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Reading guide

In this master thesis, the references are done by Harvard method. Hence, in the text it
will be shown as [Surname, Year] corresponding the a list at the end of the report. In the
bibliography, the books and articles are listed with author, title, ISBN number for books,
publisher and the year of release are presented.

When references are made within the master thesis, the equations are referred to in the
text as Equation (1.1), whereas references to figures, tables, sections and chapters are done
without brackets e.g. Section 1.1. However, references to Appendices are done by capital
letters starting from A.

Structure of the thesis

This section describes the structure of the master thesis. The thesis starts by introducing
the reader for project background and scope and limitations of the thesis. Thereafter, a
formulation of the interfaces is carried out of the considered interface elements and are
further explained and derived and the different constitutive relations are accounted for.
Following, the interface elements presented in the formulation of interfaces are tested to
detect the different element behaviors. This is done by a simple pull-out test. Furthermore,
the model of the foundation is presented through MATLAB, PLAXIS 2D and Optum G2
where the different interface elements are implemented and compared. A flow chart of the
thesis structure is seen in Figure 1.
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Introduction 1
Problems involving friction are of great importance in field mechanical and civil
engineering. In reality, all movements involves friction and contact as for example walking,
driving cars and riding a bike. In cases considering a footing or a tire that interacts
with soil or a road may lead to a nonlinear problems. Due to the rapid improvement of
modern computer technology, It is today possible to apply numerical tools to simulate
the applications that include friction and contact mechanics. However, the most of the
standard finite element software is not fully capable of solving these problems. Hence, there
are still challenges to apply an efficient and strong finite element method for computational
friction and contact mechanics.

Furthermore in civil engineering, a frequently considered problem is a uniform load acting
on a foundation on soil. This particular problem is the main focus in this thesis. This
tend to become a very complex problem that involves inelastic constitutive behavior of
soil, deformations and sliding of the foundation relative to the soil domain. Due to the
wide range of frictional and contact problems, the cases are today combined with either
linear elastic or plastic deformation. This thesis considers Newton-Raphson scheme as a
solution method for the nonlinear calculations, which is shown in Appendix E.

Many engineering problems involve contact and interaction between different materials.
Such a problem include as mentioned above soil-structure interaction. In Finite Element
Analysis of geotechnical structures, the interface elements are introduced to simulate that
type of interaction. The interface elements should account for relative displacements
along the interface to simulate accurately the deformation and physical behavior of
the interacting materials. The interface element characteristics is further explained in
Chapter 2, whereas the interface element behavior is accounted for in Chapter 3 and the
implementation in the model in Chapter 4.

1.1 Project background

The phenomena of friction and contact problems have been investigated all the way back to
the Egyptian times. The Egyptian people needed to move massive stone blocks to build the
pyramids and had to overcome frictional forces. Thereafter, many distinguished scientist
have investigated frictional contact problems, including Leonardo Da Vinci. He conducted
an experiment that measured the friction force using blocks with the same weight but
different contact area, shown in Figure 1.1 on following page. He discovered that the
friction force is proportional to the weight of the blocks and independent of the contact
area. By assembling this findings into a mathematical formula, the classical equation of

1



1. Introduction

friction is obtained in:

FT = µN (1.1)

FT Friction force
µ Coefficient of friction
N Normal force

Figure 1.1: Da Vinci’s experiments with blocks with different contact surfaces, Wriggers
[2006].

Euler was the first mathematician who offered his thoughts on the matter in 1748. He
introduced the triangular perspective that accounted for surface roughness, shown in Figure
1.2. Euler introduced the symbol µ for the friction coefficient, that is frequently used
nowadays. Finally in 1785, Coulomb performed extensive experiments regarding friction.

Figure 1.2: Euler’s model with triangular perspective, Wriggers [2006].

He assumed the facts: normal pressure, extent of surface area, material properties and
surface, ambient conditions and time dependency of friction force. In other words, Coulomb
friction on how two surfaces become interlocked, is illustrated in Figure 1.3. This resulted

Figure 1.3: Illustration of Coulomb friction, Wriggers [2006].

in Equation (1.2) for the resistance to sliding of a body on a plane.

FT = A+
N

µ∗
(1.2)

2



1.2. Literature review Aalborg University

FT Friction force
µ∗ Inverse of the friction coefficient
N Normal force
A Cohesion

The second expression path the way for the study of interface. Nowadays, the equation is
written as FT = A + µN , and is the fundamental expression of several developments of
friction and contact rules.

1.2 Literature review

The contact problems in finite element method has almost as deep history as the finite
element method itself when introduced in early 1960’s (Goodman [1968] Reference). The
very first research done in this field is dated to 1968 by D. Ngo and A.C. Scordelis. In their
research paper, they mention use of the linkage element which can be imagined as pair of
bond links. The idea is further developed later by Herrman (Herrmann [1978]) known as
Herrman’s element in the literature. The proposed method recognize 3 different modes of
interface behaviour, non-slip, slip and separation. As an alternative to the linkage elements,
Goodman (Goodman [1968]), has developed joint element for simulation of interfaces in
rocks. The element is originally 4-node rectangular and is designed as zero-thickness
element, thus each of the pair of nodes has the same initial position. Furthermore, there
has been derived higher order rectangular element on basis of Goodman’s approach.

Further research was mainly focused on interface elements with very small but finite
thickness. A lot development regarding thin-layer elements and constitutive relations has
been done by Desai (Sharma and Desai [1992]). Unlike the mentioned zero-thickness type,
the thin-layer elements are standard continuum elements with limited thickness. Therefore,
this main investigation was about the influence of thickness and employing suitable
constitutive relation. Another thin-layer type of the interface element was developed by
Zienkiewicz(Francavilla and Zienkiewicz [1975]). Although it is conceptually similar to
Desai’s type using standard isoparametric shape functions and constitutive relation, the
parameters suggested are anisotropic. There is also proposed ratio of stiffness parameters
in the interface and in surrounding material being no more than 1:1000 in order to avoid ill-
conditioning of system of equations. Slightly different method was proposed by Ghabousi
et. al. and Wilson (et.al. [1973]). They suggested to use relative displacements as an
independent degree of freedom. It has been shown in Wilson’s (et.al. [1973]) work, that
the proposed technique can increase accuracy of solution.

However, it comes with the cost of additional entries in the top of the element arrays
in interface, which can increase computational time in case of more complex structures.
The solution using relative displacement was further developed into 8-node biquatratic
isoparametric element by Pande and Sharma. Worth to mention is their study on usability
of conventional continuum isoparametric elements in interface, implying absolute degrees
of freedom. Besides its simple implementation into the model as no special steps are
required, the use of standard elements it not suitable according to their conclusion. The
main disadvantage is the ill-conditioning of equations as the elements obey usually very
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1. Introduction

high aspect ratio. This leads to another problem with inaccurate prediction of stresses,
specifically the shear stress along interface.

1.3 Scope and limitations of the thesis

This thesis focuses mainly on the implementation and further assessment of interface
elements used in geotechnical engineering into nonlinear finite element program of
foundation on a soil domain. Based on wide literature study, the basic interface element
can be divided into two groups:

• Zero thickness elements - including Herrman’s type and Goodman’s type
• Thin-layer elements - including Desai’s type and standard continuum element

Furthermore, the material behaviour of the interface can be generally described by four
modes of deformation:

• Non-slip - there is no relative displacement between nodes of connected elements and
initial values for the interface normal and shear stiffness are applied. See Figure 1.4.

• Slip - the shear stress exceeds the maximum allowable value along the interface, thus
relative displacement occur. See Figure 1.5.

• Separation - occurs when the interface normal stress becomes tensile and the interface
which leads to that the normal and shear stiffness of the interface to become zero. It
is usually related to positive relative normal displacement (as for soil materials with
zero adhesion). See Figure 1.6.

• Re-bonding - where the normal stresses of the interface becomes compressed again
after separation and the interface normal and shear stiffness are restored to their
initial values.

The thesis is further limited to assessment of interface elements allowing the modes of
slip or non-slip to be activated only. The chosen modes are controlled by shear resistance
along interface, which is chosen based on failure criterion. For purpose of this thesis, the
Mohr-Coulomb criterion is used which is further explained in Appendix F.

wt

Relative movement
due to springs

wn Relative movement
due to springs

Fictitious normal
bond springs (kn , kt)

Figure 1.4: Non-slip mode

wt

wt = slippage

wn Relative movement
due to springs

Fictitious normal
bond springs (kn)

Maximum bond
stress τmax

Figure 1.5: Slip mode

wn

wt

wn = separation

wt = slippage

Stress free surface

Figure 1.6: Separation
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Formulation of interface elements 2
Within design of geotechnical structures, one of the biggest challenges involves the
interaction between different materials and its accurate modelling in finite element software.
There were developed many different approaches. The proposed solutions can be generally
divided into two groups, Zero-thickness elements and Thin-layer elements described
hereafter. This chapter take its basis from Herrmann [1978], Goodman [1968], Sharma
and Desai [1992] and Appendix B.

One of the most important factor of accurately simulating the behavior of geological
structures as a continuum is the ability to account for relative motion along the interface.
For soil structures, the types of interfaces are more complex and diverse. Hence, any time
soil interacts with a solid, the difference in relative stiffness between the two materials
unavoidably generate an interface. The interaction along the interface is modelled by
chosen element for use in a finite element analysis.

The challenge when introducing interface element is that the material of the interface is
unknown and it is not desirable at this point to assign any material properties. Further
analysis of the interface behavior and parameters needs to be performed before the material
properties are determined.

Firstly, the elements chosen for further analysis are presented in these following sections.
Further interface behavior and implementation will be accounted for in Chapters 3 and 4.

2.1 Zero-thickness element

As the name suggest, this group of elements have physically no thickness. This can be seen
as a realistic way of modelling the interface as there is no extra layer of material added.
Furthermore, there is no additional degrees of freedom added into the system stiffness
matrix, therefore the computational time is not significantly affected. In this section two
types of interfaces are defined and some of their features of each approach are presented.

2.1.1 Herrmann type

One of the first developments done regarding interface problems was a linkage element by
Herrmann. The element is modelled by two link springs connecting each of the two pair of
mating nodes, therefore the element has four nodes. The element recognize four modes of
behaviour based on bond normal and tangential stresses along the interface. The modes are
referred to as non-slip, slip, separation and re-bonding. The slip mode is activated when
shear resistance is higher than the maximum allowable shear resistance corresponding to
the Mohr-Coulomb yielding criteria explained further in Appendix F. In this case, the
related stiffness value is set to zero and the maximum resistance is distributed as nodal

5



2. Formulation of interface elements

load to surrounding surfaces. Similarly, when separation occurs there are both normal and
tangential stress component set to zero as there is no stress transmitted between contact
surfaces. When re-bonding occur, the stiffness is changed back to the original values.

k

l

uk

vk

ul

vl
ui

vi

u j

v j

j

i

L

x'

y'

(a) Undeformed

k

l

uk

vk

ul

vl

wn

wt

(b) Deformed

Figure 2.1: Zero-thickness element by Herrman

Element stiffness

As mentioned above, the behaviour of element is connecting bond links through mating
nodes. It can be seen in Figure 2.1b, that there are relative displacements in tangential and
normal direction evaluated in each pair of nodes. The relative displacement is calculated
from absolute displacements in each node as shown below

{
wt
wn

}
=

{
ul − uk
vl − vk

}
=

[
−1 0 1 0

0 −1 0 1

] 
uk
vk
ul
vl

 (2.1)

wt Relative tangential displacements
wn Relative normal displacements
uk, vk, ul, vl Displacements in local coordinate system (x′, y′)

This relationship is used for calculation of the nodal forces, which shown in:

fix = −fkx = Ptwt
L

2
(2.2)

fiy = −fky = Pnwn
L

2
(2.3)

L Length of the interface
Pt Tangential link spring stiffness per unit length
Pn Normal link spring stiffness per unit length
fij Nodal forces where i = (k, l) and j = (x, y)
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2.1. Zero-thickness element Aalborg University

Introducing the normal and tangential link springs, also referred to as penalty numbers,
Equations (2.2) and (2.3) can be written in matrix form yielding:

L

2


−Pt 0

0 −Pn
Pt 0

0 Pn


{
wt
wn

}
=


fkx
fky
flx
fly

 (2.4)

Substituting the relative displacement by nodal displacements, the finite element equations
are introduced as:

L

2


Pt 0 Pt 0

0 Pn 0 −Pn
−Pt 0 Pt 0

0 −Pn 0 Pn



uk
vk
ul
vl

 =


fkx
fky
flx
fly

 (2.5)

The interface behavior is modeled through fictitious springs at each of the two pairs of
mating nodes and the nodal forces are related to the relative displacements through the
link spring stiffnesses. Hence, the element stiffness equation can be written as:

[K] {u} = {f} (2.6)

where the stiffness matrix [K] only contains the tangential Pt and normal Pn link spring
stiffness, {u} as the nodal displacement vector and {f} as the vector of nodal forces.

Element Stresses

The stresses, by definition forces per unit length, are evaluated for each half of the element
as the two links behave independently. Which leads to the definition of the shear stress τs
and normal stress σn shown in:

τs =
fix
L/2

(2.7)

σn =
fiy
L/2

(2.8)

Which can be rewritten as the following equations, by using Equation (2.6):

fix = Pt
L

2
(ui − uj) (2.9)

fiy = Pn
L

2
(vi − vj) (2.10)

Yielding the expression for shear and normal stresses as seen in:

τs = Pt (ui − uj) (2.11)

σn = Pn (vi − vj) (2.12)

The expressions for the link stresses on the other side are identical except for the denoted
nodal letters.

7



2. Formulation of interface elements

Single element behavior

To demonstrate element behavior, one element is shown below in Figures 2.2 and 2.3. The
element is loaded in node 4 by unit force in the positive horizontal direction. Whereas the
element is fixed on the bottom between node 1 and 2. It can be seen that other nodes
stays unaffected, as a consequence to independent behaviour of each link.

0 0.2 0.4 0.6 0.8 1

 x [m]

 th
ic

kn
es

s 
=

 0
 

Undeformed mesh with element numbers

1

1 2

3 4

Figure 2.2: Undeformed mesh

0 0.2 0.4 0.6 0.8 1

 x [m]

 th
ic

kn
es

s 
=

 0
 

Deformed mesh

Figure 2.3: Deformed mesh

2.1.2 Goodman type

Goodman has developed a 4-node rectangular interface element for rock joints. The
element structure and its implementation is fairly straight forward, which makes it the
widely used. However, it proposes some kinematic inconsistencies, which are pinpointed in
this section and solution to the problem is presented. The recognition of the four different
behaviour modes remains the same also for Goodman’s element. Therefore, no-slip, slip,
separation and re-bonding can be simulated by changing stiffness values. A 4-noded zero
thickness interface element is illustrated in Figure 2.4.

 y'

x'

top

bottom

L/2 L/21 2

34

v1

u1
v2

u2

v3

u3

v4

u4

t=
0

Figure 2.4: 4-noded Goodman zero thickness interface element
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2.1. Zero-thickness element Aalborg University

Element stiffness

Unlike for Herrman’s type, the nodal displacement can be determined by using linear shape
functions as shown in:{

ub
vb

}
=

[
N1 0 N2 0 0 0 0 0

0 N1 0 N2 0 0 0 0

]{
u
}

(2.13)

{
ut
vt

}
=

[
0 0 0 0 N2 0 N1 0

0 0 0 0 0 N2 0 N1

]{
u
}

(2.14)

The calculation follows rather standard Finite Element procedure of obtaining the stiffness
matrix. First of all, the relative displacement vector is obtained as in:{

w
}

=

{
ws
wn

}
=

{
ut − ub
vt − vb

}
(2.15)

ws Relative tangential displacement
wn Relative normal displacement
ut, vt, ub, vb Displacements along x′ and y′ where t = "top", b = "bottom"

Substituting (2.13) and (2.14) into (2.15), we can express the relative displacement as in:

{w} = [B] {u} (2.16)

where[
B
]

=

[
−N1 0 −N2 0 N2 0 N1 0

0 −N1 0 −N2 0 N2 0 N1

]
(2.17)

In the next step, the stress-strain relationship needs to be established. As in the previous
case, the relative displacement is considered as general strain, therefore the stiffness matrix
can be obtain as:[

K
]e

=

∫ [
B
]T [

D
] [
B
]

dx (2.18)

It can be obtain by solving above stated integral and the resulting stiffness matrix is
expressed as:

[
K
]e

=
L

6



2ks 0 ks 0 −ks 0 −2ks 0

0 2kn 0 kn 0 −kn 0 −2kn
ks 0 2ks 0 −2ks 0 −ks 0

0 −kn 0 2kn 0 −2kn 0 −kn
−ks 0 −2ks 0 2ks 0 ks 0

0 −kn 0 −2kn 0 2kn 0 kn
−2ks 0 −ks 0 ks 0 2ks 0

0 −2kn 0 −kn 0 kn 0 2kn


(2.19)

u3 =
4F

Lks
(2.20)

u4 =
−2F

Lks
(2.21)

9



2. Formulation of interface elements

Single element behavior

The so called stresses (force per unit length) are evaluated in element center and as in
Herrmann element, the relative displacement can be used for calculation. From the single
element test performed under same set up as for Herrmann element, therefore loaded
in horizontal direction in node 4, there is obvious kinematic inconsistency between top
nodes, see Figure 2.6. This is justified in Equations (2.20) and (2.21), as the horizontal
displacement are opposite to each other. This is due to the stiffness formulation and not
result of ill-conditioning. Thus, the element is not further used in analysis. However, the
values of stresses yields values as expected.

The solution to this problem was developed in Li and Kaliakin [1993] and involves merging
two regular Goodman elements into one described in following section.

2.1.3 Improved 4-node and 6-node zero thickness element

The geometric characteristics of this element is the same as for the element in Section
2.1.2. However, the improved Goodman element have a different stiffness matrix given by

[K] =
L

48



7 ks 0 −ks 0 ks 0 7 ks 0

0 7 kn 0 −kn 0 kn 0 −7 kn
−ks 0 7 ks 0 −7 ks 0 −ks 0

0 −kn 0 7 kn 0 −7 kn 0 kn
ks 0 −7 ks 0 7 ks 0 −ks 0

0 kn 0 −7 kn 0 7 kn 0 −kn
−7 ks 0 ks 0 −ks 0 7 ks 0

0 −7 kn 0 kn 0 −kn 0 7 kn


(2.22)

The element stiffness matrix is obtained by merging two identical elements together as
shown in Figure 2.5 for 4-noded case. The middle nodes 5 and 6 are then condense out
yielding the stiffness matrix as shown in 2.22. In the similar way the stiffness matrix for
6-noded element is derived as

[K] =
L

24



3 ks 0 −ks 0 0 0 0 0 ks 0 −3 ks 0

0 3 kn 0 −kn 0 0 0 0 0 kn 0 −3 kn
−ks 0 6 ks 0 −ks 0 ks 0 −6 ks 0 ks 0

0 −kn 0 6 kn 0 −kn 0 kn 0 −6 kn 0 kn
0 0 −ks 0 3 ks 0 −3 ks 0 ks 0 0 0

0 0 0 −kn 0 3 kn 0 −3 kn 0 kn 0 0

0 0 ks 0 −3 ks 0 3 ks 0 −ks 0 0 0

0 0 0 kn 0 −3 kn 0 3 kn 0 −kn 0 0

ks 0 −6 ks 0 ks 0 −ks 0 6 ks 0 −ks 0

0 kn 0 −6 kn 0 kn 0 −kn 0 6 kn 0 −kn
−3 ks 0 ks 0 0 0 0 0 −ks 0 3 ks 0

0 −3 kn 0 kn 0 0 0 0 0 −kn 0 3 kn


(2.23)

The stiffness matrix is conducted by that the improved element is a merge of two identical
elements as shown in Figure 2.5 for 4-noded type which is used as an example in single
element test herafter. The nodes 5 and 6 that are connecting the elements together are
condensed out and its contribution is redistributed to the remaining corner nodes.
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Figure 2.5: 4-noded improved Goodman zero thickness interface element

Single element behaviour

As can be seen from the single element test, see Figure 2.7), the displacement looks as
expected with expected stress values.
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Deformed mesh

Figure 2.6: Original Goodman element
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Deformed mesh

Figure 2.7: Improved 4-noded Goodman
element

2.1.4 Constitutive model

Goodman’s type

Due to the fact that it is assumed an interface element thickness of zero, the in-plane
strains εx = 0 is negligible and thus also the in-plane stresses is equal to zero, σx = 0, the
stress and strain vector are left with two parameters. As mentioned in Section 2.1.2, the
vector containing relative displacements, {w}, is considered as general strains.

The constitutive model for the original interface element of Goodman can be presented in
a general form as:{

τs
σn

}
= [D] {w} =

[
ks 0

0 kn

]{
ws
wn

}
(2.24)

11



2. Formulation of interface elements

τs Tangential stress
σn Normal stresses
ks Tangential stiffness of the interface
kn Normal stiffness of the interface

σn

τs

σn

τs

y

x

Figure 2.8: Goodman interface stresses

These interface stresses are related to the relative displacements by the interface
constitutive relation which consists of one tangential stiffness ks and one normal stiffness
kn in an uncoupled form. In the original constitutive relationship of the interface, there
are non off-diagonal terms. This means that the shear and normal deformations are
independent of each other. Furthermore it also implies that there is no dilatancy, or
volume change if subjected to shear deformations.

Herrmann’s type

Identical to the constitutive relations concerning the Goodmann’s type, the relative
displacements of the Herrmann element are also considered as general strain. The stresses
are calculated from Equations (2.11) and (2.12), which leads to the representation of the
the constitutive relation where the stresses are connected to the relative displacements
through the link spring stiffnesses.

2.2 Thin layer interface element

Thin elements are mainly standard continuum elements of a small but finite thickness. The
principal subjects to developing thin layer elements include suitable constitutive laws for
the interface, the correct thickness of the thin elements and the integration of the respective
modes of deformation. In this thesis the Desai type is taken under consideration.

2.2.1 Constitutive model

The case studied in this report concerning the thin layer interface elements, are represented
by a 6-noded element.
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2.2. Thin layer interface element Aalborg University

As mentioned in Section 1.3 only modes slip and non-slip are considered in this report (see
Figures 1.5 and 1.4). During the slip or no-slip mode, there is no relative motion under
shear stress, τ , and normal stress, σn, is compressive. elastoplastic incremental constitutive
matrix is obtained just as in the case of the surrounding soil elements, shown in:

{dσ} = [C] {dε} (2.25)

{dσ} Vector of incremental stress
{dε} Vector of incremental strain
C Constitutive matrix

In Equation (2.25) all the stresses and strains are included and the compressive stresses
are considered positive. However, generally it is not possible to find properties of the
thin layer from testing with solid specimens that simulate the material at the interface,
but approximations can be made. In this case, with non-slip assumed, the properties are
derived from shear at the interfaces between two bodies, presented as:

ks =
dτ

dur
(2.26)

kn =
dσn
dvr

(2.27)

τ Shear stress
ur Relative shear displacement
σn Normal stresses
vr Relative normal displacement
ks Shear stiffness of the interface
kn Normal stiffness of the interface

The formulation of the thin layer element has previous been developed as a continuum finite
element, where the constitutive response has been defined differently than the neighboring
elements.

The layout of the thin layer interface element with respect to the global coordinate system
of the entire structure is essential as the ks and kn in Equations (2.26) and (2.27) are
local properties of the interface. Hence, the formulation is first presented with reference
to the local coordinate system of the interface, followed by a presentation with respect
to the global coordinate system of the structure. As the thickness approaches zero, the
in-plain stress and strain become negligible compared to normal- and shear stress and
strain components. As a result of this, the interface stresses and strains can be expressed
in terms of the normal and shear components only.

Considering a 4-noded interface element shown in Figure 2.9, u′ and v′ represents
displacements in the local coordinate system (x′, y′) and u and v are displacements with
respect to the global coordinate system (x, y). The interface is positioned with an angle θ
and a thickness t.
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2. Formulation of interface elements

1

2

3

4

y',v'
x',u'

x,u

y,v

θ

t

Figure 2.9: Four-noded interface element.

Formulation of the local coordinate system

Displacements, u′ and v′, at any point within the element are given by:{
u′

v′

}
=

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]{
q′
}

(2.28)

or it can be expressed:

{u′} = [N ] {q′}

[N ] Strain interpolation functions
{q′} Vector of nodal displacements - {q′} = (u′1v

′
1u
′
2v
′
2u
′
3v
′
3u
′
4v
′
4)
T

Strain-displacements relationship
For a two-dimensional case, the strain-displacement relationship is presented in:

{
ε′
}

=


ε′x
ε′y
γ′xy

 =


∂u′

∂x′
∂v′

∂y′
∂u′

∂y′ + ∂v′

∂x′

 = [B] {qT } (2.29)

ε′x, ε′y and γ′yx Strain components
[B] Strain interpolation matrix

In plane stress and strain components
The three stress components relevant to the strains in Equation (2.29) are σ′x, σ′y and τ ′xy.
Furthermore, where σ′x represents the inplane stress, σ′y the stress normal to the interface
and τ ′xy the shear stress of the interface, shown in Figure 2.10.
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2.2. Thin layer interface element Aalborg University

σy'

τyx'

σy'

τyx'y'

x'

τxy'
σx'

τxy'

σx'

Figure 2.10: Desai interface stresses

Formulation of the global coordinate system

In the considered case, the inclination angle θ = 0, thus the formulation of the coordinate
system is derived as global. With respect to the global coordinate system (x, y), u and v
are given by:{

u

v

}
=

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]{
q
}

(2.30)

or it can be expressed:

{u} = [N ] {q}

[Ni] Strain interpolation functions
{q} Displacements of the nodes in x- and y-direction - {qT } = (u1v1u2v2u3v3u4v4)

Strain-displacement relationship
The strains are related to the displacements as shown in respectively:

{
ε
}

=


εx
εy
γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 (2.31)

or it can be expressed:

{ε} = [B] {q}

{εi} Strain components with reference to the global coordinate system
[B] Strain interpolation matrix

Stress-strain relationship
In order to relate the stresses in global coordinate system to the global strains. The normal
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2. Formulation of interface elements

εn and shear γ strains in the local coordinate system are related to the global strains εx,
εy and γxy as shown in:

{
εn
γ

}
=

[
s2 c2 −c s
−2 c s 2 c s c2 − s2

]
εx
εy
γxy

 (2.32)

or:

{ε′} = [T ] {ε}

[T ] Transformation matrix
s sin θ
c cos θ
θ Inclination of the interface as illustrated in Figure 2.9

Equivalently, the local and global stresses are related through the same relationship shown
in: {

σn
τ

}
=

[
s2 c2 −c s
−2 c s 2 c s c2 − s2

]
σx
σy
τxy

 (2.33)

or:

{σ′} = [T ] {σ}

By using (2.31) and (2.33), in addition to setting the local and global strain relationships
equal to each other, the stress-strain relation in the global coordinate system is obtained
as:

{d σ} = [T T ] [C̄] {dε} = [C] {dε} (2.34)

Hence, the local constitutive matrix [C̄], gets transformed into the global constitutive
matrix [C] by the connection shown in Equation (2.34). The matrix [C] can be both
elastic ([Ce]) or elastoplastic ([Cep]), depending on whether the system or the interface are
considered elastic or elastoplastic.

Equation (2.34) is used to obtain the element stiffness matrix in the global coordinate
system as:

[k] =

∫
v
[BT ] [C] [B] dV (2.35)

v Element volume

The constitutive model
As mentioned before, the interface behavior is influenced by several factors, such as physical
and geometrical properties of the surrounding material, material behavior and the thickness
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2.3. Lagrange multiplier method Aalborg University

of the thin layer element. If the thickness is too large, the thin layer interface element
will act like a normal solid element. Hence, the choice of thickness is essential to the
modelling of thin layer elements. The assessment of the element thickness is carried out in
a parametric study explained in detail i Section 3.1. As mentioned briefly in Section 1.2,
Desai has previously performed a such a parametric study where he obtained satisfactory
model for the interface behavior. Thus with a width ratio, t

B , in the range of 0,01 to 0,1.

Elastic constitutive model
During an analysis where the material behaves elastically to obtain a satisfactory value of
the thickness t, an parametric study including finite element analysis has to be performed.
This includes the parameters of ratio t

B , relative magnitudes of elastic properties of
neighboring elements such as elastic modulus and Poisson ratio (EN and νN ) and the
normal and the shear stiffness of the interface (kn and ks).

Assuming plain strain, the elastic constitutive matrix [C̄e] yields:

[C̄e] =
E

(1 + ν) (1− 2 ν)

1− ν ν 0

ν 1− ν 0

0 0 1−2 ν
2

 (2.36)

where E and ν are the elastic modulus and the Poisson’s ratio of the interface respectively.
E and ν of the interface is to be derived from:

E ∼= kn t (2.37)

G ∼= ks t (2.38)

where G represents the shear modulus. The Poisson’s ratio is found by the relations in:

ν =
E

2G
− 1 =

kn
ks
− 1 (2.39)

The case studied in this report concerning the thin layer element is the interfaces
represented by 4 nodes with a formulation presented with elastic constitutive matrix. Due
to the fact that the interface is horizontal, the inclination angle θ = 0. So by substituting
θ = 0 into the transformation matrices [T ] and [T ′] yields:

[Ce] =

[
kn t 0

0 ks t

]
(2.40)

2.3 Lagrange multiplier method

The Lagrange multiplier method differ from former interface approaches as it is not an
element and its implementation requires additional computation.

2.3.1 Physical interpretation

The Lagrange method can be presented in many different mathematical approaches. The
method is presented by using the simple six element bar shown in Figure 2.11
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2. Formulation of interface elements

The constraints u2 = u6 are under consideration. During the Lagrange multiplier method,
a rigid fictional bar is considered to connect the chosen degrees of freedom. The rigid
bar may be removed if it is replaced by an appropriate reaction force pair, −λ, λ. These
is called constraint forces. The constraint forces are inserted into the original stiffness
equation (B.3), which yields:

K11 K12 0 0 0 0 0

K12 K22 K23 0 0 0 0

0 K23 K33 K34 0 0 0

0 0 K34 K44 K45 0 0

0 0 0 K45 K55 K56 0

0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77





u1
u2
u3
u4
u5
u6
u7


=



f1
f2 − λ
f3
f4
f5

f6 + λ

f7


(2.41)

Figure 2.11: Physical interpretation of the Lagrange multiplier method to enforce the Multi
freedom constraints, u2 = u6, Felippa [2004]

The λ is called the Lagrange multiplier. Due to that λ is unknown, it is moved to the
left-hand-side, inserting it into the displacement vector. However, now there is 7 equations
and 8 unknown displacements. To make the system solvable, the constraint condition
u2 − u6 = 0 is inserted as Equation (2.42):

K11 K12 0 0 0 0 0 0

K12 K22 K23 0 0 0 0 1

0 K23 K33 K34 0 0 0 0

0 0 K34 K44 K45 0 0 0

0 0 0 K45 K55 K56 0 0

0 0 0 0 K56 K66 K67 −1

0 0 0 0 0 K67 K77 0

0 1 0 0 0 −1 0 0





u1
u2
u3
u4
u5
u6
u7
λ


=



f1
f2
f3
f4
f5
f6
f7
0


(2.42)

The system in Equation (2.42) is called multiplier augmented system. Solving this
system yield the wanted solutions for the degrees of freedom, as well as characterizing
the constraint forces through λ.

2.3.2 Lagrange Multipliers for General Multi freedom constraints

The general procedure will be stated first as a recipe. Suppose that the system that is
under consideration is a structure subjected to three MFCs, presented in Equation (2.43):

u2 − u6 = 0 5u2 − 8u7 = 3 3u3 + u5 − 4u6 = 1 (2.43)
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1. Add these MFCs as the eighth, ninth and tenth equation, shown in Equation (2.44):

K11 K12 0 0 0 0 0

K12 K22 K23 0 0 0 0

0 K23 K33 K34 0 0 0

0 0 K34 K44 K45 0 0

0 0 0 K45 K55 K56 0

0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77

0 1 0 0 0 −1 0

0 5 0 0 0 0 −8

0 0 3 0 1 −4 0





u1
u2
u3
u4
u5
u6
u7


=



f1
f2
f3
f4
f5
f6
f7
0

3

1



(2.44)

2. Three Lagrange multipliers are needed for three MCFs, λ1, λ2 and λ3. Add the
unknown multipliers to the nodal displacement vector.

3. The coefficient matrix is symmetrized by adding three columns that are the transpose
of the 3 last rows in Equation (2.44).

4. A 3 × 3 zero matrix is inserted to the bottom right corner, yielding the solution in
Equation (2.45):

K11 K12 0 0 0 0 0 0 0 0

K12 K22 K23 0 0 0 0 1 5 0

0 K23 K33 K34 0 0 0 0 0 3

0 0 K34 K44 K45 0 0 0 0 0

0 0 0 K45 K55 K56 0 0 0 1

0 0 0 0 K56 K66 K67 −1 0 −4

0 0 0 0 0 K67 K77 0 −8 0

0 1 0 0 0 −1 0 0 0 0

0 5 0 0 0 0 −8 0 0 0

0 0 3 0 1 −4 0 0 0 0





u1
u2
u3
u4
u5
u6
u7
λ1
λ2
λ3



=



f1
f2
f3
f4
f5
f6
f7
0

3

1


(2.45)

2.3.3 The Theory Behind Lagrange Multipliers

The recipe presented in Equation (2.45), is based on well known mathematical approaches.
Using the matrix notation introduced from Equation (B.3), the potential energy of the
unconstrained finite element model is allowed to be represented as Π = 1

2 u
T K u − uT f .

To introduce the constraints, the Lagrangian multipliers needs to be collected in a vector
λ in order to form the Lagrangian equation presented hereafter.

L(u, λ) = Π + λT (Au− b) =
1

2
uT K u− uT f + λT (Au− b) (2.46)

Rewriting Equation (2.46) into matrix form yields Equation (2.47):[
K AT

A 0

] {
u

λ

}
=

{
f

b

}
(2.47)
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The master stiffness matrix K in Equation (2.47) is conditioned to border with A and
AT . Solving this system yields u and λ. The last mentioned can be interpreted as forces
of constraints in the following order: a removed constraint can be replaced by a system
of forces characterized by λ multiplied by the constraint coefficients. More precisely, the
constraint forces are AT λ.

2.3.4 Evaluation of the Lagrange Multiplier method

On the contrary to the penalty function method (See Appendix B), the Lagrange multiplier
method has the advantage of being exact where it provides directly the constraint forces.
As the penalty function method, it can be extended to nonlinear constraints.

One of the downsides to the Lagrange multiplier method is that it introduces additional
equations. By adding these to the original finite element, the system is expanded and it
requires additional space for storing such a system. Finally, as the master-slave method,
it is sensitive to the degree of linear independence of the constraints: if the constraint
u2 = u6 is specified twice, the bordered stiffness is singular.

2.3.5 The Augmented Lagrangian Method

There is a connection between the general matrix forms of the Lagrangian multiplier
method and the penalty function method, that is called The Augmented Lagrangian
Method. Because the lower diagonal block of the bordered stiffness matrix in Equation
(2.47) is zero, it is not possible to directly eliminate λ. To make it possible to eliminate
λ, ε S−1 is inserted to replace 0. S is a constraint-scaling diagonal matrix of appropriate
order and ε is a small number. w = 1

ε is a large number of ε.

To maintain exactness of the second equation, ε S−1 λ is added to the right-hand side
yielding Equation (2.48):[

K AT

A εS−1

] {
u

λ

}
=

{
f

ε S−1 λP b

}
(2.48)

where the superscript P, is attached to the λ on the right-hand-side and is acting like a
tracer. It is now possible to solve for λ and thereafter for u. The results may be presented
as Equation (2.49):

(K + wAT S A)u = f + wAT S b−AT λP

λ = λP + wS (b−Au)
(2.49)

If λP = 0 is inserted in the first equation in (2.49), it yields Equation (2.50):

(K + wAT S A)u = f + wS b (2.50)

Here by introducing W = wS, the general matrix equation (B.14) is retrieved of the
penalty method.

This relation introduces the development of the iterative procedures where the accuracy of
the penalty function method is desired to improve, while keeping w constant. This strategy
avoids the previously mentioned problems surrounding the penalty function method when
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the weight w is gradually increased. This method is easily developed by reviewing the
Equation (2.49). By using superscript k as an iteration index and keeping w fixed, the
Equation (2.49) can be solved.

(K + AT W A)uk = f +AT W b−AT λk

λk+1 = λk −W (b−Auk)
(2.51)

As for k = 0, 1, . . . , beginning with λ0 = 0. Then u0 is the penalty solution. If the process
converges, the exact Lagrangian solution is recovered without the Lagrangian system in
the Equation (2.48) needed to be solved directly.

The constraint force calculated out from the Lagrange multiplier λ can be seen as friction
force acting on the interface. Thus, by introducing the factor µ, the interface with different
roughness can be simulated. Therefore, the method is used as another approach for
modelling interface.

All of these different types of interface elements are implemented in MATLAB and further
explanation of the implementation of the elements are accounted for in Section 4.2.
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Assessment of chosen elements 3
In this chapter the solutions described in Chapter 2 for modelling interface are assessed in
simple pull-out test and outputs are presented and discussed.

3.1 Simple Pull-out test

In order to examine the behaviour of interface elements proposed in Chapter 2, the simple
pull out test is conducted. As shown in the Figure 3.1, the soil is modelled as 4-noded
rectangular elements with reinforcement in the middle, which is modeled as a 2-noded bar
element. The soil domain is fully constrained in horizontal direction. To assure statically
admissible model, the nodes at the bottom are also constrained in vertical direction as
shown in Figure 3.1. There are in total four interface elements connecting the reinforcement
with the soil. In order to emphasize behaviour of the interface, the surrounding material
is modelled as linear elastic with parameters as follows:

Table 3.1: Parameters for the system

E ν

Soil 2000 kPa 0.25
Bar 20 000 kPa -

The interface is in the first stage analyzed using a linear elastic constitutive model and a
parametric study is conducted for both, normal and tangential behavior of the interface
elements for stiffness coefficients.

The model is in first step loaded from the top at nodes 10, 11 and 12 by a uniform load of
q = 10kN as shown in the Figure 3.1. The pull-out force Fq = 10kN is applied at node 15
in 2kN increments in the following steps, while the top load is kept constant for the whole
analysis. Therefore, the model is exposed to six load steps in total.

3.1.1 Improved Goodman 4-node and 6-node element

As name suggests, the element is derived from the Goodman element, that is described
in detail in the Chapter 2.1.2. In the assessment of normal behaviour there are two key
parameters, the normal stress and the value of penetration. As mentioned before, there
cannot be determined the one correct value of stiffness. Therefore, the parametric study
needs to be performed before the analysis. Thus, the stiffness parameters kn and ks are
chosen from 104 to 1010.
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Figure 3.1: Simple pull-out test

Normal behavior

Under the given case, one can expect to have uniform normal stresses within the soil
domain equal to the applied load from the top. The vertical stresses in the interface and
its dependency on different chosen stiffness coefficients are presented in Table 3.2 and 3.3
for 4-noded and 6-noded element respectively, where σs represents the stresses in the soil
and σi the stresses in the interface.

Table 3.2: Normal stresses in soil and interface vs. kn [Pa] for 4-node element

kn 104 105 106 107 108 109 1010

σs [Pa] 10.000 10.000 10.000 10.000 10.000 10.000 10.000
σi [Pa] 10.000 10.000 9.999 9.995 9.998 10.006 -

Table 3.3: Normal stresses in soil and interface vs. kn [Pa] for 6-node element

kn 104 105 106 107 108 109 1010

σs [Pa] 10.000 10.000 10.000 10.000 10.000 10.000 10.000
σi [Pa] 10.000 10.000 9.999 9.998 9.998 10.002 -

Table 3.4: Relative normal displacement [m] vs. kn for 4-node and 6-node element

kn 104 105 106 107 108 109 1010

v8 − v5 4 · 10−3 4 · 10−4 4 · 10−5 4 · 10−6 4 · 10−7 4 · 10−8 -
(v8 − v5)/v5 (%) 107.7 10.77 1.065 0.107 0.012 0.001 -

As can be seen from the Table 3.2, the interface elements in both cases yields satisfactory
normal stresses for different stiffness coefficients. However, from the Table 3.4 we can
observe the inverse relation between the relative displacement and the stiffness coefficient.
It can be seen that node 5 and 8 are penetrating each other. In other words the relative
displacement between those two nodes is non-zero value, despite being constrained. For
the stiffness of 104 we can observe a penetration error of over 100%. As the stiffness of
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the interface is increased to 106, the relative error drops down to almost 1%, which in
terms of finite element is acceptable inaccuracy. The error in relative displacement can be
decreased almost to zero by using higher stiffness coefficient. However, it comes with price
of inaccurate normal stresses and, in some cases, the convergence cannot be achieved.

Tangential behavior

In the next steps, the pull-out load is applied in the node of the reinforcement in increments
of 2kN up to the total load of 10kN. The tangential displacements shown in m and stresses
in kPa of the interface elements after every load increment are presented hereafter.

Table 3.5: Displacement in [m] of the bar for stiffness coefficient ks = 106 [Pa] for 4-node
element

Node Load step [kN]
0 2 4 6 8 10

13 −1.7 · 10−23 7.2 · 10−8 1.4 · 10−7 2.2 · 10−7 2.9 · 10−7 3.6 · 10−7

14 −4.4 · 10−18 5 · 10−7 1 · 10−6 1.5 · 10−6 2 · 10−5 2.5 · 10−5

15 −1.7 · 10−23 6.9 · 10−6 1.4 · 10−5 2.1 · 10−5 2.8 · 10−5 3.5 · 10−5
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Figure 3.2: Tangential stresses for stiffness coefficient ks = 106 [Pa] for 4-node and 6 node
element

It can be observed in Table 3.5, that the bar yield some displacements even when there is
no load applied. However, the values are effectively zero and does not affect the results in
the next steps. Furthermore, it can be observed similar pattern in vertically neighbouring
elements. The obvious difference in sign is due to the method of calculation of stresses. The
discrepancy in load step of 4kN common for both interface elements in Element 7 is due
to some numerical error during calculation, which is not observed for any other stiffness
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coefficient. To examine tangential response of interface element further, the analysis is
done for stiffness coefficient of ks = 108 and results are presented in similar way hereafter.

Table 3.6: Displacement in [m] of the bar for stiffness coefficient ks = 108 [Pa]

Node Load step [kN]
0 2 4 6 8 10

13 −1 · 10−24 7.2 · 10−10 2.2 · 10−9 4.5 · 10−9 7.6 · 10−9 1.1 · 10−8

14 5.3 · 10−16 3.2 · 10−8 9.7 · 10−8 1.9 · 10−7 3.2 · 10−7 4.9 · 10−7

15 −1 · 10−24 6.9 · 10−8 2.1 · 10−7 4.2 · 10−7 6.9 · 10−7 1.1 · 10−6
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Figure 3.3: Tangential stresses for stiffness coefficient ks = 108 [Pa] for 4-node and 6-node
element

The behavior of interface elements in horizontal direction is as expected from the single
element analysis shown in Chapter 2. Consequently, the higher stiffness yields higher
values of stresses as can be seen in Figure 3.3. On the other hand, the lower values
of stiffness may give more accurate stresses, whereas the error caused by penetration in
normal direction would become over 27 (%). Furthermore, it can be seen correlation of the
tangential stresses between two examined elements of Goodman, 4-node and 6-node.

3.1.2 Herrman element

The analysis of Herrman’s element in interface is conducted using same model as for
previous case. Thus, the model is loaded by q = 10kN on the top of the element 3 and
4, shown in the Figure 3.1. The normal stresses and relative normal displacement of the
interface are studied and shown below.

Table 3.7: Normal stresses in soil and interface vs. kn [Pa]

kn 104 105 106 107 108 109 1010

σs [Pa] 10.000 10.000 10.000 10.000 10.000 10.000 10.000
σi [Pa] 10.000 10.000 10.000 10.000 10.000 9.999 9.999
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Table 3.8: Relative normal displacement in [m] vs. kn [Pa]

kn 104 105 106 107 108 109 1010

v8 − v5 1 · 10−3 1 · 10−4 1 · 10−5 1 · 10−6 1 · 10−7 1 · 10−8 -
(v8 − v5)/v5 (%) 27 2.7 0.069 0.007 0.0012 0.001 -

As it can be seen in Table 3.7, the normal stresses in the interface are more stable for
different stiffness coefficients than it could be observed for Goodman element. However,
for stiffness of higher order, small inaccuracy occurs. Moreover, it takes more iteration
steps until convergence is reached. In the Table 3.8 it is shown relative displacements of
the interface for set of stiffness values. It can be observed inverse relation with the stiffness
coefficients. In terms of normal behaviour, the stiffness of 106 can be assumed as sufficient
yielding relative error in displacement less than 1 (%).

In the next step, the tangential behavior is examined in similar way to the previous case.
Thus, the horizontal load is applied in node 15 in increments of 2kN up to total load of
10kN. The tangential stresses and displacement after every step are shown hereafter.
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Figure 3.4: Tangential stresses for stiffness coefficient of 106

Table 3.9: Displacement in [m] of the bar for stiffness coefficient ks = 106 [Pa]

Node Load step [kN]
0 2 4 6 8 10

13 −2 · 10−13 1.2 · 10−12 3.6 · 10−9 5.1 · 10−8 1.9 · 10−7 2.6 · 10−7

14 −1 · 10−9 1.8 · 10−8 7.1 · 10−8 1.1 · 10−7 9.3 · 10−7 5.5 · 10−6

15 −2 · 10−13 2.9 · 10−6 3.9 · 10−6 5.9 · 10−6 7.8 · 10−6 9.9 · 10−6

Regarding tangential stresses, the Herrman element seems to provide the most accurate
stresses out of the presented zero-thickness elements, yielding the stresses as one could
expect for given load. However, the stresses are evaluated in each link separately, for left
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and right link within one element respectively and as we learned in single element test,
there is no transion between them as seen in the Figure 3.4. Therefore, there are non-zero
tangential stresses present only in links where the load is applied. Another disadvantage
concerning the Herrman element is that it cannot be used in fully plastic analysis as the
element cannot account for hardening Li and Kaliakin [1993].

3.1.3 Thin-layer element

As a next approach of modeling interface, the thin-layer element is analyzed. In the first
step the standard continuum element is analyzed following by the Desai thin layer element
developed specifically for interface problems.

The analysis is performed for several sets of properties, which can be seen in Table 3.10
below. Each of the set is used for four different thickness ratios.

Table 3.10: Sets of properties

Set kn [Pa] ks [Pa] ν

1 4.5 · 104 2.0 · 104 0.125
2 4.5 · 104 2.25 · 104 0.0
3 1 · 104 0.45 · 106 0.1
4 1 · 106 0.45 · 108 0.1
5 1 · 108 0.45 · 108 0.1

For each of the set is used aspect ratio t/B of 0.1, 0.01, 0.001 and 10−6 where B represents
the width of the interface element, whereas the t represents the thickness.

Standard continuum element

In previous cases, there are analyzed several elements invented specifically for interface.
It would be interesting to see how a regular continuum element can (or cannot) simulate
the interface behavior. The set up used in analysis is same as for previous case and can
be seen in Table 3.10. Following the previous procedure, the normal behavior is examined
first.

Table 3.11: Normal stress and penetration for 1. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 4.291 · 10−4

1 · 10−2 −10.000 4.291 · 10−4

1 · 10−3 −10.000 4.291 · 10−4

1 · 10−6 −9.999 4.291 · 10−4

Table 3.12: Normal stress and penetration for 2. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 4.444 · 10−4

1 · 10−2 −10.000 4.444 · 10−4

1 · 10−3 −10.000 4.444 · 10−4

1 · 10−6 −9.999 4.444 · 10−4
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The normal behavior seems to be identical to the one of Desai type as it can be seen in
Table 3.11 and 3.12. However, the small deviation from the expected value of −10kPa is
observed more often especially for smaller aspect ratio and higher stiffness. The result for
sets 3. - 5. can be found in Appendix A.

In the next step, the shear respond of the standard element under different set of properties
is analyzed and results are presented hereafter.

Table 3.13: Shear stress in interface for 4.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 −2.010 · 10−1 −1.339 · 10−1 1.256 · 101 1.262 · 101

1 · 10−2 −2.417 · 10−1 −2.410 · 10−1 1.275 · 101 1.275 · 101

1 · 10−3 −2.452 · 10−8 −2.452 · 10−7 1.274 · 101 1.274 · 101

1 · 10−6 no convergence no convergence no convergence no convergence

Table 3.14: Shear stress in interface for 5.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 −2.175 · 10−1 −1.505 · 10−1 1.262 · 101 1.269 · 101

1 · 10−2 −2.417 · 10−1 −2.410 · 10−1 1.275 · 101 1.275 · 101

1 · 10−3 −2.448 · 10−8 −2.448 · 10−7 1.274 · 101 1.274 · 101

1 · 10−6 no convergence no convergence no convergence no convergence

Desai thin layer element

Conceptually, it is a regular continuum element with small thickness, which in the limit
can go to zero. The difference from the standard continuum element, however, is in
the calculation of constitutive matrix, whose entries are depending on chosen values of
thickness and stiffness coefficients, see Chapter 2.2. As a part of the analysis of the
element, the parametric study of above mentioned parameters is done by using the model
shown in Figure 3.1.

The normal behavior is examined in the first step and the results can be seen below.

Table 3.15: Analysis of normal behavior of the interface for 1. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 4.291 · 10−4

1 · 10−2 −10.000 4.286 · 10−4

1 · 10−3 −10.000 4.286 · 10−4

1 · 10−6 −9.999 4.286 · 10−4
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Table 3.16: Analysis of normal behavior of the interface for 2. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 4.444 · 10−4

1 · 10−2 −10.000 4.444 · 10−4

1 · 10−3 −10.000 4.444 · 10−4

1 · 10−6 −9.999 4.444 · 10−4

For the sake of analysis, only first two sets are shown here, the other three can be found
in Appendix A. It can be seen no significant deviation from the expected stress values of
−10.000kPa. Additionally, the relative displacement, representing the penetration of the
neighbouring soil into interface converged approximately at 4 · 10−4. This value is smaller
by order of 10−1 in comparison to the Improved Goodman element for similar stiffness
coefficient. In the next sets, which can be seen in Appendix A, the similar pattern can
be seen when stiffness is increased while no significant inaccuracy is observed regarding
normal stresses in the interface.

As mentioned in Chapter 2, when the interface element thickness approaches zero, the
previously studied zero-thickness elements should be restored. This assumption can be
shown in Table 3.17 and 3.18 hereafter. It can be seen that the values of the in-plane
strain εx converge to zero with decreasing thickness. Moreover, the in-plane stress σx tend
to converge to one value. In the Table 3.18 for the 2. set of parameters with the Poisson
ratio equal to zero ν = 0, it can be seen zero values for both in-plane components for all
thicknesses. Therefore, the assumption is proved and the in-plane entries can be avoided
when thickness approaches zero without any significant error.

Table 3.17: In-plane stresses and strains for 1. set

t/B σx [Pa] εx
1 · 10−1 −1.418 2.130 · 10−6

1 · 10−2 −1.428 2.142 · 10−7

1 · 10−3 −1.429 2.142 · 10−8

1 · 10−6 −1.429 2.142 · 10−11

Table 3.18: In-plane stresses and strains for 2. set

t/B σx [Pa] εx
1 · 10−1 1.222 · 10−15 2.717 · 10−16

1 · 10−2 0 0

1 · 10−3 0 0

1 · 10−6 0 0

The rest of the tables for sets 3. -5. can be found in Appendix A. The tangential behavior
is examined after applying the pull-out force of 10kN. The values of shear stress are
presented for each Gauss point, whose positions regarding the numbers can be seen in
Figure 3.5. The shear stress is analyzed for each set of parameters and presented in Table
3.19 and 3.20 below.
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Table 3.19: Shear stress in interface for 4. set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 −2.642 · 10−1 −1.903 · 10−1 1.251 · 101 1.258 · 101

1 · 10−2 −2.455 · 10−1 −2.447 · 10−1 1.274 · 101 1.274 · 101

1 · 10−3 −2.455 · 10−1 −2.455 · 10−1 1.274 · 101 1.274 · 101

1 · 10−6 −2.452 · 10−1 −2.452 · 10−1 1.274 · 101 1.274 · 101

Table 3.20: Shear stress in interface for 5. set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 −2.660 · 10−1 −1.921 · 10−1 1.251 · 101 1.259 · 101

1 · 10−2 −2.454 · 10−1 −2.446 · 10−1 1.274 · 101 1.274 · 101

1 · 10−3 −2.453 · 10−1 −2.453 · 10−1 1.274 · 101 1.274 · 101

1 · 10−6 −2.452 · 10−1 −2.452 · 10−1 1.274 · 101 1.274 · 101

Table 3.21: In-plane stresses and strains for Desai element 3. set

t/B σx [Pa] εx
1 · 10−1 −5.179 · 101 7.654 · 10−6

1 · 10−2 −5.179 · 101 3.982 · 10−6

1 · 10−3 −5.179 · 101 3.614 · 10−6

1 · 10−6 −5.179 · 101 3.574 · 10−6

Table 3.22: In-plane stresses and strains for Desai element 4. set

t/B σx [Pa] εx
1 · 10−1 −5.058 · 101 7.654 · 10−4

1 · 10−2 −5.294 · 101 2.789 · 10−4

1 · 10−3 −5.314 · 101 1.755 · 10−5

1 · 10−6 −5.317 · 101 1.251 · 10−5

Table 3.23: In-plane stresses and strains for Desai element 5. set

t/B σx [Pa] εx
1 · 10−1 1.054 · 104 1.121 · 10−3

1 · 10−2 5.524 · 102 1.145 · 10−3

1 · 10−3 −4.721 · 102 1.145 · 10−3

1 · 10−6 −5.858 · 102 1.145 · 10−3

It can be observed that for both sets, the values of shear stresses are changing only slightly
as the thickness is decreasing. Moreover, the difference between these two sets is negligible
so it can be assumed as converged state. The shear stress in top Gauss points 3 and 4
shown in the Figure 3.5 yields similar results as in the Goodman zero-thickness element.
However, it needs to be noted that the same increase in stresses is observed with increasing
the stiffness, which in some cases can yield unrealistic values of shear stress. Additionally,
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the top value seems to be decreased by shear stress in bottom Gauss points 1 and 2. This
is due to the natural deformation pattern of quadratic elements as seen in Figure 3.6. The
remaining data for sets 1. - 3. can be found in Appendix A.

1 2

43

Figure 3.5: Gauss points in a quadratic 4 noded element

Figure 3.6: Natural deformation pattern of quadratic element, Clausen [2016].

Finally, the horizontal displacement of the reinforcement is analyzed and results can be
seen in Table 3.24 and 3.25 below for converged 4. and 5. sets according to the shear
analysis. The results for the remaining sets of parameters are shown in Appendix A.

Table 3.24: Horizontal displacement [m] of the reinforcement for 4. set

t/B Horizontal displacement in bar nodes
13 14 15

1 · 10−1 5.329 · 10−6 1.227 · 10−5 3.660 · 10−5

1 · 10−2 6.118 · 10−6 1.877 · 10−5 3.714 · 10−5

1 · 10−3 6.157 · 10−6 1.890 · 10−5 3.712 · 10−5

1 · 10−6 6.160 · 10−6 1.890 · 10−5 3.712 · 10−5

Table 3.25: Horizontal displacement [m] of the reinforcement for 5. set

t/B Horizontal displacement in Bar nodes
13 14 15

1 · 10−1 4.996 · 10−8 5.864 · 10−8 3.829 · 10−7

1 · 10−2 5.465 · 10−8 1.269 · 10−7 3.851 · 10−7

1 · 10−3 5.503 · 10−8 1.907 · 10−7 3.848 · 10−7

1 · 10−6 5.507 · 10−8 1.920 · 10−7 3.848 · 10−7

The displacement is gradually increasing in nodes closer to the location of the applied force,
as expected. Furthermore, the magnitude of the displacement is in accordance with the
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displacement of Goodman zero thickness element for given parameters. It can be observed
slight increase of the values as the element becomes narrower. This could be due to the
more concentrated impact of the applied force.
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Model of footing 4
In this chapter the focus is on load bearing capacity analysis of a footing resting on a soil
domain. The main objective of this chapter is to test the footing in PLAXIS 2D and Optum
G2, which are FEM tools specialized for geotechnical problems. Additionally, the analysis
is carried out in MATLAB software. The footing is analyzed in regards to the ultimate
limit state.

It is possible to utilize multiple models for numerical calculations of the soil response.
The footing will be tested using the Mohr-Coulomb constitutive model according to the
Appendix G. Following, the steps of the numerical analysis are presented. Firstly, the
model is constructed in PLAXIS 2D and Optum G2, i.e. it is defined the soil stratigraphy
and the structure. Secondly, the different parameters such as stiffness and strength
parameters are defined. The following step is to carry out a convergence analysis that
is necessary and an important part before analysis in order to eliminate possible sources
of errors. As for any finite element analysis, the procedure is divide into three main parts,
as shown in the Figure 4.1.

Pre-processing

Material parameters
Geometry

Boundary conditions

Analysis solver

Iterative scheme
Constitutive model

Post-processing

Results

Figure 4.1: Finite Element procedure
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4.1 Model in software

To construct the most similar model for all the used softwares, the set up in the pre-
processing part for the three different programs are identical. Since the analysis is
conducted in elasto-plasticity, the strength parameters needs to be included as well. Thus,
the set of material properties can be seen in Table 4.1.

Table 4.1: Soil parameters for model

E ν c ϕ ψ γ

Soil 30MPa 0.25 1kPa 25◦ 25◦ 15kN/m3

Additionally, the models in MATLAB, PLAXIS 2D and Optum G2 are processing the same
boundary conditions, thus the domain is fully constrained from the bottom. Additionally,
the side boundary nodes are constrained only in horizontal direction, allowing for the effect
of the footing. Furthermore for PLAXIS 2D and MATLAB, the load is simulated by forced
displacement of the target of 0.1m that are acting on the top nodes ranging from the top
left corner to the specified length of the footing, that are set to be 1m. The model is
illustrated in the Figure 4.2. The types of interface elements featured in the commercial
software are not specified. The interface elements are modelled by plates that are assigned
interface material and strength properties. In addition, it is possible to assign a virtual
thickness to the interface. This will be further explained in Section 4.1.1. In this chapter,
interface thicknesses of 0.01m and 0.005m are studied. However, solely 0.01m is analyzed
in PLAXIS 2D, when that is the lowest allowable interface thickness for this commercial
program.

 y

x

qy

Figure 4.2: Model of the footing
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4.1.1 PLAXIS 2D

Model setup

The model in PLAXIS 2D represents a circular foundation on a soil domain. The model
is designed axisymmetric around the y-axis (see the Figure 4.3).

The soil domain is chosen to exceed 20 times the radius of the foundation in length along
the x-axis with the foundation placed at the far left edge. The depth of the soil domain
relative to the y-coordinate zero reference is set to 15 times the radius of the foundation.

Due to simplicity and that the main focus is directed towards the interface elements, so
the soil domain only consists of one soil type. PLAXIS 2D allows the foundation to be
simulated by the forced displacement only and it is fixed in the horizontal direction and
therefore to the axis of revolution, allowing axisymmetry. This is illustrated as vertical
lines at the top of the soil in Figure 4.3. The main soil domain, coloured in light blue
in the Figure 4.3 contains soil parameters of shown in the Table 4.1. The soil follows
the Mohr-Coulomb yield criterion and is considered elastic perfectly-plastic. The model is
assumed associated where the friction angle ϕ is equal to the dilation angle ψ, ϕ = ψ.

The next step is to establish the interface. Interfaces are joint elements that are created
between two different materials to allow proper modelling of soil-structure interaction.
Interfaces may be used to simulate the thin zone of intensely shearing material at the
contact. The interface is created as a line at the top of the geometry line where the
interaction with the soil takes place. It is possible to choose any interface thickness by
the feature virtual interface thickness. The interface is placed at the geometry line, that
allows a full interaction between structural object and the surrounding soil. To be able
to differentiate between the two possible interfaces along the geometry line, the interfaces
are identified by a minus sign seen in the Figure 4.3 and a plus sign. The interface has a
property called virtual thickness assigned to it. This property is a imaginary dimension
used to define the material properties of the interface. Generally, the virtual thickness is
suppose to be small, however if it is too small numerical ill-conditioning may occur.

The material properties of the interface element are chosen to be related to the soil model
parameters of the surrounding soil. By choosing these material properties for the interface,
a suitable value of the strength reduction factor Rint needs to be specified.

By selecting Mohr-Coulomb model, Rint is the main interface parameter. Rint can be
selected from values ranging from 0−1. In reality, the real soil-structure interaction in the
interface is weaker and more flexible than the surrounding soil, which means that the Rint
should be chosen to be less than 1. A search through literature was carried out to find
the most suitable Rint for this type of interaction, but due to lack of satisfying accurate
information, Rint is assumed to be 2/3 recommended by PLAXIS [2016]. In case of that
the interface is elastic, both slippage and gapping could be expected to occur. In this
report gapping is not considered, thus the elastic slip displacement is presented as:

τ

Ks
=
τ ti
Gi

where Gi = R2
intGsoil ≤ Gsoil (4.1)
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Figure 4.3: Model in PLAXIS 2D

τ Shear stress
Gi Shear modulus of the interface
ti Virtual interface thickness
Ks Elastic interface shear stiffness

From (4.1), it is noticeable that the stiffness is highly dependent on the virtual thickness
of the interface element. Something to have in mind is that a reduced value of Rint not
only reduces the interface strength but also the interface stiffness. An elastic perfectly-
plastic model is used to describe the behavior of the interfaces of the model. The Coulomb
criterion is used to distinguish between elastic behavior, where small displacements can
occur within the interface, and plastic interface behavior when permanent slip may occur.
For the interface to remain elastic, the shear stress is expressed as:

|τ | < −σN tanϕi + ci (4.2)

For plastic behavior, τ is given by:

|τ | = −σN tanϕi + ci (4.3)

|τ | Shear stress
σN Effective normal stress
ϕi Interface friction angle
ci Cohesion of the interface

The interface properties are calculated from the soil properties by applying the strength
reduction factor to the following rules:

ci = Rint csoil (4.4)

tanϕi = Rint tanϕsoil ≤ tanϕsoil

38



4.1. Model in software Aalborg University

ψi = 0◦ for Rint < 1 otherwise ψi = ψsoil

In addition to the Mohr-Coulomb shear stress criterion, the tension cut-off criterion is also
applied as:

σn < σt,i = Rint σt,soil (4.5)

σt,soil Tensile strength of the soil

When the load and the interface have been added to the model, the final step before the
analysis is to discretize the model by generating a mesh. The generated mash transforms
the model in to a finite element model consisting of 6-noded triangular elements. This is
performed by the embedded codes and function in the PLAXIS 2D software. To achieve
the most accurate results, the mesh close to the foundation needs to be as fine as possible.
This has been done by implementing an additional soil polygon that is located in an area
under the footing. This area is refined more times than the rest of the soil domain. This is
done due to that the mesh close to the foundation is where it is expected the most of the
deformations will occur. The refined finite element model is shown for the initial phase
and for the deformed phase in Figure 4.4.

(a) Initial model (b) Deformed model

Figure 4.4: Mesh of the PLAXIS 2D model

Phases in the analysis

When all the soil and interface parameters are assigned to PLAXIS 2D, the calculation
phases are defined. The ULS is analyzed and the calculation is divided into two phases:

1. Initial phase
In this phase the K0 procedure is chosen to calculate the initial stresses for the
model. The vertical stresses that are in equilibrium with the self weight of the soil
are generated. The horizontal stresses are than calculated from the specified value
of K0.

2. Ultimate load phase
In this phase, the ultimate load that can be applied on the footing before the soil
fail is calculated. This is presented in a load-displacement curve in Section 4.3.
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4.1.2 Optum G2

OPTUM G2 is a finite element program for strength and deformation analysis of
geotechnical boundary value problems. It is possible to compute limit loads and bearing
capacities without having to perform a traditional step-by-step elastoplastic analysis.
Apart from these features, a traditional step-by-step elastoplastic analysis is performed
so that the models is as comparable as possible.

Model setup

The model in Optum G2 is also presented as a foundation on a soil domain. This model
also is designed axisymmetric around the y-axis, see Figure 4.5.

The soil domain’s dimensions and soil parameters correspond to the ones in PLAXIS 2D
and are identical to the ones in the Table 4.1. This also include the supports and the
conditions for the foundation. In this model, the green domain represents the soil and the
grey domain represents the foundation.

The vertical load, qy is modeled with load multiplier characteristics. Multiplier loads
appear red and depending in which type of analysis, magnified to reach a certain value.
In this case, the load multiplier is set to 1kN/m2, so the ultimate limit load is easy to
retrieve from the result data. The soil-structure interaction is accounted for by the plate

Figure 4.5: Model designed in Optum G2

feature. The plates are assigned to the segments that are a part of the domain to which
solid materials already have been assigned. It is possible to choose any interface element
thickness by the feature called interface thickness. The interface appear as plus and minus
sign and can be modified by selecting a given rigid plate. These plates are beam elements
that are used to model walls and various other thin layer elements. It is possible to specify
a reduction factor such that the interface strength is reduced as compared to the parent
material. For Mohr-Coulomb model, the reduced interface strength is the equal to the
conditions used in PLAXIS 2D, see Equation 4.4.
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Multiplier Elastoplastic Analysis

In this model, multiplier elastoplastic analysis which is a combination of limit analysis and
elastoplastic analysis types. As in a limit analysis, the multiplier loads are amplified until
system collapse. This is done in a step-by-step elastoplastic manner with deformations
computed in each load step. There are three main fields in this analysis. This includes
time scope, element type and number of elements. The element type used is 6-noded
Gauss elements, as they are called in the software and these elements are triangular. This
is consistent with the PLAXIS 2D model and the MATLAB model. Mesh refinement,
here called mesh adaptivity, is specified with an amount of elements to start with and an
amount of elements to end with.

When defining the load stepping N , target scheme is chosen. This scheme will continue the
load stepping until the specified target is reached. This target is specified as a maximum
absolute displacement utarget, as a load multiplier. The load stepping is performed in 50
steps of equal magnitude to be as comparable to the MATLAB model as possible.

When the load stepping settings are chosen, the next step is to appoint the wanted
settings for the mesh. Mesh adaptivity is chosen so that mesh refinement is possible.
Following, adaptivity iterations as set by default to three, meaning the number of adaptive
refinement steps. Thereafter, the adaptivity frequency is specified, meaning how often the
mesh is adapted for analysis. This is by default set to three. Next, the start elements
specify the number of elements in the first adaptive iteration, which is there chosen to
be 1000. Concerning adaptivity control shear dissipation is chosen for its efficiency. This
control leads the mesh being refined according to the shear distribution of the plastic shear
dissipation which is dependent on mean stress and the volumetric strain.

4.1.3 Convergence study of PLAXIS 2D and Optum G2

Before any further study of the numerical analysis from commercial softwares, it is
necessary to perform a convergence study of the model to eliminate the errors in results.
It is expected a higher stress concentration near the footing, therefore the mesh is refined
in that region. Refining the mesh means an increase of nodes, and by this an increase
in computational time will occur. Hence, it is not always suitable. Both the commercial
program’s refinement methods are explained in Sections 4.1.1 and 4.1.2.

A convergence analysis is performed to achieve the most accurate results from the software.
This convergence analysis is performed by running the models in both software with an
increase in degrees of freedom, and an increase in the refined mesh in the interested area.
In the Figure 4.6, the results of a convergence analysis are presented for the model with
interfaces with a thickness of 0.01m for PLAXIS 2D and Optum G2, as well as the results
for Optum G2 with an inteface thickness of 0.005m. There are 8 meshes examined, there
the degrees of freedom ranges from 1000 to 47 000. As can be seen in Figure 4.6 there are
changes in the load bearing capacity from the number of degrees of freedom. From step 1
to step 2 there is a difference in load bearing capacity of 3.24%, which is not sufficient. By
increasing the numbers of degrees of freedom, the error is reduced to 0.2%, which is more
than sufficient. It can be seen load decrease in bearing capacity happens for PLAXIS 2D
from step 1 to step 2 of . This is a difference of 3.60% and is not satisfactory. Thus a third
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step of convergence analysis is performed, yielding a difference of 2.48% from step 2. This
is a somewhat big difference and a smaller difference is wanted, but due to instability in
the PLAXIS 2D model, the model with 13 424 degrees of freedom is used in the further
analysis. Considering the fact that the PLAXIS 2D model experienced some instability,
the Optum G2 modeled used for further analysis has 13 958 degrees of freedom with an
interface thickness of t = 0.01m and 13 774 degrees of freedom with an interface thickness
of t = 0.005m. The results of the software analysis will be presented in a load-displacement
graph in Section 4.3 and compare to the results from MATLAB.
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Figure 4.6: Convergence of the model

4.2 MATLAB model

In this section the code used for implementation of the interface element is presented and
briefly described.

4.2.1 Model construction

In the next step, the geometry needs to be established. As mentioned in previous
Section 4.1.1, the footing is symmetrical around the vertical axis and can be modelled
in axisymmetry. Therefore, the geometry of the soil domain is created as a 2D object. Its
dimensions are based on the width of the footing and are subject of the analysis in the first
stage. The domain is discretized using the LST (Linear-Strain Triangle) elements, which
consist of 6 nodes in total. The mesh initially used in the model is unstructured with
refinements around the edge of the footing where the highest stress gradient is expected to
occur as can be seen below. Once the mesh is established, the load and constrains needs
to be specified, illustrated in Figure 4.7.

When the pre-processing step is done, the model is prepared for the analysis, therefore
enters the Solver step according to the Figure 4.1.
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Figure 4.7: Geometry of the footing in MATLAB

Iterative scheme

As mentioned earlier, the model is non-linear, therefore iterative process of solving the
finite element equations needs to be employed. The overview of possible iterative schemes
can be studied at Appendix E. In the present model, the Newton-Raphson method is used
which are explained in detail in Appendix E. Furthermore, the iterative technique require
some convergence tolerance, when the residual is small enough. This residual is set to 10−5

in this model. The forced displacement mentioned earlier is applied in 10 steps in total.

Constitutive model

In the analysis, there is used the Modified Mohr-Coulomb model utilizing associated perfect
plasticity, Clausen and Damkilde [2006].

4.2.2 Model calibration

Before the implementation of THE interface elements and the analysis of load bearing
capacity with the software and analytical results, the so called calibration study should be
performed in order to eliminate the amount of error sources.

Mesh density

Another important aspect of analysis is to use sufficient degree of discretization in order
to produce reasonable results. Essentially, the more refined mesh, the better. However, in
some cases the decrease in number of degrees of freedom can save a lot of computational
memory while keeping the error negligible, therefore it can shorten the time needed for
calculation.
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Figure 4.8: Analysis of mesh density in Matlab

There are 9 mesh sets examined, utilizing multiple total amount of degrees of freedom going
from 289 for the most coarse set to the most finer set with 6222 degrees of freedom. As
can be seen in Figure 4.8, there is no significant changes in value of load bearing capacity
when the number of degrees of freedom approaches over 4000. Thus, the mesh set of 8
utilizing 4018 degrees of freedom is used for further analysis. The set employ in total 960
elements.

Mesh quality

One of the primary index of mesh quality is the magnitude of distortion of elements in
the mesh, the skewness. The skewness shows how close to the ideal shape is the element.
One of the method of evaluation the skewness is called Normalized Equiangular Skewness,
SAS IP [2017]. The skewness is defined as in Equation (4.6).

max
[
θmax−θe
180−θe ,

θe−θmin
θe

]
(4.6)

where

θmax Largest angle in the face or cell
θmin smallest angle in the face or cell
θe angle for an equiangular face/cell

The quality mesh for 2D element has the value of skewness approximately 0.1. On the
other hand, the values over 0.75 are considered as a bad scaled element according to the
Table 4.2.
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Table 4.2: Mesh quality, SAS IP [2017]

Value of skeweness Element quality
1 degenerate

0.9− < 1 bad (sliver)
0.75− 0.9 poor
0.5− 0.75 fair
0.25− 0.5 good
> 0− 0.25 excellent

0 equilateral

Figure 4.9: Analysis of mesh quality in Matlab

It can be seen, that over 95 % of the elements in the domain are with skeweness 0.5 or
less, therefore the quality of the elements can be considered as satisfying and the effect on
overall results should not be significant.

4.2.3 Implementation of interface elements

The purpose of this analysis is to prove the usability of the zero-thickness elements and
thin-layer elements studied in Chapter 2 in the finite element model of the footing. Thus,
the position of elements is placed along the simulated footing in top left corner as can be
seen in Figure 4.7. The element implementation is straightforward and follows standard
finite element procedure of assembling regular elements into the finite element model. In
the first step, it needs to be created the extra nodes along the width of the footing. This is
done by extracting the nodes of footing stored in the Nodeset matrix. Once the additional
nodes are created and assembled into the topology matrix, the coordinate matrix needs
to be adjusted accordingly. In case of zero thickness element, the extra nodes obey same
coordinates as for the footing, whereas the nodes of thin-layer element has the vertical
coordinate extended by the value of thickness of the element.
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Furthermore, the Lagrange approach requires no additional nodes as it works as a frictional
spring in each of the nodes along the footing. The method is more described in the Chapter
2.

4.3 Analysis of footing model with interface

The analysis is done in both plain strain and axisymmetry. Furthermore the results for
plain strain case are normalized based on the Terzhaghi formula Clausen [2016] for surface
footing shown hereafter in Equation 4.7 with use of bearing capacity factors taken from
Chris Martin Martin [2016] regarding roughness coefficients. Due to the availability of
load bearing capacity factors for different roughness only for strip footing, therefore plain
strain case, there is comparison of results between the commercial softwares, PLAXIS 2D
and Optum G2, and MATLAB software. However, the analytical results for model in
axisymmetry are presented for fully rough and fully smooth interface providing the limit
values within which the analysis should fit.

qu = cNc + γ r Nγ (4.7)

There are 3 interface approaches analyzed, the Desai thin layer element, the Goodman
Zero thickness element and the Lagrange approach. Furthermore, the Desai element is
modelled for two thicknesses of 0.01 m and 0.005 m. The set of material parameters used
throughout the analysis is shown in Table 4.1.

4.4 The case of plane strain

The results for roughness coefficients of 1/2 and 2/3 are presented hereafter. As mentioned
earlier, the load bearing capacity is normalized for Terzaghi formula. Furthermore the
vertical displacement values are normalized for the half of the length of the strip footing
r.
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Figure 4.10: Load-displacement curve for roughness 1/2
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Figure 4.11: Load-displacement curve for roughness 2/3

Overall, the results from all chosen interface approaches convergence to the analytical
solution. It can be seen, that for Desai type with thickness of 0.1m, the disparity is
the highest for both roughness coefficients. However, this error decrease with increased
roughness coefficient down to around 3% as it can be seen in Figure 4.11. Little bit
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overconservative results with respect to analytical solution yields the Goodman interface
with error over 2%. As opposed to the former approach, the deflection is increasing with
increasing roughness. As most accurate solution with smallest deviation to the analytical
value is the Lagrange approach with an error of 2.4%. However, the computational time is
the highest out of the all assessed elements. It can be seen, that for thinner Desai element
of 0.005m there is better correlation with analytical results than for the Desai with bigger
thickness.

4.5 The case of axisymmetry

Figure 4.12 shows the load bearing capacity of the element with an interface thickness
of 0.005m. There is also included the load bearing capacity using the Terzaghi formula
for fully smooth and fully rough circular foundation, and these are used as upper and
lower boundaries. Looking at the curves it can be seen that the Lagrange Method yields
the highest load bearing capacity, whereas the Desai element yield a difference from the
Lagrange method of 4.46%. The load bearing capacity from Optum G2 yields a difference
of 7.69% from the Lagrange Method and 3.07% from Desai and it is the approach that
yields the lowest load bearing capacity out of all examined interface approaches.

Due to the fact that the analytical solution given by Terzaghi formula does not provide
the solution for any roughness between fully rough and fully smooth for axisymmetry, the
exact comparison cannot be done for roughness coefficient of 2/3.
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Figure 4.12: Load-displacement curve for an interface thickness of 0.005m

Figure 4.13 shows the load bearing capacity of the element with an interface thickness of
0.01m. As in the previous casem the load bearing capacity from Terzaghi formulas for
fully smooth and fully rough circular foundation, are used as upper and lower boundaries.
Looking at the curves, it is shown that PLAXIS 2D yields the highest load bearing capacity,
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with a difference of 2.85% from the Lagrange method. The elements that gives the most
similar results is the Desai and the results from Optum G2, with a difference of 0.7%.
However, the difference between the Desai and the Lagrange method is now increased
to 7.11% which is an increase of 2.35%. By decreasing the interface thickness, the error
between Optum G2 and Lagrange Method is also decreasing, as well as the difference
between Desai and Lagrange method.
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Figure 4.13: Load-displacement curve for an interface thickness of 0.01m

4.5.1 Sensitivity study of reduction factors

Figure 4.14 illustrates how the change in reduction factors are affecting the load bearing
capacity of the model. Looking at the curves, it can be seen that Optum G2 is following
a linear increase in the load bearing capacity from a reduction factor 0 - 0.5. Thereafter
the curve starts to converge, and the model is not that affected by increase in reduction
factor.
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Figure 4.14: Sensitivity study of reduction factors from Optum G2
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Conclusion 5
In this chapter the summary of studied approaches of modelling the interface is presented
and possible future study is discussed.

The results from the Simple pull-out test has shown that the behavior of assessed interface
elements are affected by many factors. To start with, the stiffness coefficient seems to
be affecting the overall normal behavior regarding the Zero-thickness group of elements.
There can be observed clear inverse pattern in relation between the stiffness coefficient
and the rate of the interpenetration. The error can be significant for stiffness values such
as 104. The solution seems to be in increasing the stiffness to sufficiently high order so
the penetration is minimized. However, regarding the Goodman element, the tangential
stresses are dependent on the value of chosen tangential stiffness coefficient, which in cases
of higher values of stiffness yields unrealistic tangential stresses. On the other hand, the
Herrman element does not rely on the value of tangential stiffness. Additionally, the
tangential stresses seems to be more accurate. Nevertheless, the response to the applied
horizontal load is taken only by the right link, therefore there is no transfer of forces
within the interface element. Thus, the element is not suitable for further use despite the
tangential stresses are as expected. Regarding the kinematic inconsistency, the original
Goodman element, which has not been included in the Simple pull-out test, has experienced
a deformation in the opposite direction of one of the nodes as opposed to the expectation.
Therefore, the Improved Goodman type has been introduced, which solved the problem
with inconsistency while maintaining the same tangential stresses from the original type.

The thin-layer group of elements has been analyzed as an another approach. There are
two types included. The Desai type, which is designed specifically for interface problems,
and the standard continuum element, which is added for sake of comparison, are tested.
There has been observed the correlation between both elements. However, the difference
occur when the thickness approaches value as low as 10−4, where the standard continuum
element becomes singular.

Finally, the chosen interface elements are analyzed in the footing model and compared
to the analytical solution provided by Chris Martin and to the solution from commercial
softwares. From the plain strain case, the Goodman type yields overconservative values
while the other assessed types stays below or are equal to the analytical solution. In
regards to axisymmetry case, the results from the interface with thickness of 0.01m for
PLAXIS 2D yields values almost as high as for fully rough case according to analytical
solution. This could be particularly due to not fully converged mesh. Disregarding the
PLAXIS 2D solution, the Lagrange approach yields the highest load bearing capacity
closely followed by Goodman approach. On the other hand, the most conservative solution
is obtained from Desai and Optum G2 approaches as they are almost identical. However,
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the analytical solution for roughness of 2/3 is provided only for strip footing, i.e. plain
strain. Regarding the axisymmetry, the validation is only possible for fully rough or fully
smooth interface. According to the sensitivity study of reduction factors representing the
roughness of interface, there is no significant change in load bearing capacity when the
factor is increased over 0.6. Therefore, the results obtained from all types of interface
approaches are in range according to the analytical upper boundary.

5.1 Suggestions for further study

The more extended parametric study of stiffness coefficients could be interesting to study
in case of Zero-thickness elements as in thesis are used equal coefficients for normal and
tangential direction. Additionally, the different elastoplastic constitutive models can be
assessed with Desai interface element as suggested in literature. Furthermore, the response
of the interface elements can be studied within non-associated plasticity.

To analyze a different model than a footing on soil would be also interesting. Such a model
could be a triaxial test. Considering this case, the results of analysis of the commercial
softwares used could be validated by actual experimental data.
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Analysis of interface elements A
The remaining results from analysis are shown hereafter

A.1 The Desai thin layer element

A.1.1 Analysis of normal and in-plane components

Table A.1: Normal analysis of interface for 3. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 1.960 · 10−5

1 · 10−2 −10.000 1.960 · 10−5

1 · 10−3 −10.000 1.960 · 10−5

1 · 10−6 −9.999 1.960 · 10−5

Table A.2: Normal analysis of interface for 4. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −9.999 1.960 · 10−5

1 · 10−2 −10.000 1.960 · 10−5

1 · 10−3 −9.999 1.960 · 10−5

1 · 10−6 −9.999 1.960 · 10−5

Table A.3: Normal analysis of interface for 5. set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 1.960 · 10−7

1 · 10−2 −10.000 1.960 · 10−7

1 · 10−3 −10.000 1.960 · 10−7

1 · 10−6 −9.999 1.960 · 10−7

Table A.4: In-plane stresses and strains for Desai element 3. set

t/B σx [Pa] εx
1 · 10−1 −5.179 · 101 7.654 · 10−6

1 · 10−2 −5.179 · 101 3.982 · 10−6

1 · 10−3 −5.179 · 101 3.614 · 10−6

1 · 10−6 −5.179 · 101 3.574 · 10−6
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A. Analysis of interface elements

Table A.5: In-plane stresses and strains for Desai element 4. set

t/B σx [Pa] εx
1 · 10−1 −5.058 · 101 7.654 · 10−4

1 · 10−2 −5.294 · 101 2.789 · 10−4

1 · 10−3 −5.314 · 101 1.755 · 10−5

1 · 10−6 −5.317 · 101 1.251 · 10−5

Table A.6: In-plane stresses and strains for Desai element 5. set

t/B σx [Pa] εx
1 · 10−1 1.054 · 104 1.121 · 10−3

1 · 10−2 5.524 · 102 1.145 · 10−3

1 · 10−3 −4.721 · 102 1.145 · 10−3

1 · 10−6 −5.858 · 102 1.145 · 10−3

A.1.2 Analysis of tangential components

Table A.7: Shear stress in interface for 1.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 4.255 · 10−1 4.666 · 10−1 7.733 7.774

1 · 10−2 3.418 · 10−1 3.430 · 10−1 7.780 7.781

1 · 10−3 3.408 · 10−1 3.408 · 10−1 7.767 7.767

1 · 10−6 3.407 · 10−1 3.407 · 10−1 7.765 7.765

Table A.8: Shear stress in interface for 2.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 3.284 · 10−1 3.712 · 10−1 7.945 7.988

1 · 10−2 2.684 · 10−1 2.697 · 10−1 8.051 8.052

1 · 10−3 2.690 · 10−1 2.691 · 10−1 8.045 8.045

1 · 10−6 2.692 · 10−1 2.692 · 10−1 8.044 8.044

Table A.9: Shear stress in interface for 3.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 1.506 1.536 4.700 4.730

1 · 10−2 1.488 1.489 4.680 4.682

1 · 10−3 1.487 1.487 4.673 4.674

1 · 10−6 1.487 1.487 4.673 4.674
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Table A.10: Horizontal displacement of the reinforcement for 1.set

t/B Horizontal displacement in Bar nodes
13 14 15

1 · 10−1 2.113 · 10−4 5.181 · 10−4 5.181 · 10−4

1 · 10−2 2.236 · 10−4 3.321 · 10−4 5.245 · 10−4

1 · 10−3 2.240 · 10−4 3.321 · 10−4 5.241 · 10−4

1 · 10−6 2.241 · 10−4 3.321 · 10−4 5.241 · 10−4

Table A.11: Horizontal displacement of the reinforcement for 2.set

t/B Horizontal displacement in Bar nodes
13 14 15

1 · 10−1 1.905 · 10−4 2.883 · 10−4 4.750 · 10−4

1 · 10−2 1.982 · 10−4 3.022 · 10−4 4.839 · 10−4

1 · 10−3 1.905 · 10−4 3.022 · 10−4 4.839 · 10−4

1 · 10−6 1.982 · 10−4 3.022 · 10−4 4.839 · 10−4

Table A.12: Horizontal displacement of the reinforcement for 3.set

t/B Horizontal displacement in Bar nodes
13 14 15

1 · 10−1 8.433 · 10−4 9.774 · 10−4 1.286 · 10−4

1 · 10−2 8.505 · 10−4 9.823 · 10−4 1.285 · 10−4

1 · 10−3 8.505 · 10−4 9.823 · 10−4 1.285 · 10−4

1 · 10−6 8.505 · 10−4 9.823 · 10−4 1.285 · 10−4

A.2 Standard continuum element

A.2.1 Analysis of normal and in-plane components

Table A.13: Normal stress and penetration for 3.set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 1.956 · 10−3

1 · 10−2 −10.000 1.956 · 10−3

1 · 10−3 −10.000 1.956 · 10−3

1 · 10−6 −9.999 1.956 · 10−3

Table A.14: Normal stress and penetration for 4.set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −9.999 1.956 · 10−5

1 · 10−2 −10.000 1.956 · 10−5

1 · 10−3 −9.999 1.956 · 10−5

1 · 10−6 −9.999 1.956 · 10−5
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Table A.15: Normal stress and penetration for 5.set

t/B σn [Pa] v8 − v5 [m]

1 · 10−1 −10.000 1.956 · 10−7

1 · 10−2 −10.000 1.956 · 10−7

1 · 10−3 −10.000 1.956 · 10−7

1 · 10−6 −9.999 1.956 · 10−7

A.2.2 Analysis of tangential components

Table A.16: Shear stress in interface for 1.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 −8.572 · 10−2 −2.278 · 10−2 1.162 · 101 1.162 · 101

1 · 10−2 −2.421 · 10−1 −2.414 · 10−1 1.265 · 101 1.265 · 101

1 · 10−3 −2.450 · 10−8 −2.450 · 10−7 1.273 · 101 1.273 · 101

1 · 10−6 no convergence no convergence no convergence no convergence

Table A.17: Shear stress in interface for 2.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 −1.525 · 10−1 −8.579 · 10−2 1.160 · 101 1.167 · 101

1 · 10−2 −2.469 · 10−1 −2.462 · 10−1 1.265 · 101 1.265 · 101

1 · 10−3 −2.455 · 10−8 −2.455 · 10−7 1.273 · 101 1.273 · 101

1 · 10−6 no convergence no convergence no convergence no convergence

Table A.18: Shear stress in interface for 3.set

t/B Shear stress τy [Pa] in Gauss points
1 2 3 4

1 · 10−1 7.799 · 10−2 1.287 · 10−1 9.513 · 100 9.564 · 100

1 · 10−2 −2.409 · 10−1 −2.401 · 10−1 1.235 · 101 1.235 · 101

1 · 10−3 −2.452 · 10−8 −2.452 · 10−7 1.269 · 101 1.269 · 101

1 · 10−6 no convergence no convergence no convergence no convergence
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Multifreedom Constraints - MFC B
This appendix introduces the procedure for implementing the Lagrange multiplier adjunction
and the penalty method in Finite Element Method. Felippa [2004] is used as a source.

Multifreedom constrains are functional equations that connect two or more displacement
components, in such a manner:

F (Nodal displacement components) = prescribed value (B.1)

where the function F disappears if all its nodal displacement arguments do. A MFC of this
form is called multipoint or multinode if it involves displacement components at different
nodes. The constraint is called linear if all displacement components appear linearly on
the left-hand-side of Equation (B.1), thus nonlinear otherwise.

The constraint is called homogeneous if while transferring all the terms that are dependant
of the displacement from the right-hand-side over to the left-hand. Thereby leaving the
"prescribed values" in Equation (B.1) to be equal to zero. Otherwise, the constraints are
called non-homogeneous.

B.1 Methods for imposing Multifreedom Constraints

So that the multifreedom constraints are accounted for, the assembled master stiffness
equation is changed into a modified system of equations, shown in Equation (B.2):

Ku = f
MFC
===⇒ K̂ û = f̂ (B.2)

The modification process, Equation (B.2), is also called constraint application. The
modified system is then implemented into the equation solver, that returns û. The
procedure for solving the MFCs is presented in Figure B.1.
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Figure B.1: Flowchart for MFC application, Felippa [2004]

The methods used in the MFC application is briefly explained below:

1. Master-Slave Elimination
The degrees of freedom involved in each MFC are separated into master and slave
freedoms. The slave freedoms are then eliminated and the modified equations do not
contain the slave freedoms.

2. Penalty Augmentation also called penalty function method.
Each MFC is considered as a elastic artificial structural element called penalty ele-
ment. This element is dependent on a numerical weight. The MFCs are imposed by
augmenting the finite element model with the penalty elements.

3. Lagrange Multiplier Adjuction
For each MFC an unknown is added to the master stiffness equations. Physically, the
additional unknows represent the constraint forces that would enforce the constraints
exactly should they be applied to the constraint system.

Matrix forms of MFCs is convenient for compact notation. All multifreedom constraints
are expressed a single matrix relation, shown in Equation (B.3)

Au = g (B.3)

where rectangular matrixA is formed by arranging ai’s as rows and columns that represents
the constraints as a row vector. The u is formed by ui that is a column vector that collects
the degrees of freedom that participates in the constraints and g is formed by a column
vector of gi that represents the right-hand-side scalar.

B.2 Master-Slave Method

Each MFC is considered one at the time, and for each constraint a slave degree of freedom
is chosen. The degrees of freedom that remains in the constraint is called masters. A new
set of degrees of freedom û is created by removing the slave degrees of freedom in u. This
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B.2. Master-Slave Method Aalborg University

new vector contains master degrees of freedom, including those that do not appear in the
MFCs. Thereafter, a matrix transformation equation that relates u to û is generated. This
equation is used to apply a appropriate transformation to the master stiffness equations.
This procedure yields a set of modified stiffness equations that are expressed in terms of
the new degrees of freedom set û. Because the modified system does not contain the slave
degrees of freedoms, these have been eliminated.

B.2.1 The General case

The master-slave method for general programs can be described as follows in Equation
(B.4):Kuu Kum Kus

KT
um Kmm Kms

KT
us KT

ms Kss



uu
um
us

 =


fu
fm
fs

 (B.4)

where the degrees of freedoms in u is divided into three types: independent or
unconstrained, masters and slaves. The degrees of freedoms are represented as uu, um

and us, respectively. The MFCs may be written in matrix form shown in Equation (B.5).

Am um + As us = gA (B.5)

where As is assumed square and nonsingular. If so, it is possible to solve for the slave
freedoms following Equation (B.6):

us = A−1s Am um + A−1s gA
def
= Tum + g (B.6)

Inserting Equation (B.6) into Equation (B.5), and due to symmetry it yields Equation
(B.7):[

Kuu Kum +Kus T

Kum +Kus T Kmm + T T KT
ms +Kms + T + T T Kss T

] {
uu
um

}
=

{
fu −Kus g

fm −Kms g

}
(B.7)

Figure B.2 shows a bar with seven nodes. The process of the elimination of the slaves is
presented in three stages.

Figure B.2: Model where the slave reduction is present, Felippa [2004]
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B.3 The penalty function method

The master-slave method previously explained has shortcomings considering arbitrary
constraints. In this chapter the two methods the penalty method and Lagrange multiplier
adjunction are studied. Both these techniques are considered a good implementation of
the Finite Element Method for both linear and nonlinear.

B.3.1 Physical interpretation of the penalty function method

In this section a one-dimensional 6 bar finite element where the 7 nodes may move in the
x-direction is considered. To connect node 2 and node 6 such that u2 = u6 it is imagined
that the nodes are connected with a large additional bar of axial stiffness w. The additional
bar is named element 7, as shown in Figure B.3. Element 7 is called a penalty bar and w
is its penalty weight.

Figure B.3: Adjunction of a fictions penalty bar of axial stiffness w, where u2 = u6, Felippa
[2004]

Such an element can be treated as any other bar element, as the assembly of the master
stiffness equations. The penalty element stiffness equations, [K(7)]

{
u(7)

}
=
{
f(7)
}
, are

written as Equation B.8:

w

[
1 −1

−1 1

] {
u2
u6

}
=

{
0

0

}
(B.8)

Thereafter, the global system is assembled together with the local system of the penalty,
where the only change is an increase in stiffness, demonstrated in Equation (B.9).

K11 K12 0 0 0 0 0

K12 K22 + w K23 0 0 −w 0

0 K23 K33 K34 0 0 0

0 0 K34 K44 K45 0 0

0 0 0 K45 K55 K56 0

0 −w 0 0 K56 K66 + w K67

0 0 0 0 0 K67 K77





u1
u2
u3
u4
u5
u6
u7


=



f1
f2
f3
f4
f5
f6
f7


(B.9)

B.3.2 Choosing the penalty weight

In this section the numerical integration of Equation (B.9) is investigated. Thus if a finite
weight w is chosen, the constraint u2 = u6 is approximately satisfied in the sense that
it yields u2 − u6 = eg, where eg 6= 0. The "gap error", eg, is called constraint violation.
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The magnitude of |eg| highly depends on finite weight w. More precisely, the larger w the
smaller the violation.

Thereafter, the correct strategy seems like it would be to choose the largest w possible,
but however this is misleading. As the penalty weight w increases towards the infinity ∞,
the modified stiffness matrix from Equation (B.9) comes more and more in conflict with
the respect to inversion conditions.

B.3.3 The square root rule

As mentioned in the previous section, by making w reduces the constraint violation error,
but inconveniently also increases the solution error. It is concluded that the best w is
that which makes both errors roughly equal in absolute value. The procedure to to find
this absolute value is challenging while systematically running numerical experiments. In
practice, the heuristic square root rule is often followed.

The rule is presented as follows. Imagine that the largest stiffness coefficient, before adding
penalty elements, is in the order of 10k and that the working machine precision is p digits.
Such order-of-magnitude estimates can be readily found by scanning the diagonal of K
because the largest stiffness coefficient of the actual structure is usually a diagonal entry.
Thereafter, choose the penalty weights to be in the order of 10k+p/2 with the condition
that the choice would not cause arithmetic overflow. If overflow occurs, the master stiffness
should be scaled throughout or a better choice of physical units made.

A short example if the square root rule is presented. Following that k ≈ 0 and p ≈ 16, the
optimal w would be w ≈ 108. This w would yield a constraint violation and solution error
of order 10−8.

B.3.4 Penalty elements for general Multi Freedom Constraints (MFC)

For the constraints presented in previous section u2 = u6, the physical interpretation of
the penalty element is quite straight forward. The nodal points 2 and 6 are connected and
are obliged to move together along the x-axis, which can be approximately implemented
by the penalty bar, element 7, shown in Figure B.3.

The procedure of more general constraints is linked to the theory of Courant penalty
functions, which is a topic in variational calculus. A recipe of constructing a penalty
element is stated here. Consider the homogeneous constraint (B.10):

3u3 + u5 − 4u6 = 0 (B.10)

1. Rewrite Equation (B.10) into matrix form

[
3 1 − 4

]u3u5
u6

 = 0 (B.11)

2. Pre-multiply both sides by the transpose of the coefficient matrix maybe write the
equation

3. The unscaled stiffness matrix of the penalty element is multiplied by the penalty
weight w ans assembled into the master stiffness matrix following the usual rules.
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B. Multifreedom Constraints - MFC

If the constraints is non-homogeneous, the force vector is also modified.

B.3.5 The theory behind the penalty method

The following is based on mathematical theory. Suppose we have a set of m linear MFCs.
These will be stated as:

ap u = bp p = 1, . . .m (B.12)

where u contains all degrees of freedom and ap is a row vector with same length as u. To
incorporate the MFCs into the FEMmodel, a weight wp > 0 is selected for each constraints.
Thus the Courant quadratic penalty function or "penalty energy" is constructed, P .

P =
m∑
p=1

Pp, with Pp =
1

2
uTK(p) − uT f (p) (B.13)

Thereafter, a P is added to the potential energy function
∏

= 1
2 u

TKu− uT f to form the
augmented potential energy

∏
a =

∏
+P . Minimization of

∏
a with respect to u yields:Ku

m∑
p=1

K(P)

 u = f +

m∑
p=1

f (P) (B.14)

Each term of the sum of p, which derives from term Pp in Equation (B.13) may be viewed
as contributed by a penalty element with globalized stiffness matrix, KP and globalized
added force term f (p).

To use a more compact form of notation, the penalty augmented system can be written as
the set of multifreedom constraints yielding:

(K + ATWA)u = f + WAT b, (B.15)

where W is a diagonal matrix of penalty weights. However, this compact form of notation
conceals the configuration of the penalty elements.

B.3.6 Evaluation of the Penalty Method

The main advantage is that it is easy to implement it into the computer. When considering
the modified system, the u and û stays the same, while only the stiffness matrix K change.
Once all the elements are assembled, the system can be passed through the equation solver.

An important advantage is also that the penalty method is easily extendable to nonlinear
constraints.

The main disadvantage, however, is a serious: the choice of weight values that balance
solution accuracy with the violation of constraint conditions. For the more simple cases,
the square root rule can be used, but that requires that the information of the magnitude
of the stiffness program is known. Such information may be difficult to extract. For
more difficult cases, the choice of weights may require extensive amount of numerical
experimentation.
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Plasticity theory C
In this appendix the plastic behavior of the material and plastic strains will be described.
The theory takes its bases from Ottosen and Ristinmaa [2005].

Plasticity theory is applied with time-independent behavior that is nonlinear and where
strains exist when the material is unloaded, also known as residual strains. in Appendix
F, the condition for where the plastic effects are initiated, referred to as yield criterion.
When the stress states exceeds the yield criterion, the plastic strains will develop and this
will be discussed in this chapter.

 σ

εεp εe

σy

σy0

E E

A

B

Figure C.1: Basic response of elastoplastic material

The basic behavior of an elastoplastic material is illustrated in Figure C.1. The material
behaves linear elastically with stiffness E, until the initial yield stress σy0 is reached. Then
σy0 is passed, plastic strains develop. Thereafter, unload from point A occurs elastically
with stiffness E so that at complete unloading to point B, the residual strain yields the
plastic strain εp developed at point A. Therefore, at point A, the total strain consists of
the sum of the elastic strains and the plastic strains, defining Equation (C.1):

ε = εe + εp (C.1)

If reloading occurs again from point B, the material reacts elastically until the stresses
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C. Plasticity theory

reach the value of σy at point A. The value of σy is therefore actling as the current yield
stress. Furthermore, on loading beyond point A the material behaves as the previous
unloading have not occurred. Moreover, the response illustrated in Figure C.1 is assumed
to be independent of time, meaning that the same response irrespective of the loading
rate is obtained. To characterize plastic behavior, several of idealized responses have been
defined.

C.1 Fundamental equations

Equation (C.1) can also be expressed by Equation (C.2):

ε̇ij = ε̇eij + ε̇pij (C.2)

where the dot denotes the time rate. The elastic strains are determined from Hooke’s law,
shown in Equation (C.3):

σij = Dijkl (εkl − εpkl) (C.3)

Due to the symmetry of σij and εij , Dijkl possesses the usual symmetry properties.
Assuming the tensor Dijkl is constant with respect to loading, it is possible to obtain
Equation (C.4) from Equation (C.3).

σ̇ij = Dijkl (ε̇kl − ε̇pkl) (C.4)

The presence of a yield function f(σij ,Kα) is assumed so that development of plastic
strains requires that Equation (C.5) is fulfilled.

f(σij ,Kα) = 0 for development of plasticity (C.5)

where Kα represents the hardening parameter, which may be scalars of higher order
tensors. Due to that α = 1, 2, . . . there may be one, two or more hardening parameters
present. By this, if the current yield surface is considered which for Kα = 0 reduces to the
initial yield surface F (σij).

The state of material is described by the internal variables, that may be scalars or higher
order tensors, denoted κα. Generally, the only quantities that can be directly measured or
observed are total strains εij and the temperature, defining κα as non-observant variables.
The internal variables κα memorize the plastic loading history of the material. An example
of a internal variable is the effective plastic strain. For elastoplastic material, the internal
variables can be characterized as in Equation (C.6):

Kα = Kα(κβ) (C.6)

where β = 1, 2, . . . . In Equation (C.6) the number of hardening parameters are equal
to the number of internal variables. Similarly to the yield function, the presence of the
potential function g is defined by Equation (C.7):

g(σij) = g(σij ,Kα) (C.7)

Equation (C.7) shows that potential function depends on the same parameters as the yield
function.

70



C.2. Plastic modulus Aalborg University

The corresponding flow rule is expressed in Equation (C.8):

ε̇pij = λ̇
∂g

∂σij
; λ̇ ≥ 0 (C.8)

In case of, f = g associated plasticity occurs, while in case of g 6= f non-associated
plasticity holds. The flow rule describes the direction of the plastic strain rate ε̇pij , given
by the gradient ∂g/∂σij , while the plastic multiplier λ̇ describes the magnitude of the
plastic strain rate. Furthermore, if λ̇ = 0, no plastic strain develop, whereas if λ̇ > 0, the
plastic multiplier guarantees that the plastic strain and the gradient possesses the same
direction.

Throughout the development of plastic strains, the consistency relation states that the
yield criterion is fulfilled, shown in Equation (C.9):

ḟ =
∂f

∂σij
σ̇ij +

∂f

∂Kα
K̇α = 0 (C.9)

where K̇α can be obtained from Equation (C.6) as shown in Equation (C.10):

K̇α =
∂Kα

∂κβ
κ̇β (C.10)

where κ̇α are obtained by the so called evolution law, expressed in Equation (C.11):

κ̇α = λ̇ kα (σij ,Kβ) (C.11)

where the evolution functions kα are allowed to depend on the same variables as the yield
function and the potential function and shows that no internal variables change when λ̇ = 0

which means, by the flow rule, that no plastic strains develop. This shows the evolution
law for the yield surface.

In summation, to obtain a specific plasticity model it is required to choose the yield function
f , the potential function g, the hardening parameters Kα and the internal variables. The
choice of hardening parameters implies the choice of hardening rule. The plasticity model
chosen for this project is the elastic perfectly-plastic which will be describes more detailed
in Appendix D.

C.2 Plastic modulus

As mention in Section C.1, the flow rule determines the direction of the plastic strain rates,
however the magnitude of the plastic multiplier is unknown. For determination of λ̇, the
consistency relation and κ̇α are used, yielding Equation (C.12):

K̇α = λ̇
∂Kα

∂κβ
kβ (C.12)

By inserting Equation (C.12) into Equation (C.9), it provides Equation (C.13):

∂f

∂σij
σ̇ij −H λ̇ = 0; H = − ∂f

∂Kα

∂Kα

∂κβ
kβ (C.13)
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C. Plasticity theory

where H is the generalized plastic modulus. It is possible now to determine the plastic
multiplier by Equation (C.14), if H 6= 0:

λ̇ =
1

H

∂g

∂σij

∂f

∂σkl
σ̇kl (C.14)

This can then be substituted into the flow rule and the stress driven format is obtained in
Equation (C.15), where the increment stresses describes the incremental plastic strains:

ε̇pij =
1

H

∂g

∂σij

∂f

∂σkl
σ̇kl for H 6= 0 (C.15)

C.3 Elastoplastic stiffness

The stress driven format for obtaining the plastic strains from Equation (C.15) is used to
retrieve the constitutive flexibility tensor for elasto-plasticity. Combining Equation (C.2)
with Equation (C.4), yields Equation (C.16):

ε̇ij = Cijkl σ̇kl (C.16)

Cijkl Elastic flexibility tensor.

A combination of Equation (C.2), Equation (C.15) and Equation (C.16), gives Equation
(C.17):

ε̇eij = Cepijkl σ̇kl where Cepijkl = Cijkl +
1

H

∂g

∂σij

∂f

∂σkl
(C.17)

Thus, if H 6= 0 and if the stress state σ̇kl is known, then Equation (C.17) determines the
response completely. This formulation form the so called stress driven format.

For it to be possible to determine the response for a general case, if H = 0, the total strain
rate ε̇ij and not the prescribes stress state σ̇ij needs to be given. To obtain this general
format, the flow rule in Equation (C.8) is inserted into Hooke’s law in Equation (C.4),
yielding (C.18):

σ̇ij = Dijkl ε̇kl − λ̇Dijst
∂g

∂σst
(C.18)

Equation (C.18) is then multiplied by ∂f/∂σij and then use Equation (C.13), Equation
(C.19): is obtained for the plastic multiplier:

λ̇ =
1

A

∂f

∂σij
Dijkl ε̇kl where A = H +

∂f

∂σij
Dijkl

∂g

σkl
(C.19)

For it to be possible to derive Equation (C.19), A > 0 can always be assumed. Combining
the results of the plastic multiplier and the formulation for Hooke’s Law in Equation (C.16),
the strain driven format is found Equation (C.20):

σ̇ij = Dep
ijkl ε̇kl where Dep

ijkl = Dijkl −
1

A
Dijst

∂g

∂σst

∂f

∂σmn
Dmnkl (C.20)

where Dep
ijkl represents the elastoplastic stiffness tensor and Equation (C.20) comprises the

so called strain driven format.
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Linear elastic perfectly-plastic

constitutive model D
This appendix account for the theory of linear elastic perfectly-plastic that is the material
behavior used. The theory takes its basis from Ottosen and Ristinmaa [2005] and PLAXIS
[2016].

A perfectly-plastic model is a constitutive model with a fixed yield surface, which means a
yield surface that is fully defined by model parameters and not affected by plastic straining.

The basic principle of elastoplastisity is that the strains and strain rates are divided into
an elastic part and a plastic part, shown in Equation (D.1):

ε = εe + εp ε̇ = ε̇e + ε̇p (D.1)

Following is the Hooke’s law used to relate the stress rates to the elastic strain rates.
Hence, substituting Equation (D.1) into Hooke’s law yields Equation (D.2):

σ̇′ = Ḋe ε̇e = Ḋe ε̇− ε̇p (D.2)

In accordance with classical plasticity theory, plastic strain rates are proportional to the
derivative of the yield function with respect to the stresses. This means that the plastic
strain rates can be describes as vectors perpendicular to the yield surface. This is called
associated plasticity. However, when using the Mohr-Coulomb yield functions, the theory
of the theory of associated plasticity may overestimate the dilatancy. To avoid this, an
plastic potential function g is introduced in addition to the yield function. Hence, by f 6= g

it is refered to as non-associated plasticity.

Generally, the plastic strain rates are defined as in Equation (D.3):

ε̇ = λ
∂g

∂σ′
(D.3)

λ Plastic multiplier

For purely elastic behavior λ = 0, while in the case of plastic behavior λ > 0. The relations
are shown in Equations (D.4) and (D.5):

λ = 0 for: f < 0 or:
∂fT

∂σ′
De ε̇ < 0 Elastic (D.4)

λ > 0 for: f = 0 or:
∂fT

∂σ′
De ε̇ = 0 Plastic (D.5)
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Figure D.1: Elastic perfectly plastic material model

The Equations (D.4) and (D.5) can be used to create a relationship between the effective
stress rate and the strain rates for elastic perfectly-plastic behavior, shown in Equation
(D.6):

σ̇′ =

(
De − α

d
De ∂g

∂σ′
∂fT

∂σ′
De

)
ε̇ (D.6)

where:

d =
∂fT

∂σ′
De ∂g

∂σ′

The parameter α is used to switch between an elastic behavior, α = 0, and plastic behavior,
α = 1.

The theory of plasticity above is restricted to smooth yield surfaces and does not cover
the multiple types of yield surfaces present in the Mohr-Coulomb model. In this case, the
theory of plasticity has been extended to account for flow peaks involving two or more
potential functions, as expressed in Equation (D.7):

ε̇p = λ1
∂g1
∂σ1

+ λ2
∂g2
∂σ2

+ . . . (D.7)

Similarly, several yield functions (f1, f2, . . . ) are used to determine the plastic multipliers
(λ1, λ2, . . . ).
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Nonlinear Finite Element E
In this appendix, the concept of nonlinear problems is described. Following, a presentation
of different solution methods. The theory in this Appendix takes its source from Cook et al.
[2002] and Ottosen and Ristinmaa [2005].

For linear problems in Finite Elements the solution method are fairly straightforward.
Elastoplastic problems nevertheless are nonlinear and raise questions that must be solved
before reliable results can be reached. Thus, it is necessary to account for new formulation
of the nonlinear finite element method as well as solutions of the nonlinear equilibrium
equations. Foremost, a formulation of general nonlinear problems based on virtual work.
Furthermore, the equations of motions and static conditions are described.

E.1 Equations of motion

Firstly, the equations of motion in finite element format by the weak format is express as:∫
V
ρ νi üi dV +

∫
V
εvij σij dV =

∫
S
νi ti dS +

∫
V
νi bi dV (E.1)

νi Arbitrary weight vector
ti Traction vector
bi Body force (force pr unit volume)
üi Acceleration vector
εvij Strain tensor related to νi
σij Stress tensor

It is possible to rewrite this weak from into matrix form which is convenient considering
finite element formulation. Thus, Equation (E.1) is rewritten as:∫

V
ρ νT ü dV +

∫
V

(εv)T σ dV =

∫
S
νT t dS +

∫
V
νT b dV (E.2)

The boundary conditions can be expressed as that the displacement vector u is prescribed
along the boundary surface Su and the traction vector t is prescribed along the boundary
surface St, whereas the total boundary is composed of the sum of the two boundary
surfaces.

The finite element method is based on the concept that the displacement vector u, can be
expressed by the global shape functions N and nodal displacements a of the body, shown
in Equation (E.3):

u = N a (E.3)
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Given by Equation (E.3), the corresponding strains can be derived and used to establish:

M ä+

∫
V
BT σ dV = f ; M =

∫
V
ρNT N dV (E.4)

M Mass matrix
B Strain interpolation matrix
N Shape functions

Whereas the force is defined based on external forces shown in:

f =

∫
S
NT t dS +

∫
V
NT b dV (E.5)

Equation (E.4) is solely derived from equations of motions meaning that it hold for any
constitutive relation.

E.2 Static conditions

Considering static conditions, the nodal accelerations ä are assumed to be zero. Hence,
the equation of motions are reduced to equilibrium equations, shown in:

Ψ = 0 where Ψ =

∫
V
BT σ dV − f (E.6)

As mentioned in Section E.1, the force is an expression of external forces when the loading
of the body is given by the traction vector and the body load, while similarly the term∫
V B

T σ dV expresses the internal forces corresponding with the stresses σ. Thus the in-
ternal forces must be equal to the external forces.

Following, constitutive relations are applied in order to solve a specific boundary problem.
Generally, for nonlinear problems, the solution is quite different than for linear elastic
problems. The current stresses σ cannot be expressed directly in terms of the current
strains ε. Instead, an incremental relation is drawn between the stress state and the strain
rate. For elastoplastic problems, the relation is given as in Equation (C.20) where it is
rewritten into matrix form, gives as:

σ̇ = Dep ε̇ (E.7)

where the current stresses σ must be obtained by integration along the actual load
history. The nonlinearity of the constitutive relations in Equation (E.7) results in that also
Equation (E.6) becomes nonlinear. Due to that the constitutive relation is incremental,
the equilibrium equations are differentiated with respect to time, yielding:∫

V
BT σ̇ dV where ḟ =

∫
S
NT ṫ dS +

∫
V
NT ḃ dV (E.8)

From this incremental elastoplastic constitutive relation, it can be rewritten by substitute
the expression for incremental strains ε̇ = B ȧ into Equation (E.7), yielding:

σ̇ = DtB ȧ where Dt =

{
D

Dep
(E.9)
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Due to that the incremental nodal displacements ȧ are independent of position, the use of
Equation (E.9) and Equation (E.8), yields:

Kt ȧ = ḟ where ḟ =

∫
V
BT DtB dV (E.10)

It is important to emphasis that the tangential stiffness matrix Kt is not a constant matrix
and is composed of a system of nonlinear equations. The external load f increases in small
steps and for each of these steps, the corresponding change of nodal displacements ȧ is
determined by Equation (E.10).

The main essential problem in nonlinear finite element method is to solve the global
nonlinear equations in Equation (E.10), where the solution has to ensure that the total
equilibrium equation of the body is fulfilled for Equation (E.6). Nevertheless, to use
Equation (E.6) the total stresses of the body need to be known beforehand to reach a
solution. This requires an integration of the constitutive relations from Equation (E.7).
Various solution schemes for solving the global equilibrium equation are presented in the
following Section E.3

E.3 Solution methods

In structural mechanics, the types of nonlinearity follows:

• Material nonlinearity
• Contact nonlinearity
• Geometric nonlinearity

Problems in these categories are nonlinear because of the stiffness matrix [K], and maybe
the load vector {R}, becomes functions of displacement or deformation, {D}, where
Equation (E.11) represent structural equations, respectively:

[K] {D} = {R} (E.11)

[K] Stiffness matrix
{D} Displacement vector
{R} Load vector

The problem just presented is not immediately solvable for {D} because information
needed to assemble [K] and {R} is unknown beforehand. Therefore, an iterative process
is required to obtained {D} and its associated [K] and {R}, in condition that the product
[K] {D} is in equilibrium with {R}.

In this section some frequently used methods of solving nonlinear problems are stated.
Nonlinear problems are solved by nonlinear equations, where the equilibrium equations
are referred to as nonlinear equations. The external loading f are assumed to be known.
This loading is applied stepwise where the external loading is increased in small steps, this
procedure is called incremental solution procedure.
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In order to interpret procedures as two-dimensional plots of load versus response, solution
methods for a special case such as single nonlinear equation f(u, x) = 0 and u = u(x) where
u is the only dependant variable, are applied. In one-dimensional nonlinear spring analogy,
stiffness is a function of u, but a prescribed load is simply a value of P , independent of u.
In a multidimensional problem, both [K] and {R} may be a function of {D}.

E.3.1 Newton-Raphson scheme

The method of Newton-Raphson scheme can be explain in the way of extracting the root
of a polynomial, where a P − u curve is generated as its shape is unknown. If a case of
a single force applied to a nonlinear spring is considered, the relation between load and
displacement is yield from:

k u = P or (k0 + kN )u = P where kN = kN (u) (E.12)

k Stiffness
u Displacement
P Load

In Equation (E.12), it is envisioned that initially u = 0. Then a load arbitrary load P1

is applied and the corresponding displacement u1 is desired. The initial tangent stiffness
kt0 and the initial load increment is the load itself, ∆P1 = P1 due to the choice to start
from zero. Following, the current displacement increment is calculated and the solution is
updated by Equation (E.13).

kt0 ∆u = P ∆u = k−1t0 ∆P1 uA = 0 + ∆u (E.13)

Equation (E.13) yields uA, which is the current estimate of the desired result of u1. Due
to that the problem does not exert a force that is in equilibrium with P1, the current force
error is introduced, ePA, yielding:

ePA = P1 − k uA where k = k(u) is evaluated using displacement uA (E.14)
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Figure E.1: Newton-Raphson iterations

Following, the equilibrium iterative process begins where the goal is to reduce the current
force error to zero. While keeping P1 constant another step is taken, starting at point a
as shown in Figure E.1 and then moving along a tangent to the curve at point a. Then, a
more accurate displacement uB is obtained as:

ktA ∆u = ePA ∆u = k−1tA ePA uB = uA + ∆u (E.15)

with the current force error e?B yielding from Equation (E.16):

ePB = P1 − k uB where k = k(u) is evaluated using displacement uB (E.16)

The next step is equivalent to the retirement of the displacement increment ∆u and
updating displacement from displacement uA.

This method is not guaranteed to converge for all nonlinear problems. By continuing the
iterations causes the force error to decrease that leads to the displacement increment to
approach zero, and at last, the updated solution to approach the correct value u1.

To obtain a sufficient representation of the P − u curve, it is applied on several load
levels. By iteration to convergence for each, many points are obtained. The likelihood
of convergence to a correct solution of each load level increases by considering small load
steps.

E.3.2 Modified Newton-Raphson

The development to modified Newton-Raphson is that the rather than updating the
tangent stiffness kt prior to each calculation of the displacement increment ∆u, the same
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tangent stiffness is used for several iterative processes. The procedure is represented in
Figure E.2,

 P

uuA u1 uC u2

 P2

 P1

a

b

2
c

A
1

DC

B

kt0

kt1
eP

A

ΔP
1

ΔP
2

E F

Figure E.2: Modified Newton-Raphson iterations

where is it shown that the initial tangent stiffness kt0 is used until convergence at load level
P1. Then the tangent stiffness is updated to kt1 and maintained at kt1 when convergence
at load level P2 is in process. Modification to the tangent stiffness is needed in Equation
(E.13) and for the other evaluated load steps. The main purpose for adopting the modified
Newton-Raphson method is cost reduction.

E.3.3 Direct substitution

Direct substitution is considered the most basic solution method. In this method the
stiffness matrix is not used, but instead the coefficient matrix is updated and the entire
solution is repeated. In the case that {R} is constant, it is permitted to start with the
initial assumption {D}0 for the degrees of freedom. The next step is to establish the
corresponding [K]0 and solve for equations [K]0{D}1 = {R} for {D}1. Then [K]1 is
established based on {D}1 and solve for {D}2. This process is repeated as many steps
that is necessary.

The method is inefficient, and is more likely to encounter convergence difficulties than the
tangent stiffness methods.

E.3.4 The initial stiffness method

This solution method uses the stiffness matrix [K0] throughout the whole process,
regardless of the load level. Nonlinearities are places on the right side of the Equation
(E.11) and is repeatedly updated until convergence is achieved.
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To apply the same notion as in Equation (E.12), the method is represented by:

[K0] {D}i = {R} − [KN ] {D}i−1 where [K] = [K0] + [KN ] (E.17)

[K0] and [KN ] are respectively constant and displacement-dependant matrices. Due to
that [K0] if the equivalent to [Kt] when the displacements are zero, the initial stiffness
matrix is equal to a modified Newton-Raphson method where the stiffness matrix never
is updated. Like the method explained above, the initial stiffness method may converge
slowly or never depending on the specific problem considered.
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Introduction to yield criterion F
In this appendix the criteria of where the material the plastic deformations i.e. yielding
of the material or failure occurs is explained. In addition, this appendix accounts for the
Haigh-Westergaard coordinate system. The theory in this appendix takes its bases from
Ottosen and Ristinmaa [2005].

The conditions for failure or initial yielding are called failure or initial yield criteria
respectively. The criterion is a function that is equal to zero when fulfilling the conditions
for the failure or initial yielding.

For a homogeneous material with a proportional loaded by a homogeneous stress state
with failure or initial yield criterion being independent of the loading rate. The failure of
initial yield criterion is only dependent of the stress tensor as shown in:

F (σij) = 0 (F.1)

When this condition is fulfilled, initial yielding and failing occur. If the stress state is
below zero, F (σij) < 0, the failure has yet to occur, while if F (σij) > 0 the failure already
has occurred. These conditions are established in an arbitrary x′i coordinate system, but
for the conditions to be applicable they have to hold when another x′i-coordinate system
is adopted. This implies that the value of F is an invariant.

The stress tensor, σij , in Equation (F.1) can also be described by the three principle
stresses, σ1, σ2 and σ3, and their corresponding principle stress directions. As an isotropic
material does not have directional properties, the yield criterion can be expressed by:

F (σ1, σ2, σ3) = 0 (F.2)

Determination of the principle stresses require the solution of the eigenvalue problem.
However, this can be avoided by expressing the criterion based on the stress invariants. It
has been proven more convenient to use the invariants I1, J2 and J3, though cos 3 θ is used
instead of J3. Hence the yield criteion is finally expressed in:

F (I1, J2, cos 3 θ) = 0 (F.3)

One of the advantages of the format in Equation (F.3) is that is separates the influence of
the hydrostatic stress I1 from the influence of the deviatoric stresses expressed by J2 and
cos 3 θ respectively. The following Section F.1 account for how the yield criterion can be
illustrated and interpreted.

F.1 Haigh-Westergaard coordinate system

The yield criterion in Equation (F.2) on the previous page can be interpreted in the
Cartesian coordinate system as a surface describing when yielding will occur. This is
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called the Haigh-Westergaard coordinate system, that uses the principle stresses, σ1, σ2, σ3,
as axes. Furthermore, it is possible to describe the yield criterion related to the stress
invariants I1, J2 and cos 3 θ as seen on the preceding page in Equation (F.3).

For determining the geometric quantities, an arbitrary point P with (σ1, σ2, σ3) is
considered. In the stress space the unit vector, ni, along the space diagonal as:

ni =
1√
3

(1, 1, 1) (F.4)

In the case that the point P is located along the space diagonal, the principle stresses are
equal and the space diagonal is therefore called the hydrostatic axis.

For any stress point P , a plane can be located whcich are perpendicular to the hydrostatic
axis and that contains the point P . This plane is called the deviatoric plane and it includes
the line PN, as shown in Figure F.1: Rather then expressing the position of an arbitrary
point by Cartesian coordinates (σ1, σ2, σ3), the coordinates (ξ, ρ, θ) may be used. The
coordinate ξ is the distance from origin 0 to the point N, |ON |. The coordinate ρ represents
the distance |NP | and θ is tha angle in the deviatoric plane between the projection of the
σ1-axis on the deviatoric plane and the line NP. For describing these coordinates, the unit
vector in Equation (F.4) is used. The expression for the coordinate, xi, is expressed by:

ξ = nT |NP | = 1√
3

[
1 1 1

] σ1σ2
σ3

 (F.5)

ξ =
I1√

3

Likewise, an expression for the coordinate ρ is derived as the length of the vector NP . This
is done on the basis of the deviatoric plane and its stresses s1, s2, s3 which are expresses
by:

ρ = |NP | where ρ2 = s21 + s22 + s33 (F.6)

σ1

σ2 σ3

θ
ρ

mi

P

N

(a)

σ1

σ2

σ3

ρ

ni

P(σ1,σ2,σ3)

0

Nξ

(b)

Figure F.1: Haigh-Westergaard coordinate system
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ρ =
√

2 J2

To obtain an expression for the angle θ, some further manipulation needs to be carried
out. Thus the angle θ can be expressed by using the invariants J2 and J3 in:

cos 3 θ =
3
√

3

2

J3

J
3/2
2

(F.7)

One of the advantages with this formulation is that the θ is expressed in terms of the
stress invariants and not the principle stresses. This implies that the eigenvalue problem
does not have to be solved as the stress invariants are obtained directly from the stress
tensor. Moreover, the formulation in Equation (F.3) seperates the hydrostatic stress from
the influence of the deviatoric stresses expressed by J2 and cos 3 θ. Whereas the invariant
J2 describes the influence of the magnitude of the deviatoric stresses, while the invariant
cos 3 θ describes the influence of the direction of the deviatoric stresses.

F.2 Mohr-Coloumb yielding criterion

When considering failure characteristic of concrete, soil and rocks, the description given
by:,

F (σ1, σ2, σ3) = 0 (F.8)

with the convention that

σ1 ≥ σ2 ≥ σ3

Generally, obtaining Equation (F.8) is quite complex, and some simplifications have to be
performed. This is done by assuming that σ2 is of insignificant importance, that yields the
expression in:

F (σ1, σ3) = 0 (F.9)

The expression in Equation (F.9) is rewritten into a linear relation between σ1 and σ3.

k σ1 − σ3 −m = 0 (F.10)

where k and m are material parameters. This expression in Equation (F.10) is required
to predict the uniaxial compressive strength value σc, and by implying the stress state
(σ1, σ2, σ3) = (0, 0,−σc), Equation (F.10) is fulfilled, yielding:

k σ1 − σ3 − σc = 0 (F.11)

This criterion is called the Coulomb criterion and was presented in 1776. Traditionally,
the criterion is derived in a different manner. During the derivation of the traditional
formulation, Mohr’s circle of stress is used. From the center position P and the radius R
in Figure F.2a, is given by:

P =
1

2
(σ1 + σ3) R =

1

2
(σ1 − σ3) (F.12)

By the assumption that the stress state fulfills the Coulomb criterion, σ3 is then isolated
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τ

σ
R

2α
(σ1,0)(σ3,0)

(σ,τ)

(a)

x1(σ1)

x3(σ3)

x2(σ2)

στ

α

(b)

Figure F.2: Mohr’s stress circle and corresponding interpretation of τ and σ.

in Equation (F.11) and inserted in Equation (F.12), which yields:

P =
1

2
[(k + 1)σ1 − σc] R =

1

2
[σc − (k − 1)σ1] (F.13)

by elimination of σ1, Equation (F.14) is obtained:

R =
σc

k + 1
− k − 1

k + 1
P (F.14)

Hence, the radius R varies linearly with the position of the center P .

τ

σP

R

(σ1,0)(σ3,0)
φ
φ

c
c

c/μ

Envelope τ = c - μσ

Envelope τ = c + μσ

Figure F.3: Coulomb criterion in Mohr’s diagram

Thereupon, as illustrated in Figure F.3, all the Mohr’s circles of stress that fulfill the
Coulomb criterion have two symmetrically positioned straight lines as their envelopes.
These straight lines can be written as:

|τ | = c− σn tanφ (F.15)

c Cohesion
φ Angle of internal friction
τ Shear stress
σn Normal stress

86



F.2. Mohr-Coloumb yielding criterion Aalborg University

The normal and shear stresses represent the stresses acting in the plane where failure
occurs though shear, with tanφ acting like the friction coefficient, µ.
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Mohr-Coulomb model G
This appendix deals with the Mohr-Coulomb material model which is used for interpreting
the behavior of the soil, when plasticity is accounted for. The theory is based on Ottosen
and Ristinmaa [2005] and PLAXIS [2016].

The Mohr-Coulomb material model, also known as linear perfectly plastic model, is a
materiel model that can be used as a first approximation of soil behavior. The linear elastic
part of the model is based ion Hooke’s law of isotropic elasticity, while the perfectly plastic
part of the model is based on the Mohr-Coulomb failure criterion. Thus the Coulomb
criterion is introduced. In Appendix F it is explained that the the yield criterion of a soil
material is expressed by the principle stresses, σ1, σ2 and σ3, as shown in Equation (F.2),
repeated below:

F (σ1, σ2, σ3) = 0

As mentioned in Appendix F, the Coulomb yield criterion is expressed in Equation (F.10),
repeated below:

k σ1 − σ3 −m = 0

The material parameters, k and m, depend on the friction angle and the failure stresses
in an uniaxial tension and compression. The yield surface of the Coulomb criterion in the
deviatoric and meridian plan is presented in Figures G.1 and G.2.

 √J2/σc

I1/σc
3/(k-1)

Compressive meridian
θ = 60°

Tensile meridian
θ = 0°

Figure G.1: Coulomb criterion in the merid-
ian plan.

σ1

σ3σ2

ρc

ρt

Figure G.2: Coulomb yield surface in the
deviatoric plane.
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G. Mohr-Coulomb model

In effect of the yield surface formulated by Coulomb criterion, the elastic material behavior
can be accounted for inside the surface, while on the other hand the surface describes the
failure or yielding of the material, F = 0.

G.1 Formulation for the Mohr-Coulomb model

The yield surface is fixed in the principle and deviatioric stress space while undergoing
plastic straining. For any stress state of a point inside the yield surface, the behavior
of the material is purely elastic, meaning that all strains are reversible. Stress states
represented by point on or outside the yield surface, the behavior of the material is plastic,
meaning that the plastic part of the strains is irreversible.

Mohr-Coulomb model introduces several yield functions, fi, as a function of stresses and
strains to determine whether or not plasticity occurs in the model. Plstic yielding is still
related to the criterion f = 0, due to that the yield surface is presented in the principle
stress state. The full Mohr-Coulomb model is represented by six yield functions formulated
in terms of principle stresses. The yield functions are represented in Equations (G.1) to
(G.6):

f1a =
1

2
(σ′2 − σ′3) +

1

2
(σ′2 − σ′3) sinϕ− c cosϕ ≤ 0 (G.1)

f1b =
1

2
(σ′3 − σ′2) +

1

2
(σ′3 − σ′2) sinϕ− c cosϕ ≤ 0 (G.2)

f2a =
1

2
(σ′3 − σ′1) +

1

2
(σ′3 − σ′1) sinϕ− c cosϕ ≤ 0 (G.3)

f2b =
1

2
(σ′1 − σ′3) +

1

2
(σ′1 − σ′3) sinϕ− c cosϕ ≤ 0 (G.4)

f3a =
1

2
(σ′1 − σ′2) +

1

2
(σ′1 − σ′2) sinϕ− c cosϕ ≤ 0 (G.5)

f3b =
1

2
(σ′2 − σ′1) +

1

2
(σ′2 − σ′1) sinϕ− c cosϕ ≤ 0 (G.6)

The condition, fi = 0, for all yield functions together, represents a fixed hexagonal cone
in the principle stress space, illustrated in Figure G.3:
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Figure G.3: Mohr-Coulomb yield surface in principle stress space (c = 0), PLAXIS [2016].

By solely use of these yield functions, the plastic strains are determined for associate flow,
which have been proven to overestimate the dilantancy. To account for the dilatational
behavior, six plastic potential functions have been introduced for the Mohr-Coulomb model
with the dilatancy angle ψ as a plastic parameter. The dilatancy angle is required to model
positive plastic volumetric strain increments as actually observed for dense soils. These
function are defined in Equation (G.7) to (G.12):

g1a =
1

2
(σ′2 − σ′3) +

1

2
(σ′2 + σ′3) sinψ (G.7)

g1b =
1

2
(σ′3 − σ′2) +

1

2
(σ′3 + σ′2) sinψ (G.8)

g2a =
1

2
(σ′3 − σ′1) +

1

2
(σ′3 − σ′1) sinψ (G.9)

g2b =
1

2
(σ′1 − σ′3) +

1

2
(σ′1 − σ′3) sinψ (G.10)

g3a =
1

2
(σ′1 − σ′2) +

1

2
(σ′1 − σ′2) sinψ (G.11)

g3b =
1

2
(σ′2 − σ′1) +

1

2
(σ′2 − σ′1) sinψ (G.12)

When implementing the Mohr-Coulomb model for general stress state some special require-
ments have to be done for the interaction between two surfaces. The transition between
two surfaces can either be smooth of sharp. When dealing with this, PLAXIS uses exact
form for full Mohr-Coulomb model implemented and using a sharp transition from one
yield surface to another.
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By implementation of the Mohr-Coulomb criterion for c > 0, it allows some tension,
meaning that with increase in tensile stresses the cohesion increases. Generally, soil can
sustain none or only very small tension stresses. PLAXIS includes this behavior the its
analysis by specifying a tension cut-off, where Mohr circles with positive principle stresses
are not allowed. The term tension cut-off introduced three new yield functions defined
from Equation (G.13) to (G.15):

f4 = σ′1 − σt ≤ 0 (G.13)

f5 = σ′2 − σt ≤ 0 (G.14)

f6 = σ′3 − σt ≤ 0 (G.15)

where the σt = 0 when using the tension cut-off procedure.

Overall, the Mohr-Coulomb model can account for non-associated flow, in addition to
tension cut-off. The model is widely used due to its simplicity, and only require five
parameters that are friction angle ϕ, cohesion c, dilatancy angle ψ, Young’s elastic modulus
E and friction coefficient µ.
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Axisymmetric element H
In this appendix the axisymmetry of finite element formulation is described in regard to three
noded triangular element with cylindrical coordinates. Throughout this appendix NPTEL
[2015] and Logan [2017] will be used as a source.

H.1 Introduction

Several three-dimensional problems can be solved using two-dimensional finite elements,
thus the considered problem can fulfill the criteria of axisymmetry. If the problem geometry
is symmetric around an axis, usually the axis of rotation, and the loading and the
boundary conditions are symmetric around the same axis, the problem can be defined
as axisymmetric. Axisymmetric problems are defined by polar coordinate system with
coordinates (r, θ, z). Following an axisymmetric analysis, the following conditions must be
fulfilled:

1. The domain should have an axis of symmetry and is conveniently considered as z
axis.

2. The loading of the domain have to be symmetric around the axis of revolution, thus
the loads are independent of the circumferential coordinate θ.

3. The boundary conditions and material properties are symmetric around the same
axis and will be independent of circumferential coordinate.

Axisymmetric bodies are totally symmetric around the axis of revolution (i. e., z-axis), the
field variables, such as the stress and deformation are independent of the rotational angle θ.
Therefore the field variables can be defined as functions of (r, θ), hence making the problem
two-dimensional. The axisymmetric problem included in this report are a circular footing
on a soil domain with uniform loading, shown in Figure H.1. In the following sections, the
axisymmetric finite element formulation will be derived.

H.2 Relation between strain and displacement

Axisymmetric problems are preferably described by cylindrical polar coordinates: r, θ and
z. In this case, θ measures the plane containing a considered point and the axis of the
coordinate system. At θ = 0, the radial and axial coordinates correspond with the global
Cartesian x and y coordinates. Figure H.2 shows the cylindrical coordinate system both
including the Cartesian and cylindrical coordinates. Let r*, θ∗ and z* be unit vectors in
the radial, circumferential and and axial direction at a point in the cylindrical coordinate
system. If the material properties and the loading, either radial or axial components, are
independent of θ will the displacement at any point only have radial (ur) and axial (uz)

93



H. Axisymmetric element

 z

r

 Axis of revolution

Figure H.1: Axisymmetric footing on a soil domain with an uniform load.

z

x

y

z*

θ*

r*

(r, θ, z)

Figure H.2: Cylindrical coordinate system.

94



H.2. Relation between strain and displacement Aalborg University

components. Including the only stress components that are nonzero are σrr, σθθ, σzz and
τrz.

For the case of that the element experiences deformation the in radial direction, it will
initiate an increase in circumference and associated circumferential strain. The radial
displacement is defined as u, the circumferential displacements is defined as v, whereas
the axial displacement is defined as w. Figure H.3 shows the deformed positions of the
element illustrated with thicker line, where the dashed line represents the initial element
form.

y

x

θ
dθ

u
u + 

∂u
∂r  d

r
B

A
D

C

r

Figure H.3: Element in r-θ plane.

Thus, the strains can be calculated as shown in:

εr =
1

dr

(
u+

∂u

∂r
dr − u

)
=
∂u

∂r
(H.1)

εz =
1

dz

(
w +

∂w

∂z
dz − w

)
=
∂w

∂z
(H.2)

After deformation, the deformed arc length have expanded from its initial arc length in
the circumferential direction. By defined the initial arc length as ds = r dθ, the arc length
after deformation is obtained by ds = (r + u) dθ. This gives the tangential strain by:

εθ =
(r + u) dθ − r dθ

r dθ
=
u

r
(H.3)

Due to that the r-z plane is similar to the x-y coordinate system, the shear strains can be
expressed as:

γrz =
∂u

∂z
+
∂w

∂r
(H.4)

γrθ = 0 and γzθ = 0
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H. Axisymmetric element

The strains can be written in matrix from as shown in:

{ε} =


εr
εz
εθ
γrz

 =


∂u
∂r
∂w
∂z
u
r

∂u
∂z + ∂w

∂r

 =


∂
∂r 0

0 ∂
∂z

1
r 0
∂
∂z

∂
∂r


{
u

w

}
(H.5)

H.3 Stress-strain relationship

The isotropic stress-strain relationship can be derived from the three dimensional
constitutive relations corresponding to a three dimensional solid, which are known as:

σx
σy
σz
τxy
τyz
τzx


=

E

(1 + ν)(1− 2 ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2





εx
εy
εz
γxy
γyz
γzx


(H.6)

ν Poisson’s ratio
E Young’s modulus

By comparing the stress-strain components present in the axisymmetric case, the stress-
strain relationship can be expressed from:

σr
σz
σθ
τrz

 =
E

(1 + ν)(1− 2 ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1−2 ν
2



εr
εz
εθ
γrz

 (H.7)

Hence, the constitutive matrix [D] for an axisymmetric elastic solid is given by:

[D] =
E

(1 + ν)(1− 2 ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1−2 ν
2

 (H.8)

H.4 Finite element formulation

Finite element formulation of an axisymmetric problem is derived similarly as for a two
dimensional solid element. As mentioned in Section H.2, the stresses and strains are
independent of the rotational angle θ, thus no circumferential displacement will be present.
Therefore the displacement field variables will be obtained in:

u(r, z) =
n∑
i=1

Ni(r, z)ui (H.9)
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w(r, z) =
n∑
i=1

Ni(r, z)wi (H.10)

ui Radial nodal displacements
wi Axial nodal displacements
Ni(r, z) Shape functions

Due to the independence of the rotational angle θ, interpolation function Ni(r, z) can be
expressed similar to two dimensional problems by replacing the variables x and y terms
with r and z respectively.

z, w

r, u

1

2

3

u2, Fr2

w2, Fz2

u3, Fr3

w3, Fz3

u1, Fr1

w1, Fz1

(i)

(j)

(k)

Figure H.4: Axisymmetric three node triangle in cylindrical coordinates

For simplicity, a three noded triangular element with cylindrical coordinates is derived,
that are illustrated in Figure H.4. Therefore, the analysis for the axisymmetric element can
be performed in a similar manner as for CST elements, where the element displacements
functions can be expressed as:

u(r, z) = α1 + α2 r + α3 z

w(r, z) = α4 + α5 r + α6 z
(H.11)

or:

{d} = [φ] {α} (H.12)

where:

{d} =

{
u

w

}
[φ] =

[
1 r z 0 0 0

0 0 0 1 r z

]
and {α}T = {α1α2α3α4α5α6}
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Rewriting the above equations into full matrix form yields:

u1
u2
u3
w1

w2

w3


=



1 ri zi 0 0 0

1 rj zj 0 0 0

1 rk zk 0 0 0

0 0 0 1 ri zi
0 0 0 1 rj zj
0 0 0 1 rk zk





α1

α2

α3

α4

α5

α6


(H.13)

or:

{d̄} = [A] {α}
α = [A]−1 {d̄}

(H.14)

{d̄} nodal displacement vectors

Inserting Equation (H.14) into Equation (H.12), yields the expression in:

{d} = [N ] {d̄} (H.15)

or:

{
u

w

}
=

[
Ni Nj Nk 0 0 0

0 0 0 Ni Nj Nk

]


r1
r2
r3
z1
z2
z3


(H.16)

where the shape functions [Ni, Nj , Nk] are functions the r and z coordinates. Combining
Equation (H.16) into Equation (H.5), gives:

{ε} = [B] {d̄} =


∂Ni
∂r

∂Nj

∂r
∂Nk
∂r 0 0 0

Ni
r

Nj

r
Nk
r 0 0 0

0 0 0 ∂Ni
∂z

∂Nj

∂z
∂Nk
∂z

∂Ni
∂z

∂Nj

∂z
∂Nk
∂z

∂Ni
∂r

∂Nj

∂r
∂Nk
∂r





r1
r2
r3
z1
z2
z3


(H.17)

where the strain interpolation matrix is defined as [B] and r =
ri+rj+rk

3 . The stresses are
given as:

{σ} = [D] {ε} (H.18)

Thus, the stiffness matrix is defined as in Equation (H.19):

[K] =

∫∫∫
V

[B]T [D] [B] dV (H.19)

If an integration is performed along the circumferential boundary, can Equation (H.19) be
rewritten as:

[K] = 2π

∫∫
A

[B]T [D] [B]r dr dz (H.20)
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