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Abstract:

In this project, we look at agent-based model-
ing and simulations (ABMS), which is a simula-
tion technique often accompanied by a bottom-
up approach to modeling. In the bottom-up ap-
proach, many small agents make up the simu-
lation with individual behaviours. We find the
actor concurrency model to be a natural fit for
ABMS and look into ways to combine them.
Looking at current popular ABMS tools and ac-
tor modelling languages, we develop a new Inte-
grated Development Environment (IDE), called
Mask, which combines ABMS with the actor
model and has a focus on accessibility.
We choose to implement Mask in C# based
on the powerful tools available to it, such as
Windows Presentation Foundation (WPF) and
Akka.NET. Akka.NET is a powerful actor model
library, but it has some complicated syntactical
constructs that reduce accessibility and are un-
necessarily complicated for simulation model-
ing.
We develop a simple C# based language called
Thespian, which compiles to C# with Akka.NET.
Thespian specializes in building simulations
using the actor model with three basic con-
structs; actor, message, and simulation. Thes-
pian aims to reduce the complexity introduced
by Akka.NET and make Mask more accessible.
Finally we prepare a tutorial and two tests for
evaluating Mask, but these tests have not been
conducted due to time constraints.

Mask and Thespian are both in working states

and have abstractions, which reduce the com-

plexity of simulation modeling using the ac-

tor concurrency model. There is, however, still

plenty of room for improvement before reaching

the quality of a commercial product.



Summary

In this project, we look at agent-based modeling and simulations (ABMS), which
is a simulation technique often accompanied by a bottom-up approach to mod-
elling. In the bottom-up approach many small agents make up the simulation
with individual behaviours. We find the actor concurrency model to be a natural
fit for ABMS and look into ways to combine them.

Looking at current popular ABMS tools and actor modelling languages, we de-
cide to develop a new Integrated Development Environment (IDE), called Mask,
which combines ABMS with the actor model and has a focus on accessibility.

We define 4 requirements for Mask:

• Mask must support modeling simulations using the actor model.

• Mask must be accessible to modelers with no prior experience with the
actor model.

• Mask must be a useful tool in solving most types of ABMS problems.

• The language used in Mask must either be c-like or very simple.

We then analyse 4 languages to find the most fitting language to develop Mask
with. The languages are: Erlang, D, Rebeca, and C# with Akka.NET.

We decide upon C# based on the powerful tools available to it, such as Windows
Presentation Foundation (WPF) and the actor framework Akka.NET. Akka.NET
is a powerful framework for programming using the actor model, but it has some
complicated syntactical constructs that reduce accessability and are unneces-
sarily complicated for simulation modeling.

We decide to develop a simple C# based language, called Thespian, which com-
piles to C# with Akka.NET. Thespian is a specialized language for building simu-
lations using the actor model. It has three basic constructs; actor, message, and
simulation. Thespian aims to reduce the complexity introduced by Akka.NET
and make Mask more accessible.

An example of how Thespian simplifies the Akka.NET syntax can be seen here.
Actors are instantiated in Akka.NET with the following syntax:

Context.ActorOf(MyActor.Props())

While in Thespian the syntax is:

new MyActor()

Finally we prepare for testing and evaluating Mask and Thespian. The test con-
sists of a tutorial to teach the test subject how to use Mask and Thespian, fol-
lowed by 2 assignments of increasing difficulty, and finished with a question-
naire to collect feedback. The tests have not been conducted due to time con-
straints, so how accessible Mask and Thespian are is uncertain.
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Mask and Thespian are both in working states and capable of what they are de-
signed to do, but with plenty of room for improvement before reaching the qual-
ity of a commercial product.

Thespian has the basic constructs of the actor model with actors and messages
as well as simulations acting as the environment from ABMS. Thespian simpli-
fies both the program structure as well as the program logic. Many of the ver-
bose statements from Akka.NET have been simplified, while still retaining the
flexibility of C#.

Mask provides a clear overview of Thespian programs. Using the tree view to
structure Thespian programs, should make it more accessible to inexperienced
modelers.

We are satisfied with the result of Mask and Thespian. It is possible for a modeler
to build and run actor based simulations without much knowledge of the actor
model. This means that the powerful features of Akka.NET can effortlessly be
used by any developer with some experience in C# or similar languages.
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Preface

This report documents the work performed by group dpw107f18 for the 10th
semester project at the Department of Computer Science at Aalborg University.
The work is performed in spring 2018.

The work is based on various articles and books from outside sources. The bib-
liography can be seen at the end of the report.

We would like to thank our supervisor, Lone Leth Thomsen from the Department
of Computer Science at Aalborg University for her guidance. She supplied feed-
back, help, and corrections throughout the project. Her feedback significantly
raised the quality of the final result.

In the report, we have used the publicly available tool http://mshang.ca/syntree/
for creating abstract syntax trees.

Throughout the report, the following terms will have an associated meaning.

Simulation Model
An abstract simplified representation of real life problem.

Modeler
The person developing and implementing a simulation model.

The report consists of the following chapters:

Chapter 1, Motivation
The motivation and reasoning behind this project.

Chapter 2, Problem Statement
The problem statement of the project and a number of tasks that are com-
pleted during the project.

Chapter 3, Related Work
An overview of the field of agent-based simulation and modeling.

Chapter 4, IDE Design
The design of the IDE, Mask.

Chapter 5, Choice of Development Language
A comparison of four different candidates for languages to use to imple-
ment Mask.

Chapter 6, Language Design
The design of the new language, Thespian.

Chapter 7, Compiler Design
The design of the Thespian compiler.

Chapter 8, Compiler Implementation
The implementation of the Thespian compiler.
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Chapter 9, IDE Implementation
The implementation of the IDE, Mask.

Chapter 10, Testing
The design of the testing of Mask and Thespian.

Chapter 11, Reflection
Reflection of the important choices during this project.

Chapter 12, Conclusion
The conclusion of the project.

Chapter 13, Future Work
Future improvements to the work.
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1. Motivation

Agent-based modeling and simulation (ABMS) is an important activity, which
can be used to answer a lot of different questions in many research areas[1].
The main point in ABMS is modeling the problem domain with agents following
some logic, and often, the agents will interact with some environment. The ef-
fects of the agent behavior is examined through simulation. ABMS is especially
useful when aggregating data using a bottom-up approach, where the problem
domain can be broken down into small separate units that each can be repre-
sented as an agent.

An example of this is where Souvik Barat et al. use ABMS to test how the people
of India would react to the removal of certain currency bills in 2016 [2]. They
implement individual persons and banks as agents reacting to regulations from
the Indian government, which is also implemented as an agent in the simula-
tion. Klügl et al. argue that the behaviour of such a complex system with many
different agents interacting with one another is difficult to capture using a top-
down approach without oversimplifying the model[1]. The value of the bottom-
up approach comes from breaking down a problem into smaller manageable
problems. Using the bottom-up approach with ABMS is natural, because agents
can be coded separately and the results of the simulation is just a product of
their individual behavior and interaction.

The actor model is a concurrency model, where actors exist asynchronously and
can interact with other actors only by sending and receiving messages[3]. The
actor model seems well suited for ABMS development, where every agent can be
implemented as an actor. Implementing every agent as an actor highly incenti-
fies separation of logic, as each actor can only communicate with other actors
in the form of messages. As both the actor model and the bottom-up approach
seeks the fine-grained separation of logic, it seems natural to combine them.

Several programming languages contain constructs specifically for programming
actors. One of the earliest of these is Erlang [4] from 1986, which is still be-
ing used [5]. Since 1986 there have been created several other such languages
like D [6], or frameworks, which implement the concurrency of the actor model
in existing languages like Akka.NET [7] for C#. Currently, most popular ABMS
frameworks do not support the actor model and the ones that do, do not offer
language constructs specifically for actor programming.

In this project we create a tool for developing and running agent-based simula-
tions. The most important feature of the tool will be facilitating the development
of actors and their interactions.
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2. Problem Statement

This section contains the problem statement and an overview of our approach
to working with the problem statement.

As explained in Chapter 1, the actor model seems suitable for agent-based mod-
eling and simulation (ABMS). We want to make development of ABMS with the
actor model accessible to a broad target audience by creating a new integrated
development environment (IDE), which we call Mask.

ABMS is used by many different people in many different research areas, which
is why it important for Mask to be accessible to as many people as possible, but
also to be very flexible to provide the necessary functionality for each research
area. These two requirements are generally contradictory, which means that it
can be difficult to find the balance between the two in the design of Mask. To
facilitate the flexibility, we will allow code to be written in Mask. As writing code
can be difficult for some, it will naturally reduce the accessibility of Mask, but
we deem it necessary to provide the needed flexibility.

Therefore, we define the target audience as developers with some previous cod-
ing experience in c-like languages. The reasoning behind narrowing down the
target audience to only include those developers with programming experience
in c-like languages is that c-like languages are the most commonly used.

Therefore, the problem statement is as follows:

How can we create an easy-to-use tool for building actor-based bottom-up
simulations?

Summary

Now that the problem statement has been defined, we start by looking at how
other popular general purpose ABMS tools approach the modeling activity to
gain inspiration for the design of Mask.
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3. Related Work

Before designing the IDE Mask we research the state of the art of Agent Based
Modeling Simulation (ABMS) to gain an overview of the field.

3.1 What popular simulation modeling tools exist?

As the goal of this project is to develop a general purpose ABMS framework, we
are mostly interested in other general purpose ABMS tools. By researching these
similar tools we can gather inspiration for the development of Mask.

There are generally two types of ABMS tools; one type targets modelers with a
lot of coding experience, and the other type targets modelers with next to no
previous coding experience. The advantage of the first type is that a strong and
widely used coding language such as Java provides much flexibility and oppor-
tunities for performance optimization. It comes at the cost of being difficult to
learn compared to the second type, which aims to get the modeler started im-
mediately and often relies on drag and drop programming. We call the first type
code heavy and the second type model heavy for the rest of this section where
at look at some of the popular ABMS tools. The following list is composed of
popular ABMS tool that we find interesting in relation to Mask.

Jadex
Jadex[8] is very interesting for this project. Jadex is based on the service
component architecture (SCA) and utilizes a concurrency model based on
the actor model. This approach is similar to ours but with some key design
differences as it is designed for developing real time distributed systems
and simulation is only a minor part of the project. Jadex is a Java based
framework and is code heavy.

AnyLogic
AnyLogic [9] is an extensive tool supporting three types of simulations:
Discrete event, agent based, and system dynamics. It consists of power-
ful visual interface, which is usable without coding experience and a Java
API for advanced use-cases. AnyLogic and has a large catalogue of industry
specific libraries allowing users to model their simulations without writing
any code, making AnyLogic a model heavy ABMS tool, but it has support
for extending models with custom Java code.

NetLogo
NetLogo [10] provides ABMS through a graphical interface and a simple
scripting language also called NetLogo. The language NetLogo is based on
the language Logo [11], which is an educational language from 1967 that
uses agents. NetLogo’s graphical interface has a straight forward coupling
with its scripting language which makes it is easy to get started. NetLogo
is model heavy.
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Repast Simphony
Repast Simphony [12] also uses a custom language, ReLogo, which is based
on the Logo language. Repast can also be used via its Java framework,
where other third-party Java libraries can be imported and used in the
program.

3.2 Discussion

We have looked at 4 popular ABMS tools: Jadex, AnyLogic, Netlogo, and Repast
Simphony. AnyLogic is by far the largest and most commercial product of the 4,
but it relies heavily on its collection of templates and pre-build models. We will
not have the time to build an extensive template library so we do not go with
the approach of AnyLogic. Jadex shows that the actor based approach to simula-
tions is useful and reaffirms that our approach is sound. Contrary to Jadex, Mask
will solely focus on actor based simulations to give the modeler a more focused
experience.

NetLogo’s and Repast Simphony’s approach to ABMS using a new simple de-
velopment language makes the tool more accessible. The downside of using a
self-made language is the lack of third-party library support as opposed to using
widely used languages like Java and C#.

3.3 Summary

We have looked at some popular ABMS tools and some of their upsides that we
can use as inspiration for Mask. The next chapter describes the design of Mask.
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4. IDE Design

This chapter contains the design of the IDE, Mask. Mask is a tool for writing and
running simulation programs using the actor model. The main purpose of Mask
is to provide a logical separation of code and to make creating simulations using
the actor model easy.

4.1 Requirements

The requirements to Mask are based on the target audience as defined in Chap-
ter 2.

The primary features in Mask are modeling and running simulations using the
actor model.

The actor model is a different approach to programming for most programmers,
which can discourage developers from trying Mask. It is therefore important to
simplify the use of actor model constructs as much as possible, such that the
modeler can spend more time working on the actual simulation than on under-
standing the actor model.

One of the other important features is flexibility. This means that a modeler can
use Mask to solve most types of ABMS problems.

As the target audience is familiar with c-like languages, the language used in
Mask must either be a c-like language or so simple that any modeler can write
programs in Mask regardless of prior programming experience.

The requirements are as follows.

• Mask must support modeling simulations using the actor model.

• Mask must be accessible to modelers with no prior experience with the
actor model.

• Mask must be a useful tool in solving most types of ABMS problems.

• The language used in Mask must either be c-like or very simple.

4.2 Features

This section contains a description of the important features of Mask.

A Mask program is composed of a set of actors, a set of messages, and a set of
simulations:

Actor
An actor is the equivalent of an agent in agent-based simulation modeling.
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It can send and receive messages to and from other actors. An actor has a
local state, which only the actor itself can access and change.

Message
A message is a serializable container object, which can be sent between
actors.

Simulation
A simulation is the equivalent of an environment in ABMS. It is also an
actor, which means that it can send and receive messages.

The basic notion is that a simulation sets up the environment and instantiates
actors. It can send messages to the actors to control the flow of the simulation
and receive status messages from the actors.

The design sketch can be seen in Figure 4.1. It shows an example of an imple-
mentation of a traffic simulation, where each driver on the road is an actor.

The first column shows all actors, messages, and simulations. There are four
different actors; SafeDriver, SlowDriver, RecklessDriver, and Driver. The
first three actors inherit the features of the last actor, Driver. The drivers can
communicate with other drivers using the messages TurnSignal and BreakSig-

nal, and the simulations can communicate with the drivers using the Traffi-
cLight signal. There are two different simulations; OnlySafe, which only starts
safe drivers, and EvenMix, which has an even mix of drivers of all types. Each
simulation has a play button, which when pressed will run the simulation.

The second column shows the features of the currently selected item in the first
column. In this example, the currently selected item is an actor, SafeDriver.
Each actor has properties, locals, constructors, and receives. Properties is a col-
lection of optional features such as inheritance. Locals is a collection of local
variables representing the state of the actor. Constructors contains different
ways of initializing the actor. Receives defines how the actor will act upon re-
ceiving messages.

The third and final column contains a text field for altering the currently selected
item from the second column, and a text field showing the output of the pro-
gram.

4.3 Summary

In this chapter Mask has been designed, a set of requirements has been estab-
lished for it, and a design sketch has been produced.
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Figure 4.1: First design sketch of Mask
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5. Choice of Development Language

In this chapter, we look at the candidate languages for developing Mask and
decide on which to use.

5.1 Candidate Languages

We want to decide upon a language for the implementation of Mask. To do that,
we select candidate languages and analyze how well they support the require-
ments of Mask. As a tool for that analysis we define some requirements of the
implementation language.

The first requirement is based on the fact that Mask works with actors that com-
municate using message passing, and that the target audience is defined as de-
velopers with some previous coding experience in c-like languages. To allow
the target audience to pick up and work with Mask, it is important that the im-
plementation language has an intuitive approach to using actors and messages.
The second requirement is also based on the target audience. As the target au-
dience is familiar with c-like languages, the language must be approachable to
modelers with such backgrounds. The third requirement is that the language
must in some way enable the creation of a graphical user interface (GUI).

The requirements will be used when examining which language will be best for
the implementation of Mask and are summarized as follows:

1. The implementation of actors and their interaction must be simple

2. The language must be accessible to developers with prior experience in
c-like languages.

3. The language must support the creation of a GUI.

The following languages / frameworks are considered as possible choices for the
implementation: Erlang, D, Rebeca, and Akka.NET in C#. We will look at every
language individually and consider how well it adheres to the previously men-
tioned requirements; (1) Simplicity of actor implementation, (2) c-like similar-
ity, and (3) GUI support. After the presentation of the languages, we will dis-
cuss their differences and choose one of them for the implementation of Mask.
We selected these languages to have several substantially different languages to
choose from.

Erlang
Erlang[4] is a language developed by Ericsson in 1986 specifically with dis-
tributed programming in mind. At its core, Erlang is a functional language
for writing processes. Every process is an actor, which can spawn other
actors and send messages to and receive messages from other actors. A
runtime handles message routing.
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Erlang is most commonly used for server applications handling many con-
current requests. Some examples of companies that have used Erlang for
server applications are Amazon, Yahoo!, Facebook, WhatsApp, and Erics-
son [13].

Traditionally, when considering procedures with high demands to per-
formance, one would look at low-level imperative languages like c. The
fact that Erlang is used by many companies for building scalable and high
performance server applications makes Erlang an interesting prospect to
look at.

1 receiver (MessageCount ) −>
2 receive

3 Str −>
4 io :fwrite ( " Received message number ~w: ~s~n" , [MessageCount + 1 ,←-

Str ] ) ,
5 receiver (MessageCount + 1)
6 end .
7 start ( ) −>
8 R = spawn (receiverExample , receiver , [ 0 ] ) ,
9 R ! "Sender" ,

10 R ! " Says " ,
11 R ! " Hello " .

Listing 5.1: Erlang example

1. Simplicity of actor implementation:
As Erlang is designed specifically for distributed services and telecom-
munication, concurrency and message passing are core features in
the language. Erlang’s constructs for implementing actors and pass-
ing messages are very concise and easy to use, which makes intro-
ducing concurrency to programs simple. Listing 5.1 shows an ex-
ample of an Erlang process spawning a receiver actor and send-
ing three messages to it. The actor will count how many messages it
has received and output every new message along with the message
count. At line 2, the actor starts a receive statement, which pauses
the execution of the actor until a message is received. In the exam-
ple any message can be received, but message patterns can be used
to restrict, which messages are received. Actors can be spawned in
many different ways in Erlang. The simplest way is using spawn as in
line 8, where an actor is spawned running the given function.receiverExample
is the module to which the function belongs, receiver is the name
of the function to call, and [0] is the argument list given to the func-
tion call. The ! operator as seen on lines 9 to 11 serves as a way to
send the message on the right-hand side to the actor on the left-hand
side.
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2. c-like similarity:
Erlang has an unusual syntax, which may be hard to understand at
first. In most c-like languages, every expression statement is followed
by a semicolon (;). In Erlang the separating character depends on
whether more statements will follow. Every statement of a statement
block ends with a comma (,) except the last statement, which ends
with a dot (.). This can be seen in Listing 5.1 on lines 8 to 11. The
pattern matching block on lines 4 and 5 follows the same principle,
but is terminated at the end keyword. There are many more differ-
ences to c-like languages, where most of them stem from the fact that
Erlang is a functional language.

3. GUI support:
Building a GUI in Erlang does not seem easy. Joe Armstrong, the cre-
ator of Erlang, has looked into finding a good way to make a GUI in
Erlang in July, 2017, without much success[14]. He only mentions
one library for Erlang, wxErlang, about which he says "it works, but
it’s big and ugly and has a nasty programming model". The rest of the
mentioned GUI frameworks are from other languages, which means
they would have to be connected to a running Erlang backend using
an appropriate interface like Jinterface for Java[15].

D
D is a language built primarily with focus on performance. It shares many
ideas with a language like c++ in that it seeks to include high-level abstrac-
tions in the language while still being able to micro manage certain impor-
tant areas of the code using low-level features such as pointers.

D has a standard concurrency library, std.concurrency, which allows
processes to communicate using message passing, which resembles the
way actors communicate in the actor model, making it an interesting prospect
for the implementation of Mask.

1 void receiverFunc ( ) {
2 int messageCount = 0 ;
3
4 while ( true ) {
5 s t r i n g message = receiveOnly ! s t r i n g ( ) ;
6 writefln ( " Received message number %i : %s " , [messageCount + 1 , message ] ) ;
7 messageCount++;
8 }
9 }

10
11 void main ( ) {
12 Tid receiver = spawn(&receiverFunc ) ;
13 receiver .send ( "Sender" ) ;
14 receiver .send ( " Says " ) ;
15 receiver .send ( " Hello " ) ;
16 }

Listing 5.2: D example
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1. Simplicity of actor implementation:
Listing 5.2 shows an example of concurrency in D, where a receiver
process is spawned and sent three messages. A process, which re-
sembles an actor, is spawned using the spawn function, which takes
a function pointer as the argument. Actors receive messages using
the receiveOnly!string() function call, where it will throw an ex-
ception, if it receives a message not of the specified type. Receiving
messages of varying types can be accomplished using the receive

function, which takes a number of function pointers; one function
for each type of message.

2. c-like similarity:
D is a high-level c-like language, which means that our target audi-
ence should be able to quickly learn the language.

3. GUI support:
D has a wide variety of supported GUI development libraries [16].

Rebeca
Rebeca is a language built specifically for actor based modeling [17]. Re-
beca has a lot of focus on compositional verification and model checking.
Rebeca an interesting prospect for the implementation of Mask because
the language is based on the actor model and model checking could be
useful for testing simulations.

1 reactiveclass Receiver (10) {
2 knownrebecs { }
3 statevars { int messageCount }
4 Receiver ( ) {
5 messageCount = 0 ;
6 }
7 msgsrv sendMsg ( Str ing content ) {
8 System .out .println ( " Received message number " + (messageCount + 1) + " : ←-

" + content + " ~n" ) ;
9 messageCount = messageCount + 1 ;

10 }
11 }
12 main {
13 Receiver receiver ( ) ;
14 receiver .sendMsg ( "Sender" ) ;
15 receiver .sendMsg ( " Says " ) ;
16 receiver .sendMsg ( " Hello " ) ;
17 }

Listing 5.3: Rebeca example

1. Simplicity of actor implementation:
A Rebeca program consists of a number of actors called reactive ob-
jects, or rebecs in short, and a main function to set up rebecs and run
the program. A rebec has a number of associate rebecs called known-
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rebecs, with which it can communicate via message passing. In ad-
dition to the knownrebecs, a rebec has a number of state variables,
statevars, a constructor, and a number of methods to receive mes-
sages. Listing 5.3 shows a definition of the Receiver rebec. It has
no knownrebecs. It has a single statevar, messageCount at line 3,
which is initialized in the constructor on line 5. In Rebeca, messages
are passed through user-defined functions such as sendMsg seen at
line 7. The keyword msgsrv indicates that the method is accessible
from other sources, such as the main method. The main method can
be seen at line 12. It creates an instance of Receiver at line 13, and
sends three messages at lines 14 to 16 using the sendMsg function.

2. c-like similarity:
Rebeca uses a Java-like syntax in all method bodies, which means
that the only part of the language which can be seen as unfamiliar to
developers with experience in c-like languages is the structure of the
rebecs.

3. GUI support:
Rebeca has no support for GUI development directly. We suspect that
either Rebeca compiles to Java Byte Code as most of the source code
on the GitHub repository is written in Java [18] or it compiles to as-
sembly code through c++ as one of the tutorial videos on Rebeca Afra
shows a process generating some c++ code [19], but we could not
find anything definitive on the matter. This means that we do not yet
know how we could use Rebeca, but there is probably some way to
interface with the program.

Akka.NET in C#
Akka.NET [7] is a library for C#. The focus of the library is to allow thou-
sands of actors to run simultaneously on a single device, and to hide the
actual location of an actor to facilitate scalable distributed development.
A runtime handles message routing between actors.

As C# is widely used in large organisations[20] it is interesting for us to
look at when considering a language for implementing Mask.

1 public class Receiver : UntypedActor

2 {
3 int messageCount = 0 ;
4 protected override void OnReceive (object message )
5 {
6 switch (message )
7 {
8 case s t r i n g message :
9 Console .WriteLine ($" Received message number { messageCount + 1 } : {←-

message } " ;
10 messageCount++;
11 break ;
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12 }
13 }
14 }
15
16 class Program

17 {
18 s t a t i c void Main ( s t r i n g [ ] args )
19 {
20 var system = ActorSystem .Create ( "ReceiverExample" ) ;
21 var receiver = system .ActorOf (Props .Create<Receiver> ( ) ) ;
22 receiver .Tell ( "Sender" ) ;
23 receiver .Tell ( " Says " ) ;
24 receiver .Tell ( " Hello " ) ;
25 }
26 }

Listing 5.4: Akka.NET example

1. Simplicity of actor implementation:
Akka.NET allows multiple simultaneous separate actor systems. Ev-
ery actor belongs to an actor system, which means that an actor sys-
tem must be instantiated before any actors can be instantiated. This
can be seen in the code example in Listing 5.4 at line 20. As seen in
line 21 an actor is created using the ActorOf method on a Props fac-
tory. The return value of ActorOf is an IActorRef, which is a refer-
ence to the actor. Messages are sent to actors using a corresponding
IActorRef via the Tell method. At lines 22 to 24, three messages
are sent to the receiver.

Actor classes are created by extending the UntypedActor class. There
are a number of other specialized actor classes inheriting from the
UntypedActor available in Akka.NET such as the ReceiveActor. In
the example in Listing 5.4 the Receiver extends the UntypedActor

directly and overrides the void OnReceive(object) method. This
method is called whenever the actor is ready to receive the next mes-
sage. In the example the message is cast to a string and printed at
line 8 and 9.

2. c-like similarity:
C# is a high-level c-like language, which means that our target audi-
ence should be able to quickly learn the language

3. GUI support:
Microsoft Visual Studio has a drag-and-drop interface for quickly build-
ing user interface applications in C# making it especially interesting
for the implementation of the graphical elements of Mask.
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5.2 Discussion

We have now looked at the different prospects for the implementation of Mask.
Unfortunately, none of the languages cover all of the requirements, which means
we have to look at which language lacks the least of the desired features.

1. Simplicity of actor implementation:
All of the languages have put an effort into making the use of actors and
messages easy. Erlang and Rebeca do this at a language level, while D and
C# have libraries in std.concurrency and Akka.NET. Erlang and D create
actors based on a function pointer, while Rebeca and Akka.NET have a
logical actor unit, which we find more natural when it comes to actor de-
velopment.

2. c-like similarity:
Erlang is the only language, which differs a lot from the syntax of common
c-like languages, thus making it less appealing.

3. GUI support:
Neither Rebeca nor Erlang have good support for GUI development, which
is a big disadvantage, because a good GUI for Mask will be important to
new developers. D has a number of options for GUI development, and C#
has strong GUI development support in Visual Studio.

Based on the discussion of the different requirements we conclude that Akka.NET
is the best suited tool for the implementation of Mask. It has a logical actor unit,
C# is itself a c-like language, and has strong support for GUI development. Re-
beca has good structure for actor development, but it lacks good support for GUI
development. D lacks the logical code separation of actors. Erlang does not have
good support for GUI development and is not similar to c-like languages.

As stated above, Akka.NET is not perfect for implementing Mask, but it is the
most promising of the candidates. The main problem with Akka.NET is that the
code is verbose. We would like to make coding simulations in Mask easy for
developers, which is not the case if the language is too verbose. Much of the
verbosity comes from unnecessary constructs like the creation of an ActorSys-

tem and creating actor instances through the use of the Props factory. To reduce
the verbosity of the language, we create a new light-weight language, Thespian,
which compiles to Akka.NET in C#.
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6. Language Design

As described in Chapter 5, we have chosen to develop Mask in C# with Akka.NET.
Akka.NET adds some additional complexity, and we want to make it more acces-
sible to the modelers by creating a new simpler language, which we call Thes-
pian. Thespian has actors as an integral part of the language and compiles to
Akka.NET in C#.

In this chapter we show the design of Thespian.

6.1 Design of Thespian

The main purpose of Thespian is to facilitate programming in Mask, but we
also want to enable third parties to create other front-ends that use Thespian or
let experienced programmers develop actor-based simulations directly in Thes-
pian.

The life cycle of a program developed using Mask can be seen in Figure 6.1. It
shows how Mask generates code based on the user’s input, compiles the code
with the Thespian compiler, and runs the final program showing the output in
Mask.

Figure 6.1: Life cycle of a program written in Mask

Based on the design in Chapter 4, a Thespian program consists of a set of defi-
nitions of three basic constructs; Actors, simulations, and messages. Thespian
does not use classes or structs outside of these three. This is done for simplicity,
as we assume that most simulation programs will not benefit enough from using
classes and / or structs.

Each of the three basic constructs is presented below with Thespian code exam-
ples, a description of their features and how these features can be implemented
in C#.
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6.1.1 Actor

Each Thespian actor has a one-to-one relation to a C# class inheriting from the
Akka.NET class ReceiveActor.

The structure of a Thespian actor can be seen in Listing 6.1.

1 actor MyActor {
2 locals { }
3 constructors { }
4 functions { }
5 receives { }
6 }

Listing 6.1: Thespian actor example

An actor has four features; locals, constructors, functions, and receives.
The order of the features does not matter and any of them may be omitted. The
purpose of the different features is explained below.

locals
A comma separated list of variable declarations of the form type name.
These variables represent the internal state of the actor. As communica-
tion between actors should only be done using messages, these variables
all use the protected access modifier when compiled, which disables di-
rect access from other classes.

Listing 6.2 shows an example of the content of the locals feature on an
actor. An int variable called i and a string variable called s are declared.
Listing 6.3 shows the corresponding generated C# code.

1 int i , s t r i n g s

Listing 6.2: Locals Thespian code

1 protected int i ;
2 protected s t r i n g s ;

Listing 6.3: Locals C# result

constructors
A list of constructor functions. They are mainly used to set the initial state
of the actor and to spawn child actors.

Listing 6.4 shows an example of the content of the constructors feature
on an actor. This example has two constructors, which are compiled to
two C# constructors as seen in Listing 6.5.
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1 (int i , s t r i n g s ) {
2 this .i = i ;
3 this .s = s ;
4 } ,
5 ( s t r i n g s ) {
6 this .i = 0 ;
7 this .s = s ;
8 }

Listing 6.4: Constructors Thespian code

1 public MyActor (int i , s t r i n g s ) {
2 this .i = i ;
3 this .s = s ;
4 }
5 public MyActor ( s t r i n g s ) {
6 this .i = 0 ;
7 this .s = s ;
8 }

Listing 6.5: Constructors C# result

functions
A list of functions. Each Thespian function compiles to a C# method with
the protected access modifier to prohibit direct access from other classes
as with locals.

Listing 6.6 shows a Thespian function. Listing 6.7 shows the correspond-
ing generated C# code.

1 int Square (int i ) {
2 return i * i ;
3 }

Listing 6.6: Functions Thespian code

1 protected int Square (int i ) {
2 return i * i ;
3 }

Listing 6.7: Functions C# result

receives
A list of receive statements of the form:

type name [when predicate]:{ code }

Each receive is compiled to a method call to

Receive<type>(predicate, code)
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which is a method on the Akka.NET ReceiveActor class. Invoking this
method adds a handler on the actor to received messages of the given type
matching the given predicate.

Listing 6.8 shows an example of Thespian code for some receive state-
ments. The first receive accepts any int message and updates the local
variable i with the content of the message. The two other receives ac-
cept string messages, where the first only accepts "Reset" strings, and
the other accepts any other string. The compiled C# code can be seen in
Listing 6.9.

1 int i : {
2 this .i = i ;
3 }
4 s t r i n g s when s == " Reset " : {
5 this .i = 0 ;
6 }
7 s t r i n g s when s != " Reset " : {
8 this .s = s ;
9 }

Listing 6.8: Receives Thespian code

1 Receive<int>(i => {
2 this .i = i ;
3 } ) ;
4 Receive<str ing >(s => s == " Reset " , s => {
5 this .i = 0 ;
6 } ) ;
7 Receive<str ing >(s => s != " Reset " , s => {
8 this .s = s ;
9 } ) ;

Listing 6.9: Receives C# result

This is one of the places where Thespian has a different approach com-
pared to Akka.NET. Akka.NET is more flexible in that an actor can add
or remove receive methods dynamically. This does however come at the
price of reduced readability as well as writability. We find that defining
the receives statically is a more natural approach, and the when keyword
provides a guard statement which we find more readable than the Re-

ceive<type>(predicate, code) syntax. To ensure that the receive state-
ments are always available, this generated C# code is inserted in every
constructor on the actor class.

Akka.NET uses IActorRef addresses to pass messages between actors. We find
that the more natural approach is to send a message to an actor directly. This
means that in Thespian, a message can be sent directly to an actor object. This is
accomplished by compiling any reference to an actor type to IActorRef instead.
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Listing 6.10 shows an example of a receive, which takes an actor of type MyActor
as input and sends a "Hello!"message to that actor. The compiled C# code can
be seen in Listing 6.11, where the actor type is replaced by IActorRef.

1 MyActor act : {
2 act .Tell ( " Hello ! " ) ;
3 }

Listing 6.10: Receive actor type Thespian code

1 Receive<IActorRef>(act => {
2 act .Tell ( " Hello ! " ) ;
3 } ) ;

Listing 6.11: Receive actor type C# result

Akka.NET has some timeout functionality which allows actors to execute some
behavior after being idle for specific amount of time. A timeout is set using
the SetReceiveTimeout(timespan) method on the context of the actor, which
takes a TimeSpan argument. If the timeout is set and the actor has not received
any messages in the set amount of time, it will receive a ReceiveTimeout mes-
sage, which it can act upon. We find using this functionality to be too verbose,
and because of this Thespian is designed with another way to use this feature.
In Thespian a timeout can be set using Timeout = timeInMilliseconds. The
difference between using timeout in Thespian and Akka.NET can be seen in List-
ing 6.12 and Listing 6.13.

1 Timeout = 5000;

Listing 6.12: Timeout in Thespian

1 Context .SetReceiveTimeout (TimeSpan .FromMilliSeconds(5000) ) ;

Listing 6.13: Timeout in Akka.NET

As Thespian has no concept of an actor context, timeouts in Thespian are in-
stead a property on an actor which can be assigned a number representing how
many milliseconds the actor should wait for. When Generating C# the property
is transformed into the fitting method call.

A complete example of an actor written in Thespian can be seen in Listing 6.14.
The corresponding compiled C# code can be seen in Listing 6.15. There are
some interesting things to note about the compiled code. (1) The receives have
been moved to an _Initialize() method, which can be seen in lines 9 to 22.
This method is called from every constructor, as in line 6. (2) The tutorial in
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Akka.NET [21] recommends creating a static method returning a Props factory,
which is used to create instances of the actor class. This method can be seen
in lines 27 to 30. The usage of the method will be described in more detail in
Section 6.1.2.

1 actor MessageRelayActor {
2 locals {
3 List <OtherActor> receivers

4 }
5 constructors {
6 ( List <OtherActor> receivers ) {
7 this .receivers = receivers ;
8 }
9 }

10 functions {
11 void AddReceiver (OtherActor actor ) {
12 receivers .Add (actor ) ;
13 }
14 }
15 receives {
16 s t r i n g msg : {
17 foreach ( var receiver in receivers ) {
18 receiver .Tell (msg ) ;
19 }
20 }
21 OtherActor act : {
22 AddReceiver (act ) ;
23 }
24 }
25 }

Listing 6.14: Complete actor example Thespian code

1 public c l a s s MessageRelayActor : BaseActor

2 {
3 protected List<IActorRef> receivers { get ; set ; }
4 public MessageRelayActor (List<IActorRef> receivers )
5 {
6 t h i s ._Initialize ( ) ;
7 t h i s .receivers = receivers ;
8 }
9 protected void _Initialize ( )

10 {
11 t h i s .Receive<str ing >(msg =>
12 {
13 foreach ( var receiver in receivers )
14 {
15 receiver .Tell (msg ) ;
16 }
17 } ) ;
18 t h i s .Receive<IActorRef>(act =>
19 {
20 AddReceiver (act ) ;
21 } ) ;
22 }
23 protected void AddReceiver (IActorRef actor )
24 {
25 receivers .Add (actor ) ;
26 }
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27 public s t a t i c Props Props (List<IActorRef> receivers )
28 {
29 return Akka .Actor .Props .Create ( ( ) => new MessageRelayActor (receivers ) ) ;
30 }
31 }

Listing 6.15: Complete actor example C# result

6.1.2 Simulation

As with Thespian actors, each Thespian simulation has a one-to-one relation to
a C# class inheriting from the Akka.NET ReceiverActor class.

An example of the structure of a simulation can be seen in Listing 6.16.

1 simulation MySimulation {
2 locals { }
3 initialization { }
4 functions { }
5 receives { }
6 }

Listing 6.16: Thespian simulation structure

Thespian simulations have three features in common with Thespian actors; lo-
cals, functions, and receives. Where an actor can have multiple constructors
under the constructors feature, a simulation only has a single parameterless
constructor, which is called initialization.

initialization
The code to run when the simulation is started. This is equivalent to a
parameterless constructor. An example of the content of the initializa-
tion feature can be seen in Listing 6.17, where the initialization code can
be seen in lines 5 to 7. The advantage of only having one constructor is
that less code required. The equivalent code for creating an actor with a
parameterless constructor can be seen in 6.18. Note how the simulation
code is shorter compared to the actor code.

1 simulation MySimulation {
2 locals {
3 int i ;
4 }
5 initialization {
6 int = 0 ;
7 }
8 }

Listing 6.17: Thespian simulation initialization
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1 actor MyActor {
2 locals {
3 int i ;
4 }
5 constructors {
6 ( ) {
7 int = 0 ;
8 }
9 }

10 }

Listing 6.18: Thespian actor parameterless constructor

Creating new instances of actors in Akka.NET is done by sending a Props factory
to the ActorOf method on the parent. The ActorOf method will use the Props

factory to spawn a new instance of the actor type. As mentioned earlier, the
best practice is to have a static method on the actor type, which returns a Props
factory.

We find that creating actors using the ActorOf method with a Props factory is
unintuitive and confusing, which is why we choose to create instances of actor
types in Thespian using the new keyword. An example of this can be seen in
Listing 6.19, and the corresponding generated Akka.NET code can be seen in
Listing 6.20. Context is a local property on every Akka.NET actor. It returns the
current context of the actor. Invoking ActorOf on this context will create a new
actor as a child of the actor.

1 new MyActor ( )

Listing 6.19: Thespian actor creation

1 Context .ActorOf (MyActor .Props ( ) )

Listing 6.20: Akka.NET actor creation

A complete example of a Thespian simulation can be seen in Listing 6.21. This
simulation has a list of actors, which is declared in line 3. In lines 6 to 9, the
simulation creates 5 actors and adds them to the list. The simulation has a func-
tion, SendMessage, which sends a string message to every actor in the list. The
function is defined in lines 13 to 17 and is called in line 10.
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1 simulation MySimulation {
2 locals {
3 List <OtherActor> actors ;
4 }
5 initialization {
6 var actorCount = 5 ;
7 for ( var id = 0 ; id<actorCount ; id++) {
8 actors .Add (new OtherActor (id ) ) ;
9 }

10 SendMessage ( " S t a r t " ) ;
11 }
12 functions {
13 SendMessage ( s t r i n g msg ) {
14 foreach ( var actor in actors ) {
15 actor .Tell (msg ) ;
16 }
17 }
18 }
19 }

Listing 6.21: Thespian simulation example

The generated C# code corresponding to the Thespian code in Listing 6.21 can
be seen in Listing 6.22. This code is similar to the code generated for actors.
The list of actors is converted to a list of IActorRef in line 3. The code in the
initialization feature is inserted as a parameterless constructor in lines 4 to
12. Line 10 is interesting because it shows how the simple Thespian expression

actors.Add(new OtherActor(id))

is compiled to the complicated Akka.NET expression

actors.Add(Context.ActorOf(OtherActor.Props(id)))

As no receives have been defined, the _Initialize method is empty. A static
method returning a Props factory has been defined in lines 24 to 26. Simula-
tions in Thespian are used from an external environment, such as Mask. This
means that the creation of simulations is controlled from that external environ-
ment. Simulations are immediate children of an ActorSystem, which means
that the actor system must be known to create a simulation. In Thespian, how-
ever, there is only one actor system, which means that creating a new instance of
a simulation can be simplified. This can be seen in lines 29 to 31, where a static
New method has been generated. The purpose of this method is to create an in-
stance of the simulation without providing the actor system explicitly. We create
a runtime called ActorRuntime, which has a property called CurrentSystem

returning the current actor system. This way an external environment like Mask
can create an instance of a simulation simply by writing

MySimulation.New()

instead of

ActorUtils.ActorRuntime.CurrentSystem.ActorOf(MySimulation.Props())
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1 public c l a s s MySimulation : SimulationActor

2 {
3 protected List<IActorRef> actors { get ; set ; }
4 public MySimulation ( )
5 {
6 t h i s ._Initialize ( ) ;
7 var actorCount = 5 ;
8 for ( var id = 0 ; id < actorCount ; id++ )
9 {

10 actors .Add (Context .ActorOf (OtherActor .Props (id ) ) ) ;
11 }
12 SendMessage ( " S t a r t " ) ;
13 }
14 protected void _Initialize ( )
15 {
16 }
17 protected void SendMessage ( s t r i n g msg )
18 {
19 foreach ( var actor in actors )
20 {
21 actor .Tell (msg ) ;
22 }
23 }
24 public s t a t i c Props Props ( )
25 {
26 return Akka .Actor .Props .Create ( ( ) => new MySimulation ( ) ) ;
27 }
28 public s t a t i c IActorRef New ( )
29 {
30 return ActorUtils .ActorRuntime .CurrentSystem .ActorOf (MySimulation .Props ( ) ) ;
31 }
32 }

Listing 6.22: Akka.NET simulation example

6.1.3 Message

A Thespian message is a way to send more complex objects as messages to ac-
tors.

Each message is compiled to a C# struct.

An example of a message can be seen in Listing 6.23.

1 message Coordinates (int x , int y )

Listing 6.23: Thespian message example

A message has a name and a comma-separated list of local variable declarations
of the format type name.

The generated C# code corresponding to the Thespian code in Listing 6.23 can
be seen Listing 6.25.
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1 public s t r u c t Coordinates

2 {
3 public i n t x ;
4 public i n t y ;
5 public Coordinates ( i n t x , i n t y )
6 {
7 t h i s .x = x ;
8 t h i s .y = y ;
9 }

10 }

Listing 6.24: Akka.NET message example

6.2 C# Similarity

The code blocks in Thespian are based on C# and are compiled to C#. The reason
behind this choice is to have a language that is easily compiled to Akka.NET.
We refer to this part of Thespian as Thespian#. Thespian# has some differences
compared to C#. As C# is an extensive language with many features, it is difficult
to provide an exhaustive list of the differences. The most obvious differences
and the reasoning behind them will be explained in depth in this section.

Loops
for-, foreach-, and while-loops all iterate through a code block. Nor-
mally in C#, these loops will iterate through a statement, which can be
a code block, but may also be an ordinary statement like an expression.
We think that it is bad code practice to write a loop without using a code
block to clearly delimit the part of the code, which is iterated. This is why
in Thespian loops must iterate over a code block.

Thespian has no do-while loop, because we find the use of such a loop to
be limited.

Conditionals
The if-else construct explicitly uses code blocks as with loops. The rea-
soning behind this choice is the same as with loops. The choice to force
the use of code blocks has a disadvantage compared to standard C#, in
that there is no else-if construct. The workaround in Thespian# is to
write nested if-else statements.

Inline if-statements are not included in Thespian#, as the same behavior
can be achieved using ordinary if-statements.

Lambdas
Thespian# does not have support lambda expressions. Lambda expres-
sions are powerful, but we think that they fall into the nice-to-have cate-
gory of features, and thus they are not included in Thespian#.
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Strings
C# 6.0 introduced an alternative syntax for building strings using the $-
prefix as in $"Hello, my name is {name }". This feature is not avail-
able in Thespian#, because its function can be replicated by using stan-
dard string concatenation as in "Hello, my name is " + name .

Properties
C# uses properties as an alternative way to write get and set methods with
the syntax:

1 private i n t _a ;
2 public i n t A

3 {
4 get

5 {
6 return _a ;
7 }
8 set

9 {
10 _a = value ;
11 }
12 }

Listing 6.25: C# property

This syntax is nice-to-have, but not vital, which is why Thespian# does not
support it.

Named Parameters
C# allows the use of named parameters where a method call can include
the names of the arguments, to circumvent a specific required order of
the arguments and to improve readability. Thespian# does not have this
feature.

Optional Parameters
C# allows to define a method with parameters with default values. Thes-
pian# does not have this feature, as the effect can be achieved using method
overloading.

6.3 Summary

In this chapter, Thespian has been designed. The problematic areas in Akka.NET
have been addressed, and solutions in Thespian have been proposed. The com-
plete abstract syntax of Thespian can be seen in Appendix A.1. Now that the
design of Thespian is in place, the design of the compiler can begin.
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7. Compiler Design

This chapter contains the design of the Thespian compiler.

7.1 Compiler Structure

Figure 7.1:
Overview of the
Thespian com-
piler

There are a number of compiler frameworks, such as Antlr
[22], that can generate scanner, parser and base visitors from
a language grammar. We choose not to use these to retain
full control of our compiler. We estimate that the time nec-
essary to learn such a framework will be about the same as
the time needed to simply implement it ourselves. The rest
of this section will present our design of the Thespian com-
piler.

The Thespian compiler is split into 4 phases:

Lexical analysis
In this phase Thespian code is analysed and trans-
formed into a list of tokens. This is done by the scan-
ner.

Syntax analysis
In this phase the list of tokens is organised into an Ab-
stract Syntax Tree (AST), which is analyzed to test if it
upholds the Thespian grammar. This is done by the
parser.

AST modification
Before Generating C# code we modify the AST to sim-
plify later traversals of the tree. This is done with two
visitors; a binary expression organiser and a scope
checker.

Code generation
Finally we use a visitor to pass the modified AST and
generate C# code.

7.2 Scanner

The scanner reads a series of characters, and transforms that into a series of
tokens. The Thespian compiler accepts the following types of tokens:

Word
Each word token stores a variable name or a language keyword.
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Number
Each number token stores a whole number.

String
Each string token stores either a string delimited by a pair of double
quotes (") or a char delimited by a pair of single quotes ('). We use the
string token for both of these constructs as their behaviors are similar.

Special Character
Each special character token stores a special character. The special char-
acters used in Thespian are:

{ } ( ) [ ] , . + - * / % ; > < = | & ! :

Comment
Each comment token stores a comment line in the code. In Thespian,
comments include all characters after // until the next line break.

When the scanner is done, the list of tokens is passed to the parser.

7.3 Parser

The parser receives the list of tokens from the scanner and constructs the corre-
sponding AST. The Thespian parser is a recursive descent parser that follows the
rules of the Thespian grammar. A simplified version of the grammar can be seen
in Appendix A.1.

7.4 Visitors

The Thespian compiler utilizes visitors to modify the AST to prepare for the code
generation phase. The two utility visitors which modify the AST before code gen-
eration are the binary expression organizer and the scope checker. The visitors
are described below.

7.4.1 Binary Expression Organizer

Binary expressions are passed as seen in Figure 7.2a. This can be problematic
when using the dot (.) operator to access member variables on a class or con-
structs in a namespace. The problem in Figure 7.2a is that the bottom-most
expression, c+d, cannot be evaluated by itself, as the c variable is dependent on
b and b is dependent on a. In Figure 7.2b, the expression has been reorganised
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(a) Before Binary Expression Organizer (b) After Binary Expression Organizer

Figure 7.2: before and after Binary Expression Organizer

by the Binary Expression Organizer to a more meaningful order; a.b accesses
the field b on a, b.c accesses the field c on b and finally c+d can be computed.

7.4.2 Scope Checker

Some nodes in the AST are declared as scopes. The scope checker is responsible
for assigning variable declarations, actor declarations, simulation declarations,
and message declarations to their parent scopes. It detects if other definitions
with the same name exist in the same scope.

7.5 C# Code Generator

The final step of the Thespian compiler is generating C# code. This is also done
using a visitor. As the Thespian# part of Thespian is quite similar to C#, most of
the text generation of the tree nodes is simple. Two categories of code needing
special handling are Thespian specific constructs and Akka.NET specific code.

Thespian specific constructs such as the simulation, actor, and message con-
structs have no direct counterpart in C# or Akka.NET, which means that these
constructs require special handling to be implemented in C#. Simulation and
actor constructs are transformed into classes inheriting the classes Simulation-
Actor and BaseActor, which implement simulations and actors base function-
ality. SimulationActor and BaseActor inherit the Akka.NET actor class Re-
ceiveActor. Message constructs are transformed into C# structs.

Akka.NET specific code consists of all references to actor types, instantiating
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new actors, and receive constructs. Chapter 6 has a more detailed description of
the design of these constructs.

Akka.NET uses IActorRefs to facilitate communication between actors. Be-
cause of this, actor types in Thespian code must be translated to IActorRefs.

Receives in Akka.NET are handled by dynamically adding handlers to each actor
instance, and in Thespian, each receive is a static code construct on an actor
or simulation. This means that the receive construct must be transformed into
some Akka.NET code, which dynamically adds the receives to each actor of that
type.

Instantiation of actors in Thespian uses the new keyword, which must be trans-
formed into using the Props factory, as is best practice in Akka.NET.

7.6 Summary

In this chapter, the general structure of the compiler has been designed. The
next chapter contains the implementation of the compiler based on this design.
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8. Compiler Implementation

This chapter contains a description of the implementation of the Thespian com-
piler. The chapter is divided into four sections: Scanner, Parser, Visitors, and
Summary.

8.1 Scanner

The purpose of the scanner is to convert the source code into a list of tokens.
This section shows how this is accomplished.

8.1.1 State

The scanner is implemented as the class Scanner. It has 6 private variables to
keep track of the state of the scanning process:

1 List<Token> Tokens { get ; set ; }
2 s t r i n g Program { get ; set ; }
3 i n t Index { get ; set ; }
4 s t r i n g CurrentString { get ; set ; }
5 i n t CurrentLineNumber { get ; set ; }
6 i n t CurrentLineIndex { get ; set ; }

Listing 8.1: Scanner state

Tokens is the output list of tokens. Program is the full source code. Index is
the index of the next character in Program to be scanned. CurrentString is a
temporary variable to store tokens that are longer than one character. Current-
LineNumber and CurrentLineIndex are used to calculate the position of the
token within the source code for error handling.

Token is a class, which contains information about the token, such as type,
value, lineNumber, and linePosition. The class can be seen in Listing 8.2

1 public c l a s s Token

2 {
3 public s t r i n g Value { get ; set ; }
4 public TokenType Type { get ; set ; }
5 public i n t LineNumber { get ; set ; }
6 public i n t LinePosition { get ; set ; }
7 public enum TokenType

8 {
9 WORD ,

10 NUMBER ,
11 STRING ,
12 SPECIAL

13 }
14 }

Listing 8.2: Scanner token
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8.1.2 Core Loop

The scanner has a Scan method, which takes source code as a string and returns
a list of tokens. An outline of the method can be seen in Listing 8.3. Some setup
code of the initial state has been omitted. The main part of the scan method
is a while loop, which iterates over the entire source program one char at a
time. Some of the code creating the tokens need a string representation of the
char. These are stored as two intermediate values for each character, char c

and string cString. The order in which the different characters are matched
is important to the correctness of the scan. The order can be seen in lines 9 to
15. The rest of this section will explain how the characters are handled.

1 public List<Token> Scan ( s t r i n g program )
2 {
3 // Setup
4 while ( t h i s .Index < t h i s .Program .Length )
5 {
6 var c = t h i s .Get ( ) ;
7 var cString = c .ToString ( ) ;
8
9 // Comments

10 // Str ing ""
11 // Str ing ' '
12 // Whitespace
13 // Special character
14 // Word
15 // Number
16 }
17 return t h i s .Tokens ;
18 }

Listing 8.3: Scanner core loop

8.1.3 Generating Tokens

CheckAndAddToken is a method used throughout the scanner. The purpose of
this method is to convert the content of CurrentString to a token. The code for
the method can be seen in Listing 8.4. The method checks the first character of
CurrentString, and creates a token based on that character. Line 6 to 9 shows
how a word token is created if the first character is a letter. Line 10 to 13 adds a
number token, if the first character is a digit. Line 14 to 17 adds a string token,
if the first character is either of the string delimiters. Line 18 to 21 adds a special
character token if no other tokens have been matched.
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1 public void CheckAndAddToken ( )
2 {
3 i f ( t h i s .CurrentString .Length > 0)
4 {
5 var firstChar = t h i s .CurrentString [ 0 ] ;
6 i f (IsLetter (firstChar ) )
7 {
8 t h i s .AddToken (TokenType .WORD ) ;
9 }

10 else i f ( char .IsDigit (firstChar ) )
11 {
12 t h i s .AddToken (TokenType .NUMBER ) ;
13 }
14 else i f (firstChar == ' " ' | | f i r s t C h a r == ' \ ' ' )
15 {
16 t h i s . AddToken( TokenType . STRING) ;
17 }
18 else
19 {
20 t h i s . AddToken( TokenType . SPECIAL ) ;
21 }
22 }
23 }

Listing 8.4: CheckAndAddToken

8.1.4 Comments

Comments in Thespian are not included in the list of tokens. Listing 8.5 shows
how comments are handled. Peek returns the next character to be read. Pop

skips the current character. Line 1 shows the if-statement, which checks if
both the current character, c, and the next character are slashes ('/'). If that
is the case, the current token is recognized as a comment, and all characters are
skipped until a line break is reached.

1 i f (c == ' / ' && t h i s .Peek ( ) == ' / ' )
2 {
3 while ( t h i s .Peek ( ) ! = '\n ' )
4 {
5 t h i s .Pop ( ) ;
6 }
7 }

Listing 8.5: Scanning comments

8.1.5 Strings

Listing 8.6 shows how strings delimited by double quotes (") are handled. Lines
1 to 3 show the case where no characters have been added to CurrentString

and the current character is a double quote. In this case, the current character
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is appended to the current string. This means that the scanner is now in the
progress of scanning a string literal. The second case checks whether a string
literal is being scanned. This can be seen in lines 5 to 12. The current character
is appended to the string in line 7. If the current character is a double quote,
it means that the string is done, and a complete string token is captured in the
CurrentString, and it can be added to the list of tokens. The CheckAndAddTo-
ken method checks the content of the CurrentString and adds a new token to
the list of tokens.

String literals delimited by single quotes (') are implemented in the same way
as string literals delimited by double quotes.

1 else i f ( t h i s .CurrentString .Length == 0 && c == '" ' )
2 {
3 t h i s .CurrentString += c ;
4 }
5 else i f ( t h i s .CurrentString .Length > 0 && t h i s .CurrentString [ 0 ] == '" ' )
6 {
7 t h i s .CurrentString += c ;
8 i f (c == '" ' )
9 {

10 t h i s .CheckAndAddToken ( ) ;
11 }
12 }

Listing 8.6: Scanner strings

8.1.6 White Space

White space can be used as part of a string, otherwise it is used as a separator be-
tween tokens. This means that if CurrentString is not empty when the scanner
reaches a white space, CurrentString is evaluated as a token. The code han-
dling white space can be seen in Listing 8.7. If the white space character is a line
break, the variables CurrentLineNumber and CurrentLineIndex are updated.
Afterwards CheckAndAddToken is called to add a token.

1 else i f ( s t r i n g .IsNullOrWhiteSpace (cString ) )
2 {
3 i f (c == '\n ' )
4 {
5 t h i s .CurrentLineNumber++;
6 t h i s .CurrentLineIndex = t h i s .Index ;
7 }
8 t h i s .CheckAndAddToken ( ) ;
9 }

Listing 8.7: Scanner White Space
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8.1.7 Special Characters

The scanner has a list of special characters. If the current character is one of the
special characters, a special character token is added. This code can be seen in
Listing 8.8.

1 else i f (specialCharacters .Contains (c ) )
2 {
3 t h i s .CheckAndAddToken ( ) ;
4 t h i s .CurrentString = cString ;
5 }

Listing 8.8: Scanner special characters

8.1.8 Words and Numbers

The code for handling word tokens can be seen in Listing 8.9. There are two
cases where the current character is a letter. Either the current string contains
the start of a word, or the current string does not. In the case where it does con-
tain the start of a word, the current character is appended. Otherwise CheckAn-
dAddToken is called to potentially form a token from the content of CurrentString,
and then CurrentString is updated to only contain the current character. The
code for handling numbers is almost identical, with the alteration of testing for
digits instead of letters.

1 else i f (IsLetter (c ) )
2 {
3 i f ( t h i s .CurrentString .Length > 0 && IsLetter ( t h i s .CurrentString [ 0 ] ) )
4 {
5 t h i s .CurrentString += cString ;
6 }
7 else
8 {
9 t h i s .CheckAndAddToken ( ) ;

10 t h i s .CurrentString = cString ;
11 }
12 }

Listing 8.9: Scanner words and numbers

8.2 Parser

The parser is a static class with a static method for parsing a list of tokens from
the scanner. The method creates an abstract syntax tree of nodes with a Pro-

gramNode as the root node. The initial code can be seen in Listing 8.10. Each
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node has an AcceptTokens method, which takes a list of tokens and consumes
tokens while creating child nodes.

1 public s t a t i c c l a s s Parser

2 {
3 public s t a t i c ProgramNode Parse (List<Token> tokens )
4 {
5 var program = new ProgramNode ( ) ;
6
7 program .AcceptTokens (tokens ) ;
8
9 return program ;

10 }
11 }

Listing 8.10: Parser parse method

This section will explain how the abstract syntax tree is created by visiting the
ParseTokens methods on the nodes. First, a couple of helper methods are in-
troduced and explained. Then, parser code will be presented starting with the
program node.

8.2.1 Parser Methods

Some of the helper methods like AcceptWord and AcceptSpecial are used when
a certain token is expected. This is useful when the parser must only accept a to-
ken with a specific value and throw an exception, if a token with that value is not
present. These methods are prepended with "Accept". The implementation of
AcceptWord can be seen in Listing 8.11. The word argument is the expected next
value. At line 4 the code checks whether the next token has the type WORD and
contains the correct value. If it does, the token is removed from the list and the
method returns. If it does not, a ParseException is thrown.

1 protected void AcceptWord (List<Token> tokens , s t r i n g word )
2 {
3 var token = t h i s .Peek (tokens , $" ' { word } ' " ) ;
4 i f (token .Type == Token .TokenType .WORD && token .Value == word )
5 {
6 t h i s .Pop (tokens ) ;
7 return ;
8 }
9 throw new ParseException ($" ' { word } ' " , tokens ) ;

10 }

Listing 8.11: AcceptWord Method

Other helper methods like CheckWord and CheckSpecial are used to check whether
a specific given token is in the first position of the token list. It is used to redi-
rect the flow of the parser based on the presence of a token with the given value.
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These methods are prepended with "Check". The implementation of CheckWord
can be seen in Listing 8.12. Here AcceptWord is called, and if it throws a Parse-
Exception, CheckWord returns false. Otherwise CheckWord returns true. This
means that if the token is found, it is removed by AcceptWord. CheckSpecial
works like CheckWord but with special character tokens instead of word tokens.

1 protected bool CheckWord (List<Token> tokens , s t r i n g word )
2 {
3 t r y
4 {
5 t h i s .AcceptWord (tokens , word ) ;
6 return true ;
7 }
8 catch (Exception )
9 {

10 return f a l s e ;
11 }
12 }

Listing 8.12: CheckWord Method

Other helper methods like ParseWord, ParseStatement, and ParseExpres-

sion are used to parse a specific construct. As opposed to Accept and Check

functions, Parsemethods create new child nodes. The implementation of Parse-
Word can be seen in Listing 8.13. The code at line 4 checks whether the type of
the token is WORD. If it is, a new NameNode is created, and the AcceptTokens

method is called on that new node. If it is not a WORD token, a ParseException

is thrown. ParseStatement is explain in detail in section 8.2.6 and ParseEx-

pression is explain in detail in section 8.2.7.

1 protected NameNode ParseWord (List<Token> tokens )
2 {
3 var token = t h i s .Peek (tokens , $"word" ) ;
4 i f (token .Type == Token .TokenType .WORD )
5 {
6 var name = new NameNode ( t h i s ) ;
7 name .AcceptTokens (tokens ) ;
8 return name ;
9 }

10 else
11 {
12 throw new ParseException ( "word" , tokens ) ;
13 }
14 }

Listing 8.13: ParseWord Method

8.2.2 Program

A ProgramNode has three lists, Actors, Simulations, and Messages, each con-
taining children of the program node. The AcceptTokens method creates chil-
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dren based on the list of tokens and fills these lists. The method can be seen in
Listing 8.14. A while loop is started at line 3. This loop continues to evaluate
and add children until there are no more tokens left. At each iteration of the
loop, the first token is checked to see if an actor, a simulation, or a message is
started. If none of the types are matched, a ParseException is thrown, which
can be seen in line 26. When the value of the next token matches one of the three
types, a node matching that type is created, it is added to the corresponding list
of children, and the AcceptTokens method is called on the new node. The Ac-

ceptTokens method of the actor node will be described next. As the parsing of
messages is very simple, and as the parsing of simulations is almost identical to
the parsing of actors, they will not be described in this chapter.

1 public override void AcceptTokens (List<Token> tokens )
2 {
3 while (tokens .Count > 0)
4 {
5 var token = t h i s .Peek (tokens , " ' actor ' , ' simulation ' , or ' message ' " ) ;
6 i f (token .Value == " actor " )
7 {
8 var actor = new ActorNode ( t h i s ) ;
9 t h i s .Actors .Add (actor ) ;

10 actor .AcceptTokens (tokens ) ;
11 }
12 else i f (token .Value == " simulation " )
13 {
14 var simulation = new SimulationNode ( t h i s ) ;
15 t h i s .Simulations .Add (simulation ) ;
16 simulation .AcceptTokens (tokens ) ;
17 }
18 else i f (token .Value == "message" )
19 {
20 var message = new MessageNode ( t h i s ) ;
21 t h i s .Messages .Add (message ) ;
22 message .AcceptTokens (tokens ) ;
23 }
24 else
25 {
26 throw new ParseException ( " ' actor ' , ' simulation ' , or ' message ' " , tokens )←-

;
27 }
28 }
29 }

Listing 8.14: Program AcceptTokens

8.2.3 Actor

An ActorNodehas 5 local variables representing its children; Name, Locals, Con-
structors, Functions, and MessagePatterns. The content of the AcceptTo-
kens method on ActorNode can be seen in Listing 8.15. In line 1, AcceptWord is
called to consume a word token with the value "actor". In line 4, ParseWord is
called to create a new NameNode from the next token. In line 7, AcceptSpecial
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is called to consume a special token with the value "{". As an actor can contain
functions, constructors, locals, and receives in any order, the while loop
at line 9 is run until the actor is closed with a }. The body of the loop checks the
next token to see if functions, constructors, locals, or receives is next to
be parsed. In the case of functions, the token is consumed with the Check-

Word method on line 13. At line 15, a { token is accepted. Then, in lines 18 to
24, single functions are parsed and added to the actor until a } is found. Similar
approaches are used to handle constructors, locals, and receives.

1 t h i s .AcceptWord (tokens , " actor " ) ;
2
3 // Name
4 t h i s .Name = t h i s .ParseWord (tokens ) ;
5
6 // Brace s t a r t
7 t h i s .AcceptSpecial (tokens , ' { ' ) ;
8
9 while ( ! t h i s .CheckSpecial (tokens , ' } ' ) )

10 {
11 var token = t h i s .Peek (tokens , " ' functions ' , ' constructors ' , ' locals ' , or '←-

receives ' " ) ;
12 // Handle functions
13 i f ( t h i s .CheckWord (tokens , " functions " ) )
14 {
15 t h i s .AcceptSpecial (tokens , ' { ' ) ;
16
17 // Functions
18 while ( ! t h i s .CheckSpecial (tokens , ' } ' ) )
19 {
20 // Function
21 var function = new FunctionNode ( t h i s ) ;
22 t h i s .Functions .Add (function ) ;
23 function .AcceptTokens (tokens ) ;
24 }
25 }
26 // Handle constructors
27 // Handle l o c a l s
28 // Handle receives
29 else
30 {
31 throw new ParseException ( " ' functions ' , ' constructors ' , ' locals ' , ' receive ' ,←-

or ' } ' " , tokens ) ;
32 }
33 }

Listing 8.15: Actor AcceptTokens

8.2.4 Function

A function node consists of a type, a name, a list of parameters, and a block.
The content of the AcceptTokens method on the FunctionNode can be seen in
Listing 8.16. Lines 2 to 6 parse the type and name. Lines 9 to 23 parse the list of
parameters by parsing individual variable declarations until a ) is found. Lines
26 and 27 parse the block.
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1 // Type
2 t h i s .Type = new TypeNode ( t h i s ) ;
3 t h i s .Type .AcceptTokens (tokens ) ;
4
5 // Name
6 t h i s .Name = t h i s .ParseWord (tokens ) ;
7
8 // InputParameters
9 t h i s .AcceptSpecial (tokens , ' ( ' ) ;

10
11 i f ( ! t h i s .CheckSpecial (tokens , ' ) ' ) )
12 {
13 do
14 {
15 // Variable declaration
16 var variableDeclaration = new VariableDeclNode ( this , f a l s e ) ;
17 variableDeclaration .AcceptTokens (tokens ) ;
18 t h i s .Parameters .Add (variableDeclaration ) ;
19 }
20 while ( t h i s .CheckSpecial (tokens , ' , ' ) ) ;
21
22 t h i s .AcceptSpecial (tokens , ' ) ' ) ;
23 }
24
25 // Block
26 t h i s .Block = new BlockStatementNode ( t h i s ) ;
27 t h i s .Block .AcceptTokens (tokens ) ;

Listing 8.16: Function AcceptTokens

8.2.5 Block

A BlockStatementNode consists of a list of statements. The implementation of
the AcceptTokens in BlockStatementNode can be seen in Listing 8.17. Line 5
parses a statement and adds it to the block’s list of statements. The code will
keep parsing new statements until a } is found.

1 t h i s .AcceptSpecial (tokens , ' { ' ) ;
2
3 while ( ! t h i s .CheckSpecial (tokens , ' } ' ) )
4 {
5 t h i s .Statements .Add ( t h i s .ParseStatement (tokens ) ) ;
6 }

Listing 8.17: Block AcceptTokens

8.2.6 Statements

The Node class has the ParseStatement method, which creates and returns a
StatementNode. The implementation of this method can be seen in Listing
8.18. In line 6, the next token is checked to see if the statement to be parsed is
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an if-statement. Lines 8 to 10 show how that token is created, parsed, and then
returned. for, foreach, while, switch, block, and break statements are han-
dled in the same way, by tokens with corresponding values "for", "foreach",
"while", "{", and "break". Lines 21 to 24 contain the case, where none of the
previously mentioned statements were found. This means that the statement to
be parsed is an expression followed by a ;.

1 i nte r nal StatementNode ParseStatement (List<Token> tokens )
2 {
3 var token = t h i s .Peek (tokens , $" statement " ) ;
4
5 // I f
6 i f (token .Value == " i f " )
7 {
8 var statement = new IfStatementNode ( t h i s ) ;
9 statement .AcceptTokens (tokens ) ;

10 return statement ;
11 }
12 // For
13 // Foreach
14 // While
15 // Switch
16 // Block
17 // Break
18 // Expression
19 else
20 {
21 var statement = new ExpressionStatementNode ( t h i s ) ;
22 statement .AcceptTokens (tokens ) ;
23 t h i s .AcceptSpecial (tokens , ' ; ' ) ;
24 return statement ;
25 }
26 }

Listing 8.18: ParseStatement

8.2.7 Expression

Expressions are parsed in the ParseExpression method on the Node class. This
section contains the description of how the different expressions are parsed. Af-
ter describing the implementation of the ParseExpression method, an exam-
ple of the use of this method is presented.

Prefix Unary Operation

The code for parsing a prefix unary operation can be seen in Listing 8.19. The
Node class contains a list of prefix operators. Line 1 checks if the token is one of
the accepted operators. Line 3 creates a PrefixUnaryOperationExpressionN-
ode to contain the expression. Line 4 creates a new OperatorNode. OperatorN-
ode has an overload of the method AcceptTokens, which finds a matching se-
quence of tokens starting with the first token in the list. It consumes all tokens
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in the matched sequence and updates the value of the OperatorNode to match
the content resulting in a value of an accepted prefix operator such as ++. The
full list of prefix unary operators can be seen in A.1. The call to AcceptTokens

can be seen in line 5. Line 6 parses an expression as a child expression of the
unary expression.

1 i f (Node .UnaryOperatorsPrefix .Any (uo => uo == token .Value ) )
2 {
3 var prefixExpression = new PrefixUnaryOperationExpressionNode ( t h i s ) ;
4 prefixExpression .Operator = new OperatorNode (prefixExpression ) ;
5 prefixExpression .Operator .AcceptTokens (tokens , Node .UnaryOperatorsPrefix ) ;
6 prefixExpression .Expression = prefixExpression .ParseExpression (tokens ) ;
7 return prefixExpression ;
8 }

Listing 8.19: ParseExpression PrefixUnaryExpressionNode

Class Instantiation

The code for parsing class instantiation can be seen in Listing 8.20. Line 1 checks
if the containing expression is a prefix unary operation with the value "new".
This means that the expression to be parsed is a type. Lines 3 to 4 parse the type
node. Line 6 sets the variable expression to point to the new expression.

1 else i f ( t h i s i s PrefixUnaryOperationExpressionNode && ( (←-

PrefixUnaryOperationExpressionNode ) t h i s ) .Operator .Value == "new" )
2 {
3 var TypeExpression = new TypeNode ( t h i s ) ;
4 TypeExpression .AcceptTokens (tokens ) ;
5
6 expression = TypeExpression ;
7 }

Listing 8.20: ParseExpression ClassInstantiation

Simple Expressions

Parentheses, number, string, and word expressions work similarly. The imple-
mentation of the parsing of a parentheses expression can be seen in Listing 8.21.
Line 1 checks if the expression is the start of a parentheses expression. Lines 3 to
4 parse the expression. Line 6 sets the variable expression to point to the new
expression.
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1 else i f (token .Value == " ( " )
2 {
3 var parenthesesExpression = new ParenthesesExpressionNode ( t h i s ) ;
4 parenthesesExpression .AcceptTokens (tokens ) ;
5
6 expression = parenthesesExpression ;
7 }

Listing 8.21: ParseExpression ParenthesesExpressionNode

Generics

Identifying whether an expression is a generic type is a difficult task. In some
cases a sequence of tokens can both be regarded as a type declaration using a
generic and as a boolean expression. One example of this is the type declaration
expression

List<int> list

where the scanner will produce the token sequence: { WORD, SPECIAL, WORD,

SPECIAL, WORD }. The same token sequence will be produced by the boolean
expression

a < b > c

A boolean expression like a < b > c is not legal in C#, because the < operator
can not be applied to boolean values. Because of this, the parser detects patterns
like this and parses the expression as a type declaration with generics.

The code for the CheckGeneric method, which detects generics, can be seen in
Listing 8.22. It takes a list of tokens as input and returns true if that the start of
the list can be evaluated to a generic type. Lines 5 to 14 handle the namespace
part of the type. The index of the list is moved forward by 2, skipping the two
first tokens, as long as the first token is a WORD, and the second token is a dot
(.). The predicate to the if-statement at line 17 checks if the next two tokens
are a WORD followed by a <. If that is the case, the tokens are skipped, and the
CheckGenericInner method is called with the tokens and the current index.
CheckGenericInner checks if the beginning of the token sequence offset by the
index matches either a normal type, such as int, or another generic type, such
as List<int>. If that is the case, a closing > is expected as seen in line 29. If no
match was found, the method returns false.
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1 protected bool CheckGeneric (List<Token> tokens )
2 {
3 var index = 0 ;
4 // While part of namespace
5 while (
6 tokens .Count > 1 &&
7 tokens [index ] . Type == Token .TokenType .WORD &&
8 tokens [index + 1 ] .Type == Token .TokenType .SPECIAL &&
9 tokens [index + 1 ] .Value == " . "

10 )
11 {
12 // Move index forward
13 index += 2 ;
14 }
15
16 // I f a word i s followed by "<"
17 i f (
18 tokens .Count > 1 &&
19 tokens [index ] . Type == Token .TokenType .WORD &&
20 tokens [index + 1 ] .Type == Token .TokenType .SPECIAL &&
21 tokens [index + 1 ] .Value == "<"
22 )
23 {
24 // Move index to generic type
25 index += 2 ;
26
27 i f ( t h i s .CheckGenericInner (tokens , r e f index ) )
28 {
29 return tokens [index ] . Value == ">" ;
30 }
31 }
32
33 // No match − Return f a l s e
34 return f a l s e ;
35 }

Listing 8.22: CheckGeneric

The code for CheckGenericInner can be seen in Listing 8.23. The purpose of
this method is to return whether a normal type or another generic type can be
parsed from the index in the token sequence. The namespace part is identical
to the one in CheckGeneric and has been omitted. The predicate in lines 7 to
9 checks whether the next two tokens are a WORD followed by a SPECIAL. If that
is the case the generic type is either closed by a > or it contains another generic
type. Lines 13 to 17 handle the case, where the outer generic is closed, in which
case, it returns true. Lines 19 to 29 handle the case where another generic is
contained within the generic.

1 protected bool CheckGenericInner (List<Token> tokens , r e f i n t index )
2 {
3 // While part of namespace
4
5 // I f a word i s followed by a special character
6 i f (
7 tokens .Count > 1 &&
8 tokens [index ] . Type == Token .TokenType .WORD &&
9 tokens [index + 1 ] .Type == Token .TokenType .SPECIAL
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10 )
11 {
12 // Matches a non−generic type
13 i f (tokens [index + 1 ] .Value == ">" )
14 {
15 // Move index to ">"
16 index += 1 ;
17 return true ;
18 }
19 else i f (tokens [index + 1 ] .Value == "<" )
20 {
21 // Move index to generic type
22 index += 2 ;
23
24 i f ( t h i s .CheckGenericInner (tokens , r e f index ) )
25 {
26 // Match end of generic
27 return tokens [index ] . Value == ">" ;
28 }
29 }
30 }
31
32 // No match − Return f a l s e
33 }

Listing 8.23: CheckGenericInner

If CheckGeneric returns true given the next tokens to be parsed, the parser can
parse a type. The parse method for parsing a TypeNode can be seen in Listing
8.24. Lines 3 to 7 parse the namespace part of the type. The last node to be added
to the list of namespace nodes is the name of the type. It is referenced in line 9
and removed from the list in line 10. Lines 12 checks if this type is a generic type.
If that is the case, the GenericType property will be set to a new TypeNode, and
that node will be parsed with the remaining tokens. Line 16 closes the generic
type by accepting a >.

1 public override void AcceptTokens (List<Token> tokens )
2 {
3 do
4 {
5 t h i s .Namespace .Add ( t h i s .ParseWord (tokens ) ) ;
6 }
7 while ( t h i s .CheckSpecial (tokens , ' . ' ) ) ;
8
9 t h i s .Type = t h i s .Namespace .Last ( ) ;

10 t h i s .Namespace .Remove ( t h i s .Type ) ;
11
12 i f ( t h i s .CheckSpecial (tokens , ' < ') )
13 {
14 t h i s .GenericType = new TypeNode ( t h i s .Type ) ;
15 t h i s .GenericType .AcceptTokens (tokens ) ;
16 t h i s .AcceptSpecial (tokens , ' > ') ;
17 }
18 }

Listing 8.24: TypeNode AcceptTokens
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Array Accessor and Method Call

Array accessors and method calls both have the same structure where they have
an expression as a child node. The implementation can be seen in Listing 8.25.
Line 4 checks if the next token is a [. Line 6 creates a new ArrayAccessor-

ExpressionNode. expression is the currently parsed expression, which will
be the child expression of the newly created ArrayAccessorExpressionNode.
Lines 8 to 10 update the pointers to point to the correct expressions, and ex-

pression will now point to the array accessor expression. Lines 12 to 17 either
consume a ], or parse an expression and then consume a ], resulting in either
an empty array accessor or an array accessor with an expression defining the ar-
ray entry point. Lines 20 to 38 handle the parsing of a method call if a ( is found.
Lines 26 to 30 parse comma separated expressions as arguments to the method
call. Lines 35 to 37 update the pointers and update expression to point to the
newly created MethodCallExpressionNode. Line 39 reads the next token for
the while loop at line 1. This loop will keep parsing array accessors or method
calls until the next token does not match either.

1 while (token .Value == " [ " | | token .Value == " ( " )
2 {
3 // Array Accessor
4 i f ( t h i s .CheckSpecial (tokens , ' [ ' ) )
5 {
6 var arrayAccessorExpression = new ArrayAccessorExpressionNode ( t h i s ) ;
7
8 arrayAccessorExpression .Expression = expression ;
9 expression .Parent = arrayAccessorExpression ;

10 expression = arrayAccessorExpression ;
11
12 i f ( ! t h i s .CheckSpecial (tokens , ' ] ' ) )
13 {
14 arrayAccessorExpression .Accessor = arrayAccessorExpression .←-

ParseExpression (tokens ) ;
15
16 t h i s .AcceptSpecial (tokens , ' ] ' ) ;
17 }
18 }
19 // Method Cal l
20 else i f ( t h i s .CheckSpecial (tokens , ' ( ' ) )
21 {
22 var methodCallExpression = new MethodCallExpressionNode ( t h i s ) ;
23
24 i f ( ! t h i s .CheckSpecial (tokens , ' ) ' ) )
25 {
26 do
27 {
28 methodCallExpression .Parameters .Add (methodCallExpression .←-

ParseExpression (tokens ) ) ;
29 }
30 while ( t h i s .CheckSpecial (tokens , ' , ' ) ) ;
31
32 t h i s .AcceptSpecial (tokens , ' ) ' ) ;
33 }
34
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35 methodCallExpression .Expression = expression ;
36 expression .Parent = methodCallExpression ;
37 expression = methodCallExpression ;
38 }
39 token = t h i s .Peek (tokens ) ;
40 }

Listing 8.25: ParseExpression array accessor and method call

Suffix Unary Operation

The code for suffix unary operations can be seen in Listing 8.26. The IsMatchin-
gOperatorList method in line 1 looks through a list of allowed operators, and
returns true, if one of them matches the tokens at the start of the token list. This
means that this loop will run as long as a suffix operator can be parsed. The full
list of suffix unary operators can be seen in A.1. The code in lines 3 to 5 create
a SuffixUnaryOperationExpressionNode and fixes the pointers such that the
currently parsed expression becomes a child of the newly created unary opera-
tion node. Lines 7 and 8 parse the operator, and line 10 updates expression to
point to the newly created expression.

1 while (OperatorNode .IsMatchingOperatorList (tokens , Node .UnaryOperatorsSuffix ) )
2 {
3 var suffixExpression = new SuffixUnaryOperationExpressionNode ( t h i s ) ;
4 suffixExpression .Expression = expression ;
5 expression .Parent = suffixExpression ;
6
7 suffixExpression .Operator = new OperatorNode (suffixExpression ) ;
8 suffixExpression .Operator .AcceptTokens (tokens , Node .UnaryOperatorsSuffix ) ;
9

10 expression = suffixExpression ;
11 }

Listing 8.26: ParseExpression SuffixUnaryOperationExpressionNode

Binary Operation

The code for parsing binary operations can be seen in Listing 8.27. As with suf-
fix unary expressions, IsMatchingOperatorList at line 1 checks if the token
matches one of the operators. In this case, it checks the list of binary operators.
The full list of binary operators can be seen in A.1. In line 3, a new BinaryOp-

erationExpressionNode is created. In line 4, the left child expression of the
binary operation is set to point to expression. Lines 7 and 8 parse the operator.
In line 10 the right child expression of the binary operation is set to point to the
result of parsing another expression.
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1 i f (OperatorNode .IsMatchingOperatorList (tokens , Node .BinaryOperators ) )
2 {
3 var binaryExpression = new BinaryOperationExpressionNode ( t h i s ) ;
4 binaryExpression .LeftExpression = expression ;
5 expression .Parent = binaryExpression ;
6
7 binaryExpression .Operator = new OperatorNode (binaryExpression ) ;
8 binaryExpression .Operator .AcceptTokens (tokens , Node .BinaryOperators ) ;
9

10 binaryExpression .RightExpression = t h i s .ParseExpression (tokens ) ;
11
12 expression = binaryExpression ;
13 }

Listing 8.27: ParseExpression Binary Operation

8.2.8 Parse Expression Example

To show how the parser parses an expression, this section shows how a partial
abstract syntax tree is built from an expression. The source code of the expres-
sion is:

a = 1 + f()

The scanner will generate the following list of tokens from the source code:

{ a, =, 1, +, f, (, ) }

At some point in the process of parsing the source code, the ParseExpression

method will be called with a list as input starting with those tokens.

Initially, the first token, a, is recognized as a word expression and a WordEx-

pression node is created. Then the next token, =, is recognized as a binary
operator, and a BinaryOperationExpressionNode is created with a as the left
expression, = as the operator, and ParseExpression is called again with the re-
maining tokens. The current partial abstract syntax tree can be seen in Figure
8.1.

How the second call to ParseExpression expands the partial abstract syntax
tree can be seen in Figure 8.2. Here the first token, 1, is recognized as a Num-

berNode, and the plus operator creates another binary expression, which again
calls ParseExpression with the remaining tokens.

The result of the third call to ParseExpression can be seen in Figure 8.3. Here
the first token, f, is recognized as a WordNode and the next token, (, starts a
method call. This means that a MethodCallNode is created with the word node
as a child node, and parameters are parsed until the ) is reached. In this example
there are no parameters, so the partial syntax tree has been built, and can be
returned to where it was called from.
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Figure 8.1: Parse Expression

Figure 8.2: Parse Expression

8.3 Visitors

Once the parser is done parsing the tokens provided by the scanner, each vis-
itor is run to prepare the AST for code generation. This section describes the
visitors: Binary expression organizer, scope checker, and the final visitor, which
generates the C# code.

Each visitor inherits from BaseVisitor, which has one method for visiting each
node type. The base implementations of these methods call the visit method on
each child node. Any number of these methods can be overwritten by visitors in-
heriting from the BaseVisitor. An example of the Visit(ActorNode) method
can be seen in Listing 8.28. It shows how the visit method is called with every
child node. It makes use of another overload of the Visit method for IEnu-
merable<Node>, which can be seen in Listing 8.29. It uses dynamic casting to
call the correct overload for the Visit method based on the dynamic type of the
nodes in the list.
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Figure 8.3: Parse Expression

1 public v i r t u a l void Visit (ActorNode node )
2 {
3 t h i s .Visit (node .Locals ) ;
4 t h i s .Visit (node .Constructors ) ;
5 t h i s .Visit (node .Functions ) ;
6 t h i s .Visit (node .MessagePatterns ) ;
7 }

Listing 8.28: Visit actor node

1 public void Visit (IEnumerable<Node> list )
2 {
3 foreach (dynamic element in list )
4 {
5 t h i s .Visit (element ) ;
6 }
7 }

Listing 8.29: Visit IEnumerable

8.3.1 Binary Expression Organizer

As explained in Section 7.4.1, the objective of the binary expression organizer
is to reorder nested binary expressions, such that other visitors can visit the ex-
pressions in a more meaningful order.

Nested binary operations in the abstract syntax tree are ordered as seen in Figure
8.4a, and the binary expression organizer orders them as seen in Figure 8.4b.
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(a) Before Binary Expression Organizer (b) After Binary Expression Organizer

Figure 8.4: Before and after Binary Expression Organizer

The simple approach would be to move the nodes as seen in Figure 8.4b, such
that operation A takes the place of operation C and visa versa. What complicates
the problem is that A has a parent P, and their relationship is unknown to the vis-
itor. P has some reference pointing to A, but if the simple approach is followed,
this reference must be updated to point to C instead of A. As this is not feasible,
we design and apply another strategy where the references within the nested
operations are changed instead of changing the references from the parent. The
end result of this other approach can be seen in Figure 8.5.
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Figure 8.5: Reorganization Goal

The binary expression organizer has two primary steps to reorganize the nested
operations when visiting a BinaryOperationExpressionNode. (1) Reorder the
leaf nodes of the nested operations, and (2) Swap the left and right expressions
of each of the nested operations. The steps will be explained in the next two
sections.

Reorder leaf nodes

The overridden Visit(BinaryOperationExpressionNode)method on the vis-
itor can be seen in Listing 8.30. Line 3 checks if another binary expression fol-
lows this one. If that is the case, this node must be reorganized, otherwise the
Visitmethod on the base class is called in line 19 and no special action is taken.
The first step is to reorder the operators and leaf expressions. During this step
the structure of the abstract syntax tree remains intact, and only the leaf expres-
sion nodes and operator nodes are moved. In line 9, the Swap method is called
on the current node. The intuition behind this method is that it swaps leaf nodes
between layers of the tree until it reaches the bottom of the tree.
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1 public override void Visit (BinaryOperationExpressionNode node )
2 {
3 i f (node .RightExpression i s BinaryOperationExpressionNode )
4 {
5 // Swap operators and l e a f expressions
6 var currentBinaryExpression = node ;
7 while (currentBinaryExpression .RightExpression i s ←-

BinaryOperationExpressionNode )
8 {
9 Swap (currentBinaryExpression , (BinaryOperationExpressionNode )←-

currentBinaryExpression .RightExpression ) ;
10 currentBinaryExpression = (BinaryOperationExpressionNode )←-

currentBinaryExpression .RightExpression ;
11 }
12
13 // Swap l e f t and r i g h t expressions
14
15 // V i s i t a l l sub−nodes other than binary expressions
16 }
17 else
18 {
19 base .Visit (node ) ;
20 }
21 }

Listing 8.30: Visit binary expression

An example of the result of calling Swap can be seen in Figure 8.6. d changes
from being the right child element of C to being the left child element of A, and -

changes from C to A. The while loop at line 7 continues to swap elements until
it reaches the bottom of the tree. In the example in Figure 8.6, the swap method
was called on A and B, and will be called again on B and C in the second iteration
of the while loop. The result of the second iteration can be seen in Figure 8.7,
which completes the leaf reordering step of the algorithm.

The implementation of the Swapmethod can be seen in Listing 8.31. It is divided
into two methods, where the method seen in line 1 is the entry point. It takes two
BinaryOperationExpressionNodes, b1 and b2 as arguments, where b2 is the
right child of b1. It calls the method at line 12 with b2 as input. Lines 4 to 9 swap
the operators between b1 and b2, as well as the left expressions. The method in
line 12 first checks if the right child expression is also a binary expression. If that
is the case, the method on line 1 is called with the new pair where the new b1 is
the old b2 and the new b2 is the right child expression of the old b2. If the binary
expression did not have a binary expression as the right child expression, its left
and right child expressions are swapped.
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(a) Before swap (b) After swap

Figure 8.6: Before and after swap

1 protected void Swap (BinaryOperationExpressionNode b1 , BinaryOperationExpressionNode←-

b2 )
2 {
3 Swap (b2 ) ;
4 var b1Operator = b1 .Operator ;
5 var b1Left = b1 .LeftExpression ;
6 b1 .Operator = b2 .Operator ;
7 b2 .Operator = b1Operator ;
8 b1 .LeftExpression = b2 .LeftExpression ;
9 b2 .LeftExpression = b1Left ;

10 }
11
12 protected void Swap (BinaryOperationExpressionNode node )
13 {
14 i f (node .RightExpression i s BinaryOperationExpressionNode )
15 {
16 Swap (node , (BinaryOperationExpressionNode )node .RightExpression ) ;
17 }
18 else
19 {
20 var tempLeftExpression = node .LeftExpression ;
21 node .LeftExpression = node .RightExpression ;
22 node .RightExpression = tempLeftExpression ;
23 }
24 }

Listing 8.31: Swap

To summarize, calling the Swap method on A and B in the example in Figure 8.6a
and then calling it on B and C will result in the tree in Figure 8.7. This final tree
will be used in the next step, where the left and right child expressions of all of
the binary expressions are swapped.
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Figure 8.7: Reorganization Goal

Swapping left and right expressions

Now that the tree has been reordered as seen in Figure 8.8a, the left and right
expressions will be swapped to change it to the one seen in Figure 8.8b.

Listing 8.32 shows the continuation of the code from Listing 8.30. In lines 7 to
9, the left and right expressions are swapped on the current node. The current
node is updated in line 11 to point to the child node, and the process is repeated.
This continues until every binary operation node has had its left and right ex-
pressions swapped. After the loop in line 5 has ended, the tree looks like the
one in Figure 8.8b. This process has reordered the sub-tree involving multiple
layers of nodes of the abstract syntax tree, which means that simply visiting the
children of the current node using the base.Visit method will not work. The
children that are binary expressions have already been handled by this node,
which means that they must not be visited again. As a result of this, the unvis-
ited children are visited manually. This happens in lines 15 to 24. In lines 15 to
20, the right child expressions of the nested binary expressions are visited, and
in lines 23 and 24, both of the children of the leaf binary expression node are
visited.
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(a) Before swapping left and right (b) After swapping left and right

Figure 8.8: Before and after swap

1 // Swap operators and expressions
2
3 // Swap l e f t and r i g h t expressions
4 currentBinaryExpression = node ;
5 while (currentBinaryExpression .RightExpression i s BinaryOperationExpressionNode )
6 {
7 var tempLeft = currentBinaryExpression .LeftExpression ;
8 currentBinaryExpression .LeftExpression = currentBinaryExpression .←-

RightExpression ;
9 currentBinaryExpression .RightExpression = tempLeft ;

10
11 currentBinaryExpression = (BinaryOperationExpressionNode )←-

currentBinaryExpression .LeftExpression ;
12 }
13
14 // V i s i t a l l sub−nodes other than binary expressions
15 currentBinaryExpression = node ;
16 while (currentBinaryExpression .LeftExpression i s BinaryOperationExpressionNode )
17 {
18 t h i s .Visit (currentBinaryExpression .RightExpression ) ;
19 currentBinaryExpression = (BinaryOperationExpressionNode )←-

currentBinaryExpression .LeftExpression ;
20 }
21
22 // V i s i t the sub−nodes of the l a s t binary expression
23 t h i s .Visit (currentBinaryExpression .LeftExpression ) ;
24 t h i s .Visit (currentBinaryExpression .RightExpression ) ;

Listing 8.32: Swapping left and right expressions
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8.3.2 Scope Checker

The purpose of the scope checker is to check if a variable already exists in a
scope.

The Node class has a local variable IsScope, which indicates whether or not that
node is a scope. Finding the closest scope from a node is done using the Clos-

estScope property, which can be seen in Listing 8.33. It looks upwards in the
abstract syntax tree through the node’s chain of ancestors until a scope is found
returning that scope.

1 public Node ClosestScope

2 {
3 get

4 {
5 i f ( t h i s .Parent .IsScope )
6 {
7 return Parent ;
8 }
9 else

10 {
11 return Parent .ClosestScope ;
12 }
13 }
14 }

Listing 8.33: Finding the closest scope

Every scope has a list of ScopeVariables called VariableList. A ScopeVari-

able consists of a name and a node. Adding a ScopeVariable to a scope is
done through the AddVariable method, which can be seen in Listing 8.34. Line
3 checks the VariableList on the scope for any other ScopeVariable with the
same name as the new variable. If any variable is found, a TypeAlreadyExist-
sException is thrown. Otherwise, the new variable is added to the variable list.

1 public void AddVariable (ScopeVariable variable )
2 {
3 i f ( t h i s .VariableList .Any (v=>v .Name == variable .Name ) )
4 {
5 throw new TypeAlreadyExistsException (variable ) ;
6 }
7 else
8 {
9 t h i s .VariableList .Add (variable ) ;

10 }
11 }

Listing 8.34: Adding a scope variable

The scope checker visitor overrides all methods of nodes that are variables, which
includes ActorNode, MessageNode, SimulationNode, FunctionNode, and Vari-

ableDeclNode. Listing 8.35 shows the override of the Visit(VariableDeclNode)
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method. Line 3 shows how a new ScopeVariable is created based on the Vari-
ableDeclNode. Line 4 finds the closest scope and adds the variable to that
scope. Line 5 calls the Visit method on the base class, to visit the children of
the node. The Visit methods of all the other variable nodes are implemented
similarly to the VariableDeclNode.

1 public override void Visit (VariableDeclNode node )
2 {
3 var variable = new ScopeVariable (node .Name .Value , node ) ;
4 node .ClosestScope .AddVariable (variable ) ;
5 base .Visit (node ) ;
6 }

Listing 8.35: Visit variable declaration

8.3.3 C# Code Generator

Generating the final C# code is done using the AKKACodeGeneratorVisitor. It
inherits from the TextGeneratorVisitor, which is a generalized class for gen-
erating text by visiting an abstract syntax tree. The TextGeneratorVisitor has
two state variables, string Result, which contains the result string, and int

Indentation, which controls how much indentation new lines adds to the re-
sult string. It has some methods for appending text to the result string, such as
AppendLine, which ends the current line and appends the input at the start of
the next line, AppendLines, which visits all nodes in a list appending a line break
before each visit, or AppendCommaSeparatedList, which appends commas be-
tween all nodes in a list.

An code snippet from the code generator visitor can be seen in Listing 8.36,
which shows the Visit(ConstructorNode) method override. A constructor
node contains the code for a constructor on an actor. In C#, a constructor has
the form

accessLevel nameOfClass ( parameters ) { code }

Line 5 in Listing 8.36 appends the "public" accessLevel. Line 6 appends the
nameOfClass. Lines 7 to 9 append a comma separated list of parameters. Nor-
mally, the rest of the constructor could be built by calling the Visit method on
the block, but in the case of constructors, a call to the _Initialize method
must be injected. Line 10 starts the block with a {. Line 11 adds one level of
indentation, line 12 adds the method call, and line 13 subtracts one level from
the indentation again. The AppendLines used in line 14 automatically adds one
level of indentation before appending the lines and subtracts one level of inden-
tation afterwards. Line 15 ends the block with a }.

66



1 public override void Visit (ConstructorNode node )
2 {
3 ActorNode actor = (ActorNode )node .Parent ;
4
5 t h i s .Append ( " public " ) ;
6 t h i s .Visit (actor .Name ) ;
7 t h i s .Append ( " ( " ) ;
8 t h i s .AppendCommaSeparatedList (node .InputParameters ) ;
9 t h i s .Append ( " ) " ) ;

10 t h i s .AppendLine ( " { " ) ;
11 t h i s .Indentation++;
12 t h i s .AppendLine ( " t h i s . _ I n i t i a l i z e ( ) ; " ) ;
13 t h i s .Indentation−−;
14 t h i s .AppendLines (node .Block .Statements ) ;
15 t h i s .AppendLine ( " } " ) ;
16 }

Listing 8.36: Generate C# actor constructor code

Two of the more complicated parts of the visitor are Visit(PrefixUnaryOperation-
ExpressionNode) and Visit(BinaryOperationExpressionNode).

The interesting part of the handling of unary expressions is when instantiating
a new actor. As explained in Section 6.1.2, instantiating an actor in Akka.NET is
done by calling

Context.ActorOf(MyActor.Props())

instead of

new MyActor()

The code for Visit(PrefixUnaryOperationExpressionNode) can be seen in
Listing 8.37. The lines 1 to 5 checks whether the unary operator is "new", the
expression is a MethodCallExpressionNode, and the expression on the method
call is a type node. Lines 7 to 11 check if the type is an actor. If that is the case, the
code for actor instantiation is inserted instead of handling the node as a normal
unary expression. Lines 14 to 24 appends the code for instantiating the actor.

1 i f (
2 node .Operator .Value == "new" &&
3 node .Expression i s MethodCallExpressionNode &&
4 ( (MethodCallExpressionNode )node .Expression ) .Expression i s TypeNode

5 )
6 {
7 var methodCallNode = (MethodCallExpressionNode )node .Expression ;
8 var typeNode = (TypeNode )methodCallNode .Expression ;
9 var variable = node .GetVariable (typeNode ) ;

10 // I f type i s an actor or simulation
11 i f (variable != null && (variable .Node i s ActorNode | | variable .Node i s ←-

SimulationNode ) )
12 {
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13 // Create actor using " Context . ActorOf " instead of "new"
14 t h i s .Append ( " Context . ActorOf ( " ) ;
15 foreach (var name in typeNode .Namespace )
16 {
17 t h i s .Visit ( (dynamic )name ) ;
18 t h i s .Append ( " . " ) ;
19 }
20 t h i s .Append (typeNode .Type .Value ) ;
21 t h i s .Append ( " . Props" ) ;
22 t h i s .Append ( " ( " ) ;
23 t h i s .AppendCommaSeparatedList (methodCallNode .Parameters ) ;
24 t h i s .Append ( " ) ) " ) ;
25 }
26 else { base .Visit (node ) ; }
27 }
28 else { base .Visit (node ) ; }

Listing 8.37: Generate C# unary expression

The generated C# code utilizes a custom library called ActorUtils, which will
now be explained.

8.4 ActorUtils

ActorUtils is a library, supplementing the generated code with some base func-
tionality related to the actor system of Akka.NET. The main feature of ActorU-
tils is the runtime, ActorRuntime. It contains the current system, the current
simulation, and a method to output data from the running actor simulation.
Listing 8.38 contains the implementation of the static ActorRuntime class. Line
3 and 4 show the current simulation and current system. The CurrentSystem is
used whenever a new simulation is created. Line 5 contains the default behavior
for the HandleOutput method. This method is invoked from actors or simula-
tions to provide feedback to the user. The default behavior is to just write the
output to the console.

1 public s t a t i c c l a s s ActorRuntime

2 {
3 public s t a t i c IActorRef CurrentSimulation { get ; set ; }
4 public s t a t i c ActorSystem CurrentSystem { get ; set ; }
5 public s t a t i c Action<object > HandleOutput { get ; set ; } = ( object obj ) => { ←-

Console .WriteLine (obj .ToString ( ) ) ; } ;
6
7 public s t a t i c void StartSystem ( )
8 {
9 ActorRuntime .CurrentSystem = ActorSystem .Create ( " current−system" ) ;

10 }
11
12 public s t a t i c void TerminateSystem ( )
13 {
14 ActorRuntime .CurrentSystem .Dispose ( ) ;
15 }
16 }

Listing 8.38: ActorRuntime
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All actors in Thespian inherit the BaseActor class from ActorUtils. The BaseAc-
tor provides the actor with a reference to the current simulation for sending
messages to that simulation, which can be seen in Listing 8.39 on lines 3 to
7. Additionally, it has a protected method for sending output to the runtime
as seen in line 10. As explained in Chapter 6, Thespian uses a different syntax
for timeouts than Akka.NET. Lines 13 to 31 define a property, Timeout, which
is used to invoke the Akka.NET method, Context.SetReceiveTimeout. null
can be passed as input to the property to remove the timeout by invoking Con-

text.SetReceiveTimeout(null).

1 public c l a s s BaseActor : ReceiveActor

2 {
3 protected IActorRef Simulation { get ; set ; }
4 public BaseActor ( )
5 {
6 t h i s .Simulation = ActorRuntime .CurrentSimulation ;
7 }
8 protected void Output ( object obj )
9 {

10 ActorRuntime .HandleOutput (obj ) ;
11 }
12 protected double ? _timeoutMilliseconds ;
13 public double ? Timeout

14 {
15 get

16 {
17 return _timeoutMilliseconds ;
18 }
19 set

20 {
21 i f (value == null )
22 {
23 Context .SetReceiveTimeout ( null ) ;
24 }
25 else
26 {
27 _timeoutMilliseconds = value .Value ;
28 Context .SetReceiveTimeout (TimeSpan .FromMilliseconds (value .Value ) ) ;
29 }
30 }
31 }
32 }

Listing 8.39: BaseActor

In addition to the inherited features of BaseActor, a Helper class has been in-
cluded. It has one method, Random, which returns a random integer between
the two input min and max values. The idea is to add functionality to this class,
which can be used to help build simulations using Thespian.
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8.5 Summary

In this chapter, the implementation of the Thespian compiler was shown. Now
that the Thespian compiler has been implemented, Mask can be implemented
and use that compiler.

70



9. IDE Implementation

This chapter documents the implementation of the Mask IDE.

9.1 Introduction

When working with C#, there are two obvious candidates for building graphical
user interfaces; Windows Forms and Windows Presentation Foundation (WPF).
Windows Forms is the old approach to desktop development for Windows. WPF
is the new approach for .NET 3.0. There are no clear advantages to using either
of the two for this specific project. We have previous experience with Windows
Forms, but not with WPF, which is why we choose WPF to get some experience
with it.

9.2 Windows Presentation Foundation

WPF uses Extensible Application Markup Language (XAML), which is a variant
of XML. XAML is designed specifically for WPF to describe the structure of a WPF
application, as a way to separate the structure from the logic of the application.
The logic is implemented in C#. The XAML file has a description of which C#
class contains the logic to the XAML file.

Listing 9.2 shows the content of the MaskMainWindow.xaml file, which contains
the root element of the Mask application. The root element is a Window, which
contains the content in the application. The attribute at line 1, Class = "IDE.MaskMainWindow",
determines which C# class the window describes. Lines 3 sets the Title of the
window, which is the text seen in the top left corner of the window, as well as the
dimensions of the window. The content of the Window consists of the XAML for
the general layout of Mask and the menu system in the top bar.

1 <Window x : C l a s s ="IDE . MaskMainWindow"
2 <!−− xaml namespace l o g i c omitted −−>
3 Title="Mask" Height=" 484.39 " Width=" 830.192 ">
4 < !−− Window content omitted −−>
5 </Window>

Listing 9.1: Mask XAML Window

A screenshot of the final product can be seen in Figure 9.1. 6 objects have been
highlighted on the figure; (1) is the file menu, (2) is the program tree view, (3) is
the path of the selected node from (2), (4) is the code box for editing Thespian
code in the selected node from (2), (5) is the output box, and (6) is a button to
clear the content of the output box.
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Figure 9.1: Mask Screenshot

9.3 Menu system

The menu system is the (1) in Listing 9.1. It consists of three menu items; File,
Build, and New. File contains file handling features such as saving and loading
Thespian code files. Build has a method for outputting the Thespian code in
Mask. New contains short cuts for creating new actors, messages, or simulations.
Listing 9.2 shows the XAML describing the menu system. Line 1 to 8 set up key
bindings as alternative ways to use the functionality in the menu system. Lines 2
and 3 define the commands Open and Save respectively. The Executed attribute
in each of those lines determine, which C# method to run, when the command
is activated. Lines 6 and 7 define key bindings where the Command attribute de-
termine, which command the key binding will activate. Lines 10 to 25 contain
the actual menu. Line 11 defines the File menu. The Header attribute deter-
mines the label on the item and underscore (_) indicates the hotkey to be used
to select the menu item using the alt key. Each sub menu item uses the same
attributes as before, where Command is the command to activate when the menu
item is selected and Click is the C# code to run when the menu item is selected.
InputGestureText is just a label to the right of the menu item showing the user,
which hotkey to use.
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1 <Window. CommandBindings>
2 <CommandBinding Command="Open" Executed="OpenCommandBinding_Executed"></←-

CommandBinding>
3 <CommandBinding Command="Save" Executed="SaveCommandBinding_Executed"></←-

CommandBinding>
4 </Window. CommandBindings>
5 <Window. InputBindings>
6 <KeyBinding Key="O" Modifiers=" Control " Command="Open"></KeyBinding>
7 <KeyBinding Key="S" Modifiers=" Control " Command="Save"></KeyBinding>
8 </Window. InputBindings>
9

10 <Menu DockPanel . Dock="Top" Background=" { x:Nul l } ">
11 <MenuItem Header=" _ F i l e ">
12 <MenuItem Header="_Open" Command="Open" InputGestureText=" C t r l +O" />
13 <MenuItem Header=" _Close " />
14 <MenuItem Header="Save As" Click=" MenuItem_SaveFileAs_Click " />
15 <MenuItem Header="_Save" Command="Save" InputGestureText=" C t r l +S" />
16 </MenuItem>
17 <MenuItem Header=" _Build ">
18 <MenuItem Header="Show actor code" Click="MenuItem_ShowGeneratedCode_Click"←-

></MenuItem>
19 </MenuItem>
20 <MenuItem Header="_New">
21 <MenuItem Header="New _Actor " Click="MenuItem_NewActor_Click" ></MenuItem>
22 <MenuItem Header="New _Simulation " Click="MenuItem_NewSimulation_Click" ></←-

MenuItem>
23 <MenuItem Header="New _Message" Click="MenuItem_NewMessage_Click" ></←-

MenuItem>
24 </MenuItem>
25 </Menu>

Listing 9.2: Mask XAML Window

9.4 Main content

Listing 9.3 shows the XAML describing the general layout of Mask. This includes
the numbered objects in Listing 9.1 from (2) to (6). On line 3 to 7 the size of the
columns, which contain Mask’s UI elements are defined. There are 5 columns;
column 0 contains the program tree structure, column 1 contains a grid splitter
for resizing, column 2 contains the code box where Thespian code is written,
column 3 contains another grid splitter, and column 4 contains the output text
box. On lines 9 to 10 a TreeView to store the program structure is defined. The
content of the tree is constructed dynamically later from C#. The TreeView and
how it is built is described in Section 9.5. On lines 12 to 19 the Thespian code box
is defined. It has another vertical grid with two rows; row 0 contains the current
path of the code box and row 1 contains the actual code box. Line 18 shows
the definition of the code box. The TextChanged property is an event, which
determines the name of the C# method to call when the text is changed. Line 21
shows the definition of the output box, and line 22 shows the definition of the
button, which is used to clear the output box. The Click property determines,
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which C# method to call, when the button is clicked.

1 <Grid Grid .Row="1" Margin=" 10 , 0 , 10 , 10">
2 <Grid . ColumnDefinitions>
3 <ColumnDefinition Width=" * " />
4 <ColumnDefinition Width="5" />
5 <ColumnDefinition Width=" 2* " />
6 <ColumnDefinition Width="5" />
7 <ColumnDefinition Width=" * " />
8 </ Grid . ColumnDefinitions>
9 <TreeView x:Name="TreeSourceCode">

10 </TreeView>
11 < G r i d S p l i t t e r Grid . Column="1" Width="5" HorizontalAlignment=" Stretch " />
12 <Grid Grid . Column="2">
13 <Grid . RowDefinitions>
14 <RowDefinition Height="20" />
15 <RowDefinition Height=" * " />
16 </ Grid . RowDefinitions>
17 <Label x:Name=" CurrentCodeFileLabel " Grid .Row="0" Content=" " Margin="←-

0 ,−5 ,0 ,0 " />
18 <TextBox x:Name="CodeBox" Grid .Row="1" FontSize="14" TextWrapping="Wrap" ←-

AcceptsReturn="True" AcceptsTab="True" V e r t i c a l S c r o l l B a r V i s i b i l i t y ="←-

Auto" TextChanged="CodeBox_TextChanged" FontFamily=" Courier New"></←-

TextBox>
19 </ Grid>
20 < G r i d S p l i t t e r Grid . Column="3" Width="5" HorizontalAlignment=" Stretch " />
21 <TextBox x:Name="OutputBox" Grid . Column="4" FontSize="12" TextWrapping="Wrap" ←-

Margin=" 0 ,0 " IsReadOnly="True" V e r t i c a l S c r o l l B a r V i s i b i l i t y ="Auto"></←-

TextBox>
22 <Button x:Name=" BtnClear " Content=" Clear " Grid . Column="4" Height="20" ←-

VerticalAlignment="Bottom" Click=" BtnClear_Click " />
23 </ Grid>

Listing 9.3: Mask XAML general layout

9.5 Code Tree

The design sketch for Mask shows a menu system, which expands horizontally
when navigating through the code, as can be seen on Figure 9.2a. WPF offers a
TreeView class, which can contain TreeNode children, which can contain other
TreeNode children. We use this structure to build a tree of code items as seen in
Figure 9.2b. This means that the Program node has the children Actors, Mes-
sages, and Simulations. This tree view approach to program structure has
some advantages compared to the design in the sketch. The tree structure is
more compact without losing any details and the modeler can hide unnecessary
information with the collapse feature.
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(a) Design sketch of program structure (b) Final design of program structure

Figure 9.2: Before and after Binary Expression Organizer

TreeViewItem is the C# class, which is used to represent a node in the tree. We
create a new class called TreeNode with basic functionality for a tree node in the
tree. The constructor for the TreeNode can be seen in Listing 9.4. Line 3 creates a
new ContextMenu, which is a container box. We use the context menu to display
the right-click menu of each node. The context menu is initially empty, and
items can be added to it later. Line 4 hides the ContextMenu. This is done to
prevent an empty ContextMenu from being show. Lines 5 to 8 adds a listener
to the MouseRightButtonDown event, which marks the TreeNode as selected.
Line 6 set the Handled property on the event to true. This means that the event
chain will stop, and the ancestors of the TreeNode will be marked as selected.
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1 public TreeNode ( )
2 {
3 t h i s .ContextMenu = new ContextMenu ( ) ;
4 t h i s .ContextMenu .Visibility = Visibility .Hidden ;
5 t h i s .MouseRightButtonDown += ( object sender , MouseButtonEventArgs e ) =>
6 {
7 ( (TreeNode )sender ) .IsSelected = true ;
8 e .Handled = true ;
9 } ;

10 }

Listing 9.4: TreeNode

After a TreeNode has been constructed, items can be added to the ContextMenu
using the AddContextMenuItem as described in Listing 9.5. Line 3 sets the vis-
ibility of the ContextMenu to Visible. Line 5 creates the new menu item, line
6 sets the header, and line 7 adds a listener to the Click event. Line 9 adds the
newly created item to the ContextMenu.

1 protected void AddContextMenuItem (TreeNode item , s t r i n g header , Action<TreeNode> ←-

action )
2 {
3 item .ContextMenu .Visibility = Visibility .Visible ;
4
5 var menuItem = new MenuItem ( ) ;
6 menuItem .Header = header ;
7 menuItem .Click += ( object o , RoutedEventArgs args ) => { action (item ) ; } ;
8
9 item .ContextMenu .Items .Add (menuItem ) ;

10 }

Listing 9.5: Adding ContextMenu

9.5.1 Program

The root node of the tree is the Program. The properties and the constructor
of the Program node can be seen in Listing 9.6. Lines 1 to 3 initialize three
TreeNodeLists. Each TreeNodeList is a node in the tree, which has a dynamic
amount of child nodes. The header of each node is defined by the input; "Ac-
tors", "Messages", and "Simulations". The constructor, which starts at line
4, defines a header in line 6 and adds the three TreeNodeLists as children of
the Program node in lines 7 to 9. Lines 11 to 25 adds items to the ContextMenu

to create new actors, messages, and simulations.
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1 public TreeNodeList Actors { get ; set ; } = new TreeNodeList ( " Actors " ) ;
2 public TreeNodeList Messages { get ; set ; } = new TreeNodeList ( "Messages" ) ;
3 public TreeNodeList Simulations { get ; set ; } = new TreeNodeList ( " Simulations " ) ;
4 public Program ( )
5 {
6 t h i s .Header = "Program" ;
7 t h i s .Items .Add (Actors ) ;
8 t h i s .Items .Add (Messages ) ;
9 t h i s .Items .Add (Simulations ) ;

10
11 AddContextMenuItem (Actors , "New" ,
12 ( ) =>
13 {
14 Window .NewActor ( ) ;
15 } ) ;
16 AddContextMenuItem (Messages , "New" ,
17 ( ) =>
18 {
19 Window .NewMessage ( ) ;
20 } ) ;
21 AddContextMenuItem (Simulations , "New" ,
22 ( ) =>
23 {
24 Window .NewSimulation ( ) ;
25 } ) ;
26
27 t h i s .IsExpanded = true ;
28 }

Listing 9.6: Program

The other tree nodes, Actor, Message, and Simulation are implemented in a
similar manner.

9.5.2 Dynamic Node Header

Some of the tree nodes need to change the header dynamically. The four node
types that change the headers are Constructor, Function, Message, and Re-

ceive.

1 protected s t r i n g _code = " " ;
2 public s t r i n g Code

3 {
4 get { return _code ; }
5 set

6 {
7 _code = value ;
8 t h i s .OnCodeChange ( ) ;
9 }

10 }
11
12 public v i r t u a l void OnCodeChange ( ) { }

Listing 9.7: SourceCodeNode
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This is implemented as the class SourceCodeNode, which inherits from TreeN-

ode. The relevant parts of this node can be seen in 9.7. The written code is con-
tained within the string _code as seen in line 1. _code is accessed through
the property Code at 2, which calls the OnCodeChange method at line 12 after
changing _code.

Constructor, Function, Message, and Receive all inherit from SourceCodeN-

ode and override the OnCodeChangemethod. The relevant parts of the Function
class can be seen in 9.8. Lines 8 to 11 overrides the OnCodeChangemethod to call
the UpdateHeader method at line 1. The GetTreeName method removes all line
breaks from the input string and truncates the string to avoid too long headers.
The GetStringToFirstChar method truncates the input string after the first
instance of the input char.

1 protected void UpdateHeader ( )
2 {
3 t h i s .Header = SourceCodeService .GetTreeName (
4 SourceCodeService .GetStringToFirstChar (Code , ' ) ' )
5 ) ;
6 }
7
8 public override void OnCodeChange ( )
9 {

10 UpdateHeader ( ) ;
11 }

Listing 9.8: Function

In the case of Function this means that the header will be everything from the
output type including the parameter list, but not including the function body. As
an example of this, the Thespian function seen in Listing 9.9 will have the header
"void MyFunction()".

1 void MyFunction ( )
2 {
3 Console .WriteLine ( "Function cal led . " ) ;
4 }

Listing 9.9: Thespian function

Constructor, Message, and Receive are implemented in a similar manner.

9.6 Generating Thespian Code

The Thespian code contained within a Mask program is split between the differ-
ent nodes in the source tree. This code is gathered and put together forming a
string of Thespian source code to send to the Thespian compiler.
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Each TreeNodehas a GenerateCodemethod, which returns the source code as a
string. The implementation of the GenerateCode method on the root node, the
Program node, can be seen in Listing 9.10. It calls the child nodes to generate
code and inserts line breaks for verification.

1 var code = " " ;
2
3 code += Actors .GenerateCode ( ) ;
4 code += TreeNode .NewLine ;
5 code += Messages .GenerateCode ( ) ;
6 code += TreeNode .NewLine ;
7 code += Simulations .GenerateCode ( ) ;
8
9 return code ;

Listing 9.10: Generate Thespian Program

Listing 9.11 shows how the code for an actor node is generated. The proper-
ties TreeNode.NewLineIn and TreeNode.NewLineOut are used for inserting a
newline with indentation. NewLineIn increases indentation and NewLineOut

decreases indentation.

1 var code = " actor " + t h i s .Name + " { " ;
2 code += TreeNode .NewLineIn + " l o c a l s { " +
3 TreeNode .NewLineIn + Locals .GenerateCode ( ) +
4 TreeNode .NewLineOut + " } " ;
5 code += TreeNode .NewLine + " constructors { " +
6 TreeNode .NewLineIn + Constructors .GenerateCode ( ) +
7 TreeNode .NewLineOut + " } " ;
8 code += TreeNode .NewLine + " receives { " +
9 TreeNode .NewLineIn + Receives .GenerateCode ( ) +

10 TreeNode .NewLineOut + " } " ;
11 code += TreeNode .NewLine + " functions { " +
12 TreeNode .NewLineIn + Functions .GenerateCode ( ) +
13 TreeNode .NewLineOut + " } " ;
14 code += TreeNode .NewLineOut + " } " ;
15 return code ;

Listing 9.11: Generate Thespian Actor

Most other nodes are implemented in a similar fashion, with the exception of
leaf nodes. Leaf nodes in the tree are either empty lists, which are instances of
TreeNodeList, or nodes with source code, which are instances of SourceCo-
deNode. Each empty TreeNodeList generates no code. Each SourceCodeN-

ode has a string variable containing the code. The GenerateCode method for
SourceCodeNode replaces all line breaks in the code with TreeNode.NewLine

to get the correct indentation. The method can be seen in Listing 9.12.

1 return Code .Replace ( " \n" , TreeNode .NewLine ) ;

Listing 9.12: Generate Thespian SourceCodeNode
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9.7 Saving and Loading Thespian Code

Thespian source code generated by Mask can be saved and loaded. Loading is
done by parsing Thespian source code. The parser from the Thespian compiler
can not be used here, as incomplete or erroneous code written in Mask can be
saved and loaded at a later time. Because of this, a new parser is implemented
for loading Thespian code written in Mask. This new parser has the advantage
of being able to blindly parse each Thespian# block as a single string, instead of
building a complete AST.

The parser is implemented as a C# class called ThespianParser. It has a Parse-
Program method, which parses the loaded file and returns a tree with a Program
node as the root node. This method can be seen in Listing 9.13. Lines 9 to 13
parse an actor. Line 9 parses the name of the actor. Line 10 parses the entire
content of the actor. The ParseClosure method will return a string contain-
ing everything until the first instance of the first input char and ending with the
second input char. The last input argument is whether or not the containing
chars are included in the returned string. Line 11 instantiates the next parser,
ActorParser with the content of the parser. Line 12 calls the Parse method on
the ActorParser, which parses the input and returns a new Actor node. Lines
16 to 19 parse a message, with line 16 parsing the name and line 17 parsing the
content. As a message has no children, there is no need to parse the content any
further. Lines 22 to 26 handle parsing of simulations, which is similar to how
actors are parsed.

1 Program program = new Program ( ) ;
2
3 while ( ! IsEndOfFile )
4 {
5 var word = ParseWord ( ) ;
6 switch (word )
7 {
8 case " actor " :
9 var actorName = ParseWord ( ) ;

10 var actorContent = ParseClosure ( ' { ' , ' } ' , f a l s e ) ;
11 var actorParser = new ActorParser (actorContent ) ;
12 var actor = actorParser .Parse (actorName ) ;
13 program .Actors .Add (actor ) ;
14 break ;
15 case "message" :
16 var messageName = ParseWord ( ) ;
17 var message = new Message (messageName ) ;
18 message .Code = ParseClosure ( ' ( ' , ' ) ' ) ;
19 program .Messages .Add (message ) ;
20 break ;
21 case " simulation " :
22 var simulationName = ParseWord ( ) ;
23 var simulationContent = ParseClosure ( ' { ' , ' } ' , f a l s e ) ;
24 var simulationParser = new SimulationParser (simulationContent ) ;
25 var simulation = simulationParser .Parse (simulationName ) ;
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26 program .Simulations .Add (simulation ) ;
27 break ;
28 default :
29 throw new Exception ( "Expected ' actor ' , ' message ' , or ' simulation ' , got ←-

' " + word + " ' " ) ;
30 }
31 SkipWhitespace ( ) ;
32 }
33
34 return program ;

Listing 9.13: Parse Thespian Program

The Parse method on the ActorParser can be seen in 9.14. Line 1 instantiates
a new Actor node. Line 3 starts a while-loop, which keeps parsing until the
input string is read. The word at the beginning of the string is parsed at line 5.
Depending on the content of that word, either locals, constructors, func-
tions, or receives are parsed. Line 9 shows the case of locals, where the
entire content is contained within a { } closure. Lines 12 to 19 handle parsing
a constructors block, where every individual constructor is parsed by calling
ParseClosure. functions and receives are parsed like constructors.

1 var actor = new Actor (name ) ;
2
3 while ( ! IsEndOfFile )
4 {
5 var word = ParseWord ( ) ;
6 switch (word )
7 {
8 case " l o c a l s " :
9 actor .Locals .Code = ParseClosure ( ' { ' , ' } ' , f a l s e ) ;

10 break ;
11 case " constructors " :
12 AcceptChar ( ' { ' ) ;
13 SkipWhitespace ( ) ;
14 while (CurrentChar != ' } ' )
15 {
16 var constructor = new Constructor ( ) ;
17 constructor .Code = ParseClosure ( ' { ' , ' } ' ) ;
18 actor .Constructors .Add (constructor ) ;
19 SkipWhitespace ( ) ;
20 }
21 AcceptChar ( ' } ' ) ;
22 break ;
23 case " functions " :
24 case " receives " :
25 default :
26 throw new Exception ( "Expected ' locals ' , ' constructors ' , ' functions ' , or←-

' receives ' , got ' " + word + " ' " ) ;
27 }
28 SkipWhitespace ( ) ;
29 }
30
31 return actor ;

Listing 9.14: Parse Thespian Actor
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9.8 Compiling Generated C# Code

The code necessary for compiling C# code can be seen in Listing 9.15. The first
two lines of the method get the Thespian source code and save it in a text file, the
code is explained in Section 9.6 and 9.7. On lines 5 and 6, the Thespian source
code is passed to the Thespian compiler, which generates and returns the ap-
propriate C# code as described in Chapter 8. Both the Thespian and C# code are
stored in txt files for debug and backup purposes in case the generated code
has errors.

1 private bool compile ( )
2 {
3 var thespianSourceCode = SourceCodeService .GetGeneratedCode (Program ) ;
4 File .WriteAllText ( " thespianSource . t x t " , thespianSourceCode ) ;
5 var cSharpSourceCode = CompilerService .GenerateCSharpCode (thespianSourceCode ) ;
6 i f (cSharpSourceCode == " " ) { return f a l s e ; }
7 File .WriteAllText ( " csSource . t x t " , cSharpSourceCode ) ;
8 CompiledAssembly = CompilerService .CompileCS (cSharpSourceCode ) ;
9 StartActorSystem ( ) ;

10 return true ;
11 }

Listing 9.15: The compile function

The next step is compiling the C# code. This is done on line 7 with the Com-

pileCS method. The CompileCS method uses the CSharpCodeProvider class
which is how C# used to be dynamically compiled. Using CSharpCodeProvider
was a mistake as it is depricated and uses the old C# 5.x compiler. To compile
later versions of C# with the CSharpCodeProvider, the DotNetCompilerPlat-
form package can be installed, which copies the Roslyn compiler into your out-
put folder and utilizes this copied Roslyn compiler.

The Roslyn compiler can be used directly from Visual Studio using the CSharp-
Compilation class as described in [23]. We learned of this other way to compile
C# code at a late point in the project, and have not had the time to change it. It
should however use less code.

9.9 Error Handling

If the Thespian code written in Mask contains errors, the compiler should re-
spond with meaningful error messages, which the modeler can act upon. Com-
pile time errors can happen in one of two places; Either in the Thespian compiler
or in the C# compiler.
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9.9.1 Thespian Errors

There are two different error types, that are caught by the Thespian compiler;
Syntax errors and type errors. Syntax errors are caught by the Thespian parser,
which throws parse exceptions. If two variables with identical names are de-
clared within the same name, the scope checker will throw a TypeAlreadyEx-

istsException. Each exception includes the line number, character number,
as well as what the parser expected as the next token.

The reported location of the unexpected token is the location within the Thes-
pian source code. In Mask, however, this location does not make sense to the
modeler, who only sees the Mask interface and not the intermediate Thespian
source code. Currently, finding the erroneous line requires the developer to look
at the intermediate Thespian source file, thespianSource.txt, which is gener-
ated every time the program is compiled.

To circumvent this, the error locations can be translated to locations, that can
be understood by the modeler from the Mask perspective, but this has not been
implemented yet.

9.9.2 C# Errors

If the C# compiler fails to compile, it will provide a list of compile errors. This
includes many different errors such as type errors or missing reference errors.
Errors are reported accompanied by line number, character number, and cause
of the error.

As with Thespian errors, the line and character numbers in the error message
do not reference what the developer sees in Mask as they point to a location
within the generated C# code. The modeler can look for the error in the file
csSource.txt with the generated C# code. Unfortunately, as this code is gen-
erated it probably does not make much sense to the modeler.

Again, to circumvent this, the error locations should be translated to locations
within the Mask environment, such that they can be read by the modeler. This
can be done by keeping track of which Thespian lines are compiled to which C#
lines.

9.10 Running Simulations

If the code is compiled successfully, a simulation can be run from Mask. The
code responsible for running simulations can be seen in Listing 9.16. Line 3
recompiles the program in the case, where there are changes since the last com-
pilation. If recompilation fails, the method returns, and the modeler can look

83



at the error message and fix the code before attempting to run the simulation
again. If the recompilation is successful or if no changes happened since the
last run, the code continues. On lines 5, the SetOutputHandler() method is
called. It hooks into the actor system to have all output messages from actors
relayed to the output box in Mask. Line 6 empties the output box. Line 8 finds
the class, which name matches the name of the simulation. Line 9 returns the
New method on the simulation, which as described in Section 6.1.2, creates a
new instance of the simulation. In line 10, the New method is invoked, and a
new simulation is created.

1 public void RunSimulation (Simulation simulation )
2 {
3 i f ( ! RecompileIfNeeded ( ) ) { return ; }
4
5 SetOutputHandler ( ) ;
6 OutputBox .Text = " " ;
7
8 var sim = CompiledAssembly .GetType (simulation .Name ) ;
9 var method = sim .GetMethod ( "New" ) ;

10 method .Invoke ( null , null ) ;
11 }

Listing 9.16: The RunSimulation function

9.11 Summary

In this chapter, Mask was implemented. The strategy for testing Mask and Thes-
pian follows in the next chapter.
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10. Testing

This chapter contains a description of how Mask can be tested. The reason
for testing Mask is to see if it meets the requirements proposed in Chapter 4.
Based on the results of the testing, Mask would be revised; new features might
be needed, some features might need to be changed, and maybe changes would
be needed in the overall design potentially resulting in a rework of a large por-
tion the program. This can be a very time consuming process and has therefore
been of low priority. The testing has not been done, but the test design has been
prepared such that it can be done at a later point.

10.1 Introduction

The requirements for Mask as defined in Chapter 4 can be seen below.

• Mask must support modeling simulations using the actor model.

• Mask must be accessible to modelers with no prior experience with the
actor model.

• Mask must be a useful tool in solving most types of ABMS problems.

• The language used in Mask must either be c-like or very simple.

Testing these goals is difficult, as there is no way to definitively say whether our
solution fulfils them. We can however design tests that give an indication of
whether this is the case.

One way to test Mask is to invite multiple modelers as test subjects to try it out.
Results of such a test can either be gathered by observing the test subjects or by
having them fill out a questionnaire afterwards.

We design a series of three tests where the test subjects will be exposed to Mask
in various ways. The test results will come in the form of a questionnaire filled
out by the test subjects after they finish the test series.

The test in the series are an introductory tutorial, a simple simulation task, and
an advanced simulation task.

10.2 Tutorial

The tutorial is designed to give the test subject a quick overview of the core fea-
tures of Mask. Step by step, it guides the reader to implement a simple simula-
tion with one actor and one message.

The full tutorial can be seen in Appendix B.
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10.3 Simple Simulation

The simple simulation test is designed to be taken after completing the tutorial.

Contrary to the tutorial, the simple simulation is formulated as an abstract task.
The test subject will need to use the knowledge gained from the tutorial to find
the correct way to implement the simulation. The simplicity of the task should
allow the test subject to focus on how Mask is structured and thus learn to use
the actor model.

The simple simulation task is defined as follows:

Pong Simulation

Simulate a game of Pong with two actors. In this game, one actor will send a
message to the other passing the turn to that actor. The receiving actor will out-
put its name and send the turn back to the sending actor. The game must end
after a fixed number of turns.

Hint:

• The Sender variable can be used to access the sender from a receive state-
ment.

A possible solution can be found in Appendix C.

10.4 Advanced Simulation

The advanced simulation test is designed to be taken after completing the sim-
ple simulation test.

As with the simple simulation test, the advanced simulation test is formulated as
an abstract task. The advanced simulation is a more complex task, that requires
the use of more Mask features.

The advanced simulation task is defined as follows:

String Producer Simulation

Simulate a warehouse with multiple suppliers. The warehouse can send a re-
quest with an item and an amount to a supplier, and the supplier will produce
that many copies of the item for the warehouse. The time spent producing an
item is unknown and should be simulated by a random time period length. Let
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the warehouse send three requests with different items and amounts from dif-
ferent suppliers. When all items are received by the warehouse, it must output
the order in which they were received in.

Hint:

• Use strings to represent the different items.

• Simulate the time spend producing an item using the Timeout property.

– Helper.Random(min, max) can produce a random integer between
min and max.

A possible solution can be found in Appendix D.

10.5 Questionnaire

The purpose of the questionnaire is to get feedback from the test subject.

There are three parts of the questionnaire; A profile of the test subject, a list of
statements, where the test subject expresses how much (s)he agrees with each
statement, and a text box, where the test subject can provide feedback in free
form.

The questionnaire can be seen in Appendix E.

10.6 Threats to Validity

One of the main concerns when doing opinion-based testing is to cover a suffi-
ciently broad spectrum of test subjects. In our case, this means testing test sub-
jects with varying programming backgrounds and with various needs regarding
simulation software.

Mask is a general purpose IDE, which is why it is important to test many different
types of simulation problems. As the testing design only includes two different
simulation problems, it relies on the test subjects to guess how well suited Mask
is for other simulation problems.

10.7 Summary

This chapter contains a proposed design on how to test Mask and some threats
to validity of the testing. The testing has not been done due to time constraints,
but the design of it should be ready to use.
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11. Re�ection

In this chapter we reflect upon some of our important decisions throughout the
project.

Compiler compiler vs Handmade Compiler

As described in Section 7.1 we decided against using a compiler compiler to gen-
erate our scanner, parser, and visitors as we estimated that the time needed to
learn a new compiler compiler would exceed the time required to build a com-
piler from scratch.

The main advantage when using a commercial compiler compiler is that it pro-
vides a guarantee or at least a large amount of confidence in that it follows the
rules of the given grammar, whereas we do not have the resources to completely
test our handmade compiler. Being able to use a compiler compiler is however
predicated upon learning how it works as well as spending a lot of time building
a complete grammar, that it can use to compile the compiler.

We are content with our decision to make a handmade compiler, as we were
able to keep a relaxed version of the abstract syntax. This relaxed abstract syn-
tax should convey the ideas behind the language more easily, contrary to a full
abstract syntax, that a compiler compiler can read. This allowed us to keep some
ambiguity within the syntax, such as the difference between a generic type and
binary expressions using < and >. Another benefit that we gaines from building
the compiler by hand is, that we have full control of everything that goes on.

C# with Akka.NET and WPF

In Chapter 5, we chose to implement Mask using C# to gain access to Visual
Studio and some powerful third party libraries. Akka.NET has been very easy
to work with once we got used to its quirks. We chose to use WPF for the GUI
in Mask, which has made it easy to develop a structured and functional user
interface. All in all, we are satisfied with C#, both for its rich suite of language
features as well as the available tools.

Actors and Simulations

We decided to design actors and simulations in Thespian as different constructs
despite them being very similar in function. There are two things that separate
the two; (1) a simulation has an initialization block, while an actor can have
multiple different constructors, and (2) the actor runtime keeps track of the cur-
rent simulation. The reasoning behind this distinction is that we find separating
them gives Thespian programs better structure. Alternatively, Thespian could
have used only actors and distinguish simulations by having a boolean IsSim-

ulation value on the actor. This would make the language more orthogonal,
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but increase the amount of code required to write a Thespian program. As one
of the primary design requirements is to make Mask and Thespian accessible to
the target audience as described in Chapter 2, we opted to keep this separation
to reduce the amount of code needed in Thespian programs.

We are convinced, that this was the correct decision, but one concern is that
potential users will value orthogonality over low amount of code. As the testing
of Mask has not been conducted, we do not know what is generally preferred.

Separated IDE and compiler

We could have developed Mask and Thespian as one program. This would prob-
ably have been faster, but would reduce the modularity of the project. The ad-
vantages of the current modular design is that Thespian can be used indepen-
dently from Mask, and that Mask could use a new Thespian compiler, should a
better one be created.

We find, that the advantages of modular design far outweigh the advantage of
faster development, and are satisfied with our choice.

CSharpCodeProvider and C# 6.0

As described in Section 9.8, we utilize the CSharpCodeProvider with the Dot-
NetCompilerPlatform package to generate C# code. We decided to do so because
the official guide from Microsoft on how to dynamically compile C# code [24]
does so. In hindsight, we regret not digging deeper and looking at more guides
as we ended up spending significantly longer on getting CSharpCodeProvider

to work than planned.

Initially, CSharpCodeProvider worked for us as intended, but later on we dis-
covered, that C# 6.0+ functionality was not supported. The DotNetCompilerPlat-
form allows CSharpCodeProvider to use the Roslyn compiler, which can use C#
6.0+ functionality. The DotNetCompilerPlatform, however, is made for ASP.Net
Web Apps, which causes a mismatch between where the compiler is copied to
and the path where it looks for it when using it in a console application. To fix
this, the path is altered during runtime by using Reflection. The fix should not
be needed after DotNetCompilerPlatform 2.0.0 which came out 3 days before
this report was handed in, so we have not had the time to test it yet.
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12. Conclusion

In this project, we looked at agent-based modeling and simulation (ABMS), which
is an interesting research area, because it has applications in many different
fields. Modelers working with ABMS often use the bottom-up approach to prob-
lem solving. This is a good way to break down complicated problems into smaller
manageable problems. In the case of ABMS, this means working with each agent
individually and later combining several agents into a complete simulation. We
found the actor concurrency model to be a natural fit for ABMS and looked into
ways to combine them.

Therefore the purpose of this project was to build an IDE, which can combine
ABMS with the actor concurrency model.

The problem statement was as follows:

How can we create an easy-to-use tool for building actor-based bottom-up
simulations?

To do that, we designed Mask, an IDE with a different take on ABMS, focusing on
providing the accessibility and flexibility, that we want from a general purpose
ABMS tool. We looked at some of the other popular ABMS tools to see if any-
one had done something like this before. Only one of the popular tools, Jadex,
uses the actor model, but it puts a lot of focus on flexibility, and not much on
accessibility. The full related works overview can be found in Chapter 3.

Mask was designed based on the following requirements:

• Mask must support modeling simulations using the actor model.

• Mask must be accessible to modelers with no prior experience with the
actor model.

• Mask must be a useful tool in solving most types of ABMS problems.

• The language used in Mask must either be c-like or very simple.

The full design notes and sketches can be found in Chapter 4.

To accommodate the requirements of Mask, we looked at four candidate lan-
guages for the implementation in Chapter 5; Erlang, D, Rebeca, and Akka.NET.
Each language was evaluated on the following three requirements.

• Simplicity of actor implementation

• c-like similarity

• GUI support

Akka.NET was deemed the most suitable candidate, mostly based on how it has
a logical actor unit and because of the GUI support in Visual Studio. Akka.NET
does however come with some unnecessarily complex and verbose syntactical
structures, which can be cumbersome to the modeler.
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Because of the complexity of Akka.NET, we designed a new intermediate lan-
guage, Thespian, which has three basic constructs specifically for simulation
modeling; actor, message, and simulation. Thespian removes most of the com-
plexity in Akka.NET associated with creating actors and communicating with
other actors. The full design notes on the language and its compiler can be found
in Chapter 6 and 7.

Mask and Thespian have been implemented and the documentation of our im-
plementation can be found in Chapter 8 and 9.

The testing of Mask has been prepared, but has not yet been conducted. It con-
sists of a tutorial, a simple simulation task, an advanced simulation task, and a
questionnaire to provide feedback on the testing. The full details of the test plan
can be found in Chapter 10.

We have reflected upon some of our choices and their consequences. We are
satisfied with the outcome of choosing to make the compiler by hand instead
of using a compiler compiler and using C# with Akka.NET and WPF for devel-
opment. We are less satisfied with using the CSharpCodeProvider class for dy-
namic compilation of C# code and should in hindsight have used the CSharp-

Compilation class. The complete reflections can be seen in Chapter 11.

Thespian has the basic constructs of the actor model with actors and messages
as well as simulations acting as the environment from ABMS. Thespian simpli-
fies both the program structure as well as the program logic. Many of the ver-
bose statements from Akka.NET have been simplified, while still retaining the
flexibility of C#.

Mask provides a clear overview of Thespian programs. Using the tree view 9 to
structure Thespian programs should make it more accessible to inexperienced
modelers.

We are satisfied with the result of Mask and Thespian. It is possible for a modeler
to build and run actor based simulations without much knowledge of the actor
model. This means that the powerful features of Akka.NET can effortlessly be
used by any developer with some experience in C# or similar languages.
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13. Future Work

This chapter contains some of the ideas, we have for future improvement of
Mask and Thespian.

13.1 Testing

One of the primary concerns regarding the success of the project is how well the
target audience will receive the product. The testing is prepared in Chapter 10,
and should be ready to use. We would need to find an appropriate amount of
test subjects with diverse sets of programming skills and needs and have them
complete the tests as well as the questionnaire.

13.2 Graphical Feedback in Mask

Most of the popular ABMS frameworks have some sort of graphical representa-
tion of the running simulation. An examples of this can be seen in Figure 13.1,
which is an example from NetLogo, where a population of sheep can be moni-
tored with a varying amount of wolves. A graphical interface can help the mod-
eler get correct feedback from the simulation, which is why it can be useful in
Mask.

Figure 13.1: NetLogo Wolf and Sheep

The way Mask handles output from actors using the HandleOutput method
helps to represent the output in different ways. Mask could overwrite this out-
put method to display the output on an image instead of the text box it uses as
default.
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13.3 Additional Type Checking

In Akka.NET, there is no way to distinguish an IActorRef of one actor type from
an IActorRef of another actor type on compile time, because they both use the
IActorRef type. In Thespian, however, actors are referenced directly by their
actor type, enabling compile time type checking of actor references. Currently,
the Thespian compiler leaves all type checking to the C# compiler, but this could
be an valuable improvement for later versions. An example of where erroneous
code could be found at compile time can be seen in Listing 13.1. Here a list with
actors of type ActorA is instantiated and later an actor of type ActorB is added.

1 var list = new List<ActorA> ( ) ;
2 list .Add (new ActorB ( ) ) ;

Listing 13.1: Uncaught type error

Currently, this is legal, and will not even crash the program at runtime, because
the only way actors can communicate is through messages, and messages can
be sent to any actor regardless of whether that actor has a matching receive for
that message. Errors like this are hard to detect, which is why type checking
would make a good addition to Thespian.

13.4 Improved Text Editor

Most other IDEs use advanced text editors with quality of life features, such as
line numbers, keyword highlighting, and text completion. Mask should also
implement these features, as they help inexperienced modelers write Thespian
programs.

13.5 More C# Features

As explained in Chapter 6, Thespian implement only the basic features of C#. It
can be difficult for modelers with experience in regular C# to know which fea-
tures are implemented in Thespian and which are not. To counteract this, Mask
would need to implement most or all of the modern C# features.
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13.6 Single Point of Entry

Currently, a program such as Mask, which uses Thespian, needs to import two
libraries; ActorUtils and Compiler. This is not a problem for Mask, as we have
built both Mask and the other libraries, but it can be complicated for other de-
velopers wanting to create other front-ends to Thespian to include two different
libraries. This should be fixed such that Thespian can be used by only including
a single library.

13.7 Inheritance and Includes

Currently, it is not possible for actors to inherit from other user made actors,
and it is not possible to include external C# libraries in the code. We have cre-
ated a property feature as seen in Figure 13.2 on actors and simulations where
statements such as inheritance and includes can happen, but we have not im-
plemented them yet.

Figure 13.2: Properties
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Part I

Appendix
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A. Abstract Syntax of Thespian

Table A.1 contains the abstract syntax of Thespian. Each line of the syntax is a
reduction, where the left-hand side can be reduced to the right-hand side. pro-
gram is the root reduction. Bold text indicates a terminal, 〈..〉 are meta delim-
iters, content+ repeats content 1 or more times, content* repeats content 0
or more times, [content] means either nothing or content.
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program ::= programConstruct*
programConstruct ::= actor | simulation | message
actor ::= actor word { actorFeature* }
simulation ::= simulation word { simulationFeature* }
message ::= message word ( parameters* )
actorFeature ::= constructors | locals | functions | receives
simulationFeature ::= initialization | locals | functions | receives
constructors ::= constructors { constructor* }
constructor ::= ( [ parameters ] ) block
locals ::= locals { variableDeclaration 〈, variableDeclaration〉* }
functions ::= functions { function* }
function ::= type word ( [ parameters ] ) block
receives ::= receives receive*
receive ::= parameter [ when statement ] : block
initialization ::= initialization block
parameters ::= parameter 〈, parameter〉*
parameter ::= type word
statement ::= block | variableDeclaration | expressionStatement | ifState-

ment | forStatement | foreachStatement | switchStatement |
whileStatement | breakStatement

block ::= { statement* }
variableDeclaration ::= type word [ = expression ] ;
expressionStatement ::= expression ;
ifStatement ::= if ( expression ) block [ else block ]
forStatement ::= for ( [ variableDeclaration ] ; [ expression ] ; [ expression ] ) block
foreachStatement ::= foreach ( parameter in expression ) block
switchStatement ::= switch ( expression ) { switchCase* default : block }
switchCase ::= ( parameter | expression ) [ when statement ] : statements+
whileStatement ::= while ( expression ) block
breakStatement ::= break ;
expression ::= parenthesisExpression | prefixUnaryExpression | suffixUnary-

Expression | binaryExpression | number | string | word | method-
Call | arrayAccess

parenthesisExpression ::= ( expression )
prefixUnaryExpression ::= prefixUnaryOperator expression
suffixUnaryExpression ::= expression suffixUnaryOperator
binaryExpression ::= expression binaryOperator expression
prefixUnaryOperator ::= ++ | - - | ! | new | return | - | +
suffixUnaryOperator ::= ++ | - -
binaryOperator ::= == | < | <= | > | >= | != | = | += | -= | *= | /= | && | || | + | - | * | / | % | .
methodCall ::= word ( [ arguments ] )
arguments ::= expression 〈, expression〉*
arrayAccess ::= word [ expression ]
type ::= word | word < type > | type [ ]

Table A.1: Abstract Syntax of Thespian
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B. Tutorial

The tutorial is designed as a sequence of tasks with the goal of introducing Mask
to the modeler.

B.1 Basic Constructs

Mask is an IDE for working with the Thespian language. A Thespian program is
comprised of actors, messages, and simulations. An actor can communicate
with other actors only by sending messages, which can be either a Thespian
message or a basic C# value such as int or string. A message is a container
of a number of basic C# values. A simulation is a special type of actor, which can
be run directly from Mask.

A standard program in Mask has a simulation, which starts a number of actors.
The actors will communicate with each other and send status messages to the
simulation, which will then display the status of the simulation to the modeler.

B.2 Interface

Figure B.1 shows an empty Thespian program in Mask. (1) is the program struc-
ture tree, which contains the actors, messages, and simulations in the program.
New constructs can be added from the right-click menu on either Actors, "Mes-
sages", or "Simulations". (2) is the code text area, where code for the selected
node in (1) can be viewed and altered. (3) is the output log. The Clear button
is used to empty (3). (4) is the file menu, which can be used to save and load
Thespian code.

B.3 The first simulation

Add a new simulation to the program by right-clicking "Simulations" and choos-
ing New as seen in Figure B.2.

Figure B.2: New simulation
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Figure B.1: Mask interface

A new popup should appear as seen in Figure B.3. Type the name of the new
simulation in the text field and press "Ok".

Figure B.3: New simulation

A new simulation should now be added to the tree view. The Initialization

tree node contains the code, which is run when the simulation is run. Figure B.4
shows the line Output("Hello!"); added to the Initialization of MySimulation.
Output is a method, which will append the input to the output text area in the
right side of the screen.
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Figure B.4: Simulation Initialization

The simulation can now be run through the right-click menu as seen in Figure
B.5.

Figure B.5: Running a simulation

B.4 The first actor

An actor can be added in the same way as a simulation as seen in Figure B.6.

Figure B.6: New actor

The state of the actor is represented by local variables in the Locals tree node.
In Figure B.7, two local variables have been added to the actor; int age and
string name.
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Figure B.7: Actor locals

A new local function can be added through the right-click menu on the Func-

tions tree node on the actor, as seen in Figure B.8.

Figure B.8: Actor function

By selecting the new function, the content can be changed. Change the content
to the code seen in Listing B.1. This is a function called SendInfo. It takes zero
arguments and returns nothing. The body of the function accesses the current
simulation by the Simulation reference and uses the Tell method to send a
message to that simulation. The message is a string comprised of the name
and age of the actor.

1 void SendInfo ( )
2 {
3 Simulation .Tell (name + " : " + age ) ;
4 }

Listing B.1: Actor function

The function can be called from constructors or other functions on the actor.
Create a new constructor by through the right-click menu of Constructors on
the actor. Change the content of the constructor to the code seen in B.2. This
constructor takes two arguments and updates the local variables age and name,
then it calls the local SendInfo function.

1 (int age , s t r i n g name )
2 {
3 this .age = age ;
4 this .name = name ;
5 SendInfo ( ) ;
6 }

Listing B.2: Actor constructor
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The actor can now be constructed using this constructor. Add the line in List-
ing B.3 to the Initialization on MySimulation. This line will create a new
instance of MyActor with the age of 25 and the name "John Doe".

1 var act = new MyActor(25 , "John Doe" ) ;

Listing B.3: Instantiating an actor

To receive the message sent from the actor add a new receive on MySimulation.
Change the content of the receive to the code in Listing B.4. This code is run
whenever the simulation receives a string message. s refers to the received
string. This receive outputs the string directly.

1 s t r i n g s : {
2 Output (s ) ;
3 }

Listing B.4: Simulation receive

Running MySimulation should now result in the output "John Doe: 25".

B.5 The first message

Messages are used to send complex data between actors. Messages can be cre-
ated in the same manner as actors and simulations through the right-click menu.

Create a new message called PersonInfo and enter the content as seen in List-
ing B.5. This message contains two variables; int age and string name. This
idea behind this message is to give MyActor a simple way to share its state with
other actors.

1 (int age , s t r i n g name )

Listing B.5: Message content

To use this message, change the SendInfo function on MyActor to the code seen
in Listing B.6. Here a new PersonInfo message is created and sent to the simu-
lation.

1 void SendInfo ( )
2 {
3 Simulation .Tell (new PersonInfo (age , name ) ) ;
4 }

Listing B.6: Send custom message
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A new receive must be added to receive PersonInfo messages. Add a new re-
ceive or change the existing receive on MySimulation to the code in Listing B.7.

1 PersonInfo pi : {
2 Output (pi .name + " , age " + pi .age + " says hel lo . " ) ;
3 }

Listing B.7: Receive custom message

The final program should look like the program seen in Figure B.9.

Figure B.9: Complete tutorial
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C. Simple Simulation Solution

1 actor Player {
2 locals {
3 s t r i n g name

4 }
5 constructors {
6 ( s t r i n g name )
7 {
8 t h i s .name = name ;
9 }

10 }
11 receives {
12 Game game : {
13 PassTo (game .opponent , game .turns ) ;
14 }
15 i n t turnsLeft : {
16 PassTo (Sender , turnsLeft ) ;
17 }
18 }
19 functions {
20 void PassTo (Player opponent , i n t turnsLeft ) {
21 i f (turnsLeft <= 0) {
22 Output (name + " wins ! " ) ;
23 } else {
24 Output (name + " passes the turn . " ) ;
25 opponent .Tell (turnsLeft−1) ;
26 }
27 }
28 }
29 }
30
31 message Game (Player opponent , i n t turns )
32
33 simulation Pong {
34 initialization {
35 var playerA = new Player ( "A" ) ;
36 var playerB = new Player ( "B" ) ;
37 playerA .Tell (new Game (playerB , 5) ) ;
38 }
39 }

Listing C.1: A solution for the simple simulation task
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D. Advanced Simulation Solution

1 actor Supplier {
2 locals {
3 s t r i n g item ,
4 i n t amount ,
5 Warehouse warehouse

6 }
7 constructors {
8 ( s t r i n g item , i n t amount , Warehouse warehouse )
9 {

10 t h i s .item = item ;
11 t h i s .amount = amount ;
12 t h i s .warehouse = warehouse ;
13
14 i f (amount > 0) {
15 ProduceItems ( ) ;
16 }
17 }
18 }
19 receives {
20 ReceiveTimeout t : {
21 warehouse .Tell (item ) ;
22 amount−−;
23 i f (amount > 0) {
24 ProduceItems ( ) ;
25 } e lse {
26 Timeout = null ;
27 }
28 }
29 }
30 functions {
31 void ProduceItems ( ) {
32 Timeout = Helper .Random(100 , 500) ;
33 }
34 }
35 }
36
37 simulation Warehouse {
38 locals {
39 i n t amountToReceive = 0 ,
40 s t r i n g receivedItems = " "
41 }
42 initialization {
43 var itemTypes = new List<str ing > ( ) ;
44 itemTypes .Add ( "A" ) ;
45 itemTypes .Add ( "B" ) ;
46 itemTypes .Add ( "C" ) ;
47 foreach (var item in itemTypes ) {
48 var amount = 3 ;
49 new Supplier (item , amount , Self ) ;
50 amountToReceive += amount ;
51 }
52 }
53 receives {
54 s t r i n g item : {
55 amountToReceive−−;
56 receivedItems += item ;
57 i f (amountToReceive <= 0) {
58 Output (receivedItems ) ;
59 }
60 }
61 }
62 }

Listing D.1: A solution for the advanced simulation task
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E. Questionnaire

Years of experience with c-like coding languages

Give each statement a score between 1 and 5 based on how much you agree with
the statement. If you give the score 1, you do not agree with the statement at all.
It you give the score 5, you completely agree with the statement.

The tutorial helped me get started.

I was satisfied with my implementation of the simple simulation.

I was satisfied with my implementation of the advanced simulation.

I can use the coding language used in Mask.

I understand the purpose of actors, simulations, and messages.

The structure of actors, simulations, and messages helps me implement sim-
ulations.

Please fill in any additional remarks or suggestions in the box below.
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