arises and we are not able
to reconstruct the original signal.
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7.2 Daubechies 2
In this section the Daubechies wavelet with two vanishing moments, Db2, will be
tested as reconstruction basis for generalized sampling. The two main differences be-
tween the Haar wavelet and the Db2 wavelet is that Db2 can reconstruct polynomials
of degree 1 and that boundary wavelets are needed. A few test signals, specifically
designed for this wavelet, has been made in order to see how generalized sampling
can help reconstruct signals.

Like in the Haar case we multiply a factor, K, on the Fourier samples. The factor

is K =
∥fs∥

√
N
M

∥f̂∥
, where fs is the signal sampled in M points. Recall that this factor is

only for the comparison of the original signal and the reconstruction. In cases where
a signal is sampled directly in the frequency domain this factor is without relevance.
K has been determined experimentally.

Now we will calculate the sampling density, ε, then the constant θ and then the
stable sampling rate, Θ (NR; θ), recall Table 5.2. When this is done, the examples
will be given.

7.2.1 The Stable Sampling Rate

First we find ε using (5.26): τ1 ≥ 2a − 1 − 1, τ2 ≥ 2(2a − 1) − 1 and a = 2, so we get
τ1 ≥ 2, τ2 ≥ 5 and

ε ≤
1

τ1 + τ2
≤

1
7
. (7.12)

Next we find θ using Theorem 5.10. The formula is

θ > ( inf
ω∈[−1/2,1/2]

∣φ̂(ω)∣)

−1
, (7.13)

so we need to estimate φ̂(ω) in the interval [−1
2 ,

1
2]. The function is defined by

φ̂(ω) =
∞

∏
j=1

2a−1
∑
k=0

hk exp(−2πik2−jω), (7.14)

where we choose to take only the first 20 factors of the product. Figure 7.6 shows
the absolute value of the function and it is visually evident that the infimum is at
the interval boundaries. We find that θ−1 < 0.684 which agrees with the result from
[Adcock et al., 2014b, bottom of p. 410]. Theorem 5.10 also states that the stable
sampling rate is Θ(NR; θ) = ⌈2R

ε ⌉ = 7 ⋅ 2R.



7.2. Daubechies 2 61

0.4 0.2 0.0 0.2 0.4

0.70

0.75

0.80

0.85

0.90

0.95

1.00

|
(

)|
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7.2.2 Orthogonalization of the Boundary Wavelets

As a final test, to see if the boundary wavelets should be orthogonalized, we run the
optimization on two test signals both with and without orthogonalizing the boundary
wavelets. Other tests have been done in Sections 5.4 and 6.1.2. At the left boundary,
it does not matter if the boundary wavelets are orthogonal. Figure 7.7 shows that
on the right boundary the reconstruction is slightly worse when they are orthogonal.
Therefore we will not orthogonalize the boundary functions in the examples that
follow.

0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000
x

0.001

0.000

0.001

0.002

0.003

Fu
nc

tio
n 

va
lu

e

Samples of original signal, g(x)
Wavelet reconstruction, g(x)
Samples of original signal, g(x)
Wavelet reconstruction, g(x)

0.975 0.980 0.985 0.990 0.995 1.000
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Fu
nc

tio
n 

va
lu

e

Samples of original signal, g(x)
Wavelet reconstruction, g(x)
Samples of original signal, g(x)
Wavelet reconstruction, g(x)

Figure 7.7: The right edge of the signal. Optimized using orthogonal boundary functions (blue)
and non-orthogonal boundary functions (orange). On the left is a signal which goes linearly to zero
at the edge and the right is a signal which is constant at the edge.
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7.2.3 Example 1

The procedure for the examples will be as in Section 7.1.1. Unless otherwise stated,
in all the examples with Db2, set

J = 9,
N = 2J ,

ε =
1
7
,

M = 1792,
x ∈ [0,1)Mε,

(7.15)

where M is chosen according to Theorem 5.10. In all the following examples we will
have more Fourier coefficients than wavelet coefficients, i.e. a compression is made.
Throughout the examples we will focus on two things: How close the reconstruction
is to the original and if it is better than reconstructing from Fourier coefficients.

In this first example a continuous, piecewise linear function, which starts and
ends in 0, is chosen:

f1(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if xi < 0 or xi ≥ 1,
3xi, if 0 ≤ xi < 0.25,
0.75, if 0.25 ≤ xi < 0.5,
−5

2xi + 2, if 0.5 ≤ xi < 0.75,
−1

2xi +
1
2 , if 0.75 ≤ xi < 1.

(7.16)

Figure 7.8 shows the result of generalized sampling from Fourier to wavelet on
f1. For this simple continuous function the method works well. However, there are
small errors around the nondifferential points. The optimization method produces
a solution where ∥Bα☆ − β∥ = 8.765 ⋅ 10−6. We can compare the reconstructed signal
to the original by sampling the reconstruction in the same 256 points as the original
signal and then calculate the norm:

∥f1 − f̃1∥ = 2.996 ⋅ 10−3. (7.17)

In an attempt to compress the signal further, we set J = 8 and N = 2J while the
rest of the parameters stay the same. The error is ∥f1 − f̃1∥ = 1.282 ⋅ 10−2 which is
significantly higher than when we use the stable reconstruction rate for M = 1792.
It illustrates the trade-off between compression and reconstruction error.
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Figure 7.8: The top left plot contains β (blue) and Bα☆ (orange). The other three show the original
signal in the time domain (dots) and the reconstruction (blue). Bottom left is a zoom at the left
edge and the bottom right is a zoom at the first nondifferential point.

7.2.4 Example 2

In this example a piecewise continuous function is chosen:

f2(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if xi < 0 or xi ≥ 1,
xi, if 0 ≤ xi < 0.25,
10(xi − 0.25)2 + 1, if 0.25 ≤ xi < 0.5,
1.625, if 0.5 ≤ xi < 0.75,
−2xi + 2, if 0.75 ≤ xi < 1.

(7.18)



64 Chapter 7. Examples

15 10 5 0 5 10 15
Frequencies, 

0

1

2

3

4

5

6

7

Ab
so

lu
te

 v
al

ue
 o

f F
ou

rie
r c

oe
ffi

en
ts

True Fourier signal. 2-norm = 23.290756
Optimized Fourier signal. 2-norm = 23.277182

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fu
nc

tio
n 

va
lu

e

Samples of original signal, g(x)
Wavelet reconstruction, g(x)

90 95 100 105 110 115 120 125
Frequencies, 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Ab
so

lu
te

 v
al

ue
 o

f F
ou

rie
r c

oe
ffi

en
ts

True Fourier signal. 2-norm = 23.290756
Optimized Fourier signal. 2-norm = 23.277182

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76
x

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

Fu
nc

tio
n 

va
lu

e

Samples of original signal, g(x)
Wavelet reconstruction, g(x)

Figure 7.9: The left is β (blue) and Bα☆ (orange), the top is a zoom of low frequencies and the
bottom is a zoom of high frequencies. The right show the original signal in the time domain (dots)
and the reconstruction (line). The top is the whole signal and the bottom is a zoom at the second
discontinuity.

Around the discontinuities in the signal, there appears what seems to be Gibbs
phenomenon. The oscillations are slightly larger than what can be explained as
Gibbs phenomenon, but this might be caused by the poor optimization at the high
frequencies. In an attempt to get a better result, we use twice as many Fourier
coefficients, i.e. M = 3584. It is visually evident in Figure 7.10 that we do get a
better result by using twice as many Fourier samples. However, it does not completely
remove the oscillations around the discontinuities which support the claim that it is
Gibbs phenomenon.

The optimization method, in the case M = 1792, produces a solution where
∥Bα☆ − β∥ = 0.7388 ⋅ 10−3. We compare the reconstruction to the original, as in
Section 7.2.3, and get

∥f2 − f̃2∥ = 0.1568. (7.19)
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Figure 7.10: The figure shows the original signal in the time domain (dots) and the reconstruction
(line) for M = 3584.
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Figure 7.11: The figure show the original signal in the time domain (dots), the wavelet reconstruc-
tion (blue line) and the reconstruction from the Fourier coefficients (orange). The left is the whole
signal and the right is a zoom at the second discontinuity, the top is with all Fourier coefficients and
the bottom is with the N largest Fourier coefficients.

Figure 7.11 shows the samples of the original signal together with the recon-
struction from the wavelet coefficients and the reconstruction from the Fourier coef-
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ficients. It is visually evident, in the first row of the figure, that both reconstructions
goes through all sample points and oscillates in between. Now, set the smallest
Fourier coefficients to zero, such that there are only N nonzero coefficients. We will
call these truncated Fourier coefficients. When reconstructing from the truncated
Fourier coefficients, the reconstruction does not go through all the sample points
and the oscillations gets wider. This is illustrated in the bottom row of Figure 7.11.

When we compare the reconstructions to the original signal sampled uniformly
in Mε points, we get ∥f2 − F

−1(β)∥ = 0.6415 for the truncated Fourier coefficients
and ∥f2−F

−1(β)∥ = 0.001631 for the complete set of Fourier coefficients. So when we
compress to N coefficients directly in the Fourier frame, we get a larger error than
in the wavelet basis.

Remark 7.1: The truncated Fourier coefficients are close to the actual Fourier co-
efficient, therefore the error that arise when using the IDFT is small. ◂

7.2.5 Example 3

In this example the same function as in Section 7.1.2 is used.
We suspect the reason for the very low values at the left edge of the reconstructed

signal, in Figure 7.12, is due to the fact that the frame, in which we sample, is wider
than the signal. From Theorem 4.16 we get that the radius of the frame is at least 7

2 ,
but our interval only has a radius of 1

2 . Per construction the signal is zero outside the
interval [0,1]. This, combined with the poor optimization at the high frequencies,
may explain the low values at the left edge. The optimization method produces a
solution where ∥Bα☆ − β∥ = 16.96. We compare the reconstruction to the original as
in Section 7.2.3, and get that

∥f3 − f̃3∥ = 2.992. (7.20)

The orange line in Figure 7.12 is the reconstruction from truncated Fourier coef-
ficients. It is visually evident that it is better both at the left edge, where our
method has trouble optimizing, and at the trigonometric parts, where the Fourier
frame is better suited. At the constant parts and at the discontinuities we get sim-
ilar results as in Section 7.2.4, i.e. wavelet reconstruction is better. We compare
the reconstruction from truncated Fourier coefficients to the original signal and get
∥f3 − F

−1(β)∥ = 2.475, which is slightly lower than for the wavelet reconstruction.
So, for this signal, reconstruction with wavelets are not better, but the errors are of
the same order of magnitude.
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Figure 7.12: The left is β (blue) and Bα☆ (orange), the top is the whole signal, the middle is a
zoom of low frequencies and the bottom is a zoom of high frequencies. The right show the original
signal in the time domain (dots) the wavelet reconstruction (blue line) and the reconstruction from
truncated Fourier coefficients (orange). The top is the whole signal, the middle is a zoom of the left
edge and the bottom is a zoom of the high frequency part of the signal.

7.2.6 Example 4

In this example, a function consisting of the sum of three sine waves will be used:

f4(xi) = sin(2π10xi) + sin(2π30xi) + sin(2π100xi). (7.21)
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Figure 7.13: The top right show a zoom of the original signal in the time domain (dots) and the
reconstruction (line). The other three are β (blue) and Bα☆ (orange). The top left is the whole signal,
the bottom left is a zoom of low frequencies and the bottom right is a zoom of high frequencies.

Figure 7.13 shows that not all continuous functions can be reconstructed well
with Db2. The rapid changes in the high frequency trigonometric polynomial results
in some error at the top and bottom of each oscillation. Functions like f4 can be
reconstructed perfectly from the Fourier coefficients because it has bounded support
in the frequency domain. In this case generalized sampling is not of much use. The
optimization method produces a solution where ∥Bα☆ − β∥ = 4.334. We compare the
reconstruction to the original as in Section 7.2.3, and get that

∥f4 − f̃4∥ = 3.621. (7.22)

For comparison the reconstruction from truncated Fourier coefficients gives an error
of 0.8952.

7.2.7 Summary of Results

We have shown that the algorithms work for M equal to the stable sampling rate
and ε = 1

7 . Generalized sampling is function dependent, i.e. the method does not
work equally well for all types of functions. For functions with discontinuities there
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are some oscillations near the discontinuities. We are confident that this stems from
Gibbs phenomenon. However, the reconstruction is very close to the original signal
in all the original sampling points.

We see a significant error at the edges of the interval [0,1] for functions which
are not zero on the boundary. This might be because the Fourier frame, in which we
sample, is wider than the interval [0,1]. Functions which change rapidly, for instance
f4, are hard to reconstruct in the Db2 basis as this basis is made for reconstructing
first order polynomials.

When using generalized sampling, we automatically compress the data. Therefore
we have compared the reconstructions with a compression of the data in the Fourier
frame. For some of the tested signals the reconstruction error is smaller when using
generalized sampling for the compression instead of truncating the Fourier coeffi-
cients. For signals which are well represented in the Fourier frame but not in the
Db2 basis, such as trigonometric polynomials, the truncated Fourier reconstruction
is better than generalized sampling.

7.3 Nonuniform Sampling
In this section we will shortly describe what happens when a signal is sampled nonuni-
formly in the Fourier frame. It is important that the sampling scheme fulfils the cri-
teria in Theorem 4.12. To make sure of this, we make a jittered sampling scheme by
taking a regular grid and adding a small perturbation to each point. The perturba-
tions are pseudo random numbers drawn from a uniform distribution in the interval
[−ε/p, ε/p]. We have done this for p = 2,3, ...,160 with different seeds for each p. We
started with p = 2 to make sure that ω0 < ω1 < ... < ωM which is a requirement for
all sampling schemes. Note that this sampling scheme has uniform density equal to
ε, Definition 4.15. We have used f2, (7.18), as test function. For each p we have
calculated the error, ∥f2 − f̃2∥. This is illustrated in Figure 7.14, top left. The other
plots in the figure show zooms of the reconstruction for all p.

The first five colours are blue, orange, green, red and purple which represent
p = 2,3,4,5,6 respectively. Due to the randomness, p = 6 results in a larger er-
ror than p = 5. It is visually evident that, in places where the error of the non-
perturbated reconstructions are large, the perturbated reconstructions are close to
the non-perturbated reconstruction. However, in places where the error of the non-
pertubated reconstruction is small, the pertubated reconstructions are farther from
it.

From this experiment we see there is nothing to be gained from making random
perturbations to the sampling scheme. however, there is not much lost either. Figure
7.14 shows that the error converge, to the error of the non-perturbated case, when
the interval for the perturbations gets smaller.

In some real life cases we might not be able to sample in a completely regular
grid due to, for instance, machine limitations. In such cases, it is possible to recover
the signal if an almost regular grid is used for sampling.
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Figure 7.14: The top left plot show the error. The other three show different zooms of the
reconstruction for all p, in different colours. The thick black curve in the middle is the reconstruction
without perturbations.

7.4 Noisy Samples
We have made a test to see how a signal behaves if bandlimited, Gaussian noise is
added to the Fourier samples. We use the signal to noise ratio, SNR, as a measure
for the amount of noise added to the signal. The power of the signal is measured in
the `2 norm. The SNR’s which are used are 1,10,100 and 1000. Figure 7.15 shows
the wavelet reconstructions for f2, (7.18). The signal is almost unrecognisable when
SNR=1, but as the SNR grows, the error decreases, Table 7.1.
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Figure 7.15: Figure of reconstructions of f2 with white noise added. Top left: Reconstruction
where SNR = 1. Top right: Reconstruction where SNR = 10. Bottom left: Reconstruction where
SNR = 100. Bottom right: Reconstruction where SNR = 1000.

Table 7.1: This shows the errors of the optimization with noise. The signal to noise ratio is given
in the column SNR. SNR = N/A means there is no noise present.

Function SNR ∥Bα☆ − β̈∥ ∥f̃ − f∥

f2 1 461.2 5.162
10 4.692 514.2 ⋅ 10−3

102 47.49 ⋅ 10−3 162.9 ⋅ 10−3

103 1.226 ⋅ 10−3 156.5 ⋅ 10−3

N/A 0.7388 ⋅ 10−3 156.8 ⋅ 10−3

7.5 Violation of the Subspace Condition
In this section it will be investigated whether the reconstruction fail if the subspace
condition is violated. We consider the function f2, (7.18), and set ε = 1. This means
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that we are not guaranteed stable and quasi-optimal reconstruction, Remark 5.7, but
we do have a weighted Fourier frame.

First consider the uniformly sampled signal shown in the left plot of Figure 7.16.
Here it is clear that the reconstruction went well and the reconstruction is as in
Section 7.2.4.

Now consider a jittered sampling scheme, with the random perturbations in the
interval [− 1

14 ,
1
14]. This corresponds to [−ε0/p, ε0/p], where p = 2 and ε0 = 1/7 as

in Section 7.3. Five reconstructions with different seeds have been plotted in the
right plot of Figure 7.16. It is clear that we are not able to reconstruct the original
signal for all seeds. The errors we have in the worst case, i.e. the red graph, are
∥f2 − f̃2∥ = 1.844 and ∥Bα☆ − β∥ = 7.160. Both are much larger than the results in
Section 7.2.4 and 7.3.
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Figure 7.16: The left plot shows f2 with uniform sampling and ε = 1, while the right plot shows
f2 with ε = 1 and jittered sampling.

7.6 Higher Order Daubechies Wavelets

In this section we will compare Db2, Db3 and Db4. We choose to let J = 10, ε = 1
19

and M = 4864 for all three wavelets and test them on f2 and f4. The three wavelets
are all able to reconstruct the signals, and the reconstructions are very similar. Figure
7.17 shows zooms of the reconstructions of the two test signals in places where the
difference between the reconstructions are visible. The reconstructions for Db3 and
Db4 are very similar except at the right edge where the boundary functions are
different. Table 7.2 shows the error for the two different signals and the three different
reconstruction spaces. We observe that it is slightly harder to optimize for Db3 and
Db4 coeffcients. Otherwise the table support what we see in the figure, namely that
the reconstructions are very similar.
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Figure 7.17: The left plot is a zoom of the reconstructions of f2, the right plot is a zoom of the
reconstructions of f4. Both plots show the samples (dots), the Db4 reconstruction (blue), the Db3
reconstruction (orange), the Db2 reconstruction (green) and in the right the true signal (red).

Table 7.2: The errors for the different experiments in this section. The top half is for f2 and the
bottom half is for f4.

∥Bα☆ − β∥ ∥f − f̃∥

f2
Db4 0.5742 ⋅ 10−3 0.02090
Db3 0.4120 ⋅ 10−3 0.02519
Db2 0.2884 ⋅ 10−3 0.04955
f4
Db4 8.655 0.6947
Db3 5.477 1.402
Db2 1.472 0.9395
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Chapter 8

Two Dimensions

In this chapter we expand the setup to two dimensions. We will limit this to quadratic
signals sampled uniformly on a grid around zero. By quadratic signal we mean a
signal with equal number of rows and columns. We will do this as a tensor product,
i.e. the procedures described in the previous sections are done on all the rows of the
signal and then on all the columns. Recall that the optimization procedure will only
be slightly different, Section 6.3.

8.1 Discrete Nonharmonic Fourier Transform
For continuous signals the two dimensional Fourier transform is defined as

f̂(u, v) = ∫
∞

−∞
∫

∞

−∞
f(x, y)e−2πi(xu+yv)dxdy. (8.1)

When discretizing it, Section 4.2.1, we get

f̂(ωk, ωl) =
1
N

N−1
∑
n=0

N−1
∑
ν=0

√
µkµlf (

n

N
,
ν

N
) e−2πi(ωkn+ωlν)/N . (8.2)

The inverse is

f (
n

N
,
ν

N
) =

1
N
∑
ωk

∑
ωl

√
µkµlf̂(ωk, ωl)e

2πi(ωkn+ωlν)/N . (8.3)

Let Ωk ∶= {ωk}
M
k=1 and Ωl ∶= {ωl}

M
l=1. When Ωk = Ωl, (8.2) and (8.3) are the same as

using the one dimensional transforms on all rows and then on all columns. This is
what we do in the implementation in DFT.py.

The complexities for both DFT_2D and IDFT_2D is O(NM2 +N2M).

8.2 Forward and Adjoint Algorithms

As described in [Gataric and Poon, 2016, Section 6], the two dimensional forward
and adjoint operations can be carried out by simply applying the one dimensional
algorithm to all rows and then to all columns.
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In the two dimensional case, (6.12) becomes

βm1,m2 =
√
µωm1

µωm2
⟨
N−1
∑

k1,k2=0
αk1,k2φ

[0,1]
r,(k1,k2)

, em1em2⟩ , m1,m2 = 0, ...,N − 1. (8.4)

Denote Algorithm 1, applied to the scaling coefficients, by G ∶ CN → CM .

βm1,m2 =
√
µωm1

⟨
N−1
∑
k1=0

⟨
√
µωm2

N−1
∑
k2=0

αk1,k2φ
[0,1]
r,k2

, em2⟩φ
[0,1]
r,k1

, em1⟩

=
√
µωm1

⟨
N−1
∑
k1=0

γk1,m2φ
[0,1]
r,k1

, em1⟩ = ηm1,m2 ,

(8.5)

where, for each k1 = 0, ...,N − 1,

(γk1,m2)
M
m2=1 =

⎛

⎝
⟨
√
µωm2

N−1
∑
k2=0

αk1,k2φ
[0,1]
r,k2

, em2⟩
⎞

⎠

M

m2=1

= G ((αk1,k2)
N−1
k2=0) , (8.6)

and, for each m2 = 1, ...,M ,

(ηm1,m2)
M
m1=1 = G ((γk1,m2)

N−1
k1=0) . (8.7)

The forward algorithm can be written as
Algorithm 3: Fast computation of Bα

Input: Scaling coefficients α ∈ CN×N .
Output: Fourier coefficients β ∈ CM×M .

1 β̃ = (G ((αk1,k2)
N−1
k2=0))

N−1
k1=0 ∈ C

N×M ;
2 β = (G ((β̃k1,m2)

N−1
k1=0))

M

m2=1 ∈ C
M×M ;

For the two dimensional adjoint algorithm, we first apply Algorithm 2 to all the
columns and then to all the rows.
Algorithm 4: Fast computation of B∗ζ

Input: ζ ∈ CM×M .
Output: γ ∈ CN×N .

1 γ̃ = (G∗ ((ζm1,m2)
M
m1=1))

M

m2=1 ∈ C
N×M ;

2 γ = (G∗ ((γ̃k1,m2)
M
m2=1))

N−1
k1=0 ∈ C

N×N ;

The Algorithms 3 and 4 are implemented in the file FnA2D.py. Both have the
complexity O (aM2 +M2 log (N

ε
)), [Gataric and Poon, 2016, p. A1092].

8.3 Reconstruction
The idea for the reconstruction is the same as in the previous sections. We will apply
the one-dimensional reconstruction to all rows and all columns in turn. There are
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usually more entries in the reconstruction than there are wavelet coefficients. There
are 22J wavelet coefficients and 22n reconstruction points, where n is the number
of iterations in the cascade algorithm from Section 5.2.1. For each row of wavelet
coefficients, we use it to reconstruct 2n−J rows of reconstruction points. Once all
rows have been reconstructed, the same is done for the columns.

An implementation of the reconstruction can be found in ReconFunctions.py,
as the function Recon2d(). This function has a complexity of O(2nN).

8.4 Examples with Daubechies 2 and Haar
In this section some different two dimensional test signals have been constructed,
Fourier transformed, optimized to wavelet coefficients and finally reconstructed in
the wavelet basis. We will focus on Daubechies 2 and add examples with Haar for
visual comparison. This is the exact same procedure as in Chapter 7, however, other
parameters are chosen.

Parameter Daubechies 2 Haar
J 8 8
N 2J 2J
M 896 2J
ε 1

7 1
K

∣∣fs∣∣N

∣∣f̂ ∣∣2M
2J/2ε

For both reconstruction bases, we sample uniformly such that x ∈ [0,1)Mε and
y ∈ [0,1)Mε. Recall that J is the scaling parameter for the scaling function, φJ,k(●);
x and y are free variables sampled uniformly and sorted such that 0 = x1 < x2 < . . . <
xMε and 0 = y1 < y2 < . . . < yMε. M is chosen according to Theorem 5.10. K is the
constant to multiply on f̂ and fs is the signal sampled in M ×M points. Recall that
K is only for comparison of the original signal and the reconstruction, and in cases
where a signal is sampled directly in the frequency domain, this factor is without
relevance. K has been determined experimentally. All the test signals can be found
in the Python file TestSignals2D.py.

8.4.1 Square

The first signal which will be tested is a square defined as

f5(xi, yj) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if (xi, yj) ∈ [0.25,0.75]2,

0 otherwise.
(8.8)
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Figure 8.1: Top left: Original time signal. Top right: Original frequency signal. Middle left:
Reconstruction with Daubechies 2. Middle right: Optimized frequency signal for Db2. Bottom left:
Reconstruction with Haar. Bottom right: Reconstruction from truncated Fourier coefficients.

The function is illustrated in Figure 8.1. It is visually evident from the figure that
we are able to reconstruct the signal in the Db2 basis. However, the same artefacts as
in the one dimensional case are present, e.g. Gibbs phenomenon, which can especially
be seen, at the boundary of the reconstructed square. The optimization method
produces a solution where ∣∣Bα☆ − β∣∣ = 4.636 ⋅ 10−2. We compare the reconstructed
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signal to the original signal:
∥f5 − f̃5∥ = 5.818. (8.9)

The bottom left plot of Figure 8.1 shows the reconstruction with the Haar basis.
Visually it seems to be slightly better, but ∣∣Bα☆−β∣∣ = 5.267⋅10−2 and ∥f5−f̃5∥ = 11.94.
The reconstruction error is not truly comparable to the one for Db2 as they do not
have the same number of sampling points in either time or frequency. The bottom
right plot in Figure 8.1 shows the reconstruction from truncated Fourier coefficients
made in a similar fashion to the ones from Chapter 7. It is visually evident that the
wavelet reconstruction is a lot better, so, for the purpose of compression, generalized
sampling works well for this kind of signal.

8.4.2 Wave

The next signal, which is tested, is a wave originating in (0,0):

f6(xi, yj) =

⎧⎪⎪
⎨
⎪⎪⎩

cos (2π10
√
x2
i + y

2
j ) if (xi, yj) ∈ [0,1)2,

0 otherwise.
(8.10)

The function is illustrated in Figure 8.2. It is visually evident that we are able to
reconstruct the signal in the Db2 basis. However, similar artefacts as in the one
dimensional case are visible, e.g. the boundary wavelets are scaled wrong. The
optimization method produces a solution where ∣∣Bα☆ −β∣∣ = 2.177 ⋅ 102. We compare
the reconstructed signal to the original signal:

∥f6 − f̃6∥ = 23.06. (8.11)

The bottom left plot is the reconstruction in the Haar basis, here ∣∣Bα☆ −β∣∣ = 6.109 ⋅
10−2 and ∥f6− f̃6∥ = 15.47. This look very similar to the other plots in the figure, but
has slightly lower values at the peaks of the oscillations. Notice that it does not have
the boundary effects which can be seen for Db2. The bottom right plot in Figure
8.2 is the reconstruction from truncated Fourier coefficients. This shows that this
signal is well represented in the Fourier frame. The error in this reconstructione is
only 4.638.
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Figure 8.2: Top left: Original time signal. Top right: Original frequency signal. Middle left:
Reconstruction with Db2. Middle right: Optimized frequency signal for Db2. Bottom left: Recon-
struction with Haar. Bottom right: The reconstruction from truncated Fourier coefficients.

8.4.3 Circle

The next signal, which is tested, is a circle:

f7(xi, yj) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if (xi −
1
2)

2
+ (yj −

1
2)

2
= (1

4)
2
,

0 otherwise.
(8.12)
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Figure 8.3: Top left: Original time signal. Top right: Original frequency signal. Middle left:
Reconstruction in the Db2 basis. Middle right: Optimized frequency signal. Bottom left: The
middle row of the original signal (stars) and the reconstruction in the Db2 basis (line). Bottom
right: The reconstruction from truncated Fourier coefficients.

The function is illustrated in Figure 8.3. It is visually evident from the figure
that the reconstruction in the wavelet basis is not as good as in the other two ex-
amples. The reconstructed circle is not close in amplitude to the original circle,
this is illustrated in the bottom left plot of the figure. Nevertheless, we are able to
see that it is indeed a circle. The optimization method produces a solution where
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∣∣Bα☆ − β∣∣ = 2.224 ⋅ 10−2. We compare the reconstructed signal to the original signal:

∥f7 − f̃7∥ = 11.07. (8.13)

The bottom right plot in Figure 8.3 is the reconstruction from truncated Fourier
coeffcients. It appears to be blurry which attests to the fact that the Fourier frame
is not well suited to handle discontinuities.

8.4.4 Shepp-Logan Phantom

The next signal, we will investigate, is the Shepp-Logan phantom which is a standard
test image for image reconstruction algorithms. It was originally designed to serve
as a model for the human head. Our method is designed for MRI, so test functions
designed to look like body parts are of particular interest. The Shepp-Logan phantom
is defined as a sum of 10 ellipses. The specific way to construct the figure can be
found in [Shepp and Logan, 1974] and is illustrated in Figure 8.4. It is visually
evident that we are able to extract the features, i.e. the ellipses, in the figure.
However, we also see a lot of Gibbs ringing which is consistent with earlier examples.
The optimization method produces a solution where ∣∣Bα☆ − β∣∣ = 1.374. We want to
compare this example with the other examples. In order to do this we divide the
norm of the difference by the largest value of the original signal, which is 2:

∥SL − S̃L∥/2 = 9.191. (8.14)

The bottom left plot shows the reconstruction in the Haar basis, here ∣∣Bα☆ − β∣∣ =
4.962 ⋅ 10−1 and ∥SL − S̃L∥/2 = 15.58. It is visually evident that the artefacts around
the large discontinuities are less prominent for the Haar basis than for the Db2 basis.

The bottom right plot in Figure 8.4 shows the reconstruction from truncated
Fourier coefficients. It is visually evident that this reconstruction is worse than the
wavelet reconstruction due to the amount of red and blue in the plot. Furthermore,
this reconstruction have wavelike behaviour in the green region.
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Figure 8.4: Top left: Original time signal. Top right: Original frequency signal. Middle left:
Reconstruction with Db2. Middle right: Optimized frequency signal. Bottom left: Reconstruction
with Haar. Bottom right: The reconstruction from truncated Fourier coefficients.

8.4.5 Guerquin-Kern Brain Phantom

The second-to-last example, we will work on, is a more realistic brain image than
the Shepp-Logan phantom. It can be seen in Figure 8.5, or Figure A.1 for a big-
ger version. It was introduced in [Guerquin-Kern et al., 2012] and will be denoted
Guerquin-Kern phantom. The way we use it is by downloading the .svg picture from
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http://bigwww.epfl.ch/algorithms/mriphantom/ and convert it to a .png picture
in the size needed, here we chose 512 × 512 pixels.

This example has some other parameters than the previous examples:

ε =
1
7
,

M = 3584,
J = 10,
N = 2J ,
x ∈ [0,1)Mε,

y ∈ [0,1)Mε.

(8.15)

Here we had a fixed number of samples, Mε = 512, and found the remaining parame-
ters based on this and Table 5.3. We could have chosen any J between 3 and 10 but
chose to take J = 10. We do this in order for this example to be as close to the setup
of the other examples as possible regarding the stable sampling rate. We remind the
reader that we pretend to sample directly in the frequency domain.

The optimization method produces a solution where ∣∣Bα☆ − β∣∣ = 3.525 ⋅ 103. We
compare the reconstructed signal to the original signal:

∥GK − G̃K∥ = 2.331 ⋅ 103. (8.16)

The reconstructed picture can be found in Figure 8.5, or in a larger version in Figure
A.2. In order to compare these errors to those in previous sections, we need to take
the magnitude of the signal into account. The largest value in the original signal is
255, so the reconstruction error should be divided by this:

∥GK − G̃K∥/255 = 9.141. (8.17)

It is visually evident that the phantom can be recognized in the wavelet reconstruc-
tion. By looking closely, it seems like all the features of the picture are preserved,
e.g. we can see the discontinuities between regions. If we compare this to the recon-
struction from truncated Fourier coefficients, Figure 8.5 and Figure A.3, we see that
the reconstruction from truncated Fourier coefficients is more blurry and the discon-
tinuities are not as sharp as the wavelet reconstruction. Furthermore, the truncated
Fourier reconstruction is also more granular in the regions where it is supposed to
be flat.

In Figure 8.6 a zoom of the Guerquin-Kern phantom has been plotted. Here it
is easily seen that the wavelet reconstruction is very close to the original, while the
reconstruction from truncated Fourier coefficients smooths away the edges between
regions. When a doctor looks at an image of a brain, details like this can be the
difference between life and death for the patient. Therefore, it is very important to
have a good reconstruction in this kind of situation.

http://bigwww.epfl.ch/algorithms/mriphantom/
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Figure 8.5: Top left: Original time signal. Top right: Original frequency signal. Middle left:
Reconstruction in the Db2 basis. Middle right: Optimized frequency signal. Bottom: The recon-
struction from truncated Fourier coefficients.
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Figure 8.6: A zoom of the Guerquin-Kern phantom. Top left: The original time signal. Top right:
Reconstruction in the Db2 basis. Bottom: The reconstruction from truncated Fourier coefficients.

8.4.6 Cameraman

As the final example, we have chosen another standard test image, namely the cam-
eraman, which can be seen in Figure 8.7, or Figure A.4 for a larger image. Unfortu-
nately, we have not been able to find the factor to scale the Fourer coefficients with in
order to get the same colorbar in both the original and reconstruction of the picture;
it requires the original signal to be sampled arbitrary close which it cannot. This
means we have to evaluate the reconstruction visually and without error measures.
The parameters of this example are the same as in (8.15).

The most obvious difference, between the two pictures in Figure 8.7, is that
the wavelet reconstruction seems to be slightly brighter. This is mainly due to the
change in the colorbar’s range and helps us see the details in the coat more easily.
Furthermore, it seems like the features of the picture are preserved, e.g. we are able
to see all the buildings and their details in the reconstruction. The final observation is
that the boundary functions still are not scaled correctly, which might be easier to see
in the larger versions of the picture in A.5. If we compare this to the reconstruction
from truncated Fourier coefficients, it is clear that the wavelet reconstruction has
more details as well as sharper edges.
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The optimization method produces a solution where ∣∣Bα☆ − β∣∣ = 2.790.
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Figure 8.7: Top left: Original time signal. Top right: Original frequency signal. Middle left:
Reconstruction in the Db2 basis. Middle right: Optimized frequency signal. Bottom: The recon-
struction from truncated Fourier coefficients.

8.4.7 Summary of Results

We have shown that generalized sampling works in two dimensions. We see some of
the same effects as in the one dimensional case, e.g. problems with rapid changes in
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the signal and Gibbs phenomenon. For most inputs, generalized sampling is better
for compression than reconstructing from truncated Fourier coefficients. From the
last examples it is visually evident that some details, which are lost when the Fourier
coefficients are truncated, are preserved when using generalized sampling.



Chapter 9

Discussion and Conclusion

9.1 Discussion
We have made several restrictions to the problem considered in order to focus our
work on what we find essential. In this section we will discuss these restrictions and
possible extensions of the project. The possible extensions includes finding better
optimization algorithms, alternative sampling schemes, other reconstruction spaces
and improvement of the algorithms in terms of complexity.

9.1.1 Optimiziation Methods

In Section 6.3 we briefly discussed our choice of optimization method and the prob-
lems it poses. The optimization method used is based on [Beck and Teboulle, 2009]
which were made for real-valued α, B and β. The implementation does seem to work
with complex values, but we have not been able to confirm its efficiency. We chose
this implementation since it accepts Python functions as input and it was designed
for linear least squares problems. Furthermore, it converged to a solution in contrast
to some of the other methods tried.

We believe that there is a better optimization method for this specific setup.
However, we have not been able to find or implement such a method within the time
constraints of the project.

9.1.2 Nonuniform Sampling

A minor experiment with nonuniform sampling was performed in Section 7.3. It
showed that the setup described, in the thesis and the code supporting it, does work
for nonuniformly sampled inputs. We have chosen to limit our work in this area to
this simple test for several reasons. A jittered sampling scheme is simple and often
used as an example of random sampling, [Adcock et al., 2017],[Adcock et al., 2015]
and [Adcock et al., 2014a]. It is also common in practise where physics dictates where
it is possible to sample or we do not know the exact sampling scheme beforehand
but are able to correct it. Additionally, a jittered sampling scheme is easy to control;
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even though it is random, we know the sampling density and the order of the samples
beforehand. This is an advantage as the sampling scheme must fulfil the theoretical
criteria from Theorem 4.16. Other sampling schemes are also possible as long as
they fulfil the theoretical criteria. However, research into what constitute a good
sampling scheme for different inputs is outside the scope of this project. Some work
has been done in [Jacobsen et al., 2016a].

9.1.3 Other Frames

Generalized sampling is not limited to the Fourier to wavelet case. It is theoretically
possible to use any frame as a sampling space, although no examples has been found
using any other frames than Fourier. However, for reconstruction spaces several dif-
ferent types have been used. For an example of piecewise polynomial reconstructions
from Fourier coefficients, see [Adcock and Hansen, 2011] and [Adcock and Hansen,
2015]. For the more general approach of an arbitrary basis for reconstruction, see
[Adcock and Hansen, 2012].

An obvious extension of the work on this project could be to compose a recon-
struction frame of two different bases which both spans L2([0,1]). Specifically, it
could be a composition of the Haar and another, higher order, Daubechies wavelet.
The Haar wavelet is well adapted for reconstructing discontinuities, while the higher
order Daubechies wavelets are better at reconstructing polynomials. We therefore
conjecture that this frame may be able to reconstruct signals better, or at least as
good, than either of them would separately.

9.1.4 Two Dimensions

Our investigations into two dimensional generalized sampling has been limited to
uniformly sampled, square inputs. We will discuss these two restrictions separately.

We have chosen to restrict our work to square inputs, i.e. inputs where the sam-
pling scheme is a tensor product of a one dimensional sampling scheme with itself.
This results in a square matrix of reconstruction coefficients. The two dimensional
discrete nonharmonic Fourier transform, that we derived in Section 8.1, can only
handle these kind of sampling schemes. We trust that it is possible to expand the
derived transform such that two dimensional schemes, which are tensor products of
two different one dimensional schemes, can be used, but this has not been tested. Fur-
thermore, the two dimensional forward and adjoint algorithms presented in [Gataric
and Poon, 2016, Section 6] are only made for square inputs.

The restriction to uniform sampling is mainly due to the additional complexity
of the forward and adjoint algorithms in the general case. The algorithms have been
derived in the general case in [Gataric and Poon, 2016, Section 5] and then simplified
to the version that we use in Algorithm 3 and 4. The general algorithms have higher
computational complexity and require additional theoretical work.



9.1. Discussion 91

9.1.5 Reconstruction Quality and Compression

In generalized sampling, two factors determine how well we can reconstruct and how
much we can compress. When we have chosen a sampling space and a reconstruction
space the stable sampling/reconstruction rates are fixed. When keeping the spaces
fixed, the type of signal and the ratio between the number coefficients determines
the reconstruction error and the compression ratio.

For Daubechies wavelets of higher order than Haar, there will always be some
level of compression due to the stable reconstruction rate, or equivalently the stable
sampling rate, which is shown in Table 5.3. We have shown that, for some types
of signals, this way of compression is more efficient than truncating the Fourier
coefficients. So the usefulness of generalized sampling depends on the input signal.
As mentioned in Chapter 2, the signals, for which generalized sampling is useful,
are the ones which are ill represented in the sampling space and well represented
in the reconstruction space. An additional advantage of generalized sampling for
compression is that it is not always necessary to decompress in order to analyse the
signal and, if it is, decompression is simple to do.

The stable rates are the limits for how close N and M can be to each other. If
we fix N and choose M to be larger than the stable sampling rate, we get a better
reconstruction, but we also have to sample more. On the other hand, if we fixM and
choose N to be smaller than the stable reconstruction rate, we compress the signal
more, but we also make a larger error.

9.1.6 Time Complexity of Algorithms

Throughout the chapters we have observed certain time complexities for different
algorithms, they are summarized in Table 9.1.

Table 9.1: Table of time complexities in O notation for different algorithms.

1D complexity 2D complexity
DFT MN NM2 +N2M

IDFT MN NM2 +N2M

Forward operation aM +M log (N
ε
) aM2 +M2 log (N

ε
)

Adjoint operation aM +M log (N
ε
) aM2 +M2 log (N

ε
)

Wavelet reconstruction N 2nN

The discrete Fourier transform and reconstruction algorithm only has to run
once for every signal tested. Therefore, it is clear that it is the forward and adjoint
operations, Algorithm 1-4, which are the bottlenecks; they have to run several times
per iteration in the optimization method. However, in the general case, of solving a
linear system in one dimension, it requires O(MN) operations, but here we are able
to do it in O(M logN) operations [Gataric and Poon, 2016, p. A1077]. Furthermore,
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with the forward and adjoint algorithms at hand, we do not have to store the change
of basis matrix explicitly.

Returning to the DFT, we have implemented our own version in order to get
non-integer frequencies, which is not standard in the fast Fourier transform (FFT)
algorithms known in Python, e.g. numpy.fft.fft() and scipy.fft(). Further-
more, our implementation is adapted to nonuniform sampling schemes which again
is not a standard thing in Python. We are aware there are implementations of the
so-called nonuniform fast Fourier transform, NFFT. NFFT is a different approach to
the nonuniform discrete Fourier transform than the one in Section 4.2.1. NFFT is
based on regridding or interpolating, where samples on a uniform grid is found, based
on the nonuniform samples with as small an error as possible. Once the samples are
on an uniform grid the regular FFT algorithm can be used, [Dutt and Rokhlin, 1995]
and [Gelb and Song, 2014]. This method does not allow for sampling in a frame
which is essential for our purpose.

9.2 Conclusion
We have investigated generalized sampling and its application in image reconstruc-
tion and compression with focus on a Fourier frame as sampling space and a wavelet
basis as reconstruction space. We have described theory primarily based on work by
Ben Adcock and Anders C. Hansen. Their results include an upper bound for the
reconstruction constant and an easily calculated stable sampling rate.

The theory on Fourier frames is extensive. However, certain areas are not covered
by standard theory. So, in Section 4.2.1, we extended existing theory to the discrete
nonharmonic Fourier transform, which can also be used for nonuniform sampling
schemes. This theory is necessary when the sampling scheme has a density lower
that one, which is needed in the case for Daubechies wavelets of order two or higher.
Additionally, we have chosen an unconventional approach to boundary correction of
wavelet bases. We have pieced together theory from multiple sources in creating
explicit boundary functions both in the time domain and the frequency domain.

One of the key aspects of this project is the application of generalized sampling.
Therefore, a major part of the work has gone towards the implementation of relevant
algorithms. We have chosen to use Python as it is a widely used, open source
programming language which has not previously been used for generalized sampling.
The central algorithms are based on work by Milana Gataric and Clarice Poon.
Other implemented algorithms include the discrete nonharmonic Fourier transform,
the boundary wavelets in the time- and frequency domains and a transform from
Daubechies wavelet coefficients to time.

Through a series of examples, we have shown that our implementation of general-
ized sampling is beneficial for many different types of input. It is of great importance
to have a sufficiently low sampling density and a sufficiently high number of samples,
otherwise we can not guarantee that the method works. These bounds have been
calculated for several different reconstruction bases, all in the class of Daubechies
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wavelets. Additionally, we have found that the method works for square two dimen-
sionally inputs, nonuniformly sampled inputs and noisy inputs. It is an advantage
to have the input signal sampled uniformly and with as little noise as possible.

For most of the tested signals, it is advantageous to use generalized sampling for
compression and reconstruction rather than compressing and reconstructing in the
Fourier frame. There is nothing to gain from using generalized sampling if a signal
is well represented in the sampling space. However, the method can still be used.

Everything considered, we succeeded in gaining a deeper understanding of gen-
eralized sampling, implement some of the methods in Python and had success in
making examples which gives a more intuitive understanding of the subject. Fur-
thermore, we showed that using generalized sampling, to transform samples in the
Fourier frame to coefficients in a wavelet basis, is a very efficient way to compress a
variety of different signals.
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Appendix

In this appendix, are some larger versions of pictures from Chapter 8.
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A.1 Guerquin-Kern Brain Phantom
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Figure A.1: The original Guerquin-Kern phantom.
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Figure A.2: The wavelet reconstruction of Guerquin-Kern phantom.
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Figure A.3: The reconstruction from truncated Fourier coefficients of the Guerquin-Kern phantom.
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A.2 Cameraman
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Figure A.4: The original image of the cameraman.
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Figure A.5: The wavelet reconstruction of the cameraman.
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Figure A.6: The reconstruction from truncated Fourier coefficients of the cameraman.


	Front page
	English title page
	Preface
	Contents
	Reading Guide
	Danish Summary
	1 Introduction
	2 Motivation
	2.1 Generalizing Nyquist-Shannon's Sampling Theorem
	2.2 Magnetic Resonance Imaging

	3 General Theory
	3.1 Hilbert Spaces
	3.2 Frames
	3.3 Subspace Angles

	4 Theory of Generalized Sampling
	4.1 The Stable Sampling Rate
	4.2 Sampling in a Fourier Frame
	4.2.1 Nonharmonic Discrete Fourier Transform
	4.2.2 Fourier Frames


	5 The Reconstruction Space of Wavelets
	5.1 Notation
	5.2 Daubechies Wavelets
	5.2.1 The Cascade Algorithm

	5.3 Daubechies Wavelets as Reconstruction Space
	5.4 Boundary Wavelets
	5.4.1 Example with Daubechies 2

	5.5 Sampling Densities and Sampling Rates

	6 The Change of Basis Matrix
	6.1 Derivation of the Change of Basis Matrix
	6.1.1 The Haar Wavelet
	6.1.2 Boundary Wavelets

	6.2 Fast Computations with the Change of Basis Matrix
	6.3 Optimization

	7 Examples
	7.1 Haar
	7.1.1 Example 1
	7.1.2 Example 2
	7.1.3 Summary of Results

	7.2 Daubechies 2
	7.2.1 The Stable Sampling Rate
	7.2.2 Orthogonalization of the Boundary Wavelets
	7.2.3 Example 1
	7.2.4 Example 2
	7.2.5 Example 3
	7.2.6 Example 4
	7.2.7 Summary of Results

	7.3 Nonuniform Sampling
	7.4 Noisy Samples
	7.5 Violation of the Subspace Condition
	7.6 Higher Order Daubechies Wavelets

	8 Two Dimensions
	8.1 Discrete Nonharmonic Fourier Transform
	8.2 Forward and Adjoint Algorithms
	8.3 Reconstruction
	8.4 Examples with Daubechies 2 and Haar
	8.4.1 Square
	8.4.2 Wave
	8.4.3 Circle
	8.4.4 Shepp-Logan Phantom
	8.4.5 Guerquin-Kern Brain Phantom
	8.4.6 Cameraman
	8.4.7 Summary of Results


	9 Discussion and Conclusion
	9.1 Discussion
	9.1.1 Optimiziation Methods
	9.1.2 Nonuniform Sampling
	9.1.3 Other Frames
	9.1.4 Two Dimensions
	9.1.5 Reconstruction Quality and Compression
	9.1.6 Time Complexity of Algorithms

	9.2 Conclusion

	Bibliography
	A Appendix
	A.1 Guerquin-Kern Brain Phantom
	A.2 Cameraman


