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Abstract

Tips are an additional information users can provide when reviewing products as a short explanation of their review. This extra information
can be used to improve recommender systems and even provide a generated tip as an explanation of the recommendation. We look at the
Neural Rating and Tips Generation (NRT) model proposed by Li et al. and attempt to reconstruct it. We then look at ways to improve this
model; with matrix factorization, with attention, and through rating based scaled loss. We evaluate the base model and the extensions
against baselines with MAE and RMSE for rating prediction and with ROUGE-scores for tips generation. We also evaluate the diversity
of the tips generated by measuring the frequency of bigrams. We find that we are not able to reconstruct the model by Li et al. with the
same configuration as they show, but with a different configuration, we are able to achieve comparable results. Our experiments show that
the extension with matrix factorization named NSVDT has improved performance on rating prediction, tips generation, and diversity. The
extension with attention named NRT*A also improved on diversity and tips generation but shows a slightly worse performance on rating
prediction. The extension with rating based scaled loss named NRT*RSL shows a worse overall performance on rating prediction and tips
generation, but by inspecting the results for every rating individually it is clear that it has a more balanced performance across the ratings.

1 Introduction

Recommender systems have become an integrated part of
many IT solutions[1]. Over the years they have become very
proficient, but often they lack an explanation to go with the
recommendation[2]. This explanation should be presented
in a human-like manner, for example as a relevant piece of
text. Presenting information to a user can be troublesome
when information about that user is limited. In order to
solve this problem researchers have found ways to use
information about other users to infer information about
a specific user using similarities and latent representation
models. The relation between users can be hard to grasp,
but a set of methods called collaborative filtering models
have proved to be effective at predicting how a user might
rate a specific item based on how this user rated other items
and how this item was rated by other users.

In Wang et al.[3] they present a model that combines
the use of collaborative filtering with probabilistic topic
modeling. Their model constructs latent representations
of users and items and it extracts topics from documents.
By using these latent representations and topics it is able to
provide recommendations.

While recommendations give users a way to sort through
a large collection of items there is a lack of explanations
as to why the user is recommended these items. Instead,
explaining what the user might say about a specific item
has the possibility to give a user a greater understanding
of the chosen recommendation. A good explanation of the
recommendation could be a short generated text presented
to the user together with the recommendation. Generating
user reviews can be useful for both companies and users[4].
A company could perhaps promote an item to a user who
has not bought it yet through personalized recommenda-
tions. From the users’ point of view, the experience is
improved as the system learns more about the users. In our
last paper[5], we made a study on the different techniques,
metrics and state-of-the-art models used to control text
generation. When you are trying to output text, which is an
alteration of the ground truth text, you have a task where
measuring the performance is extremely hard. This was
the case in Hu et al.[6] where changing source sentences to

be written in another tense or fitted to another sentiment
made it difficult to evaluate since no ground truth were
present. Additionally, we found that some of the generative
models have a problem with generating long paragraphs
that respect some features like user and item because they
will lose information. Keeping track of this information in
longer sequences of text have a high resource demand and
will require researchers to have expensive hardware and
time available for the models to perform well.

How to control the text generation to get a desired out-
put seems to have many answers but they are all fitted to
the specific use case. In Liu et al.[7] they generate Wikipedia
articles using a combination of extractive summarization
of source documents and a neural abstractive model to
generate text following the structure of a Wikipedia article.
Li et al.[8] present a model based on deep learning that uses
tips and user ratings to learn latent factors between users
and items.

Figure 1: Tips are small pieces of information used to give a brief
understanding of the opinion of an item. The tip can make it easy
for a viewer to grasp the opinion of the item, without having to
read a more detailed review.

A tip is a small and often single topic nugget of information,
an example can be seen in fig. 1. The learned latent factors
generated are then used to predict a rating and generate a
tip for an item that has not yet been rated or reviewed by a
user.

While there is similar research[4, 6, 9] that try to connect
the relationship between the ratings given by users and
the information present in the user reviews, we find the
model presented by Li et al.[8] to be superior in the sense
that their model achieves good statistical scores compared
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to multiple baselines. Additionally, they do not attempt to
generate long sequences of text but try to concentrate the
core opinion into a tip.

The Neural Rating and Tips Generation (NRT) model
presented by Li et al.[8] does not apply many of the com-
ponents used in similar state-of-the-art models for both
text generation and rating prediction. Furthermore, They
address the reconstruction of ground truth and show to
a small degree the sentiment of the text, but they do not
address the diversity of the generated text.

Research like Dong et al.[4] shows that the addition of
an attention component can have a large impact on the per-
formance when generating novel text. The use of a similar
attention component is therefore examined to review if it is
applicable to the NRT model. While some research[10–12]
show that review data will often be biased towards positive
reviews, the research done by Li et al.[8] does not address
this problem. We examine if the use of scaling in the cost
function used to guide the multitask learning problem of
the NRT model, inspired by Kotsiantis et al.[13], may im-
prove the performance of the tips generation for the lower
rated reviews. Lastly, we see that while Li et al.[8] address
the use of Matrix Factorization (MF) models, they do not
combine these fast and well-known models into their own.
It is therefore interesting to examine if the use of MF for the
rating prediction part of the model will provide better tips
generation without a shared understanding of the user and
item latent factors between the two parts.

Contributions

In this paper, we examine the model proposed by Li et al.[8]
since it shows to provide state-of-the-art results regarding a
combined rating prediction and tips generation. We test if it
is possible for us to reconstruct their model with similar re-
sults. Additionally, we tackle the following three problems
in order to try and improve tips generation and ensuring
diversity in the generated tips:

1. Detaching the rating prediction component from the
multitask learning goal and implementing it with
matrix factorization. This model is used to pretrain
the latent factors for the tips generation rather than
random initialization.

2. Applying an attribute attention component to intro-
duce more context awareness.

3. Introducing a scaling in the loss function based on
ground truth ratings to counteract rating imbalance
in the data set.

All these changes are built on the NRT model[8].
The rest of the paper is as follows. We describe the

related work that inspired the contributions of this research.
Next, we present our revision of the model proposed by Li
et al.[8] We then introduce the three different extensions to
the NRT model as described above. Succeeding that, we
explain the research questions, baseline methods, metrics,
datasets and experimental settings. Last we present the
results and a discussion of the different research questioned
followed by a reflection and a conclusion.

2 Related work

The use of collaborative filtering for rating prediction as
part of recommender systems has been studied for numer-
ous years[14]. Some state-of-the-art methods are based on
Latent Factor Models (LFMs). Here a latent representation
is learned and can be used to predict unknown relationships
in the data. A group of LFMs is called Matrix Factoriza-
tion[15] where a matrix is decomposed into a representation
of smaller dimensionality. Many MF methods have been
used in different applications, such as Probabilistic Matrix
Factorization (PMF)[16], Non-Negative Matrix Factoriza-
tion (NMF)[17] and SVD++[18]. For these methods, the
goal is to decompose the original matrix containing ratings
given by users to items into separate matrices containing
user and item latent representations respectively. A user
and item latent vector taken from these matrices can then
be used to predict a value (a rating) in the original matrix.

While some models only use collaborative filtering to
predict a rating[16–18], other models combine these with
user reviews to improve the probability of correct predic-
tion[3, 19]. This is seen in Wang et al.[3] where collaborative
filtering is combined with topic modeling. This combined
approach allows their model, named Collaborative Topic Re-
gression (CTR), to construct top-n recommendations based
on both rated research papers from users as well as the
topic information. To construct CTR, they combine Latent
Dirichlet Allocation (LDA) for topic extraction with PMF for
collaborative filtering. They found that their model achieves
higher average recall score regarding in-matrix prediction,
and slightly better out-of-matrix prediction compared to
LDA. Another advantage they found in their model is the
construction of an interpretive user latent space since the
topics for a specific user can explain what their interests are.

Many models have been used to summarize or gener-
ate text to better provide information to a user. Dong et
al.[4] present an attribute to sequence model with an added
attention component. Their model tackles the problem of
generating user reviews from specified attributes such as
users, items, and ratings. Their model represents attributes
in a latent representation and feeds that to an LSTM net-
work. In addition, they add an attention component to
enhance the influence of the attributes to the output. They
show that their model outperforms the baselines and that
the attention significantly improves their model.

Li et al.[8] also presents a model for generating text,
but instead of focusing on user reviews, they focus on tips,
which are more concise reviews. Their model constructs
a latent representation of users and items respectively. It
then learns by solving a multitask learning problem with
the following tasks:

1. Predict rating given to an item by a user.

2. Predict frequency of words used by the user to de-
scribe opinion about the item.

3. Generate the tip given by the user for the item.

This multitask learning problem results in a model that can
predict the rating of an item in addition to generating a tip
for an item given a user. They find that while collaborative
filtering such as NMF shows good results their model gives
a better rating prediction on the same dataset.

Li et al.[8] show that tips can be a very useful compo-
nent to express user opinion and thereby provide additional
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information in recommender systems besides ratings. We
find that much can still be done to enhance the correlation
between the generated text and the rating as well as the
performance of the models compared to the training time
and required resources. Collaborative filtering in the form
of matrix factorization has been shown to give fairly good
results with a small training time[15], and as such could be
a useful tool to get faster results compared to using a neural
network model.

In this paper, we present several models that are exten-
sions of the generative model proposed by Li et al.[8]. We
introduce MF and use the latent representations from this as
the initial latent representation for users and items. We take
this a step further and replace the rating prediction part of
the model with MF. This provides us with a simpler network
where there is no latent representation shared between the
rating prediction and tips generation. Furthermore, we
extend their model with an attention component similar to
the one presented in Dong et al.[4]. Lastly, we add scaling
of the loss based on the rating during training to attempt to
balance the dataset. This extension is inspired by the work
of Kotsiantis et al.[13] and their review of different methods
for handling imbalanced datasets.

3 ProposedModel

First, we explain the original model by Li et al.[8]. Then
we will present the first extension named NSVDT. Later we
present the extension with attention called NRT*A. Lastly,
we explain the use of scaled loss as the model NRT*RSL.
Symbols used to describe the models can be seen in table 1.

Symbol Description
X training set
V vocabulary
U set of users
I set of items
S set of tips
Cctx context for tips decoder
E word embedding
H neural hidden states
W mapping matrix
U user latent factors
V item latent factors
R rating latent factors
b bias
h hidden layer
L Number of ratings
Θ set of neural parameters
ru,i rating of user u to item i
σ sigmoid function
ς softmax function
tanh hyperbolic tangent function

Table 1: Glossary table showing symbols with descriptions for
symbols used in this paper.

Neural Rating and Tips Generation (NRT)

The model introduced by Li et al.[8] is a model build for
predicting ratings as well as abstractively generating a small
tip for the item from a jointly learned latent representation
of users and items. They implement this model using a

combination of two Multi-Layer Perceptrons (MLPs) as
well as a Gated Recurrent Unit (GRU). They mention that
superscripts are used to denote which part of the network
the different layers belong to. A graphical representation of
the NRT model can be seen in fig. 2.

Rating Regression

To predict the rating an MLP is used. As seen in the left part
of fig. 2 the MLP maps the user and item latent spaces into
a hidden space and back into a real-valued rating. First,
they map from the latent spaces into the hidden space:

hr = σ(Wr
uhu + Wr

vhv + br
h) (1)

where Wr
uh ∈ Rd×ku and Wr

uv ∈ Rd×kv are matrices that map
the user latent vector u and item latent vector v from the
latent spaces given by U ∈ Rku×m and V ∈ Rkv×n for user
and item respectively. Here m is the number of users and n
the number of items. ku and kv are latent factor dimensions.
br

h ∈ Rd is the bias where d is the size of the hidden vector
hr. σ(·) is the sigmoid activation function.

To improve performance they add additional hidden
layers to their model:

hr
l = σ(Wr

hhl
hr

l−1 + br
hl
) (2)

where Wr
hhl
∈ Rd×d is a mapping matrix for variables in

the hidden layers. l is an index indicating which hidden
layer, while hL is the output of the last hidden layer. They
transform hL into the real-valued predicted rating:

r̂ = Wr
hrh

r
L + br (3)

where Wr
hr ∈ Rd and br

∈ R.
The loss function for their regression problem is a mean

squared error defined as:

L
r =

1
2 |χ|

∑
u∈U, i∈I

(r̂u,i − ru,i)
2 (4)

where χ is the training set and ru,i is the ground truth rating
for user-item pair (u, i).

Review Regression

Together with the rating regression, the review regression
is part of a context used by the abstractive tips generation
network. The review regression is a generative model based
again on an MLP. To generate the review content cu,i they
use the MLP in a similar manner as when they predict a
rating. This part of the model is indicated in green in fig. 2.
First they map the latent spaces of users and items into the
hidden space of the network:

hc = σ(Wc
uhu + Wc

vhv + bc
h) (5)

They also add additional layers according to the technique in
eq. (2). Again hL is the output of the last hidden layer. They
map this to a |V|-size vector ĉ, whereV is the vocabulary
of words in the reviews and tips:

ĉ = ς(Wc
hchc

L + bc) (6)

here Wc
hc ∈ R|V|×d and bc

∈ R|V|. ς(·) is the softmax func-
tion. They regard ĉ as a multinomial distribution over |V|
and they can draw words from this distribution to generate
the review cu,i.
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Figure 2: The NRT model by Li et al.[8] takes user and item latent factors as input and produces a rating and a tip. On the left, the
latent factors are used for rating regression and on the right for tip generation. First, the rating regression and review regression are
used to create Cctx, which is the context for the RNN on the right. This is comprised of GRU cells that through Cctx and the latent
factors generate a tip.

To train this network they use the Negative Log-Likelihood
(NLL) as the loss function:

L
c = −

|V|∑
k=1

c(k) log ĉ(k) (7)

Where c is the ground truth and c(k) is the frequency of the
word k. So this loss function tries to minimize the NLL of
having the right frequency for the right words in a review.

Abstractive Tips Generation

The abstractive tips generation is presented in the right part
of fig. 3 can be seen as sequence modeling:

p(st|s1, s2, ..., st−1, Cctx) = ς(hs
t) (8)

where st is the t-th word of the tip. Cctx = {r̂, hc
L} denotes

the context generated by one hot vectorization of the output
r̂ from the rating regression and the last hidden layer hc

L
of the review regression. ς(·) is the softmax function. hs

t
denotes the hidden state of the sequence at time t. This state
is dependent on the previous hidden state hs

t−1:

hs
t = f (hs

t−1, st) (9)

f (·) is a GRU. The GRU gives the state update as:

rs
t = σ(Ws

srst + Ws
hrh

s
t−1 + bs

r)

zs
t = σ(Ws

szst + Ws
hzhs

t−1 + bs
z)

gs
t = tanh(Ws

shst + Ws
hh(r

s
t � hs

t−1) + bs
h)

hs
t = zs

t � hs
t−1 + (1− zs

t) � gs
t

(10)

where st ∈ E is an embedding of the word st. rs
t and zs

t
is the reset gate and update gate respectively. � is the
element-wise multiplication.

Because there is no input for t = 1 they utilize Cctx to
initialize hs

0:

hs
0 = tanh(Ws

uhu + Ws
vhv + Ws

rhr̂ + Ws
chhc

L + bs
c) (11)

Here Ws
rh ∈ Rd×L and Ws

ch ∈ Rd×d. L is the number of
different ratings. The context Cctx is what allows the tips

generation network to write tips that are relevant for the
user and item pairs.

When all sequence hidden states are found, they feed
them through the output layer:

ŝt+1 = ς(Ws
hsh

s
t + bs) (12)

where Ws
hs ∈ R|V|×d and bs

∈ R|V|.
During training the word with the largest probability is

the decoded result for time step t + 1:

w∗t+1 = argmax
wi∈V

ŝ(wi)
t+1 (13)

The loss function is the NLL:

L
s = −

∑
w∈Tips

log ŝ(Iw) (14)

where we try to the make sure that the index Iw to the
ground truth word w is the most likely in ŝ at the given time
step. The sequence s∗ with the best log-likehood is found
with the following equation:

s∗ = argmax
s∈S

∑
w∈s

log ŝ(Iw) (15)

When testing they apply beam search. Here we have to
notice that they are not exploring the full search space of
all possible sequences but instead beam search will limit
the search frontier to a certain beam size, making it likely
to find the optimal sequence but not guaranteed. We apply
length normalization to the beam search like in Li et al.[8].

Multitask Learning

Li et al.[8] learn the user and item latent features jointly
from the different networks as well as unifying the learning
of the subtasks of rating, review and tips generation in a
multi-task learning problem where the objective function is
given by:

J = min
U,V,E,Θ

(λrL
r +λcL

c +λsL
s +λn(||U||22 + ||V||

2
2 + ||Θ||

2
2))

(16)
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L
r is the loss function of the rating regression network

defined in eq. (4), Lc is the loss function of the review gen-
eration network define in eq. (7) and Ls is the loss function
from the tips generation network define in eq. (14). Θ is
the set of neural parameters, meaning all the weights of
the rating, review and tips generation networks. U and
V refer to the user and item latent features. λr, λc, λs are
weight proportions that serve to weight different parts of
the network differently. λn controls the weight of the L2
regularization term.

Non-Negative Singular Value Decomposition and Tips
Generation (NSVDT)

In this extension to NRT we replace the MLP used for rating
prediction with Singular Value Decomposition (SVD). We
call this model NSVDT. In fig. 3 we have a matrix factoriza-
tion problem on the left and an abstractive tips generation
problem on the right. We have replaced the rating regres-
sions of the NRT model with an SVD component that is
used for rating prediction. One of the big differences is
the latent user and item factors (U, V) of the tips genera-
tion model that are pretrained and copied from the feature
matrices (W, H). This means that the SVD model keeps
(W, H) stable and does not need backpropagation, denoted
by the double-crossed line. The review and tips generation
network will do their backpropagation on (U, V), which are
no longer randomly initialized but pretrained by the SVD.

We use a gradient descent based algorithm to solve the
SVD as well as adding a non-negativity constraint to the
algorithm. This algorithm was originally popularized by
Simon Funk[20] in the Netflix competition [21]. It works by
minimizing the sum of squared errors against only known
ratings. Where the update for latent variables for users
u ∈ U and items v ∈ V is,

u← u− lr
d(r̂u,i − ru,i)

2

du
= u + lr ∗ 2(r̂u,i − ru,i)

2
∗ v

v← v− lr
d(r̂u,i − ru,i)

2

dv
= v + lr ∗ 2(r̂u,i − ru,i)

2
∗ u

(17)

Where lr is the learning rate and d denotes partial derivative.
This is done for each user and item pair (u ∈ U, i ∈ I) and
rating ru,i in the set of known ratings from users to items.

We use this kind of gradient descent based approach for
updating our SVD model because it allows us to consider
and hold only the known user and item pairs and their
associated rating in memory. The loss function is the Sum
of Squared Errors (SSE) of reconstructing the known ratings.
We add the non-negativity constraint to the loss function as,

constraint = 10e+12
(( |H|∑

h

|h| − h
)
+

( |W|∑
w
|w| −w

))
(18)

If all latent variables are non-negative the constraint is 0,
otherwise we add an extremely large penalty to the loss. The
optimization algorithm used for updating is the Adam[22]
algorithm. More formally the update for a latent variable lv

with gradient g becomes,

∀lv ∈ U∪V :

lrt ← lr

√
1− βt+1

1

1− βt+1
1

mt ← β1mt−1 + (1− β1)g

vt ← β2vt−1 + (1− β2)g2

lv← lv− lrt
mt
√

vt + ε

(19)

m0 and v0 are initialized as zeros and gradient g is calculated
from the SSE like in eq. (17). lrt is the learning rate for the
current time step calculated from the hyperparameter lr. β1
and β2 are hyperparameters.

Neural Rating and Tips Generation with Attention
(NRT*A)

In the NRT model the latent factors are used as inputs to
the network but in the GRU and in the MLP it is possible
that the information gained from the latent factors vanish
in between the layers. Therefore we wanted to extend the
model with the attribute attention introduced in Dong et
al.[4]. This kind of attention revolves around applying the
latent knowledge to all the outputs of the GRU and thereby
minimize the vanishing of their importance. This kind of
attention is illustrated in fig. 4 and we will briefly explain
the different calculations that are added in the network. In
fig. 4 the NRT Cctx box is the part of the NRT network that
constructs the context Cctx from the user and item latent
factors. This part consists of rating regression and review
regression.

Figure 4: Illustration of attribute attention inspired by Dong et
al.[4]. We retrieve Cctx from NRT as normal. For user, item and
rating an attention score is calculated. This score and the hidden
output is used to calculate ct. ct and the hidden output is used to
find hatt

t , which is used to find the output.

On the left, in fig. 4 we see that we calculate attention scores
by concatenating the latent factors with the hidden layers
from the GRU and then multiply them with a weight matrix.
The attention score for the attributes are calculated as,

st
i = exp(tanh(Wa

hsc[h
s
t , ai]))/Z (20)

where [·, ·] denotes concatenation, hs
t is the hidden output

from the GRU at time t, ai represents attributes ui ∈ U,
vi ∈ V and a new latent representation of rating ri ∈ Rkr×L,
where kr is the rating latent size and L is the number of
different ratings. Z is a normalization term that ensures
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Figure 3: NSVDT for rating prediction and abstractive tips generation. We train the SVD by using the user-item-rating matrix X. This
provides us with a latent representation W and H that is used to predict the rating for a given user-item pair. W and H are copied into
U and V in the tips generation part of the model. Each user and item pair (u, v) from U and V are used to predict frequencies of words
in the corresponding review. These outputs are used to generate the tip.

∑|a|
i=1 st

i = 1. Wa
hsc ∈ R1×(d+ki) is a mapping matrix where ki

is the latent size of attribute i. The attention scores are used
to create a weighted sum of the latent attribute vectors. We
call this the context vector ct,

ct =

|a|∑
i=1

st
iai (21)

The final hidden layer for the attention hatt
t is found by a

combination of the hidden layer and this context vector,

hatt
t = tanh(Wa

chct + Wa
hhhs

t + ba) (22)

where Wa
ch ∈ Rd×ki and Wa

hh ∈ Rd×d. The hidden layer hatt
t

is used to predict the token st,

p(st|st|s1, s2, ..., st−1, a) = ς(Wa
hsh

att
t + batt), (23)

where ς(·) is the softmax function and Wa
hs ∈ R|V|×d is a

mapping matrix that maps from the hidden space to the
vocabulary, much like in eq. (12).

Neural Rating and Tips Generation with Rating Scaled
Loss (NRT*RSL)

An inherent characteristic of most review datasets is the
distribution of ratings which is highly imbalanced with a
large number of positive ratings compared to negative ones.
As can be seen in fig. 5 this is the case for our datasets as
well. For the NRT model, this means that it will see positive
review and tip text much more often than negative ones.
This means that in general the loss throughout the training
will be influenced a lot more by positive sentiment text and
the model’s statistical knowledge will come mostly from
these. Inspired by Kotsiantis et al.[13] we have come up
with a counteractive measure that scales the loss based on
whether it comes from a positive sentiment or negative
sentiment review. This means that the model will be pun-
ished much harder for having errors in the reconstruction
of negative tips. Scaling the loss based on the ground truth
rating is done by extending eq. (14) to the following,

L
s = −

∑
w∈Tips

W(Ir)
sc log ŝ(Iw) (24)

Where the new addition W(Ir)
sc ∈ RL is a weight matrix

containing the scales and Ir is an index to the scaling matrix
for the ground truth rating. We call this extension of the
NRT model for NRT*RSL.

4 Experimentation

Research Questions

In this paper we will assess the following research questions:

• RQ1: Can we reconstruct the work of Li et al.[8]?

• RQ2: How will the integration of a matrix factoriza-
tion component for rating prediction and pretraining
of the latent factors affect the performance of the
model?

• RQ3: How will the addition of attention affect the
performance of the model?

• RQ4: Can we make the tips generation correlate
more with the ground truth rating prediction by the
addition of rating scaling?

Comparative Methods

In this section we will give an overview of the comparative
methods used to compare the performance of our model
against well-known methods. For the evaluation of the
rating prediction we compare to the following methods:

NMF - Non-Negative Matrix Factorization[17] is a de-
composition algorithm that ensures non-negative user and
item features and takes only the rating matrix as input. It
takes the rating values for already rated items in a sparse
user-item matrix and learns the missing rating values using
decomposition.

SVD++ - Singular Value Decomposition++[20] is an exten-
sion of SVD where binary implicit feedback about whether
a user rated an item or not is taken into consideration for
latent factor modeling.
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URP - User Rating Profile[19] takes the rating matrix
as input and models users as a mixture of attitudes. A full
user profile is created from the relationship between a users
attitude towards an item and the preference pattern for that
attitude.

CTR - Collaborative Topic Regression[23] is a model
used for recommending scientific papers. It combines
collaborative filtering with probabilistic topic modeling.
It uses the topic distribution of the words used about an
item and the user latent features to predict the rating a user
would give that item.

For the evaluation of the tip generation we compare
to the following methods:

LexRank[24] is a well-known method for summarizing
text. It works by ranking sentences in a text corpus based
on a similarity graph. The similarity between nodes is
calculated as a idf-modified-cosine formula, which measure
the distance between two sentences. Li et al.[8] creates a
summarization problem by creating a set of sentences Cu,i
for each user and item pair in the test dataset. Cu,i is created
by:

1. Retrieving Cu as the set of reviews written by user
u and Ci as the set of reviews written about item i.
These reviews are retrieved from the train dataset.

2. Filtering Cu and Ci by removing any reviews that do
no match the ground truth rating ru,i, which is the
rating given by user u to item i. These values come
from the test dataset.

3. All reviews from Cu and Ci whose words only appear
in one set are removed.

4. Extract the tip by merging Cu and Ci into Cu,i and
extract the top ranked sentence from Cu,i given by
LexRank.

They note that this gives LexRank an advantage compared
to the other methods, as it uses the ground truth ratings to
generate tips. We use this method for our LexRank as well.

CTR-t - The CTR model contains a topic model that
can be sampled to get the topics for an item. This topic
model is used to generate tips. The generation can be
described as:

1. Get the latent topic representation of an item i and
draw the topic z with the highest probability.

2. Select top 50 words from φz which is a multinomial
distribution of the topic z on the vocabulary |V|. Giv-
ing us the 50 most likely words given a topic.

3. The sentence most similar to the top 50 words from
Cu,i is then extracted as the tip. Similarity is based on
bag-of-words overlap.

Datasets

For our experiments, we use a benchmark dataset from
Amazon, namely the Electronics 5-core dataset[25]. We will
call this dataset Electronics-Full. In Li et al.[8] they use
several other datasets, but due to hardware limitations, we

are unable to run the model on these datasets. The dataset
is a 5-core dataset which means that all users have written
at least 5 reviews and there is at least 5 reviews written for
each items.

From the dataset, we extract the following for each sam-
ple: user ID, item ID, review, rating, and tip. The user and
item ID’s are integers where each user and item will have a
unique ID. The rating is an integer in the range [1,5]. The
review and tip are texts. The vocabulary V is built from all
unique words with a term frequency of 20 or above.

Full 200k
users 192,403 97,809
items 63,001 8,381
reviews 1,684,779 199,576
|V| 69,138 18,971

Table 2: Overview of the datasets. We see that the number of
users far exceeds the number of items for both datasets, but the
ratios are not the same.

For parameter tuning and testing we developed a smaller
dataset, Electronics-200K, which is a subset of the
Electronics-Full dataset and is created by taking the first
200k reviews from the full dataset. As the Electronics-Full
dataset is sorted by items this ensures that we maintain
5-core on the items. We can however not ensure that the
same is true for users.

Figure 5: Distribution of the reviews based on rating. It is
clear that both datasets are very similar in distribution of rating.
Additionally, the figure shows the large proportion of positive
reviews compared to negative.

Information about the number of users, items, reviews, and
the size of the vocab can be found in table 2. It is clear that
we are not able to maintain the same proportion of users
and items for the smaller dataset.
An important feature of these datasets is the distribution
of the ratings. If the distribution of ratings differs between
the datasets, it will not be representative. As seen in fig. 5
the rating distribution are very similar for all three datasets
with only a small variation for each rating. Additionally,
we note that a large proportion of the reviews are positively
rated.
The frequencies in the Electronics-200K dataset matches
the ones of Electronics-Full in fig. 6. Electronics-200K has a
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significantly smaller amount of bigrams, but this behavior
is expected from lowering the amount of data. They still
share the same distribution and the top bigrams are all the
same bar a few changes, see table 3. Given the attributes
for the smaller dataset, we deem the Electronics-200K to be
representative of the Electronics-Full dataset, and we will
use this dataset for further evaluation.

Ranking Electronics-200K Electronics-Full
1 (for, the) (for, the)
2 (this, is) (this, is)
3 (for, my) (for, my)
4 (i, have) (i, have)
5 (i, bought) (i, bought)
6 (is, a) (is, a)
7 (for, a) (for, a)
8 (price, <eos>) (price, <eos>)
9 (<unk>, <eos>) (bought, this)

10 (bought, this) (the, price)
11 (the, price) (of, the)
12 (of, the) (it, <eos>)
13 (it, <eos>) (it, is)
14 (it, is) (a, great)
15 (a, great) (and, it)

Table 3: Comparison of top bigrams on Electronics-Full and
Electronics-200K.

Preprocessing the Data

In this section we will look at how we can go from the raw
data in the datasets to the information we are interested
in using. In the datasets users and items have a unique
ID. We provide every user and item with a new ID when
processing the dataset, such that we ensure that the first
user has uID = 0 and every following user will have an in-
cremented ID. We do exactly the same for items. We do this,
so we can use the IDs for indexing. The rating is extracted
from the dataset as an integer in the range [1,5]. For the tip
we use the summary text. The remaining preprocessing is
different for the various models and will be described in
the following sections.

Figure 6: Bigram frequencies for Electronics-200K and
Electronics-Full plotted in descending order. The x-axis is an
index denoting the ranking of the bigrams. The y-axis shows the
normalized frequency of a bigram on a logarithmic scale. We see
that both datasets share a similar regression in frequencies.

NRT & Extensions

For NRT and our extensions we process the data following
these steps:

1. For all samples with a summary of less than five
words, use the first sentence from the review text,
with five or more words. If no sentence exists, we
remove this sample from the dataset.

2. We remove all punctuation from the reviews and tips.
We do this to avoid that the model sees words like
"today!" with an exclamation mark as different from
the word "today", which is not desirable both due to
an explosion in vocabulary size and because there is
little difference in the meaning of the two.

3. We reduce the length of the tips to be no larger than
20.

4. We append an end-of-string <eos> token to each
tip, this is so that the recurrent network in the tips
generation part will learn the ending token for all tips.

5. We remove stopwords from all the reviews. Stop-
words are words that does not contain much meaning,
and due to their frequent appearance will make it
harder for the model to learn the latent information
in the review texts.

6. We add all words that appear more than 20 times to a
vocabulary. All words that appear less than 20 times
in the entire set will be replaced with an unknown
<unk> token. This is done to avoid an unnecessary
vocabulary size and to not carry meaningless or mis-
spelled words into the generative model.

7. The output is a file containing the processed review
information (userID, itemID, rating, review, and tip).

From Li et al.[8] we received a preprocessing file outlining
that they did similar for their research of the NRT model.

URP, NMF & SVD++

For all the collaborative filtering we use the same processed
review information as for NRT and our extensions. This
means that if a sample has been discarded in the preprocess-
ing it is not used here either. These models are implemented
using LibRec library[26] that assumes the data to be format-
ted as (user, item, rating). Therefore, we output the data
following this structure such that it can be loaded properly
by the LibRec library.

LexRank & CTR

For LexRank and CTR we make some small changes to the
preprocessing to better fit to the models and their implemen-
tations. The first difference is that we find the individual
sentences in each review before removing punctuation. This
is done since the LexRank model use the individual sen-
tences for the similarity graph. Furthermore, we do not
append an <eos> token to the tips since none of the models
need it. Lastly we do not replace infrequent words with
an <unk> token. We choose to not do this since we figure
that the <unk> token will have a negative impact on the
semantic graph connecting entire sentences based on only
a single word namely the <unk> token.
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RMSE MAE ROUGE-1 ROUGE-2 ROUGE-l ROUGE-SU4
NRT 21.19 0.93 0.01 0.00 0.00 0.00
NRT’ 1.27 0.91 8.85 0.01 3.64 2.42
NRT” 1.29 20.87 116.41 12.01 210.59 14.57
NRT* 1.43 1.03 14.96 1.69 10.02 4.09
NRT*A 1.32 0.90 15.25 1.77 10.16 4.18
NSVDT 11.15 10.85 215.72 21.95 110.62 24.36
NRT*RSL 1.31 0.93 13.78 1.37 8.49 3.76

Table 4: Results on the Electronics-200K dataset. All ROUGE values in the table are F1-scores. Superscript denotes best and second
best in each column. We see that the NSVDT has the best performance on both RMSE and MAE, and achieves the second best ROUGE
scores on all metrics. Additionally we see that the normal NRT configuration presented by Li et al.[8] is not able to get competitive
ROUGE scores, but still achieves high rating prediction scores.

Evaluation Metrics

This section introduces different measures that capture dif-
ferent aspects of the models. We want to measure the
performance of rating prediction, tips generation, and di-
versity of the generated text. In the following sections, we
will show the metrics used for each of these.

Rating Prediction Metrics

To evaluate the performance of the rating prediction, we will
use Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE)[8, 27]. Given a predicted rating r̂u,i for user u
to item i and a ground-truth rating ru,i, RMSE is calculated
in the following way:

RMSE =

√
1
N

∑
u,i

(ru,i − r̂u,i)2 (25)

where N is the number of ratings between users and items.
The strength of RMSE is that it is good at describing er-
rors following a normal distribution[27]. RMSE Shows
how much the data is concentrated or spread out from
the correct value. Because the error is squared before it is
averaged it gives a high weight to large errors. With the
same information MAE can be calculated in the following
way:

MAE =
1
N

∑
u,i

∣∣∣ru,i − r̂u,i
∣∣∣ (26)

The MAE is a good metric to evaluate average model per-
formance and is good when used to describe uniformly
distributed errors because it does not penalize large errors
like RMSE[27]. In MAE it is simply twice as bad being off

by 4 as being off by 2, but in RMSE it is more than twice as
bad.

The choice of evaluating rating prediction using both
MAE and RMSE is due to the convenience of being able to
easily compare our model to the original NRT model[8].

ROUGE Measures

To evaluate the performance of the tip generation we will use
the following scores from ROUGE[28]; ROUGE-1, ROUGE-
2, ROUGE-L and ROUGE-SU4.

ROUGE-1 and ROUGE-2 are both versions of ROUGE-
N, which is an n-gram recall between a generated tip and a
set of reference tips. In our case we always have only one
reference, which gives us the equation shown below:

ROUGE-N =

∑
gramn

Countmatch(gramn)∑
gramn

Count(gramn)
(27)

where n is the size of the n-gram. Countmatch(gramn) is the
number of n-grams co-occurring in the generated tip and in
the reference tip. Count(gramn) refers to the total number of
n-grams in the reference or the generated tip depending on
whether we are calculating recall or precision respectively.

ROUGE-L score is a measure of the longest common
sub-sequence between the generated tip and the reference
tip. The longer the longest common sub-sequence is, the
higher the similarity will be between two tips. Having a
ROUGE-L score of zero means that there is no sub-sequence
in common between two tips.

ROUGE-SU4 is a measure where we count unigrams
and skip-bigrams with a skip size of 4. A skip-bigram is a
bigram where you allow n wrong words to be between the
words in the bigram you are looking for. This measure is
more forgiving when it comes to matching bigrams com-
pared to ROUGE-2. Additionally this metric rewards for
also having single words co-occurring in two tips. This can
handle situations, where a single word may be correct, but
the structure of the tips limit the co-occurrence of bigrams
in the two tips.

The ROUGE scores are measured in precision and re-
call. Precision measure how much of the generated tip is
relevant. Recall measures how much of the reference tip
was captured by the generated tip. These measures can be
combined in a F1-score[29], which is a harmonic mean over
precision and recall. We use an implementation of ROUGE
in Python created by Tardy[30]. This implementation comes
with a disclaimer that the results may differ slightly from
the original ROUGE implementation.

Diversity Measure

Explaining a recommendation to a user as a piece of text
becomes interesting when we are able to diversify the text.
If we merely wanted some text that matches the rating, we
could have a fixed sentence for items with a high predicted
rating like: "This is a great product for the price" and perhaps:
"A waste of time and money" for an item with a low rating.

To measure the diversity in the generated tips we intro-
duce a diversity measure based on bigram occurrence. We
find the different bigrams in the predicted tips and mea-
sure their normalized frequency. This is plotted to visually
display the distribution of bigrams. This measure should
help us see patterns of whether the model is producing
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diversified outputs for the different user and item pairs
and their predicted rating or if the model learns a limited
number of bigrams that are repeated. A very high frequency
of the most used bigrams together with a low amount of
total bigrams should help us identify a low diversity while
a more flat curve show a higher diversity in the predicted
tips.

Parameter Tuning & Configuration

In this section, we will examine the preliminary results used
for finding good parameters for the models. We will then
explore gradient descent algorithms, parameter tuning, and
regularization.

Gradient Descent Algorithm

Li et al.[8] uses the AdaDelta[31] gradient descent algorithm
in their NRT model. This algorithm is quite computation-
ally heavy because of the way learning rate, decay and
momentum are calculated. However, it has shown good
results on Recurrent Neural Networks (RNNs) as reported
in Li[32]. In our preliminary results we were unable to
achieve any useful results using AdaDelta, and as such we
investigated other optimization algorithms. To get a notice-
able improvement in computation time we have chosen to
use another algorithm reported in Li[32], namely the Adam
algorithm[22]. This algorithm has shown good performance
on MLPs and it is a much simpler algorithm to run. In our
testing on the smaller dataset the Adam algorithm showed
on par performance with AdaDelta, but the time it takes
to compute the gradients for an epoch is less than half the
time used by AdaDelta.

Parameter Tuning

Parameter tuning was done on the Electronics-200K dataset
and evaluated on the development set. We mainly focused
on finding a good optimizer and a good value for λn, the
scaling of the regularization term. We evaluated a number
of different configurations which is shown in table 5. NRT
is the setup that was used by Li et al.[8]. NRT’ and NRT”
are setups where the Adam optimizer is tested with two
different values for λn. NRT* is a setup where the regular-
ization is removed by setting λn = 0. All the extensions
(NRT*A, NSVDT, NRT*RSL) are built on top of the NRT*
version.

Name Optim. λn

NRT AdaDelta 1e−4
NRT’ Adam 1e−4
NRT” Adam 1e−8
NRT* Adam 0
NRT*A Adam 0
NSVDT Adam 0
NRT*RSL Adam 0

Table 5: Overview of model configurations on the
Electronics-200K dataset. We see that the choice of the Adam
optimizer along with the exclusion of regularization has been used
on the extensions to the NRT model.

Regularization

As shown in eq. (16) there is a regularization term as part
of the objective function, but during preliminary exper-
imentation, we noticed that the regularization proposed

by Li et al.[8] had a very bad impact on the results of the
model. This can be seen in table 4 where NRT is the same
configuration as Li et al.[8] used. The configurations of the
models can be seen in table 5. We then experimented with
various values for λn to adjust the impact the regularization
had on the model. An example of this can again be seen in
table 4 where the only difference between NRT’ and NRT”
is the impact of the regularization and as we can see, the
model performs better when λn gets smaller.

Experimental Settings

The dataset is shuffled with a random seed of 1 and then
split into three parts; train, development, and test with ratio
8:1:1. The latent factors for NMF and SVD++ is set to 10.
The number of iterations for NMF is 10 and for SVD++ it is
200.

For NRT and our extensions, we set user, item and rating
latent factors to K=300. We set the size of all hidden layers
to 400 and the size of the word embedding to 300. The
learning rate is set to 1e−4 The beam size is set to β = 4
and the maximum tip length is set to 20 (excluding <eos>
token). The weight parameters are set to λc = λr = λs = 1
and λn = 0. NRT and our extensions are trained for 20
epochs with a batch size of 30.

For NSVDT the SVD is trained for 17 iterations with
a learning rate of 1e−3. The initial values in the SVD is a
uniform distribution with values in the range [0, 0.23].

For NRT*RSL the scaling of the loss for the ratings was
done with the following vector 〈3.33, 4.00, 2.20, 1.00, 0.33〉.

Implementation

We have implemented the NRT model as well as our exten-
sions in Tensorflow 1.5.0[33]. LexRank uses LexRank[34]
and CTR uses CollaborativeTopicModel[35] and both are
implemented in Python 3.5. NMF, SVD++, and URP use
LibRec[26], and are implemented in Java. LexRank and
CTR was run on an Intel Xeon E5-2690 at 2.60GHz with
378GB system memory. NMF, SVD++ and URP was run on
another server with an Intel Xeon E5-2680 v3 at 2.50GHz
with 32GB memory. The various NRT models was run on
an Intel i7 880 2.93GHz with 24GB system memory and an
Nvidia GTX 1060 with 6GB memory.

5 Results & Discussions

In this section, we will look at the results from our experi-
ments and discuss these. Results for the NRT model and
extensions can be found at [36]. First, we will present the
overall results for the various models. Then we will look
at the different research questions and present additional
results relevant only to that question. For each of the re-
search question we will end with a discussion of the results.
It should be noted that we chose not to run NRT*RSL on
Electronics-Full due to resource limitations and because it
showed poor performance regarding text generation on
Electronics-200K as shown in table 4. First we will take a
look at the performance of the rating prediction for the vari-
ous models and the appropriate baseline methods. NSVDT
has the best performance on both RMSE and MAE com-
pared to the other methods which can be seen in table 7.
We also note that besides NSVDT the other models are
outperformed by the baseline methods, where URP has
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ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4
F1 P R F1 P R F1 P R F1 P R

LexRank 8.78 8.25 13.60 0.56 0.54 0.99 5.87 6.73 11.32 2.15 2.24 4.04
CTR N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
NRT* 15.63 13.65 20.87 1.76 1.49 2.57 10.43 10.07 17.29 4.24 3.55 6.91
NRT*A 116.01 213.91 121.61 21.79 21.49 22.69 210.64 210.22 117.91 24.35 23.60 17.21
NSVDT 215.99 114.22 220.99 11.95 11.68 12.80 110.75 110.49 217.57 14.45 13.81 27.10

Table 6: ROUGE-scores on Electronics-Full. NSVDT is far superior compared to NRT* on all ROUGE scores, but in some cases beaten
by NRT*A. NRT*A extension outperforms NRT*. CTR was implemented, but did not finish in time.

the second best performance on RMSE and SVD++ has the
second best performance on MAE.

RMSE MAE
NMF 1.226 0.867
SVD++ 1.183 20.845
URP 21.126 0.857
CTR N/A N/A
NRT* 1.414 0.960
NRT*A 1.464 0.995
NSVDT 11.116 10.805

Table 7: Rating prediction measured with MAE and RMSE on
Electronics-Full. While Li et al.[8] outperformed the presented
baselines on rating prediction, we were not able to achieve the
same conclusion with NRT*. NSVDT outperforms all baselines
and extensions.

If we look at the performance for tips generation we can see
in table 6 that NSVDT is the overall best performer followed
by NRT*A. As we can see all the models outperforms the
baseline methods on tips generation. Note that there are no
results for CTR as the model did not complete in time, and
as such the results are missing.

Figure 7: Bigram frequencies in descending rank for configura-
tions in 4 on Electronics-200K. The x-axis is an index denoting
the ranking of the bigrams. The y-axis shows the normalized
frequency of a bigram on a logarithmic scale. NRT is not present
in the figure since it produced no bigrams. NRT’ is presented as
dots since it had only three unique bigrams for that model.

We also looked at the diversity of the different models,
which can be seen in fig. 8 for the results on Electronics-Full
and in fig. 7 for the results on Electronics-200K. These fig-
ures show normalized frequencies on a logarithmic scale

on the y-axis and an identifier on the x-axis that ranks the
bigrams by frequency. We are not interested in the bigrams
themselves but rather the trend in frequency.

In fig. 7 we see how diverse the generated tips are for
each configuration when trained on the Electronics-200K
dataset. Notice that NRT is not included in this figure
since it did not generate any bigrams but simply one-word
tips. Additionally, we see that also NRT’ and NRT” did
not perform well, with NRT’ only generating three unique
bigrams, and therefore plotted as dots instead of lines, while
NRT” contain very low bigram diversity compared to other
configurations and extensions. We can see in fig. 7 that
NRT* achieved a good bigram diversity compared to many
other configurations and only NRT*A writes more diverse.

In fig. 8 we see the results on Electronics-Full where both
NRT*A and NSVDT are writing more diverse tips compared
to the base model NRT* on Electronics-Full, where only the
NRT*A was better on Electronics-200K.

Figure 8: Bigram frequencies in descending rank for NRT*,
NRT*A and NSVDT on Electronics-Full. The x-axis is an index
denoting the ranking of the bigrams. The y-axis shows the nor-
malized frequency of a bigram on a logarithmic scale. Diversity
is higher for both NRT*A and NSVDT compared to NRT*. Both
extensions contains a higher number of unique bigrams compared
to NRT*.

Reconstruction of the NRT Model (RQ1)

The results presented by Li et al.[8] for their model NRT
is seen in table 8 as NRTo. For ROUGE we show only
the F-1 scores. Additionally we see that our own imple-
mentation of NRT on Electronics-200K did not provide any
acceptable ROUGE scores, however, we did get comparable
RMSE and MAE scores. By changing the optimizer of the
network from Adadelta to Adam, and removing the regu-
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RMSE MAE ROUGE-1 ROUGE-2 ROUGE-l ROUGE-SU4
NRTo (Li et al.[8]) 1.107 0.806 13.95 2.72 12.67 4.68
NRT 1.189 0.927 0.01 0.00 0.00 0.00
NRT” 1.287 0.869 16.41 2.01 10.59 4.57
NRT* 1.414 0.960 15.63 1.76 10.43 4.24

Table 8: Table showing RMSE, MAE and F1-scores on ROUGE for our configurations of the NRT model and NRTo is results as in Li et
al[8]. NRTo achieved better results than our implementations, but our configurations NRT” and NRT* get comparable results.

larization term, we find that we can achieve comparable
results on Electronics-Full between NRT* and NRTo and
also between NRT” and NRTo, but with NRTo being better
in both comparisons on almost all metrics.

From these results, we see the reconstruction challenge
of the NRT model by Li et al.[8] can be seen from two
viewpoints:

1. Reconstruction of their model with similar results
using their experimental settings.

2. Reconstruction of their model with similar results
using our experimental settings.

5 "perfect for office server and photoshop use"
4.41 "i bought this for my wife and it has been very

happy with it"
5 "i consider myself an audiophile i have a huge

system that ive built over the years but its so
big"

4.22 "i bought this for my wife and it has been very
happy with it"

4 "i have a maze of cables behind my living room
tv and i wanted to clean it up"

4.81 "i bought this for my laptop and it worked great
for me and it works great and it works great"

5 "user for years with zero problems"
3.89 "i bought this for my laptop and it worked great

for me and it has been working great for me"

Table 9: Tips that are very similar or the same as produced by
the NRT” on the test set for Electronics-200K. Ground truth is
marked in bold.

Reconstruction of NRT Compared to Viewpoint 1

NRT with Adadelta and regularization performs very
poorly, and we suspect that the AdaDelta[31] algorithm
might be faulty in its GPU implementation in Tensor-
flow. When we tried to only change the optimizer, we
still had problems regarding regularization. Even though
NRT” achieves good ROUGE scores on the Electronics-200K
dataset, as seen in table 4, we still find a problem with di-
versity of tips for NRT”. While the diversity of the tips are
not addressed in Li et al.[8] we know from their results, that
their model contained more than single word sentences and
that their presented results showed a good variation in their
tips. Due to lack of diversity for NRT” as presented in fig. 7,
we provide a further examination of tips provided by NRT”
and find that many of the generated tips are very similar
in their content as seen in table 9 where the ground truth
is marked with bold. This points to a problem regarding
evaluation of ROUGE score without also looking at diver-
sity. Given all of these results it is evident, that we did not

successfully reconstruct the NRT model when compared
using viewpoint 1.

Reconstruction of NRT Compared to Viewpoint 2

While NRT” achieves the highest ROUGE scores on the
Electronics-200K dataset, but with low diversity, we found
that NRT* could achieve comparable ROUGE scores while
still having a high diversity. By training NRT* on the
Electronics-Full dataset we found that the ROUGE scores
were close to the ones by Li et al.[8] but with theirs be-
ing better especially for ROUGE-2. This difference can of
course be due to the difference in experimental settings and
implementations.

For rating prediction we have measured the perfor-
mance of the NRT model we have reconstructed. In table 7
we see that we are not able to achieve similar performance
on rating prediction as Li et al.[8] achieved. We see that the
SVD++ and the URP model are performing the best of the
baseline models.

We see in table 10 that sometimes there is still a coher-
ence between the predicted rating and the textual output,
but with a higher error we can expect that we are further
from the ground truth tip. In our case we predict much
more positive ratings and thus write more positive tips.
Considering the overall performance of NRT* compared to
the NRT model implemented by Li et al.[8] we think we
are able to reconstruct the model by Li et al.[8] with similar
results when comparing using viewpoint 2.

5 "great for nuke and photoshop"
4.67 "this is the best stylus i have ever owned and i

have had it for a couple of months now"
3 "i was very excited when i got this pc"
0.90 "i bought this to use with my laptop and it worked

great for a few months then it stopped working"
5 "a great performance keyboard for a good price"
4.80 "i bought this keyboard because i wanted a key-

board that i could use with my ipad and it works
great"

1 "i have tried it in my set up"
1.23 "i bought this unit to replace my old one that had

died on me after a few months of use"

Table 10: Tips where the sentiment is coherent with the rating for
NRT* on Electronics-Full. Ground truth is marked in bold.

Model with Matrix Factorization (RQ2)

We see in table 11 the sentiment from the predicted rating
is not carried very well to the generated tip. It is carried
in some cases as seen in 11 and Li et al.[8] also show that
they can vary their tips based on the sentiment. However
they show a very limited number of examples as we do in
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table 10. This can be misleading and by further inspection
it seems that the general trend is that the sentiment is not
learned that well.

5 "i love this replacement cap for my canon espe-
cially the <unk> to keep it safe and secure"

1.38 "i bought this to use with my canon eos rebel t3i
and it works perfectly with my canon eos rebel"

2 "mostly work as advertised one major problem"
2.98 "i bought this for my wife to use with her ipod

touch and it works great and she loves it"
2 "the sound wasnt particularly great"
4.56 "i have been using this product for about a month

now and it has been working great so far"
1 "this drive for some stupid reason requires two

usb ports to work and comes with bloatware
preinstalled which pissed me"

2.64 "i bought this to use with my macbook pro and it
worked great for the price i paid for it"

Table 11: Tips produced by the NRT* that do not adhere to their
rating from the test set for Electronics-Full. Ground truth is
marked in bold.

Based on this detaching the latent factors for the rating
prediction model seems like a good thing to do. As the
sentiment is not encoded in the latent features but rather the
tip generation model will learn that it is merely a numeric
input.

We see that the NSVDT model perform well both in
rating prediction(table 7) and in ROUGE score(table 6). On
rating, it significantly outperforms all other methods both
on MAE and RMSE. On the ROUGE scores, it is also the
best performing model. It achieves the best performance
on almost every ROUGE score and otherwise, it achieves
the second best performance. The NRT*A model performs
slightly better in ROUGE-1 due to its higher recall.

Looking at these results it appears that the modification
of the NRT model with the use of MF for rating prediction
has provided us with a model that is both simpler to train
and has an improved performance. And we can see in
table 12 that we are able to generate tips that match a senti-
ment and a context to some degree. It is hard to say exactly
why this modification has an improved performance, but
we will try to address the matter anyways. Perhaps the
shared latent representation between rating prediction and
tips generation is not a good idea. Maybe the model is
better because it has a latent representation in the SVD to
predict ratings and a different latent representation for the
rest of the model used for tips generation. One could argue
that it is different features that determine what rating a user
would give an item and the features that determine what tip
a user would give that same item. When they are detached
the model is free to learn different features for these and as
we see on the results, this appears to have a positive impact
on the performance.

A benefit of the NSVDT mode is that it would be possible
to add more users and items to the SVD much more easily
and only have to retrain the SVD and not the entire model.
Then the pretrained latent factors for the new users and
items could be used in the rest of the network to generate
tips. This would greatly reduce the training time to update
this model when new users and items needs to be added.

However, we can only speculate that the performance for
users or items that are only trained by the SVD will be
lower. As the SVD is separate from the rest of the model
it also enables us to do a thorough parameter sweep in a
reasonable time horizon. This makes it possible to find good
parameters for the SVD which improves the performance
of this model.

5 "my purchase of this bag the timbuk2 swig
backpack in black was impulsive"

4.57 "this is a great bag for the price and it fits my
laptop perfectly and has a lot of pockets"

2 "64mb of software constant checks for updates
items in my system tray just for a keyboard and
mouse"

2.63 "i bought this keyboard to replace my old logitech
keyboard that i had for a year and a half ago"

1 "a prime example of how to ruin a barely work-
ing product"

2.77 "i bought this to use with my mac pro and it
worked great for about a year then it died"

5 "the best canon flash to date"
5.08 "i bought this to use with my canon eos rebel t3i

and it works great"

Table 12: Tips generated by NSVDT on Electronics-Full. Ground
truth is marked in bold.

In this model, we also tried to initialize the latent factors
in the network with the latent factors we have in the SVD
after it has trained. From what we can see on these results
it appears as if this works quite well, but as we have not
trained a model without using the latent factors from the
SVD as the initialization for the latent factors in the network
we do not have a good way to measure how this impacts
the model.

NRT with Attention (RQ3)

The assessment of RQ3 is based on the model NRT*A. We
see the results for RMSE and MAE in table 7. The model
is slightly worse than NRT*, however, if we look at the
ROUGE scores in table 6 we see that NRT*A is the second
best overall. In fig. 8 we also see that NRT*A show good
diversity close to that of NSVDT. In table 13 we see tips that
show a very good coherence between the items or topics
in the ground truth and the generated sentence and the
generated tips also carry the sentiment of the predicted
rating well.

We are interested in the context awareness that NRT*A
brings. It has a good diversity and achieves good ROUGE
scores and in table 13 we see that there is a good coher-
ence and context awareness between predicted rating and
generated tip. As earlier mentioned a generative model
that merely describes the sentiment or rating in a generic
way is not always interesting and could simply be replaced
by a set of manually generated generic sentences. We find
NRT*A interesting because it provides results that are more
context aware and will possibly give a better explanation of
a recommendation than a sentence that could be said about
any item like, "This is a great product". If a user can identify
that a tip is talking about the item he is recommended or
looking at, one could imagine that he might be more prone
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to believe it or find that it describes a certain feature of the
item that is interesting to him.

5 "great price charged fine and then held the
charge"

4.14 "i bought this to replace the original battery that
came with my camera and it worked great for the
price"

5 "i just received my new er6i isolator head-
phones"

1.01 "i bought these headphones for my wife to use
with her ipod touch and they are very uncomfort-
able and uncomfortable"

2 "i had high expectations for this product given
the sennheiser brand"

2.34 "i have had these for a few months now and i am
very disappointed with the sound quality of the"

5 "great all around bag very versatile"
4.97 "i bought this bag to use with my new camera

and it works great for the price i paid for"

Table 13: Tips produced by the NRT*A from the test set for
Electronics-Full that show a big correlation between the products
mentioned in the ground truth as well as adhering to the predicted
rating. Ground truth is marked in bold.

The rating prediction of NRT*A is slightly worse than that of
NRT*. Already in our attempt to reconstruct the work of Li
et al.[8] we noticed that the rating prediction suffered higher
errors when the network achieved better ROUGE scores.
Our hypothesis is that because the tips generation part of
the network gets more complex it has a larger influence on
the latent factors and the gradient descent, the model will
have a harder time converging to a point where both the
rating and the tips generation part are at a minimum.

Scaling Loss Based on Rating for Better Tip Generation
(RQ4)

We evaluate whether the scaling of the loss has a positive
effect on the generation of tips by evaluating the ROUGE
scores on each rating separately. In fig. 9 we see the distri-
bution of ROUGE scores based on each different rating. It
is evident that the performance in ROUGE score follows
the trend of the dataset. We are significantly better at gener-
ating tips when the predicted rating belongs to the majority
sentiment.

In fig. 9 we see that by scaling the loss we get a more
even curve. We punish the model in such a manner that
every rating have an equal impact on the total loss. This
means that when we predict a minority sentiment wrong
it is punished more than when we predict a majority sen-
timent wrong. In general, we get a lower ROUGE score
overall. We attribute this to the fact that finding the right
descent in our gradient descent might be hard when we
choose to change certain weights much more aggressively
than others and we speculate that we end up in a different
local minimum.

Another approach for tackling this problem could be
through preprocessing. We could construct a dataset where
there is an even distribution of reviews on all ratings, which
would prevent the model from focusing heavily on the
most frequent rating. But as we can see in fig. 5 rating 1,
2 and 3 are significantly less frequent compared to rating

4 and 5. So if this approach was used we would have to
discard a high amount of the reviews, which would result
in a much smaller dataset. Another problem that occurs
when we remove reviews from the dataset is the guarantee
that all users and items are 5-core. This guarantee will
be hard to maintain when removing most of the reviews,
and it might even be impossible to maintain. This smaller
dataset would most likely result in a lower performance
when trained compared to the original larger dataset. To
avoid having to modify the dataset we could also have
used under- or oversampling to achieve a similar effect as
shown in Kotsiantis et al.[13]. The first option would be to
oversample reviews from rating 1, 2 and 3 in such a way
that the class distribution in the dataset would appear to be
even. The second option would be to undersample reviews
from rating 4 and 5, such that we again achieve an even
class distribution.

Figure 9: Normalized ROUGE scores for each rating for NRT*
and NRT*RSL. NRT* achieves high scores for rating 4 and 5,
but falls behind at lower ratings, with ROUGE-2 being very low
for rating 1 and 2. NRT*RSL achieves slightly greater scores on
lower ratings, but it has a negative impact on the ROUGE scores
for the higher ratings.

Finally there is the question if it is even necessary to force
the model to be better at generating more negative tips for
lower ratings. If the model is used to generate tips for items
recommended to a user because we predict that the user
would be interested in the item, then the rating will always
be high. This results in the model only having to show the
tips it generates when there is a positive rating, and in this
case you would prefer that the model performs better on
these ratings as this is what will actually be seen by the
users. On the other hand the model could also be used to
predict a rating and generate a tip for any item the user
decides to look at. In this case the user might look at an
item that would not be recommended for him, and in this
case the model would have to generate a negative tip. In
this case it would be desired to have a model that is good
at both positive and negative.

6 Reflections

In the following sections we will reflect upon the results
and more general discussions of this research as well as the
findings we have come across working on this.

Representativeness of Electronics-200K Dataset

We developed Electronics-200K for our preliminary experi-
ments to find good configurations of the model to train on
Electronics-Full. We concluded that this dataset appeared
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to be representative of Electronics-Full as it maintained 5-
core on items and had a similar class distribution. Now that
we have the results from Electronics-Full we note that some
of the models do not appear to follow the same pattern
on both datasets. If we look at how diverse the various
models are on both datasets, we notice that this varies for
the models. If we look at fig. 8 we can see that NRT* is the
least diverse on Electronics-Full, but if we look at fig. 7 we
can see that it is actually the second most diverse model
on Electronics-200K. We also note that NSVDT is diverse
on Electronics-Full, but on Electronics-200K that is not the
case. The only model that has a similar diversity on both
datasets is NRT*A, which appears to have a good diversity
on both datasets. On the other hand if we look at ROUGE
scores the models appear to have a similar performance on
both datasets as can be seen in table 4 and table 6, where the
models NRT*, NRT*A and NSVDT all have similar perfor-
mances on both datasets. These results make us think that
the features of the datasets must still be similar, and even
though the diversity of the models variate on the datasets,
we still think that the preliminary results performed on
Electronics-200K provides us with a good indication of how
the models will perform on Electronics-Full. We also exper-
imented with another small dataset with 250K reviews. We
did some preliminary experiments with this dataset which
is described in Appendix B, but found that that all results
gave bad results regarding the quality of the generated
text and ROUGE scores. The results from Electronics-200K
made us more certain that changing to this dataset, was
better for experimentation.

Precision/Recall

When we compared the ROUGE score results from Li et
al.[8] with the results in this paper we noticed that the val-
ues for precision and recall appear to have been swapped.
When we first noticed this we went back into our code to
verify that we did everything correct, which appeared to
be the case. From this, we can conclude that the results
obtained by Li et al.[8] must differ a lot from the results we
have achieved or they must have accidentally swapped the
values for precision and recall in their results. We cannot say
for sure that they are swapped, as a model that generates a
different kind of sentences could achieve different scores. If
a model often generates long tips it will be easier to achieve
a high recall, but not a high precision. Whereas a model that
often generates short tips will most likely achieve a higher
precision at the cost of a lower recall. As Li et al.[8] do not
show a lot of the output generated by their model it is hard
to know if their model often writes long or short tips, and
hence it is hard to say if they swapped their precision and
recall, or if they just managed to train a model that differs
from the one we trained.

Beam Search

When generating tips we are using a beam search algorithm
similar to the one used by Li et al.[8] to explore various
possible sequences. This helps us generate a more likely tip,
which also helps us improve our ROUGE scores compared
to the results without beam search. As the beam search
with the same configuration as used by Li et al. already
improved the model’s performance we did not look further
into this. This could easily be a place where the model’s

performance could be improved. If we look at the tips we
are generating we have an issue that the ending of the tip is
often repeating a meaning mentioned earlier in the same
tip which can be seen in table 9 or that the tip is cut off

mid-sentence which can be seen in table 13. This is most
likely a result of the scaling of our length normalization for
the beam search, where we reward the model for writing a
longer sequence. If the reward is too high the model will
always write 20 words, even when there is no meaning left
to write. If the reward is too small the model will write very
short tips because the probability of the longer sentences
will become too small. As we did not try to modify the
parameters for length normalization, we do not know if the
current setting is the optimal one.

The importance of Preprocessing

We want to address some experiences we have gathered
regarding the reproduction and development of the models
presented in this paper. It was evident that the quality of
the dataset can have a large impact on the performance
of individual models. The difference can, for example, be
seen between Electronics-200K and Electronics-Full where
the diversity of words vary between the different models
respectively. Additionally, since we extracted sentences
from reviews where an acceptable tip was not available, the
content of some tips may not be structured or as informative
as a normal tip would be.

How one goes about preprocessing the data can also
have a great impact on how well the final model can per-
form. A distinct choice for the problem with text generation
is the inclusion or exclusion of features in the text such
as stopwords and replacement of infrequent words with
an <unk>token. Which stopwords are excluded and the
threshold for infrequent word replacements can have an im-
pact on how well the model understands relations between
words and latent representations.

Lastly, we address the problem of reproducibility of re-
search in the field of text generation. It is our experience that
reproducing the result of Li et al.[8] proved troublesome,
since many parameters and aspects were not addressed
in detail. This can result in a different implementation.
For example Li et al.[8] wrote, "For samples without tips, the
first sentence of review texts is extracted and regarded as tips".
However, in the document, we received regarding their
preproccesing they actually extracted the first sentence with
5 or more words. We have tried to state our assumptions in
order to give a throughout the description of our implemen-
tations. The problem seems to be that the many layers of
abstractions present when building machine learning mod-
els makes it difficult to perform a scientific reconstruction.
We think that the choice of implementing the models in
Tensorflow[33] instead of Theano[37] as stated in Li et al.[8]
may have had a large impact on the results. For example,
we know that in Tensorflow the Frobenius norm is imple-

mented as 1
2
∑n

k=1 |xk|
2 rather than

√∑n
k=1 |xk|

2. The way
Tensorflow calculates gradient it cannot solve the gradient
for a square root of the square. We do not know how this
is implemented in Theano and there are most likely many
more differences like this that are done in order to optimize
the libraries.
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First Token Repetition

The results reveal that the NRT model, as well as our ex-
tensions, have a tendency to start tips with "i". The reason
is that the tips generation part learns the statistics of the
dataset and that beam search might be more prone to find
the same sentences if some sentences are statistically much
more likely. The ground truth contains "i" as the first word
17.33% of the time compared to the next most frequent word
"this" that appears 8.36% of the time. This means that by
sheer statistics we end up with a result that contains "i" as
the first word a lot of the time. However, it is not necessarily
a bad thing as it might contribute to users being able to
identify with a recommendation better and experience it
more personalized. If the use case was to produce a sample
tip for a user, it would also make sense that it starts with "i"
as it is something a user would say.

7 Conclusion

We propose three different methods of extending or chang-
ing the work of Li et al. [8]. The proposed models NSVDT,
NRT*A and NRT*RSL are all based on the NRT model. We
try to reconstruct the model NRT and cannot achieve similar
scores. We alter the setup under which we run experiments
and achieve similar results. The proposed models show
better performance in rating prediction and abstractive gen-
eration of tips under our setup. NRT*A and NRT*RSL are
extensions of the NRT model that do not alter the multitask
learning approach proposed by Li et al.[8]. In NRT*A we
propose to add an attention mechanism in order to diversify
the results and gain context awareness. In NRT*RSL we
propose to scale the loss function of the rating prediction
in order to achieve a better ROUGE score on negative sen-
timent tips. The NSVDT model introduces pretraining of
the latent factors and detaches the learning of the rating
prediction component from the multitask learning. This
shows useful for diversification and simplification of the
network. We show that the proposed models are able to
diversify the generated tips and avoid generating generic
and unrelatable tips while achieving better RMSE, MAE
and ROUGE scores. In the future, we propose to run the
models on the different benchmark datasets used in Li et
al.[8]. Another proposal is to granularize the attributes for
the attention. This could extend on the idea that some users
might be looking for different features than others and find
a more granular tip interesting. Lastly, we want to test the
proposed models on data evenly distributed in rating or
perhaps look at other ways to compensate for the imbalance
in the datasets.
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Appendices

A Overview of configurations for preliminary experiments

Config Optimizer Distribution λn Extension
C1 AdaDelta Uniform 1e−4
C2 Adam Normal 1e−4
C3 Adam Mixed 1e−4
C4 Adam Uniform 1e−4
C5 Adam Normal 1e−8
C6 Adam Mixed 1e−4
C7 Adam Uniform 1e−8
C8 Adam Uniform 1e−8 s1
C9 Adam Uniform 1e−8 s2
C10 Adam Uniform 1e−8 at
C11 Adam Uniform 1e−8 svd
C12 Adam Uniform nR
C13 Adam Uniform 1e−8 lfi

Table 14: Overview of model configurations. Below is a table showing the meaning of the extension acronyms.
s1 scaled cost based on rating
s2 scaled cost based on rating
at attention

svd the extended SVDNRT model
nR no regularization
lfi user and item latent instantiated from uniform distribution [-1, 1]

B Results on Electronics-250K

In the preliminary experiments we also experimented with a different small dataset. This dataset was build with the
algorithm seen in fig. 10. We also tried running various configurations on this dataset, but as we concluded that the
Electronics-200K was a better representation of Electronics-Full, we did not use the results on Electronics-250k in the paper.

RMSE MAE ROUGE-1 ROUGE-2 ROUGE-l ROUGE-SU4
C1 1.1446 0.8951 0.01 0.00 0.00 0.00
C2 1.2323 0.9098 5.22 0.01 2.00 1.41
C3 1.1446 0.8949 8.47 0.01 3.28 2.33
C4 1.1446 0.8959 5.22 0.01 2.00 1.41
C5 1.2372 0.9218 8.47 0.01 3.28 2.33
C6 1.1861 0.8262 13.77 1.36 7.08 4.02
C7 1.1884 0.8280 116.80 11.86 110.32 14.43
C8 1.4762 1.1472 14.35 1.42 8.14 4.05
C9 1.4727 1.1715 215.45 21.69 210.15 24.15
C10 21.1635 10.8181 13.92 1.25 9.05 3.64
C11 1.6254 1.1336 11.47 0.93 5.55 3.49
C12 1.1886 20.8257 12.47 1.17 6.45 3.75
C13 11.1413 0.8238 0.1322 0.0121 0.0706 0.0383

Table 15: Results of configurations seen in table 14 on Electronics-250K dataset.



1 input: reviews: List, limit: int
2
3 s = Set()
4 userQueue = Queue()
5 itemQueue = Queue()
6
7 userQueue.push(//user from first review)
8
9 while s.size < limit:

10 currentUser = userQueue.pop()
11 reviewsForUser = currentUser.getReviews()
12 s.add(reviewsForUser)
13 for review in reviewsForUser:
14 itemQueue.push(review.item)
15 nextItem = itemQueue.pop()
16 usersForItem = nextItem.getUsers()
17 for user in usersForItem:
18 if user.hasBeenVisited == False:
19 userQueue.push(user)

Listing 1: Pseudocode for Retrieving Reviews for the Small Dataset.

Figure 10: Algorithm used to generate the Electronics-250k dataset.
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