
Master Thesis

Department of Computer Science
Selma Lagerlöfs Vej 300

DK-9220 Aalborg Ø
http://www.cs.aau.dk

Title:
Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

Subject:
Semantics and Verification

Project Period:
Spring Semester 2018

Project Group:
deis104f18

Participants:
Tobias Rosenkrantz Gundersen
Christian Ovesen

Supervisor:
Ulrik Nyman

Pages:
14

Date of Completion:
15th of June 2018

http://www.cs.aau.dk

Summary
It is essential to ensure the correctness of safety-critical systems. Model checking can prove the correctness
of a design. However, a correct design does not ensure the correctness of its implementation. We could
test this correctness by writing unit tests by hand. However, this is time-consuming and error-prone, as
we would manually derive them from the requirements of the System Under Test (SUT).

Instead, we can test if the SUT conforms to the model proven to be correct. Model checkers for
real-time systems focus on timing aspects, which are essential for safety-critical real-time systems. When
testing based on a timed model, the tests will focus on timed aspects as well.

One model-based testing technique is Model-Based Mutation Testing (MBMT). It has already been
applied to timed automata with simulated time.

The model checker Ecdar can perform unbounded conformance checks, and it can perform adaptive
test-cases, which produce fewer inconclusive test verdicts than non-adaptive test-cases. In this paper
we present an extension of Ecdar that integrates conformance testing into the tool in order to improve
productiveness and reliability. It uses MBMT that – contrary to similar approaches – is fault-based,
proving the absence of certain types of faults. The extension also generates test-cases solely based on the
test model. Thus, the tester does not need to provide any other constructs unlike what is required for
some other methods.

The extension is an open-source IDE using the Ecdar engine. It can model Timed I/O Automata
(TIOA), verify them, and test a system based on a TIOA.

We start this paper by discussing work related to MBMT. We discuss different approaches to MBMT.
Furthermore, we discuss the tools MoMuT::TA, Uppaal TRON, COXER, and Uppaal Yggdrasil

We present preliminaries, where we include a definition of TIOA. Compared to previous work, our
definition is expanded to support local variables, as these are supported by the Ecdar engine. We also
show the definition of timed I/O transition systems and refinement. Lastly, we describe the workflow of
MBMT.

After preliminaries we present the mutation operators that we use; we reuse six from a previous paper
and define five ourselves. Ecdar mutates a test model through the 11 mutation operators and uses the
Ecdar engine to generate strategies that we use for test-case generation. The tool then executes the
test-cases on the SUT. A strategy contains rules that we use to determine what inputs to send to the
SUT and how long we delay before sending them. From this, we guide the test execution until certain
criteria are met. Then we can give the test-case a verdict.

We introduce the concept of primary fails for when the mutant recognises a failing action from the
SUT. The tool utilises such fails to perform automatic fault localisation.

The tool can execute test-cases using either real-time or simulated time. Testing using real-time
enables testing of physical systems. Testing using simulated time allows for a significant speed-up. To
further speed up testing, the tool parallelises test-case generation and test execution.

We present a case study that we use to test our integration. We use a system that is based on a model
from another paper. We implement the system and use the independent mutation testing tool PIT on
our implementation to generate 140 faulty systems.

We conduct both a test using real-time and one using simulated time during the case study to assess
that testing with Ecdar is feasible. It took 0.61 seconds to mutate, 30 seconds to generate test-cases, 3
hours and 52 minutes to execute all test-cases using real-time and 26 seconds to execute all test-cases
using simulated time.

From this case study we observe that our integration could detect all faults and could achieve primary
fails for all but two faulty systems. We observe that our new operators can detect faults and achieve
primary fails that the existing six operators cannot detect and achieve, respectively. This shows that the
new operators improve the ability to detect and locate faults.

We then showcase the UI of modelling in Ecdar and the UI of mutation testing in Ecdar. We conclude
on our contributions and, lastly, we discuss future work. As future work, we propose supporting for testing
integrated systems, conducting an industrial case study, improving fault detection by using higher-order

mutants, reducing test execution and test-case generation time, and including a command-line interface
to enable conformance testing with Ecdar during continuous integration.

To appear in EPTCS.
c© T.R. Gundersen & C. Ovesen

This work is licensed under the
Creative Commons Attribution License.

Effortless Fault Localisation:
Conformance Testing of Real-Time Systems in Ecdar

Tobias R. Gundersen Christian Ovesen
Aalborg University, Denmark

tgunde13@student.aau.dk covese13@student.aau.dk

Model checking of real-time systems has evolved throughout the years. Recently, the model checker
Ecdar, using timed I/O automata, was used to perform compositional verification. However, in order
to fully integrate model checking of real-time systems into industrial development, we need a pro-
ductive and reliable way to test if such a system conforms to its corresponding model. Hence, we
present an extension of Ecdar that integrates conformance testing into a new IDE that now features
modelling, verification, and testing. The new tool uses model-based mutation testing, requiring only
the model and the system under test, to locate faults and to prove the absence of certain types of
faults. It supports testing using either real-time or simulated time. It parallelises test-case genera-
tion and test execution to provide a significant speed-up. We also introduce new mutation operators
that improve the ability to detect and locate faults. Finally, we conduct a case study with 140 faulty
systems, where Ecdar detects all faults.

1 Introduction

It is essential to ensure the correctness of safety-critical systems. Model checking can prove the cor-
rectness of a design. However, a correct design does not ensure the correctness of its implementation.
We could test this correctness by writing unit tests by hand. However, this is time-consuming and error-
prone, as we would manually derive them from the requirements of the System Under Test (SUT).

Instead, we can test if the SUT conforms to the model proven to be correct. Model checkers for real-
time systems focus on timing aspects, which are essential for safety-critical real-time systems. When
testing based on a timed model, the tests will focus on timed aspects as well.

One model-based testing technique is Model-Based Mutation Testing (MBMT). It has already been
applied to Timed Automata (TA) with simulated time [3, 14]. Larsen et al. [14] use the model checker
Ecdar [6] to perform unbounded conformance checks, to provide a significant speed-up compared to [3],
and to enable adaptive test-cases, which produce fewer inconclusive test verdicts.

The main contributions of this paper are (1) an extension of Ecdar that integrates conformance testing
of real-time systems, using only the model and the SUT, into the tool; (2) automatic fault localisation
through the introduction of primarily failed test-cases; and (3) support for testing using either real-time
or simulated time.

Other contributions are parallelisation of test-case generation and test execution to provide a signifi-
cant speed-up and the introduction of new mutation operators that improve the ability to detect and locate
faults.

The rest of the paper is structured as follows: First, in Section 2 we discuss related work. In Section 3
we present preliminaries, including the definition of Timed I/O Automata (TIOA) and the workflow of
MBMT. In Section 4 we discuss the integration of MBMT into Ecdar. In Section 5 we present a case
study of our extension. In Section 6 we showcase the extension. Finally, in Section 7 we conclude the
paper and outline ideas for future work.

2 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

2 Related Work

MBMT has already been applied to probabilistic finite state machines [11] and UML state machines
[1]. These approaches mainly focus on testing functional behaviour. Aichernig et al. [3] propose to use
MBMT for TA and presents the tool MoMuT::TA1 that implements test-case generation.

Larsen et al. [14] propose to use Ecdar to perform unbounded conformance checks, to provide a sig-
nificant speed-up compared to [3], and to enable adaptive test-cases, which produce fewer inconclusive
test verdicts.

Lorber et al. [15] propose an approach to combine MBMT and Timed Computation Tree Logic
(TCTL) properties used for verification; from a set of generated mutants, they check if the mutants satisfy
the properties. For each violation, they use the counterexample as a test-case. This way, the approach
only model checks individual properties rather than performing a potentially more time-consuming full
conformance check. Also, the approach generates fewer test-cases, which takes less time to execute, and
the test-cases focus on the safety-critical properties derived from the requirements of the system.

Devroey et al. [8] propose another way to reduce generation and testing time. They propose to
encode each mutant as a product in a software product line; instead of generating individual mutants, they
propose to generate a single featured mutant model that – when configured – can represent any mutant.
This way, the mutants can share execution, allowing for testing in a single run. While the approach is for
assessing the quality of an existing test suite, it could also be applied for test-case generation.

There exist tools for model-based testing using TA. The tool UPPAAL TRON [9] can conduct confor-
mance tests on systems in real-time and thus can be applied to physical systems. It uses an environment
TA to decide which inputs and delays to trigger and detects whether the SUT produces allowed out-
puts. A tester can easily construct a simple, permissive environment, but at the cost of simply triggering
random inputs and delays. Otherwise, they can construct environment models that steer the execution
towards critical areas.

The tool COXER [10] generates test-cases based on TA and TCTL. A tester can reuse the TCTL
properties used for verifying the test model. The tester also needs to specify monitoring automata that
describe coverage criteria.

The tool UPPAAL Yggdrasil [13] is similar to COXER. It generates test-cases based on TA, TCTL
properties, and random search.

Contrary to these three tools, the presented Ecdar extension uses a fault-based approach that can
prove the absence of certain types of faults. Furthermore, it generates test-cases only based on a test
model. Thus, an Ecdar tester need only provide the test model and the SUT; they do not need to perform
the time-consuming and error-prone tasks of constructing environment models, TCTL properties, or
monitoring automata.

3 Preliminaries

In this section we define TIOA, their underlying transition systems, determinism, input-enabledness, and
refinement. Finally, we describe the workflow of MBMT.

1https://momut.org/

T.R. Gundersen & C. Ovesen 3

Figure 1: An Ecdar TIOA Retailer for a fish retailer.

3.1 Timed I/O Automata

A TIOA [7] is a syntactical, finite representation of a timed system. It is a tuple (Q,q0,C,V ,Σ,E ,I),
where:

• Q is a finite set of locations.
• q0 ∈Q is the initial location.
• C is a finite set of clocks used to represent time.
• V is a finite set of integer variables local to the automata. Each variable v ∈ V has lower and upper

bounds vmin,vmax ∈ Z and an initial value v0 ∈ [vmin,vmax].
• Σ is a finite set of observable actions partitioned into inputs (Σi) and outputs (Σo).
• E is a finite set of edges of the form e = (q,g,σ ,R,u,q′), where:

– q,q′ ∈Q are the source and target locations, respectively.
– g (the guard) is a conjunction

∧
b∈Be

b, i.e. Be is the set of basic constraints of the guard of
edge e. Each basic constraint b is of the form x◦ c, where x ∈ C ∪V , ◦ ∈ {<,≤,=, 6=,≥,>},
and c ∈ Z. The guard must be satisfied when executing the edge.

– σ ∈ Σ is the observable action.
– R⊆ C is the set of clocks to reset.
– u : V → Z is an update of some of the variables. For each such variable v, u(v) ∈ [vmin,vmax].

• I : Q → U(C) is a set of invariants for some of the locations. We write U(C) for the set of
constraints over C of the form x ◦ c, where x ∈ C, ◦ ∈ {<,≤}, and c ∈ N. An invariant must be
satisfied when entering and while in the respective location.

Contrary to [7], our definition of TIOA includes local variables, since the Ecdar engine supports them.
Figure 1 illustrates the TIOA for whichQ= {L0,L1}, q0 = L0, C = {x}, V = {free}, free0 = freemin = 0,
freemax = 1, Σi = {coin?}, Σo = {garnish!, tuna!}, E = {(L0,x < 3∧ f ree = 1,garnish!, /0, {(f ree,0)},
L0), (L0,x > 4,coin?,{x},{(f ree,1)},L1), (L1, true,garnish!, /0, /0,L0), (L1,x > 1, tuna!, /0, /0,L0)}, and
I = {(L1,x≤ 4)}.

We denote by A the set of all TIOA. We denote by Ei the input edges {e = (q,g,σ ,R,u,q′) | e ∈
E ∧σ ∈ Σi}, and by Eo the output edges {e = (q,g,σ ,R,u,q′) | e ∈ E ∧σ ∈ Σo}.

3.2 Timed I/O Transition Systems

A Timed I/O Transition System (TIOTS) [7] S is the semantic representation induced by a TIOA A,
written S = [[A]]sem. It is a tuple (St,s0,Σ,→) where:

• St is a set of states.

4 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

• s0 ∈ St is the initial state.
• Σ is a finite set of observable actions partitioned into inputs (Σi) and outputs (Σo).
• →⊆ St× (Σ∪R≥0)×St is a transition relation.

We write s a−→ s′ instead of (s,a,s′) ∈→. We write s a−→ for ∃s′.s a−→ s′. We use i?, o!, and d to range
over inputs, outputs, and delays (R≥0), respectively.

Determinism: A TIOTS is deterministic iff ∀s,s′,s′′ ∈ St.∀σ ∈ Σ.s σ−→ s′∧ s σ−→ s′′ =⇒ s′ = s′′. That
is, whenever the transition system can perform an action, there is always only one transition to take with
that action. As an example, the transition system of Retailer in Figure 1 is deterministic.

Input-Enableness: A TIOTS is input-enabled, iff ∀s ∈ St.∀i? ∈ Σi.s
i?−→. That is, it can always accept

any of its defined inputs. As an example, the transition system of Retailer in Figure 1 does not accept a
coin? in L1, and thus it is not input-enabled.

We can use angelic completion [17] to transform an automaton to one with an input-enabled tran-
sition system: For each input, it receives new self-loops for each state that did not accept that input. It
corresponds to ignoring those inputs.

Alternatively, we can use demonic completion [4] to transform an automaton to one with an input-
enabled transition system: Instead of self-loops, it has new edges leading to a universal location. In a
universal location, every possible behaviour defined by the automata is enabled. That is, it can continu-
ously both delay indefinitely and perform every action Σ.

3.3 Refinement

Refinement [7] compares the behaviour of two deterministic, input-enabled transition systems. A TIOTS
T = (StT , t0,Σ,→T) refines a TIOTS S = (StS,s0,Σ,→S), written T ≤ S, iff there exists a binary relation
R⊆ StT ×StS containing (t0,s0) such that for each pair of states (t,s) ∈ R we have:

• ∀s′ ∈ StS.∀i? ∈ Σi.s
i?−→S s′ =⇒ ∃t ′ ∈ StT . t i?−→T t ′∧ (t ′,s′) ∈ R.

• ∀t ′ ∈ StT .∀o! ∈ Σo. t
o!−→T t ′ =⇒ ∃s′ ∈ StS.s o!−→S s′∧ (t ′,s′) ∈ R.

• ∀t ′ ∈ StT .∀d ∈ R≥0. t
d−→T t ′ =⇒ ∃s′ ∈ StS.s d−→T s′∧ (t ′,s′) ∈ R.

T ≤ S represents that T has less behaviour than or equal behaviour to S. A TIOA A1 refines another
TIOA A2, written A1 ≤ A2, iff [[A1]]sem ≤ [[A2]]sem. That is, there is a corresponding refinement between
their underlying TIOTSs.

3.4 Model-Based Mutation Testing

In MBMT we construct a test suite based on mutants of a test model. Firstly, based on requirements of a
system, we develop the SUT and a test model that it should conform to (see Figure 2a). We then mutate
the test model according to some selected mutation operators. An operator represents certain ways of
changing the model, e.g. changing the source location of an arbitrary edge to an arbitrary location. A
mutant is the result of a single application of an operator and represents a potential fault.

For each mutant, we check if it conforms to the test model (see Figure 2b). If it does, it does not
introduce any observable faults. Thus, we discard it. Otherwise, the conformance check provides a
counterexample, i.e. a way to potentially reveal the fault. We use the counterexample as a test-case by
applying it on the SUT. A test passes iff the SUT is shown to behave according to the test model and not
according to the mutant.

T.R. Gundersen & C. Ovesen 5

(a) Activity to create a SUT, a test model, and mutants. (b) Activity to generate and execute a test-case.

Figure 2: UML 2.5 [16] activity diagrams of MBMT.

Assuming determinism, for all passing test-cases, MBMT guarantees that the faults represented by
their corresponding mutants do not exist in the SUT. A failed test-case is an aid for debugging as pre-
sented in [2]; a failed test-case can show the location and type of the fault and provides a way to reproduce
it.

Adaptiveness Test-cases can be more or less adaptive. A non-adaptive test-case only covers a trace
with its counterexample; if the test model has multiple choices of delaying and outputting, a non-adaptive
test-case can only handle one of the choices. If the SUT performs an unexpected, allowed delay or output,
we assign it the inconclusive verdict.

An adaptive test-case can handle various choices made by the SUT and steer the execution towards
the fault represented by the mutant.

4 Integration

We divide testing with Ecdar into three steps: Mutation, test-case generation, and test execution. In this
section, we discuss each of these steps and then discuss performance.

4.1 Mutation

A mutation operator is a function M : A→ 2A. We use the following mutation operators defined by
Aichernig et al. [3]:

Ms replaces the source location of an edge with another location.

Mt replaces the target location of an edge with another location.

Mo replaces the action of an edge with a (different) output.

6 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

(a) Mutant inMi(Retailer). The action of an edge
from L1 to L0 is changed from output garnish! to
input coin?.

(b) Mutant inMvu(Retailer). The variable update
of the edge from L0 to L1 is changed from (f ree,1)
to (f ree,0).

Figure 3: Two mutants of the Retailer TIOA on Figure 1.

Minv loosens a constraint in an invariant by 1 time unit (e.g. x <= 2 would be loosened to x <= 3). We
do not tighten invariants, as this would result in a conformance.

Msl changes the target location of an edge to a new sink location. Sink locations accept but ignore all
inputs.

Mc inverts a clock reset on an edge; if the clock was originally reset, the reset is removed, otherwise a
reset is added.

We define the following new mutation operators. In the definition of the operators, we mutate a TIOA
S = (Q,q0,C,V ,Σ,E ,I):
Mi replaces the action of an edge with a (different) input. This creates |Ei|(|Σi| − 1)+ |Eo||Σi| mu-

tants. Aichernig et al. [3] only replaces actions with outputs (the operator Mo). A TIOA M ∈
Mi(S) iff M = (Q,q0,C,V ,Σ,(E \ {eS})∪ {eM},I), such that eS = (q,g,σS,R,u,q′) ∈ E , eM =
(q,g,σM,R,u,q′), σM ∈ Σi, and σS 6= σM. An example of such a mutant is given is Figure 3a.

Mgc adds or subtracts 1 to or from a guard constant. This creates 2∑e∈E |Be| mutants. A TIOA M ∈
Mgc(S) iff M = (Q,q0,C,V ,Σ,(E \ {eS})∪{eM},I), such that eS = (q,gS,σ ,R,u,q′) ∈ E , eM =
(q,gM,σ ,R,u,q′), gS =

∧
i∈I(xi◦i cS

i), gM =
∧

i∈I(xi◦i cM
i), ∃i′ ∈ I.cS

i′±1= cM
i′ , and ∀i∈ I\{i′}.cS

i =
cM

i .

Mgoc changes a guard operator with a clock as its left side. This creates up to 2∑e∈E |Be,C | mutants,
where Be,C = {b∈Be | b= x◦c∧x∈C}. Time is continuous. Thus, in practice we expect that for all
clock valuations v we have that ∀c∈Z.v< c ⇐⇒ v≤ c∧v> c ⇐⇒ v≥ c∧v 6= c. For this reason,
we only mutate with≤ and >. With reduced number of guard operators, we reduce generation and
test execution time.Mgoc overlaps with two mutation operators in [3]: µcg that in a single mutation
changes all operators in a guard to one among {<,≤,=,≥,>}, and µng that negates a guard. Since
a mutation is a simple syntactic change [12], we combine these two operators intoMgoc that only
changes a single operator. A TIOA M ∈Mgoc(S) iff M =(Q,q0,C,V ,Σ,(E \{eS})∪{eM},I), such
that eS = (q,gS,σ ,R,u,q′) ∈ E , eM = (q,gM,σ ,R,u,q′), gS =

∧
i∈I(xi ◦S

i ci), gM =
∧

i∈I(xi ◦M
i ci),

∃i′ ∈ I.xi′ ∈ C ∧◦M
i′ ∈ {≤,>}\{◦S

i′}, and ∀i ∈ I \{i′}.◦S
i = ◦M

i .

Mgov changes a guard operator with a variable as its left side. This creates 5∑e∈E |Be,V | mutants, where
Be,V = {b ∈ Be | b = x ◦ c∧ x ∈ V}. A TIOA M ∈Mgov(S) iff M = (Q,q0,C,V ,Σ,(E \ {eS})∪
{eM},I), such that eS = (q,gS,σ ,R,u,q′) ∈ E , eM = (q,gM,σ ,R,u,q′), gS =

∧
i∈I(xi ◦S

i ci), gM =∧
i∈I(xi ◦M

i ci), ∃i′ ∈ I.xi′ ∈ V ∧◦M
i′ ∈ {<,≤,=, 6=,≥,>}\◦S

i′ , and ∀i ∈ I \{i′}.◦S
i = ◦M

i .

T.R. Gundersen & C. Ovesen 7

Mvu assigns a value to a local variable in an update property. If the variable is already being as-
signed in this property, the mutating assignment overrides the existing one. If the existing and
mutating assignment values are equal, the corresponding mutant is not created. This creates up
to |E|∑v∈V(vmax− vmin + 1) mutants. A TIOA M ∈Mvu(S) iff M = (Q,q0,C,V ,Σ,(E \ {eS})∪
{eM},I), such that eS = (q,g,σ ,R,uS,q′) ∈ E , eM = (q,g,σ ,R,uM,q′), ∃v′ ∈ V.uM(v′) 6= uS(v′)∨
(v′ /∈ dom(uS)∧v′ ∈ dom(uM)), and ∀v ∈ V \{v′}.uM(v) = uS(v)∨ (v /∈ dom(uS)∧v /∈ dom(uM)).
An example of such a mutant is given is Figure 3b.

The definition of mutation operators is simplified compared to the Ecdar implementation for better
understanding. For instance, the implementation can also handle more complex constraints, e.g. con-
straints with addition, subtraction, and mixed use of constants, clocks, and variables on either side. Also,
it does not mutate certain locations and edges. For instance, it is sometimes inappropriate to mutate the
universal location and its outgoing edges.

4.2 Test-Case Generation

We use the approach presented in [14] to perform conformance checks. That is, we use the Ecdar engine
to determine if the mutant refines the test model. Since refinement assumes determinism, we discard
non-deterministic models.

Refinement also assumes input-enabledness. However, we do not want to force the modeller to make
the test model input-enabled. Rather, the behaviour missing in order to be input-enabled is not relevant
for the SUT and thus should not be tested for.

Instead, we apply demonic completion on the test model and angelic completion on the mutants like
the approach presented in [14]. This way, traces leading to missing behaviour will transition the test
model into the universal location. Everything refines the universal location. Thus, mutants resulting in
such traces will not yield a counterexample for the refinement.

The Ecdar engine solves a refinement check as a timed game. To check if T ≤ S, the goal of the
game is to find a strategy for revealing the non-refinement T 6≤ S by triggering delays and inputs, and
observing outputs. In the case of a non-refinement, the Ecdar engine produces a strategy. A strategy can
handle various choices made by the SUT and can steer the execution towards the goal. Thus, it provides
us with an adaptive test-case.

4.3 Test Execution

We develop a test driver that executes the generated test-cases on a SUT. The test driver implementation
is inspired by the algorithm presented by Larsen et al. [14].

The test driver communicates with the SUT over its standard I/O streams. We treat the SUT as a
black box where the inputs and outputs we send and receive are the same as those represented in the test
model. The driver can test systems using either real-time or simulated time. Using real-time, we can test
physical systems. However, using real-time is often significantly slower because it may need to perform
physical delays. When simulating time, rather than physically delaying the test, the test driver computes
and sends to the SUT how long the SUT is allowed to simulate delay without interruptions through an
input, and the SUT answers how long it actually simulated.

If the SUT terminates while testing, we treat it as a sink location. This allows us to finish a test if the
program terminates.

8 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

Test model
3 7

Mutant
3 Continue Primary fail
7 Pass Other fail

Table 1: What action to take based on whether the test model and the mutant can (3) or cannot (7)
simulate a delay or an output produced by the SUT.

Rules A strategy consists of delay, input, and output rules, all with disjoint conditions. The test driver
checks which rule in the strategy is satisfied for the current states of the test model and the mutant.

If the satisfied rule is an input rule, we send an input to the SUT. For a delay rule the test driver
performs a delay until the rule is no longer satisfied or the SUT has produced an output. The test driver
cannot force the SUT to perform an output. It instead must wait for the SUT to produce one. Thus, we
treat an output rule as a delay rule.

Aborting A location with no invariant but with outgoing output edges with fully permissive guards
implies that the SUT can wait forever before outputting. This behaviour causes output rules to suggest
that we wait indefinitely until the SUT (hopefully) outputs. To avoid this, we introduce a maximum wait
time; if this is exceeded, we abort the current test.

If the SUT avoids the states needed to determine the existence of a fault by looping among the same
set of states, the strategy will suggest that we loop indefinitely among the same set of rules. To avoid
this, we enforce a bound. Whenever we change the current rule, we increment a step value. If the value
exceeds the bound, we abort the current test.

Verdicts As described in Section 3.4 a test can pass, fail or be inconclusive. We simulate the actions
of the SUT on the test model and the mutant to determine if the current test passes or fails according to
Table 1. A test passes iff the test model can simulate a delay or an output, but the mutant cannot.

A test fails iff the test model cannot simulate a delay or an output. If a test fails, we simulate the
failing action on the mutant. If the mutant can perform it, then we have found a fault that is recognised by
the mutant. This mutant is especially helpful for locating the fault. We call these types of fails primary
fails.

A test is inconclusive, if there are no applicable rules for the current states of the models or if we
abort the test.

4.4 Performance

Generation is a computationally heavy task for which the CPU is the bottleneck. However, we call the
Ecdar engine through its command-line interface, which causes delays, making the CPU underutilised.
To speed up generation, we generate multiple test-cases in parallel, making Ecdar able to fully utilise the
CPU.

Executing a test is not necessarily a computationally heavy task for the test device. Thus, we could
speed up testing by generating and executing tests in a pipeline manner. However, we want a consistent
and realistic test environment. Running computationally heavy tasks in the background while testing will
slow down the test driver, which can cause false positive verdicts (e.g. if the SUT would have outputted
too early). Thus, we test only after we have generated all test-cases.

T.R. Gundersen & C. Ovesen 9

Figure 4: An Ecdar TIOA Alarm for a car alarm system.

Some systems allow running multiple concurrent instances of them without problems. For this rea-
son, Ecdar allows running multiple concurrent instances of the SUT, which speeds up test execution.
This is especially useful for real-time testing, as the test driver might wait a long time for the SUT to
output. By default, we run only one concurrent instance. We leave it up to the user to set a low enough
limit on the maximum number of concurrent instances.

5 Case Study

We implement a modified version of the car alarm system from [14] to be used as a case study for the
purpose of evaluating Ecdar. The system represents a car alarm that is armed and triggered if someone
opens a door without unlocking the car first. If triggered, it can be disarmed or – if left alone – it
disarms itself after a set duration. As we have defined mutation operators that handle variables, we add a
shutdown variable. Furthermore, we make the model robust with regards to time constraints in order to
support testing using real-time. The model of the modified system can be seen on Figure 4.

10 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

M # Set 1 Set 2 Set 3 Set 4 Set 5
Ms 203
Mt 333
Mo 143
Minv 7
Msl 26
Mc 7
Mi 30
Mgc 10
Mgoc 8
Mgov 4
Mvu 1
Total 772

Table 2: Results of testing the faulty systems. We denote by # the number of generated test-cases. For
each combination of operator and faulty system we denote if the corresponding tests resolved in at least
one primary fail (). Otherwise, we denote if they resolved in at least one other fail (). Each PIT
operator creates a set of faulty systems that we divide with vertical lines ().

Ecdar detected faults in our initial implementation. We used Ecdar to locate and fix the faults. For
this case study, we use the final version of the implementation. It has no faults according to Ecdar.

We perform our tests on a Windows 10 Pro v. 1803 computer with an AMD Ryzen 7 1690 CPU and
two Kingston HyperX SH103S3/120G SSDs in Raid 0. We mutate using all Ecdar mutation operators.
We define 1 time unit as 1 s, the number of concurrent SUT instances as 5, the maximum wait time as
420 time units, and the step bound as 40 (see Section 6).

It took 0.61 s to generate all 1173 mutants and 30 s to generate all 772 test-cases. A test execution
using real-time took 3 h 52 m, while an execution using simulated time took 26 s, which is a significant
speed-up.

To evaluate our integration of Ecdar we use the mutation testing tool PIT2 to generate variations of
the car alarm system. We used all mutation operators from PIT and mutated the CarAlarm class (see
Section 6) to generate 278 systems.

We use the Ecdar extension to test the systems generated with PIT. In order to speed up test execution,
we test using simulated time. Ecdar reports no fails for 47 of the systems. Through inspection of these
systems, we found that they are all equivalent to the original car alarm system. Another 91 systems
crashed while testing. When a SUT crashes, Ecdar provides the stack trace, which allows developers to
locate the fault. However, it does not provide us with an output with which we can determine the verdict.
This leaves us with 140 failing systems that do not crash. We denote these as faulty systems. The results
from testing the faulty systems can be seen in Table 2.

We observe that every faulty system has a failed test-case. This shows that Ecdar detected all the
generated faults. In three systems (e.g. number 4 in set 1)Mgc andMgov are the only ones that could
detect the fault. These operators are new and defined in this paper. This shows that the new operators
improve the ability to detect faults.

As mentioned in Section 4.2 Ecdar includes primary fails. For three systems (e.g. number 5 in set
1)Mgoc is the only one to achieve a primary fail. This operator is new and defined in this paper. This

2http://pitest.org/ - version 1.3.2

T.R. Gundersen & C. Ovesen 11

Figure 5: A screenshot of the Ecdar UI overlayed with numbered circles.

shows that the new operators improve the ability to locate faults.
Two faulty systems (e.g. number 8 in set 1) have no primary fails. Both change an output to one not

defined in the test model. In order to generate primarily failed test-cases for such faults, their mutants
would have to guess these non-defined outputs. As there is an infinite number of non-defined outputs, it
is in practice impossible to guarantee a primary fail for every such fault.

6 User Interface

The Ecdar extension is implemented as a program that works as an IDE. Figure 5 shows a screenshot of
Ecdar, where:

1 from the menu bar, we can create new documents and change options;

2 from the project pane, we can manage the declarations of the system, the TIOA, and the test plans;

3 on the canvas, we can edit TIOA. For instance, the TIOA in Figures 1 and 4 are modelled this way;

4 on the query pane, we can use the Ecdar engine to verify TCTL properties; and

5 on the error pane, errors and warnings automatically appear.

From the menu bar 1 , we can create a new test plan. In order to test, we simply need to choose our
test model, select the path to our SUT or a program interfacing it, and (if testing using real-time) define
what 1 time unit in the model corresponds to in real-time (see Figure 6a). The current version of Ecdar
only works with a SUT that is a JAR file or interfaced by one.

Testers can adjust a test plan by changing:

12 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

(a) A test plan. (b) Results of a failed test run.

Figure 6: Partial screenshots of an Ecdar UI.

• what mutation operators to test with,

• whether to test using simulated time,

• the maximum number of concurrent threads used for generation,

• the maximum number of concurrent instances of the SUT,

• the maximum wait time, and

• the step bound.
For each executed test-case, Ecdar displays a description of the mutant, the id of the test-case, the

verdict, reason for the verdict, and the trace performed by the SUT (see Figure 6b). The tester should
use this information to locate faults.

Ecdar supports retesting selected test-cases without redoing mutation or test-case generation. It can
also export mutants for custom use. The extension and sample projects (including the car alarm pre-
sented in Section 5) are licensed under MIT3 and are available at http://ulrik.blog.aau.dk/ecdar/
ecdar-2-2/.

3https://opensource.org/licenses/MIT

T.R. Gundersen & C. Ovesen 13

7 Conclusion

In this paper, we present an extension of Ecdar that integrates conformance testing into the tool in order to
improve productiveness and reliability. It uses Model-Based Mutation Testing (MBMT) that – contrary
to similar approaches – is fault-based, proving the absence of certain types of faults. It also generates
test-cases solely based on the test model. Thus, the tester does not need to provide any other constructs
unlike what is required for some other methods.

Ecdar mutates the test model through 11 mutation operators and uses the Ecdar engine to generate
strategies that we use for test-case generation. The tool then executes the test-cases using either real-time
or simulated time. Testing using real-time enables testing of physical systems. Testing using simulated
time allows for a significant speed-up. To further speed up testing, we parallelise test-case generation
and test execution.

Ecdar is an open-source IDE using the Ecdar engine. It can model Timed I/O Automata (TIOA),
verify them, and test a system based on a TIOA.

We conduct a case study using the independent mutation testing tool PIT to generate 140 faulty
systems. Testing with Ecdar detected all faults. We introduce new mutation operators that improve the
ability to detect and locate faults.

Future Work Ecdar can combine models with conjunction, composition, and quotient. It does, how-
ever, only support testing of one uncombined model at a time. This makes it tedious to test integrated
systems and makes it unusable for integration testing. Future work could include support for testing
integrated systems. The challenge is to simulate combined automata. We could take inspiration from
UPPAAL TRON [9], as it solves a similar problem; it does not know the state of the System Under Test
(SUT), so it keeps track of multiple potential states. When testing integrated systems, we could check
refinements using compositional verification [5] in order to speed up test-case generation.

We presented in Section 5 a small case study to demonstrate MBMT with Ecdar. However, future
work could include an industrial case study.

Ecdar only supports testing using first-order mutants. Future work could include using higher-order
mutants to detect faults not detectable by first-order mutants. Future work could also include reducing
generation and execution time. An approach is to prioritise test-cases so that we only generate and
execute test-cases with a higher probability of detecting a fault. Alternatively, Lorber et al. [15] and
Devroey et al. [8] propose other approaches for speeding up, as presented in Section 2.

Finally, future work could include adding a command-line interface to test with Ecdar. We can, for
instance, use this to conformance test during continuous integration.

Acknowledgements We thank Ulrik Nyman for supervision, and Florian Lorber and Ulrik for fruitful
discussions throughout the project period.

References

[1] B.K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick & S. Tiran (2015): Killing Strategies for Model-
based Mutation Testing. Softw. Test. Verif. Reliab. 25(8), pp. 716–748, doi:10.1002/stvr.1522.

[2] B.K. Aichernig, K. Hörmaier & F. Lorber (2014): Debugging with Timed Automata Mutations. In A. Bon-
davalli & F. Di Giandomenico, editors: Computer Safety, Reliability, and Security, Springer International
Publishing, Cham, pp. 49–64, doi:10.1007/978-3-319-10506-2_4.

14 Effortless Fault Localisation: Conformance Testing of Real-Time Systems in Ecdar

[3] B.K. Aichernig, F. Lorber & D. Ničković (2013): Time for Mutants — Model-Based Mutation Testing with
Timed Automata. In M. Veanes & L. Viganò, editors: Tests and Proofs, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 20–38, doi:10.1007/978-3-642-38916-0_2.

[4] M. van der Bijl, A. Rensink & J. Tretmans (2004): Compositional Testing with ioco. In A. Petrenko &
A. Ulrich, editors: Formal Approaches to Software Testing, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 86–100, doi:10.1007/978-3-540-24617-6_7.

[5] A. David, K.G. Larsen, A. Legay, M.H. Møller, U. Nyman, A.P. Ravn, A. Skou & A. Wąsowski (2012):
Compositional verification of real-time systems using Ecdar. International Journal on Software Tools for
Technology Transfer 14(6), pp. 703–720, doi:10.1007/s10009-012-0237-y.

[6] A. David, K.G. Larsen, A. Legay, U. Nyman & A. Wąsowski (2010): ECDAR: An Environment for Composi-
tional Design and Analysis of Real Time Systems. In A. Bouajjani & W. Chin, editors: Automated Technology
for Verification and Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 365–370, doi:10.1007/978-
3-642-15643-4_29.

[7] A. David, K.G. Larsen, A. Legay, U. Nyman & A. Wasowski (2010): Timed I/O Automata: A Com-
plete Specification Theory for Real-time Systems. In: Proceedings of the 13th ACM International Con-
ference on Hybrid Systems: Computation and Control, HSCC ’10, ACM, New York, NY, USA, pp. 91–100,
doi:10.1145/1755952.1755967.

[8] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens & P. Heymans (2016): Featured Model-
based Mutation Analysis. In: Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, ACM, New York, NY, USA, pp. 655–666, doi:10.1145/2884781.2884821.

[9] A. Hessel, K.G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson & A. Skou (2008): Testing Real-Time
Systems Using UPPAAL, pp. 77–117. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-
540-78917-8_3.

[10] A. Hessel & P. Pettersson (2007): Cover-a test-case generation tool for timed systems. Available at http:
//hessel.nu/CoVer/.

[11] R.M. Hierons & M.G. Merayo (2007): Mutation Testing from Probabilistic Finite State Machines. In: Test-
ing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pp. 141–150, doi:10.1109/TAIC.PART.2007.20.

[12] Y. Jia & M. Harman (2011): An Analysis and Survey of the Development of Mutation Testing. IEEE Trans-
actions on Software Engineering 37(5), pp. 649–678, doi:10.1109/TSE.2010.62.

[13] J.H. Kim, K.G. Larsen, B. Nielsen, M. Mikučionis & P. Olsen (2015): Formal Analysis and Testing of Real-
Time Automotive Systems Using UPPAAL Tools. In M. Núñez & M. Güdemann, editors: Formal Methods
for Industrial Critical Systems, Springer International Publishing, Cham, pp. 47–61, doi:10.1007/978-3-319-
19458-5_4.

[14] K.G. Larsen, F. Lorber, B. Nielsen & U.M. Nyman (2017): Mutation-Based Test-Case Generation with
Ecdar. In: 2017 IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 319–328, doi:10.1109/ICSTW.2017.60.

[15] F. Lorber, K.G. Larsen & B. Nielsen (2018): Model-Based Mutation Testing of Real-Time Systems via Model
Checking. 2018 IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW). To appear.

[16] Object Management Group (2015): OMG Unified Modeling Language. http://www.omg.org/spec/UML/
2.5/PDF.

[17] J. Tretmans (2008): Model Based Testing with Labelled Transition Systems, pp. 1–38. Springer Berlin Hei-
delberg, Berlin, Heidelberg, doi:10.1007/978-3-540-78917-8_1.

