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Abstract:

Developing software that utilizes the GPU often
requires using low-level languages, and the de-
veloper must be aware of the underlying archi-
tecture and execution model, to fully utilize the
available resources found on a GPU. This may
require the developer to tweak and tune many
details in an implementation in order to gain full
performance, also requiring a lot of knowledge
on the topic.
In this project we introduce FuGL, a statically
typed functional GPU programming language.
FuGL features high level abstractions, requir-
ing only a few keywords to parallelize an imple-
mentation. FuGL uses LLVM as backend, as it
features architectural support for both CPUs and
GPUs.
The FuGL compiler is developed using .Net Core
with C#, to support both Windows, macOS and
Linux. The compiler implements the LLVM C
API using LLVMSharp, to emit LLVM Assembly.
FuGL features a simple syntax with only a few
constructs, as with Lisp. With only the keywords
mutable and gpu, the developer is able to de-
cide how and when data is allocated and copied
to the GPU, to remove unwanted memory copy-
ing. Kernels are specified using only the gpu
keyword.

FuGL has been tested on three developers to de-

termine the programmability, which is satisfy-

ing for the current version. Furthermore FuGL

is performance tested, showing that the per-

formance is comparable to other high level lan-

guages. The performance tests are performed

by implementing three algorithms in FuGL and

comparing the performance with other lan-

guages for GPU development.



Master Thesis Summary

This report documents the master thesis work performed by group DPW108F18
during the 10th semester of Software Engineering. We describe the design and
implementation of FuGL; a Functional GPU Language. FuGL is a statically typed,
high-level functional programming language with primitives for GPU develop-
ment. The purpose of FuGL is to allow developers to utilize the GPU at a higher
level than traditionally seen in CUDA and OpenCL, and maintaining a high level
of programmability, as described by Sebesta. We base this project on the as-
sumption that for many developers, programmability is more important than
performance.

The work presented in this report is based on the work performed during the 9th
semester, in which we analyzed multiple languages and frameworks for GPU de-
velopment by implementing three algorithms in each language. The algorithms
we implement are generating permutations, K-Means, and Radix sort. We ranked
the programmability and performance and compared the languages and frame-
works on these parameters. We concluded that the language is not the most
difficult part of GPU development, but instead figuring out how to parallelize
an algorithm and how to make the implementation run well on the GPU. We
also found that low-level languages, while faster, are much more difficult to de-
velop in and have lower programmability than the higher-level languages. Fur-
thermore we found that high-level frameworks for GPU development, such as
Numba for Python, require using syntax or elements that are not native to the
languages, and thus often do not fit into the languages.

FuGL is designed with a low amount of constructs and keywords, as well as a
simple syntax, in order to raise the simplicity. The constructs are inspired by
Lisp, and the syntactical elements are based on C-like languages, Haskell, and
Swift. The GPU utilization is based on frameworks such as Alea GPU and Thrust,
and FuGL allows developers to use the built-in types on both the CPU and the
GPU, but still retain control over memory using keywords to describe how the
memory is used.

The FuGL compiler is implemented in C# and uses LLVM as the backend. C# was
chosen as it is high-level, cross-platform, and allows interfacing with LLVM us-
ing the LLVMSharp framework. Solutions such as Alea GPU, Rust, and Julia use
LLVM as the backend, and LLVM allows compilation to both CUDA and OpenCL
code. The compiler emits a single LLVM assembly file, containing both the CPU
and GPU code of the program which can then be compiled and executed. The
compiler is not complete, and there are many features that are designed but
not implemented. There are various issues in the current implementation, the
largest being that FuGL does not allow many levels of recursion, due to some
LLVM issues during the design. The recursion issue can be avoided by utilizing
for-loops.

The level of programmability and the performance of FuGL was tested. The per-
formance was tested by implementing the three algorithms from the 9th semester
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project in FuGL and comparing the execution time to the execution times of
the implementations previously developed. The performance of FuGL is com-
parable to other high-level frameworks for GPU development, such as Numba,
but worse than the low-level languages, as expected. The programmability was
tested by performing interviews with three testers, inquiring about the general
syntax and layout of the code, as well as the GPU utilization. The testers found
FuGL to have a high level of readability, and the GPU primitives seemed easy to
use and high level compared to the languages that are traditionally used for GPU
development.

We are satisfied with the outcome of this project. FuGL is simple, with few con-
structs, and interviews indicate that the level of programmability is higher than
traditionally used GPU languages. It is easy to convert sequential FuGL code to
parallel code that can be executed on the GPU, and tests showed that by just
adding the gpu keyword, the execution time was halved. There are some issues
with the compiler, but due to the timeframe and scale of this project we find this
acceptable.
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Preface

This report documents the work performed by group DPW108 on the 10th semester
master thesis project at the Department of Computer Science at Aalborg Uni-
versity. References to programming languages and frameworks refers to what is
available at the time of writing this report. The work is based on the work per-
formed during the 9th semester[1]. The bibliography can be seen at the end of
the report.

We would like to thank our supervisor, Lone Leth Thomsen from the Depart-
ment of Computer Science at Aalborg University for the guidance in this project.
The feedback from Lone significantly raised the quality of the project.

The report is best read in sequential order to follow the five phases the report is
split into: Analysis, design, implementation, testing, and summary.

The report structure is based on the initial brainstorm performed in this project,
which is seen in Figure 1. The major discussions are the type of solution to im-
plement and the backend for the solution. These are discussed throughout the
analysis and design. An initial assumption of this project, is that programmab-
ility is more important than performance, based on the work performed in [1].
Programmability refers to multiple criteria, such as writability and readability,
as defined by Sebesta[2] and the GPU criteria found in [1]. This assumption is
used as the basis of this project, and we attempt to implement a solution that
makes GPU development easier and faster for developers, but possibly at the
cost of performance.

Analysis
The analysis contains the initial thoughts about the project, a considera-
tion of which type of solution to implement, as well as an analysis of vari-
ous libraries and frameworks for GPU and parallel development.

Design
The design phase contains the design choices for FuGL and the FuGL com-
piler. We describe the syntax and thoughts behind FuGL, as well as how
the compiler is designed.

Implementation
The compiler is implemented, and the compiler phases are described.

Testing
This part contains a description on how testing is performed. We test how
well the compiler works, the programmability of FuGL, and the perform-
ance of FuGL.

Summary
In this part we summarise and finish the project. This includes reflections,
conclusion, and future work.
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Figure 1: The initial brainstorm for the project, showing the major questions and
discussions in the project.
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1. Motivation

In recent years, functional programming has been introduced in many mod-
ern and popular languages[3]. These languages, many of them object-oriented,
have adapted functional features, to accomplish simple-to-express, yet powerful
operations, such as first-class functions[4], higher-order functions[5], anonym-
ous functions[6], and immutable objects[7]. This indicates that the functional
paradigm and higher level of abstraction is becoming something that developers
want to use.

Another topic gaining popularity in the recent years is GPU programming. As
GPUs are often used for gaming or graphical purposes, a GPU may be left idle
during general purpose computing, leaving computations to the CPU. For com-
plex computations this might not be desirable, and may take a longer time than
what the GPU can accomplish[8]. A modern strategy is therefore to execute parts
of an algorithm on the GPU, to increase performance[8]. This is seen in various
applications in various fields, such as scientific computing and image manipu-
lation.

Developing software for a GPU requires a different mindset, as the architecture
of a GPU differs from a CPU. Where a CPU often has a limited set of cores, a GPU
can have thousands of cores[8]. This requires software introducing massive par-
allelism to utilize each core on a GPU. As we concluced in [1], determining how
to parallelize an algorithm is difficult, and often requires massive rewriting of
an algorithm in order to utilize the GPU correctly. In conclusion, programming
GPU software can be challenging and time consuming.

In our previous project[1] we concluded that functional languages either do not
work for GPUs or require an imperative approach. Based on this conclusion we
want to build a language that takes these problems into account, and enables
GPU programming in a more functional manner. Because we want to build
GPU functionality directly into a language, we develop a new language instead
of building on top of an existing language.

One of the focus points of [1] is the programmability of languages. We define
programmability as readability, writability, and reliability, as defined by Sebesta[2].
These criteria are not focused on performance. In [1] we found that low-level
languages are better performing than high-level languages for GPU develop-
ment, but the programmability of these languages are lower than the high-level
languages. Furthermore we found that even in high-level languages the de-
veloper still has to consider low-level details, such as thread and memory man-
agement, in order to utilize the GPU fully. Therefore, the goal of this project is
to design and implement a solution that allows developers to utilize the GPU
while developing at a higher level of abstraction, such as seen in functional pro-
gramming languages and modern GPU libraries. The project is built upon the
assumption that programmability is more important than performance. This
means that we are willing to sacrifice some performance in order to gain pro-
grammability and to make it easier to utilize the GPU.
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2. Problem Statement

This chapter outlines the problem statement for this project. The problem state-
ment is further split into subtasks that have to be completed during the project.
We also describe the development process of this project.

As described in Chapter 1, GPU development is a daunting task, and as we have
previously experienced, the level of abstraction when developing for the GPU is
very low. In [1] we found that low-level languages are very efficient, but have
lower programmability than their high-level counterparts. In an attempt to help
developers utilize the GPU at a higher level of abstraction and supporting mul-
tiple platforms, we have the following problem statement:

How can we develop a solution that allows developers to write efficient GPU code
at a higher level of abstraction than OpenCL or CUDA, while maintaining the
possibilities that a low-level language provides?

2.1 Tasks

In order to solve this problem we have to perform a number of tasks, that will
help us learn about the problem domain, potential solutions, and problems
which should help us fulfil the problem statement.

Analyze Possible Solutions
The first step is to analyze which kinds of solutions we can develop that
increase the level of abstraction for GPU development. This includes con-
sidering whether the best solution is a library or a language.

Determining a Backend
Determining a backend for the library or compiler is an important task, as
it will will impact all parts of the development. The backend can be de-
veloped to target NVIDIA and AMD platforms, or utilize a shared backend
such as LLVM, that compiles for both platforms.

Designing the Solution
Whether the solution is a library or a language, the developer interface
has to be designed. In the case of a library, the APIs that are exposed to
the developer have to be designed carefully, to allow ease of use, while
maintaining functionality. In the case of a programming language, the
grammar and functionality have to be designed. A development language,
in which the compiler is implemented, has to be chosen in this task as
well.

Implement the Solution
The process of implementing the designed solution with the chosen backend.

Testing the Solution
In order to test the claim that the solution is easy to use and provides a
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high level of abstraction, the solution has to be tested. This entails finding
developers that have an interest in GPU development, and have know-
ledge about how GPU development is currently performed, in order to
provide feedback on our solution in comparison to the ’traditional’ way.
Furthermore we test the performance of the solution. Although one of
the assumptions of this project is that performance is less important than
programmability, it is still interesting to see how the solution compares to
traditional GPU development languages. We use the knowledge and per-
formance tests from [1] for this comparison.

2.2 Development Process

The development of this project follows the waterfall model, meaning that we
analyze, design, implement, and test in a linear way. Each phase is finished
before starting the next. The implementation of the language or library is per-
formed iteratively, meaning that we implement a few features, then reconsider,
implement more features and so on. The reason for this choice of process is that
we wish to analyze and design the solution, but we may not be able to imple-
ment all parts of the solution, and as such, we implement a small number of
features in each iteration. The testing is performed at the end.

12



Part I

Analysis
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3. Analysis Introduction

The analysis contains discussions regarding the type of solution to implement
in this project, and inspiration for the design and implementation. There are
multiple options for the solution that we consider; implement a library, modify
a compiler, or develop a new language. The advantages and disadvantages of
these approaches, along with our choice, is described in Chapter 4. We then
analyze various libraries and languages for parallel and GPU development. We
describe how these solutions handle memory and threads, which we have pre-
viously seen in [1] is one of the difficult parts of GPU development.
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4. Choice of Solution

In this chapter we discuss and choose what type of solution to implement. The
options are to develop a library, further develop an existing language and com-
piler, or to develop a new language. This decision influences how the solution
is utilized by end users. All options are viable choices, and each have strengths
and weaknesses.

4.1 Library

The first approach is to implement a library that allows developers to write high-
level GPU code in a language by using a library. The library should offer high-
level abstractions, such as the ones available in Alea GPU for C#[9]. These ab-
stractions allow for-loops to be parallelized, automatic memory management,
etc. Other similar implementations are Firepile[10] for Scala and the Rust GPU
framework[11] for Rust.

Other libraries offer varying levels of abstraction for GPU development, but they
all have the same problem; they are added to a project and a language, and not
an integral part of it. This means that developers will use only what the de-
velopers of the library expose, and it might not be possible to extend the library
for more use cases.

Libraries exist that solve many types of problems for GPU development, such
as cuBLAS[12] for vector and matrix operations, but many of these libraries are
for very specific operations. The Thrust[13] library is more general-purpose ori-
ented, but still only expose the functionality that the developers of the library
wish to expose. Many of these libraries will only target one platform, such as
CUDA or OpenCL, which can make it unsuitable for cross-platform develop-
ment.

One of the conclusions we found in [1] is that functional programming lan-
guages are not, at the time of writing, well suited for GPU development, and
the libraries that can be used in functional programming languages are imma-
ture, difficult to install, or require the developer to write imperative code instead
of functional code. The advantage of a library is, that it is based on an existing
compiler infrastructure, which allows developers to focus on implementing the
functionality of the library, without having to consider how the compiler works.

Other issues with this approach is that the framework has to update with the
language, and changes in the compiler can break the framework. This is the
case with both Firepile and the Rust GPU implementation. A few years after
development the frameworks are no longer usable, as the languages or runtimes
have changed since their implementation.
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4.2 Modify a Compiler

The next possible solution is to modify or add phases to an existing compiler. We
have previously seen this approach used in [14], where a new phase was added
to the Julia compiler that allows run-time compilation and execution of GPU
code. In the Julia library, the framework performs a specialized CUDA GPU
compilation, using interfaces in the main compiler, when functions are called
with a @cuda keyword. This approach allows more control of how the compiler
handles the GPU code, as the project directly interacts with the compiler.

While language changes can break this implementation, the risk of such is greatly
reduced, as the library relies mostly on the main compiler. As long as the changes
do not affect the compiler interfaces, or introduce functionality not supported
on the GPU, the library will not break on language changes. Modifying a com-
piler requires the developer to follow the development of the compiler.

4.3 New Language

The third possibility is to design and implement a new language, which features
built-in support for GPU development, as well as a high level of abstraction. This
approach allows full control of how the GPU is handled, and how the host code
is implemented. This approach allows us to develop a language that has the high
level of abstraction that we are looking for, and the amount of low-level control
that GPU development requires.

The main disadvantage of this approach is the massive amount of work that im-
plementing a compiler requires. The language has to be designed, a syntax has
to be made, and an implementation has to be made including testing. A suitable
intermediate language will have to be chosen, which should work on multiple
platforms, to support both CUDA and OpenCL.

This approach requires developers to learn a new language, which might dis-
courage developers looking to do GPU development. This approach will fur-
thermore allow us to implement a functional programming language with the
features needed for GPU development, which we have seen in [1] does not cur-
rently exist.
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4.4 Summary

The choice of solution to implement is important, and this chapter provided
three options; a library, a language or compiler extension, or a new language
and compiler. We described advantages and disadvantages for each of the ap-
proaches. Despite the large amount of work that it will require, we choose to im-
plement a new programming language, with high-level abstractions and built-in
GPU primitives. This language is called FuGL, meaning Functional GPU Lan-
guage.

As previously stated, functional programming is not yet a viable choice for GPU
development, despite many of the functional programming languages being built
for array and number operations, which the GPU is well suited for. Therefore it
is interesting to explore how a functional programming language can be imple-
mented to work well for GPU development. In our opinion, neither a library or
a compiler extension will make the GPU development appear built-in, which is
one of our priorities. Furthermore we will not rely on other developers of a lan-
guage potentially breaking our library or extension, which we have previously
seen[10] [11].
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5. State of the Art

In this chapter we analyze some existing high-level languages and libraries for
parallel and GPU development before designing and implementing a new lan-
guage. We consider libraries and languages that are general purpose, and not
libraries such as cuBLAS which are aimed at one specific type of usage. We cover
multiple types of solutions, both frameworks, libraries, and compiler extensions.
The libraries are for both low-level and high-level languages. The list of libraries
we examine is not exhaustive, but we have chosen the solutions based on our
work on [1], knowledge from a previous course, and some interesting solutions
found while analysing the GPU development field.

For each of the solutions, we analyze how memory is handled, including alloc-
ations, deallocations, memory transfers to and from the GPU, and how they
handle block and thread dimensions. We focus on these features as they are
what make the libraries differ from low-level GPU development, and as seen in
[1], these parts are difficult in GPU development. We further consider whether
these solutions rely on compile-time or run-time code generation for GPU code.
These solutions are used to aid in the design of the language.

5.1 Julia

In December 2017, the Julia[15] language introduced interfaces for extending
the main compiler and potentially targeting new platforms. An example of such
an implementation can be seen in [14], where a JIT compiler for the CUDA plat-
form is implemented. Both the GPU functionality and compiler structure is very
interesting in the context of our project.

Julia is a dynamically typed language utilizing type inference and aggressive
specialization on runtime variables, to infer dynamic types into a much more
statically typed Julia Intermediate Representation(IR). Julia IR, which is "mostly
statically-typed"[14], and "is a good fit for the LLVM compiler framework"[14]
which is fully statically typed, "commonly used as a basis for industrialstrength
compilers"[14], and furthermore features support for several architectures in-
cluding CUDA.

As seen on Figure 5.1, the main Julia compiler provides a set of interfaces, high-
lighted with the numbers 1 to 5, so that a specific compiler phase can be invoked,
or an IR can be modified. In addition, specific hooks or parameters can be set
to restrict specific functionality. For example, exceptions or dynamic memory
is a bad fit[14] on a GPU, and as such, exceptions can be restricted through the
compiler interfaces.

In the CUDA library for Julia, kernels can be programmed just as in CUDA. Most
of the low-level operations are performed automatically leaving out the need of
explicit memory allocation and copying. Kernel functions are not marked with
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Figure 5.1: The structure of the main Julia compiler and GPU Julia compiler[14].
The numbers 1 to 5 highlight the compiler interfaces.

anything hence acting like host functions, but to work on a GPU usually a global
or local block id must be retrieved. This is done using a blockIdx, blockDim or
threadIdx function which can only be used inside kernels. Marking a function
as a kernel function is done through the function call, where a @cuda must be
prefixed.

CUDA arrays can be allocated in a more abstract way using a CUDAAdrv.Array
function. Functions can be broadcasted to these arrays, which will make the
GPU execute the function on each element in the array in parallel, leaving out
the need for a kernel function.

A problem in Julia GPU is the compile time, upon first execution of a kernel. The
compile time for a kernel is measured in [14] as being between 2 and 6 seconds,
depending on the complexity of the kernel. As this compile time is several times
higher than the typical kernel execution time experienced in [1], ranging from
0.35 seconds to 7.98 seconds, this is devastating for the overall performance.
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5.2 Rust

Rust[16] is another language where GPU programming can be achieved. As
seen in [11], a separate compiler is developed that allows NVIDIA GPU program-
ming. Like in Julia, both the main and kernel compiler uses LLVM as compiler
backend.

Unlike the Julia compiler, the Rust compiler does not provide any interfaces in
the compile process. The kernel compiler and main compiler are separated,
as seen on Figure 5.2, and as such the kernel compiler duplicates some func-
tionality from the main compiler. This also means that if even minor changes
are made to the language, the kernel compiler must be updated with the same
changes.

Figure 5.2: The structure of the main and kernel Rust compiler[11].

In the Rust language, the keyword mutable exists. This keyword marks that a
variable can be modified, which is convenient in a functional language for GPU
development, as mutable values are often not allowed in functional languages,
as seen in Haskell and Lisp. Because kernels will often modify the contents of an
array, immutable values are problematic in GPU development.

The abstractions of Rust GPU framework are in the form of built-in functions to
be called from kernels. No GPU abstractions can be invoked or called directly
from a host function. In our opinion this limits what can be accomplished by
the Rust GPU framework, which could be improved.

To execute the compiled kernels, the Rust GPU framework utilizes OpenCL bind-
ings. The reason for this is not explained in [11], but they point out some chal-
lenges in using these bindings. As FuGL is supposed to target multiple platforms,
using OpenCL bindings to start kernels is a possible choice.
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5.3 Accelerate

Accelerate[17] is a Haskell[18] library for GPU development, that uses run-time
code generation for the GPU code. It uses LLVM as the backend for GPU code
generation. As described in [1], we were unable to install Accelerate. The doc-
umentation for Accelerate[17] describes how the framework is used, which we
will base the analysis on. As Accelerate is a high-level library for a high-level lan-
guage, it is interesting to analyze as it attempts to solve the same issues as FuGL;
offering high-level abstractions in a high-level language for GPU development.

Based on the examples from the Accelerate website[19], we see that Accelerate
allows normal list functions, such as fold and map, but requires that the lists are
of type Acc. Listing 5.1 shows a dot product function using Accelerate that can
be run on the GPU. This code is best read from right to left. The parameters for
the function indicate that the input must be floating point vectors of the type
Acc. First the code multiplies the two vectors, xs and ys, using zipWith and the
multiply function. Then the multiplied vector is ’folded’ using the plus operator
starting from 0, meaning that all the values are summed.

1 import Data . Array .Accelerate as A
2
3 dotp : : Acc (Vector Float ) −> Acc (Vector Float ) −> Acc (Scalar Float )
4 dotp xs ys = A .fold ( + ) 0 (A . zipWith ( * ) xs ys )

Listing 5.1: Dot product in Haskell using Accelerate.

Accelerate uses regular Haskell syntax, and the library contains many standard
library list functions, making it easy to integrate into existing Haskell applica-
tions. Some special types are used and there are constraints on how these types
can be used on the GPU. For example, Acc lists can not be appended or created,
which is a GPU limitation[20]. An Acc list can be created from a ’regular’ Haskell
list by using a keyword, and the Acc keywords can be reused for GPU computa-
tions without being allocated on the GPU again.

5.4 Futhark

Futhark[21] is a statically typed, pure functional programming language designed
for GPGPU development created by researchers at University of Copenhagen.
Futhark is intended to help in developing the computing intensive parts of a
program, and then use the generated code from Futhark in other applications.
It is not intended to replace general-purpose languages[21]. Futhark generates
OpenCL code when compiled, which can be integrated into other frameworks,
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such as PyOpenCL or used in a regular OpenCL application. According to the
Futhark developers, Futhark produces GPU code that is fast[22].

Futhark allows common functional operations, such as map and reduce to be
executed on the GPU, with a high level of abstraction for developers. An example
of a Futhark program can be seen in Listing 5.2. This function computes the
factorial of a given integer n, by reducing the numbers using a multiplication
function from 1 to n.

1 let fact (n : i32 ) : i32 = reduce ( * ) 1 ( 1 . . . n )

Listing 5.2: Factorial implemented in Futhark.

5.5 Alea GPU

Alea GPU[9] is a library for GPU development in C#[23] and F#[24]. It uses LLVM
as the backend for GPU code generation. In [1] we used Alea GPU in F#, where
we found Alea GPU to have a high level of programmability and good perform-
ance, but the framework required the developer to write imperative code in a
functional language. While this is unfortunate, it shows that it is possible to util-
ize the GPU in functional programming languages.

When using Alea GPU for C#, the level of abstraction is actually higher than
when using the library in F#. The C# version of the library allows automatic
memory handling whereas in F#, memory has to be allocated and deallocated
explicitly.

Listing 5.3 shows the signature of a for-loop that is executed on the GPU in
Alea GPU for C#. This function takes a start index, end index, and a lambda
that describes the action for each iteration. Other than the for-function, there
are functions for multiple types of aggregates. Besides using these high-level
abstractions, the developer can access memory and thread block dimensions.
Memory allocated on the GPU can be accessed using .NET types instead of point-
ers, allowing developers to perform the same actions on both the CPU and GPU
objects.

1 void Gpu .For (int start , int end , Action<int> op ) ;

Listing 5.3: For-loop in Alea GPU in C#
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5.6 Thrust

Thrust[13] is a general purpose GPU library for C++. It adds a number of abstrac-
tions that allows the developer to perform actions without considering memory,
and thread / block dimensions. In Thrust, once a thrust::device_vector is
constructed with a vector, the memory required is allocated on the GPU and
the array is copied. This variable can then be used for multiple function calls,
such as thrust::sort or thrust::reduce, which performs these actions on
the GPU. Once the actions have been performed, the array can be copied back
into a host_vector using the thrust::copy function.

1 // Generate random numbers
2 thrust : : host_vector<int> h_vec(32 << 20) ;
3 std : : generate (h_vec .begin ( ) , h_vec .end ( ) , rand ) ;
4
5 // Transfer to GPU
6 thrust : : device_vector<int> d_vec = h_vec ;
7
8 // Sort data on the GPU
9 thrust : : sort (d_vec .begin ( ) , d_vec .end ( ) ) ;

10
11 // Transfer back to host
12 thrust : : copy (d_vec .begin ( ) , d_vec .end ( ) , h_vec .begin ( ) ) ;

Listing 5.4: Sorting an array of numbers in Thrust. Taken from [25].

An example of using Thrust is seen in Listing 5.4. This listing shows that a host_vector
is filled with random data. Then a new vector of type device_vector is initial-
ized with the host_vector, which automatically allocates and moves the con-
tent to the GPU. A function then sorts the content, and the sorted array is then
copied back to the host.

5.7 Sisal

Sisal is a statically typed functional programming language made for parallel
programming[26]. Sisal is based on mathematic principles and safety, and the
compiler ensures that all Sisal programs are deterministic on all platforms and
environments and levels of parallelity. As with many other functional program-
ming languages, everything in Sisal is an expression. This makes it possible to
use, for example, an if-expression as a parameter to a function. Sisal allows re-
turning multiple values from expressions and functions.

Parallelity in Sisal is achieved using loop constructs, where each computation is
independent. A loop consists of a range, an optional body, and a return value[27].
Loops return values, as they are expressions. The body of the loop is optional,
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but can be used to calculate and set values for the return clause. An example of
a loop in Sisal is seen in Listing 5.5. This loop creates a new value each iteration,
new_count, which is the value of counters and increment added, based on the
current index in the loop. The new_count array is returned after the loops has
finished.

1 for i in 1 , num_counters
2 new_count := counters [i ] + increment [i ]
3 returns array of new_count
4 end for

Listing 5.5: Loop in Sisal. From [27].

This looping construct and the usage of it, where each calculation is independ-
ent, matches well with how GPU kernels are often implemented. Dependencies
in calculations on the GPU makes operations slow, and might not be possible
due to the lack of global locks on the GPU. The promise of deterministic paral-
lel code in Sisal is also interesting, and could make development faster for GPU
code, as programs that are ’wrong’ are simply not compiled.

5.8 Summary

In this chapter we have analyzed a number libraries and languages with a high
level of abstraction for parallel and GPU development. These solutions are used
in the design of the language, when designing how developers utilize the GPU.
We are confident that the libraries analyzed are representative of high-level GPU
development, even though the list is not exhaustive.
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Part II

Design
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6. Design Introduction

In this part we introduce the FuGL language, including the design choices and
syntax and the impact on programmability. We first describe how FuGL is de-
signed and used, along with which languages that are used for inspiration, the
delimitations, and finally the EBNF. This serves as an introduction to FuGL.

We then consider the compiler architecture, which includes the backend used in
the compiler, the compiler development language, and the phases of the com-
piler. We then describe the backend LLVM, and how this is utilized in the com-
piler. How the GPU is utilized in FuGL is then described. These design choices
are based on the analysis performed in Chapter 5.

It should be noted that this part of the report describes many design choices,
and not all of these are present in the final implementation of FuGL. In the sum-
mary of the part, we describe which considerations and design choices that are
delimited from the implementation, and why they are not present in the imple-
mentation.
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7. Language Design

This chapter contains the design choices taken in regards to FuGL and presents
the FuGL syntax. We describe the reasoning for these choices, which languages
or frameworks inspired them, and the impact the choices have on programmab-
ility. As described in Chapter 1, an important part of FuGL is the high level
of readability and writability, as defined by Sebesta[2]. This means that FuGL
should be easy to understand, have a low number of concepts and constructs,
and it should be easy to get started using FuGL. The syntax and constructs in
FuGL are inspired by many other languages, such as Haskell[18], Swift[28], and
Lisp[29], but also frameworks for GPU development as described in Chapter 5.
During this chapter different language criteria will be presented, which are de-
scribed by Sebesta[2] or the GPU criteria from [1].

7.1 Syntax

Instead of starting from scratch with the syntax we decide to look at the Expres-
sions language[30], which is a hobby project by one of the authors. We do not
follow the syntax exactly, but it is used for inspiration. Expressions is a statically
typed functional programming language. The use of compile-time type-checks
increases the reliability of the language, and the low amount of constructs in
the language increases the simplicity. In the following sections the syntactic ele-
ments are described.

Basic Syntax

The general structure of FuGL syntax is based mainly C and Lisp, but with ele-
ments from Haskell and Swift. The syntactic constructs such as blocks and func-
tion calls, are taken from the family of C languages.

Blocks are started with curly brackets and function calls and parameters are star-
ted with parentheses. Blocks can contain one or more expressions, where the
result of the last expression will be returned. Most blocks should only contain
a single expression, but multiple are allowed and necessary for performing IO
actions, such as printing values. It is not always necessary to return a value from
a block, as Void is allowed as a return type. Comments match the C syntax, al-
lowing both single- and multiline comments.

The syntax for function- and lambda declarations and their parameters, as well
as function types are taken from Swift. Many of the constructs in FuGL are taken
from Lisp, due to its simplicity. The different constructs in FuGL are functions,
lambdas, if-expressions, let-expressions, arrays, and we also add the ability to
create records. The low amount of built-in constructs and reserved keywords is
intended to raise the simplicity of the language.
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Values are, by default, immutable in FuGL. In order to make a variable mut-
able, the mutable keyword is used when declaring the type of the variable. This
design choice is taken from F# and Rust, which were described in Chapter 5. We
decide on allowing mutable values even though it is against what normal func-
tional programming languages allow. Mutable values are necessary on the GPU
to modify lists, which we have seen previously is something that is often done in
kernels.

We take the syntax for arrays and generic types from Haskell. This means that
arrays are denoted by square brackets, both array types and array literals. Types
that are not known by the compiler we assume to be a generic type. This means
that a function that takes parameters which are not one of the default types, or
a user defined record, is assumed to be generic.

Functions

Functions are defined using a Swift-like syntax. A keyword is used to start the
function declaration, then a number of parameters, containing a type and a
name, and then finally the return type is defined. All types can be used as para-
meters and return types. An example of a function declaration is seen in Listing
7.1. This function takes two integer parameters, and returns an integer.

1 func myFunction ( Int a , Int b −> Int ) {
2 // Code here
3 }

Listing 7.1: Function declaration in FuGL.

Function calls in FuGL are much like function calls in C. An example is seen in
Listing 7.2. This code calls the previously declared function with two integer
arguments.

1 myFunction ( 1 , 2)

Listing 7.2: Function call in FuGL.

FuGL contains standard functions for performing actions on arrays and num-
bers, as well as some miscellaneous helpers. A complete list of standard func-
tions is found in Appendix B.

Types

There are few builtin types, and these are taken from C-like languages. The types
are Bool, Char, Int, Int64, Float, Double, and String. A string should be con-
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sidered an array of characters, and can be used in functions that accept arrays,
such as map.

When used in an expression, a value of one type can be casted implicitly to a
type higher in the hierarchy. In order to downcast a type, an explicit cast must
be used. Functions that allow casting to each of the builtin types can be used,
such as toInt(’a’), which returns an integer containing 97, the ASCII value of
a. The type hierarchy is as such:

Bool < Char < Int < Int64 < Float < Double.

Strings are not in the type hiearchy, as they should be considered an array of
characters instead of a special type.

Records

Records in FuGL behave much like structs in C. We take the syntax from the
struct syntax in C. Records can not be mutated. They allow all types of variables,
including function types. To create a record a constructor is used, which must
contain all the values to fill the struct with. An example of a record declaration
and creation of a record is seen in Listing 7.3.

1 // Record decinit ion
2 type MyType {
3 Int a ,
4 Bool b ,
5 Char c
6 }
7
8 // Record i n i t i a l i z a t i o n
9 MyType ( 1 , f a l s e , ' c ' )

Listing 7.3: Declaration and initialization of a record.

Generic Types

Generic types is a feature that allows any type to be used in a function or con-
struct. It is widely used in functional programming languages that works on
arrays, as arrays can often contain all types. In FuGL, generics can be used for
parameters and return values in functions, which can then be called with any
type. An example of a function that is best implemented using generics is the
map function. Without generics, there would have to be a map implementation
for each type, even developer defined structs, which would require much devel-
opment time. With generics, one map implementation can be used on all types,
meaning that it does not have to be rewritten for new types or records thus sav-
ing developer time. Using generics, the definition of map can be seen in Listing
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7.4. In this example, the types A and B are generic, and any type can be used for
these.

1 map( [A ] lst , (A −> B ) fnc −> [B ] )

Listing 7.4: Definition of map in FuGL.

Three approaches are considered for implementing generics:

1. Generate functions for each known type when a generic function is defined.

2. Let the developer tell the compiler which types are used in a generic func-
tion and generate functions for the defined types.

3. Analyze parameters and generate functions based on the parameters provided
to a generic function.

The first option, which is to generate a function for each known type, for each
generic function, is easy to implement and understand. The large drawback with
this approach is the massive amount of code generated. FuGL has 7 built-in
types, and for every record a developer defines, a new function has to be gen-
erated. Furthermore, if multiple generics are used in a function, there has to be
generated one with each type being one of the known types. This leads to many
functions, and most likely many unused functions, and as such this approach is
not viable.

The next approach is based on how C++ handles templates. This approach would
have developers define which type is used in a generic type, making it easy for
the compiler to know which types are used, and generate functions for each of
the used types. Simplicity and writability are important in FuGL , and there-
fore we do not use this approach. This would require developers to know more
syntax and write more code, which we want to avoid.

The third approach is to analyze which types are used when calling a generic
function, and generate a function that works on the provided types. This ap-
proach is similar to how Haskell allows generic function calls. This would have
the same advantage as the second approach, that it only generates the necessary
functions. Furthermore it does not require developers to declare which types are
used, as the compiler deduces this, making it simpler for the developer.

Expressions

As with many other functional programming languages, the majority of the con-
structs in FuGL are expressions, meaning that they must return a value when
evaluated. As stated previously, the type of expressions in FuGL closely matches
those of Lisp. A list containing the types of expressions is seen below.
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If-elseif-else
The if-elseif-else-expression is a standard if expression known from
many languages. It must contain an if part, can contain multiple elseif
parts, and must contain an else part, as to make sure that it does return
a value. An example of an if-elseif-else-expression is seen in Listing
7.5.

1 i f a > b { 1 }
2 e l s e i f a < b { −1 }
3 else { 0 }

Listing 7.5: If-elseif-else expression.

Let
The let-expression allows developers to declare variables by type and
name, which can then be used inside the block of the expression. Mul-
tiple variables can be declared, and modifiers, such as mutable, can be
used on the types. An example of a let-expression is seen in Listing 7.6.

1 l e t Int a = 1 , Bool b = true , Char c = ' a ' {
2 // a , b , and c are defined and usable here
3 }

Listing 7.6: Example of let-expression.

As seen on Listing 7.7, a let-expression defines its own block, where a
declared variable is accessible with a given value. If the mutable variable
is redefined in a new let expression, the variable will have the newly given
value.

1 l e t mutable Int a = 2 {
2 // Variable a i s 2
3 l e t a = 10 {
4 // Variable a i s 10
5 }
6 // Variable a i s 10
7 }

Listing 7.7: Scope rule example.

Lambdas
Lambdas, or anonymous functions, are a way of defining a function without
a name. These can be used instead of defining functions with a name.
They can take arguments and return values, just like a regular function.
An example of a lambda-expression is seen in Listing 7.8. In the example,
the map function is called, which applies a function to every member in
an array. The lambda takes an integer, a, as parameter, adds one to the
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integer, and returns the integer. The result of the call to map is a new ar-
ray containing [2, 3, 4, 5]. The syntax of lambdas match the syntax of
functions and function types, increasing the orthogonality.

1 map( [ 1 , 2 , 3 , 4] func ( Int a −> Int ) { a + 1 } )

Listing 7.8: Example of using a lambda as a parameter to map.

Literals
There are multiple types of literals; booleans, strings, characters, num-
bers, and arrays. Boolean literals can be true or false. Numbers can
be either integer or floating point numbers. Strings can contain multiple
characters. The character type can contain a single character. Array lit-
erals can contain any type of expression, as long as they have the correct
type. Examples of literals are seen in Listing 7.9.

1 1 // Int
2 13.37 // Float
3 " s t r i n g l i t e r a l ! " // String , which i s [ Char ]
4 ' c ' // Char
5 ' \n ' // Also Char
6 true // Bool
7 f a l s e // Bool
8 [ 1 , 2 , 3 , 4] // [ Int ]

Listing 7.9: Example literals.

Function calls
A call to a function, as seen in Listing 7.2.

Binary operations
Binary operations, such as 1 + 1.

Unary operations
Unary operations, such as -9 or !boolValue.

Variables
Named variables are expressions. These can come from the parameters of
a function, lambda, or declared in a let-expression.

These expressions can be used anywhere an expression is expected. For ex-
ample, an if-elseif-else-expression can be used as an argument to a func-
tion, or in another if-elseif-else-expression.

GPU

GPU usage is built into FuGL, and it should be easy to use the GPU for de-
velopers. Inspired by Julia, we decide to have a keyword that defines which code
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is run on the GPU. In Julia, the keyword is applied on the function call, whereas
in FuGL the keyword is applied both on the function declaration and function
call. The gpu keyword on the function declaration makes the function compile
to GPU code instead of host code, and also handles memory and threads for the
GPU function. The same types that are used on the host code can be used on the
GPU, but there are some restrictions. For example, an array can be appended on
the CPU, but this is not possible on the GPU. The GPU requires all memory to be
allocated before execution, which makes it difficult to append or remove objects
from arrays. Stack-based arrays can be allocated on the GPU, but this requires
that the size is known on compile-time. Stack-based arrays can not be appen-
ded or have elements removed. Though this limitation lowers orthogonality in
the language, it is a necessary restriction. The technical details about how the
GPU is utilized is described in Chapter 9.

An example of vector addition in FuGL that is run on the GPU is seen in Listing
7.10. The function is declared using the gpu keyword, meaning that the function
is compiled for GPU usage, and the thread and block dimensions are implicitly
declared inside the function. The global thread ID is precalculated and can be
accessed using gpu.threadID. The body of the let modifies the c array, setting
the element at index tid to the sum of a and b at index tid.

1 gpu func vectorAddition ( [ Int ] a , [ Int ] b , mutable [ Int ] c −> Void ) {
2 set (c , gpu . threadID , get (a , gpu . threadID ) + get (b , gpu . threadID ) )
3 }

Listing 7.10: Vector addition in FuGL.

To start a kernel, the gpu keyword is used again. The different meanings of the
gpu keyword based on context somewhat lowers orthogonality and simplicity,
but at the same time makes it clear what is executed on the GPU. An example of
starting a kernel is seen on Listing 7.11. The first action that is performed is a call
to gpuwith the number of threads as parameter, which in the particular example
is the length of A. A GPU object can be saved in a let-expression and used for
multiple kernels that needs the same number of threads, instead of creating a
new object for each kernel.

The arrays used in Listing 7.11 each have different behaviour, because they are
defined with different keywords. A is defined with the gpu keyword, which im-
plies that the array remains on the GPU. To be accessible on the host, it must be
copied into a host array in a let assignment. The B array does not have any mod-
ifiers. This defines a behaviour, where the array is only copied to the GPU when
required in a kernel, but not copied back, as the array is not marked as mutable.
This leads to the behaviour of array C, which is marked as mutable, meaning that
the array is both copied to the GPU before kernel execution and from the GPU
after the execution of the kernel.
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1 l e t gpu [ Int ] A = [ 1 , 2 ] , [ Int ] B = [ 3 , 4 ] , mutable [ Int ] C = [ 0 , 0] {
2 gpu( length (A ) ) .vecAdd (A , B , C )
3 }

Listing 7.11: Starting a kernel.

The functions get, set, and length are used on the arrays. These functions
fetch or change a value in an array or returns the number of elements in an ar-
ray. The set function is only allowed on arrays that are marked mutable. These
functions are usable on both the CPU and the GPU.

7.2 Delimitation

Due to the time constraints of this project, there are some features that we do
not include. These are features that we deem not needed for GPU development
in FuGL, and are too time consuming considering design and implementation
effort.

Pattern matching, which exists in Haskell and F#, is not featured in FuGL. This
feature could be designed to work as in F# where it is a construct that can be
used if needed, instead of it being a requirement as in Haskell. We do not see
this functionality as necessary, and as such, it is not designed or implemented.

Partial application, meaning to create a function where not all parameters are
filled in but can be at a later stage[31], is another feature that is not implemented
in FuGL. This functionality is useful in functional programming languages where
first class functions are often used. FuGL does not contain this feature due to the
amount of work it takes to design and implement this functionality, mainly due
to the code generation phase. Partial application can be designed in multiple
ways, such as either saving the provided arguments and use them when calling
the new function, or generating a new function with the provided parameters
already declared in the body of the function. Some initial research shows that
this feature is not easy to recreate in LLVM, and as such we have decided not
to implement it in this version of FuGL. We argue that this functionality is not
strictly needed on the GPU and therefore is not necessary.

Type classes, or interfaces, on types, such as seen in Rust and Haskell is a fea-
ture that allows developers to implement some functionality on a type, which
in turn makes the type usable in functions that requires this trait to exist. Some
simple examples are Eq(Equal) and Ord(Ordering), which allows objects to be
compared and sorted. This feature is not implemented, as we do not see the
need for it currently.
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7.3 EBNF

The EBNF for FuGL can be seen in Appendix A. These rules describe the syn-
tax of the language, and which constructs can be used in which locations. The
scanner and parser implementation follows these rules closely, and a node type
is created for each of the rules, making the abstract syntax tree (AST) follow the
grammar. The grammar is an LL(1) grammar[32], meaning that the compiler
can decide on the next rule to follow based on the next token found, and no
further lookahead is necessary. Due to the simplicity of the language, it is only
necessary with one token lookahead.

The class of expressions and operators is large. Whether the expressions or us-
age of the operators are valid, is covered in the validation phase, and not the
scanner and parser phase. The grammar does not describe the operator preced-
ence in order to keep it simple, but the parser does handle the precedence. We
follow the operator precedence rules from C++[33], where applicable. Lambda
nodes are declared as an expression, even though they do not return a value dir-
ectly. They are the only expression type that do not return a value, and as such,
is a special case. As they are declared as variables, and can be used in the same
places as other expressions, they are defined as an expression.
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8. Compiler Architecture

This chapter contains a description of the choices taken in regards to the com-
piler development. This includes the language that is used for implementing
the compiler, the intermediate representation(IR) that the compiler generates
and the compiler backend. Finally the phases of the compiler are explained. An
overview of the compiler can be seen in Figure 8.1.

8.1 Choice of Backend

Regarding the choice of backend and IR, we consider multiple possibilities: CUDA
and OpenCL as IR, PTX and SPIR as IR, or LLVM as backend. We want a backend
that can work on multiple GPU platforms, which these options allow. These
platforms also optimize and perform some validation of the code, which could
make the compiler development faster. Due to the disadvantages that emitting
two types of C or platform specific intermediate code has, we will use the LLVM
backend for the FuGL compiler.

LLVM is used in Julia[14], Rust[11], Alea GPU[9] and various other libraries and
compilers. LLVM is a complete backend for compiler development, it is cross-
platform, and can compile an IR to native code for many platforms, including
CUDA[34] and OpenCL[35]. Multiple options exists for using LLVM as backend[36]:
Use the LLVM C Library to generate LLVM IR, emit LLVM Assembly from the com-
piler, or emit LLVM Bitcode from the compiler. Of these three options, we only
consider the first two, which is using the LLVM C library or generating LLVM
Assembly.

The advantage of generating LLVM assembly is that it is easy to get started, as
the compiler only has to emit assembly strings[36]. LLVM Assembly is a relat-
ively high-level assembly language, which features structs, arrays, and functions
as first-class-citizens. The main disadvantage of this approach is that if LLVM
changes the assembly structure, the code generator has to be updated.

In order to use the LLVM C library, the language in which we implement the
compiler must support calling C functions, which limits the amount of lan-
guages that the compiler can be developed in. When using a high-level language
there will most likely be lots of glue code that wraps the C calls to the higher level
language[36]. A few advantages of using the library is that LLVM optimizes the
code while it is being generated, and the library will automatically update the IR
when new versions of the library are released[36].

Emitting LLVM assembly is easy to get started on, but we would like to have a
more stable code generator phase, as well as allowing LLVM to optimize our
code, and as such we use the LLVM C library. While this somewhat restricts
which languages we can develop the compiler in, this approach seems to be the
most stable, as the LLVM C library will not break upon updating LLVM[36].
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8.2 Choice of Compiler Language

Which language to use for implementing the compiler is the next decision that
is taken. As mentioned in Section 8.1, in order to use the LLVM C Library the
language that the compiler is implemented in, must support calling C functions.
We want the compiler to be cross-platform, meaning that the language the com-
piler is developed in, must be cross-platform as well. Furthermore we want to
use an object-oriented programming language, which allows us to make classes
and subclasses for the node types in the AST, and to subclass a treewalker class
which makes it easier to traverse the AST and perform different actions in the
different phases. Even with these restrictions a large amount of languages are
still viable.

In order to make interfacing with the LLVM C library easier, C++ could be used
for the compiler. Using C++ would allow using the library without having to
wrap the function calls. We chose not to use C++ though, due to the low-level
nature of the language. We do not want to spend the development time debug-
ging memory and pointer errors.

There are many high-level languages that offer what we need for the compiler
language, such as Java, C#, and Swift. These are object-oriented, with managed
memory, and are cross-platform. We have previous experience with both Java
and C#, and have used these languages for various projects. Due to mainly per-
sonal preferences, we implement the compiler in C#. This has the added bonus
that a library that wraps the LLVM C library has been implemented in C# by Mi-
crosoft[37], meaning that we do not have to implement the middle-layer that
connects C to C# ourselves. This API is nearly identical to the C library, and
supports all functionality exposed by the C library[37].

8.3 Compiler Phases

This section contains a description of the compiler phases. The phases describe
the actions from the source is inputted, to code is generated. The complete ar-
chitecture is seen on Figure 8.1. The phases are explained below.

Preprocessing
The FuGL source code is passed to the compiler. The preprocessor loads
the imported modules and inserts these into the source code given to the
compiler. Once all imports, and their imports are imported, the source is
passed to the scanner and parser phase.

Scanner and Parser
The scanning and parsing phase converts the source code into an AST. The
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scanner searches for words, numbers, and symbols, and in turn passes
these to the parser as tokens. The parser uses the tokens for building
nodes that are used in the AST. When the parser receives a token, it can
peek at the next token to decide which type of rule to follow. Due to the
syntax of the language, a lookahead of one is enough[32]. Once the AST is
built, the compiler can begin working on the tree, which is used in the rest
of the phases.

Post Parsing
After scanning and parsing, some early modifications are made to the tree.
An example is creating a constructor function for each of the record types
defined by the developer.

Validation
This phase validates that the program satisfies a number of constraints set
by the rules of the language. The scope checker makes sure that variables
are not used when they do not exist, that the functions that are called ex-
ists and so on. The type checker attempts to check that types are not used
in illegal operations, such as multiplying a boolean value with a number.
Initial validation is performed by the FuGL compiler, but we also rely on
LLVM to validate the code.

Optimization
In this phase the code is optimized. We rely on LLVM to optimize the code.

Pre Code Generation
This phase makes some necessary modifications to the AST before the
code generation. Some operations might need to be restructured in the
AST in order for the code generator to perform less work. An example is
specializing generic functions.

Code Generation
The LLVM intermediate representation is generated using the LLVM C lib-
rary[38].

Once these phases are completed the LLVM IR can be compiled for the target
platforms using the backends that are provided by the vendors. For NVIDIA
GPUs we use the CUDA LLVM Compiler[34], and for AMD we use the AMDGPU
backend[35]. For the host code we rely on LLVM to compile working machine
code for the target platforms.

8.4 Summary

In this chapter we chose the backend for the compiler, and the language for
implementing the compiler. We chose to implement the compiler in C#. We
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have previous experience with this language, and it satisfies the requirements for
what we need for the compiler, mainly it being object-oriented and managed,
allowing us to focus on the implementation instead of pointers and memory.
Using an object-oriented language allows us to implement the node types of the
AST by subclassing a common node class, making the classes resemble the ac-
tual AST.

We have decided to use LLVM as the backend for the language. This choice is
made not only because many other libraries and frameworks depend on LLVM,
but also due to the large amount of backends that allows the code compiled by
LLVM to run on many platforms, including NVIDIA and AMD GPUs. We chose
to use the LLVM C library instead of emitting LLVM assembly. This makes us
less vulnerable to changes in the internal representation in LLVM and allows
optimizations while the code is being generated by LLVM.
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Figure 8.1: The structure of the compiler.
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9. Utilizing the GPU

This chapter contains a discussion about how FuGL utilizes the GPU, and how
some low-level parts of the GPU can be abstracted away from the developer.
This includes how memory is handled, how arrays work on the CPU and GPU,
and thread and block dimensions. The decisions described in this chapter is
based on the analysis performed in Chapter 5.

9.1 Memory Handling

Memory handling is an important and difficult part of GPU development, which
requires consideration into how memory is accessed and used, in order to use
the GPU efficiently[39][40][41]. Memory can not be allocated by code being ex-
ecuted on the GPU, meaning that the host program has to allocate and deal-
locate all memory that is used on the GPU. This part of GPU development is
problematic in functional programming languages, which often utilize dynamic
memory handling for operations such as appending arrays or creating new ob-
jects. The host program can make use of dynamic memory handling, as it is
possible to allocate, reallocate, and deallocate freely while on the host. In ker-
nels, however, we can not allocate, reallocate, or deallocate memory, which lim-
its the amount of possible operations. This is seen in multiple of the previously
discussed solutions, such as the Julia GPU framework and Alea GPU.

FuGL allows developers to create arrays and objects while on the CPU, just like
other functional programming languages. On the GPU we limit these actions,
and only allow stack based variables to be allocated and disallow appending or
removing objects from arrays. This is necessary as the host program needs to
know the size of the arrays or objects that are used on the GPU in order to alloc-
ate the required memory.

Our design of handling GPU restrictions is to use a keyword to define when
an array is used on the GPU. This keyword determines what actions are pos-
sible, but the arrays are otherwise the same way as CPU arrays. Furthermore
this keyword determines when to allocate and copy the array to the GPU, which
allows the developers to reuse the memory that is allocated for GPU usage. If
the host program declares a GPU array, and then calls multiple functions that
accepts GPU arrays, the allocated data will be reused. This approach is based
on how Thrust and Alea GPU handles arrays on the host and GPU. Arrays that
are not marked for GPU usage and are used in a GPU function will be alloc-
ated and copied to the GPU when necessary, but also copied back immediately
after usage, even though multiple kernels may need the array. This makes it
possible to both reuse allocated data, but also allows the developer to imple-
ment algorithms that require data to be moved to and from the device without
handling this themselves.

Another issue with memory management is the various types of memory avail-
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able on the GPU, such as shared, global, and texture[42], which impacts the per-
formance of an application. FuGL has a high level of abstraction, and having to
know how the various types of memory works, and what they are well suited for,
lowers the level of abstraction. In addition it increases the difficulty of utilizing
the GPU for developers that are new at GPU development.

The various types of memory is hidden from the developer, and the compiler
chooses which type of memory to utilize. For example, the compiler could ana-
lyze the kernel to determine whether it modifies values, and if it does not, it can
use constant memory. These optimizations and abstractions are too complic-
ated and out of scope for this project, and are not implemented. FuGL therefore
only uses global memory.

9.2 Threads, Blocks and Dimensions

In the analyzed libraries and languages, thread and block ids exist as either im-
plicit function calls or variables available from within a kernel. In the Julia GPU
framework, the thread and block variables can be accessed inside functions that
are used on the GPU. In Alea GPU the dimensions are implicitly declared for the
developer. In FuGL, they are also implicitly declared in functions that use the
GPU keyword. In addition to this, the developer can access the global thread id,
which usually has to be calculated by the developer.

To raise the level of abstraction, the developer is not required to specify block
count or thread and block dimensions. FuGL uses a default setting that performs
well on many algorithms, though not optimal.

Reaching an effective configuration on threads and blocks is a science in itself,
and multiple papers and articles have been presented on this topic [39] [43] [44].
To achieve an effective configuration, all GPU cores must be utilized, and to util-
ize memory hiding, the full amount of supported concurrent threads per core
should be started, according to [39]. On modern GPUs this is 1536 concurrent
threads per SM[45]. A rule of thumb[39] is that block size should be a multiple
of 32 or 64, which fits into Wavefronts on AMD, and Warps on NVIDIA.

According to [44], the best performance on a GTX 280 is achieved when run-
ning between 4 and 8 warps per SM, which is between 128 and 256 threads. As
the GTX 280 was released in 2008, these numbers may be outdated, and GPUs
today may perform better with a higher number of threads. But as a reference
point these numbers are taken into account. NVIDIA[43] indirectly confirms this
number stating that blocks should be a multiple of warp size, and sizes between
128 and 256 threads.

According to NVIDIA[43], multidimensional aspects do not play a role in per-
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formance, but instead help mapping multidimensional problems onto CUDA.
[39] does not agree, as they have shown that for specific problems typically in-
cluding data reuse, performance can be increased by adjusting block dimen-
sions. Thread and block dimensions are not utilized, as we are investigating an
efficient default setting for all solutions.

Based on the knowledge from [39], [43] and [44] we strive for the max amount
of 1536 concurrent threads per SM, to fully utilize the resources available on a
GPU, as described in [39]. According to Intel[44] and NVIDIA[43] the block size
should be between 128 and 256, which we choose as a default range.

9.3 Offline or Run-time GPU Code Compilation

To execute code on a GPU, we need to consider how and when to compile the
GPU kernels. The two strategies are offline compilation and run-time compila-
tion.

In offline compilation we compile to machine code, which can be executed dir-
ectly on a GPU. Choosing this approach can reduce startup time, as everything
is precompiled. The negative side of this approach is that we can only compile
for a specific architecture at a time. While it is possible to repeat this procedure
for each architecture, we eliminate the possibility of supporting architectures
developed in the future and future optimizations.

In run-time compilation we compile during run-time, as the name suggests.
This allows the compiler to compile and optimize the solution specifically to the
present architecture, and removes the need of compiling for any other platform.
Furthermore, future optimizations can be applied to the solution because the
solution is compiled during run-time. The negative side of this approach is that
it may take some time to do these compilations, which can affect the execution
time.

An extreme case of the run-time JIT compiling is seen with the Julia GPU com-
piler described in Chapter 5.1. With Julia GPU, kernels are JIT compiled all the
way from dynamically typed Julia code to device code. This provides great flex-
ibility, as a kernel can accept any type of argument. The negative side is that
the JIT compilation takes between 2 and 6 seconds[14], depending on the ker-
nel complexity, which is a long time to start a kernel. As FuGL does not have
dynamic types, JIT compiling all the way from FuGL source code to machine
code is unnecessary as the types are known at compile-time. An advantage of
run-time code generation is that kernels can be specialized, which may increase
performance[14].
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CUDA

CUDA has two different terms[46] for compiling to the architectures either with
speed in mind, or compatibility in mind. These are actual architectures and
virtual architectures.

Compiling for an actual architecture reflects the offline compiling approach.
This means that device code is compiled, and can be run on the specific archi-
tecture. This reduces startup time, as code can be deployed directly on a GPU,
but has no support for other architectures.

Compiling for a virtual architecture follows the JIT approach in some way. The
source code is offline compiled to PTX code which is a low level IR, but still re-
quires JIT compilation to a specific architecture. When compiling for a virtual
architecture, the minimum supported architecture must be specified, as any ar-
chitecture supports its predecessors. This may, however, reduce optimization or
performance possibilities.

As a hybrid approach, CUDA supports combining different compilations into
binaries, called fat binaries[46]. This allows compiling both for actual architec-
tures as well as for virtual architectures to support future architectures. It also
allows the supported architectures to start executing without compilation, and
thus fast.

OpenCL

As with CUDA and PTX, OpenCL can be compiled to a low level representa-
tion called SPIR[47]. When being executed on a system, the driver supporting
OpenCL compiles the SPIR code to device code to be executed on the GPU.

Offline compilation in OpenCL requires much more work than in CUDA, as it
depends on the system to execute the binaries. Many different vendors release
drivers that support OpenCL[48], but each of them has their own way of im-
plementing OpenCL. Furthermore, only some vendors have released an offline
compiler[48] to compile device code, but each of these must be used to compile
for the hardware released by the vendor.

As offline compilation in OpenCL is very complicated we compile to SPIR, and
let each device driver JIT compile the SPIR code to device code.

An interesting project is available at Github[49], that allows bi-directional trans-
lation between SPIR and LLVM. As we are already building a compiler with LLVM
as the backend, the translation project can aid in supporting OpenCL devices.
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9.4 Summary

In this chapter we described how the GPU is utilized by FuGL, how we handle
memory allocations and deallocations, thread and block dimensions, and the
actual compilation process for GPU code.

Memory is handled for the developer, and the process of allocating and dealloc-
ating is abstracted away from the developer. FuGL allocates, copies, and deal-
locates memory based on the usage of variables and modifiers used on the vari-
ables. The keywords gpu and mutable are used to indicate how variables are
handled on the GPU, when they are copied back.

Thread and block dimensions are decided for the developer, but the thread id
and dimensions can be accessed in kernels. We have decided on a number of
threads and blocks that should work well for a wide variety of algorithms. We
choose the block dimensions of 256 threads per block, as that number is efficient
for many use cases, as described in Section 9.2. We allow developers to choose
the number of threads to run.

The compilation for CUDA devices happens both at compile-time and at run-
time. At compile-time we create a fat binary which contains the code for various
architectures, as well as PTX code that can be compiled for specific architectures
in case the fat binary does not contain the necessary code. For OpenCL devices
we compile to SPIR, and trust the device vendors to compile this to usable code
at run-time.
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10. LLVM

As described in Section 8.1 we use LLVM as the backend for the compiler. This
chapter contains a description of how we utilize the LLVM toolchain, how the
LLVM C library is used in the FuGL compiler, and how FuGL constructs are mapped
to the LLVM IR.

10.1 LLVM Usage

LLVM contains a large number of tools, which can be used by the Clang com-
piler. Clang can emit LLVM assembly from C and C++ code using the -S -emit-llvm
command line arguments. This makes it possible to implement a feature of the
compiler in C, compile it to LLVM assembly and reverse engineer the code to
determine how to implement the feature in the FuGL compiler. This approach
is used for determining both how LLVM works, and how elements in FuGL are
mapped to LLVM.

We use the LLVM C library[38], as described in Section 8.1, with bindings to C#
using LLVMSharp[50] to generate LLVM assembly. Using either the LLVM com-
piler (llc) or the LLVM interpreter (lli) the compiler can compile to native code
or run the generated code directly. GPU code is generated using the NVPTX [51]
backend for NVIDIA GPUs, and the AMDGPU[35] backend for AMD GPUs. These
backends are used as they are developed by NVIDIA and AMD, and as such, we
assume they are working correctly and are well documented.

The LLVM C library generates errors during the code generation phase if any-
thing goes wrong, making it possible to skip many validation steps in the FuGL
compiler and rely on LLVM. We furthermore rely on LLVM to optimize the gen-
erated code.

To learn how LLVM works, including the C library and assembly, we use a num-
ber of tutorials[50] [52] [53], answers from forums, and documentation pages[54]
[38] [51]. These sources aid in designing the mapping between FuGL constructs
and LLVM constructs.

10.2 Mapping FuGL to LLVM

The code generation phase of the compiler consists of converting the FuGL IR
into LLVM IR. In this section we describe how the constructs in FuGL are con-
verted into LLVM constructs. We show some LLVM assembly for each of the con-
structs, to make it easier to understand the mapping. This section describes the
mappings from FuGL constructs to LLVM constructs.
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Functions

Functions are mapped to LLVM functions. LLVM functions are defined in as-
sembly as such: define retType @name(pars) { code }. Here, retType is
the return type of the function, name is the name of the function, always pre-
fixed by an ’at’ sign, pars are the parameters, which must be defined by a type
and can be given a name though it is optional.

An example of a function in LLVM assembly is seen in Listing 10.1. This function
is called add, and accepts two unnamed 32-bit integers and returns an 32-bit
integer. As the parameters are unnamed, they can be accessed in the block by
using %0 and %1. Named parameters are instead accessed by using their name.
All variables are prefixed by a percentage sign.

1 define i32 @add ( i32 , i32 ) {
2 entry :
3 %tmp = add i32 %0, %1
4 r e t i32 %tmp
5 }

Listing 10.1: add function definition in LLVM assembly.

Functions can have multiple basic blocks, which are like labels in regular as-
sembly. In Listing 10.1, a basic block called entry is seen, which acts as the
entry point for the function. More basic blocks can be created, and these can be
used for conditional jumps, loops, and such. In FuGL , basic blocks are used for
if -expressions and each function has an entry block.

Records

Records are implemented by using the LLVM struct aggregate type[54]. LLVM
supports two types of struct; one saved in registers which are constant, and
one in memory. We first tried to implement records as struct types in memory.
This, apparently, is not always possible, as returning structs has to adhere to the
platform ABIs[55] [56] [57]. Instead we discovered, through testing and the de-
veloper forums, that by using the constant aggregate struct type it is possible to
return constant structs from a function by value.

An example of a function creating and returning an aggregate struct type is seen
in Listing 10.2. The return function of this type is a structure type containing
two 32-bit integers. In order to create and fill a structure type, the insertvalue
instruction is used. This instruction requires a structure type, a ’current’ value,
the value to insert, and an index. In order to fill all the values in the structure,
each value must be inserted by using the insertvalue instruction. Because
the structure contains two values, two insertvalue instructions must be used.
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The first insertvaluebuilds on an undef value, whereas the second instruction
builds upon the first one, by providing the first struct as an argument.

1 %Point = type { i32 , i32 }
2
3 define %Point @Point ( i32 , i32 ) {
4 entry :
5 %tmp = insertvalue %Point undef , i32 %0, 0
6 %tmp2 = insertvalue %Point %tmp , i32 %1, 1
7
8 r e t %Point %tmp2
9 }

Listing 10.2: Definition and constructor function for an aggregate type.

Types

Mapping types is relatively simple, as each of the types in FuGL corresponds to
a type in LLVM. LLVM uses i1 for booleans and i8 for characters, as there are
no ’native’ types for these. The mappings are seen on Table 10.1. Records are
mapped as described previously. Arrays are mapped using an aggregate value,
which is explained in the next section.

FuGL LLVM
Bool i1
Char i8
Int i32
Int64 i64
Float float
Double double
Void void
String array of characters
mutable values pointer to type

Table 10.1: Mapping of types.

Arrays

Arrays in FuGL are not implemented using LLVM array types, as LLVM arrays
require a known length and type, and can not easily be reallocated. The instruc-
tion alloca can be used to implement variable arrays, but we need to know the
size of an array, which is not saved on the object when using this method. In-
stead we implement arrays as an aggregate type. This type contains the number
of elements, the element size, capacity of the array, and the data. The definition
written in C can be seen in Listing 10.3. In LLVM assembly it is implemented
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as an aggregate structure type with the definition: { i64, i64, i64, i8* }.
The order of variables is the same as in the C implementation.

1 typedef s t r u c t {
2 s i z e _ t size ;
3 s i z e _ t objectSize ;
4 s i z e _ t capacity ;
5 char * contents ;
6 } Array ;

Listing 10.3: Array struct as implemented in C.

LLVM allows the use of certain C functions, such as malloc and memcpy. These
are used when performing array operations. The data part of an array is alloc-
ated using malloc. The size of the data region is based on the number of ele-
ments needed and the size of elements. memcpy is used when setting an element
in an array, which copies a value into a region of memory. Due to LLVM not
containing a meta-type describing a type, the compiler has to remember what
type a given array is, as it is not possible to have the array know its type. This re-
quires that the compiler uses the bitcast instruction on values being inserted
or fetched from the array. For example, when inserting an i32, this value is cast
to an i8* to fit into the data region of the array. When fetching elements, the
value is cast from i8* back to the i32.

When the developer uses an array literal, such as [1, 2, 3, 4, 5], the com-
piler generates a call to initializeArrayWithCapacity(4, 5), where 5 is the
amount of elements, and 4 is the size of each element in bytes. Then the com-
piler sets each element, from 0 to the amount of elements in the literal, using the
set method on the array with the current element as a parameter.

The append operator, ++, which can be used to append one array to another is
replaced before the code generation phase with a call to appendArrays func-
tion, which allocates and creates a new array from two arrays.

Expressions

Each expression type in FuGL , except for a lambda, returns a value. This makes
the expressions usable in many places, making it necessary for the compiler to
keep track of when and where to set the values generated by expressions, and
whether the value should be returned or if they are used in another expression.
FuGL allows more than one expression in a block, and the last expression is the
value that is returned. Multiple expressions might be necessary, for example
when printing values for debugging.
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Let

Let expressions are used to declare local variables in FuGL . These variables are
immutable as standard, but can be declared as mutable values, which allows re-
definition of the variable. In LLVM, a variable is declared with the contents of the
expression provided in the let statement, for each of the variable assignments in
the let-expression. Scopes do not exist in LLVM, and a variable that is declared
and assigned can be accessed anywhere in the function as long as it exists, but
the FuGL compiler can associate a name to a value.

If-elseif-else

If-elseif-else-expressions in FuGL are implemented in LLVM, as seen on
Figure 10.1, using conditional jumps, regular jumps and blocks. As LLVM sup-
ports only a single boolean statement in a conditional jump, an If-elseif-else-
expression in FuGL are implemented in LLVM as a nested conditional jump.

Figure 10.1: The structure of an if expression with one else-if condition in LLVM.
This is the LLVM generated, when compiling Listing 7.5. For clarification some
LLVM variables have been renamed manually.

If-elseif-else-expressions can return a value from their body. This is imple-
mented in LLVM, using a pointer to store the value from any branch. The type of
the If-elseif-else-expression, is determined by testing the value of the first
branch in the If-elseif-else-expression.

To continue execution after the If-elseif-else-expression, a regular jump

50



is required to jump to a block containing the instructions to execute after the
If-elseif-else-expression. Furthermore, the previously saved value from a
chosen branch must be retrieved from memory.

Lambda

Lambda expressions are defined as global functions as LLVM does not allow
functions inside functions. We declare the function with the parameters of the
lambda node and return type. The function is declared with a random name
to avoid name clashes, which LLVM validates for us. The location where the
lambda is used is then replaced with a function pointer to the new function,
making it callable.

10.3 Summary

In this chapter we described how we utilize LLVM in the FuGL compiler. For
some of the constructs, we implement these in C and compile to LLVM assembly
using Clang, allowing us to analyze and reverse engineer how to implement
these features. The code is tested using lli, making it easy to run the generated
code directly on the platform without compiling the code further.

The mapping of FuGL constructs to LLVM constructs is mostly easy, but some
problems were discovered during debugging. For example, we can not return a
struct pointer, which could improve performance, but instead have to return ag-
gregate types as structs and pointers are platform dependent. Arrays are imple-
mented as an aggregate type, though this is hidden from the developer. Strings
are converted to character arrays, as we want developers to be able to use list
functions on strings, and this is easier if the internal representation is the same.

51



11. Design Summary

In the design part we described how FuGL is designed, including the syntax, the
inspiration for the language, how the GPU is utilized, and the features we delimit
initially. We furthermore described how the compiler is designed, what language
it is implemented in, the backend for the compiler, and what phases it contains.
How the GPU is utilized in the compiler, was described, which mainly concerned
how memory, threads and blocks, and kernel launches, are handled in FuGL.

Some of the described design choices are not implemented in this version of
FuGL due to either time constraints or the features being of low priority. The
first delimitation covers the compiler validation and optimization stages. The
LLVM C library validates the code when generating LLVM code, together with
the Clang compiler which is used to compile LLVM IR to native code. As such,
there is little reason for the FuGL compiler to validate the code. LLVM and Clang
also handles optimizations, making it unnecessary for the FuGL compiler to op-
timize the code. Some validation is performed by the FuGL compiler, mainly
parts that the LLVM C library can not handle, such as scope rules.

As described in Section 9.3 we considered using the AMDGPU backend to sup-
port GPUs that are not CUDA compatible. We delimit us from the use of AM-
DGPU and OpenCL, as we do not have access to a non-NVIDIA GPU to test the
implementation, and because the documentation for AMDGPU is poor. In or-
der to implement working GPU code, we therefore only support NVIDIA GPUs
in the code generation phase.

The last design delimitation is how GPU code is executed. In Section 9.3 we de-
scribed how code can be run on the GPU for both CUDA and OpenCL devices.
For CUDA we found that fat binaries allows for starting kernels fast for the archi-
tectures that the binary is compiled for, and for JIT compilation of PTX code for
architectures that the binary is not compiled for. The usage of fat binaries is not
documented well, and therefore we rely only on JIT compilation of PTX code.
This means that GPU code is compiled into PTX code, which is then embed-
ded into the executable and at runtime the PTX code is compiled for the correct
architecture.
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Part III

Implementation
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12. Implementation Introduction

This part of the report documents the implementation of the compiler, includ-
ing examples of the source code. We describe the scanner and parser, the pre-
code generation, and the code generation implementation.

The optimization phase is not described, as this is not performed by the FuGL
compiler, but instead we rely on LLVM to perform opimizations, as described
in Section 8.3. We assume that the source code is correct once the compiler
reaches the code generation phase. Some minor validation is performed by the
FuGL compiler, such as scope checking, though this is not documented.

Each phase after parsing is implemented as treewalkers. These classes inherit
from the AbstractSyntaxTreeWalker class, which can walk through the AST,
following the EBNF rules. Each of the subclasses can override or extend func-
tions from the base class and perform modifications or analysis of the tree and
individual nodes. Each of the subclasses performs only one action thus they
should be independent, though some phases perform work required by later
phases. The treewalker subclasses used in the compiler are as follows:

PrettyPrinter
Prints the AST.

PostParsing.GlobalFunctionTable
Finds all functions, their parameters, and return type. These are saved
into a global table as many phases need a list of functions.

PostParsing.GlobalTypeTable
Finds all record types, as well as the contents of them. These are saved
into a global table to be used in future phases.

PostParsing.Generics.SpecializeGenericFunctions
Specializes calls to generic functions. The algorithm is explained in Sec-
tion 14.1.

PostParsing.Generics.ReplaceTypeInFunctionWalker
Helper class used by SpecializeGenericFunctions to replace all occur-
rences of a type in a function.

PostParsing.ArrayEqualityReplacement
Replaces occurrences of array1 == array2 with a call to arEqs with the
two arrays.

Validation.FunctionCallScopeChecker
Validates that all functions that are called exist.

Validation.VariableScopeChecker
Validates that variables exist in the scope they are accessed.

Validation.ArgumentTypeCheck
Arguments to function calls are validated, mainly illegal implicit casts.
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Validation.ArrayFunctionCallChecker
Checks whether set is being called on a mutable value.

Validation.LetReassignmentMutableCheck
Validates whether reassignments are performed on mutable values in let-
expressions.

PreCodeGen.AppendArrayConverter
Converts the ++ operator to function calls, to avoid this operator being a
special case in the code generator.

PreCodeGen.CastSpecializer
Specializes calls to the casting functions, such as toInt and toBool.

PreCodeGen.FindCaptureVariables
Used for finding captures in lambdas. Walks the bodies of lambda expres-
sions and determines which variables are declared outside the lambda
and then saves these for usage in the code generation phase.

PreCodeGen.ConvertStringToArray
Converts string literals into arrays. This is performed as strings act as
arrays of characters in FuGL, and the internal representation is easier to
handle if they are implemented the same way.

CodeGen.GPUCodeGenerator
Generates LLVM assembly that is compiled to PTX code for the GPU.

CodeGen.LLVMCodeGenerator
Generates LLVM assembly for the CPU.
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13. Scanner and Parser

This chapter contains a description of the scanning and parsing phase of the
FuGL compiler. The first phase of the compiler is the preprocessor which reads
imported files and inserts the source code into the main program file. After the
imports are handled, the source code is passed to the scanner and parser.

The purpose of the scanner and parser is to create an AST from the source code.
This AST is used throughout the rest of the compiler phases, and can be mod-
ified by each phase if necessary. The scanner provides the parser with tokens,
and the parser then uses these tokens to build a tree by following the rules in
the EBNF. The EBNF for FuGL is seen in Appendix A. For each of the rules in the
EBNF, the parser contains a function that attempts to parse the given rule, such
as ParseFunctionDeclaration and ParseBinaryOperatorExpression.

13.1 Scanner

The scanner reads the source code, one token at a time. In the FuGL compiler,
tokens can be either keywords, symbols, names, or literals. These types of tokens
can be combined to create the rules from the EBNF. The scanner also keeps track
of the current line number.

Two functions are exposed in the scanner for the parser; Get, which gets a token,
and Peek which peeks a token. The Peek function returns the current token, but
does not find the next token. The Get function returns the current token and
then finds the next token. When the parser needs to know which token comes
next, but without consuming the token, Peek is used. When the correct rule is
determined by the parser, the token can then be consumed and the parser can
continue.

The scanner finds a token by iterating the source code, character by character,
skipping whitespace and comments, until it reaches a character that must be
handled. This might be a letter, a number, or a symbol. The type of a token is
represented by the enum TokenType. The scanner knows the keywords, and cre-
ates a keyword token if the found letters match a keyword. Integer and floating
point numbers are put into the same kind of token, as the type of number is not
important in building the AST. The scanner knows the various symbols in the
language, and the symbols are given a type before being returned to the parser.
Pseudocode describing this is seen in Listing 13.1.

1 sour ce is string containing the program source code
2 cur sor is integer value describing the current location in the source code
3
4 while cur sor < length of sour ce :
5 move past whitespace characters
6
7 char = character at index cur sor in sour ce
8 increment char
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9
10 i f char is symbol :
11 return symbol token
12
13 else i f char is letter :
14 name = read the rest of the letters
15
16 i f name is keyword :
17 return keyword token
18 else
19 return letter token
20
21 else i f char is number :
22 read the number
23 return number token

Listing 13.1: Pseudocode presenting the scanner.

13.2 Parser

The purpose of the parser is to build the AST based on the tokens provided by
the scanner. The parser requests a token when necessary, using either Peek or
Get. When a token is requested, the type of the token is checked and if the token
type is usable in the current state of the parser, a rule from the EBNF is expanded
and a node in the AST is created.

The nodes created by the parser all inherit from the Node class, which contains a
reference to a parent node. The only node without a parent, is the program node.
The expression nodes in the tree inherit from the ExpressionNode class, which
makes it easier to create and use expressions as these can all be used in the same
locations. The classes used in building the AST can be seen in Appendix C.

As seen in the EBNF, which is found in Appendix A, the root node in the tree is the
program itself, which consists of multiple namespaces. Namespaces are named
containers that contain functions and types. Before the parser is started, the
source code given to the compiler is wrapped in a namespace called program.
Namespaces are currently not used, but are implemented for usage in the future
to avoid name clashes on functions and types. It is delimited in the current im-
plementation, due to it not being that important and thus we have decided not
to spend the time on implementing it.

After the scanning and parsing phase, all other phases inherit from the
AbstractSyntaxTreeWalker class. This class ’walks’ the program, recursively
walking nodes in the tree, based on the rules of the EBNF. Each phase performs
one action only, and inherits from the treewalker to perform this action, such as
type or scope checking. Subclasses of the treewalker can modify which order to
walk nodes, or skip nodes entirely if necessary.
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Operator Precedence

LLVM assembly is structured as single operations, such as ’mul op1 op2’ and
’add op1 op2’, and LLVM itself does not have any knowledge of operator pre-
cedence. This requires the FuGL compiler to handle operator precedence for
mathematical correctness and correct variable access. FuGL follows the C++ op-
erator precedence rules[33] where applicable.

Operator precedence is not presented in the grammar of FuGL as this would
complicate the grammar, and many different expression nodes would have to
be introduced. Instead of a complicated grammar, the parser enforces operator
precedence by rotating binary operator subtrees. The rule it actually enforces is,
that no binary operator can have a binary operator child, with a higher preced-
ence than itself. Pseudocode for this algorithm can be seen on Listing 13.2.

1 r oot is root node in subtree , of type BinaryOperatorExpressionNode
2 le f t is left child of r oot
3 r i g ht is right child of r oot
4
5 hi g hestBi nOpC hi ld = node among root node and children with highest precedence and ←-

of type BinaryOperatorExpressionNode
6 while hi g hestBi nOpC hi l d != r oot :
7
8 i f hi g hestBi nOpC hi ld is le f t :
9 rotate subtree right

10
11 i f hi g hestBi nOpC hi ld is r i g ht :
12 rotate subtree left

Listing 13.2: Pseudocode describing the precedence algorithm.

A special case which is handled separately is when a unary operator is applied to
a binary expression with a dot operator. The dot operator is used for accessing
values on record types. According to precedence rules, the dot operator must
be applied to the operands before applying the unary operator. The issue is,
that the previously described algorithm only applies precedence to trees of type
BinaryOperatorExpressionNode. To solve this problem we force a binary ex-
pression with a dot operator to become a child of the unary expression, during
the parsing phase. This way the dot operator is captured in the right precedence
level, and is not modified by the previously described algorithm. This is a spe-
cial case, but is necessary in order to correctly handle unary operators on values
being accessed from a record type.

13.3 Next Phases

The AST created by the scanning and parsing phase can be passed to the next
phases in the compiler. As described in Chapter 11, we do not implement any
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optimization but instead rely on LLVM to perform this, thus the next phases val-
idation, preparation for code generation, and the code generation phase itself.
We do not document the validation, as we mainly validate minor parts of the
code, such as scope checking.

Some actions are performed just after the parser, and though they are not per-
formed in the parser class, they should be considered part of the parsing phase.
The classes PostParsing.GlobalFunctionTable and PostParsing.GlobalTypeTable
are used before running other phases. These find all functions and types and
save these in a global list that can be used by the other phases to find the defini-
tion of a function or a type without walking the tree again. These tables are used
throughout the rest of the compiler.
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14. Code Generation

This chapter contains a description of pre code generation and code generation.
These are the final phases of the compiler, where the FuGL IR is prepared for
code generation, and the LLVM code is generated. The output from these phases
is LLVM assembly for both the CPU and the GPU.

14.1 Pre Code Generation

Before code generation is started, the pre code generation phase is executed. In
this phase the compiler analyzes parts of the code to prepare for code gener-
ation, and performs some modifications to the AST. Most of the modifications
could be performed during the code generation phase, but to make the code
generation implementation more concise, these changes are made beforehand.
This is done in order to make the code generator not having to consider the lo-
gic and details of FuGL, but instead simply emit code based on the AST. Multiple
tree walkers are used, one for each modification or analysis phase.

All occurrences of the ++ operator, which append two arrays, are replaced with a
function call. This occurs in the AppendArrayConverter class. The array func-
tion appendArrays appends two arrays and returns a new, appended array. We
create a new FunctionCallExpressionNode, where the two parameters are the
expressions from the BinaryOperatorExpressionNode.

Strings are converted into array literals to match the internal representation of
strings to arrays, as we consider a string an array of characters. This substitution
is performed in the ConvertStringToArray class.

Lambda captures are found by walking lambdas and finding variables that are
defined outside the lambda. This is performed in the PreCodeGen.FindCaptureVariables
class. The list of captures is used in the code generation phase for implementing
the struct that is used to pass the captured variables. This is described further in
Section 14.2.

Generic Types

As described in Chapter 7, generic types allow creating functions that can be
called with any type of parameter. Any parameter that uses a type that is not
known, is assumed to be a generic parameter. An example is the map function
definition, which can be seen on Listing 14.1. This function can be called with an
array of any type, a function that converts an object to another object, and then
the map function returns an array of these objects. A and B can be of different
types, but can also be the same type.
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1 map( [A ] lst , (A −> B ) fnc −> [B ] )

Listing 14.1: Definition of map.

Before the code generation phase, generic functions are specialized. Our ap-
proach to specializing functions is similar to C++ templates, where a special-
ized function is created for each used type for a given function. In FuGL, the
developer does not have to specify the types, as these are found by the compiler
based on the arguments provided in the function calls. The specialization occurs
in the SpecializeGenericFunctions and ReplaceTypeInFunctionWalker classes.
SpecializeGenericFunctions is the main class for handling conversions. This
class finds generic functions and calls to these, finds the provided types to the
generic parameters, and then uses ReplaceTypeInFunctionWalker to clone
and specialize the functions with the new types. After all calls to generic func-
tions are specialized, the generic versions of the functions are removed from the
AST. We have designed the following algorithm which consists of four phases:

1. Find and save functions that use generic parameters. Remember the index
of each of the generic parameters in the function. Build a tree for each
function type, which can contain nested types.

2. Walk the body of all non-generic functions, i.e. functions that do not have
any generic parameters. While walking the bodies, find function calls to
generic functions. Functions that have previously been walked are ig-
nored.

3. Determine the types provided to the generic parameters, and determine
whether this combination has been met previously. If not yet, clone the
generic function and specialize it with the provided types and add it to
the AST. Replace the function call with a call to the specialized function
instead of the generic function.

4. If a new function was added to the AST during the algorithm, run the al-
gorithm from step 2 again. If no new functions were added, meaning that
no new generic combinations were met, the algorithm removes all generic
functions from the AST.

Consider the function f((A -> (B -> C)) fc -> C), which takes a function
that returns a function as parameter, and returns a value of type C. In order to
determine which types are provided to this function, we build a tree containing
each of the types in a function, and for each nested function type we generate
a new layer in the tree. The compiler finds three generic types in this call, and
each of them are given an index in their parent tree. Return values are given
the index -1. Each generic parameter knows its own index and its parent. A call
to this function with a function as parameter of the type (Int -> (Char ->
Double)) allows us to build a tree, and find A, B, and C in the provided type. An
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example of these trees is seen in Figure 14.1 and Figure 14.2.

Figure 14.1: Generic types in the
function.

Figure 14.2: Provided types to the
function.

Each type knows its index and its parent, and due to this we can find the dir-
ection from the top node to a specific type, by walking from the node and up
the tree, saving each index we encounter and then reversing this list. To find the
type of A, we walk from the top node into the function type, and find the type
indexed with 0, giving us the Int type. To find C, we go into 0, then into -1, then
-1 again. This is done for each given generic type and argument. In the end the
compiler knows which types to replace A, B, and C with, and a function can be
generated. The specialized function is named after the provided types, such as
Int-Char-Double-f for the example function. After specializing a function it
can then be walked in the next iteration of the algorithm. This iteration then
specializes calls to generic functions inside the newly specialized function, thus
handling calls to generic functions inside the previously generic functions.

14.2 Code Generation

The implementation of the code generation is performed in multiple steps, in a
waterfall manner. This means that we implement the CPU code generation part
first, then the middle-layer that connects the CPU to the GPU and then imple-
ment the GPU code generation. The work is split into smaller steps, as to not
take on too much at once, and instead perform smaller incremental tasks. We
furthermore follow the idea from the Julia GPU framework where the GPU code
generation is the same as the CPU code generation, but with certain exceptions
handled specifically[14].

14.2.1 LLVM

The code generation phase is contained in the LLVMCodeGenerator class and
GPUCodeGenerator class. These classes walk the tree and use the LLVM C lib-
rary to create LLVM functions, values, and types, which the library can then use
to generate LLVM assembly or LLVM bitcode. The GPUCodeGenerator class in-
herits from LLVMCodeGenerator, allowing us to reuse the code generation im-
plemented for the CPU, and then override specific functions when necessary.
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An example is how some types are different on the CPU and GPU, specifically
arrays. Arrays on the CPU are implemented using aggregate structure types con-
taining the number of elements, the capacity, the element size, and the data,
while on the GPU they are implemented as an aggregate type only containing
the size of the array and the data region. By overriding the function that determ-
ines the LLVM type of a FuGL construct we can easily implement this difference.
Figure 14.3 shows how the compiler generates and handles CPU and GPU spe-
cific code.

Most calls to the LLVM C library return either a LLVMValueRefor a LLVMTypeRef.
Everything representing a value is of type LLVMValueRef, and type representa-
tions are of type LLVMTypeRef. Much of the work in the code generator consists
of converting the FuGL representation into a fitting LLVM representation. The
design for the mappings is described in Chapter 10. LLVM makes sure that the
names we provide do not clash, and that the types are correct. Many functions
in the LLVM C library accept references to values, and LLVM handles all naming
problems.

The code generation class is a treewalker subclass, i.e. that the compiler walks
the AST and generates LLVM instructions from the various FuGL constructs.
This structure is recursive, but we ’flatten’ this when generating code, to fit the
LLVM structure as LLVM assembly does not contain blocks and nesting. For ex-
ample, a FuGL function with a few levels of nesting contains no nesting when
the LLVM code is generated. We use a stack-based approach to flatten the code,
as stacks fit well when working with nesting. When an expression is generated,
we push the LLVMValueRef generated from the expression to a stack of expres-
sion values, which can be used by parent expressions, and returned from the
function.

14.2.2 Lambda Captures

Lambda captures is a feature that allows variables used in lambdas to come from
another scope, and the variables are then ’captured’ inside the lambda. This
feature is important when using certain higher-order functions, such as filter.
Without captured variables, the filter function can only filter lists based on
hard coded constants or the input parameter of the lambda, which is not very
useful. The values of captured variables are not always known at compile time,
and as such has to be inserted on runtime. An example of a case where a lambda
capture is necessary is seen in Listing 14.2. Without being able to use the vari-
able cp, which is not a parameter to the lambda, filter would not be usable,
and it would be necessary to implement a new version of filter with the ne-
cessary parameters.
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Figure 14.3: How CPU and GPU code generation is handled by the compiler.
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1 func moveCentroid ( Centroid cp , [ DataPoint ] dps −> Centroid ) {
2 l e t [ DataPoint ] insideDPs = f i l t e r (dps , func ( DataPoint dp −> Bool ) { dp .label == ←-

cp .label } ) {
3 // Removed for c l a r i t y
4 }
5 }

Listing 14.2: Capturing a variable in a lambda.

Functions nested in functions are not possible in LLVM, which is why lambdas in
FuGL are generated as regular functions during code generation. The paramet-
ers and return type are known from the lambda definition, and the lambda is
easily converted into a regular function. We considered implementing lambdas
inline, i.e. in the body of the declaring function as a block, which makes it easy to
capture the variables in the block. Unfortunately lambdas are often called from
another function where the lambda is provided as a parameter, which makes
this approach unviable, as the captured variables do not exist inside the func-
tion that calls the lambda.

Instead, captured variables are saved in a struct that is passed to the lambda
function packed into an i8*. Each value captured is represented in the struct,
and the lambda function then unpacks the values from the struct. The values
are packed into an i8* to make it ’generic’, thus every function that the lambda
is passed onto does not need to know the captured values. Instead functions can
just pass the i8* to the next function. This approach requires that each function
defined in FuGL must have a new parameter in the LLVM representation, the
i8*.

Consider the code in Listing 14.3. The code shows the function doSomething,
which accepts two numbers and a function as parameters. The functions add
and sub matches the type of the function that doSomething accepts. The prob-
lem is that the lambda is declared as a function, the parameters are no longer
(Int, Int), as the i8* is added to the parameter list, to be able to capture the
c variable at runtime. To correct this issue, we add an i8* to all functions that
are defined in FuGL. This means that the add and sub functions are of the same
type as the lambda. When these functions are called the i8* is empty, whereas
it contains the captured variables in the lambda call. The compiler keeps track
of which lambda captured which variables, and it is able to recreate the values
from the struct inside the body of the lambda function.

1 // Definit ions
2 func doSomething ( Int a , Int b , ( Int , Int −> Int ) fnc −> Int ) { fnc (a , b ) }
3 func add ( Int a , Int b ) { a + b }
4 func sub ( Int a , Int b ) { a − b }
5
6 // Cal ls
7 doSomething ( 1 , 2 , add )
8 doSomething ( 1 , 2 , sub )
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9 doSomething ( 1 , 2 , func ( Int a , Int b −> Int ) { a + b + c } ) // Assume ' c ' i s ←-

defined outside

Listing 14.3: Function definitions that should be usable.

While this is an unfortunate side-effect of how captures and lambdas are imple-
mented, this approach works. Most of the functions do not need the i8* and it
is mostly being passed as a null value when calling functions. It is only used on
lambda capture values. The parameter could be used in future versions for data
that has to be passed to functions, though currently it is only used for lambda
captures.

Lambda captures are handled in an early phase of the compiler, in the FindCaptureVariables
class. This class saves all captured variables in the LambdaExpressionNode ob-
ject that contains the lambda which accesses the captured variables. All vari-
ables that are accessed within a lambda node, but are not declared inside the
lambda, are assumed to be a captured variable.

14.2.3 CPU-GPU Code Generation

In order to bind GPU and CPU code together, and thereby to be able to ex-
ecute GPU code, we need to implement some function calls to the CUDA driver
API[58]. These calls provide the functionality required to allocate and manage
resources and execution on the GPU. LLVM provides a user guide to get started
with this task[51], but only provides an imperative implementation.

To support functional programming and increase the abstraction from the driver
API, we wrap these API calls in two levels of abstraction. The first level of ab-
straction is implemented as a CUDA wrapper, whereas the second level is the
designed abstractions provided by FuGL.

CUDA Wrapper

To implement the CUDA Driver API, and create abstraction over this API, we
have created a CUDA wrapper in LLVM. Its main purpose is to handle some of
the operations required to communicate with the API. These operations can be
data extraction or construction in the form of FuGL internal types, pointer hand-
ling or error code handling. As not all CUDA functionality is supported by FuGL,
some parameters can be left out. These parameters are hidden by the CUDA
wrapper.

Pointers are heavily used in the CUDA Driver API. For example, they are required
to retrieve any value from an API call, except from the call error code returned by
any API call. As pointer types do not exist in FuGL, it is not possible to declare a
pointer type required by the Driver API. Instead, the CUDA wrapper handles this
declaration, which is then passed to an API call. After the API call the value of this
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pointer is then returned from the CUDA wrapper, and the error code returned
from the API call is stored in a global variable within the CUDA wrapper. This
error code can be retrieved by calling getCudaError.

The CUDA Driver API uses a launch kernel call to start the execution of kernels.
The launch kernel call is implemented in two versions in the CUDA wrapper.
The first version is a regular launch call, where all thread and block dimensions
can be specified. A second version, is implemented where only a thread count
must be specified. The called function then handles the calculation of a block
count, based on the total number of threads, and a number of threads per block.
Determining a good amount of threads per block was discussed in Section 9.2.

FuGL Abstraction

As the CUDA wrapper supports FuGL types, it can be used directly in a FuGL
implementation. The driver API can be called directly from FuGL code, but this
approach is not recommended as the structure of this library is heavily imper-
ative. Therefore a second level of abstraction is implemented, hiding all calls
to the CUDA wrapper under the gpu keyword. The syntax design is previously
described in Section 7.1.

As previously described, variables behave differently depending on their keywords,
but the keywords hide many different calls to the CUDA wrapper. These keywords
are translated to functionality in the compiler that builds the copy calls to the
CUDA wrapper.

Depending on the keyword used on an array, there is some difference in where
the copy call is built. If the gpu keyword is used on the array, the copy is built
in the initialization of the array, whereas in other cases the copy call is built just
before the kernel launch.

To start a kernel, a gpu struct must be declared where the number of threads is
specified. This is shown in Listing 7.11. For this context, gpu is a struct that can
be instantiated with a thread count. When launching a kernel on this struct, the
thread count is retrieved from the struct and passed to the kernel call, which is a
special struct behaviour.

To prepare all kernel parameters, a helper function is implemented in the com-
piler, that takes a kernel name, a thread count and a list of expression nodes. This
helper function walks the expressions given to the kernel call, to build a pointer
array which can be passed to the launch kernel call in the CUDA wrapper. Dur-
ing the preparation of arguments, the helper function determines whether the
expression is an array that must be copied to the GPU and whether this array
should also be copied back. In addition, the instructions for doing this are built
for each array.
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14.2.4 GPU Code Generation

Inspired by the compiler structure of Julia, as described in Chapter 5.1, the GPU
code generator is built on top of the main code generator. We have implemen-
ted this structure using class inheritance, where Julia GPU utilizes interfaces for
communicating with the main compiler. In both cases the outcome is the ability
to reuse all functionality from the main compiler, and to override functionality
not supported on the GPU. The GPU compiler subclass modifies a few oper-
ations from the main compiler, mainly how arrays are handled. For example,
when getting and setting elements from an array, the get and set functions are
overridden.

The compiler furthermore makes some ’macros’ that allow developers to access
GPU variables at runtime, such as the block dimensions and thread ID. These are
accessed by developers by using gpu.VARIABLE where VARIABLE is the variable
being accessed. For example: gpu.threadID, which returns the global thread
ID for the current thread. These macros are converted into the CUDA calls seen
in [51], as well as a custom wrapper function that calculates the global thread ID
based on the block and thread dimensions.

As the host is responsible for starting a kernel, kernel code must be available to
the host. This is done by embedding PTX code into the main program, storing
it in a global string. When the compiled program is started, the PTX code is
compiled at runtime to the specific architecture, and stored as a CUDA module.
To start a kernel, the CUDA module is accessed and the required kernel function
is extracted from the module. This process is shown on Figure 14.3.

In GPU code, functions can be either a kernel or a device function[51]. When
marked as a kernel, the function can only be called from the host, and when not
marked as a kernel, the function is a device function only callable by the GPU.
Therefore kernel functions cannot call themselves in a recursive manner, which
conflicts with the structure of a functional language. To accommodate this, we
generate both a kernel function and a device function if necessary.

To minimize the size of the PTX string embedded in the program, we run some
simple analysis on the GPU functions, to determine which functions are called
by the GPU. The intention is to limit the amount of GPU functions required by
the program. Additionally we only generate the kernel functions actually called
by the host program. This removes all unused kernel and GPU functions.
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15. Implementation Summary

This chapter concludes the implementation of the FuGL compiler. The code
generation phases contained multiple interesting problems we had to solve, such
as implementing templating for generics. Some decisions taken in the design
phase were found to be problematic in the code generation phase, and we have
changed some of our early decisions during this phase.

The largest issue we found is that recursion is not implemented properly in
FuGL. We expected that LLVM was able to optimize and handle recursion, but
this does not seem to be the case. Initial testing of FuGL showed that recursion
breaks the stack much earlier than expected, making it difficult to implement
many algorithms in a functional programming manner. We were unable to cor-
rect this issue and implement recursion in a way that does not break upon too
many layers of recursion. Instead we implemented loops.

The looping construct was implemented as a function in FuGL, with the follow-
ing definition: for(Int64 start, Int64 end, (Int64 -> Void) fnc -> Void).
The function accepts a function that takes the current iterator value as para-
meter. An example of using the for function is seen in Listing 15.1, which sets
each element of an array to the value 0. This is a very imperative construct, and
does not fit into the functional paradigm, but it is necessary in the current state
of FuGL.

1 for ( 0 , length (ar ) − 1 , func ( Int64 i −> Void ) {
2 set (ar , n , 0)
3 } )

Listing 15.1: For-loop in FuGL that sets each element of an array to 0.

Although the for function does not fit into a functional language, it makes it
easier to parallelize many implementations, as the loop construct and loop in-
dex can be replaced by the gpu keyword and gpu.threadID variable, and thereby
execute in parallel.

The second largest issue we discovered is the lambda capture problem. Lambdas
were not designed with captures, but after some initial testing we found that
some problems were very difficult to solve without capturing variables, such as
using filter to filter lists based on two variables. This problem was solved by
adding a new parameter to all functions implemented in FuGL and passing the
captured variables, at runtime, to the functions which can then pass them to the
lambda when called. Lambda captures also allow the new for-loop construct,
as it can modify arrays and variables from outside the lambda provided to the
for construct.

This version of the FuGL compiler do not collect garbage on the CPU, and only
frees memory allocations on the GPU, but does not free the context or kernel
modules. It is possible to call free on arrays if necessary.
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Other than the discovered issues in the implementation of FuGL, the imple-
mentation is working as intended with high abstractions and GPU usage in a
functional manner. The compiler first scans and parses the input, and the res-
ulting AST is then passed to multiple phases that modify or analyze the AST for
usage in the code generation phase. The code generation phase outputs LLVM
assembly for the CPU, with the GPU PTX code embedded as a string. This means
that everything is contained in one file, making it easy to compile and run the
program.

In order to compile LLVM assembly, clang and llc are required which handles
compiling LLVM assembly to PTX code, and LLVM assembly to executables.

15.1 Implementation Future Work

In this section we describe some features that are planned and designed in FuGL
but not implemented, and some features we would like to improve upon. We
describe the technical details of how these features can be implemented, and
why they are currently not implemented. This is not an exhaustive list, but it
contains some specific features and corrections where we have considered, and
designed the implementation.

CPU to GPU Lambdas

This feature covers the declaration of a lambda on the CPU, which is then ex-
ecuted on the GPU. It is currently only possible to use a lambda declared on the
GPU, in kernel functions. This feature would be useful in many situations, such
as implementing a for-loop function which can execute on the GPU, as seen
in Alea GPU. An example of this can be seen in Listing 15.2, which implements
vector addition on the GPU using a for-loop. We have two implementation ideas
for this feature, both of which are untested.

1 gpu( length (C ) − 1) . for ( func ( Int64 n −> Void ) {
2 set (C , n , get (A , n ) + get (B , n ) )
3 } )

Listing 15.2: For-loop using CPU to GPU lambda.

The first approach is to generate all known CPU to GPU lambdas as kernels, and
then let the CPU access the pointer to these functions, so they can be provided as
function pointers to the kernels that accept functions as parameters. Our idea
is to implement a kernel that is executed before the program starts, which re-
turns an array of function pointers of all known lambda functions. The function
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pointers can then be passed to the kernels when they are executed, thus using
the function as a lambda. This is only an idea, and we do not know whether this
is possible. It would require extensive testing.

The second approach is much more simple and safe than the first one; we spe-
cialize kernels that take lambdas, inserting the lambda functions into the ker-
nels. This approach provides more kernels thereby more generated code, as
each use of a kernel requires a specialization, unless the same lambda is used
more than once. This approach could provide better performance than using
function pointers.

Improve Capture Performance

In order to implement anything useful in FuGL without having to reimplement
higher-order functions such as filter each time they are used, lambda cap-
tures are implemented. The current implementation of captures is described in
Chapter 14.2.2. Captures are used extensively when utilizing lambda functions,
such as in the for-loops we implemented. Testing showed that for-loops are
very performance draining due to the casting and unpacking that is performed
due to captures, and the performance of captures should be improved upon.

Our approach for improving the performance of lambda captures is to specialize
the functions that accept the lambdas with the captures. This means that we will
compile more functions and create a larger executable. It should be faster than
the current approach, as there is no longer a need for loading the values from
the pointer and struct. This will furthermore remove the need for having the i8*
as the last parameter on each function, as that is only used for lambda capture
transport. The specialization approach matches our approach for implement-
ing CPU to GPU lambdas, meaning that implementing one of these should make
it easier to implement the other.

Partial Application

Partial application was delimited in the language design phase, as described in
Section 7.2. This feature would allow developers to apply one or more paramet-
ers to a function, which in turn would create a new function with these paramet-
ers already set, thus decreasing the arity of the new function[31] and allowing it
to be called with the remaining parameters. An example is seen in Listing 15.3,
where the number 1 is applied to the add function, thereby creating a new func-
tion which now only accepts one integer and adds 1 to the given argument.
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1 // The 'add ' function adds two integers .
2
3 l e t ( Int −> Int ) addOne = add ( 1 ) { // addOne i s now a function that accepts←-

one integer and adds one to t h i s integer
4 addOne ( 2 ) // A l l parameters are applied , c a l l the function with the values (1 and←-

2)
5 }

Listing 15.3: Partial application example in FuGL.

Our approach to implementing partial application is to save the variables that
are applied into a struct, if the number of parameters is less than the expected
number. This struct can contain the function pointer, and each of the applied
parameters. If more parameters are applied, a new struct with the new values is
created. When the function is called with the required number of parameters,
the struct can unpack all the values and call the function in the pointer in the
struct. For the FuGL code seen in Listing 15.3, the corresponding pseudo-LLVM
assembly can be seen in Listing 15.4.

1 ; Definit ion of 'add '
2 define i32 @add ( i32 , i32 ) {
3 %val = add i32 %0, %1
4 r e t i32 %val
5 }
6
7 ; When developer c a l l s add ( 1 ) , we create the following struct , which contains a ←-

pointer to the function , and the value applied :
8 ; Struct of type :
9 { i32 ( i32 , i32 ) * , i32 }

10
11 ; with contents :
12 %addOne = { @add , 1 }
13
14 ; When the developer c a l l s the newly created 'addOne' function with a value , we can←-

unpack the function pointer and the value and c a l l the function at the ←-

pointer .

Listing 15.4: Partial application in pseudo-LLVM assembly.

OpenCL Support

In this version the FuGL language only supports NVIDIA GPUs using the NVPTX
backend for LLVM. In Chapter 11 we delimited OpenCL support due to lack of
time and documentation. As described in Section 9.3, there is a project which
attempts to translate LLVM to SPIR, available at [49]. Utilizing this project should
be attempted in order to support OpenCL, possibly without having to rewrite the
GPU code generator.

72



Tuples

Tuples are not implemented in FuGL, but were considered in the project. Tuples
can be used to return or transport multiple values as one, much like a record
type, but unnamed. There are generally two ways tuples work in most languages;
either the values inside the tuple are named, and can be accessed by name, or
they are unnamed, and can be accessed by using the index of the value. How
they should be designed in FuGL was not considered, but both approaches can
be easily implemented. We chose not to implement tuples, due to time con-
straints as well as requiring modification of the syntax and parser.

The first approach, meaning that values are named, is very much like the cur-
rent record implementation in FuGL but without the record type having a name,
meaning that the current implementation can be used for implementing tuples.
In the code generation phase the tuples could be transferred as both named
and unnamed aggregate types in LLVM[54], but we consider unnamed aggregate
types the easiest approach, as names are not required for tuples.

The second approach, where values are unnamed and based in indices, can be
implemented much like arrays. Arrays in FuGL require that all elements have the
same type, which is not the case with tuples, meaning that some modifications
are required. We consider the version of tuples with named values to be much
nicer to work with, and thus would implement that version instead of the index-
based tuples.
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Testing

74



16. Testing Introduction

In this part we document the testing phase of the project. The testing performed
in this part is summarised at the end of the part. This part covers compiler test-
ing, programmability testing, and performance testing.

As described in Section 2.1, one task in this project is to test FuGL to determine
the programmability of FuGL. To test the programmability, we perform inter-
views that tests various aspects of the language. The interviews are performed
with two software engineering students and an IT student.

We test the performance of FuGL by implementing three algorithms and com-
paring the execution time to the execution time of the algorithms implemented
in other GPU languages and frameworks. More specifically, we compare the ex-
ecution time to the languages described in [1]. The three algorithms are gener-
ating permutations, K-Means, and radix sort. These algorithms are used in [1],
and are used in this project to compare the performances.
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17. Compiler

In this chapter, testing of the compiler is documented. Different measures and
strategies have been used to manually inspect the output, and thereby determ-
ine if the compiler gives the correct output. As we are only able to give the com-
piler input to the best of our knowledge, this is not a guarantee that the compiler
gives the correct output for any input.

Starting from the first phases, the scanner and parser have been tested by print-
ing the AST in the console, and inspect the output. This way, scanner or parser
errors can be found. For example precedence errors can be spotted in the prin-
ted AST, which would be difficult to find using other strategies. Printing the AST
is done by the PrettyPrinter class.

The compiler features simple validation, which has been tested by trying to com-
pile code with scope errors or missing variables or functions. Again, this is a
simple and manual test. Other errors not checked in the validator are handled
by LLVM.

The code generation phase has been tested, by programming in FuGL and de-
veloping different kinds of programs. By testing these programs, potential errors
in the code generation can be found, as the tested program behaves differently
than expected. In addition, the developed programs are saved and recompiled
each time changes are made in the compiler. This way we can test for uninten-
ded changes in the compiler.
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18. Developers

One of the main goals of this project is to create a language that raises the level of
programmability compared to low-level languages and make it easier to utilize
the GPU for developers. In order to test whether FuGL is understandable and
easy to use, we test FuGL on three testers; two software engineering students,
and a student with some programming knowledge.

Testing programmability is difficult as the level of programmability can not be
quantified and is subjective, and whether developers understand FuGL depends
on their knowledge of the functional paradigm, the languages that we have gained
inspiration from, and GPU programming. We perform interviews with the three
testers, with questions about how the language is structured, if it is understand-
able, and if the GPU abstractions are easy to understand and useful.

First Tester

The first tester is a software engineering student on the tenth semester. This
tester has knowledge of CUDA and limited knowledge of the functional paradigm,
as well as having implemented GPU code in Numba[59], a Python framework
for GPU development. The purpose of this interview is to gain insight from
someone who has previously implemented high-level GPU code and is able to
compare this to how FuGL utilizes the GPU.

This tester stated that programmability is more important than performance,
and that high-level abstractions that makes it easier to utilize the GPU are im-
portant. He further stated that if performance is very important, then perform-
ance trumps programmability.

The tester was confused by some of the syntactical elements, mostly array defin-
itions and function type definitions. The syntax for these is taken from Haskell
and Swift, meaning that developers without knowledge of these languages might
not have seen this syntax before.

Due to this testers previous knowledge of the functional paradigm, he men-
tioned that the language has imperative features, and does not exactly fit in
the functional paradigm. This comment is to be expected from developers with
knowledge of the functional paradigm which FuGL deviates from, due to the
problems with recursion, as described in Chapter 15, as well as how kernels
on the GPU do not return values, but instead modifies the values in-place and
copies them back to the CPU. He stated that the lack of pure, functional pro-
gramming is not a problem, though, and is understandable due to how the GPU
works.

The tester was not confused by how the GPU is utilized. The tester stated that
the conversion from CPU to GPU code seems easy, and he has no problems un-
derstanding how the keywords work or how the thread ID is accessed and used.
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Finally, the tester stated that the language seems interesting, that he would like
to use the language, and that it seems more interesting than GPU development
in Numba.

Second Tester

The second tester is also a software engineering student on the tenth semester.
This tester has knowledge of the functional paradigm and GPU development.
The developer mainly develops in low-level languages, and states that perform-
ance is more important than programmability, especially when utilizing the GPU,
as utilizing the GPU is chosen purely for performance. Though he furthermore
stated that if a solution is already implemented in a high-level language and that
GPU utilization could be gained by adding a keyword, then poorer performance
than CUDA could be ignored.

The tester noted that there are some imperative parts of the language, such as
the ability for a block to have more than one expression. This is necessary due
to the recursion problems described in Chapter 15. We solved these issues by
adding for-loops and void return type, making the language more imperative.
The tester understood, though, that having no return values makes sense for
GPU kernels. We furthermore described why it is necessary to be able to have
more than one expression in a block due to the previous issues, which the tester
understod and agreed with.

The tester commented on the array syntax and the syntax for the return value
of a function. The array syntax, which has the type contained within square
brackets, is not like the languages he usually develops in. The syntax for the
return type is a little different from Rust which he expected it to be like. He
stated that syntax can be learned, and that this was no major problem. The tester
commented on the same syntactical elements and design choices that the first
tester noticed.

Finally the tester seemed to be confused on how kernels are defined and star-
ted. He understood that kernels are defined with the GPU keyword, but did not
understand the usage of this keyword as both a keyword and type, and possibly
a variable, depending on the usage. The usage of this keyword used in multiple
ways negatively effects orthogonality, but we are confident that how the keyword
is used can be learned. The tester suggested to allow developers to put func-
tions into namespaces with the same syntax. This would allow developers to
create functions and call them the same way that GPU functions are defined and
used, but in namespaces other than the GPU namespace. Some namespace us-
age was considered for FuGL, and some parts of the namespace design matches
what this tester stated, though not completely. The tester also noted that utiliz-
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ing the GPU in FuGL requires that the developer understands how threads are
structured on the GPU. This is true, but can not be avoided completely. We are
convinced that by having flattened the thread and block dimensions to only re-
quire the developer to provide one number should make this easier than CUDA.

Third Tester

The third tester is not a software engineering student, does not have knowledge
of the functional paradigm, and does not have knowledge about the GPU de-
velopment. The tester knows Java and the object-oriented paradigm, and the
reason for interviewing this developer is to test if FuGL is understandable for
someone who has no knowledge of the paradigm or GPU development. The
tester stated that the level of programmability is more important than perform-
ance in most cases. In cases where performance is part of the solution and
the solution must be performant, he would not use FuGL. But in cases where
the code is executed on the CPU and speed can be gained by adding the GPU
keyword, the GPU abstractions in FuGL seems useful.

The tester did not understand the purpose of arrows in function declarations
and function types, as he is used to the return type in front of the function. Fur-
thermore the syntax for array type declarations was unlike his usual languages.
These problems can be attributed to the tester not having knowledge of Swift
or Haskell, where the syntax for function types and arrays are taken from. The
tester stated that the syntax is clean and the small amount of constructs makes it
easy to understand. Due to this testers previous experience with Java, and lack
of experience in the functional paradigm, it did not seem out of place to have
for-loops and functions that return void. This indicates that for developers that
are not used to the functional paradigm, the language provides features they
know from imperative and object-oriented languages, making it easy to use.

The tester was shown some CUDA C code in order to understand how CUDA
works. This includes how memory allocations are performed on the GPU, how
threads and blocks are determined and used, and the limitations on the ker-
nels. The same code was shown in FuGL for both the CPU and the GPU. The
tester mentioned that the GPU capabilities in FuGL makes it more readable than
CUDA. This is mostly due to arrays being the same on both the CPU and GPU, as
well as the GPU allowing the same functions that can be used on the CPU, such
as length on arrays.
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19. Performance

As described in Chapter 1, programmability in FuGL is of higher priority than
good performance. This also entails that high-level abstractions are more de-
sirable than execution time. On the other hand, GPU programming is typically
done to increase performance of a program. Therefore FuGL must still deliver
better performance on the GPU than on the CPU, though we do not expect the
same performance as low-level languages for GPU development, such as CUDA.
We expect the performance of FuGL to be comparable to high-level languages
and frameworks, such as F# and Numba.

In this chapter, performance refers to the performance of run-time execution.
The performance of the compiler is not measured in this project. We deem it
irrelevant, as the compiler is an offline compiler, hence compilation is only re-
quired once for a FuGL solution.

To document the balance between abstraction and performance we perform a
set of performance tests on FuGL. As described in Section 2.1, the performance
of FuGL is compared with the implementations from [1]. We implement the
same algorithms in FuGL as in [1] as these are already implemented in multiple
languages and frameworks, thus making it straightforward to perform the tests.
We only compare the execution times for the frameworks that are CUDA-based.
The algorithms from [1] are generating permutations, K-Means and Radix sort.
Machine specifications and software versions can be found in Appendix D.

19.1 Algorithms

In this section the three algorithms from [1] are briefly described.

Generating permutations is used to generate all possible combinations of char-
acters in a given alphabet, and word length. The generation of each word is
completely independent, making this algorithm easy to parallelize. To test that
the algorithm is correct, we attempt to find a specific string among the different
permutations.

The K-Means algorithm[60] is used to find groups among data where no other
information than coordinates is known. The algorithm works in iterations, and
requires some synchronization between the steps in each iteration. To test the
result of the algorithm, the image tool from [1] is used to illustrate each iteration.

The Radix sort algorithm[61] is used to sort a given array of integers each di-
git at a time. This algorithm is not directly parallelizable, as it requires a set of
buckets per thread, and a different summation strategy. To test the result of the
algorithm, the sorted array is iterated once, to test if the array is in increasing
order.

As the described algorithms are all mostly memory bound, this set of algorithms
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is not ideal to fully test the performance of a language. Instead, an algorithm
such as N-body[62] should be considered, which is an algorithm to compute
gravitational force of each particle in a grid of particles. We consider the N-body
problem, because the algorithm is compute bound, and can potentially run for
a long time, without any memory transfer.

The reason that we do not implement N-body is that it is a complex and time
consuming algorithm to build. Especially because we need to implement it in
each of the languages we test. Another challenge is that in order to test the result
of each implementation, we must also develop a tool that can handle this, or at
least visualize the output like the implemented K-Means tool. As this task is not
realistic to complete in this project, given the timeframe, this is something we
choose not to implement.

19.2 Results

In this section, the results of the performance testing are presented. As test-
ing in [1] was done on a Windows platform, and the platform for this project is
Linux, all algorithms are tested again on the Linux platform. Instead of handling
time measurement within each implementation, the time command in Linux is
utilized, to measure a consistent and complete execution time of each imple-
mentation.

From [1] we implemented the parallel algorithms in F# using Alea GPU. Since we
have changed to a Linux platform, we need to use the .NET Core version of F#.
Though, we are not able to make Alea GPU work on the Linux platform, as there
are some compatibility issues with .NET Core and Alea. Therefore we are only
able to test the sequential implementations in pure F# on the Linux platform.

19.2.1 Parallel performance results

In this subsection the results of the parallel performance test are presented. The
languages tested in parallel are CUDA C++, FuGL, OpenACC and Numba.

The first algorithm tested is the generating permutations algorithm. For this al-
gorithm we are unable to performance test the OpenACC implementation from
the previous project, because of the compiler being unable to parallelize the im-
plementation. This can be attributed to either the Linux platform, or the new
version of the PGI compiler. As a paid license is required to download and in-
stall old PGI compilers, we are unable to downgrade to the PGI version used in
[1]. The other results can be seen on Figure 19.1.

As expected the CUDA C++ implementation is the most efficient implementa-
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Figure 19.1: The performance results for the parallel generating germutations
implementations.

tion with an average execution time of 1.03 seconds. Next is Numba with an
average execution time of 1.8378 seconds. Last is FuGL with an average execu-
tion time of 4.1288 seconds. From the FuGL implementation to the CUDA im-
plementation the difference is a 4.03X slowdown. The difference from the FuGL
implementation to the Numba implementation is a 2.18X slowdown.

The second algorithm is the K-Means algorithm. On this algorithm all four lan-
guages are tested, which can be seen on Figure 19.2. The best language for
this implementation is the OpenACC with an average execution time of 2.455
seconds, then CUDA C++ with an average execution time of 4.92 seconds, then
Numba with an average execution time of 7.745 seconds, and then the FuGL im-
plementation with an average execution time of 10.70 seconds.

Comparing FuGL to the other languages in the K-Means test the slowdown for
OpenACC is 4.36X, for CUDA C++ 2.18X, and for Numba 1.38X.

The third algorithm is the Radix sort algorithm. As with K-Keans all four lan-
guages are tested, and can be seen on Figure 19.3. Again the best language is
OpenACC with an average execution time of 1.276 seconds. Next is CUDA C++
with an average execution time of 2.02 seconds, then FuGL with an average exe-
cution time of 3.26 seconds, and then Numba with an average execution time of
3.9318 seconds.

Comparing FuGL to the other languages in the Radix sort test the slowdown for
OpenACC is 2.55X, for CUDA C++ 1.61X. Comparing FuGL to the Numba imple-
mentation of Radix sort, a speedup of 1.21X is achieved.
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Figure 19.2: The performance results for the parallel K-Means implementations.

19.2.2 Sequential performance results

In this section, the results of the sequential performance tests are presented.
The languages tested in sequential implementations are C, Python, F#, FuGL and
Numba.

The performance results for the sequential generating permutations implement-
ations can be seen on Figure 19.4. First is the C implementation with an aver-
age execution time of 46.18 seconds, then F# with an average execution time
of 99,06 seconds, then FuGL with an average execution time of 206.83 seconds,
then Numba with an average execution time of 567.79 seconds, and then Python
with an average execution time of 1368.223 seconds.

Comparing the FuGL implementation with the other generating permutations
implementations, going from C to FuGL would give a 4.48X slowdown, and from
F# a 2.09X slowdown. Going from Numba to FuGL would give a 2.75X speedup,
and from Python a 6.62X speedup.

The performance results for the sequential K-Means implementations can be
seen on Figure 19.5. First is the C implementation with an average execution
time of 7.70 seconds, then Numba with an average execution time of 9.49 seconds,
then FuGL with an average execution time of 54.21 seconds, then F# with an av-
erage execution time of 113.08 seconds, and then Python with an average exe-
cution time of 1869.31 seconds.

Comparing the FuGL implementation with the other K-Means implementations,
going from C to FuGL would give a 7.04X slowdown, from Numba a 5.71X slow-
down. Going from F# to FuGL would give a 2.09X speedup, and from Python a
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Figure 19.3: The performance results for the parallel Radix Sort implementa-
tions.

174.64X speedup.

The performance results for the sequential Radix sort implementations can be
seen on Figure 19.6. First is the C implementation with an average execution
time of 4.47 seconds, then FuGL with an average execution time of 5.57 seconds,
then Numba with an average execution time of 14.31 seconds, then F# with an
average execution time of 50.66 seconds, and then Python with an average exe-
cution time of 385.24 seconds.

Comparing the FuGL implementation with the other K-Means implementations,
going from C to FuGL would give a 1.25X slowdown. Going from Numba to
FuGL would give a 2.57X speedup, from F# a 9.10X speedup, and from Python
a 118.35X speedup.
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Figure 19.4: The performance results for the sequential generating permutations
implementations.

Figure 19.5: The performance results for the sequential K-Means implementa-
tions.
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Figure 19.6: The performance results for the sequential Radix Sort implementa-
tions.
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20. Testing Summary

This concludes the testing part of the report. We tested the performance of
FuGL on both the CPU and GPU by implementing three algorithms, generat-
ing permutations, K-Means, and Radix sort, and compared the performance to
implementations from [1]. Furthermore we tested the programmability of FuGL
by performing three interviews, in an attempt to determine whether developers
understand, and are able to use FuGL for CPU and GPU development.

20.1 Performance

FuGL was tested by implementing the three algorithms from [1], and comparing
the execution times with the implementations from [1]. The comparison on the
parallel implementations can be seen in Table 20.1, and the sequential ones in
Table 20.2.

In the parallel implementations the majority of the other implementations are
faster than FuGL, ranking it badly in terms of parallel performance. The reason
for this is that two of the languages, CUDA C++ and OpenACC, are C type lan-
guages with low level abstractions, but high performance. Therefore these res-
ults are expected. The best comparable language in terms of performance is
Numba, with the lowest slowdown factors on the algorithms. On the Radix sort
algorithm, FuGL actually performs better than Numba with a factor of 1.21.

Generating
Permutations

K-means Radix Sort

CUDA C++ 4.03 ⇓ 2.18 ⇓ 1.61 ⇓
OpenACC 4.36 ⇓ 2.55 ⇓
Numba 2.25 ⇓ 1.38 ⇓ 1.21 ⇑

Table 20.1: Speedup (⇑) or Slowdown (⇓) factors in the parallel implementations
between the presented languages and FuGL.

Comparing sequential execution times, FuGL performs better than many of the
other sequential implementations. As Python is an interpreted language, the
very high speedup factors are expected, and not a fair comparison, as FuGL is
a compiled language and Python is not. Also, as expected, C performs better
than FuGL in any algorithm. Comparing FuGL with F# and Numba, both spee-
dups and slowdowns are seen, which is a satisfying result, as these languages are
compiled languages.

Overall, the performance of FuGL is acceptable considering the focus of FuGL
and project. The main focus has been programmability, and therefore no optim-
ization steps are implemented to increase performance. Though, FuGL still out-
performs the Numba parallel Radix sort implementation, and several sequential
implementations. Of this reason we find the performance of FuGL acceptable.
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Generating
Permutations

K-means Radix Sort

C 4.48 ⇓ 7.04 ⇓ 1.25 ⇓
F# 2.09 ⇓ 2.09 ⇑ 9.10 ⇑
Numba 2.75 ⇑ 5.71 ⇓ 2.57 ⇑
Python 6.62 ⇑ 174.64 ⇑ 118.35 ⇑

Table 20.2: Speedup (⇑) or Slowdown (⇓) factors in the sequential implementa-
tions between the presented languages and FuGL.

20.2 Programmability

The programmability testing was performed by interviewing three developers
and showing the features of FuGL. All testers had some issues with some syn-
tactical elements, which we attribute to their lack of knowledge about s which
we have gained inspiration from, mainly Haskell and Swift for the elements that
confused the testers. Syntax can be learned, and we do not see these issues as
very impactful. The usage of non-functional features, such as using Void as a
return value is a problem. Some issues arising from this could be corrected by
having recursion, as was intended. The main issues with not allowing void as a
return value is how kernels return values from the GPU. For this case, we do not
have a solution yet.

Generally the testers seemed to agree on the assumption that programmability
is more important than performance, though they all stated that if performance
is a requirement for the solution, then performance trumps programmability.
They stated that if a solution was already implemented in FuGL and some per-
formance could be improved by using the gpu keyword then programmability is
more important than performance. They furthermore agreed that GPU develop-
ment seems easy in FuGL and that the criterion from [1], sequential to parallel is
high in FuGL. This criterion refers to how much work is required in order to turn
a sequential implementation of a program to a parallel implementation that can
run on the GPU. This is one of the things that we have improved in FuGL, which
the testers agrees with.

Regarding programmability, the testers seemed to find the low number of con-
structs easy to understand, and they all agreed that converting code from the
CPU to the GPU seemed easy. We are happy with the results from the inter-
views.
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21. Reflection

This chapter contains reflections of the work performed in this project, includ-
ing the development process used in the project, decisions taken early in the
project, and the consequences of these decisions.

As described in Chapter 2, the development process for this project is based
on the waterfall model, where we finish a phase before starting the next. The
implementation phase was performed iteratively, meaning that we implement
and improve during the entire implementation, allowing us to prioritize features
during development. The iterative model allows us to implement the entire CPU
part of the code generator before implementing the layer between the CPU and
GPU, and then finally the GPU layer. This was easy, as the base parts were work-
ing, thus we only had to modify the parts that are not the same on the CPU and
GPU, as well as transferring information to and from the GPU.

The waterfall approach lead to some problems as we did not test early in the
project, which caused us to not discover the issues with recursion until late in
the implementation phase. As FuGL is a functional language it needs recursion,
but as that did not work, we had to redesign a large part of the language. Had
we tested recursion in LLVM earlier, this could have potentially been avoided,
and if not solvable, we could have designed a better workaround than the cur-
rently implemented for-loops, which led to FuGL being more imperative than
intended. The reason for the design issues is most likely that we went through
the design phase too fast as we knew there was a lot of work to do.

To get started with FuGL we chose an existing syntax from the Expressions lan-
guage[30]. The syntax from Expressions is not directly copied, but it is the syn-
tactic foundation of FuGL. Choosing Expressions as foundation was done to get
started quickly, instead of spending a long time designing a completely new syn-
tax. This worked out well, and resulted in the project taking off quickly.

LLVM was chosen as backend language, as it is used by many other languages
and frameworks, including Julia, Rust, Alea, Accelerate and Numba. As experi-
enced in [1], almost any high level language for the GPU utilizes LLVM and as
such we also chose it for FuGL. This gives the advantage of having the same
backend for both CPU and GPU code. LLVM worked out very well in the pro-
ject, although a better documentation of LLVM would have made development
easier.

To develop the FuGL compiler, we choose C# and the .NET Core framework, as
we wanted a high-level object-oriented language. .NET Core is a good choice, as
it is cross platform and it features many high level abstractions and furthermore
interfaces well with the LLVM C library using the LLVMSharp package.

Implementing a compiler was a larger task than anticipated, even though we did
anticipate a lot of work. Many features may seem minor or trivial, but require
a lot of design and implementation in the compiler. Some design choices we
had taken early on, such as delimiting lambda captures, were later found to be
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poor decisions, and had to be reconsidered. We mostly found these issues when
we began implementing the algorithms in FuGL, though we should have caught
them earlier. Captures, for-loops, and Void as return type, are the three biggest
features that were designed and implemented late in the project. for-loops and
Void as return are necessary due to the imperative constructs in FuGL and due
to how the GPU does not return values but instead modifies them in-place.

91



22. Conclusion

GPU development is difficult, and developers are often required to develop in
C-like languages which lack high-level abstractions, where they must handle
memory, threads and blocks themselves. The developers need to understand
how all the concepts of GPU and low-level CPU development ties together and
the limits of the GPU, in order to utilize the GPU. The purpose of this project was
to create a high-level, functional language that can hide many of these details
from the developer, providing high-level abstractions that are usable on both
the CPU and the GPU.

In this project we designed and implemented FuGL, a high-level, statically typed,
functional programming language with primitives for GPU development. FuGL
attempts to solve some of the programmability issues we found in [1], and al-
lows developers to utilize the GPU without frameworks or libraries, by having
primitives in the language that help developers parallelize algorithms. The FuGL
compiler is implemented in C# using LLVM as the backend. FuGL was tested by
interviewing three testers to determine whether the level of programmability is
high, and the performance is tested using the algorithms described in [1]; gen-
erating permutations, K-Means, and Radix sort.

The project started with the initial problem statement:

How can we develop a solution that allows developers to write efficient GPU code
at a higher level of abstraction than OpenCL or CUDA, while maintaining the
possibilities that a low-level language provides?

The problem statement led to a number of tasks to be performed, in order to
design and implement FuGL and its compiler. The tasks completed are as fol-
lows:

• Determine the type of solution to implement, either a language or library.

• Analyze various frameworks and libraries for high-level GPU development.

• Determine the technical aspects of the compiler, including the develop-
ment language and backend.

• Design how the constructs in the language are mapped to LLVM constructs.

• Implement the initial phases of the compiler, including scanning and pars-
ing, validation, and some code generation preparation phases.

• Implement CPU code generation, implement mappings for the CPU to
GPU layer, and implement the CPU code generation.

• Test the performance and programmability of FuGL.

Due to the findings from [1], we decided that a functional programming lan-
guage for GPU development, which is easy to use and with high-level abstrac-
tions, could make it easier for developers to utilize the GPU, without having to
learn about architectures, thread and block handling, and low-level languages.
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We analyzed a number of frameworks for high-level GPU development, includ-
ing Accelerate, Alea, and Thrust to determine how others have designed high-
level GPU utilization. These frameworks, along with multiple languages we know
and have used, made the foundation for the syntax and design of FuGL.

We designed FuGL with few constructs, in order to increase the simplicity. The
constructs are similar to the constructs known from Lisp, which allows variable
assignments, anonymous functions, boolean conditions, and function calls. We
furthermore added records to FuGL, to make it easier to store data in a struc-
tured way. The syntax is inspired by many languages, mainly C-like languages
and functional languages. We designed the GPU utilization to work by using
keywords to denote which parts of a program that should run on the GPU, and
we allow the developer to choose how to copy memory to and from the GPU
using only keywords. Testing showed that by only adding the gpu keyword, and
not modifying anything else, in the sequential K-Means implementation, the al-
gorithm runs at half the execution time. We designed the language to use the
same functions and syntax on both the CPU and GPU, making sure that using
the GPU resembles developing on the CPU, increasing the orthogonality and
Host/kernel similarity[1].

The FuGL compiler is implemented in C#, using LLVM as the backend for both
the CPU and GPU code. The compiler is cross-platform due to it being based on
.NET Core. To utilize the LLVM C library we use the LLVMSharp package, which
adds C# bindings to the library.

Interviews were performed to test whether FuGL is easy to understand for de-
velopers. The interviews indicate that the testers were able to understand how
FuGL works, and how the GPU is utilized. The testers all noted that some of the
syntactical elements were confusing, but we attribute this to them not knowing
the languages we designed the syntax after. Besides these elements, the test-
ers seemed to understand the purpose and idea of FuGL. The testers stated that
utilizing the GPU in FuGL seems easy. They furthermore mostly agreed on our
initial assumption that programmability is more important than performance,
but in some cases they would rather use a low-level language in order to gain
better performance.

Performance testing was done, in order to show how FuGL compares to the lan-
guages and frameworks described in [1]. We implemented the algorithms gen-
erating permutations, K-Means, and Radix sort, and compared the execution
times, both sequential and parallel, to the execution times of the implementa-
tions found in [1]. As expected, FuGL performs much like the higher-level lan-
guages in [1] on the CPU, but is slightly slower on the GPU. This performance
is satisfying, even though FuGL is mostly slower on the GPU compared to the
other languages tested. FuGL requires less code rewriting in order to utilize the
GPU, and we have not performed any optimizations in the compiler or spent
time tweaking the LLVM assembly generated by the compiler. We delimited op-
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timizations early, and we are confident that some performance could be gained
if we optimized the generated code and corrected some of the bottlenecks, such
as lambda captures, as described in Section 15.1.

Due to our lack of testing the initial design, some issues were found during the
implementation phase. This led to FuGL not being able to use recursion very
well, making us implement for-loops that can be used instead. This breaks the
functional paradigm, but was necessary in order for the compiler and functions
to work properly. However, due to how the GPU works, FuGL would still need to
be able to modify arrays and values in-place, meaning that some imperative-like
code would have been necessary. While this is unfortunate, we are still content
with the programmability of FuGL, and that FuGL makes it easier for developers
to utilize the GPU by using built-in primitives. In comparison to low-level lan-
guages for GPU development, FuGL contains high-level abstractions, built-in
memory handling, easy copying to and from the GPU, and the language is the
same on the GPU and CPU.

We conclude that while FuGL is not a pure, functional programming language,
it is a high-level language which provides high-level constructs and abstractions
that allow developers to easily utilize the GPU. The performance is acceptable
and as we expected, meaning that the performance is worse than the low-level
languages, but matches the high-level languages. FuGL is mostly faster on the
CPU, but mostly slower on the GPU.
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23. Future Work

This chapter covers some topics that should be changed or implemented in a
future version of FuGL. Some future work was described in Chapter 15.1, but as
technical suggestions about new functionality. In this chapter, more general or
abstract ideas are presented.

First are the topics described in Chapter 7.2, which are not implemented in this
project. These topics cover pattern matching, partial application and list com-
prehensions. Although list comprehensions are implemented as a function not
a construct, all the topics could be implemented in a future version of FuGL.

In addition to the delimitations made in Chapter 7.2, some extra design choices
were made to further delimit some features. These are described in Chapter 11
and cover validation and optimization, OpenCL support, optimized thread and
block dimensions, and fat binaries.

As a complete validation phase is missing from the compiler, the compiler may
fail on some input, if it is not handled by the LLVM validator. Validation is im-
plemented in some areas, as LLVM is for example not aware of scope rules. In
a future version of FuGL all validation should be done by the FuGL compiler in
order to provide better feedback on errors.

As previously described, the FuGL compiler has no optimizing phase, and in
addition the different LLVM constructs and libraries have not been optimized
either. In order to achieve better performance results, especially on the parallel
algorithms, this is an important task to complete in a future version.

As FuGL handles recursion unexpectedly bad, this is an area that we should in-
vestigate more in detail. Being unable to support recursion is not very func-
tional, and conflicts with the paradigm of FuGL. Because recursion is badly sup-
ported in FuGL the for-loop was implemented. This should also be reconsidered.
For example it could be changed to a for loop that returns an array, like it is done
in Sisal. This was described in detail in Chapter 5.7.

Another improvement to the functional aspect of FuGL is how data is returned
from kernels. In the current version of FuGL data must be returned through
parameters to the kernel. This is very imperative, which conflicts with func-
tional programming. Instead values could be returned from kernels like a reg-
ular function with return values. This feature would greatly improve functional
GPU programming.
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A. EBNF

/*
Based on: http :// matt.might.net/articles/grammars -bnf -ebnf/
{ } = Repeat 0 or more times
[ ] = Optional
*/

// Program. Consists of multiple namespaces
program := namespace { namespace }

// Namespace. Consists of multiple types and functions
namespace := "namespace" name "{" namespaceDecl "}"
namespaceDecl := funcDecl | funcDecl program | typeDecl | typeDecl ←-

program

// Function declarations
funcDecl := [ "gpu" ] "func" name funcParsRet block
funcParsRet := "(" typeNamePairs "->" name ")"

// Type declaration
typeDecl := "type" name typeBlock
typeBlock := "{" typeIdentifierPairs "}"

// Type and Name pairs
typeIdentifierPairs := typeIdentifierPair { "," typeNamePairs }
typeIdentifierPair := name name

// Function calls
funcCall := name "(" [ funcCallPars ] ")"
funcCallPars := expr { "," funcCallPars }

// Lambda (Same syntax as function declaration , though different ←-

semantics in the compiler)
lambdaExpr := "func" funcParsRet block

// Misc
block := '{' exprs '}'

// Expressions
exprs := expr { exprs }
expr := "(" expr ")"

| expr op expr
| op expr
| name
| stringLit
| charLit
| ifExpr
| boolLit
| numberLit
| funcCall
| letExpr
| lambda
| arrayLit

// If expression
ifExpr := "if" expr block { elseIfCase } "else" block
elseIfCase := "elseif" expr block

// Let (Variable assignments)
letExpr := "let" varDecls block
varDecls := varDecl { "," varDecls }
varDecl := [ 'mutable ' ] name name "=" expr | name "=" expr
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arrayLit := "[" exprs "]"
arrayLitExpr := { "[" } expr { "]" }
typeDecl := "(" name { "," name } "->" name ")"
numberLit := (0-9)+ | (0-9)+.(0 -9)+
boolLit := "true" | "false"
stringLit := """ (.*) """
charLit := "'" (ASCII symbols | \ ASCII symbols) "'"
name := (a-Z)(a-Z0 -9_)*
op := "and" | "or" | "!" | "<" | ">" | "<=" | ">=" | "←-

==" | "!=" | "*" | "/" | "+" | "-" | "." | "++" | "="

// Comments are ignored by the scanner
// Singleline comments stops at newline , multiline stops when the ←-

stop characters are met
singlelineComment := "//" (.*) "\n"
multilineComment := "/*" (.*) "*/"

Listing A.1: EBNF for the FuGL language.
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B. Standard Functions

1 // Numbers
2 func min ( Int a , Int b −> Int )
3 func max ( Int a , Int b −> Int )
4 func even ( Int a −> Bool )
5 func odd ( Int a −> Bool )
6
7 func fCeil ( Float f −> Float )
8 func dCeil ( Double d −> Double )
9 func fFloor ( Float f −> Float )

10 func dFloor ( Double d −> Double )
11 func fPow ( Float x , Float y −> Float )
12 func dPow ( Double x , Double y −> Double )
13
14
15 // Arrays
16 func get ( [A ] lst , Int64 index −> A )
17 func set ( mutable [A ] lst , Int64 index , A newVal −> Void )
18 func length ( [A ] lst −> Int64 )
19 func append ( [A ] lst , A elem −> [A ] )
20 func push ( mutable [A ] lst , A elem −> Void ) // In−place append ( Internal usage ! )
21 func list ( Int64 start , Int64 end , ( Int64 −> A ) fnc −> [A ] )
22
23 func empty ( [A ] lst −> Bool )
24
25 func first ( [A ] lst −> A )
26 func last ( [A ] lst −> A )
27
28 func tail ( [A ] lst −> [A ] ) // A l l but f i r s t element
29 func init ( [A ] lst −> [A ] ) // A l l but l a s t element
30
31 func map( [A ] lst , (A −> B ) fnc −> [B ] )
32 func f i l t e r ( [A ] lst , (A −> Bool ) fnc −> [A ] )
33 func zipWith ( [A ] lstA , [B ] lstB , (A , B −> C ) fnc −> [C ] )
34
35 // Imperative . .
36 func for ( Int64 start , Int64 end , ( Int64 −> Void ) fnc −> Void )
37 func forDown ( Int64 start , Int64 end , ( Int64 −> Void ) fnc −> Void )
38
39 // Casting
40 func toBool (A a −> Bool )
41 func toChar (A a −> Char )
42 func toInt (A a −> Int )
43 func toInt64 (A a −> Int64 )
44 func toFloat (A a −> Float )
45 func toDouble (A a −> Double )

Listing B.1: CPU Standard library functions in FuGL.

1 // Arrays
2 gpu func get ( [A ] lst , Int64 index −> A )
3 gpu func set ( mutable [A ] lst , Int64 index , A newVal −> Void )
4 gpu func length ( [A ] lst −> Int64 )
5
6 // Imperative . .
7 gpu func for ( Int64 start , Int64 end , ( Int64 −> Void ) fnc −> Void )
8 gpu func forDown ( Int64 start , Int64 end , ( Int64 −> Void ) fnc −> Void )
9

10 // Casting
11 gpu func toBool (A a −> Bool )
12 gpu func toChar (A a −> Char )
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13 gpu func toInt (A a −> Int )
14 gpu func toInt64 (A a −> Int64 )
15 gpu func toFloat (A a −> Float )
16 gpu func toDouble (A a −> Double )
17 gpu func toString (A a −> String )

Listing B.2: GPU Standard library functions in FuGL.
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C. AST Classes

Figure C.1: Classes used in building the AST.
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D. Test Machine Specifications

The hard- and software used for the performance tests.

Hardware:

Operating System: Ubuntu 17.10

CPU: Intel Core i7-920

GPU: NVIDIA Geforce GTX 1070 (Zotac GTX 1070 Mini)

Tools and software:

OpenACC compiled with: PGI Compiler, pgcc 18.4-0 64-bit (Supporting Open-
ACC version 2.5)

CUDA compiled with: NVIDIA CUDA Compiler, nvcc 8.0.61 (supporting CUDA
version 8)

F# compiled with: Dotnet core ’dotnet build’, version 2.1.103

Python runtime: 3.6.5

NumPy library version: 1.14.2

Numba library version: 0.37.0
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