
OXMES
- Open Extensible Manufacturing Execution System -

Project Report

Group deis106f18

Aalborg University
Department of Computer Science

Embedded Software Systems

Copyright © Aalborg University 2018

Department of Computer Science

Aalborg University

http://www.cs.aau.dk

Title:
OXMES - Open Extensible Manufactur-
ing Execution System

Theme:
Distributed, Embedded and Intelligent
Systems

Project Period:
Spring Semester 2018

Project Group:
deis106f18

Participants:
Anders Normann Poulsen
Gabriel Vasluianu

Supervisor:
Ulrik Nyman

Copies: 1

Page Numbers: 145

Date of Completion:
15th June 2018

Abstract:

The advent of Industry 4.0 encourages
many researchers to study and con-
duct experiments in this field of work.
Typical experiment scenarios include
robots, control systems and product
mockups. For better understanding
of Modular Manufacturing Systems,
commercial production modules are
used, which come with their own pro-
prietary control software. This is usu-
ally rigid, with a limited User Inter-
face where things can be unnecessar-
ily complicated. For this reason, better
solutions are needed.
This project aims at implementing a
Manufacturing Execution System, to
be used for controlling the modular
production line at the Department of
Materials and Production of Aalborg
University. It addresses the needs of
the department for conducting their
research. The project will be released
as open source software. Furthermore,
the methods and technologies used for
its implementation, have been selected
to take into account the lifetime of the
project. This means that it should be
easy for other developers to take on
and continue, adapt or add features to
the software.

http://www.cs.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued with the

authors consent.

Preface
This report is the Master thesis of the deis106f18 group following the Embedded
Software Systems programme at Aalborg University.

We are thankful to Ulrik Nyman, our project supervisor, for great advice, flexi-
bility and guidance throughout the last two semesters. We are grateful to Casper
Schou from the Department of Materials and Production for the discussions and
feedback related to the project. We would also like to thank Chen Li from the same
department for the feedback offered on the API documentation.

Aalborg University, 15th June 2018

Anders Normann Poulsen
<apouls16@student.aau.dk>

Gabriel Vasluianu
<gvaslu16@student.aau.dk>

vii

Reading Guide

In this report, references are written using the ACM in-text citation style. Sources
are listed alphabetically in the bibliography. Figures, Tables, Equations, and List-
ings (code snippets) are numbered after the chapter they are in, for example, the
first Figure in Chapter 2 is called 2.1, the next 2.2 etc. All illustrations and figures
are made by the group members unless otherwise stated. All code can be found in
the zip archive electronically uploaded with the report.
A prerequisite for reading this report is basic knowledge in the Computer Science
field.

Glossary

API Application Programming Interface
ACM Association for Computing Machinery
CLI Command-line interface
CLR Common Language Runtime
CP Cyber Physical
DDL Data Description Language
EER Enhanced entity-relationship
EF Entity Framework
IIS Internet Information Services
JSON JavaScript Object Notation
MES Manufacturing Execution System
MP Department of Materials and Production
MMS Modular Manufacturing Systems
MVC Model-View-Controller
OPC UA Open Platform Communication Unified Architecture
ORM Object-relational mapping
PLC Programmable Logic Controller
RFID Radio-frequency Identification
UI User Interface
UUID Universally unique identifier
WPF Windows Presentation Foundation
XML Extensible Markup Language

Contents

Preface vii

1 Summary 1

2 Introduction 3

3 Previous work 5
3.1 Mission statement . 5
3.2 A new MES . 5
3.3 Development plan . 9

4 Problem statement 11

5 System design 13
5.1 Prioritisation . 13

5.1.1 User story 1: Creating product orders 13
5.1.2 User story 2: Configuring the topology of the system 14
5.1.3 Prioritised list of services . 14

5.2 Operation-to-application Mapping . 15
5.3 Language Choice . 15

5.3.1 Decision . 17
5.4 Frameworks . 18

5.4.1 ASP.NET Core . 18
5.4.2 Entity Framework Core . 18

5.5 Protocols . 20
5.5.1 OPC UA . 20

6 System Implementation 23
6.1 Frameworks . 23

6.1.1 ASP.NET Core . 23
6.1.2 Entity Framework Core . 25

ix

x Contents

6.2 Services . 28
6.2.1 User Gateway . 28
6.2.2 User Management Service . 31
6.2.3 Topology Service . 31
6.2.4 Order Service . 45
6.2.5 Shared Libraries . 50

6.3 User Client . 51
6.4 Event Bus . 52

6.4.1 Protocol . 52
6.5 Evaluation of the technical choices . 56

6.5.1 C# language . 56
6.5.2 ASP.NET Core . 56
6.5.3 Entity Framework Core with code first 57
6.5.4 Database server . 58
6.5.5 API documentation . 58

7 Evaluation 63
7.1 Usability of OXMES . 63
7.2 Functionality and features of OXMES 64
7.3 API documentation . 65
7.4 Extensibility . 65
7.5 Known issues . 66

8 Conclusion 67
8.1 Perspectives . 69

Bibliography 71

A User Client Screenshots 73

B User Gateway API Documentation 79

C Topology Service API Documentation 111

D Order Service API Documentation 135

CHAPTER 1
Summary

This report "OXMES - Open Extensible Manufacturing Execution System", is the writ-
ten result of the master thesis project for the Embedded Software Systems pro-
gramme. The overall project comprises of two parts. In the first one, a specific
problem related to Industry 4.0 has been investigated, and a system design has
been proposed. The report for the first part can be found under the name of
"Extensible Manufacturing Execution System - Designing a modular, extensible MES for
dependability and research". The second part of the project is the subject of this cur-
rent report.

In this report we investigate the implementation of a Manufacturing Execution
System (MES), to be used together with a Modular Manufacturing System. While
the text contains concepts from the manufacturing and production fields, the work
is mainly described from a computer science point of view. The report is made
up of eight chapters, in which the premises of the project are being set, a problem
statement is formulated, the system is further designed, and its implementation is
described. Lastly, the work is evaluated and concluded.

The MES is implemented using a micro services architecture. The ASP.NET Core
framework has been used to facilitate this. The implementation of three of the core
services of the MES will be described in detail. Throughout the report there will
be references and comparisons with the current MES used at the Department of
Materials and Production. In the final chapters, the work is evaluated in terms of
usability and possibility of further development. Known issues of the system, sug-
gestions for features and possible improvements will be covered in the conclusion.

1

CHAPTER 2
Introduction

Industry 4.0 is a term used increasingly in the engineering and business world.
The reason why this concept is popular, is because it promises to improve produc-
tivity, increase efficiency and lower costs for industrial applications. The way this
is achieved, is by slightly moving away from the concept of an automated manu-
facturing facility where humans have the task of supervising various processes, to an era
where machines will manufacture products, while being able to reconfigure themselves,
diagnose errors and provide insightful data about processes being run.

Now, in order to know what practices to use in real-world applications, engineers
and scientists have been conducting research, in different fields related to Industry
4.0. The Department of Materials and Production (MP) at Aalborg University is
currently, among other things, focusing on controlling a Modular Manufacturing
System (MMS). This entails having a control program, typically called a Manufac-
turing Execution System to monitor the actions of the manufacturing modules, to
reconfigure these or to initiate orders of products to be built. The features of a
MES facilitate experiments, demonstrations and student projects. This means that
a MES has to be a versatile piece of software, preferably open-source, which re-
searchers and students can easily work with, while being able to change different
production parameters.

We have investigated the way the current MES works, and what possible improve-
ments can be done to it. This has been done by first understanding how the MMS
facility works, and what the role of the MES is, when controlling it. Then, a list of
requirements has been compiled, based on numerous discussions with the users
of the MES. These requirements have been categorised and prioritised. In the end,
an architecture for a new MES has been designed, under the name of EMES (Ex-

3

4 Chapter 2. Introduction

tensible Manufacturing Execution System). All these activities, together with their
results will be covered in the next chapter, which is based on our previous report
[10].

In the meanwhile, we decided to change the name of the project to OXMES (Open
Extensible Manufacturing Execution System), which is going to be used through-
out this documentation.

CHAPTER 3
Previous work

The project we have been working on is divided into two parts. This chapter will
mainly focus on the work done during the first part. The information presented
here is brief; for more details, it is a good idea to refer to our previous report [10].

3.1 Mission statement

The first part of the project (9th semester) was spent getting familiar with Industry
4.0 concepts, as well as studying the state of the art of this field. At the same time,
we analysed the different aspects of the Modular Manufacturing System (MMS)
used by the Department of Materials and Production (MP). The results of this first
part of the project will be discussed in Section 3.2.

The purpose of this report is to give a detailed description of the work done during
the second part (10th semester) of the project. Section 3.3 contains a brief plan of
the project’s activities, while the following chapters go more in-depth into the
implementation and evaluation of OXMES.

3.2 A new MES

The MMS at the Department of Materials and Production is a Festo CP (Cyber
Physical) system. This is facilitating student projects, demonstrations and research.
Figure 3.1 shows the arrangement of the Festo modules after the system has been
reconfigured in the Spring of 2018. The reconfiguration activity had the goal of
changing the placement of the Festo modules to show their versatility. First, the
topology was changed in a tool called Experior, which took 3 minutes. The rear-
rangement and reconnection of the physical modules took 1 hour and 40 minutes.

5

6 Chapter 3. Previous work

Figure 3.1: Festo CP MMS at Department of Materials and Production

The intervals of time in which these two actions were executed come to show why
it is desirable to use such a system in a fast-paced world.

A simple overview of the Festo CP reveals that the system consists of:

• The modules doing work on the products and transporting them on the con-
veyor belts

• The products being carried on special carriers, which are uniquely identified
using RFID tags

• The MES running on a consumer grade computer

The PLCs inside each module wait for products on which they need to conduct
operations. When a product arrives at a module, the PLC will check with the MES
for product specific information (what needs to be done, and how).
Based on the observations of the system, and feedback received from MP, the group
compiled a list of requirements for a better MES. This long list can be condensed
in a few aspects that need to be worked on:

• Topology description
• Order handling
• Modular software architecture

This list of requirements hinted at building a new MES, to accommodate the needs
of the MP department. Furthermore, building on top of the existing MES is not
possible, as this is a closed-sourced project, developed by Festo. Having this in-
formation in mind, we decided to design a new MES based on a micro service

3.2. A new MES 7

architecture. The result is represented by Figure 3.2.

The User Gateway is an endpoint for user interfaces to connect to. All the services
of the system are connected to the User Gateway. Nine services have been defined,
which achieve the different tasks of the MES. The MES is controlling and commu-
nicating with the low level hardware (the PLCs in the modules) through the PLC
Gateway.

There are nine services that will take care of tasks in the work flow of manufactur-
ing a product:

• Topology Service. Will make it possible to configure the physical arrange-
ment of the modules.

• Work Plan Service. Keeps track of work plans. A work plan is a sequence of
operations needed to manufacture a product.

• Order Service. Responsible for keeping track of product orders.

• Order Scheduling Service. Schedules the orders.

• Operation Scheduling Service. Schedules the operations in work plans, with
regards to the topology of the system.

• User Management Service. Used to authenticate users.

• Topology Discovery Service. Used to automatically discover the topology of
the system.

• Watchdog Service. Keeps track of the hardware status.

• Analytics Service. Provides metrics about the system.

OXMES ’s main functionalities are based on the requirements discussed with and
agreed upon with MP. There still are some minor concerns, for example, how does
one develop a good User Management Service. Another thing to remember is not
to make the services too dependent on the specific implementation of each other.
Nevertheless, it should be easy to extend the system after it is handed in, thus
the group should also focus on making decisions that facilitate this (programming
language, documentation, application framework, etc.)

8 Chapter 3. Previous work

U
ser

G
atew

ay

W
o

rk Plan
Service

O
rd

er
Service

W
a

tch
d

o
g

Service

U
ser

M
an

agem
ent

Service

A
n

alytics
Service

PLC
 G

atew
ay

A

P
I C

lien
ts

E
ven

t B
u

s

U
ser

Interface
ER

P

PLC
P

LC
...

Top
ology

D
iscovery

Service*

Top
ology

D
iscovery

Service*

Top
ology

Service+
Top

ology
Service+

O
peratio

n

Sch
ed

uling
Service*

O
peratio

n

Sch
ed

uling
Service*

O
rd

er
Sch

ed
uling

Se
rvice*

O
rd

er
Sch

ed
uling

Se
rvice*

O
nly 1

0, 1 o
r m

ore

Figure
3.2:

System
architecture.

Som
e

services
are

optional,and
som

e
services

m
ay

have
m

ultiple
im

plem
entations

running
concurrently.

A
plus

(+)
illustrate

that
the

service
is

required.A
star

(*)
illustrate

that
the

service
is

optional.

3.3. Development plan 9

3.3 Development plan

The plan for the second part of this project is to implement OXMES while looking
at the available technologies on which this can be built. This can be summarised
as:

• Review the requirement list and prioritize this in terms of usability and im-
portance for the overall system

• Find a suitable language to write the software, a framework on which to
build the micro service architecture and a protocol to communicate with low
level hardware

• Write the software for OXMES, model its databases and design its API

• Evaluate OXMES in terms of usability and extensibility

CHAPTER 4
Problem statement

This chapter describes the goal of this project in terms of: its evolution from previ-
ous work, milestones for this semester, and the knowledge gained while working
on it.

Considering that we already decided to implement the architecture previously de-
signed for OXMES, the goal we are mainly interested in, is related to the handover
of this project. This can be formulated as:

How can we facilitate that the system being built will live on?

Based on this goal, we can relate to a couple of other relevant aspects, which will
be discussed, for the rest of report:

Have we followed the initial system design and user requirements?

Do we comply with the user requirements?

How will the end result be evaluated?

What is the conclusion of this project and what remarks are there for future work?

In a more objective manner, the obstacles that lie ahead are related to choosing the
technologies to be used when implementing OXMES, together with proper devel-
opment techniques for the software. The following chapter consists of a detailed
overview of the decisions taken before actually starting to write code.

11

CHAPTER 5
System design

In this chapter, we will dive into analysing how the implementation of the different
parts of the system should be prioritised. Following this, we will discuss how to
implement the different features of the system, by looking at the programming
language, frameworks and protocols to use.

5.1 Prioritisation

In this section, we establish a prioritised list of features of the system, and by ex-
tension therefore, which services from the micro service reference architecture to
implement [10]. As this is just a half-year project, with only two people working on
it, it is clear that covering the entire feature set of the reference architecture will be
near impossible. Therefore, it is important to understand early, which features are
necessary to operate the conveyors, issue orders and actually observe them being
manufactured, such that the product of this project can adequately entice the De-
partment of Materials and Production (MP) and/or the Department of Computer
Science of Aalborg University to continue the development of OXMES.

The initial requirement list from [10] has been considered. The user stories in
Sections 5.1.1 and 5.1.2 have been written based on discussions with MP. This
resulted in the prioritised list of services in Section 5.1.3, which can also be seen as
the order in which the services of OXMES should be implemented.

5.1.1 User story 1: Creating product orders

As a Smart Production Lab user, I want to be able to create and overview product orders,
so that I can get the Festo CP running.

13

14 Chapter 5. System design

This user story focuses on having a way to initiate product orders, to be executed by
the physical modules. The goal of the user might be either to produce something,
or test the system as a whole. Either way, the order concept facilitates coordination
between the physical modules, since it contains information about what actions
need to be done and when. The result is, being able to input new orders, see
existing orders, and watch the physical system execute them.

5.1.2 User story 2: Configuring the topology of the system

As a Smart Production Lab user, I want to be able to easily change the topology of the
system, so that I can move or add production modules.

This user story deals with the topology of the physical modules in the system. The
Lab users often change it for various reasons: demonstration, testing, experiment-
ing, etc. The goal is to have an easy way to tell the MES what the new topology is,
so that communication with the modules and scheduling of operations are done
accordingly. The fact that changing the topology has to be done in an easy and
intuitive manner has been brought into discussion by MP several times. The re-
sult would be compared with the existing way of defining new topologies, and
evaluated in terms of usability.

5.1.3 Prioritised list of services

The following list contains the services envisioned in the architecture of OXMES.
The list is a reiteration of the nine services introduced in Section 3.2, and it contains
further details about their implementation. The user stories played an important
role in prioritising the elements in the list. The prioritisation was also done with
regards to the core services of OXMES (Order-, Topology-, Order scheduling-, Work
plan- and Operation Scheduling services), thus these essential services are placed
higher. However, the list does not contain the foundation of OXMES (User Client,
User Gateway and PLC Gateway). This means that a good amount of time will be
reserved for implementing the foundation, before working on the services.

The services have been divided into three categories, in regards to the priority of
their implementation. First, the high priority services:

1. Order service is used to handle the order abstraction, containing all the in-
formation necessary for the products to be manufactured.

2. Topology service is needed to map the location of the physical modules.
Additionally, it will contain a database of their capabilities. Without this
service, it would be very hard to execute orders, and the system would not
be as reconfigurable as intended.

5.2. Operation-to-application Mapping 15

Medium priority services:

3. Order scheduling is done based on their priorities and requested start times.
This can also be done in a FIFO (First-In, First-Out) manner.

4. Work plan is the abstraction of the operations needed to be done in order to
manufacture a product.

5. Operation scheduling can be done with regards to individual orders and
their respective work plans. A more advanced approach would be to combine
operations from different work plans to achieve production efficiency.

6. User management is worth looking into. The idea is for the system to be able
to authenticate users and provide access to the MES’s functionality accord-
ingly.

Low priority services:

7. Topology discovery is a neat addon to the topology service. However, with
a good topology service, the discovery is more of a luxury to have in a MES.
Also, the way the modules are discovered, is a whole different subject than
the goal of this report.

8. Watchdog is a nice-to-have feature, but will most likely not be implemented.
We will assume that everything is working.

9. Analytics are not really needed at the moment.

5.2 Operation-to-application Mapping

In the Festo MES, each operation in a work plan is mapped directly to the appli-
cation that must execute it. This puts the responsibility operation-to-application
mapping on the operator creating the work plan. This is also the biggest hindrance
to exploiting any inherent parallelism in the MMS.
Instead of this approach, we propose moving the operation-to-application map-
ping responsibility to the MES. To do so, we extend the applications with a list of
supported operations. Additionally, we propose to describe operational ranges for
each operation supported by an application, to support more generalised applica-
tions.

5.3 Language Choice

The goal of this project is not only to provide a running product, but also to pro-
vide a base for further development. The importance of the choice of language is

16 Chapter 5. System design

therefore even greater; not only should there be good library and framework sup-
port for the language, but the language should also be approachable, especially for
production engineering students and faculty, who presumably have less exposure
to the various modern languages compared to computer science students, and who
may not be able to adjust to languages that are drastically different from ones they
have already learnt.
Other than being easy to approach, there should also be good tools to develop
micro-services in the language. This includes comprehensive and well documented
frameworks and libraries. Additionally, the language, frameworks and libraries,
should also have good community support, to allow us to quickly overcome any
edge-case shortcomings in the official documentation. Lastly, to shorten the devel-
opment lead up time, the language should be familiar to us.

To understand the programming language proficiencies of the students in the De-
partment of Materials and Production, we approached our contact at the depart-
ment, and asked which language he would prefer for himself and his students. He
reckons that C would be the easiest language. Now, while C is a great language
for embedded software, for other high level projects like this, it falls short in its
language features and library support. But while the chosen language probably
should not be C, to make transition easier for production engineering students, it
should probably be C-like and structured and imperative. To sum it up, the follow-
ing list contains the important conditions for choosing the programming language
to use:

• C-like
• relatively easy to use and/or learn
• relative knowledge of the language both in MP, but also among the members

of this group
• availability of libraries and frameworks necessary for OXMES
• cross-platform

Based on these requirements, we considered the following languages: C++, Java,
JavaScript, C# and Python.

C++ is the only language on the list that is entirely unmanaged. This naturally
increases the chances of memory leaks, compared to the other languages. While
the object oriented nature of C++ might make the project more maintainable than
it would be in C, it still suffers from problems with cross-platform development,
requiring some platform specific code for all supported platforms, and individ-
ual compilation for each targeted platform. This makes it less than ideal for the
purpose of this project.

5.3. Language Choice 17

Java is industry approved as a cross-platform language for enterprise software.
This results in excellent community support and a vast collection of libraries. With
Java EE and the Java API for RESTful Web Services (JAX-RS) specification, there is
support for easy development of RESTful web APIs.

JavaScript is an old client-side scripting language primarily used on the web to
compliment HTML. Recently with Node.JS, there has been a trend to use JavaScript
for server-side development. Choosing JavaScript and Node.JS also allows for us-
ing TypeScript, a Microsoft language which is developed as a superset of JavaScript
to overcome some of its weaknesses, with the inclusion of classes, optional types,
generics and namespaces. TypeScript can be transpiled to JavaScript.
Unfortunately, the world of Node.JS evolves quickly, and the favourite framework
of the month with developers is ever changing. This could make maintenance dif-
ficult, as the framework might go out of fashion within the lifetime of the software.

C# was traditionally a Windows-first language, with first-party support for Win-
dows only, and limited third-party support for Unix-like systems via the Mono
project. However, in recent years, Microsoft has moved towards Unix-like systems
with the cross-platform .NET Core runtime and .NET Standard language specifi-
cation. While true cross-platform GUI applications are still missing, console appli-
cations are finally truly cross-platform, which is of course enough for a web API.
With the first-party web framework ASP.NET Core, developing a web API in C#
has become a simple task.

Python is a language that facilitates quick prototyping, and focuses on code read-
ability. Being a general-purpose language, it can be used for development of both
small and large projects and it is supported on most modern operating systems.
It features a lot of web frameworks, both low-level and high-level frameworks, so
research of these is needed in order to make a choice for which one to use. Among
the most popular and well maintained frameworks are: Flask and Django. Django
in particular is well documented, includes tools that can be useful in a variety of
projects and focuses on rapid development.

5.3.1 Decision

In the end, we decided to continue with C#. It has serious, first party support and
documentation for good frameworks like ASP.NET Core and Entity Framework
Core, which work across a host of platforms. With the exception of C++, it is
also the language that is most similar to C. Additionally, MP has a researcher with
a computer science background who is accustomed with C#. Lastly, this is the
language that we have most collective experience with working in, which should
make it easier to start work on constructing OXMES.

18 Chapter 5. System design

5.4 Frameworks

To simplify the development of the micro services, all services are implemented
with the same framework: ASP.NET Core.

5.4.1 ASP.NET Core

ASP.NET Core is a reimplementation of Microsoft’s famous ASP.NET framework.
Together with .NET Standard and .NET Core, it forms the backbone of Microsoft’s
new push in the open source environment. For the first time ever, this trifecta of
.NET tools provide a true first-party cross-platform C#, and .NET platform. This
allows us to fulfil our requirement to be cross-platform, thus making development
and maintenance easier, by not requiring a single platform. Within ASP.NET Core,
the Model-View-Controller (MVC) framework is used to realise REST APIs. With
simple class and method attributes, the framework handles routing of requests to
specific methods.

As the name suggests, the MVC is made up of three complementary components.
The model is working with data in an application. In trivial scenarios, it should
be able to read data from a database and send it to the view of the application.
An example for a more complex task is having to read data from a database, per-
form changes in regards to the controller’s requests, and write the data back to the
database. The view is the User Interface, and is only responsible for displaying
information. It is the task of the controller to handle the requests from users and
interact with the model [8].

5.4.2 Entity Framework Core

Entity Framework is an object-relational mapping (ORM) framework. It maps a
database with a model, and abstracts away the underlying database. This ensures
consistency between the model and the database, and allows developers to work
directly on the objects without worrying about how to commit the changes to the
database.

Entity Framework was part of the .NET Framework until version 6.0. With the
launch of .NET Core, Entity Framework had to be completely rewritten to be
adapted for .NET Core, and received a new name: Entity Framework Core (EF
Core), and the version numbering reset to 1.0. Unlike the versions before, EF Core
is not included in the .NET Framework, but is instead pulled as an external pack-
age.

5.4. Frameworks 19

There are two approaches when using EF Core, database first and code first. Database
first, can be applied if a database already exists, or if you find it easier to start
development with a database. In this case, EF Core will use reverse engineering
to create a model that fits the database. Code first lets the you create your model
in code, and EF will then generate the database fitting it, either by producing the
necessary Data Description Language (DDL) script, or automatically at runtime.
When using code first, EF Core supports two ways of describing the database con-
straints of model properties: Fluent API and Data Annotations [9]. With Fluent API
developers add constraints to properties with code in the DbContext classes. For
example, specifying the primary key of a model can be done like:

1 class TopologyContext : DbContext
2 {
3 public DbSet<Topology> Topologies;
4

5 protected override void OnModelCreating(ModelBuilder
modelBuilder)

6 {
7 modelBuilder.Entity<Topology>()
8 .HasKey(t => t.TopologyId);
9 }

10 }

Listing 5.1: Specifying a primary key in Fluent API

Data Annotations uses property attributes in the model to describe constraints.
Specifying a primary key, like in the example above can be done as follows with
Data Annotations:

1 class Topology
2 {
3 [Key]
4 public static int TopologyId { get; set; }
5 }

Listing 5.2: Specifying a primary key with Data Annotations

While the Fluent API and Data Annotations represent two different approaches to
accomplish the same task, both can be used together; in fact, as of EF Core 2.0,
Data Annotations still does not support the full range of possibilities that Fluent API
does, and it is therefore often necessary to use Fluent API for at least a part of the
database specification in code.
When using the code first approach, EF Core also support Migrations. Migrations
adds database version information to the database, and takes snapshots of the

20 Chapter 5. System design

model, to support automatically migrating data in the database upon changes to
the model.

For the development of the OXMES’s services, the code first approach will be used
with primarily Data Annotations. While we have the old MES’s Microsoft Access
database, we decided not to use it directly as our model (as in the database first ap-
proach). The reason for this, is that it would be more flexible for us to design new,
separate databases for the services, while including new features, and still use the
original MS Access database as inspiration. On top of this, it would be easier and
more transparent to implement the necessary data relationships ourselves using
the EF’s code first approach.

5.5 Protocols

OXMES will have to control low-level hardware. This can be done by using a
communication protocol: OPC UA.

5.5.1 OPC UA

OPC UA (Open Platform Communication Unified Architecture) is a specification
describing a machine-to-machine communication protocol. Its predecessor (Classic
OPC) was tied to Windows machines, due to the fact that it used COM/DCOM as
its main communication technology. The newer OPC UA is designed to use web
service technologies, thus making it possible to be used on different platforms.

OPC UA uses the client/server model. Typically, low-level hardware, such as a
PLC acts as an OPC UA server. A different service on the client side takes requests
from the client application (this can be a control system or a web platform).

Figure 5.1 shows the OPC UA architecture. Inside the Server application, real life
objects (such as sensors, valves) are represented as Nodes, in the OPC UA address
space. By reading or writing values to the Nodes, the PLC’s state can be looked at,
or the PLC can be instructed to run actions. The server application also provides
a subscription mechanism, in the form of monitored items, that regularly interact
with the clients. Clients have access to the nodes by using the different services
defined in the specification (such as Read or Write) [1].

OPC UA was recommended as the protocol to be used for communicating with
the PLCs, by MP. On top of this, it is seen as the key standard in this field of
work. OPC Foundation has released their OPC UA reference implementation for
.NET Standard (and thus for .NET Core) [2]. This means that it should be trivial

5.5. Protocols 21

Client application

Client API

Communication stack

Server API

Communication stack

Server application

Real
Object

OPC UA address space

Node

Node

Node
Monitored

Item

Client
requests

Server
responses

O
PC U

A
 C

lient
O

P
C

 U
A

 S
erve

r

Figure 5.1: OPC UA (simplified) [3]

to embed the Client in our PLC Gateway service. As for the Server, which runs on
the PLCs, it seems that Festo (the PLC manufacturer), has included the protocol in
some of their products [11]. However, more research needs to be done in order to
fully understand the compatibility of OPC UA with the production modules used
at MP. The reason for not doing this, is that the PLC Gateway is not on the project
backlog.

CHAPTER 6
System

Implementation
This chapter will cover important details regarding the tools used for implementing
OXMES. In the second part of the chapter, we will discuss interesting aspects of
the work done on OXMES’s services, and in the end we will evaluate our technical
decisions.

6.1 Frameworks

The micro services are implemented using ASP.NET Core, and the data they work
with is handled by Entity Framework Core. The following subsections contain
details about these tools.

6.1.1 ASP.NET Core

ASP.NET Core with the built-in Model-View-Controller (MVC) framework and
Kestrel web server makes development of RESTful web services easy.
Since we have no plan to implement a Web UI for any of the services in OXMES,
the view-part of MVC will not be used. Instead, only the model- and controller-parts
will be used. The framework includes routing middleware to automatically route
requests to the relevant controller. The controller of an ASP.NET Core web server
will serve the requests, and will generate appropriate responses to be sent back.
In order for the framework to know exactly which controller to use when, each
controller must use decorators. Take for example the decorator of a controller class
as seen in Listing 6.1: any incoming requests to /api/services will be routed
to the class ServicesController by the framework middleware. Methods in

23

24 Chapter 6. System Implementation

this controller class can also be decorated with attributes of their own, to direct
specific requests to them. One of the valid decorators is [HttpGet]. [HttpGet]
will direct the middleware to route any GET requests to the decorated method.
The decorator can also contain extra routing information, like [HttpGet("id")]
which will direct the middleware to route any GET requests with a value appended
on the route, to the decorated method. Regarding the methods we see in Listing
6.1: any HTTP GET request to /api/services will be executed in the method
ListServices(), while any request like /api/services/5 where 5 is an arbi-
trary ID, will be executed with the method GetService(5). Similar decorators
exist for the HTTP verbs DELETE, OPTION, PATCH, POST and PUT.
The use of these attributes make implementing RESTful APIs significantly easier.

1 [Route("api/services")]
2 public class ServicesController
3 {
4 [HttpGet]
5 public IActionResult ListServices()
6 {
7 // return a list of all services
8 }
9

10 [HttpGet("{id}")]
11 public IActionResult GetService(int id)
12 {
13 // return service with ID==id
14 }

Listing 6.1: Example of a class routing attribute: [Route("api/services")] and method routing
attributes: [HttpGet] and [HttpGet("id")]

ASP.NET Core also includes Kestrel, an open source, cross-platform and lightweight
web server. Using Kestrel allows for OXMES to run on the most common plat-
forms, including Windows, macOS and Ubuntu. This allows for flexibility to
develop and run OXMES on whichever platform is desired. As a lightweight
web server, Kestrel does not support many complex features that web servers like
Apache, IIS and nginx support. Therefore, the official documentation recommends
against exposing Kestrel directly to the Internet. Instead Kestrel should be hidden
behind a reverse proxy server like Apache, IIS or nginx.

6.1. Frameworks 25

6.1.2 Entity Framework Core

One of the things that is quickly learned when using Entity Framework Core (EF
Core), is that there are often several ways to achieve the same result.

6.1.2.1 Database context

The entry point for EF Core is through a class extending the class DbContext.
A model can be passed to EF Core through DbSet<T> properties in the DbCon-
text, where T is a model class. This class, and all model classes it references will
automatically be mapped to the database. It is also in DbContext that database
constraints are defined with Fluent API.
Listing 6.2 shows an example of a DbContext class.

1 public class TopologyContext : DbContext
2 {
3 public DbSet<Models.Topology> Topologies { get; set; }

4
...

5 protected override void OnModelCreating(ModelBuilder
modelBuilder)

6 {
7 base.OnModelCreating(modelBuilder);
8

9 modelBuilder.Entity<TopologyModuleConveyor>()
10 .HasKey(tmc => new { tmc.ModuleConveyorId,

tmc.TopologyId });

11
...

12 }
13 }

Listing 6.2: Parts of TopologyContext

6.1.2.2 Data relationships

The nature of a MES is to store data which is further associated with other data
sets. For this reason, different types of relationships will have to be implemented
between EF entities.

A one-to-many relationship is modelled as seen in Listing 6.3 and Listing 6.4. First,
the parent entity defines a collection (it can also be an enumerable) of objects con-
taining the child data. Then, in the model of the child, the parent property is
included.

26 Chapter 6. System Implementation

32 public virtual ICollection<OrderPosition>
OrderPositions { get; set; } = new List<OrderPosition>();

Listing 6.3: Order model (parent), containing the OrderPosition property

23 public virtual Order Order { get; set; }

Listing 6.4: OrderPosition model (child), containing the Order property

By using Fluent API , the one-to-many relationship can be configured based on the
properties in the two models, as seen in Listing 6.5:

24 protected override void OnModelCreating(ModelBuilder
modelBuilder)

25 {
26 modelBuilder.Entity<Models.Order>()
27 .HasMany(op => op.OrderPositions)
28 .WithOne(o => o.Order)
29 .IsRequired();
30 }

Listing 6.5: OrderContext

In the case of many-to-many relationships, the child entity will also define a col-
lection of objects containing the parent’s properties. This is too confusing for EF
Core; it can no longer automatically recognise the relationships. Instead, an extra
associative class has to be created which binds a single parent to a single child.
Both the parent class and child class then needs to contain a collection (or enu-
merable) of the associative class instead of direct references to one another. Lastly,
the relationship must be configured using Fluent API. In Listing 6.6 we have an
associative class called TopologyModuleConveyor, to store the keys of both a
Topology and a Module Conveyor. Next, a many-to-many relationship is mapped
between the Topology and ModuleConveyor entities.

6.1. Frameworks 27

28 protected override void OnModelCreating(ModelBuilder
modelBuilder)

29 {
30 modelBuilder.Entity<TopologyModuleConveyor>()
31 .HasKey(tmc => new { tmc.ModuleConveyorId,

tmc.TopologyId });
32

33 modelBuilder.Entity<TopologyModuleConveyor>()
34 .HasOne(tmc => tmc.Topology)
35 .WithMany(t => t.TopologyModuleConveyors)
36 .HasForeignKey(tmc => tmc.TopologyId);
37

38 modelBuilder.Entity<TopologyModuleConveyor>()
39 .HasOne(tmc => tmc.ModuleConveyor)
40 .WithMany(mc => mc.Topologies)
41 .HasForeignKey(tmc => tmc.ModuleConveyorId);
42 }

Listing 6.6: TopologyContext

It should be noted, that like many-to-many relationships, associative classes are
also needed for one-to-one and one-to-many relationships where the parent and
child are instances of the same class.

6.1.2.3 Foreign keys

EF Core is often able to figure out what the primary key of an entity should be.
This is done by either looking for a property named using the class name appended
with Id. For example, the property OrderId will automatically be used as pri-
mary key for the class Order, if no manual alternatives are provided. Primary
keys can also be configured by adding the [Key] data annotation to any of the
properties.

When working with data relationships, it is recommended to manually specify
a foreign key to keep track of these relationships. This can be done by either
including the [ForeignKey] data annotation in the model, or by calling .Has-
ForeignKey() using Fluent API.

6.1.2.4 Serialisation

Serialisation of data needs to be considered when working with Web APIs. This is
because it generally should be avoided to send too much data to a client at once.

28 Chapter 6. System Implementation

This is both due to the bandwidth requirements, but more importantly to reduce
unnecessary load on the database. Furthermore, sending implementation-specific
data should be avoided, as it is not relevant for the client, and might even contain
sensitive information.
By default, ASP.NET Core will serialise all public properties to JSON. To exclude a
property, the [JsonIgnore] attribute can be used on the property.

6.2 Services

This section contains information about the services that have been implemented
and experimented with as part of OXMES.

6.2.1 User Gateway

The User Gateway is the service positioned as gateway for the user clients into the
micro service architecture. It is supposed to collect all API calls that the user clients
might need into a single service. This allows the user clients to ignore the fact that
the backend is a micro service architecture.
Since by the nature of the User Gateway it becomes critical that it is running for the
whole system to be functional, and to reduce the total number of services, the User
Gateway is also responsible for hosting service discovery, and hosting the Event
Bus.

6.2.1.1 Service Discovery

Service discovery is implemented as a REST service of User Gateway. Services
must announce their presence to the User Gateway with a HTTP POST using the
Service model (see Section 6.2.1.3). Known services are stored in an in-memory
database. This means that services must announce their presence every time they
and the User Gateway start. Services may query the User Gateway for the identity
of other services based on UUID, name or type. To see more about how services
can do this, see Section 6.2.1.4.
When a service shuts down, it must either announce this with an HTTP DELETE,
or if its connected to the Event Bus, with a Service Shutdown event.

6.2.1.2 Event Bus Server

The Event Bus is implemented with WebSockets. Along with a REST HTTP Server,
the User Gateway implements a WebSocket server. Services should connect to the
User Gateway with a WebSocket connection, and keep the connection open for the
duration of its runtime. Using the Event Bus, services subscribe to events they

6.2. Services 29

want to receive.
When a service generates an event, it must be sent to the User Gateway over Web-
Socket. The User Gateway will find all services that are subscribed to that type of
event, and forward it to those services.

The implementation of the WebSocket server in ASP.NET Core has a quirk that
should be noted, as it can possibly make the Event Bus Server extra vulnerable
to denial of service (DOS) attacks. When a WebSocket clients connections to the
WebSocket server, a new thread is created to service the connection. If this thread
is closed, the WebSocket server implementation will automatically close the Web-
Socket connection. Therefore, to keep the WebSocket connection alive, the Event
Bus Server is not allowed to let the request thread run to completion. Instead, each
connection thread must enter a receive-loop, beginning with a blocking receive call.
It is unknown whether the framework uses a thread pool, and will reuse threads
while they are blocked.

6.2.1.3 Model

Though the User Gateway must be able to service many of the requests that other
services handle, like getting a list of all topologies, these requests are mostly just
forwarded to the responsible service. Therefore, the User Gateway does not need
a model for the data sent in these requests.
The User Gateway does however have a model representation of a service.

Service This model represents services of the micro service architecture. The
properties of the Service are as follows:

Name Type Description
UUID Guid A unique UUID assigned to the service by the User

Gateway
Name String A unique name assigned to the specific implementa-

tion of the service
DisplayName String A pretty name of the service, used to display to the

user
ServiceType int An integer denoting the service type
ServiceAddress String The URI to the service
IsActive bool Whether the service is active. Used when two services

of the same type are present

30 Chapter 6. System Implementation

6.2.1.4 Controller

User Gateway implements the following controllers: ApplicationsController,
ModuleConveyorsController, PingController, ResourcesController,
ServicesController and TopologiesController.
Among these controllers, the Applications-, ModuleConveyors-, Resources-
and TopologiesController all just function as proxies to the Topology Service,
and therefore their signature is identical to their corresponding equivalent in Topol-
ogy Service, as seen in Section 6.2.3.3.

PingController exists to provide other services and clients with a way to identify
whether the User Gateway is still alive. It supports just one request:

• Ping with message
GET api/ping/{message}
If User Gateway is ready responds with 200: {message}, where {mes-
sage} is an arbitrary string message passed as part of the route.

ServicesController provides an interface to services. This allows services to an-
nounce themselves and search for others. It supports the following requests:

• Get all registered services
GET api/services
Responds with status code 200 and JSON array of all registered services, if
User Gateway is ready.

• Get service by UUID
GET api/services/{uuid}, where {uuid} is a valid UUID
Responds with:

– 200: And the Service with UUID = {uuid}.

– 404: If no services exist with the given UUID.

• Get active service by service type
GET api/services/type/{serviceType}, where {serviceType} is an
integer representing a service type
Responds with:

– 200: And the Service with ServiceType = {serviceType}.

– 204: If no active services exist of the given type.

• Get by service name
GET api/services/name/{serviceName}, where {serviceName} is a
string
Responds with:

6.2. Services 31

– 200: And the Service with Name = {serviceName}.

– 404: If there is no service with the given name.

• Announce service
POST api/services, with a Service object as request body
Responds with:

– 201: And an identical Service object with the UUID field set.

• Update service
PUT api/services/{uuid}, where {uuid} is the UUID of the Service
to update, and with the updated Service object in the request body.
Responds with:

– 200: If the service was updated.

– 400: If {uuid} does not match the UUID in the supplied Service
object

– 404: If there is no service with the given UUID.

• Remove service
DELETE api/services/{uuid}, where {uuid} is the UUID of the Ser-
vice to remove.
Responds with:

– 200: If the service was removed.

– 404: If there is no service with the given UUID.

To see more detailed documentation of the User Gateway API, see Appendix B.

6.2.2 User Management Service

Development of this service has been postponed indefinitely, due to complications
with implementing it. ASP.NET Core provides an authentication and authorisation
framework, and using this is strongly recommended by Microsoft, but how to use
this framework in micro service architectures, where the user management service
is not the gateway, is not documented well enough. Thus implementing it has
proven difficult, and with limited time, it has been deemed better to focus on other
absolutely essential services for the functionality of the MES.

6.2.3 Topology Service

The purpose of the Topology Service is to track the topology of the modules,
resources and applications in the modular manufacturing system (MMS). This
service also tracks the capabilities of applications, thus offloading operation-to-
application mapping to the MES, rather than the operator.

32 Chapter 6. System Implementation

6.2.3.1 Model

The model of the Topology Service consists primarily of the classes Topology,
ModuleConveyor, Resource, Application, ApplicationOperation, Range
and RangeParameter. Objects of these classes are available through the ser-
vice controllers. Aside from these, are also the classes TopologyModuleCon-
veyor, ConveyorLink and ModuleConveyorConveyorLink, which exist pri-
marily for EF Core to correctly map the relationships of the other model classes.
TopologyModule- Conveyor, ConveyorLink and ModuleConveyorConvey-
orLink are all serialised into other formats, ad thus not exposed to clients.
Figure 6.1 shows all the model classes and their relationships.

applicationoperations

ApplicationOperationId INT(11)

ApplicationId INT(11)

OperationId INT(11)

OperationName LONGTEXT

Indexes

applications

ApplicationId INT(11)

ApplicationName LONGTEXT

ResourceId INT(11)

Indexes

conveyorlink

LinkId INT(11)

ModuleConveyorSourceId INT(11)

TopologyId INT(11)

Indexes

conveyors

ModuleConveyorId INT(11)

ModuleConveyorName LONGTEXT

PlcIpAddressString LONGTEXT

PlcMacAddressString LONGTEXT

Indexes

moduleconveyorconveyorlink

ModuleConveyorId INT(11)

ConveyorLinkId INT(11)

PortNumber INT(11)

Indexes

rangeparameters

Id INT(11)

DefaultValue DOUBLE

Maximum DOUBLE

MaximumFunction LONGTEXT

Minimum DOUBLE

MinimumFunction LONGTEXT

Name LONGTEXT

RangeId INT(11)

Indexes

ranges

Id INT(11)

ApplicationOperationId INT(11)

Name LONGTEXT

Indexes

resources

ResourceId INT(11)

ModuleConveyorId INT(11)

ResourceName LONGTEXT

Indexes

topologies

TopologyId INT(11)

IsActive BIT(1)

TopologyName LONGTEXT

Indexes

topologymoduleconveyor

ModuleConveyorId INT(11)

TopologyId INT(11)

Indexes

Figure 6.1: An EER Diagram of the model for the topology service

6.2. Services 33

Topology represents a topology. The properties of Topology are as follows:

Name Type
TopologyId int
TopologyName string
IsActive bool
TopologyModuleConveyors IEnumerable<TopologyModuleConveyor>
ConveyorLinks IEnumerable<ConveyorLink>
ConveyorIds int[]
ConveyorLinkIds IDictionary<int, IDictionary<int, int»

The properties TopologyModuleConveyors and ConveyorLinks are used to
help EF Core model the relations to ModuleConveyor and ConveyorLinks. When
serialised, these turn into ConveyorIds and ConveyorLinkIds respectively.
ConveyorIds is an array of the ID’s of the module conveyors in the topology.
ConveyorLinkIds denotes the links in a topology, in a more serialiser-friendly
manner. The first integer in this construct denotes the ID of a module conveyor,
the second integer denotes the port index of the link, and the last integer denotes
the ID of the destination module conveyor.

ModuleConveyor represents a module conveyor. The properties of Module-
Conveyor are as follows:

Name Type
ModuleConveyorId int
ModuleConveyorName string
PlcMacAddressString string
PlcMacAddress PhysicalAddress
PlcIpAddressString string
PlcIpAddress IPAddress
Resource Resource
ResourceId int?
Topologies IEnumerable<TopologyModuleConveyor>
IncomingConveyorLinks IEnumerable<ModuleConveyorConveyorLink>
OutgoingConveyorLinks IEnumerable<ConveyorLink>

The properties PlcMacAddressString and PlcIpAddressString are string
representations of their PhysicalAddress and IPAddress counterparts. They
exist to make serialisation easier, both to JSON, but also to provide EF Core with a
format it can map to the database, as neither PhysicalAddress nor IPAddress
are types EF Core supports.
The properties Resource, Topologies, IncomingConveyorLinks and

34 Chapter 6. System Implementation

OutgoingConveyorLinks exist to help EF Core understand the relationships
between the different types. To prevent circular references, and to reduce their
size, these properties are not serialised and included in GET responses.

TopologyModuleConveyor exists to help EF Core create a many-to-many rela-
tionship between Topology and ModuleConveyor. The properties of this class
are:

Name Type
TopologyId int
Topology Topology
ModuleConveyorId int
ModuleConveyor ModuleConveyor

As EF Core does not support automatic discovery of many-to-many relationships,
this class also utilises Fluent API to map to the database. The Fluent API for this
class is:

26 protected override void OnModelCreating(ModelBuilder
modelBuilder)

27 {
28 modelBuilder.Entity<TopologyModuleConveyor>()
29 .HasKey(tmc => new { tmc.ModuleConveyorId,

tmc.TopologyId });
30

31 modelBuilder.Entity<TopologyModuleConveyor>()
32 .HasOne(tmc => tmc.Topology)
33 .WithMany(t => t.TopologyModuleConveyors)
34 .HasForeignKey(tmc => tmc.TopologyId);
35

36 modelBuilder.Entity<TopologyModuleConveyor>()
37 .HasOne(tmc => tmc.ModuleConveyor)
38 .WithMany(mc => mc.Topologies)
39 .HasForeignKey(tmc => tmc.ModuleConveyorId);
40 }

Listing 6.7: Fluent API code for TopologyModuleConveyor

ConveyorLink together with ModuleConveyorConveyorLink, represents a
connection between two conveyors. The properties of this class are:

6.2. Services 35

Name Type
LinkId int
ModuleConveyorSourceId int
ModuleConveyorSource ModuleConveyor
DestinationModuleConveyor-
ConveyorLinks

ICollection<ModuleConveyor-
ConveyorLink>

A link between two module conveyors is described by a triple of properties: a
source module conveyor, the port on the source connected to the destination, and
a destination module conveyor. The property ModuleConveyorSource denotes
the source module conveyor. The port index, and the destination module conveyor
appear in the ModuleConveyorConveyorLink class.

To hide additions to the model that exist only to please EF Core from clients,
objects of this class are not directly serialised. To see the actual format used for
serialisation, see the description of the Topology model.
The Fluent API used to define the relationships of this class is shown in Listing 6.8.

1 protected override void OnModelCreating(ModelBuilder
modelBuilder)

2 {
3 modelBuilder.Entity<ConveyorLink>()
4 .HasOne(cl => cl.ModuleConveyorSource)
5 .WithMany(mc => mc.OutgoingConveyorLinks);
6 }

Listing 6.8: Fluent API code for ConveyorLink

ModuleConveyorConveyorLink represents the relationship between Module-
Conveyor and ConveyorLink. This class exists to help EF Core understand the
many-to-many relationship between the two classes. The properties of this class
are:

Name Type
ModuleConveyorId int
ModuleConveyor ModuleConveyor
ConveyorLinkId int
ConveyorLink ConveyorLink
PortNumber int

A link between two module conveyors is described by a triple of properties: a
source module conveyor, the port on the source connected to the destination, and

36 Chapter 6. System Implementation

a destination module conveyor. The property ModuleConveyorSource of Con-
veyorLink denotes the source module conveyor. PortNumber denotes the port
index (0-based), and ModuleConveyor denotes the destination module conveyor.

To hide additions to the model that exist only to please EF Core from clients,
objects of this class are not directly serialised. To see the actual format used for
serialisation, see the description of the Topology model.
The Fluent API used to define the relationships of this class is shown in Listing 6.9.

1 protected override void OnModelCreating(ModelBuilder
modelBuilder)

2 {
3 modelBuilder.Entity<ModuleConveyorConveyorLink>()
4 .HasKey(mccl => new { mccl.ModuleConveyorId,

mccl.ConveyorLinkId });
5

6 modelBuilder.Entity<ModuleConveyorConveyorLink>()
7 .HasOne(mccl => mccl.ConveyorLink)
8 .WithMany(cl =>

cl.DestinationModuleConveyorConveyorLinks)
9 .HasForeignKey(mccl => mccl.ConveyorLinkId);

10

11 modelBuilder.Entity<ModuleConveyorConveyorLink>()
12 .HasOne(mccl => mccl.ModuleConveyor)
13 .WithMany(mc => mc.IncomingConveyorLinks)
14 .HasForeignKey(mccl => mccl.ModuleConveyorId);
15 }

Listing 6.9: Fluent API code for ModuleConveyorConveyorLink

Resource represents a resource in a topology. At present, it has the following
properties:

Name Type
ResourceId int
ResourceName string
ModuleConveyorId int?
ModuleConveyor ModuleConveyor
Application Application
ApplicationId int?

6.2. Services 37

The property ModuleConveyor denotes the module conveyor on which this re-
source is hosted. Application denotes the application associated with this re-
source. A resource can be an orphan; both ModuleConveyor and Application are
optional.
Only the properties ResourceId, ResourceName, ModuleConveyorId and Ap-
plicationId are serialised to JSON to be transmitted in HTTP requests and re-
sponses; ModuleConveyor and Application are not included, both to reduce
the amount of data sent, and to prevent circular references.

Application represents an application attached to a resource. The properties
of an application are:

Name Type
ApplicationId int
ApplicationName string
ResourceId int?
Resource Resource
SupportedOperations IEnumerable<ApplicationOperation>

The property SupportedOperations is a list of all operations, a given applica-
tion supports.
The property Resource exists to help EF Core understand the relationship be-
tween Application and Resource. It is not serialised to JSON to be transmitted in
HTTP requests and responses. This property is optional; an Application can exist
without being attached to a Resource.

ApplicationOperation represents a single operation an application can per-
form. This class contains the following properties:

Name Type
ApplicationOperationId int?
OperationId int?
OperationName string
ApplicationId int?
Application Application
SupportedRanges IEnumerable<Range>

Despite their similar names the two properties ApplicationOperationId and
OperationId have very different purposes.
The property ApplicationOperationId is the primary key of this class, and is
used only for identification of a particular ApplicationOperation. OperationId

38 Chapter 6. System Implementation

on the other hand, denotes the ID of a particular operation. This ID should be
identical to the ID of an operation in work plans to perform a certain operation.
Despite the relationship between operation ID in ApplicationOperation and work
plans, there is no directly link between them, and therefore no enforcement. The
OperationName is an arbitrary human readable descriptor of the operation, but
it is not enforced whether OperationName is identical between all Application-
Operation with the same OperationId.

SupportedRanges is a list of all the supported n-dimensional operating ranges a
particular application can perform this particular operation.

The property Application exists to help EF Core understand the relationship
between Application and ApplicationOperation. It is not serialised to JSON to be
transmitted in HTTP requests and responses.

Range represents an n-dimensional operating range of a particular operation for
a particular application. It contains the following properties:

Name Type
Id int?
Name string
ApplicationOperationId int?
ApplicationOperation ApplicationOperation
Parameters IEnumerable<RangeParameter>

The property Parameters is a list of supported n dimensions in a range. A di-
mension does not have to denote a physical dimension, such as movement in X-, Y-
or Z-space, but it can also denote an operation specific attribute, such as a specific
drill bit on for drilling.

The property ApplicationOperation exists to help EF Core understand the
relationship between Application and ApplicationOperation. It is not serialised to
JSON to be transmitted in HTTP requests and responses.

RangeParameter represents a single dimension of a range. This class contains
the following properties:

6.2. Services 39

Name Type
Id int?
Name string
RangeId int?
Range Range
Minimum double?
Maximum double?
MinimumFunction string
MaximumFunction string
DefaultValue double?

The properties Minimum and Maximum denote the absolute minimum and maxi-
mum values supported in a dimension.

The property DefaultValue denotes the value to use for work plan operations
if this particular dimension (RangeParameter) is not specified in the work plan. If
this value is not set, this dimension becomes required; all work plan operations
must specify this dimension to be supported in this range.

The properties MinimumFunction and MaximumFunction denotes mathemati-
cal functions describing the minimum and maximum. They exist to support appli-
cations with irregular operating ranges, where the operating range in a dimension
is dependant on the location of one or more other dimensions. The format of
these properties should be like {X}**2, where X is the name of another dimension
(RangeParameter) in the same range.

RangeParameters are identified only by the property Name; the property Id
exists only for database purposes. Similarly, the property Range exists only to
help EF Core.

6.2.3.2 View

While the Topology Service does not have any built-in view, it can be visualised
through the user client.
The user client contains a tab for all data related to topology. Within this tab are
subtabs for Topologies, Module Conveyors, Resources and Applications. Each of
these tabs contain a list of all the corresponding items in the database to the left,
and when an item is selected, a properties panel will appear to the right. So the
Topologies tab contains a list of all topologies in the database to the left, and when
a topology from this list is selected, a panel with all properties of the topology will
appear to the right.

40 Chapter 6. System Implementation

All tabs for the Topology Service allow editing items and pushing those edits to
the Topology Service. They also allow creating and deleting items.

Figure 6.2a (full size in Figure A.1) shows the Topologies tab. As well as the simple
properties, like ID and name, the topologies properties panel contains both a list of
all module conveyors included and not included in the topology. It also contains a
list of all links in the topology, visualised in text with the format
{source module conveyor}:{port index} -> {destination module con-
veyor}

Figure 6.2b (full size in Figure A.2) shows the Modules Conveyor tab. The prop-
erties panel shows the simple properties ID, name, IP- and MAC address, as well
as a drop down list of all known resources, denoting which resource is associated
with the module conveyor.

(a) Topologies tab (b) Module Conveyors tab

Figure 6.2: Screenshots of the user client

Figure 6.3a (full size in Figure A.3) shows the Resources tab. The properties panel
shows the simple properties ID and name, as well as a drop down list of all known
applications, denoting which resource is on top of the resource.

Figure 6.3b (full size in Figure A.4) shows the Applications tab. The properties
panel shows the simple properties ID and name, as well as lists of all supported
operations, ranges and dimensions (range parameters), and the properties for each
of these; when an operation is selected, all properties of that operation are shown to
the right; when a range is selected, all properties of that range are further shown
below; and when a range parameter is selected, all properties of that range are
further shown to the right.

6.2. Services 41

(a) Resources tab (b) Applications tab

Figure 6.3: Screenshots of the user client

6.2.3.3 Controller

Topology Service implements the following controllers: ApplicationsController,
ModuleConveyorsController, ResourcesController and TopologiesCon-
troller.

ApplicationsController handles requests pertaining to applications. It supports
the following requests:

• Get all applications
GET api/applications
Responds with status code 200 and a JSON array of all applications, if Topol-
ogy Service is ready. The applications in the JSON array do not include
nested objects.

• Get application by ID
GET api/applications/{id}, where {id} is a valid ID
Responds with:

– 200: And the Application with ApplicationID = {id}, including
nested objects.

– 404: If no application exists with the given ID.

• Create application
POST api/applications, with an Application object as request body
Responds with:

42 Chapter 6. System Implementation

– 201: And an identical Application object with the ApplicationID
field set.

• Update application
PUT api/applications/{id}, where {id} is the ID of the Applica-
tion to update, and with the updated Application object in the request
body.
Responds with:

– 200: If the application was updated.

– 400: If {id} does not match the ID in the supplied Application
object

– 404: If there is no application with the given ID.

• Remove application
DELETE api/applications/{id}, where {id} is the ID of the Appli-
cation to remove.
Responds with:

– 200: If the application was removed. Response body contains a copy
of the removed application.

– 404: If there is no application with the given ID.

ModuleConveyorsController handles requests pertaining to module conveyors.
It supports the following requests:

• Get all module conveyors
GET api/moduleconveyors
Responds with status code 200 and JSON a array of all module conveyors, if
Topology Service is ready. The module conveyors in the JSON array do not
include information about resources.

• Get module conveyor by ID
GET api/moduleconveyors/{id}, where {id} is a valid ID
Responds with:

– 200: And the ModuleConveyor with ModuleConveyorID = {id},
including resource objects.

– 404: If no module conveyor exists with the given ID.

• Create module conveyor
POST api/moduleconveyors, with a ModuleConveyor object as request
body
Responds with:

6.2. Services 43

– 201: And an identical ModuleConveyor object with the ModuleCon-
veyorID field set.

• Update module conveyor
PUT api/moduleconveyors/{id}, where {id} is the ID of the Module-
Conveyor to update, and with the updated ModuleConveyor object in the
request body.
Responds with:

– 200: If the module conveyor was updated.

– 400: If {id} does not match the ID in the supplied ModuleConveyor
object

– 404: If there is no module conveyor with the given ID.

• Remove module conveyor
DELETE api/moduleconveyors/{id}, where {id} is the ID of the Mod-
uleConveyor to remove.
Responds with:

– 200: If the module conveyor was removed. Response body contains a
copy of the removed module conveyor.

– 404: If there is no module conveyor with the given ID.

ResourcesController handles requests pertaining to resources. It supports the
following requests:

• Get all resources
GET api/resources
Responds with status code 200 and a JSON array of all resources, if Topology
Service is ready. The resources in the JSON array do not include information
about applications.

• Get resource by ID
GET api/resources/{id}, where {id} is a valid ID
Responds with:

– 200: And the Resource with ResourceID = {id}, including infor-
mation about application.

– 404: If no resource exists with the given ID.

• Create resource
POST api/resources, with a Resource object as request body
Responds with:

44 Chapter 6. System Implementation

– 201: And an identical Resource object with the ResourceID field
set.

• Update resource
PUT api/resources/{id}, where {id} is the ID of the Resource to up-
date, and with the updated Resource object in the request body.
Responds with:

– 200: If the resource was updated.

– 400: If {id} does not match the ID in the supplied Resource object

– 404: If there is no resource with the given ID.

• Remove resource
DELETE api/resources/{id}, where {id} is the ID of the Resource to
remove.
Responds with:

– 200: If the resource was removed. Response body contains a copy of
the removed resource.

– 404: If there is no resource with the given ID.

TopologiesController handles requests pertaining to topologies. It supports the
following requests:

• Get all topologies
GET api/topologies
Responds with status code 200 and a JSON array of all topologies, if Topol-
ogy Service is ready. The topologies in the JSON array do not include infor-
mation about module conveyors and conveyor links.

• Get topology by ID
GET api/topologies/{id}, where {id} is a valid ID
Responds with:

– 200: And the Topology with TopologyID = {id}, including infor-
mation about module conveyors and conveyor links.

– 404: If no topology exists with the given ID.

• Create topology
POST api/topologies, with a Topology object as request body
Responds with:

– 201: And an identical Topology object with the TopologyID field
set.

6.2. Services 45

• Update topology
PUT api/topologies/{id}, where {id} is the ID of the Topology to
update, and with the updated Topology object in the request body.
Responds with:

– 200: If the topology was updated.

– 400: If {id} does not match the ID in the supplied Topology object

– 404: If there is no topology with the given ID.

• Remove topology
DELETE api/topologies/{id}, where {id} is the ID of the Topology
to remove.
Responds with:

– 200: If the topology was removed. Response body contains a copy of
the removed topology.

– 404: If there is no topology with the given ID.

For more detailed documentation of the API exposed by the controllers of Topology
Service, see Appendix C.

6.2.4 Order Service

The purpose of the Order Service is to receive orders from one of the user clients,
and store them. These will then be handled by another service, which will schedule
them accordingly, and based on their work plans, instructions will be sent to the
physical modules (the PLCs). Our vision is that these instructions will be routed
through the PLC Gateway.

6.2.4.1 Model

The model of the Order Service consists of three classes Order, OrderPosition
and Product. Objects of these classes are available through the service controllers.
Figure 6.4 shows the model classes and their relationships.

Order represents an order created by a user. This can be seen as a group of
multiple products that need to be produced. For this reason an Order is made
up of one or multiple Order Positions, the latter representing the order-specific
properties of individual products on the line.
This class contains the following properties:

46 Chapter 6. System Implementation

Orders

OrderId INT

Name LONGTEXT

StartTime DATETIME

EndTime DATETIME

State ENUM(...)

Priority ENUM(...)

Indexes

OrderPositions

OrderPositionId INT

StartTime DATETIME

EndTime DATETIME

PlannedStartTime DATETIME

WorkPlanNumber INT

State ENUM(...)

Orders_OrderId INT

Products_ProductId INT

Indexes

Products

ProductId INT

PartNumber INT

Description LONGTEXT

WorkPlanNumber INT

Indexes

Figure 6.4: An EER Diagram of the models for the Order Service

Name Type
OrderId int
Name string
StartTime DateTime
EndTime DateTime
PlannedStartTime DateTime
State Enum
Priority Enum
OrderPositions ICollection<OrderPosition>

Properties StartTime, EndTime, PlannedStartTime are an indication for the
order progress while being handled. This data can be later used by an eventual
Analytics Service to compile statistics about the efficiency of the system. Note that
there is no PlannedEndTime property, as it would be hard to estimate this value,
without knowledge about the scheduling of the orders. For the moment, it was
decided to be more applicable to disregard such a property.
Properties State and Priority denote the state and the priority of an order.
These are modelled as enums, as seen in Listings 6.10 and 6.11.
Lastly, OrderPositions exists to help EF Core understand the relationship be-
tween Order and OrderPosition.

1 public enum State
2 {
3 Created,
4 Started,
5 Completed
6 }

Listing 6.10: State enum

6.2. Services 47

1 public enum Priority
2 {
3 Low,
4 Medium,
5 High
6 }

Listing 6.11: Priority enum

OrderPosition represents the abstraction of an individual product that is go-
ing to be manufactured, based on an existing order.
This class contains the following properties:

Name Type
OrderPositionId int
StartTime DateTime
EndTime DateTime
PlannedStartTime DateTime
WorkPlanNumber int
State State (enum)
OrderId int?
Order Order
ProductId int?
Product Product

Order Position has a few similar properties with Order. It was discussed if these
should be inherited from it, but the idea was not implemented due to the possibility
of over-complicating the model. WorkPlanNumber, Product are properties that
help identify the characteristics of a physical product.
OrderId, Order, ProductId, Product exist to help EF Core understand the
relationship between Order Position and both Order and Product.

Product represents a product that the Festo MMS can build. Based on this
model, a library of products can be added to the database, having each OrderPosi-
tion refer to these.
This class contains the following properties:

48 Chapter 6. System Implementation

Name Type
ProductId int
PartNumber int
Description String
WorkPlanNumber int
OrderPositionId int?
OrderPosition OrderPosition

PartNumber is a unique identifier for the products that can be manufactured.
WorkPlanNumber is the same property that we have in the Order Position. It is
possible that in the future this should only be part of one of these models.
Again, OrderPositionId and OrderId exist to help EF Core understand the
relationship between Product and Order Position.

6.2.4.2 View

The plan is to have the Order Service viewed through the user client. This was not
implemented yet. In Figure 6.5 (full size in Figure A.5), the envisioned view for the
Order Service tab can be seen. For the moment, this was hard-coded in the user
client, but can definitely be used as a template for implementing the functionality
of the service.

Figure 6.5: Screenshot of Order view

One of the important things that can be seen in the Order view is the separation
of past, present and future orders (in the Active-, Pending- and Completed Orders
panels). This is one of the requirements for this service.
Each of these panels will display orders based on the same model described in

6.2. Services 49

Section 6.2.4.1. However, there is no need to display all the properties of an order.
For example, in the Completed Orders panel, there is no need to show the state,
priority or planned started time of an order, as we already know that the orders in
this panel are completed.

6.2.4.3 Controller

The service has three controllers for each of the models in Section 6.2.4.1.

OrdersController handles requests pertaining to orders. It supports the follow-
ing requests:

• Get all orders
GET api/Orders
Responds with status code 200 and a JSON array of all orders. The orders in
the JSON array include nested objects.

• Get order by ID
GET api/Orders/{id}, where {id} is a valid ID
Responds with the Order with OrderId = {id}, including nested objects.

• Create order
POST api/Orders, with an Order object as request body
Responds with status code 201 and an identical Order object with the Or-
derId field set.

• Update order
PUT api/Orders/{id}, where {id} is the Id of the Order to update, and
with the updated Order object in the request body.
Responds with 200 if the order was updated.

• Remove order
DELETE api/Orders/{id}, where {id} is the ID of the Order to remove.
Responds with status code 200 if the order was removed. Response body
contains a copy of the removed order.

OrderPositionsController handles requests pertaining to order positions. It sup-
ports the following requests:

• Get all order positions
GET api/OrderPositions
Responds with status code 200 and a JSON array of all order positions. The
orders in the JSON array include nested objects.

50 Chapter 6. System Implementation

• Get order position by ID
GET api/OrderPositions/{id}, where {id} is a valid ID
Responds with the OrderPosition with OrderPositionId = {id}, in-
cluding nested objects.

• Get order position by order ID
GET api/OrderPositions/Order/{id}, where {id} is a valid Order ID
Responds with the OrderPositions where the foreign key OrderId =
{id}, including nested objects. This is used to get all the order positions
of a specific order.

• Create order postion
POST api/OrderPositions, with an OrderPosition object as request
body
Responds with status code 201 and an identical OrderPosition object with
the OrderPositionId field set.

• Remove order position
DELETE api/OrderPositions/{id}, where {id} is the ID of the Or-
derPosition to remove.
Responds with status code 200 if the order position was removed. Response
body contains a copy of the removed order position.

ProductController handles requests pertaining to products. It supports GET re-
quests. These have not been fully tested, and for this reason, they are not included
in this section.

To see more detailed documentation of the Order Service API, see Appendix D.

6.2.5 Shared Libraries

To increase code reusability, we packaged a number of key functions shared be-
tween services into shared libraries. This allows us to easily apply bug fixes across
all of OXMES, and it makes it easy to start work on new services.

6.2.5.1 ServiceTypes

This library contains a single enum, ServiceTypes. This enum contains all cur-
rently known services and their type ID. These are:

6.3. User Client 51

1 Topology Service
2 Work Plan Service
3 Order Service
4 Operation Scheduling Service
5 Order Scheduling Service
6 Watchdog Service
7 User Management Service
8 Topology Discovery Service
9 Analytics Service

100 User Gateway
150 PLC Gateway
200 User Client

Please note, that not all of these have been implemented; some types are only
defined now to ease future work.

6.2.5.2 ServiceUtilities

This library contains a number of utilities useful for services. Currently, it contains
the C# representation of the Service model. Along with this is also a Service-
Client which currently wraps a standard implementation for registering with the
User Gateway as a service.

6.2.5.3 EventBusClient

This library contains the tools necessary to use the Event Bus as a client. This
includes reference implementations for common events, message type enums, a
message validator to discard incorrectly formatted events, and a client that wraps
all the necessary Event Bus functions, such as connecting to the Event Bus, sending
events, receiving events and disconnecting from the Event Bus.

6.3 User Client

To control OXMES, a client with a graphical user interface (GUI) has also been
developed. Unfortunately, as .NET Core does not yet support GUIs, this client has
been implemented for .NET Framework (Windows-only) using Windows Presen-
tation Foundation (WPF). We deem a Windows-only client acceptable because 1) it
can easily be replaced, and 2) the current Festo MES client we are trying to replace
is also Windows-only.

It is implemented as a single window, and uses tabs to neatly separate informa-
tion. Thus, there is a tab for orders, showing only past, present and future orders,

52 Chapter 6. System Implementation

along with their properties; and a tab for the topology, allowing the user to mod-
ify topologies, modules, resources and applications. At runtime, this client allows
reconfiguring any detail of the topology.

Figures A.1, A.2, A.3, A.4 and A.5 show some screenshots of the client.

6.4 Event Bus

The event bus is specified as a bus all services are connected to, and where any
service can, at any time broadcast an event, and every other service should be able
to receive it. We have implemented this by having all services connect to the User
Gateway with a persistent WebSocket. This allows bi-directional communication
between the User Gateway and a service at all time during their respective lifetime.
To broadcast an event, a service will transmit it to the User Gateway, and the User
Gateway will then forward the event to all other interested services. To receive an
event, a service must first subscribe to the event type with the User Gateway.
User Gateway acts as both the Event Bus server (see Section 6.2.1.2) and as a client
on the Event Bus.

6.4.1 Protocol

Unlike the REST interface the User Gateway and the other services expose, which
is based on HTTP, the WebSocket interface used for the Event Bus does not contain
a well structured protocol. For this reason, we have created our own protocol on
top of what WebSocket does contain to support sending events over WebSocket.

6.4.1.1 Connecting

When an Event Bus client connects, it has to complete three steps:

1. If the service hasn’t already been announced, it must be announced to the
User Gateway as a service.

2. Start a standard WebSocket connection to the Event Bus server
(ws://localhost:5050 by default)

3. Subscribe to messages of type Service Shutdown (see Section 6.4.1.3).

6.4.1.2 Events

Events transmitted over the Event Bus must be serialised as JSON. Events are to
always have all the following fields:

6.4. Event Bus 53

Name Type
messageUuid string
originServiceUuid string
severity int
messageType int
time string
payload any

If any of these fields are missing or wrongly formatted, services should discard the
event, and the Event Bus Server will definitely discard the event.

messageUuid must be a string representing a UUID, generated by the client
sending the event.

originServiceUuid must be a string representing the UUID of the service that
sent the event.

severity must be an integer representing the severity of the event. This is used to
allow more fine-grained control of event subscriptions. Known values are:

10 Trace
20 Debug
30 Info
40 Warn
50 Error
60 Fatal

1000 Control

messageType must be an integer representing the type of message. This is used
for event subscriptions, and for determining how to deserialise the payload. Known
values can be seen in Section 6.4.1.3.

time must be a string containing the ISO 8601 [13] formatted time at which the
event was sent.

payload should be an object. The content of the object depends on the message
type. A list of known events can be seen in Section 6.4.1.4.

54 Chapter 6. System Implementation

6.4.1.3 Common Event Types

The Event Bus is programmed to be forward compatible. This is achieved by hav-
ing a standard polymorphic format. The key in this format is the messageType
property. This property denotes how data should be interpreted. Though it is op-
tional which event types each service supports, there are some all must be able to
support.

Type Name
0 Undefined

10 Subscribe
1000 ServiceShutdown

It is important to note, that 0: Undefined events should be considered errors
and should be discarded.

6.4.1.4 Common Events

Though the Event Bus is programmed to be forwards compatible, supporting new
types of events without any change to the Event Bus Server, there are some events
that are standard, and that all services should understand.

Subscribe event is used by services to subscribe to different types of events.
These events are not broadcasted by the Event Bus server.
The severity field in subscribe events must be 1000: Control, and the mes-
sageType field must be 10.
The format of payload must be an object with the following fields:

Name Type
minimumSeverity int
maximumSeverity int
messageType int

messageType represents the event type being subscribed to. minimumSever-
ity must be an integer representing the minimum severity of events to receive of
type messageType, and maximumSeverity must be an integer representing the
maximum severity. Both are included.
Listing 6.12 shows an example of a Subscribe event, subscribing to ServiceShut-
down events.

6.4. Event Bus 55

1 {
2 "messageUuid": "cbe1b41b-e91a-4fb7-a5b0-00b0fcdcc871",
3 "originServiceUuid":

"15074ecf-a86c-43ca-bfe2-b98a81c8e4b4",
4 "severity": 1000,
5 "messageType": 10,
6 "time": "2018-06-26T08:00:00Z",
7 "payload": {
8 "minimumSeverity" = 30,
9 "maximumSeverity" = 1000,

10 "messageType": 1000
11 }
12 }

Listing 6.12: An example of a Subscribe event message

ServiceShutdown event is used by a service to announce to other services on
the Event Bus, that it is shutting down, to allow other services to clear any cached
information about this service they might have.
The payload of these types of events must be a string representation of the UUID
of the service that will shut down. If a service disappears unannounced the User
Gateway may broadcast a ServiceShutdown event on its behalf, but for all other
services, originServiceUuid and payload must be the same.
Listing 6.13 shows an example of ServiceShutdown.

1 {
2 "messageUuid": "cbe1b41b-e91a-4fb7-a5b0-00b0fcdcc871",
3 "originServiceUuid":

"15074ecf-a86c-43ca-bfe2-b98a81c8e4b4",
4 "severity": 1000,
5 "messageType": 10,
6 "time": "2018-06-26T08:00:00Z",
7 "payload": "15074ecf-a86c-43ca-bfe2-b98a81c8e4b4"
8 }

Listing 6.13: An example of a ServiceShutdown event message

6.4.1.5 Disconnecting

The Event Bus disconnect procedure is split into two parts. First, a disconnecting
Event Bus client must announce on the Event Bus that it is disconnecting. This

56 Chapter 6. System Implementation

is done by broadcasting a ServiceShutdown event. This will let other services
know that the service is going to disappear. Then the service must do a two-way
close handshake, as defined by the WebSocket specification. This means that before
a service can completely close its Event Bus connection, it must wait for the Event
Bus Service to acknowledge that the connection will be closed.

6.5 Evaluation of the technical choices

In this section we review some of the technical choices we made, and see how well
they fit the purpose of the project.

6.5.1 C# language

Using C# as the development language for this project was a good idea. The fact
that one of the members of the group had previous experience with it helped a lot.
There were hardly any obstacles with the syntax, except the syntactic sugar used
in C# which can occasionally differ from other languages. One example of this is
the null-coalescing (??) operator in C# which does not have an equivalent in other
languages. Listing 6.14 shows an example of a null-coalescing operator in action.

1 // Set y to the value of x if x is NOT null; otherwise,
2 // if x == null, set y to -1.
3 int y = x ?? -1;

Listing 6.14: Example of a null-coalescing operator in use [7]

Another aspect worth mentioning, that required some investigation, was the use
of lambda expressions (an example can be seen in Listing 6.15), which are not very
popular in the embedded world.

40 var order = _context.Orders
41 .Include(op => op.OrderPositions)
42 .Where(i => i.OrderId == id);

Listing 6.15: Lambda expression in OrdersController.cs. Here, Include and Where are
applied on each instance of OrderPositions, respectively OrderId

6.5.2 ASP.NET Core

Overall, the choice of ASP.NET Core as the framework to build the services around
has proven a good choice. The simple way to create code to respond to a request
in a RESTful manner, jump started the development of OXMES. It has also allowed

6.5. Evaluation of the technical choices 57

us to work on the micro service architecture, without having a deep knowledge
about it beforehand.
But while the documentation has generally been very helpful, with nice tutorials
maintained by Microsoft, implementing user management turned out to be too
difficult to accomplish in our time frame. This was largely due to the fact that the
existing documentation and tutorials were all based on implementing user man-
agement for a web app for its own Web UI, and for a single-service architecture,
and the examples were not transferable to our architecture.

In ASP.NET Core, there can sometimes be many ways to accomplish the same task,
one example of this is with Fluent API versus Data Annotations in EF Core. This
proved both a strength and a weakness for us. With multiple ways to accomplish
the same task, it was often possible to find a way that fit us. But at the same
time, when searching for a solution to a problem, it could make it difficult to find
something that fit out problem exactly.

6.5.3 Entity Framework Core with code first

The choice for generating the databases for the services using EF Core was a good
one, but it did not come without cost: some of the quirks of EF Core has cost us
significant time to discover and work around.
Using EF Core means that the model only has to be written once, either as code or
as a database. Using code first meant that we never had to leave the comfort of C# to
enter SQL. This sped up development significantly. Additionally, the fact that any
changes to the model can quickly be reflected in the database, even with automatic
migration of data, meant that we could add properties to our model with ease.

Unfortunately, it turned out that our model in many situations needed to adapt
to EF Core. So in effect, the shape of the model, is largely dictated by what EF
Core expects. A clear example of this are all the relationships. Both parties in
a one-to-one relationship should ideally have references to each other, something
that causes problems with the default JSON serialisation. And while EF Core can
recognise and model one-to-one and one-to-many relationships by itself, many-to-
many relationships require extra classes to model the associative tables needed in
the database. Ideally, database logic should be hidden from clients, so these as-
sociative table classes should be hidden. This means that classes having many-to-
many relationships with other classes may need to implement special serialisation
logic.

Another development speed bump is the way references must be loaded at run-
time. By default, when searching EF Core for an entity, it will not include data from
references; when searching for entities in EF Core, you have to manually specify in

58 Chapter 6. System Implementation

the query which relationships should be included in the response.
In Listing 6.15 you can see, how it has been manually specified that information
from the OrderPositions property should be included with the result.

6.5.4 Database server

Considering the fact that OXMES will have several services that need to store data,
a question that arises is:

Is it better to have a single database server with several databases, or multiple instances of
an database server?

The main argument for running multiple database servers is that services will be
very strictly isolated from each other; the failure of one does not directly influence
others. Likewise, if a database server itself fails, only a single service will fail too.
However, until now, this has not been a concern for the project, as the 2 imple-
mented services can easily share a single database server, and since both services
are critical for operation, so if one fails, the other might as well fail too. In the
future, it should be considered that OXMES will run on a less powerful PC, which
might not provide the performance necessary to host multiple database servers.
Additionally, it should be considered that reducing the number of database servers
will also decrease the amount of work necessary to maintain them, especially when
you reduce the number of different types of database servers.
Also, as it is the case that some of OXMES’s services might need to use each others
data, then the second scenario might result in unnecessary overhead.

6.5.5 API documentation

For the purpose of writing the API documentation, we used the Swashbuckle [5]
implementation of Swagger [12] for ASP.NET Core. Out of the bundle of tools
Swagger provides, the ones we used the most were Swagger UI and the auto-
matic documentation generation. The use of Swagger was trivial, once the proper
toolchain is set up. The documentation itself is pulled from the existing C# XML
Documentation as seen in Listing 6.16.

6.5. Evaluation of the technical choices 59

37 /// <summary>
38 /// Gets individual orders
39 /// </summary>
40 /// <param name="id">The ID of the order</param>
41 /// <returns>A json object containing one order and its
42 /// components (order positions, respectively

products)</returns>

Listing 6.16: Comments describing a GET call in OrdersController.cs

Swagger will then take these comments and create a JSON file, describing the entire
API. This is mainly used for Swagger’s Web UI, but while the server is running, we
can get a swagger.json file and use it to generate a different file in the format we
want. As seen in Listing 6.17, besides using the comments we provided, Swagger
also uses information it can find in the code, i.e. the parameters of a function, and
the responses it produces.

60 Chapter 6. System Implementation

191 "/api/Orders/{id}": {
192 "get": {
193 "tags": [
194 "Orders"
195],
196 "summary": "Gets individual orders",
197 "operationId": "ApiOrdersByIdGet",
198 "consumes": [],
199 "produces": [],
200 "parameters": [
201 {
202 "name": "id",
203 "in": "path",
204 "description": "The ID of the order",
205 "required": true,
206 "type": "integer",
207 "format": "int32"
208 }
209],
210 "responses": {
211 "200": {
212 "description": "Success"
213 }
214 }
215 },

216
...

217 }

Listing 6.17: Snippet of the JSON file, containing the same function description as in Listing 6.16

The Markdown file is generated from the swagger.json file, using the CLI tool
called swagger2markup [4]. The reason for wanting Markdown as the final prod-
uct (Figure 6.6), is that it is portable and flexible. We can, for example, use the
Markdown file to generate a PDF. But most importantly, all web-based repository
managers provide tools for displaying Markdown, thus making it easy for other
developers to use and read the API documentation.

6.5. Evaluation of the technical choices 61

Figure 6.6: Snippet of the Markdown view, containing the same function as in Listing 6.16

A concrete example of an XML Documentation to Swagger to Markdown toolchain,
is the following, which can export the API documentation of Topology Service:

1 @echo off
2 mkdir TopologyService
3 cd TopologyService
4 del swagger.json
5 ubuntu run wget http://localhost:5051/swagger/v1/swagger.json
6 cd ..
7 java -jar swagger2markup-cli-1.3.3.jar convert -c

swagger2markdown.properties -i
TopologyService/swagger.json -f
TopologyService/TopologyService

Listing 6.18: A batch script to pull swagger.json from Topology Service and convert it to markdown

CHAPTER 7
Evaluation

This chapter will cover the evaluation of OXMES, in the state it was at the time
of handing in this report. The evaluation was done by talking with our contacts
from the Department of Materials and Production (both a user of the MES - Casper
Schou; and one of the computer science researchers working there - Chen Li).

7.1 Usability of OXMES

After looking at the User Interface of OXMES Casper from MP provided feedback
on it. The following are some of the aspects he mentioned (paraphrased):

The views of the services look good, and it is nice that you have all the config-
uration settings for the topology in one place.

Among the suggestions for the view, there were:

It would be nice to have a view displaying the overall systems status. This
could contain the connected modules, their latest status, or statistics of pro-
cessing times for their applications.
We should continue to keep the topology related settings in one place, where
they are easy to overview.
A cool thing that could be done is to have a picture of the application existing
on top of a conveyor, together with a short description. This would make the
Application tab more intuitive to use.

If implemented, the last suggestion could look as shown in Figure 7.1.

63

64 Chapter 7. Evaluation

Figure 7.1: Applications tab. In the red square can be seen a picture and a short description of an
application. The placement is not final.

7.2 Functionality and features of OXMES

In order to get feedback on the functionality of OXMES, the work done was pre-
sented to Casper, and then he mentioned the aspects he liked, and the ones that
need improvement. The following is what he had to say about it (paraphrased):

It is nice that multiple topologies can be stored in a database, and that inactive
topologies can be achieved.
In the Application tab, it is really nice that we can define the operations. This
comes to prove that the separation between a operation and Application is
important.
The application ranges look good.

The following are suggestions for OXMES:

It would be nice to be able to see average/actual processing times of an applica-
tion.
It would be nice to annotate the modules with their type. This is due to the fact
that the current MES does not know what the modules look like and what they
really do.
It could be interesting to have a list of Known Errors, and keep track of how

7.3. API documentation 65

often they occur. Based on these, further documentation could be written on
how to address them.

7.3 API documentation

The feedback received from Chen acknowledged the API documentation as gener-
ally good. Due to a communication mistake, he did not receive the documentation
for the User Gateway, thus we did not get any specific feedback on this service.
Among the things he proposed are (paraphrased):

It would be a good idea to add the version number of an API in the URL. For
example, /api/V1/Applications.
Make sure not to violate consistency when you update an element. This has to
do with data structures containing foreign keys of other entities.
Some of the expected properties of a model are missing (i.e. plannedEnd-
Time of an Order). Make sure you provide an explanation for this.

As suggested, we take care to preserve consistency when updating structures con-
taining foreign keys.
In Section 6.2.4.1 we present an explanation for why plannedEndTime is missing.

7.4 Extensibility

Throughout the development of OXMES, extensibility has been a key aspect. This
has driven the implementation to focus on forward compatibility. This is evident
in the User Gateway with the service discovery feature, and in the Event Bus. For
both of these, ServiceType and MessageType respectively are implemented as
integers, not enums. For services it means that new services with previously un-
known types can connect, without necessitating changes to the User Gateway. And
as for the Event Bus, because User Gateway more often than not just acts as a proxy,
it does not need to interpret the event, and thus it can support new types of events,
provided these new types of events follow the format defined in Section 6.4.1.2.
These are just examples of how extensibility has been built into the code.
Another way OXMES has been made more extensible, is by packing common func-
tionality into shared libraries. This gives a head start to any new services build in
a Common Language Runtime (CLR) language (C#, F#, Visual Basic, etc.).

Despite this, there are still some limitations to easy extensibility. While services
can easily be created and added to the architecture, if the user clients or the PLCs
need to communicate with it, the User- and/or the PLC Gateway must be updated
with new controllers to support the new services.

66 Chapter 7. Evaluation

7.5 Known issues

One known issue with the current model is that, we model module conveyors.
These are actually part of a pair of module conveyors packed into a single module.
However, the two module conveyors in a module do not share any programmable
logic controller (PLC), so from the perspective of the software, there is no way
to know which two module conveyors are paired in the same module. For this
reason, the entire topology of the Festo MMS is represented as a set of circular
dependencies, regardless of their physical location and relationships. This makes
it impossible to draw a graphical replica of the MMS in software.

Another known issue with the current model is our assumption that all module
conveyors have only a single input port is wrong. While regular modules consists
of two module conveyors each with just one input port and one output port, and
each controlled with their own PLC, the branching modules uses a single PLC to
control both conveyors. This means that branching modules consists of two input
ports. This makes these branching modules impossible to represent in the current
model.

Another minor issue that we found out during the evaluation, is that what we have
called module conveyors are actually referred to as stations by MP.

CHAPTER 8
Conclusion

The overall goal of this master thesis was to look into improving approachability of
the Modular Manufacturing Systems (MMS), at the Department of Materials and
Production (MP) of Aalborg University. By first understanding how it works, sev-
eral areas of interest were discovered, in which topics from the computer science
field could be applied. The Manufacturing Execution System (MES) is one of the
elements that is vital for operating an MMS. It needs to be highly customizable and
to provide a way for the user to control and interact with the system. That being
said, the MES offered an interesting challenge, where we could use oue knowledge
and further expand it by exploring its problems, and implementing solutions for
these.

This report is the written result of the activities carried out throughout the 10th

semester of the Embedded Software Systems Master programme. During this time,
the work started in the 9th semester was continued, while tackling a different set of
problems, related to implementing OXMES. In the Problem Statement (Chapter 4)
several research questions have been formulated, with the intention to have them
answered in the different sections of this report. This was done by investigating
these topics, coming up with observations and consulting our contacts both at the
Department of Materials and Production and the Department of Computer Sci-
ence. After designing and implementing a solution, we facilitated communication
to receive feedback, mainly from the future users of OXMES. This way, we were
able to evaluate both our decisions and the usability of the final product.

The following are the research questions, as they have been addressed throughout
the report:

67

68 Chapter 8. Conclusion

How can we facilitate that the system being built will live on?
The duty of OXMES is slightly more complex than that of a MES in a traditional
setup (i.e. in a factory). This is because OXMES will need to evolve in sync with
the activities at MP. Compared to a traditional MES, OXMES should be able to:

• Facilitate experiments. This means highly customizable features
• Accommodate new services
• Interchange existing services with different implementations of the same ser-

vice
• Provide a simple overview of the system

For this reason, we tried to implement OXMES using tools that offer a high degree
of flexibility. This way, we hope that the system will be easy to adapt to the needs
of MP. Furthermore, based on this report, the inner workings of OXMES should be
easy to understand. API documentation for the services implemented are included
in the appendices of this report. By looking at all these things, we consider that is
should be relatively trivial to continue developing OXMES.

Have we followed the initial system design and user requirements?
We have followed the system design and user requirements set in the 9th semester.
From the system design we have partially implemented:

• A user interface
• The User Gateway
• The event bus
• The Topology Service
• The Order Service

The requirements list has evolved very little in the 10th semester. For this reason
there were no misunderstanding as to what the system should be able to do. From
the initial requirement list, features worth mentioning of OXMES are:

• Modular software architecture
• Resource topology description
• Database of past, current and future orders
• Order API
• Orders of multiple types of products
• Runnable on desktop workstation

Do we comply with the user requirements?
As shown in the Evaluation (Chapter 7) we comply with the user requirements
relevant to the features currently implemented in OXMES.

8.1. Perspectives 69

How will the end result be evaluated?
The end result was evaluated in terms of usability, functionality and extensibility
in Evaluation (Chapter 7). This was mainly done by talking with the future users
of OXMES. Based on their feedback, we could reflect on the choices taken during
the project, and understand the impact they have on the end user.

What is the conclusion of this project and what remarks are there for future work?
This project concluded in having partially implemented the initial system design
of OXMES. Taking into consideration the time frame of the project, we expected
not to be able to have a fully fledged MES by the end of the semester, and for
this reason, we prioritised the implementation of OXMES’s modules accordingly.
Based on this, we believe that we have reached our initial goals.
Remarks, ideas and suggested new features are discussed in the following section.

8.1 Perspectives

The work on OXMES is not yet completely done, and for this reason, the next step
would be the implementation of the remaining services and features.

A limitation to the extensibility of OXMES is the occasional need to update the
User- and/or PLC Gateway when new services are created. Ideally these gateways
should be generalised further, to reduce this burden. An idea is to build in a plug-
in framework for new services.

During the discussions with MP, a couple of new suggestions arose, that could be
interesting to research in the future:

• The possibility of interfacing the OXMES with other types of equipment than
the original Festo modules. An example of new modules could be mobile
robots. The challenge here is of course the modelling of these robots.

• These mobile robots could be represented as an independent module with a
drop off point connected to a module in an existing topology. But of course,
other solutions should be explored.

• The ability to schedule an outside robot (mobile or not mobile) to pick up
things, and integrate it with an existing topology. This suggestion comes as
an extension to the previous one. It is impossible, at the time being to include
non Festo modules in the current MES configuration.

• Have an expected finished-by time to allow scheduling for a product pick
up. This can be achieved by being able to better keep track of the lifetime

70 Chapter 8. Conclusion

of the orders which are in the progress of being produced, coupled with an
understanding of processing times of pending operations.

Furthermore, it would be interesting to check the progress of the project that
worked on supporting parallel scheduling production in the MMS [6]. Among
the goals of this project, there was the idea that the Festo MMS should be able
to support parallel production, if the system has several modules that can do the
same operation. This is one thing that can be integrated and physically tested with
the use of the Operation Scheduling Service of OXMES.

As seen in Section 6.2.2, we did not succeeded in implementing a User Manage-
ment Service, to authenticate users. One of the reasons for this, is the lack of
experience in system security. There are however, students who specialise in this
topic, who could help with advice and suggestions. One such group of students
is actually working on a related topic on the Festo MMS. Their project for the
past semester dealt with making sure that unauthorised MMS modules (or devices
emulating these) cannot be attached to the Festo MMS.

Bibliography
[1] S. Cavalieri et al. “A web-based platform for OPC UA integration in IIoT

environment”. In: 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA) (2017), pp. 1–6.

[2] OPC Foundation. Official OPC UA .Net Standard Stack and Samples from the
OPC Foundation. https://github.com/OPCFoundation/UA-.NETStandard.

[3] OPC Foundation. OPC Unified Architecture. http://www.opcfoundation.
org/.

[4] Github. Robert Winkler. https://github.com/Swagger2Markup/swagger2markup.

[5] Github. Swashbuckle. https://github.com/domaindrivendev/Swashbuckle.

[6] Martin Kristjansen. Supporting Parallel Production in Festo. Student project. De-
partment of Computer Science, School of Information and Communication
Technology, Aalborg University. 2017.

[7] Microsoft. ?? Operator (C# Reference). https://docs.microsoft.com/
en-us/dotnet/csharp/language-reference/operators/null-
coalescing-operator.

[8] Microsoft. ASP.NET MVC Overview. https://docs.microsoft.com/en-
us/previous-versions/aspnet/web-frameworks/dd381412(v=
vs.108).

[9] Microsoft. Creating a Model. https://docs.microsoft.com/en-us/ef/
core/modeling.

[10] Anders Normann Poulsen and Gabriel Vasluianu. Extensible Manufacturing
Execution System - Designing a modular, extensible MES for dependability and
research. Student project. Department of Computer Science, School of Infor-
mation and Communication Technology, Aalborg University. 2018.

[11] Festo Media Service. Festo embeds OPC-UA in its valve terminals to drive ben-
efits of Industry 4.0. https : / / www . festo . com / net / en - gb _ gb /
SupportPortal/Details/404800/PressArticle.aspx.

71

https://github.com/OPCFoundation/UA-.NETStandard
http://www.opcfoundation.org/
http://www.opcfoundation.org/
https://github.com/Swagger2Markup/swagger2markup
https://github.com/domaindrivendev/Swashbuckle
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/previous-versions/aspnet/web-frameworks/dd381412(v=vs.108)
https://docs.microsoft.com/en-us/previous-versions/aspnet/web-frameworks/dd381412(v=vs.108)
https://docs.microsoft.com/en-us/previous-versions/aspnet/web-frameworks/dd381412(v=vs.108)
https://docs.microsoft.com/en-us/ef/core/modeling
https://docs.microsoft.com/en-us/ef/core/modeling
https://www.festo.com/net/en-gb_gb/SupportPortal/Details/404800/PressArticle.aspx
https://www.festo.com/net/en-gb_gb/SupportPortal/Details/404800/PressArticle.aspx

72 Bibliography

[12] SmartBear Software. Swagger. https://swagger.io/.

[13] Wikipedia. ISO 8601. https://en.wikipedia.org/wiki/ISO_8601.

https://swagger.io/
https://en.wikipedia.org/wiki/ISO_8601

APPENDIX A
User Client

Screenshots

73

74 Appendix A. User Client Screenshots

Figure A.1: Topologies tab

75

Figure A.2: Module Conveyors tab

76 Appendix A. User Client Screenshots

Figure A.3: Resources tab

77

Figure A.4: Applications tab

78 Appendix A. User Client Screenshots

Figure A.5: Order view

APPENDIX B
User Gateway API

Documentation

79

UserGateway.md 6/13/2018

1 / 30

User Gateway API

Overview

Version information

Version : v1

Paths

Create a new Application

POST /api/Applications

Description

For more information about Application, see documentation of Topology Service

Example of application:

POST /api/Application
{
 "applicationId": 0,
 "applicationName": "name",
 "resourceId": 0,
 "supportedOperations": [
 {
 "applicationOperationId": 0,
 "operationId": 0,
 "operationName": "name",
 "supportedRanges": [
 {
 "id": 0,
 "name": "name",
 "parameters": [
 {
 "id": 0,
 "name": "name",
 "minimum": 0,
 "maximum": 0,
 "minimumFunction": "{X}*2",
 "maximumFunction": "{X}*4",
 "defaultValue": 0
 }
]
 }

80 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

2 / 30

]
 }
]
}

Parameters

Type Name Description Schema

Body
application
optional

The Application object

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Applications

Get a shallow list of Applications

GET /api/Applications

Description

For more information about Application, see documentation of Topology Service

Example output:

81

UserGateway.md 6/13/2018

3 / 30

GET /api/Applications
[
 {
 "applicationId": 0,
 "applicationName": "name",
 "resourceId": 0,
 "supportedOperations": null
 }
]

Responses

HTTP Code Description Schema

200 Success No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Applications

Get a deep copy of an Application

GET /api/Applications/{id}

Description

For more information about Application, see documentation of Topology Service

Example output:

GET /api/Application/{id}
{
 "applicationId": 0,
 "applicationName": "name",
 "resourceId": 0,
 "supportedOperations": [
 {
 "applicationOperationId": 0,
 "operationId": 0,
 "operationName": "name",
 "supportedRanges": [
 {

82 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

4 / 30

 "id": 0,
 "name": "name",
 "parameters": [
 {
 "id": 0,
 "name": "name",
 "minimum": 0,
 "maximum": 0,
 "minimumFunction": "{X}*2",
 "maximumFunction": "{X}*4",
 "defaultValue": 0
 }
]
 }
]
 }
]
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the Application to get integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Applications

Update an Application

PUT /api/Applications/{id}

83

UserGateway.md 6/13/2018

5 / 30

Description

For more information about Application, see documentation of Topology Service

Example of application:

PUT /api/Application/{id}
{
 "applicationId": 0,
 "applicationName": "name",
 "resourceId": 0,
 "supportedOperations": [
 {
 "applicationOperationId": 0,
 "operationId": 0,
 "operationName": "name",
 "supportedRanges": [
 {
 "id": 0,
 "name": "name",
 "parameters": [
 {
 "id": 0,
 "name": "name",
 "minimum": 0,
 "maximum": 0,
 "minimumFunction": "{X}*2",
 "maximumFunction": "{X}*4",
 "defaultValue": 0
 }
]
 }
]
 }
]
}

Parameters

Type Name Description Schema

Path
id
required

A valid Application ID integer (int32)

Body
application
optional

The updated Application object

Responses

84 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

6 / 30

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Applications

Delete an Application

DELETE /api/Applications/{id}

Description

For more information about Application, see documentation of Topology Service

Parameters

Type Name Description Schema

Path
id
required

The ID of the Application to delete integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

85

UserGateway.md 6/13/2018

7 / 30

HTTP Code Description Schema

503 No Topology Service No Content

Tags

Applications

Create a module conveyor

POST /api/ModuleConveyors

Description

For more information about the ModuleConveyor model, see the Topology Service documentation

Example of module conveyor:

POST /api/ModuleConveyors
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Body
moduleConveyor
optional

The new module conveyor object

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

86 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

8 / 30

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

ModuleConveyors

Get all module conveyors

GET /api/ModuleConveyors

Description

For more information about the ModuleConveyor model, see the Topology Service documentation

Example output:

GET /api/ModuleConveyors
[
 {
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
 },
 {
 "moduleConveyorId": 1,
 "moduleConveyorName": "special-name",
 "plcIpAddressString": "10.0.0.145",
 "plcMacAddressString": "0011223355",
 "resourceId": 1
 }
]

Responses

HTTP Code Description Schema

200 Success No Content

502 Server Error No Content

87

UserGateway.md 6/13/2018

9 / 30

HTTP Code Description Schema

503 No Topology Service No Content

Tags

ModuleConveyors

Get a module conveyor by ID

GET /api/ModuleConveyors/{id}

Description

For more information about the ModuleConveyor model, see the Topology Service documentation

Example output:

GET /api/ModuleConveyors/{id}
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the module conveyor integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

88 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

10 / 30

Tags

ModuleConveyors

Update a ModuleConveyor

PUT /api/ModuleConveyors/{id}

Description

For more information about the ModuleConveyor model, see the Topology Service documentation

Example of module conveyor:

POST /api/ModuleConveyors/{id}
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Path
id
required

A valid ID of the ModuleConveyor integer (int32)

Body
moduleConveyor
optional

The ModuleConveyor object

Responses

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

89

UserGateway.md 6/13/2018

11 / 30

application/json-patch+json
application/json
text/json
application/*+json

Tags

ModuleConveyors

Delete a ModuleConveyor

DELETE /api/ModuleConveyors/{id}

Description

For more information about the ModuleConveyor model, see the Topology Service documentation

Example output:

DELETE /api/ModuleConveyors/{id}
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Path
id
required

A valid ID of the ModuleConveyor to delete integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

90 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

12 / 30

HTTP Code Description Schema

503 No Topology Service No Content

Tags

ModuleConveyors

Ping the service

GET /api/Ping/{pingMessage}

Description

This call can be used by other services to validate that User Gateway is still alive and running

Parameters

Type Name Description Schema

Path
pingMessage
required

An arbitraty string to return string

Responses

HTTP Code Description Schema

200 Success string

Produces

text/plain
application/json
text/json

Tags

Ping

Create a Resource

POST /api/Resources

Description

91

UserGateway.md 6/13/2018

13 / 30

For more information about the Resource model, see the Topology Service documentation

Example output:

POST /api/Resources
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Body
resource
optional

The Resource to create object

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Resources

Get a list of all Resources

GET /api/Resources

92 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

14 / 30

Description

For more information about the Resource model, see the Topology Service documentation

Example output:

GET /api/Resources
[
 {
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
 },
 {
 "applicationId": 1,
 "moduleConveyorId": 2,
 "resourceId": 1,
 "resourceName": "Name"
 }
]

Responses

HTTP Code Description Schema

200 Success No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Resources

Get a Resource by ID

GET /api/Resources/{id}

Description

For more information about the Resource model, see the Topology Service documentation

Example output:

93

UserGateway.md 6/13/2018

15 / 30

GET /api/Resources/{id}
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Path
id
required

The Resource ID integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Resources

Update a Resource

PUT /api/Resources/{id}

Description

For more information about the Resource model, see the Topology Service documentation

Example output:

PUT /api/Resources/{id}
{
 "applicationId": 0,
 "moduleConveyorId": 0,

94 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

16 / 30

 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the Resource to update integer (int32)

Body
resource
optional

The updated Resource object

Responses

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Resources

Delete a Resource

DELETE /api/Resources/{id}

Description

For more information about the Resource model, see the Topology Service documentation

Example output:

95

UserGateway.md 6/13/2018

17 / 30

DELETE /api/Resources/{id}
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the Resource to delete integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Resources

Announce a Service

POST /api/Service

Description

Example output:

POST /api/Services
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "name",
 "serviceType": 0,

96 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

18 / 30

 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"
}

Parameters

Type Name Description Schema

Body
service
optional

The Service to announce Service

Responses

HTTP Code Description Schema

201 Success No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Service

Get a list of all Services

GET /api/Service

Description

Example output:

GET /api/Services
[
 {
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "name",
 "serviceType": 0,
 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"

97

UserGateway.md 6/13/2018

19 / 30

 },
 {
 "uuid": "123e4567-e89b-12d3-a456-426655440001",
 "name": "name1",
 "serviceType": 1,
 "isActive": true,
 "displayName": "Name 1",
 "serviceAddress": "http://localhost:5051/"
 }
]

Responses

HTTP Code Description Schema

200 Success No Content

Tags

Service

Get Service by name

GET /api/Service/name/{serviceName}

Description

Example output:

GET /api/Services/name/{serviceName}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "serviceName",
 "serviceType": 0,
 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"
}

Parameters

Type Name Description Schema

Path
serviceName
required

The name of the requested Service string

98 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

20 / 30

Responses

HTTP Code Description Schema

200 Success No Content

404 Not Found No Content

Tags

Service

Get the active Service by service type

GET /api/Service/type/{typeId}

Description

Example output:

GET /api/Services/type/{typeId}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "name",
 "serviceType": 0,
 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"
}

Parameters

Type Name Description Schema

Path
typeId
required

The Service type integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

204 No active service of type typeId No Content

Tags

99

UserGateway.md 6/13/2018

21 / 30

Service

Get a Service by UUID

GET /api/Service/{uuid}

Description

Example output:

GET /api/Services/{uuid}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "name",
 "serviceType": 0,
 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"
}

Parameters

Type Name Description Schema

Path
uuid
required

The UUID of the requested Service string (uuid)

Responses

HTTP Code Description Schema

200 Success No Content

404 Not Found No Content

Tags

Service

Updated a Service

PUT /api/Service/{uuid}

Description

100 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

22 / 30

Example output:

PUT /api/Services/{uuid}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "name",
 "serviceType": 0,
 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"
}

Parameters

Type Name Description Schema

Path
uuid
required

The UUID of the Service to update string (uuid)

Body
service
optional

The updated Service Service

Responses

HTTP Code Description Schema

200 Success No Content

404 Not Found No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Service

Delete a Service by UUID

DELETE /api/Service/{uuid}

Description

101

UserGateway.md 6/13/2018

23 / 30

Example output:

DELETE /api/Services/{uuid}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "name": "name",
 "serviceType": 0,
 "isActive": true,
 "displayName": "Name",
 "serviceAddress": "http://localhost:5050/"
}

Parameters

Type Name Description Schema

Path
uuid
required

The UUID of the Service to delete string (uuid)

Responses

HTTP Code Description Schema

200 Success No Content

404 Not Found No Content

Tags

Service

Create Topology

POST /api/Topologies

Description

For more information on the Topology model, see documentation of Topology Service

Example Topology/output:

POST api/Topologies
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,

102 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

24 / 30

 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Body
topologyJson
optional

The Topology object

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Topologies

103

UserGateway.md 6/13/2018

25 / 30

Get a shallow list of Topologies

GET /api/Topologies

Description

For more information on the Topology model, see documentation of Topology Service

Example output:

GET /api/Topologies
[
 {
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": null,
 "conveyorLinkIds": null
 },
 {
 "topologyId": 1,
 "topologyName": "name2",
 "isActive": false,
 "conveyorIds": null,
 "conveyorLinkIds": null
 }
]

Responses

HTTP Code Description Schema

200 Success No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Topologies

Get a Topology by ID

GET /api/Topologies/{id}

104 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

26 / 30

Description

For more information on the Topology model, see documentation of Topology Service

Example output:

GET api/Topologies/{id}
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Path
id
required

Topology ID integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

105

UserGateway.md 6/13/2018

27 / 30

Tags

Topologies

Update Topology

PUT /api/Topologies/{id}

Description

For more information on the Topology model, see documentation of Topology Service

Example of Topology:

PUT api/Topologies/{id}
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Path
id
required

ID of the Topology integer (int32)

Body
topologyJson
optional

The updated Topology object

106 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

28 / 30

Responses

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Topologies

Delete Topology with ID

DELETE /api/Topologies/{id}

Description

For more information on the Topology model, see documentation of Topology Service

Example output:

DELETE api/Topologies/{id}
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2

107

UserGateway.md 6/13/2018

29 / 30

 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Path
id
required

ID of the Topology integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

502 Server Error No Content

503 No Topology Service No Content

Tags

Topologies

Definitions

Service

Name Schema

displayName
optional

string

isActive
optional

boolean

name
required

string

108 Appendix B. User Gateway API Documentation

UserGateway.md 6/13/2018

30 / 30

Name Schema

serviceAddress
optional

string

serviceType
optional

integer (int32)

uuid
optional

string (uuid)

109

APPENDIX C
Topology Service

API Documentation

111

TopologyService.md 6/13/2018

1 / 23

Topology Service API

Overview

Version information

Version : v1

Paths

Create a new Application

POST /api/Applications

Description

Also adds Operations, Ranges and Parameters

Example of application:

POST /api/Application
{
 "applicationId": 0,
 "applicationName": "name",
 "resourceId": 0,
 "supportedOperations": [
 {
 "applicationOperationId": 0,
 "operationId": 0,
 "operationName": "name",
 "supportedRanges": [
 {
 "id": 0,
 "name": "name",
 "parameters": [
 {
 "id": 0,
 "name": "name",
 "minimum": 0,
 "maximum": 0,
 "minimumFunction": "{X}*2",
 "maximumFunction": "{X}*4",
 "defaultValue": 0
 }
]
 }

112 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

2 / 23

]
 }
]
}

Parameters

Type Name Description Schema

Body
application
optional

The Application Application

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Applications

Get a shallow list of Applications

GET /api/Applications

Description

To speed up response times, this response does include nested objects

Example output:

GET /api/Applications
[
 {
 "applicationId": 0,
 "applicationName": "name",

113

TopologyService.md 6/13/2018

3 / 23

 "resourceId": 0,
 "supportedOperations": null
 }
]

Responses

HTTP Code Description Schema

200 Success < Application > array

Produces

application/json

Tags

Applications

Get a deep copy of an Application

GET /api/Applications/{id}

Description

Example output:

GET /api/Application/{id}
{
 "applicationId": 0,
 "applicationName": "name",
 "resourceId": 0,
 "supportedOperations": [
 {
 "applicationOperationId": 0,
 "operationId": 0,
 "operationName": "name",
 "supportedRanges": [
 {
 "id": 0,
 "name": "name",
 "parameters": [
 {
 "id": 0,
 "name": "name",
 "minimum": 0,

114 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

4 / 23

 "maximum": 0,
 "minimumFunction": "{X}*2",
 "maximumFunction": "{X}*4",
 "defaultValue": 0
 }
]
 }
]
 }
]
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the Application to get integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 No Application with the ID No Content

Tags

Applications

Update an Application

PUT /api/Applications/{id}

Description

Also adds/updates/deletes Operations, Ranges and Parameters

Example of application:

PUT /api/Application/{id}
{
 "applicationId": 0,
 "applicationName": "name",

115

TopologyService.md 6/13/2018

5 / 23

 "resourceId": 0,
 "supportedOperations": [
 {
 "applicationOperationId": 0,
 "operationId": 0,
 "operationName": "name",
 "supportedRanges": [
 {
 "id": 0,
 "name": "name",
 "parameters": [
 {
 "id": 0,
 "name": "name",
 "minimum": 0,
 "maximum": 0,
 "minimumFunction": "{X}*2",
 "maximumFunction": "{X}*4",
 "defaultValue": 0
 }
]
 }
]
 }
]
}

Parameters

Type Name Description Schema

Path
id
required

A valid Application ID integer (int32)

Body
application
optional

The updated Application Application

Responses

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

Consumes

application/json-patch+json

116 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

6 / 23

application/json
text/json
application/*+json

Tags

Applications

Delete the application with id

DELETE /api/Applications/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the application to delete integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

Applications

Create a module conveyor

POST /api/ModuleConveyors

Description

Example of module conveyor:

POST /api/ModuleConveyors
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",

117

TopologyService.md 6/13/2018

7 / 23

 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Body
moduleConveyor
optional

The new module conveyor ModuleConveyor

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

ModuleConveyors

Get all module conveyors

GET /api/ModuleConveyors

Description

Use GET api/ModuleConveyors/id to retrieve a deep copy of the module conveyor

Example output:

GET /api/ModuleConveyors
[
 {
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",

118 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

8 / 23

 "plcMacAddressString": "0011223344",
 "resourceId": 0
 },
 {
 "moduleConveyorId": 1,
 "moduleConveyorName": "special-name",
 "plcIpAddressString": "10.0.0.145",
 "plcMacAddressString": "0011223355",
 "resourceId": 1
 }
]

Responses

HTTP Code Description Schema

200 Success < ModuleConveyor > array

Produces

application/json

Tags

ModuleConveyors

Get a module conveyor by ID

GET /api/ModuleConveyors/{id}

Description

Example output:

GET /api/ModuleConveyors/{id}
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

119

TopologyService.md 6/13/2018

9 / 23

Type Name Description Schema

Path
id
required

The ID of the module conveyor integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

ModuleConveyors

Update a ModuleConveyor

PUT /api/ModuleConveyors/{id}

Description

Example of module conveyor:

POST /api/ModuleConveyors/{id}
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Path
id
required

A valid ID of the ModuleConveyor integer (int32)

Body
moduleConveyor
optional

The ModuleConveyor ModuleConveyor

Responses

120 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

10 / 23

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

ModuleConveyors

Delete a ModuleConveyor

DELETE /api/ModuleConveyors/{id}

Description

Example output:

DELETE /api/ModuleConveyors/{id}
{
 "moduleConveyorId": 0,
 "moduleConveyorName": "unique-name",
 "plcIpAddressString": "10.0.0.144",
 "plcMacAddressString": "0011223344",
 "resourceId": 0
}

Parameters

Type Name Description Schema

Path
id
required

A valid ID of the ModuleConveyor to delete integer (int32)

Responses

HTTP Code Description Schema

121

TopologyService.md 6/13/2018

11 / 23

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

ModuleConveyors

Create a Resource

POST /api/Resources

Description

Example output:

POST /api/Resources
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Body
resource
optional

The Resource to create Resource

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

Consumes

application/json-patch+json
application/json

122 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

12 / 23

text/json
application/*+json

Tags

Resources

Get a list of all Resources

GET /api/Resources

Description

Example output:

GET /api/Resources
[
 {
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
 },
 {
 "applicationId": 1,
 "moduleConveyorId": 2,
 "resourceId": 1,
 "resourceName": "Name"
 }
]

Responses

HTTP Code Description Schema

200 Success < Resource > array

Produces

application/json

Tags

Resources

Get a Resource by ID

123

TopologyService.md 6/13/2018

13 / 23

GET /api/Resources/{id}

Description

Example output:

GET /api/Resources/{id}
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Path
id
required

The Resource ID integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

Resources

Update a Resource

PUT /api/Resources/{id}

Description

For more information about the Resource model, see the Topology Service documentation

Example output:

124 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

14 / 23

PUT /api/Resources/{id}
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the Resource to update integer (int32)

Body
resource
optional

The updated Resource Resource

Responses

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Resources

Delete a Resource

DELETE /api/Resources/{id}

Description

Example output:

125

TopologyService.md 6/13/2018

15 / 23

DELETE /api/Resources/{id}
{
 "applicationId": 0,
 "moduleConveyorId": 0,
 "resourceId": 0,
 "resourceName": "Name"
}

Parameters

Type Name Description Schema

Path
id
required

The ID of the Resource to delete integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

Resources

Create Topology

POST /api/Topologies

Description

Example Topology/output:

POST api/Topologies
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {

126 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

16 / 23

 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Body
topology
optional

The Topology Topology

Responses

HTTP Code Description Schema

201 Success No Content

400 Bad Request No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Topologies

Get a shallow list of Topologies

GET /api/Topologies

Description

127

TopologyService.md 6/13/2018

17 / 23

To speed up response times, this response does not include nested objects or references

Example output:

GET /api/Topologies
[
 {
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": null,
 "conveyorLinkIds": null
 },
 {
 "topologyId": 1,
 "topologyName": "name2",
 "isActive": false,
 "conveyorIds": null,
 "conveyorLinkIds": null
 }
]

Responses

HTTP Code Description Schema

200 Success < Topology > array

Produces

application/json

Tags

Topologies

Get a Topology by ID

GET /api/Topologies/{id}

Description

Example output:

GET api/Topologies/{id}
{

128 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

18 / 23

 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Path
id
required

Topology ID integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

Topologies

Update Topology

PUT /api/Topologies/{id}

Description

129

TopologyService.md 6/13/2018

19 / 23

Example of Topology:

PUT api/Topologies/{id}
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Path
id
required

ID of the Topology integer (int32)

Body
topology
optional

The updated Topology Topology

Responses

HTTP Code Description Schema

204 Success No Content

400 Bad Request No Content

404 Not Found No Content

Consumes

application/json-patch+json

130 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

20 / 23

application/json
text/json
application/*+json

Tags

Topologies

Delete Topology with ID

DELETE /api/Topologies/{id}

Description

Example output:

DELETE api/Topologies/{id}
{
 "topologyId": 0,
 "topologyName": "name",
 "isActive": true,
 "conveyorIds": [
 0, 1, 2, 3
],
 "conveyorLinkIds": {
 "0": {
 "0": 1
 },
 "1": {
 "0": 2
 },
 "2": {
 "0": 3
 },
 "3": {
 "0": 0
 }
 }
}

Parameters

Type Name Description Schema

Path
id
required

ID of the Topology integer (int32)

131

TopologyService.md 6/13/2018

21 / 23

Responses

HTTP Code Description Schema

200 Success No Content

400 Bad Request No Content

404 Not Found No Content

Tags

Topologies

Definitions

Application

Name Schema

applicationId
optional

integer (int32)

applicationName
optional

string

resourceId
optional

integer (int32)

supportedOperations
optional

< ApplicationOperation > array

ApplicationOperation

Name Schema

applicationOperationId
optional

integer (int32)

operationId
optional

integer (int32)

operationName
optional

string

supportedRanges
optional

< Range > array

ModuleConveyor

Name Schema

132 Appendix C. Topology Service API Documentation

TopologyService.md 6/13/2018

22 / 23

Name Schema

moduleConveyorId
optional

integer (int32)

moduleConveyorName
optional

string

plcIpAddressString
optional

string

plcMacAddressString
optional

string

resourceId
optional

integer (int32)

Range

Name Schema

id
optional

integer (int32)

name
optional

string

parameters
optional

< RangeParameter > array

RangeParameter

Name Schema

defaultValue
optional

number (double)

id
optional

integer (int32)

maximum
optional

number (double)

maximumFunction
optional

string

minimum
optional

number (double)

minimumFunction
optional

string

133

TopologyService.md 6/13/2018

23 / 23

Name Schema

name
optional

string

Resource

Name Schema

applicationId
optional

integer (int32)

moduleConveyorId
optional

integer (int32)

resourceId
optional

integer (int32)

resourceName
optional

string

Topology

Name Schema

conveyorIds
optional

< integer (int32) > array

conveyorLinkIds
optional

< string, < string, integer (int32) > map > map

isActive
optional

boolean

topologyId
optional

integer (int32)

topologyName
optional

string

134 Appendix C. Topology Service API Documentation

APPENDIX D
Order Service API

Documentation

135

OrderService.md 6/13/2018

1 / 10

Order Service API

Overview

Version information

Version : v1

Paths

Creates an order position

POST /api/OrderPositions

Parameters

Type Name Schema

Body
orderPosition
optional

OrderPosition

Responses

HTTP Code Description Schema

200 Success No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

OrderPositions

Gets all the Order positions

GET /api/OrderPositions

Responses

136 Appendix D. Order Service API Documentation

OrderService.md 6/13/2018

2 / 10

HTTP Code Description Schema

200 Success < OrderPosition > array

Produces

application/json

Tags

OrderPositions

Gets all the order positions of an order

GET /api/OrderPositions/Order/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the parent order integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

Tags

OrderPositions

Gets an individual order position

GET /api/OrderPositions/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the order position integer (int32)

Responses

137

OrderService.md 6/13/2018

3 / 10

HTTP Code Description Schema

200 Success No Content

Tags

OrderPositions

Deletes an order position

DELETE /api/OrderPositions/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the order position to be deleted integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

Tags

OrderPositions

Adds a new order

POST /api/Orders

Parameters

Type Name Schema

Body
order
optional

Order

Responses

HTTP Code Description Schema

200 Success No Content

138 Appendix D. Order Service API Documentation

OrderService.md 6/13/2018

4 / 10

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Orders

Gets all the existing orders

GET /api/Orders

Responses

HTTP Code Description Schema

200 Success < Order > array

Produces

application/json

Tags

Orders

Gets individual orders

GET /api/Orders/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the order integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

139

OrderService.md 6/13/2018

5 / 10

Tags

Orders

Updates the fields of an order

PUT /api/Orders/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the order to be updated integer (int32)

Body
order
optional

Order

Responses

HTTP Code Description Schema

200 Success No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Orders

Deletes an order

DELETE /api/Orders/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the order to be deleted integer (int32)

140 Appendix D. Order Service API Documentation

OrderService.md 6/13/2018

6 / 10

Responses

HTTP Code Description Schema

200 Success No Content

Tags

Orders

Not implemented yet

POST /api/Products

Parameters

Type Name Schema

Body
value
optional

string

Responses

HTTP Code Description Schema

200 Success No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Products

Gets all the products

GET /api/Products

Responses

HTTP Code Description Schema

141

OrderService.md 6/13/2018

7 / 10

HTTP Code Description Schema

200 Success < Product > array

Produces

application/json

Tags

Products

Gets an individual product

GET /api/Products/{id}

Parameters

Type Name Description Schema

Path
id
required

The ID of the product integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

Tags

Products

Not implemented yet

PUT /api/Products/{id}

Parameters

Type Name Schema

Path
id
required

integer (int32)

Body
value
optional

string

142 Appendix D. Order Service API Documentation

OrderService.md 6/13/2018

8 / 10

Responses

HTTP Code Description Schema

200 Success No Content

Consumes

application/json-patch+json
application/json
text/json
application/*+json

Tags

Products

Not implemented yet

DELETE /api/Products/{id}

Parameters

Type Name Schema

Path
id
required

integer (int32)

Responses

HTTP Code Description Schema

200 Success No Content

Tags

Products

Definitions

Order

Name Schema

endTime
optional

string (date-time)

143

OrderService.md 6/13/2018

9 / 10

Name Schema

name
required

string

orderId
optional

integer (int32)

orderPositions
optional

< OrderPosition > array

plannedStartTime
optional

string (date-time)

priority
optional

enum (Low, Medium, High)

startTime
optional

string (date-time)

state
optional

enum (Created, Started, Completed)

OrderPosition

Name Schema

endTime
optional

string (date-time)

order
optional

Order

orderPositionId
optional

integer (int32)

plannedStartTime
optional

string (date-time)

product
optional

Product

startTime
optional

string (date-time)

state
optional

enum (Created, Started, Completed)

workPlanNumber
optional

integer (int32)

Product

144 Appendix D. Order Service API Documentation

OrderService.md 6/13/2018

10 / 10

Name Schema

description
optional

string

orderPosition
optional

OrderPosition

partNumber
optional

integer (int32)

productId
optional

integer (int32)

workPlanNumber
optional

integer (int32)

145

	Front page
	English title page
	Preface
	Contents
	1 Summary
	2 Introduction
	3 Previous work
	3.1 Mission statement
	3.2 A new MES
	3.3 Development plan

	4 Problem statement
	5 System design
	5.1 Prioritisation
	5.1.1 User story 1: Creating product orders
	5.1.2 User story 2: Configuring the topology of the system
	5.1.3 Prioritised list of services

	5.2 Operation-to-application Mapping
	5.3 Language Choice
	5.3.1 Decision

	5.4 Frameworks
	5.4.1 ASP.NET Core
	5.4.2 Entity Framework Core

	5.5 Protocols
	5.5.1 OPC UA

	6 System Implementation
	6.1 Frameworks
	6.1.1 ASP.NET Core
	6.1.2 Entity Framework Core

	6.2 Services
	6.2.1 User Gateway
	6.2.2 User Management Service
	6.2.3 Topology Service
	6.2.4 Order Service
	6.2.5 Shared Libraries

	6.3 User Client
	6.4 Event Bus
	6.4.1 Protocol

	6.5 Evaluation of the technical choices
	6.5.1 C# language
	6.5.2 ASP.NET Core
	6.5.3 Entity Framework Core with code first
	6.5.4 Database server
	6.5.5 API documentation

	7 Evaluation
	7.1 Usability of OXMES
	7.2 Functionality and features of OXMES
	7.3 API documentation
	7.4 Extensibility
	7.5 Known issues

	8 Conclusion
	8.1 Perspectives

	Bibliography
	A User Client Screenshots
	B User Gateway API Documentation
	C Topology Service API Documentation
	D Order Service API Documentation

