
Aalborg University, department of Computer Science

Visualization of Zones in Real-Time Models

Studerende:

Nicolai Brobak: nbroba13@student.aau.dk

Vejleder:

Ulrik Mathias Nyman: ulrik@cs.aau.dk

June 15, 2018

1. Summary

This project deals with visualization of zones of real-time models. In section 3 the
concepts of real-time models and zones are introduced along with some modeling and
verification tools based on these concepts. In order to show a zone it is necessary to find
it’s vertices. Therefore section 4 presents the criss-cross algorithm for enumeration of
the vertices of a polytope. Since the criss-cross algorithm is a rather broad approach,
considering the specific case of real-time zone, two subproblems are presented in section
5. One regarding a vertex enumeration algorithm and one regarding how visualization
of zones can be used and what can be gained from it.

Section 6 describes a new algorithm based on the criss-cross algorithm. The algorithm
has also been implemented to examine how visualization can help in tasks concerning
real-time models. The details of how this solution was implemented are described in
section 7. Then the features and the user interface of the solution are presented in
section 8.

The solution has been used to evaluate how such a tool might help in solving tasks
related to real-time models and their zones. 6 test subjects solved 12 tasks in an eval-
uation which is described in section 9. In section 10 the results of the evaluation are
presented.

Finally the findings are discussed in section 11, where it is concluded that visualization
of zones is a powerful tool to add to a real-time model checking tools symbolic simulator,
although it is unclear whether the algorithm developed is the best way to enumerate
vertices in this case. This and more avenues of further work is laid out in section 12.

1

2. Introduction

This master thesis was written at the research unit Distributed, Embedded and Intel-
ligent Systems (DEIS) at the Department of Computer Science of Aalborg University
during the spring semester of 2018. The overall theme is visualization, specifically in
model checking tools. With that a tool has been developed and evaluated after exploring
the following problem.

2.1. Initiating Problem

A feasibility zone or region is the set of all set of values that satisfy a system of con-
straints. In the field of modelling and verification of real-time systems, feasibility zones
are defined by the guards and invariants on the system. The feasibility zones can then
be expanded through symbolic evaluation in order to verify the properties of the system.
As such feasibility zones are very important, and visualizing them is often used as a tool
when understanding how symbolic evaluation is used to verify properties. Despite all
this no existing tools for modelling and verification of real-time systems can visualize
feasibility zones.

2.2. Acknowledgements

Thank you to my supervisor Ulrik Mathias Nyman for advice and suggestions throughout
the project and for introducing me to the problem. Thank you to the group I shared
a group room with: Michael Kusk Christensen, Søren Nørgreen Gustafsson and Lasse
Würtz for discussions. Thank you to the test subjects who participated in the evaluation.
Lastly thank you to Casper Møller Bartholomæussen and Rene Mejer Lauritsen for
cooperation as they worked on an ECDAR simulator.

3. Timed Models

This section will present concepts used in modeling and formal verification of real-time
systems, as well as some tools that use them.

3.1. Models of Real Time Systems

A real time system is a system where correctness not only depends on the logical order
of events but also on their timing[1]. In order to model such systems Labeled Transition
Systems (LTS)[2] are insufficient. Therefore Timed Labeled Transition Systems (TLTS)
are used. TLTS extend the semantics of LTS with a number of real valued clocks. These
clocks are perfectly synchronized and the system can let time elapse instead of taking
a transition, which increases the values of all clocks by the amount of the delay. These
clocks are used when taking a transition. Besides a label a transition can now have
guards and resets. A guard is a constraint on a clock value. A reset is where a set of

2

clocks are set to 0. There can also be constraints on states called invariants. It is only
possible to delay by an amount that does not cause a clock to violate an invariant on
the current state.[3][4]

Formally a TLTS is a tuple (L,Σ, X, I, E) where

• L is a finite set of locations

• Σ is a finite set of labels

• X is a finite set of clocks

• I is a mapping where each location s is mapped to some clock constraint in Φ(X)

• E ⊆ L×Σ× 2X ×Φ(X)×L is the set of transitions. A transition (s, a, λ, φ, s′) is
an edge from location s to location s′ on symbol a, λ ⊆ X is the set of clocks to be
reset when taking the transition, and φ is a clock constraint over X that specifies
when the transition can be taken.

The set of clock constraints Φ(X) over clocks X is either φ = φ1 ∧ φ2 or φ = x ⊗ c
where x ∈ X, c ∈ Q and the inequality relation is ⊗ ∈ {<,>,≤,≥}.

The semantics of a TLTS is defined by associating a transition system SA with it. A
state of SA is a pair (s, v) where s ∈ L and v is a valuation on X such that for each
x ∈ X, v(x) = R>0 and v satisfies the invariant I(s).

There are two types of transitions in SA. The first is an elapse of time where some

state (s, v) and some delay δ ∈ R>0 gives the transition (s, v)
δ−→ (s, v+ δ) given that for

all 0 ≥ δ′ ≥ δ, v+δ′ satisfies the invariant I(s). The other type of transition is a location
change where some state (s, v) and some t ∈ E gives the transition (s, v)

a−→ (s′, v′) given
that v satisfies φ. v′ is a clock valuation such that v′(x) = 0 for all x ∈ λ and v′(x) = v(x)
for the rest of the clocks.[3]

3.2. Zones

When trying to verify the properties of a real time system we explore the state space.
However unlike a normal system which can be modeled with finite states, a model of
a timed system will have infinite states. This can be seen by looking at the transition
system SA where time elapse transitions have delays δ ∈ R>0. Zones, also known as
symbolic states, are a way to handle this, that results in finite states.[4]

A zone is the constraint system, which is used to create a transition system where
each state is a pair (s, z) where s is a location and z is a zone. (s, z) represents all states
(s, v) of SA where v satisfies the constraints of z. That means this new transition system
can represent the same system, but with a finite state space.

3

3.2.1. Calculation of a Zone

A zone is calculated from the initial state where all clocks will start with the value 0.
Unless an invariant prevents it, the system can delay some amount of time δ. δ must
be smaller than the value of the most restrictive invariant on the initial state, let’s call
that value k. This means all clocks now have values between 0 and k, but they all have
the same value. This is the zone of the initial state.

A transition is active as long as some valuation v that satisfies the constraints of the
zone, also satisfies the guards on the transition. When taking a transition a new zone
is calculated from the old one. All clock values are also constrained by the guards of
the transition, and the clocks that are reset get the value of zero. That means all clocks
does not necessarily have the same value, but instead we can say something about the
difference between clocks. If a clock x has been reset and another clock y has not, then
y− x will be in the same range as the value of y. This difference stays the same as time
elapses. When the transition has been taken, the system can once again delay some
amount of time allowed by the invariants on the new location, which extends the range
of possible values of the clocks. The resulting zone is the zone of the new state.

By continuously calculating the zone of each state in this way, the state space can be
explored.

3.2.2. Properties of Zones

All feasibility zones are convex polytopes in n dimensions, due to the fact that they are
created by constraints bounding the space. Therefore the zone of a timed model is also
a convex polytope and n is the number of clocks in the model.

Another property of zones of timed models is that they are guaranteed to have an
optimum and a minimum vertex. A minimum vertex is one which has a valuation v
such that for all clocks x ∈ X there exists no other valuation v′ in the zone such that
v′(x) < v(x). In other words the minimum vertex has the lowest value of the zone
in all dimensions, and the opposite is true for the maximum vertex. This is not true
for all feasibility zones. It is true for zones of timed models because a clock can’t go
backwards.

3.3. Existing Tools

There already exist a number of tools that use the theory of real-time modeling and
zones for formal verification of real time systems. One such tool in UPPAAL.

3.3.1. UPPAAL

UPPAAL is a toolbox for modeling, simulation and verification of real-time systems
created in collaboration by Aalborg University and Uppsala University.[4] Real-time
systems can be modeled as a network of timed automata communicating through a
number of synchronization channels and shared variables. UPPAAL allows for modeling
with both a graphical and a textual description language. Communication on a channel

4

happens by two processes synchronizing on the channel. That means they both take a
transition at the same time with complementary labels. For example two timed automata
can synchronize on a if one can take a transition with the label a and the other can
take one with the label a. We say that the transition with the label a receives an a
and the other one sends an a. In UPPAAL the syntax is a? and a! for receiving and
sending respectively. Communication with shared variables happens simply by reading
and writing to the integer and clock variables which are global.

UPPAAL has two more modeling concepts. One is urgent channels. An urgent channel
is one which forces networks to synchronize on it as soon as it is possible. In other words
time can not elapse if there are two automata that can synchronize on an urgent channel.
The other concept is committed locations. A committed location is one which must be
left immediately. This is used to ensure a sequence of transitions are taken atomically.

Model checking in UPPAAL happens by using the symbolic method with zones to
reduce reachability problems to manipulation and solving of constraint systems. In
combination with this technique on-the-fly searching techniques are used to improve
efficiency. Once it has been proven whether a property is satisfied or not, the model
checker can generate a diagnostic trace explaining the result.

A model can also be explored in the simulator. The simulator allows a user to take
transitions and see how the zone evolves, and which transitions are allowed when. This
can also be used to visualize the diagnostic trace generated by the model checker. How-
ever the zone is only ever described with the range of values the clocks and their differ-
ences are in. In other words by the constraints that make up the zone.[4]

3.3.2. ECDAR

ECDAR is another toolbox for modeling, simulation and verification of real time systems.[5]
It uses the backend of a variant of UPPAAL called UPPAAL-Tiga which specializes in
timed game automata[6]. ECDAR itself is designed to check for refinement, specifica-
tion and consistency properties of a system modeled as components that are related with
conjunctions, compositions and quotients.

ECDAR 2.0 is a new version with a new front end inspired by modern IDEs. It is
built on the codebase of another UPPAAL tool called H-UPPAAL[7]. The result is
an Integrated Modeling and Verification Environment (IMVE) for compositional real
time systems. It focuses on simplifying the workflow of modeling and verifying. For
example with project management and automation of common tasks. It also prevents
constructing invalid models when possible and immediately gives a warning otherwise
instead of waiting until validation of the model.[5]

Like UPPAAL ECDAR has three main components. The first is used to construct
components and models of real time systems. The second one can be used to verify
properties of the modeled system by creating queries and running them on the models.
Lastly ECDAR also has a simulator to explore traces in the model. As is the case
in UPPAAL, the zone is presented as it evolves during the simulation, but only with
constraints as text.

5

4. Vertex Enumeration

As mentioned the tools presented in section 3.3 cannot show a zone graphically. It could
however be a powerful tool during simulation. In order to do such a visualization it is
necessary to create a geometric representation.

As mentioned a zone is an n-dimensional convex polytope, however only three dimen-
sions can be shown at once. A zone can be projected to three dimensions and then that
can be shown as a 3D shape, which will be a convex polyhedron.

In order to render the shape it is necessary to find its vertices. This is a problem that
several algorithms have already been developed to solve.

4.1. Pivoting

Pivoting refers to the the way a new vertex can be found from a known one. Suppose
we have a vertex specified by d hyperplanes that intersect at this point, where d is the
number of dimensions. Note that this corresponds to d constraints with a single solution
in a constraint system. To pivot is to interchange one of the hyperplanes of the vertex
with another hyperplane from the system that is not currently used.

In the non simple case there can be more than d hyperplanes meeting in the same
point. We call this a degenerate vertex. The principle when pivoting is similar, however
we may need to remove more than one hyperplane. Likewise we may need to add more
than one hyperplane. When removing one or more hyperplanes the idea is that the result
is conceptually an edge of the polytope. That means the resulting set after removing
some hyperplanes should only contain hyperplanes that touch each other outside the
pivot. In more than three dimensions it is possible to have a degenerate edge, meaning
the hyperplane that was removed had nothing to do with the degeneracy. When the
hyperplanes of an edge has been found, add another hyperplane whose normal is linearly
independent from the ones that make up the edge and which wasn’t part of the old vertex.
This produces a new vertex. Note that not all vertices found this way will be feasible,
meaning they are not actually part of the polytope.[8]

4.2. Criss-cross Algorithm

David Avis and Komei Fukuda have created a criss-cross algorithm, which among other
things can be used to enumerate all vertices of a convex polytope.[8] The algorithm is
based on inverting finite pivot algorithms for linear programming.

By using pivoting a path can be found from any vertex to an optimum vertex that
maximizes some objective function. The chosen path depends on which pivot rule is used
to decide which vertex to pivot to. Avis and Fukuda uses the rule known as Bland’s rule
or the least subscript rule[9]. This rule guarantees a unique path from any vertex to the
optimum vertex. The combination of all such paths form a spanning tree rooted in the
optimum vertex.

The algorithm traverses this tree depth first by starting at an optimum vertex and
reversing Bland’s rule to follow the paths that lead away from that vertex.

6

4.2.1. Dictionaries

The algorithm uses the concept of dictionaries. A dictionary is a matrix-vector product.
A system of equations, or conversely a system of hyperplanes, can be transformed into a
dictionary. Pivoting can now be done as matrix transformation. Checking for feasibility
still requires actually doing the reverse pivot, but then feasibility can be decided by
checking signs of certain values in the dictionary.

Using dictionaries also means that only the vertices themselves are found, or specifi-
cally their coordinates. That means information about the which constraint gives a given
face is lost, and so is information about strictness, since the algorithm only considers
intersection of hyperplanes.

4.2.2. Algorithm Properties

The algorithm has a number of interesting properties.[8]

a) Virtually no additional space is required beyond that used to store the input

b) Each vertex is output exactly once

c) All degenerate cases are handled

d) No advanced data structures are needed

e) The running time is output sensitive for non-degenerate inputs

f) The algorithm is easy to efficiently parallelize

5. Problem Formulation

Visualizing zones from real-time models raises the question of what can be gained from
such a visualization. However, in order to solve that problem, the vertices of a 3D
representation of the zone must be found. This proved to be a challenge in and of itself
and therefore there are two subproblems to consider.

• In order to visualize a zone, it is necessary to enumerate the vertices of the zone.
Pivoting has been used for this task in the general case of inequality systems. How
can the method of pivoting be specialized to the case of guards and invariants as
known from models of real-time systems?

• When trying to get an overview of what can happen in a given timed model, one
has to rely on the textual representation of the constraints. This makes it hard to
know when an action will be possible, especially when evaluating a model. What
can be gained in regards to correctness and speed by using visualization of zones
when doing these tasks?

7

6. Design

This sections describes the abstract design of the solution and the things that had to be
taken into consideration before making it. There are two main points. First there are
the things that have to be considered in regards to the mathematical concepts used for
the solution. Secondly there is the algorithm used for enumerating vertices of the zone.

6.1. High Dimensionality for Calculations

The representation created by this system is at most in three dimensions. Therefore
it seems intuitive to only consider constraints of these three dimensions. However any
constraint that can constrain one of these dimensions must be considered, and that means
our intuition turns out to be wrong, and actually all constraints must be considered.

To understand why, consider only showing dimensions x and y, with a zone constrained
by y − z < 2 and z < 5. There are no constraints on only x and y, however the first
constraint means that y can’t be greater than 7 unless z is greater than 5. Therefore y is
constrained to being less than 7. Visually this is shown on figure 1, where y is bounded
despite there not being a y less than bound, and when projecting this polytope to 2D it
will become a rectangle where y is still constrained.

Figure 1: Example of 3D zone projected to 2D

This insight can be extended to further dimensions. In the example y is constrained
by y − z < 2 and a less than constraint on z, however z can be similarly bounded by
constraints on another dimension, thus meaning that how y is constrained depends on
constraints in which the y dimension doesn’t explicitly appear. This chain of depen-
dency may be extended to all dimensions of the system in some cases, and therefore all
constraints must be considered when calculating the zone. Afterwards the zone can be
projected to the two or three dimensions that are shown in the system.

Evidently constraints can act as less than constraints on other dimensions (or reversely
as greater than constraints). However they can also act similar to constraints on two
dimensions, like y − x < 5. Consider the constraints y − z < 5 and z − x < 5. This is

8

visualized in figure 2. This creates a slanted face effectively acting like y − x < 5 when
projected to x and y.

Figure 2: Example of 3D zone (shown rotated 90◦) projected to 2D with slanted face

6.2. Pivoting Algorithm

The algorithm used for vertex enumeration is a pivoting algorithm. Pivoting can be seen
as starting from one vertex and finding all edges going out from that vertex. Unlike Avis
and Fukuda’s algorithm[8] this algorithm doesn’t transform everything into dictionaries,
but works with the constraints themselves.

It should be noted that the algorithm assumes that there are no unnecessary con-
straints. In other words constraints that are less restrictive than others in every way
and therefore doesn’t intersect the zone. Given the underlying data structure in the
model checking tools this is not a problem.

For the remainder of this subsection a constraint with < can also refer to ≤, and >
can also refer to ≥ as they represent the same hyperplane, and therefore are equivalent
when finding vertices.

6.2.1. Pivoting with Constraints

Consider each constraint as a hyperplane in n-dimensional space where n is the number
of clocks of the system. A vertex is then the point where n hyperplanes intersect.
Although a vertex can be seen simply as a set of n constraints with a single solution, we
will consider that each constraint decides the value for one dimension.

A constraint on only one clock naturally decides the value of the corresponding di-
mension, whereas a constraint where one clock is subtracted from another can decide
the value of either one of the corresponding dimensions, depending on which other con-
straints are in the vertex. In other words it will always decide the value of the dimension
not decided by any other constraints.

9

6.2.2. Initial Vertex

In order to start pivoting, an initial vertex is needed. Additionally we would prefer to
not visit vertices more than necessary. This can be done by starting from the vertex
with the lowest value for all dimensions and only following edges that maximize one or
more dimensions. For example removing an x < 10 constraint, can never maximize the x
dimension as any vertex found must have a value for x that is lower than 10. In general
upper bounds on a dimension should not be removed. This means that if a dimension x
is decided by x < k or by x−y < k for some constant k and some clock y then it cannot
be used for pivoting on that vertex.

In order to find the initial vertex we need the lowest value for all dimensions, that
is still in the zone. If there exists an x > k with some constant k for the dimension,
then it is part of the initial vertex, as any other constraint acting as lower bound of that
dimension would either make x > k obsolete or give a lower value than k. A lower value
than k is not feasible, since x > k is too restrictive for that. If there isn’t a constraint on
that form then the x dimension is decided either by a constraint on the form y − x < k
for some clock y, or by the implicit x ≥ 0.

In order to find the constraints of the initial vertex we use pivoting. We start with
the vertex where each dimension is decided either by x > k or by the implicit x ≥ 0.
This vertex might not be feasible, so we start pivoting. For each constraint c on the
form y − x < k we calculate the x value if we use c instead of what is used currently. If
that value is greater than the old value, we pivot to the vertex where x is bounded by c.
Since this gives us a new value for x we need to recalculate the value of all constraints
on the form x− y < k to see if they now give us a greater value for y, and so on.

Once values have been calculated for all constraints and there are no more with a
greater value, pivoting is finished. That means the reached vertex is feasible, and will
be the initial vertex used in the rest of the algorithm.

6.2.3. Finding Edges

Once an initial vertex has been found, we can pivot on that. An edge of the zone is where
n − 1 hyperplanes intersect, in other words an edge consists of n − 1 constraints. An
edge going from a vertex can be found by removing one of the constraints of the vertex.
In other words for each dimension, remove the constraint deciding that dimension. The
resulting sets of constraints are then the edges resulting from all possible pivotations on
that vertex.

Note that some edges might go the wrong way, minimizing one or more dimensions.
Therefore if the constraint to remove for some dimension is an upper bound on that
dimension, then the resulting edge should be ignored.

6.2.4. Finding Potential Vertices

Once we have an edge we follow it to find potential vertices. A potential vertex is com-
prised of the constraints of the edge and some constraint that intersects with it. There
will be one potential vertex for each constraint intersecting the edge, and exactly one

10

of them is feasible, not counting the pivot. In order to find the constraints intersecting
with the edge we first find the dimensions to look for upper bounds on. In other words
which dimensions the edge is maximizing. We pivoted by removing the constraint de-
ciding some dimension. Naturally that dimension is one which the edge is maximizing.
Additionally the edge will maximize all dimensions for which a corresponding clock is
part of a constraint on the form x − y < k where the other clock x or y corresponds
to a dimension the edge is maximizing. Note that this can add dimensions recursively,
potentially until all dimensions are being maximized.

Once we know which dimensions are being maximized we find constraints that are
upper bounds on those dimensions. Naturally any constraint on the form x < k for
some constant k, will be an upper bound for x. Additionally any constraint on the form
x − y < k is also an upper bound for x, but not all of the upper bounds containing
two clocks intersect the edge. If the normal of a constraint is linearly dependent on
the normals of the constraints making up the edge, then it does not intersect, but runs
in parallel to the edge. This can also be found by checking if both x and y are being
maximized by the edge. If that is the case then the constraint does not intersect the
edge.

6.2.5. Finding a Feasible Vertex

When all of the potential vertices have been found we need to decide which one is
feasible. The most restrictive constraints will give the feasible vertex, however several
dimensions were potentially being maximized. Since all dimensions change at the same
rate, the most restrictive in one dimension will be the most restrictive in all dimensions.
Therefore any dimension can be chosen to decide which vertex is feasible, as long as it
was being maximized by the edge. One dimension that we know was being maximized,
is the one for which we removed the deciding constraint when pivoting. Therefore the
feasible vertex is the one with the lowest value for that dimension.

6.2.6. Completing the Algortihm

The found vertex is feasible and can therefore be added to the zone. We keep doing this
for the other edges found when pivoting. Then we start pivoting on the next vertex,
which we just found, and so on, finding more and more vertices. At some point we will
start finding vertices we have already found since there can be multiple paths from the
minimum vertex to another vertex. If a vertex has already been found then it should
not be added to the zone again, and it should not be used as pivot again if it has already
been used once. This means the queue of vertices to pivot on will eventually be empty,
as all vertices have been found and used as pivot. Then the algorithm is done.

6.2.7. Degenerate Vertices

A problem that has not yet been addressed is the issue of degenerate vertices. As
mentioned in 4.1 a degenerate vertex is one where the number of dimensions is lower
than the number of constraints for which the vertex is a solution.

11

Because of the chosen representation for a vertex, there will be a at least one dimension
which is decided by multiple constraints. Since a constraint with two clocks may be a
bound on either one of the corresponding dimensions, such a constraint may be deciding
either dimension in a degenerate vertex. Indeed which dimension it is assigned as a
bound on depends on which vertex was used as pivot to find it. Care must be taken
that such a difference doesn’t lead to it being recognized as a new vertex.

Actually finding a degenerate vertex is a fairly simple adjustment when following the
described algorithm. When following an edge, if there are several potential vertices
which result in the same value, then merge them into one vertex which includes all of
the constraints intersecting the edge. It is important to not only do this when following
the edges after pivoting but also when finding the initial vertex, if several constraints
give the same value.

The other problem with degenerate vertices appears when they are are used as pivots.
First of all there may be multiple constraints deciding a dimension, so they all need
to be removed when removing the constraint deciding that dimensions. However if any
of them is an upper bound then ignore the pivot. As described in section 4.1 actually
using a degenerate vertex as pivot is also slightly more complicated. For each dimension
d when removing the deciding constraint, also remove all constraints for which there
is another constraint deciding the same dimension, if it can also be a bound on d, or
if a dimension decided by multiple constraints, is decided by a constraint on the form
x < k or x > k then remove all other constraints on that dimension, unless the resulting
edge is degenerate, which it is if none of the constraints on degenerate dimensions are
removed.

Some extra edges have to be found since the constraints that all decide the same
dimension also touch each other. For each dimension that is decided by more than one
constraint, create an edge containing those constraints as well as any constraints from
the pivot that do not share any clocks with them.

After finding all the edges the procedure is exactly the same as described in section
6.2.3.

6.2.8. Calculating Coordinates

When the constraints of a vertex are known, calculating the coordinates becomes trivial.
To calculate the coordinate of a given dimension x, we find the value from a constraint
c deciding that dimension. If c is x < k or x > k then the coordinate of x is k. If
c is x − y < k then the coordinate of x is k + y and finally if c is y − x < k then
the coordinate of x is y − k. This may require calculating y in order to calculate x,
which may in turn require calculating the coordinate of another dimension, and so on
recursively. However each vertex has at least one constraint of the form x < k or x > k,
which means calculating the coordinate of a given dimension may require calculating up
to all coordinates for that vertex, but it is always possible.

12

7. Implementation

A solution has been implemented in Java. This section will describe the choices made
when implementing the solution. It will also explain how the problems encountered
during implementation were solved.

7.1. JavaFX

The solution was written with Java Development Kit (JDK) 1.8 update 172. The GUI
for the solution was created using the JavaFX platform. This was done mainly because
the new front end for ECDAR 2.0 is using JavaFX, and so it can easily be integrated as
part of the toolbox. Using JavaFX also led to using Java 8 rather than Java 9 because
certain packages did not behave as expected in Java 9.

JavaFX is a platform for creating applications in Java that work across a variety
of platforms. It is integrated in the JDK and contains a set of packages for creating
graphics. Among other things it can be used to create 3D-objects and show them in the
application.

7.1.1. 3D Controls

Some challenges did arise from the use of JavaFX. The graphics packages are primarily
developed for 2D applications, and many 3D features are still somewhat lacking. For
example the ability to move the camera of the 3D scene does not behave as expected,
when moving up, down or to the sides. That means only zoom could be easily im-
plemented. The effect of moving the camera around an object was created by adding
everything as children of a single parent node in the 3D-space and then applying a
rotation transformation to that node, while the camera was looking directly at it.

7.1.2. Showing Text in 3D-space

JavaFX has labels and similar constructs for showing text in 2D. These can be trans-
formed into a 3D-space, however it is not well supported and the behaviour becomes
unpredictable. There are no constructs with the main purpose of showing text in 3D.
The result is that there are no labels in the 3D-scene of the solution, because there was
not enough time to find a workaround or find a working third party package to solve the
problem.

7.1.3. Depth Buffering

Another challenge was that depth buffering does not work with transparent 3D-objects.
This is a problem since it would prevent making the zone a little transparent to enable
users to see if something is inside it. However the problem can be ignored by manually
ensuring that the zone is added to the scene after everything else. This way the zone is
drawn last and therefore on top of what is already there, as it should be.

13

7.1.4. Backface Rendering

A further complication happens because backfaces of a 3D-object are not rendered. A
3D object is made up of triangles called the faces of the object. Each face has a normal
specifying what is the front of the face. The front is the only side that can be rendered
with a material, which means the back is either not shown (culled), or shown as a pitch
black triangle. In order to handle this, each face of the zone is actually two objects with
opposite normals. However that causes problems with the depth buffering described in
subsection 7.1.3. Therefore the backfaces also have to be added to the scene before the
front faces, but after other objects in the scene.

7.2. Pivoting Algorithm

There were some challenges encountered during the implementation of the pivoting al-
gorithm described in section 6.2.

7.2.1. Data Structure for Vertices

One challenge was how to efficiently check whether a vertex had been found before. An
AVL-tree had been used for a similar task before[8], however for the sake of simplicity
a hash table was used in the current implementation. A more advanced data structure
may be preferable in the future, however the efficiency was not a problem in regards to
evaluating the system.

The hashes of vertices is calculated as the hash of the set of constraints. This can be
done because the constraints are unique. There are not two different objects representing
the same constraint.

7.2.2. Collections of Constraints

During pivoting the same sets of constraints will often be needed over and over again. For
example whenever an edge is maximizing x, all upper bounds on x are needed. Therefore
a number of collections were kept, such that once the constraints had been found once, a
mapping was added from the dimension being maximized to the collection of constraints
that were upper bounds on the dimension. Note that this was only necessary for the
upper bounds, because lower bounds only needed to be found once, when the initial
pivot was found.

7.2.3. Early Implementation

During development of the algorithm, both the algorithm and therefore the solution
went through many iterations, sometimes with many changes. This included changing
the implementation so that the different steps of the algorithm were carried out where
they made sense.

At one point the implementation had to be redone almost from scratch, because many
classes had ended up doing things that no longer made sense to do in them. What had

14

started out as simple tasks had in multiple places become things that should be their own
classes, and even worse the information flow through the solution had become cluttered
as information was passed back and forth.

Specifically the task of finding potential vertices, and then deciding which one was
feasible, was split over many classes. Almost all the information had to be sent along to
all classes, and it was rarely obvious what the purpose of the class was and what should
be returned after a step.

Therefore a new class structure was created and implemented, replacing most of the
previous implementation.

7.3. Rendering of a Polytope

JavaFX cannot readily use the result of the pivoting algorithm to render the polytope.

7.3.1. Zone Representation

The result of the pivoting algorithm is a zone consisting of vertices and faces. A vertex
of the zone is a mapping where each dimension is mapped to a value. There is no par-
ticular ordering. A face is a convex polygon represented by an unordered set of vertices
outlining the convex hull of the face. Additionally a face also knows the constraint that
it represents, from which the normal of the face can be found. The normal is also a
mapping where each dimension is mapped to a value.

7.3.2. JavaFX 3D-object Representation

JavaFX represents a 3D-object as a mesh consisting of vertices, faces and normals. A
vertex is three numbers and the order decides which dimension each value is associated
with. A face is three vertices and their order should be counterclockwise in relation to
the normal of the face. A normal is represented as three numbers. Again the ordering
of the numbers decide which dimension each value is associated with. The ordering of
the normals also decide which face each normal is associated with, so the first normal is
for the first vertex and so on.

7.3.3. Projecting a Zone

The first step in enabling JavaFX to render the zone is projecting it to three dimensions.
Projecting a vertex to 3D is simple. A vector in 3D for the vertex with valuation v can be
found as (v(x1), v(x2), v(x3)) where x1, x2 and x3 are the ordered set XP of dimensions
to project to. The problem then becomes finding which vertices to project.

It doesn’t make sense to project the vertices of a face which isn’t bounding one of the
dimensions to project to. In other words if the normal of the face is 0 when projected
to XP , then it won’t make sense to draw it.

If a face represents a constraint where all the clocks bounded by it are in XP , then
it should simply be projected by projecting all vertices in the face. If a face represents
a constraint with two clocks, and only one of the clocks is in XP then extra care must

15

be taken. I should be projected to a single plane in the dimension which is in XP , and
there may be two faces taking up the same space, in which case only one of them should
be drawn.

7.3.4. Ordering Vertex Values of Faces

Once the vertices of a face have been projected to the desired dimensions, the face needs
to be triangulated. The triangulation of a convex polygon is trivial, however before
getting that far an ordering of the vertices must be found. JavaFX requires the vertices
of the triangles to be ordered counterclockwise so that ordering will be used for the
whole set. For the sake of simplicity all vertices are assumed to be defined locally in
relation to the center of the face while calculating the ordering.

The normal ~n of the face is known. It can be projected the same way a vertex was.
A reference ~r in the face is needed to be used as 0 degrees. The vector to any vertex of
the face can be used as reference. The chosen vertex will be the first in the ordering.
To define a direction another reference is needed to differentiate partitions. This can be
found as ~p = ~n×~r, since this will give a vector in the right plane, in a 90◦ angle from ~r.

For a vertex ~v we can calculate ~v · ~p to show if the vertex is in the first or second
180◦ from ~r. Special care must be taken if the scalar product is 0, since it can mean the
vertex is at 0◦ or 180◦. Once we know know which half of the space a vertex ~v1 belongs
to, we can compare it to another vertex ~v2 in the same space by calculating (~v1× ~v2) ·~n.
If this value is lower than 0 then ~v1 should come first in the ordering.

7.3.5. Triangulation

Once the vertices are ordered, the polygon can be triangulated by choosing the first
three vertices as a face, and then removing the second vertex from the set of vertices.
By repeating this until there are less than 3 vertices left, all faces are found, and the
ordering of vertices in each face is counterclockwise.

8. Examples from the Solution

This section will show examples from the implemented solution and explain how the
main features are used.

Figure 3 shows how a zone is visualized in the solution.

8.1. Content Area

The primary panel in the window is the right panel, where a zone is shown in 3D-space.
Inspiration for how to manipulate the view has been taken from other applications
showing 3D-objects, like the game engine Unity®[10]. Users can zoom using the mouse
wheel and pivot the camera around the center of the zone by dragging the mouse while
pressing a mouse button.

16

Figure 3: Showing a zone in the solution

As seen in figure 3 the zone has red and green faces. A red face represents a strict
constraint, and a green face represents a non strict constraint. Meaning the green faces
themselves are part of the zone, while the red ones are not. This also allows the user to
see whether an edge or a vertex is in the zone. If even a single face intersecting there is
strict then they are not included in the zone.

As can also be seen in figure 3, the axes of the coordinate system shown have neither
values nor labels to indicate which clocks they represent. As mentioned in subsection
7.1.2 this was not easily accomplished, and it is a known problem with the solution. The
clock corresponding to an axis can however be shown by hovering over the axis.

8.2. List of Clocks

The left side of the window shown in figure 3 shows a menu with panels for further
affecting what is shown in the content area. In the upper left corner is a list of the
clocks in the model. Here the user can choose which dimensions to project to. In the
example there are three clocks: x, y and z that are all selected.

By selecting only two clocks it is possible to have the zone projected to only two
dimensions as shown in figure 4. However the 2D projection does not indicate whether
an edge is strict or not, and the color of the area doesn’t mean anything. It is always
red.

Selecting less than two clocks has no effect and it is not possible to select more than

17

Figure 4: Showing a zone that has been projected to 2D

three.
The order in which dimensions are selected matters. The first clock will become the

x-axis (red), the second one the y-axis (green) and the third one the z-axis (blue) when
shown in the content area. This also means removing for example the clock y in the
example, and then readding it will change the order, and therefore the projected zone,
because y would become depth, rather than height.

8.3. Adding Points

It is also possible to insert points into the 3D-space. This is done through the panel
below the list of clocks. You simply write the coordinates of a point and press the ”Add
Point” button. This can be done repeatedly to insert more points, and the result can
be seen in figure 5.

Adding points can be used to realize whether a specific valuation is inside the zone or
not. Additionally it is a much needed tool while there are no values on axes, since it is
the only way to see specific values in the solution.

There is no limit on how many points can be inserted by the user, other than how
many their hardware allows them to render. However at any point all the inserted points
can be removed again by pressing the ”Clear Points” button.

Inserting points does not work well with changing the order of the dimensions to
project to. The points will remain in the same position in the shown coordinate system,

18

Figure 5: Shows 4 points. 2 outside the zone, 1 inside and 1 in a face

and not be affected by the new ordering. Combining these two features in a meaningful
way is difficult since not just the ordering can be changed, but which dimensions being
projected to can be changed as well. Instead the points should be cleared when changing
dimensions.

8.4. Input Panel

Because the tool cannot currently receive its input data directly from a modeling and
verification tool, there is actually another panel, which is not intended as part of the
finished tool. In figure 3 this panel is hidden under the edge of the window in the bottom
left corner. The panel is used to show a zone made up of a subset of the constraints of
a hard-coded zone, which has been used for testing. The panel is shown in figure 6.

9. Evaluation Method

The evaluation of the system will focus on what can be gained from visualizing zones of
a timed model. The evaluation will compare how test subjects solve tasks with insights
gained only from a textual representation of constraints compared to insights gained
from a visual representation of a zone.

The evaluation method used for this project is inspired by the one described by Kjeld-
skov et. al.[11]. This method is well suited for getting quick results with only 4 to

19

Figure 6: A panel that can set a hard-coded zone to be shown in the content area

6 test subjects. They use the think-aloud protocol along with their own Instant Data
Analysis (IDA) technique to evaluate a software system. However that technique is used
for evaluating the usability of a system, whereas this project focuses on how insights
gained from a system may help in solving tasks. Therefore the focus during evaluation
will not be on how test subjects interact with the system, but rather how fast they can
solve the tasks, as well as how correct their results are.

The think-aloud protocol can still be used to understand what insights users gain from
the system, as well as what insights they are still missing, in regards to the task they
are solving.

One researcher participated in the evaluation. Unlike IDA where there are three
different roles, only one was used here, resembling mostly the role of test monitor. The
researcher also took notes on what the test subjects remarked during the evaluation.
These notes were used to understand what users gained from the system in the following
brainstorm.

There will be two data sets gained from this method of evaluation. The time and
correctness for each task make up the first data set, and the second data set consists of
the findings from the following brainstorm session.

9.1. Participants

The participants of the evaluation were 6 test subjects working to solve the given tasks
with one researcher facilitating the evaluation as test monitor.

The 6 test subjects were all male computer scientist and software engineering students
from AAU with knowledge of timed models ranging from basic knowledge from courses,
to having worked with it for one year.

Since the visual tool makes use of red and green colors it should be noted that one of
the test subjects was red-green color blind. He was however able to distinguish the two
colors in the tool, sometimes it just took a little longer.

20

9.2. Setting

The evaluation sessions were conducted with the test subject and the test monitor sitting
next to each other. The test subject was sitting in front of a table with a standard laptop
and a conventional keyboard and mouse setup. The system had been preinstalled, and
before each task a model was loaded into the system. Only the relevant representation
was shown on the screen.

Additionally a voice recording device was placed between the test subject and test
monitor to record the conversation.

9.3. Tasks

The test subjects were given 12 tasks. The goal in the tasks was to decide whether a given
transition in a system of timed automata is possible. The transition had guards that
either only allowed a specific valuation of all clocks or a zone of valuations. When only
a specific valuation was allowed the test subjects had to figure out if the corresponding
point was inside the shown zone. When a zone was allowed the test subjects had to
figure out if the zone intersected with the shown zone. 6 of the tasks had only one timed
automaton, while the other 6 had two timed automata. For each of these 6 tasks, 3
had guards that allowed only a specific valuation, and 3 had guards that restricted to a
zone. Each of the set of 3 tasks had one where the transition was not possible, as the
values needed to take the transition was outside the zone. There was one task where
it was possible, in other words the valuation was inside the zone. The last task had
the valuation on the edge of the zone so whether it was possible to take the transition
depended on whether the constraints were strict or not. The given tasks can be seen in
appendix A.

In order to reduce bias, test subjects alternated between solving a task with only the
textual representation of constraints and solving a task with the visual representation.
This was done so one method wouldn’t seem better because the test subjects were getting
better at understanding the models in general. Additionally half the test subjects started
by solving the first task using only the textual representation, while the other half started
with the visual representation. This way all tasks were solved an equal number of times
with each method.

The tasks were solved in the same order by all test subjects, meaning they might have
had a greater understanding of how to use the models in later tasks. However the tasks
varied in difficulty so comparing tasks to each other makes little sense regardless. Rather
the two methods should be compared for each task. Therefore randomizing the order of
the tasks should be unnecessary and would only complicate the process of ensuring all
tasks were solved an equal number of times with each method.

9.4. Procedure

The evaluation was conducted using the following procedure.

21

Briefing and introduction. First the test subjects had the evaluation process and the
system explained to them. Then they answered a few questions about their demographic
profile.

Task solving. The test subjects were given the tasks one at a time and worked on
them until they had solved them or until four and a half minutes had passed, in which
case the test monitor asked them to move on. The test monitor logged whether the task
was completed, and if so whether it was solved correctly. Additionally the test monitor
noted the time the task took.

Thinking-aloud The test subjects were asked to think aloud and say how they were
solving the tasks, especially what they were learning from the information shown on the
screen. The test monitor did not help or provide extra information but could ask for
clarification.

Debriefing At the end of each evaluation session the test subject was debriefed about
their experience with the system and the evaluation.

9.5. Data Analysis

After the evaluation sessions there was a brainstorm session similar to the one used in
IDA[11]. However there was only one researcher and the focus was not on usability, but
still rather on what users had gained from using the system. The task descriptions, voice
recordings and notes taken during evaluation were used to assist the brainstorm. The
result was a list of insights test subjects were able to gain with each of the two methods,
ranked by how important they were to solving the task, and another list with information
the test subjects still found lacking at some point in their task solving process, ranked
by how much more difficult they found the task due to the lacking information.

After the brainstorm session the average time and completion of each task was com-
piled into a table.

10. Evaluation Results

The evaluation resulted in two data sets. The first data set is quantitatively showing
how well and how fast test subjects were able to solve each task. The other data set
is qualitative and meant to show what was found to be useful, or missing in the tool
during task solving.

10.1. Time and Correctness of Task Solving

The full data set of time and correctness for each task can be seen in appendix B.
Table 1 shows how many times each task was solved correctly with each method,

and the average time of the cases when the task was solved correctly. The time limit
for task solving was only reached once, which was when solving task 4 with the visual
representation.

22

The times for solving tasks incorrectly are not considered because errors when using
the textual representation often come from jumping to conclusions too quickly, either
because of a wrong method or because only one constraint needs to be unsatisfied for the
transition to be impossible to take, and so test subjects could stop after finding just one
with the textual representation. However when they were wrong they actually should
have made more calculations. This was not an issue with the visual representation
because the point was shown in relation to all constraints at once.

There were a number of cases where the right conclusion was reached despite errors
or the use of a wrong method. This happened with both representations, however the
test monitor estimates that it happened 2 to 3 times with the visual representation and
at least 5 times with the text representation. Specifically one test subject used a wrong
method when using the text representation and yet he got the correct answer 4 out of 6
times. Getting the right answer despite errors is a problem with the textual representa-
tion because as mentioned a conclusion was often reached prematurely. Therefore some
of the times for the textual representations are shorter than they should be. The test
monitor estimates this happened at least 3 times.

Textual Representation Visual Representation
Correct Avg. Time of Correct Correct Avg. Time of Correct

Task 1 0 / 3 - 2 / 3 0:57.42
Task 2 3 / 3 1:20.37 3 / 3 1:19.09
Task 3 2 / 3 0:55.31 3 / 3 1:04.92
Task 4 2 / 3 1:20.92 1 / 3 1:56.31
Task 5 1 / 3 1:12.90 3 / 3 1:19.44
Task 6 3 / 3 1:29.59 3 / 3 0:47.28
Task 7 3 / 3 1:35.70 3 / 3 1:04.00
Task 8 2 / 3 0:44.14 2 / 3 0:33.99
Task 9 3 / 3 0:58.35 3 / 3 0:20.41
Task 10 3 / 3 0:45.23 3 / 3 0:30.16
Task 11 3 / 3 2:11.97 2 / 3 1:04.95
Task 12 2 / 3 0:56.56 3 / 3 1:05.01

All 27 / 36 1:13.73 31 / 36 1:00.25

Table 1: The correctness and average time aggregated for each task

The average times for each task shown in table 1 are on average lower for the visual
tool. When using the T-test[12] on the average times for each task (except task 1) we
get t = 1.16909 and p = 0.128057 meaning the average times are not significantly lower
for the visual tool at p < 0.05.

One thing to note is that generally more time was spent on understanding the task,
and considering which method to use when solving the first tasks, while more time was
spent on actually solving the tasks when solving the later tasks. Therefore the results
of the T-test on the average times of just the last 6 tasks could be interesting as well.

23

Here t = 1.97315 and p = 0.03598 meaning the average times are significantly lower for
the visual tool.

10.2. Brainstorm Results

During the brainstorm session the observations and findings from the evaluation were
considered. The notes from this session can be found in appendix C. The points found
during the session were compiled into two lists. The first list contains the benefits that
were gained from using the visual tool for the tasks. The second list contains things that
the test subjects found lacking or that might have helped them while solving the tasks.

Benefits of the visual tool

• Easier to see if a specific point is in the zone

• Overview of what is possible

• Strict and non strict constraints are intuitively understood at a glance

• It is easy to realise which values need to change and in which direction to get a
point in the zone after inserting a point

• Multiple constraints with two clocks affecting each other does not make the prob-
lem more complicated

• Enables an explorative approach

• Users were more confident in their answers

• Less mental strain

Shortcomings of the visual tool

• Values on axes

• Names of clocks on axes

• Clarity on whether a point is inside the zone or not

• The ability to draw custom zones and not just points

• Show coordinates of vertices

Causes of Errors

The causes of errors using the two methods were also considered. The most common
causes of errors in order of how common they were:

24

Textual Representation

• Used wrong method or formula when
calculating constraint satisfaction

• Arithmetic errors

• Misread the assignment and used >
instead of <

Visual Representation

• Thought delays could only be integers

• Misread the assignment and used >
instead of <

• Thought a point was inside the zone
when it was actually behind it

11. Discussion & Conclusion

This section will be used to discuss the proposed pivoting algorithm for enumerating
vertices of a real-time systems zone, and how the visualization of a zone can help in
getting an overview of a real-time system.

11.1. Discussion of the Proposed Algorithm

The algorithm described in section 6.2 proves that the zone of a real-time system has
some properties that can be used when designing a pivoting algorithm. However the
question is what can be gained from using the new algorithm over the one described by
Avis and Fukuda[8] which was presented in section 4.2.

There has not been any formal comparison or benchmarking of the two algorithms
to see which one performs best. However many of the nice properties of the original
algorithm will have been lost in the new algorithm. The new algorithm will not be as
space efficient since it saves the reported vertices to be able to check whether a vertex
has been found before. Additionally it also saves all edges from a given pivot, before
enumerating them which essentially means the new algorithm is a breadth first search
of the spanning tree. All in all the space complexity of the new algorithm will inevitably
be worse.

The property of only outputting each vertex once also holds for the new algorithm,
although as mentioned this is at the cost of checking whether a vertex has already been
reported when it is found.

The new algorithm is able to handle degenerate cases as well, although not in the most
elegant way. One could argue the original algorithm has problems with this as well, at
least in the case where the initial vertex is degenerate. However the original algorithm
has used formal proofs to guarantee that all degenerate cases are handled, which has
not been done for the new algorithm, so there is still a risk that there may be some edge
case that is not handled.

The new algorithm does need to use advanced data structures. Although all concepts
pertaining to the polytope can be expressed as collections of constraints, the collection
of found vertices needs a data structure so it can efficiently be determined whether a
vertex has been found before.

25

The running time of the new algorithm is still output sensitive, since all output ver-
tices are also used as pivots. However the running time is hard to compare to that of
the original algorithm since a complexity analysis has not been performed on the new
algorithm.

As to parallelizing the algorithm it is possible and some performance can be gained,
especially when working in many dimensions, as this leads to a broader spanning tree
of the polytope vertices. However it is not trivial to do so, whereas it is easy with the
original algorithm.

However some things have been gained by using the new algorithm. One thing that
is quite important for the case of visualization is that the algorithm can easily output
the faces of the polytope as well. Another thing which proved very important is that
the constraints are used throughout the system, which meant a face could be colored
according to whether its corresponding constraint was strict or not.

Obviously losing most of the nice properties of the original algorithm is bad. Since
both the space complexity, and likely the time complexity as well, are worse for the new
algorithm, and they both grow with the number of clocks, the original algorithm will
almost invariably be better when a model has many clocks.

However in most cases this matters little, since even fairly big models in UPPAAL
doesn’t have that many clocks, and so correctness and actually having more information
available for visualization becomes the main factors. The original algorithm is still
better when it comes to correctness, since it has proven that all cases are handled, even
all degenerate ones. However the new algorithm has more information available.

In the end the benefits of the original algorithm means that it might be easier to find
a way of adapting that algorithm to also carry some extra information, and make it
available after finding the vertices, but it could also still be possible to find a reversible
pivot rule and do a depth first search in the new algorithm, which would give it most of
the nice properties again.

11.2. Discussion of the Zone Visualization & Evaluation

The results presented in section 10.1 show that the test subjects were able to get more
correct answers with the visual representation than with the textual representation cur-
rently used by UPPAAL. Additionally the tasks were on average solved faster using the
visual tool, although the difference was not significant.

Looking closer at the results we find that the majority of errors were in the first tasks,
and actually both methods caused the same amount of errors in the last 6 tasks. This
indicates that the visual representation is more intuitive, whereas the second or third
time the test subjects met a type of task they had often found a good method for solving
it, regardless of which representation they were using. However the average times for
solving the tasks were significantly better when using the visual tool for the last 6 tasks.

The results speak even more in favor of the visual representation when considering
that more errors leading to the correct result, were observed when using the textual
representation. It is hard to know to which extent this happened but it does indicate
that the difference of errors is even higher than 4.

26

Similarly as explained in section 10.1 some of the times were actually lower than they
should be for the textual representation. It is also hard to know how much of a difference
this makes, but it does make the difference greater.

Another factor to consider is the fact that only considering the times of correct answers
might also introduce bias. It was done because wrong answers could be reached faster,
however it may also result in only getting the times of either the most thorough or of
the ones who are best at solving the tasks, and therefore do it faster. For example the
average time of solving task 1 with the textual representation is over 3 minutes with
three wrong answers and around 1 minute with the visual representation with only one
wrong answer, which was also the slowest, although not by much. However while this
does seem to have influenced the average times, it doesn’t change the fact that the visual
representation was faster. On the contrary it would have had the greatest effect on the
average times of the textual representation and made them greater. The average times
including wrong answers were 1:33.09 for the textual representation and 1:04.14 for the
visual representation.

Considering the causes of errors found during the brainstorm we also find that the
most common errors for the textual representation was because of the method needed
when using that representation. The visual representation on the other hand mainly had
errors from misconceptions about the zone and from misreading the assignment. Only
one error for the visual tool was actually because of an error in using the tool, and that
error might indicate that some work is needed on the usability of the tool. Some of the
errors might even be helped if more information is sent from the model checking tool
and some of the missing features were added. For example being able to draw a zone
rather than a point would make it easy to see that x > 5 was accidentally used instead
of x < 5.

This leads us to the findings of the brainstorm. There was some information lacking
from the tool when it was used to solve tasks during the evaluation. Some of it was
known beforehand, like the fact that axes were missing values and clock names. Some
were features that test subjects suggested to solve some problem they had encountered.
Finally there were some features where it became apparent that they would be useful as
several of the test subjects were struggling with the same part of some task.

The benefits of the tool were also quite apparent. Once the test subjects had tried
the visual tool they became very fast and very confident in their answers when inserting
a point and checking if it was inside the zone or not. They were also able to realize
whether a zone was intersecting in tasks 4-6 and 10-12 by inserting a point where the
guards intersected and checking greater or lower values.

For the test subjects that were unsure of how to proceed, the visual tool also got them
started very quickly as they started inserting points seeing how different values were
placed in relation to the zone and eventually reaching a conclusion. This gave them
a better understanding of the zone they were working with, eventually also leading to
them finding more efficient methods for the later tasks.

Finally there is the issue of strict and non strict constraints, which users seemed to
grasp quite easily within the visual tool. This is important as test subjects expressed
concerns that it was hard to keep track of strictness while doing calculations, and there-

27

fore they felt they might forget them. Therefore having no problems with them in the
visual tool, and simply checking the color when it becomes relevant, is another important
benefit.

11.3. Conclusion

The solution implemented for this report showed how a zone could be visualized, and
how such a visualization might help in understanding a model and its zone. Through
evaluation the tool proved to be better regarding both time and correctness than using
the textual representation that is currently the only option. Despite some features that
the tool is still lacking, it also let the test subjects easily get started and have more
confidence in their answers.

The algorithm implemented in the solution however did not actually have many ben-
efits over the one that inspired it, as it was likely to perform worse in most cases, and
had worse space complexity. It did however provide all the needed information for the
features that were implemented in the tool.

The conclusion is that zone visualization would definitely be a powerful tool to add
to the symbolic simulator of a real-time model checker. However more work is needed
to determine how best to enumerate the vertices of the zone.

12. Future Work

In the future the findings of this report can be expanded upon in several areas. One
area to work on is the practical application of implementing the visualization tool in a
model checking tool like UPPAAL or ECDAR.

In the same vein it would also be useful to work on the usability of the tool. Usability
has not been a focus of this project, however during the evaluation several usability
problems came up, and more can surely be found in a proper usability evaluation. If
the tool was to be integrated into one of the model checking tools, then solving these
usability problems would be an important contribution.

Another way to improve the tool and the way it can be used to understand a model is
by adding the features that were already identified as lacking in section 10.2. By adding
names and values to the axes a user would be able to gain far more information about
the zone at a glance. If it was possible to draw a user defined zone or the plane of a
single constraint, it would also be easier to understand how a guard interacted with the
zone. A feature that has not been discussed before is animation of the zone. It might
help in understanding a transition if the zone isn’t simply shown before and after but
an animation shows how it transitions from one to the other.

A completely different avenue is to research algorithmic improvements. There are
multiple ways to to try and improve the algorithm described in section 6.2. Inspiration
can be taken from Avis and Fukuda[8] to try and find a reversible pivot rule, and so avoid
checking if a vertex has been found before. Additionally the algorithm can be changed
to a depth first algorithm to improve space complexity. Another thing to examine

28

is whether the fact that all vertices have positive integer coordinates can be utilized.
Finally it would be possible to adapt Avis and Fukudas algorithm[8] using dictionaries,
in such a way that it too can provide the information needed during visualization. This
might also include examining how dictionaries are affected by the limitations of real-time
model zones, and how that can be utilized.

12.1. Known Issues

A number of issues have also been identified in the current solution.

12.1.1. 2D Projection

When only two dimensions are chosen, the zone is projected to two dimensions. However
if more than one dimension is going to infinity, in other words if (∞,∞) is in the zone,
then the infinity is not visualized correctly. This is strictly a projection bug.

12.1.2. Degenerate Vertices

There is a specific case where a degenerate vertex can lead to a bug. The exact cause
has not been found, but it causes extra vertices to appear. All the right vertices are
also there, but some pivot seems to have gone wrong leading to an upper bound being
ignored so the zone goes to infinity instead.

References

[1] Kim Guldstrand Larsen. Formal methods for real time systems, automatic verifi-
cation & validation, nov 1998.

[2] Roberto Gorrieri. Labeled Transition Systems, pages 15–34. Springer International
Publishing, Cham, 2017.

[3] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors,
Computer Aided Verification, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[4] Kim Guldstrand Larsen, Paul Pettersson, and Wang yi. Uppaal in a nutshell.
1:134–152, 12 1997.

[5] Casper Møller Bartholomæussen, Tobias Rosenkrantz Gundersen, Rene Mejer Lau-
ritsen, and Christian Ovesen. Ecdar 2.0 a new integrated modelling and verification
environment for compositional real-time systems. Technical report, Aalborg Uni-
versity, jan 2018.

[6] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G.
Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! In Werner Damm

29

and Holger Hermanns, editors, Computer Aided Verification, pages 121–125, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[7] Niklas Kirk Mouritzsen and Rasmus Holm Jensen. H-uppaal. 2017.

[8] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete & Computational Geometry,
8(3):295–313, Sep 1992.

[9] Robert G. Bland. New finite pivoting rules for the simplex method. Mathematics
of Operations Research, 2(2):103–107, 1977.

[10] Unity Technologies. Unity®, 2018.

[11] Jesper Kjeldskov, Mikael B. Skov, and Jan Stage. Instant data analysis: Conducting
usability evaluations in a day. In Proceedings of the Third Nordic Conference on
Human-computer Interaction, NordiCHI ’04, pages 233–240, New York, NY, USA,
2004. ACM.

[12] Jeremy Stangroom. Social science statistics, 2018.

30

A. Evaluation Tasks

A.1. Task 1

The shown zone has been calculated from the model shown on figure 7. A number
of transitions has been taken and the active state is L1. Is it possible to take the b!
transition to reach L2 with the given zone?

Figure 7: Automaton for task 1

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 8.

Figure 8: Zone for task 1

Answer:

The transition can not be taken. The point is outside the zone.

31

A.2. Task 2

The shown zone has been calculated from the model shown on figure 9. A number
of transitions has been taken and the active state is L1. Is it possible to take the b!
transition to reach L2 with the given zone?

Figure 9: Automaton for task 2

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 10.

Figure 10: Zone for task 2

Answer:

The transition can be taken. The point is well inside the zone.

32

A.3. Task 3

The shown zone has been calculated from the model shown on figure 11. A number
of transitions has been taken and the active state is L1. Is it possible to take the b!
transition to reach L2 with the given zone?

Figure 11: Automaton for task 3

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 12.

Figure 12: Zone for task 3

Answer:

The transition can be taken. The point is on a non strict constraint.

33

A.4. Task 4

The shown zone has been calculated from the model shown on figure 13. A number
of transitions has been taken and the active state is L1. Is it possible to take the b!
transition to reach L2 with the given zone?

Figure 13: Automaton for task 4

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 14.

Figure 14: Zone for task 4

Answer:

The transition can be taken. The zones overlap.

34

A.5. Task 5

The shown zone has been calculated from the model shown on figure 15. A number
of transitions has been taken and the active state is L1. Is it possible to take the b!
transition to reach L2 with the given zone?

Figure 15: Automaton for task 5

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 16.

Figure 16: Zone for task 5

Answer:

The transition can not be taken. The zones don’t overlap.

35

A.6. Task 6

The shown zone has been calculated from the model shown on figure 17. A number
of transitions has been taken and the active state is L1. Is it possible to take the b!
transition to reach L2 with the given zone?

Figure 17: Automaton for task 6

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 18.

Figure 18: Zone for task 6

Answer:

The transition can be taken. The zones touch and the constraints at that point are not
strict.

36

A.7. Task 7

The shown zone has been calculated from the model shown on figure 19. A number of
transitions has been taken and the active state is (L1, L1). Is it possible to handshake
on b and transition to reach (L2, L2) with the given zone?

Figure 19: Automata for task 7

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 20.

Figure 20: Zone for task 7

Answer:

The transitions can not be taken. The point is outside the zone.

37

A.8. Task 8

The shown zone has been calculated from the model shown on figure 21. A number of
transitions has been taken and the active state is (L1, L1). Is it possible to handshake
on b and transition to reach (L2, L2) with the given zone?

Figure 21: Automata for task 8

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 22.

Figure 22: Zone for task 8

Answer:

The transitions can not be taken. The point is on a strict constraint.

38

A.9. Task 9

The shown zone has been calculated from the model shown on figure 23. A number of
transitions has been taken and the active state is (L1, L1). Is it possible to handshake
on b and transition to reach (L2, L2) with the given zone?

Figure 23: Automata for task 9

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 24.

Figure 24: Zone for task 9

Answer:

The transitions can be taken. The point is inside the zone.

39

A.10. Task 10

The shown zone has been calculated from the model shown on figure 25. A number of
transitions has been taken and the active state is (L1, L1). Is it possible to handshake
on b and transition to reach (L2, L2) with the given zone?

Figure 25: Automata for task 10

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 26.

Figure 26: Zone for task 10

Answer:

The transitions can be taken. The zones overlap.

40

A.11. Task 11

The shown zone has been calculated from the model shown on figure 27. A number of
transitions has been taken and the active state is (L1, L1). Is it possible to handshake
on b and transition to reach (L2, L2) with the given zone?

Figure 27: Automata for task 11

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 28.

Figure 28: Zone for task 11

Answer:

The transition can not be taken. The zones touch each other, but the constraints at
that point are strict.

41

A.12. Task 12

The shown zone has been calculated from the model shown on figure 29. A number of
transitions has been taken and the active state is (L1, L1). Is it possible to handshake
on b and transition to reach (L2, L2) with the given zone?

Figure 29: Automata for task 12

Zone presentation

The test subjects were presented with one of the two representations of the zone shown
in figure 30.

Figure 30: Zone for task 12

Answer:

The transition can not be taken. The zones don’t overlap.

42

B. Evaluation Results: Time and Correctness

Table 2 shows how each test subject did on each task and how long it took. The grey
cells show results solving the tasks using the visual representation of the zone, and the
white cells show results solving the tasks using a textual representation of the zone.

Test Subject 1 2 3 4 5 6

Task 1
Incorrect
1:13.56

Incorrect
4:15.91

Correct
0:42.62

Incorrect
2:08.81

Correct
1:12.22

Incorrect
2:51.54

Task 2
Correct
0:55.63

Correct
1:27.12

Correct
1:08.63

Correct
1:02.03

Correct
1:56.85

Correct
1:28.13

Task 3
Correct
1:26.82

Incorrect
1:08.62

Correct
1:08.78

Correct
0:24.88

Correct
0:39.17

Correct
1:25.73

Task 4
Correct
1:30.91

Did not finish
Correct
1:10.93

Incorrect
1:03.82

Incorrect
2:04.05

Correct
1:56.31

Task 5
Correct
0:44.68

Incorrect
4:30.03

Correct
1:53.65

Correct
1:12.90

Correct
1:19.98

Incorrect
3:27.29

Task 6
Correct
0:34.10

Correct
1:30.91

Correct
2:41.38

Correct
0:37.31

Correct
1:13.30

Correct
1:10.44

Task 7
Correct
1:39.91

Correct
1:59.15

Correct
0:33.31

Correct
0:57.82

Correct
0:58.79

Correct
1:50.13

Task 8
Incorrect
0:57.16

Incorrect
0:44.53

Correct
0:38.00

Correct
0:29.10

Correct
0:50.28

Correct
0:38.87

Task 9
Correct
0:14.09

Correct
1:12.13

Correct
0:23.10

Correct
0:28.34

Correct
0:24.03

Correct
1:14.58

Task 10
Correct
0:29.28

Correct
0:39.57

Correct
0:52.00

Correct
0:21.94

Correct
0:54.41

Correct
0:28.98

Task 11
Correct
0:33.69

Correct
3:30.22

Correct
1:36.21

Correct
0:47.09

Incorrect
1:17.31

Correct
2:18.61

Task 12
Incorrect
0:17.53

Correct
2:00.35

Correct
1:08.75

Correct
0:42.63

Correct
0:44.36

Correct
0:32.05

Table 2: Time and Correctness of Task Solving

43

C. Brainstorm Notes

A test subject failed to notice that a point he added was actually behind the zone in the
visual tool. Therefore he thought it was in the zone and that the transition therefore
was possible.

Almost all users would like to be able to insert their own zone, so they can see if and
how it overlaps with the feasibility zone. Many users when having less restrictive guards,
in other words a second zone, ended up drawing points to outline the zone. It would
be easier and give more information to be able to just draw the zone from constraints.
This also fits well with how the simulator shows it as it shows the zone (with text) as
it would look after taking a transition. Showing the zone before and the zone created
by the guards and how they overlap can give a better understanding of what happens
between the two steps.

When handling less restrictive guards with textual representation everyone resorted
to trying a single point and seeing if it was within the zone by calculating the constraints
as equations one by one. This is not certain to give the correct answer in all cases.

Something important lacking was numbers on the axes to get an idea of the scale of
things and give more information at a glance. This could also include a grid to make
it easier to quickly see how far points are from each other. In the same vein showing
the coordinates of vertices could also be helpful, or at least of some vertices like the
minimum and maximum vertices.

All subjects found it was easier to find out whether a point was in the zone using the
visual tool. Especially the constraints with two clocks were troublesome and slow to
calculate and often caused errors, whereas it made no difference when just inserting a
point in the tool. Some would like if it was indicated whether the inserted point was in
the zone or not.

Some users made mistakes with both methods because of a mistaken understanding
that delays could only be whole numbers, thus believing x ¿ 10 was the same as x ¿=
11.

Users had no problems understanding that a point was in the zone if it was in the
middle of a green face, or on an edge with all green faces. There was some confusion
as to whether a point was actually in the face or just close to it. There was a usability
problem with color blindness because the used colors were red and green.

Most test subjects were more confident in their answers when using the visual tool.
There was no arithmetics that could have gone wrong and they were sure all the con-
straints with two clocks were satisfied at the same time (something hard to convince
oneself of by looking only at the constraints).

Some test subjects “went the wrong way” in a dimension when checking for a less
restrictive zone in the visual tool. For example they started adding points further into
the space despite having a z ¡ k constraint.

The visual tool allowed for a more explorative approach were the test subjects tried
adding a point, and then adding more points with new values in one of the dimensions
simply to see what happened. One remarked this fit well with how they used the
simulator as that was also simply seeing what happened with one transition and with

44

the other, to understand the model. This approach was also easier to get started with
as the text required math to even get started which is hard if you don’t know which
equations you start with.

Names are lacking on axes. That means it takes a little longer to familiarize yourself
with the tool.

When text representation forced calculation with constraints with two clocks there
was a lot to keep in your head, with values, which to substract from which (one did
mix them up), negative bounding values and whether a constraint is strict or not. One
person used paper for calculations.

A suggestion to show the coordinates of the point you are hovering over on the zone.
Once a point has been added that isn’t in the zone it is quite easy to see what needs

to be done to find one that is, for example trying a lower value for y if the point is above.
That is hard to realise with text, and trying a new valuation is also quite difficult as all
the equations pretty much needs to be recalculated.

It was sometimes hard to see a point inside the zone because of the reflections on the
zone from the 3D lighting.

Suggestion that points and other zones could also come from simulation tool.

45

	Summary
	Introduction
	Initiating Problem
	Acknowledgements

	Timed Models
	Models of Real Time Systems
	Zones
	Calculation of a Zone
	Properties of Zones

	Existing Tools
	UPPAAL
	ECDAR

	Vertex Enumeration
	Pivoting
	Criss-cross Algorithm
	Dictionaries
	Algorithm Properties

	Problem Formulation
	Design
	High Dimensionality for Calculations
	Pivoting Algorithm
	Pivoting with Constraints
	Initial Vertex
	Finding Edges
	Finding Potential Vertices
	Finding a Feasible Vertex
	Completing the Algortihm
	Degenerate Vertices
	Calculating Coordinates

	Implementation
	JavaFX
	3D Controls
	Showing Text in 3D-space
	Depth Buffering
	Backface Rendering

	Pivoting Algorithm
	Data Structure for Vertices
	Collections of Constraints
	Early Implementation

	Rendering of a Polytope
	Zone Representation
	JavaFX 3D-object Representation
	Projecting a Zone
	Ordering Vertex Values of Faces
	Triangulation

	Examples from the Solution
	Content Area
	List of Clocks
	Adding Points
	Input Panel

	Evaluation Method
	Participants
	Setting
	Tasks
	Procedure
	Data Analysis

	Evaluation Results
	Time and Correctness of Task Solving
	Brainstorm Results

	Discussion & Conclusion
	Discussion of the Proposed Algorithm
	Discussion of the Zone Visualization & Evaluation
	Conclusion

	Future Work
	Known Issues
	2D Projection
	Degenerate Vertices

	References
	Evaluation Tasks
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Task 10
	Task 11
	Task 12

	Evaluation Results: Time and Correctness
	Brainstorm Notes

