
MODELLING NEWS PROGRESSION USING ENTITY-TIMELINES

Michael Stisen, Martin H. Thygesen

Aalborg University, Aalborg, Denmark

1. INTRODUCTION

With the massive amount of news available each day, it can be
hard to gain a complete overview over what events are hap-
pening and who plays a part in the events. This information
overload has two aspects:

Firstly it can be hard to figure out what events are impor-
tant on a day to day basis due to the sheer volume of informa-
tion presented. Solving this would require some measure of
relevance to the reader for each piece of news, eg. if an arti-
cle describing a drop in stock prices and an article describing
politicians voting on whether or not they should allow frack-
ing in an area are both in todays paper, one would have to be
able to figure out which of those news would be most relevant
to the user and show them only the relevant article.

Secondly, it can be hard to discern what the articles are
portraying if news are just archived chronologically by pub-
lication date. This issue is more about how the information
is presented, eg. if a law has been passed which allows for
fracking in an area, it raises questions such as how long it has
been discussed, who was involved in the voting, who voted
what, whether any lobbyists were involved, what arguments
were for and against and so on. A system solving this issue
will have to grant the user a good overview of the events de-
scribed in the news. We focus on the second problem of prop-
erly conveying information about who and what are involved
in events throughout time based on archived news.

Providing an overview of archived news is a well studied
area, although many focus on presenting topics [1–3]. Topic
is a term covering several smaller events e.g. a topic such
as "Aalborg University collaborates with city council" could
have the smaller events "The city council set aside money
for building projects on university campus" and "Architec-
ture students to draw proposals for new sports center on cam-
pus". These approaches often group the events into sequences
that represents a coherent story related to that issue. They
do not however present a story of specific agents involved in
the events. We are interested in conveying the story of these
agents appearing in the news, e.g. we want to tell the story of
how Barack Obama has appeared throughout the news during
a span of time, rather than what happened during presidential
inaugurations. To do this, we create timelines from the news
articles based on the named entities, which are found as in [4],
and can roughly be thought of as the proper nouns found in
the text.

To represent information in a news archive, we use the

concept of metro maps presented in [2], which represents sev-
eral different timelines over the news articles and their inter-
sections with each other. As our main purpose is to convey
how named entities are involved in stories, we use metro lines
to represent each named entity and metro stops to represent a
cluster of news stories forming an event that the named enti-
ties take part in. If a named entity takes part in an event, its
metro line intersects the metro stop representing that event.
An example of this can be seen in figure 1.

In the example of a metro line in figure 1, we have 3 metro
lines, each representing a named entity: The green line (1)
representing the rector of Aalborg University, Per Michael
Johansen , the blue line (2) representing the Department of
Computer Science on Aalborg University and the red line (3)
representing Aalborg University. Those 3 agents are part of
a set of news stories covering 4 events, represented in figure
1 by the text in the intersection of the metro lines (4). Those
events are made by finding representative sentences in the ar-
ticles mentioning them based on the clustering done to find
them. Lastly, in figure 1 the events are associated with a time
(5) representing roughly when it takes place.

We concern ourselves mostly with small datasets from
one or few sources. The dataset we use for testing is a set
of newspaper articles provided by the Danish news agency
NORDJYSKE. Although our approach should also be able
to handle a multitude of sources each describing the same
named entities and events, which many news archives may
have, we focus on being able to accurately represent the story
of less represented agents such as a local politician, who may
be mentioned a few times a month from a local news source
rather than representing an agent such as the U.S. president,
who is often mentioned in several stories and events on a daily
basis.

In the following we present an overview of the sections
in the paper.

Section 2 contains preliminaries, under which we de-
scribe terminology and related work.

Section 3 describes the concept of named entities, what
they are and how we obtain them.

Section 4 details how a metro map is constructed.
Section 5 gives an overview of how the user studies were

set up and the tests conducted.
Section 6 shows the results of the user studies and dis-

cusses how well they went.
Section 7 provides a conclusion.

Page 1 of 28

Fig. 1: Example snippet of a Metro Map focusing on Aalborg University

2. PRELIMINARIES

2.1. Terminology

We use a number of technical terms in this paper, which we
define in this section.

Event: We use two different types of events: word based
events ew = {W, t}, where W is a collection of words and
sentence based events es = {S, t}, where S is a collection of
sentences. In both cases, t is a point in time which the sto-
ries described by W or S happen around, although the stories
do not have to be written or mentioned at that specific date.
The word based events are used in the process of creating the
metro map and the sentence based events are required for vi-
sualizing the metro map.

Entity-Timeline: We define an entity-timeline as
{seq, entity} where seq = (es1, ..., e

s
n) and for all

esi = {Si, ti} we have that ti < ti+1. That is, an entity-
timeline consists of a sequence of sentence based events in
chronologcal order, and an entity which all the sentence based
events are related to.

Metro Map: A metro map is a set of entity-timelines
and their sentence based events. This forms a map of the in-
teractions between the entity-timelines when visualized such
that timelines intersect at the same sentence based event. An
example of the visualization can be seen in figure 1.

Term: In the paper, we use words, named entities as de-
scribed in section 3, hypernyms and synonyms as described
in section 4.4.1 to create the metro map. Terms is used as
a description for words, named entities, hypernyms and syn-
onyms.

2.2. Related Work

This section presents sources with similar ideas about time-
line creation and how to represent events over time.

[2] outlines how to create metro maps over a large cor-
pora of news. They were the main inspiration for using the

metro map approach to represent timelines, but unlike our
metro lines, theirs are tied to topics, which is a collection of
events, e.g. a bike race taking course over several days, where
each stage might be an event, rather than entities and they as-
sume the data is from larger or several different sources. This
will likely create metro maps stretching over a smaller time
span. [5] provides a an overview of methods related to cre-
ating topic evolution maps, with topic evolution being how
topics evolve over time, and map being the visual represen-
tation of that information. It roughly categorizes research
done on topic evolution map into 2 categories: those based
on probabilistic generative models and those based on non-
probabilistic models. For our purpose, we have chosen a
non-probabilistic model as we have been unable to find any
studies comparing the efficiency of the two categories. Non-
probabilistic models are models which do not rely on proba-
bility distributions and where topics often refer to a cluster of
text articles or terms.

In probabilistic settings a topic is a probability distribu-
tion over terms. The models are often an extension of LDA
(Latent Dirichlet Allocation) [6] [7] or PLSA (Probabilistic
Latent Semantic Analysis) [8] [9]. They often incorporate
the temporal aspect into the model itself. Some papers divide
time into discrete time [6], which can work fine for an archive
of scientific papers and news articles, while others model it as
continuous time [9]. We model time as discrete as that makes
sense for news articles published at discrete dates.

[10] provides a solution to detecting densely overlapping
clusters. Unlike many other approaches to the issue of over-
lapping clusters, [10] assumes that the overlapping parts of
the clusters is itself densely connected and uses this assump-
tion in identifying the overlaps. They implement an exam-
ple of a bipartite affiliation network model called BIGCLAM,
which incorporates the idea of densely overlapping clusters.
We use BIGCLAM to create the word based events described
in section 2.1 since this clustering scheme worked well for [2]
with an issue similar to ours. Since we cluster terms, the as-

Page 2 of 28

sumption of densely overlapping clusters intuitively fits our
problem; a word being exclusively in one cluster would result
in the model only trying to fit Aalborg University into only
one of the sentence based events in figure 1.

Most papers implementing a timeline or some other rep-
resentation of stories over time have to consider the proper
timespan of a coherent story. [1], which creates timelines for
use by historians, proposes that a timespan should be as long
and diverse as possible to maximize how much different in-
formation can be gained quickly by looking at the timeline.
[3], which clusters news articles to reduce information over-
load, instead proposes a very short timespan to better repre-
sent the core of a news event. In our implementation, we do
not directly need to specify a timespan for our timelines since
it spans the lifetime of an entity, and as a result our model
should contain long timespans such as with [1]. In section
4.5 we describe how we take time into account when creating
each of the individual events. All events are described using
documents originating at or near the same date.

3. NAMED ENTITIES

In the creation of a metro map, we use a Danish dataset. To
find named entities in this dataset, we use the method de-
scribed in [4], our preceding semester project, as well as the
definition of entities described in that paper, meaning we con-
sider any Danish proprium an entity.

As the method described in [4] has a long running time
on larger datasets, we have modified the method slightly for
the purpose of this paper. Those modifications are described
in section 3.1.

The system described in [4] has two phases: recognition
and disambiguation. In the recognition phase, all the tokens
representing entities in the text are found by checking whether
a similar named entity is referenced on Wikipedia and using
rules common for Danish propriums, e.g. if a word is in the
middle of a sentence and has a capital starting letter. In the
disambiguation phase, each recognized token is paired with
an entity found either on Wikipedia or LinkedIn. This is done
using several scores:

• Popularity prior, which represents how much a token
corresponds to an entity candidate based solely on the
token’s name.

• Entity-entity coherence, which represents how well an
entity candidate fits in with all other entity candidates
for all the recognized tokens in the text.

• Mention-entity similarity, which represents how well
the context of the recognized token fits with the entity
candidate.

3.1. Modifications

The original method described in [4] uses a popularity prior,
mention-entity similarity and entity-entity coherence to find
the disambiguation of a recognized entity.

To be able to find all entities in the entire dataset in a
timeframe that is realistically useful for a metro map, we have
altered the method described in [4] with a couple of rules:

Any entity that has a popularity prior with a score of 0.8
or more is disambiguated to that popularity prior. This is to
prevent having to run the much more computationally heavy
parts of finding mention-entity similarity and entity-entity co-
herence after finding the popularity prior for a large number of
entities, which have some popularity prior outliers, e.g. Lego
refers to the company making toy bricks in almost all cases,
but a Danish arts gallery named galleri Lego exists as well. As
the token Lego refers to the toy company in almost all cases,
it will create a large popularity prior, but the existence of the
gallery means we would calculate entity-entity coherence and
mention-entity coherence as well, even though we often want
the word to refer to the toy company. Although only look-
ing at the popularity prior in this case speeds up the algo-
rithm significantly, it also cuts off the part of the algorithm
considering context and we therefore expect it to have low-
ered the overall accuracy. An example of how this causes a
wrong disambiguation is when "Denmark" in "Denmark won
the game putting them in the quarter final" is disambiguated
to the country Denmark rather than the Danish sports team.

Any instance of a language is disambiguated to a country
using a mapping from all languages to their native country.
As tokens with countries as entity candidates have very long
running times due to the large amount of references to coun-
tries on Wikipedia, we can thus limit the amount of times we
encounter those. Languages are not Danish propriums and
should technically not be considered entities, but since they
are often recognized in the statistical named entity recogni-
tion part of the system and could be seen as a representation
of their corresponding countries, we do this without loss of
accuracy.

4. METRO MAP GENERATION

To create a metro map, two things are required: The metro
stops, seen as (4) is figure 1 and the metro lines, seen as (1),
(2) and (3) in figure 1. The process of creating those is out-
lined in figure 2 and described in this section.

4.1. Framework

The first step is to find a set of documents to create a metro
map from. When a user wants to get an overview of any topic,
we have the user do a free text search to pick documents in a
news archive to base the timeline on. We call this step the
document search stage of the framework and it is explained
further in section 4.2. The documents found by this search go
through a similarity comparison step, using cosine-similarity,
where any documents believed not to fit into a cluster with
any other documents are picked out and each get their own
event. This is described in section 4.3.

We assume that we are able to identify important events
in a set of documents by clustering in a bag of words scheme
so that each cluster corresponds to one event. We assume

Page 3 of 28

Line creation

Representative
sentence generation

Visualization

document search
stage

News archive

Articles

Search query

Word based events

Word based events
Entity-timelines

Sentence based events

Event generation

Similarity comparison

Clustering

Documents

Documents

Headlines

Clusters

User

Fig. 2: System architecture

this because we note that terms in news articles describing an
event often co-occur. To represent a given document we use
a mix of terms, hypernyms and entities which we describe in
section 4.4.

As can be seen in figure 2 we create events originating
from two different stages in the framework. Some events orig-
inate from multiple documents in the clustering, and some
originate from single documents in the similarity comparison.
Both sets of events are used in line creation as described in
section 4.6 and representative sentence ranking as described
in section 4.5.

To get an overview of the progression of events a given
entity is involved in, we associate a sequence of clusters to
entities deemed important in the set of documents in a stage
we call line creation. From this sequence we visually create
a line between clusters. Exactly how the entities and lines are
handled is described in section 4.6.

The outcome of a cluster in the event generation is a word
based event (ew). To represent a cluster to the user, so that
the user is able to identify the event, the events are presented
with sentences from the documents acquired in the document
search stage. We select these sentences in a stage we call
representative sentence ranking.

4.2. Document Search stage

The first stage of generating a metro map is finding the docu-
ments we need to create the stops and lines from. Any search
scheme can be used for this purpose as long as it produces a
set of documents. Our approach is using a user generated text
query, which has to be present in each of the documents used,
i.e. if the user searches for Aalborg, the word Aalborg has to
be present in each of the documents used for the creation of
the metro map. As the metro maps we create are very centered
around entities, another option would be to focus the search
on entities instead of free text. A user would be able to search
through all entities present in the entire dataset and select one
or more of them. One or more of the entities selected would
then have to be present in any document used in the creation
of the metro map, i.e. if the user selects Aalborg University,
that entity would have to be present in all documents used, but

the text "Aalborg University" would not have to specifically
appear.

4.3. Similarity Comparison

In this stage we find events originating from a single docu-
ment, in a set of documents. Say we have a set of n documents
Dsearch = d1, ..., dn found by a search query and a vocabu-
lary V that includes terms from any given document di. We
generate events from Dsearch, by clustering terms in V in a
bag of words approach which we do based on the BIGCLAM
model from [10] in section 4.4 and as is done in the metro
map generation in [2]. We then represent each word-based
event with the words from the generated cluster.

A problem with using this approach is that events orig-
inating in single documents are not represented in this clus-
tering scheme. This is because terms involved in an event
described only by a single document do not co-occur with
terms in other documents. When dealing with a news archive
with plenty of data about events like national and international
oriented newspapers, this might not become a problem, be-
cause many clustering techniques would likely be able to find
and rank the most important events. When dealing with a lo-
cal newspaper, many events are sparsely mentioned between
documents, which makes these events a concern to handle.
We find these documents by making use of a cosine similarity
scheme and exclude these from clustering, making them word
based events originating from only 1 document.

Assume that the cosine similarity between document di
and all other documents in Dsearch except di is below some
threshold. We then assume that the words in di have so little
correlation with the words in the other documents in Dsearch

that we can infer di to be the only document describing the
given event. We use tf-idf vectors as document representation
for the scheme. The threshold for each of the documents in
Dsearch is determined by being empirically adjusted. In our
experiments we set the threshold to 0.15. We denote the set of
documents we find by this method as Dcosine. The documents
used for the clustering stage is then Dclustering = Dsearch −
Dcosine.

Page 4 of 28

4.4. Clustering

As mentioned in the last section we assume that we are able to
identify important events in a set of documents by clustering
in a bag of words scheme so that each cluster corresponds to
one event because of co-occurrences of terms in news articles
describing an event.

When clustering the documents BIGCLAM is used for
event generation as in the metro map generation in [2].
We use the BIGCLAM implementation found in SNAP for
python [11]. BIGCLAM models connections between terms
in a graph G such that if 2 terms are mentioned in 2 or more
documents, the terms are linked in G = (E, V). They also
introduce a background edge noise, with a probability of ϵ to
add an edge between two terms which they set to ϵ = 10−8.

Say we have a set of documents Dclustering and a vo-
cabulary Vclustering that includes terms from any given doc-
ument di in Dclustering . We want to find the clusters C =
c1, ..., cK , with K being the number of clusters and ci ⊆
Vclustering . In BIGCLAM the number of clusters K is a fixed
value, and we describe later in this section how we determine
that. BIGCLAM assumes the probability of terms u and v
being linked as

p(u, v) = 1− exp(−Fu,: · FT
v,:) (1)

where F is a latent |Vclustering| ×K matrix with Fwc being
the strength of connection between term w and a latent cluster
c. The aim of BIGCLAM is to estimate F and use strength of
connection between a term and a latent cluster Fwc to evalu-
ate whether the term belongs to cluster c. The probability of
generating a graph G is then

P (G|F) =
∏

(u,v)∈E

p(u, v)
∏

(u,v)/∈E

(1− p(u, v))

We estimate the latent matrix F by maximizing the log
likelihood: argmax

0≤F
ln(P (G|F)) in a gradient ascent scheme

and pick the highest scored terms for each cluster above some
threshold δ. Let l(F) = ln(P (G|F). Then the update func-
tion in the gradient ascent scheme can be determined by

∇l(Fu) =
∑

v∈N(u)

Fv

exp(−Fu,: · FT
v,:)

1− exp(−Fu,: · FT
v,:)

−
∑

v/∈N(u)

Fv,

where N(u) is the set of neighbors of node u. BICLAM
finds that setting δ =

√
log(1− ϵ), with ϵ being the back-

ground noise probability, works well in practice. We deter-
mine the number of clusters K by running BIGCLAM ses-
sions with different K-values and we choose the K that re-
sults in the lowest log likelihood. In our case we tested on all
K-values between 1 and half the number of documents. This
is because any cluster should contain words from at least two
documents.

4.4.1. Quality Improvements

To improve the quality of the clusters done by BIGCLAM
we process the the input documents Dclustering and their cor-
responding vocabulary Vclustering . We do not use all words
in each document in Vclustering , because not all words are
equally important for the document. Instead we use the top
50 scored words, with tf-idf as a metric, as well as a stop-
word list [12] that excludes the 350 most used words in Dan-
ish. When encountering named entities in a document, we
append the stop words to the document representation along
with the top 50 scored words, and if we have been able to dis-
ambiguate the entities as described in section 3, we append
the disambiguated entity otherwise we append the recognized
one. This is because we want an entity to be treated equally
regardless of the different ways to address the same entity.
We then lemmatize the words using CST’s lemmatizer [13] so
that different inflections of a word across documents are also
treated as equal. We also introduce hypernyms and synsets,
obtained from DanNet [14], such that all hypernyms or syn-
onyms of the top 50 scored words are included in the doc-
ument representation. A hypernym is a word generalizing a
set of words. The words in this set are called the hyponyms
of the generalizing word. As an example we could say the
verb ’look’ is a hypernym for the verbs ’stare’ and ’view’. In
this example ’stare’ and ’view’ are then hyponyms of ’look’.
We introduce these hypernyms and synonyms such that the
functional uses of the words can be treated equally between
documents where it normally would not.

4.5. Representative Sentence Ranking

To better show the events that each cluster represents, we rep-
resent its contents through sentences from the documents in
the news archive. This is shown in the example in figure 3.
To do this, we have created a sentence ranking system based
on ideas from [15], although we have simplified the process
to fit our problem.

Two kinds of events need to be represented, the ones orig-
inating from only one document, which are found in similar-
ity comparison as seen in figure 2 and the ones originating
from multiple documents, which are found in clustering as
seen in figure 2.

For the events originating from a single document, the
article’s headline and the first 2 sentences are used as the
sentence representation. This is solely because our other
events have a 3-sentence representation and we do not want
to confuse the user with an arbitrary amount of sentences per
event. If the document has less than 3 sentences the maximum
amount of sentences in the document is used.

For the events originating from multiple documents, the
representative sentence ranking system requires an input of
words, hypernyms/synonyms and named entities, named the
token input. These represent which parts of the documents
we find important. We construct this input based on the clus-
ters created during event generation. Each cluster is a set
of the most co-occurring terms from document representa-

Page 5 of 28

Fig. 3: We represent clusters as events through sentences picked from documents in the news archive

tions in the news archive as discussed in section 4.4. The
terms for the summarization system for each cluster are cre-
ated from those words, hypernyms/synonyms and named en-
tities. An example of this could be the token input for the first
event represented in figure 1: {e.Aalborg University, e.Per
Michael Johansen, e.Department of Computer Science, re-
search, h.Material}. Here e denotes entities and h denotes
hypernyms/synonyms.

In addition to the token input from the cluster, the system
also needs documents from which it can extract a summariza-
tion based on the token input. For this purpose, all documents
found in the document search stage are used.

Each sentence in each document starts with a score of
0 and is then compared to the input from the cluster. If the
sentence contains a word, the hyponym of a hypernym or a
synonym found in the input, 1 is added to its score. For terms
in the input which are entities we define a function DF :
e → Z which maps an entity to the number of documents that
contain it, based on documents found in the document search
stage. If a sentence contains an entity found in the input, a
weight multiplied with the inverse of the entity’s document
frequency score (DF (e)−1) is added to the sentence’s score.
The reasoning behind this is that the words used have already
been selected through the tf-idf scheme in the clustering step,
suggesting all words are relevant to the cluster. We do this
because we assume that entities that seldom appears in all
documents are the most important actors in the event. We
also want the entities most relevant to the cluster to control
what sentences are selected. Thus the entity weight must be
relatively high, in our case we used 20, as it both has to make
up for the reduction of score by the inverse of the document
frequency compared to words and hyponyms/synonyms and
signify the importance of entities.

Using the input from the cluster, the words W , the enti-
ties E and the hyponyms H of a hypernym are searched for
in each sentence sent in the documents. The score for each
sentence is then calculated as in equation 2 where nw/h/e is
the text representing each part of the input, s a sentence and
ew the entity weight.

score(s) =
∑

w∈W 1s(nw) +
∑

h∈H 1s(nh)+∑
e∈E 1s(ne) ∗ ew ∗DF (e)−1

(2)

Once the sentence scores have been found, time is fac-
tored in. This is to reflect the nature of an event happening at
a specific time point. If we have two similar events happening
a year apart, we still wish to present those as separate events
rather than one simply because the terms contained in their
clusters are alike. We start by finding a primary time point,
which is when we estimate the event taking place. To do this
we define an article score for a specific event to be the sum
of all scores for the sentences contained in that article. The
primary time point is then found by scoring the dates of each
article written on that date by that article’s score, e.g. if we
have 3 articles, one with a score of 7 on 10-10-2010, one with
a score of 1.3 on 10-10-2010 and one with a score of 8 on 12-
12-2010, 12-12-2010 gets a score of 8 and 10-10-2010 gets a
score of 8.3 and is elected the primary time point. Once a pri-
mary time point is found, each sentence not on that time point
has its score altered depending on how far away it is from the
primary time point. This is done as seen in equation 3, where
s is a sentence and pt is the primary time and t is a time-factor
with 0 < t < 1.

timedScore(s) = score(s) ∗ t|date(s)−pt| (3)

Here we define a date minus another date to give the re-
sult as the difference of amount of days between them. The
highest scoring sentences, with time taken into account, are
then selected to represent the event. The amount of sentences
selected can be adjusted depending on the information need
of the user.

4.6. Entity-Timeline Generation

All unique entities found during Event generation are asso-
ciated with a timeline representing a sequence of coherent
events that entity was involved in. This is the task of the Line
creation module and how this is done will be described in this
section.

Page 6 of 28

Sentence Sentence score
AAU is placing most of the new resources in the Department of Computer Science. 5.50

Aalborg University gets 17 million kr. for digital research. 3.00
The Confederation of Danish Industry (DI) awards Aalborg University a prize. 2.00

Aalborg University helps tourism in the outskirts of northern jutland. 1.00
AAU is cooperating with cultural institutions and private firms in the outskirts of northern jutland. 0.50

event_score(AalborgUniversity) 12.00

Table 1: This is an example calculating event_score(AalborgUniversity) for the example snippet in figure 1 (Alborg Uni-
versity is present in all the example sentences shown here)

To construct a timeline we need a sequence of events in
ascending order based on date. To do this we need to associate
each event with a specific date. From the representative sen-
tence generation module we get a series of word based events
associated with sentences. Each sentence is associated with a
specific article from the News archive as seen in figure 3. In
Line creation we associate articles with sentence based events
containing their corresponding sentences. We find the date for
an event based on the dates when the associated articles were
written. You could associate the event with the earliest date or
you could choose the article associated with the best scored
sentence from the representative sentence generation mod-
ule. We chose the latter approach because we found that just
choosing the earliest date tends to result in dates for sentences
describing a future event.

In the beginning of Line creation the amount of enti-
ties associated with a timeline is the amount of unique en-
tities mentioned in all the word based events. Line creation
then limits these lines per event by removing entities from the
event based on a series of conditions. Since lines are asso-
ciated with an entity, reducing entities in an event limits the
amount of lines that passes through that event. These condi-
tions are listed below:

1. We set each event to be associated with a maximum
amount of entities. These entities are then presented to
the user as being part of the event. This ensures that we
get the most important entities involved in the event,
and to reduce the amount of information presented to
the user.
We find this by defining the function
event_score(entity) which associates each entity
with a score. event_score(entity) is the sum of the
scores of all sentences, across all events, which entity
is a part of. The sentences are scored in the represen-
tative sentence generation module. With this score we
choose for each event only the highest scored entities.
An example of this can be seen in table 1.
We do this to keep the entities mentioned in the sen-
tences, which makes more sense for the user since that
is what the user is going to see. The maximum amount
of entities per event is set empirically based on per-
sonal evaluations of the information load presented to
the user. In our experiments we have set it to be 4.

2. We discard entities that are only associated with one

specific date, since those entities do not tell a story pro-
gression involving that entity

3. We set each specific date to be associated with a max-
imum amount of events. This is to reduce the com-
plex structure of many interacting entities. Limiting
the amount of events per date also limits the amount
of entity-timelines passing each date. This maximum
is also set empirically based on personal evaluations of
the information load presented to the user. To ensure
that we keep only the most important enitity-timelines
we rank events of the metro map for each date. This
is done as shown in figure 4, by recognizing and dis-
ambiguating entities of documents associated with the
entire metro map, and sorting them according to the
number of times they are mentioned. When the num-
ber of events of a given date crosses the threshold, the
events which contains the most mentioned entities are
kept. In our experiments we have set the maximum
amount of events per date to be 3.

4.6.1. Splitting Entity-Timelines

When events with the same entity occur at the same date,
we split the line, such that it represents temporally parallel
events that entity is associated with. An example of this is
seen in figure ??, where Aalborg University is involved in two
separate events on the 12th of August 2014. This introduces
a new problem, because it is undefined which of the split
entity-timelines future events shall be connected with. To get
a coherent event progression we associate each event with the
line which is most similar in cosine-similarity based on the
words associated with that event. To minimize the number of
entity-timelines per entity, we allow lines which have stopped
progressing to continue with a new story progression involv-
ing the same entity.

Page 7 of 28

Fig. 4: Example of ranking entities by disambiguating documents from example of fig. 1 and fig. 3.

5. EXPERIMENTS

5.1. Experimental setup

Overall
Number of documents 98088

Number of recognitions 760001
Number of disambiguations 508458

Avg. size of document (in words) 150.3
Avg. recognitions per document 7.7

Avg. disambigations per document 5.1

Table 2: Statistics for the NORDJYSKE news archive from
07/06/2017 to 02/27/2018

For measuring how well our system performs, we conduct
user evaluated tests on 9 testers to check how coherent the
different parts of the metro map are and a test to see how
coherent the lines intersecting the events are with the events.

The dataset used for testing is a news dataset provided by
NORDJYSKE, which contains 98088 news articles in Danish
focused on local stories in the area around Aalborg. Some
of the articles are subsets of each other, but none are dupli-
cates. They are extracted in the timespan from 07/06/2017
to 02/27/2018. Statistics about the dataset used from NORD-
JYSKE can be seen in table 2. Statistics about documents
extracted from each search string can be found in appendix
B.

To search through the dataset (the document search
stage in figure 2), we use a string as a query and retrieve
all documents containing that string. The strings used are
"Socialdemokratiet", "Birgit Hansen", "AAB", "Industri",
"Aalborg Portland", "Frederikshavn", "Karneval", "Thomas
Kastrup", "Aalborg Kommune" and "Per Michael Johansen".

Each of the components described in section 4 have
been programmed using Python 3.6. For implementing BIG-
CLAM, which is used for clustering, we use the version found
in SNAP for python [11].

The test instructions presented to the user can be seen in
appendix C. The evaluation tables provided for the test to con-

tain the user’s answers have been omitted from the appendix.
In the rest of this section, we will present the metrics used

for measuring how effectively and coherently the metro map
conveys information. We have been unable to find standard
measurements for this kind of work, but some of our metrics
are similar to that of other papers creating timelines. We do
not compare ourselves to those papers, as our dataset and fo-
cus on entities are quite different from theirs.

5.2. Event coherence

For testing the event coherence, the user is shown 5 sentence
based events per search string, except for the search string
’Frederikshavn’ which only has 4. The users are then asked
to rate how well each sentence from the sentence based event
fits into the event on a scale of 1-5; 1 suggesting it does not
fit in at all, 5 suggesting it fits perfectly. If the user is unable
to figure out what the event is about at all, and hence cannot
decide whether any sentences fit in, all sentences in that event
are given a score of 1. There is a total of 130 sentences for
the user to rate, which were chosen randomly from clusters in
each search string. These sentences are shown in appendix D.

Once scores have been obtained, we calculate the average
score for each event, which we call the event coherence (EC)
score. We also calculate Fleiss’ kappa, denoted κ, to get a
perspective on the user agreement.

5.3. Entity-event coherence

The coherence of the entities and events, which we call
the entity-event coherence, is tested by presenting the user
with an event and the entities of the entity-timelines running
through it, which they rate with one of 3 options:

Correct, when they are sure the entity, that the entity-
timeline represents, is involved with the event i.e. for the first
event in figure 1, this could be Aalborg University.

Possible, when they cannot tell for sure if the entity is
involved in the event, but it might be there i.e. for the first
event in figure 1, this could be Cassiopeia (The Department
of Computer Science’s building).

Page 8 of 28

Incorrect, when they do not think the entity is involved
in the event, i.e. for the first event in figure 1, this could be
Louis XIV of France.

If the event itself is too incoherent to understand, all
the entities representing the entity-timelines intersecting the
event are considered incorrect.

We use two metrics: Strict entity-event coherence (SC)
and lax entity-event coherence (LC) using the amount of en-
tities categorized as correct (c), the amount of entities catego-
rized and possible (p) and the amount of entities categorized
as incorrect (i). We calculate SC = c

c+i and LC = c+p
c+p+i .

An entity-event coherence close to 1 suggests that the enti-
ties are each connected to events relevant to them, whereas an
entity-event coherence close to 0 suggests very few entities
connected to the events are relevant to them. The reasoning
behind using two measures is that we can incorporate the ben-
efit of the doubt in LC, where possible entities are considered
correct and have the more constricting SC, where possible
entities are considered incorrect. In addition to those mea-
sures, we also calculate Fleiss’ kappa to find the agreement
between the users.

5.4. Entity-Timeline familiarity difference

In addition to the measurements of individual events, we
wish to gain an overview of how much the users have learned
after reading the metro map. We have implemented a user
interface in Java to navigate the metro map for this purpose.
This implementation is detailed in appendix A. We ask them
how well they feel they know the subject matter, that is the
search string, on a scale of 1-5 before showing them the metro
map and again after showing the metro map. 1 represents no
knowledge of the subject in the timespan and 5 represents
complete knowledge of the subject in the timespan. We
then use the average increase/decrease in rating as the entity-
timeline familiarity difference (∆f) score, to estimate how
much the user learned about the subject from reading the
metro map.

6. RESULTS

In this section, we present and describe our findings from the
user evaluation tests described in section 5. Table 3 gives an
overview of the abbreviations used in this section.

EC event coherence
κ Fleiss’ kappa
SC strict entity-event coherence
LC lax entity-event coherence
c correct entities
p possibly correct entities
i incorrect entities

∆f entity-timeline familarity difference
fb familiarity before
fa familiarity after

Table 3: Abbreviations

κ
Event coherence 0.09

Entity-event coherence 0.49

Table 4: Fleiss’ kappa

6.1. Event coherence

Score
EC 3.44

Table 5: Event coherence

Score Amount
1 102
2 122
3 331
4 393
5 222

Table 6: Event coherence scores

From table 5 we see that we get an event coherence of 3.44,
which considering it is a score between 1 and 5 where 5 is
perfect suggests many events are at least coherent enough to
be understood, but some sentences do not fit in particularly
well. It should be noted though, as can be seen in table 6, that
the majority (81%) of the rating were a score of 3 or more,
suggesting the sentence might not be the best fit, but it is not
entirely wrong neither.

In table 4 we see the κ for event coherence of 0.09, which
is quite low. This might be because of the way the test is
constructed, where the user first has to decide what the event
being represented is about and then how well each sentence
fits into that event, which can create several different inter-
pretations of what sentences are right and wrong. Another
reason for the low κ might be that it does not consider how
closely related two categories are, e.g. a user answering 1 and
a user answering 2 are in closer agreement than a user answer-
ing 1 and a user answering 5, which is a nuance that Fleiss’
kappa does not take into account. We can illustrate this by
grouping some of the close categories such that scores from
category 1 and 2 are merged and scores from category 4 and
5 are merged. This results in a κ of 0.21.

6.2. Entity-event coherence

c p i SC LC
559 74 249 0.69 0.72

Table 7: Entity-event coherence

As seen in table 7 we achieve a strict entity-event coherence
of 0.69 and a lax entity-event coherence of 0.72. Both scores

Page 9 of 28

reflect that the users consider a lot more of our entities to be
correctly placed on the events than incorrectly. About 70% of
the scores are considered to be correctly placed according to
both scores.

The κ is 0.49 for entity-event coherence, as seen in table
4. According to [16] this suggests a moderate agreement be-
tween raters. Here we do not see the same problem as with
event coherence because the ratings are not depending on con-
tinuous numbers in the same way, although possibly correct
entities are more related to both correct entities and incorrect
entities than correct and incorrect entities are to each other.

6.3. Entity-timeline familiarity difference

Entity Name fb (avg.) fa (avg.) ∆f
Aalborg Portland 1.00 2.33 1.33

AAB 1.56 2.78 1.22
Birgit Hansen 1.00 2.78 1.78
Frederikshavn 1.56 2.22 0.66

Industri 1.44 2.44 1
Karneval 2.11 2.56 0.45

Per Michael Johansen 1.00 2.44 1.44
Socialdemokratiet 2.11 2.89 0.78
Thomas Kastrup 1.11 2.78 1.67

Average 1.43 2.58 1.15

Table 8: Entity-timeline familiarity difference

The entity-timeline familiarity difference can be seen in table
8, where we have an average ∆f of 1.15. As complete famil-
iarity with a subject is 5, this means that they rate themselves
to be familiarized with 1.15

5 = 23% more of the subject than
before.

If we assume the knowledge contained in the news
archive is rated 5 when learned, which is possible for some
search strings, we can say that the gap between average fb
(familiarity before) of 1.43 and 5 indicates the amount of
information that can possibly be learned. Given this assump-
tion we optimally want the users to be familiarized with
5−1.43

5 = 71% more of the subject than before, rather than
23%. This shows that in the effort to reduce information
overload, relevant information is likely lost.

The average fa (familiarity after) of 2.58 indicates the
users on average have mediocre knowledge about the subject
after going through the metro map. Considering all entities
have a fa of at least 2 and all of them have at least some ∆f
(familiarity difference), we see that the metro map conveys
some information to the user for all subjects.

In practice, we might expect more users to have more
average fb about the subjects they search for, as the current
average of 1.43, which is almost no knowledge about the sub-
ject, would make it unlikely that they even knew to search for
the subjects to learn more. This will likely also change ∆f .
Either it will be higher as they understand more events in the
metro map, or it will be lower because the metro map now
only conveys information that they already know.

The individual results for ∆f in table 8 do suggest that
the metro map is better suited for some search queries than
others. Especially names of people in the community, in our
case Birgit Hansen with a ∆f of 1.78, Per Michael Johansen
with a ∆f of 1.44 and Thomas Kastrup with a ∆f of 1.67
yield a higher ∆f compared to the 1.15 average. This could
be due to a tendency of people often being mentioned in arti-
cles in relation to their profession, e.g. Per Michael Johansen
(the rector of Aalborg University) is often mentioned and dis-
cussed in relation to the university, whereas something like
Aalborg Portland (a company originating from Aalborg) more
often than not results in articles about Aalborg Portland Park,
a football stadium that they sponsored.

The search queries that result in many documents, e.g.
Frederikshavn with 4101 documents and Socialdemokratiet
with 1087 documents, as seen in table 16 and 17 in appendix
B, seem to have a tendency of providing worse results. Both
end up with a ∆f of less than 1. A search query such as
AAB with 721 documents as seen in table 15 in appendix B
results in a better ∆f of 1.22 though, so more documents is
not necessarily a problem, but it could seem that there is a
point where you get too many and the results suffer from it.
We have been unable to find out whether this is the case for
other search string resulting in many documents.

The very broad search queries also seem to do worse than
searching for specific entities, e.g. Karneval (Danish for car-
nival) has a ∆f of 0.45 and Industri (Danish for industry) has
a ∆f of 1, which is better, but still lower than other search
strings used. This could likely be a reflection of the metro
map focusing on entities and any search string that is not an
entity cannot have its own entity-timeline and can therefore
be harder to follow.

7. CONCLUSION

We introduced a system that reduces a news archive to a se-
ries of events linked in timelines representing entities. This
was done to reduce information overload. We found that the
system was able to help people learn about specific local top-
ics, but that the system did not entirely remove information
overload. We noticed that a lot of the users found there was
superfluous information in most of the metro maps. Cutting
this information away is intended to be handled by the system,
which suggests that some components still need to be tuned
or more components need to be added. The users considered
many of the events and entity-timelines to be understandable
and coherent, so a new metro map with more restrictions on
what events to include and how to link them together might
improve a lot on the initial issue.

Another component which is obvious to improve is us-
ing a more sophisticated document search stage, which would
likely greatly improve the quality of the metro map presented
to the user or switching the representative sentence genera-
tion component to a more sophisticated method e.g. looking
at one of the graph-based approaches in topic summarization.

Page 10 of 28

8. REFERENCES

[1] J. Singh, W. Nejdl, and A. Anand, “History by Di-
versity: Helping Historians Search News Archives,” in
CHIIR ’16, pp. 183–192, 2016.

[2] D. Shahaf, J. Yang, C. Suen, J. Jacobs, H. Wang,
and J. Leskovec, “Information Cartography: Creat-
ing Zoomable, Large-scale Maps of Information,” in
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’13, (New York, NY, USA), pp. 1097–1105,
ACM, 2013.

[3] S. Vadrevu, C. H. Teo, S. Rajan, K. Punera, B. Dom,
A. J. Smola, Y. Chang, and Z. Zheng, “Scalable Clus-
tering of News Search Results,” in Proceedings of the
Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, (New York, NY, USA),
pp. 675–684, ACM, 2011.

[4] M. Stisen and M. H. Thygesen, “Named Entity Recog-
nition and Disambiguation for the Danish Language,”
2018.

[5] H. Zhou, H. Yu, R. Hu, and J. Hu, “A survey on trends
of cross-media topic evolution map,” Knowledge-Based
Systems, vol. 124, pp. 164 – 175, 2017.

[6] A. Ahmed and E. Xing, Dynamic Non-Parametric Mix-
ture Models and The Recurrent Chinese Restaurant
Process: with Applications to Evolutionary Clustering,
pp. 219–230.

[7] D. Kim and A. Oh, “Topic chains for understanding a
news corpus,” in Computational Linguistics and Intelli-
gent Text Processing (A. Gelbukh, ed.), (Berlin, Heidel-
berg), pp. 163–176, Springer Berlin Heidelberg, 2011.

[8] Q. Mei and C. Zhai, “Discovering evolutionary theme
patterns from text: An exploration of temporal text min-
ing,” in Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in
Data Mining, KDD ’05, (New York, NY, USA),
pp. 198–207, ACM, 2005.

[9] C. X. Lin, Q. Mei, J. Han, Y. Jiang, and M. Danilevsky,
“The joint inference of topic diffusion and evolution in
social communities,” in 2011 IEEE 11th International
Conference on Data Mining, pp. 378–387, Dec 2011.

[10] J. Yang and J. Leskovec, “Overlapping community de-
tection at scale: a nonnegative matrix factorization ap-
proach,” in Proceedings of the sixth ACM international
conference on Web search and data mining, pp. 587–
596, ACM, 2013.

[11] J. Leskovec, “SNAP.” https://snap.stanford.
edu/snap/description.html.

[12] hermitdave, “FrequencyWords.” https://github.
com/hermitdave/FrequencyWords.

[13] B. Jongejan, “CST.” https://github.com/
kuhumcst/cstlemma.

[14] Det Danske Sprog og Litteraturselskab, “DanNet.”
http://www.wordnet.dk/menu%3Fitem=2.html.

[15] J. Steinberger, K. Jezek, and M. Sloup, “Web Topic
Summarization,” in Conference on Electronic Publish-
ing, pp. 322–334, ELPUB, 2008.

[16] J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data,” biometrics,
pp. 159–174, 1977.

Page 11 of 28

Appendices

Fig. 5: Screen shot of the user interface

A. USER INTERFACE FOR USER EVALUATION

Here will be a description of the GUI implementation
presented to the user as part of the user evaluated tests
described in section 5. An example of the user interface can
be seen in figure 5. It is constructed using Java 2D Graphics.
A search bar exists in the upper left corner of the user
interface, which can be used to input the search query
described in section 4.2. Once the user has searched, a
number of circles appear. Those circles are the events
described in section 4.5. Each circle is linked to the others
with a number of lines colored to represent the
entity-timelines described in section 4.6. The entities
assigned to the events appear just above the events in text
with a color matching its corresponding entity-timeline. In
addition, a legend of all entities appearing in the metro map
can be found in the upper left corner of the user interface
with its corresponding color.
If the user hovers the mouse over any of the presented
events, the sentence representation of it will appear in a text
box as seen in figure 5.
Only the presentation of the metro map to the user is created
using Java, the rest of the system, i.e. all parts described in
section 4, are created using Python. The end result of the
Python program is a text document used by the Java program
to generate the visual metro map.

Page 12 of 28

B. STATISTICS

This section contains tables of statistics of each of the search
queries used in the experiments. What are listed is the num-
ber of documents the search query resulted in, the number
of named entities recognized in them, the number of named
entities disambiguated in them and the number of unique en-
tities recognized and disambiguated in them as well as statis-
tics about average amount of words per document, average
named entity recognitions per document and average named
entity disambiguations per document.

Aalborg Portland
Number of documents 67

Number of recognitions 1173
Number of disambiguations 910

Number of unique recognitions 733
Number of unique disambiguations 438
Avg. size of document (in words) 346.5
Avg. recognitions per document 17.5

Avg. disambigations per document 13.6

Table 9: Statistics for the search string: Aalborg Portland

Birgit Hansen
Number of documents 172

Number of recognitions 2861
Number of disambiguations 2012

Number of unique recognitions 1375
Number of unique disambiguations 656
Avg. size of document (in words) 318.2
Avg. recognitions per document 16.6

Avg. disambigations per document 11.7

Table 10: Statistics for the search string: Birgit Hansen

Industri
Number of documents 360

Number of recognitions 5356
Number of disambiguations 3757

Number of unique recognitions 3015
Number of unique disambiguations 1601
Avg. size of document (in words) 411.8
Avg. recognitions per document 14.9

Avg. disambigations per document 10.4

Table 11: Statistics for the search string: Industri

Per Michael Johansen
Number of documents 19

Number of recognitions 315
Number of disambiguations 240

Number of unique recognitions 167
Number of unique disambiguations 104
Avg. size of document (in words) 470.9
Avg. recognitions per document 16.6

Avg. disambigations per document 12.6

Table 12: Statistics for the search string: Per Michael Jo-
hansen

Thomas Kastrup
Number of documents 410

Number of recognitions 6135
Number of disambiguations 4466

Number of unique recognitions 2019
Number of unique disambiguations 980
Avg. size of document (in words) 369.6
Avg. recognitions per document 15.0

Avg. disambigations per document 10.9

Table 13: Statistics for the search string: Thomas Kastrup

Karneval
Number of documents 46

Number of recognitions 1084
Number of disambiguations 697

Number of unique recognitions 543
Number of unique disambiguations 302
Avg. size of document (in words) 405.1
Avg. recognitions per document 23.6

Avg. disambigations per document 15.2

Table 14: Statistics for the search string: Karneval

AAB
Number of documents 721

Number of recognitions 9603
Number of disambiguations 7184

Number of unique recognitions 3672
Number of unique disambiguations 1709
Avg. size of document (in words) 240.8
Avg. recognitions per document 13.3

Avg. disambigations per document 10.0

Table 15: Statistics for the search string: AAB

Page 13 of 28

Frederikshavn
Number of documents 4101

Number of recognitions 53608
Number of disambiguations 33984

Number of unique recognitions 16095
Number of unique disambiguations 6267
Avg. size of document (in words) 182.2
Avg. recognitions per document 13.1

Avg. disambigations per document 8.3

Table 16: Statistics for the search string: Frederikshavn

Socialdemokratiet
Number of documents 1087

Number of recognitions 18443
Number of disambiguations 14155

Number of unique recognitions 5809
Number of unique disambiguations 2786
Avg. size of document (in words) 404.7
Avg. recognitions per document 17.0

Avg. disambigations per document 13.0

Table 17: Statistics for the search string: Socialdemokratiet

Page 14 of 28

C. EVENT COHERENCE EXPERIMENT

This section contains the text we presented the user as part
of the user evaluated tests. We have omitted the tables where
the users wrote their evaluations. Otherwise it contains a
description of their task as well as the events they were asked
to evaluate:

Firstly we would like you to rate how well you know each
of the following subjects on a score from 1-5. Consider each
subject only in the local context of Aalborg, Frederikshavn
and nearby cities and only within the timespan 6th of July
2017 - 27th of February 2018. Once each of the subjects have
a score, we will present a program for you, which you get to
explore, which should hopefully provide aditional informa-
tion about the subjects. Once you have explored the program
for each of the subjects, we ask you to write down a new
score from 1-5 representing how much you now know about
the subject. The subjects are:

• Aalborg Portland

• AAB

• Birgit Hansen

• Frederikshavn

• Industri

• Karneval

• Per Michael Johansen

• Socialdemokratiet

• Thomas Kastrup

Once you have scored each of the 9 sentences above, you
will be presented with a number of text boxes describing an
event, which is done using 3 sentences, those can be seen in
appendix D. If you need more information on the meaning of
any of the words or sentences presented to better understand
the event, we will answer to the best of our ability or provide
you with documents detailing their meaning.

For each event you are presented with, you should rate
how well each of the 3 sentences fit in with the others and
rate them accordingly on a scale of 1-5, 5 being fits well and
1 being does not fit at all. If none of the sentences fit together
in any way, tell us and we will move on to the next event.

An example of a good event, where the clusters fit well to-
gether, could be "Earning Denmark yet another gold medal in
the Olympics", "Her performance was exemplary" and "The
result was unexpected".

An example of a bad event, where none of the sentences
fit together could be "The president won a landslide victory",
"Earning the country yet another gold medal in the Olympics"
and "The police were on the scene within minutes".

In addition to rating the sentences, each event has a num-
ber of entities attached to it, which are written above the sen-
tences. We ask you to rate each of those entities as either:

• Correct, when the entity fits well with the sentences.

• Possible, when you think the entity might fit with the
sentences.

• Incorrect, when the entity has nothing to do with the
sentences.

To illustrate we give the following example: Given an
event with the 3 sentences "Earning Denmark yet another gold
medal in the Olympics", "Her performance was exemplary"
and "The result was unexpected".

One example of a correct entity for the event could be
"Denmark".

An example of a possible entity for the event could be
"Per Olesen" (an Olympic judge, ask us if you are in doubt
about who or what any of the mentioned entities are).

An example of an incorrect entity could be "England",
which may have something to do with the Olympics, but has
nothing to do with a Dane winning a medal in it.

Page 15 of 28

D. EVENTS USED FOR TESTING

Portland 43 (Aalborg, Viborg).png Portland 43 (Aalborg,
Viborg).bb

Portland 44 (Aalborg).png Portland 44 (Aalborg).bb

Page 16 of 28

Portland 45 (Rasmus Wurtz, Superligaen, Aab Fodbold,
Aalborg).png Portland 45 (Rasmus Wurtz, Superligaen, Aab

Fodbold, Aalborg).bb

Portland 50 (Aalborg, Robert Kakeeto, FC Helsingor, Aab
Fodbold, Filip Lesniak).png Portland 50 (Aalborg, Robert
Kakeeto, FC Helsingor, Aab Fodbold, Filip Lesniak).bb

Portland 55 (Aalborg, Jakob Ahlmann, Aab Fodbold, Yann
Rolin, Pavol Safranko).png Portland 55 (Aalborg, Jakob
Ahlmann, Aab Fodbold, Yann Rolin, Pavol Safranko).bb

Page 17 of 28

8 (Aab Fodbold, Aalborg).png 8 (Aab Fodbold, Aalborg).bb

66 (Aalborg).png 66 (Aalborg).bb

78 (Aab Fodbold).png 78 (Aab Fodbold).bb

100 (Aalborg).png 100 (Aalborg).bb

101 (Aalborg).png 101 (Aalborg).bb

Page 18 of 28

Hansen 32 (Frederikshavn White Hawks, Frederikshavn).png
Hansen 32 (Frederikshavn White Hawks, Frederikshavn).bb

Hansen 39 (Frederikshavn).png Hansen 39
(Frederikshavn).bb

Hansen 54 (Socialdemokraterne, Skagen, Danmark, Los
Angeles).png Hansen 54 (Socialdemokraterne, Skagen,

Danmark, Los Angeles).bb

Page 19 of 28

Hansen 66 (Frederikshavn, Birgit Hansen,
Socialdemokraterne, Hadsund, Venstre).png Hansen 66

(Frederikshavn, Birgit Hansen, Socialdemokraterne,
Hadsund, Venstre).bb

Hansen 69 (Frederikshavn, Frederikshavn White Hawks,
Fladstrand, Peter Wessel Tordenskiold).png Hansen 69

(Frederikshavn, Frederikshavn White Hawks, Fladstrand,
Peter Wessel Tordenskiold).bb

100 (Saeby).png 100 (Saeby).bb

Page 20 of 28

199 (Frederikshavn Kommune).png 199 (Frederikshavn
Kommune).bb

221 (Saeby).png 221 (Saeby).bb

502 (Frederikshavn Kommune).png 502 (Frederikshavn
Kommune).bb

57 (Aalborg).png 57 (Aalborg).bb

Page 21 of 28

178 (Aalborg).png 178 (Aalborg).bb

212 (Holland, Amsterdam).png 212 (Holland,
Amsterdam).bb

219 (Nyhedsbeauet AFP, Colombia).png 219 (Nyhedsbeauet
AFP, Colombia).bb

Page 22 of 28

243 (Morso Kommune, Socialdemokraterne).png 243
(Morso Kommune, Socialdemokraterne).bb

2 (Nordjylland).png 2 (Nordjylland).bb

4 (Aalborg).png 4 (Aalborg).bb

12 (Socialdemokraterne, Aalborg Kommune).png 12
(Socialdemokraterne, Aalborg Kommune).bb

17 (Aalborg).png 17 (Aalborg).bb

Page 23 of 28

23 (Socialdemokraterne, Aalborg).png 23
(Socialdemokraterne, Aalborg).bb

Michael Johansen 0 (Aalborg Universitet, Per Michael
Johansen).png Michael Johansen 0 (Aalborg Universitet, Per

Michael Johansen).bb

Michael Johansen 1 (Nordjylland).png Michael Johansen 1
(Nordjylland).bb

Michael Johansen 2 (Aalborg Universitet, Aalborg).png
Michael Johansen 2 (Aalborg Universitet, Aalborg).bb

Page 24 of 28

Michael Johansen 10 (Per Michael Johansen, Aalborg
Universitet, Danmark, Aalborg).png Michael Johansen 10

(Per Michael Johansen, Aalborg Universitet, Danmark,
Aalborg).bb

Michael Johansen 11 (Aalborg Universitet, Per Michael
Johansen, Danmark).png Michael Johansen 11 (Aalborg

Universitet, Per Michael Johansen, Danmark).bb

21 (Socialdemokraterne).png 21 (Socialdemokraterne).bb

Page 25 of 28

48 (Venstre).png 48 (Venstre).bb

64 (Aalborg, Socialdemokraterne).png 64 (Aalborg,
Socialdemokraterne).bb

260 (Aalborg, Venstre).png 260 (Aalborg, Venstre).bb

275 (Kelvin, Socialdemokratiet, Venstre).png 275 (Kelvin,
Socialdemokratiet, Venstre).bb

Page 26 of 28

Kastrup 22 (Aalborg, Mads Duedahl, Thomas Kastrup
Larsen).png Kas-

trup 22 (Aalborg, Mads Duedahl, Thomas Kastrup Larsen).bb

Kastrup 44 (Venstre).png Kastrup 44 (Venstre).bb

Kastrup 98 (Dansk Folkeparti, Thomas Krarup, Radikale
Venstre, Aalborg, Socialistisk Folkeparti).png Kastrup 98

(Dansk Folkeparti, Thomas Krarup, Radikale Venstre,
Aalborg, Socialistisk Folkeparti).bb

Page 27 of 28

Kastrup 102 (Christiansborg, Aalborg Kommune, Venstre,
Aalborg, Socialdemokraterne).png Kastrup 102

(Christiansborg, Aalborg Kommune, Venstre, Aalborg,
Socialdemokraterne).bb

Kastrup 104 (Aalborg Havn, Aarhus, Royal Arctic Line, Aal-
borg, Thomas Kastrup-Larsen).png Kastrup 104 (Aalborg
Havn, Aarhus, Royal Arctic Line, Aalborg, Thomas Kastrup-

Larsen).bb

Page 28 of 28

