
YAGAL
Yet Another GPGPU Library

dpw106f18

Jonathan Hastrup Morten Mandrup Hansen

Department of Computer Science

Selma Lagerlöfs Vej 300

9220 Aalborg Ø

Title:
YAGAL: Yet Another GPGPU Abstrac-
tion Library

Theme:
Programming Technology

Project period:
01/02/2018 -
08/06/2018

Project group:
dpw106f18

Members:
Jonathan Hastrup
Morten Mandrup Hansen

Supervisor:
Lone Leth Thomsen

No. of Pages: 93
No. of Appendix Pages: 4
Total no. of pages: 97
Completed: 08/06/2018

General purpose GPU (GPGPU) programming
requires a developer to learn how to program in
a new programming model to be effective. There
are already related works addressing GPGPU,
but they either utilize a custom compiler, and
thereby enforce the compiler choice of the de-
veloper, or they utilize OpenCL as a target lan-
guage.
This thesis documents the development of YA-
GAL, a GPGPU abstraction framework, that uti-
lizes the CUDA Driver API for device manage-
ment, and LLVM for PTX code generation at
run-time, to be compiler independent without
relying on OpenCL.
With the library, we explore the option of build-
ing kernels through an action abstraction that
allows chaining of function invocations on a vec-
tor object to generate and execute a kernel on
the GPU.
We compare the framework to the state of the
art, in terms of both static measurements, and
usability by using Cognitive Dimensions of No-
tations, to understand how YAGAL performs.
We reflect upon our thesis work in terms of tech-
nology choice, selected related works, frame-
work implementation, and comparison.

We conclude that the development of a GPGPU

framework is indeed possible with the config-

uration chosen, but there appear to exist other

options that are equally performant and expres-

sive with simpler development.

Preface

Reading Instructions

This thesis is meant to reflect and document the work of group dpw106f18 at
their 10th semester at Aalborg University. This report have been written during
spring 2018, and the material presented is based upon what was available at this
time.

The reference material is available in the bibliography at the end of the report,
and includes links to official documentation, websites, articles, scientific papers,
and books.

The intended audience for this thesis is readers with some previous experience
or understanding of both GPGPU development and C++.

A huge thanks to our supervisor, Lone Leth Thomsen from Aalborg University’s
department of computer science. Even tough we must have been a difficult
group to work with, we appreciate all the help and support you provided through-
out the thesis. Thank you!

This thesis is intended to be read in sequential order, as the chapters correspond
to the tasks we performed in the order we worked on them. These chapters are;

Introduction
This chapter contains the motivation and problem statement of the thesis,
and in addition covers our development process and prerequisites for the
thesis.

Related Works
This chapter contains our investigation of related works that are similar to
ours.

Design Principles
This chapter contains the design guidelines that we followed to during de-
velopment.

Framework Design
This chapter contains the design of our framework, including our approach,
the design of the API, and the design of the underlying architecture.

Framework Implementation
This chapter contains documentation of our implementation and deci-
sions taken during the implementation.

Problems
This chapter contains the biggest issues that was encountered during de-
velopment, and our proposals for how these issues can be solved.

Framework Demo and Comparison
This chapter contains a presentation of our comparison methodology, how

3

we used it, and an evaluation of our work and of the related works.

Reflection
This chapter contains our reflections upon the thesis as a whole, which in-
cludes our choice of related works, our design, our choice of technologies,
our implementation, and our comparison.

Conclusion
This chapter contains the conclusion of the thesis.

Future work
This chapter contains a description of how this thesis could move forward,
if development were to continue.

Definitions

This is a list of terms heavily used in this report, with their definitions.

GPU
Graphics Processing Unit.

GPGPU development
General Purpose GPU development. To develop general purpose applica-
tions targetting GPU hardware.

STL
The C++ Standard Template Library.

Host
A machine executing a program, might delegate some tasks to a device.
Covering both processing unit and memory.

Device
A device that can be given a computational task from a host. Usually a
GPU, including processing units and memory.

BLAS
Stands for Basic Linear Algebra Subprograms and refers to functions that
perform common linear algebra operations.

Developer
"A developer", "the developer", or "developers" in this report refers to one
or multiple person that use YAGAL within their project.

Action
An abstraction of an intended action that should be performed on a col-
lection, such as adding a value to all elements of a vector.

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Problem Statement . 7
1.3 Development Process . 8
1.4 Thesis Prerequisites . 9

2 Related Works 11
2.1 Selection of Related Works . 11
2.2 Thrust . 12
2.3 C++ AMP . 14
2.4 Bolt . 17
2.5 SkelCL . 20
2.6 PACXX . 23
2.7 Summary . 25

3 Design Principles 28
3.1 The Little Manual of API Design . 28
3.2 Standard Library Guidelines . 29
3.3 Strategy for use of guidelines . 29

4 Framework Design 30
4.1 Design Approach . 30
4.2 API Design . 32
4.3 Architecture Design . 37

5 Framework Implementation 41
5.1 Management of Device Memory . 41
5.2 Execute PTX . 43
5.3 Queuing Actions . 44
5.4 Generation of LLVM IR . 46
5.5 Replacing LLVM LLC . 54
5.6 Matching Number of Threads with Vector Elements 57
5.7 LLVM Optimizations . 58
5.8 More Accessible PTX . 59

6 Challenges and Possible Solutions 64
6.1 Anonymous Functions . 64
6.2 Compilation Time . 68

7 Framework Demo and Comparison 70
7.1 Comparison Process . 70
7.2 General Comparison . 71
7.3 Usability Evaluation . 76
7.4 YAGAL . 78
7.5 Thrust . 80
7.6 Usability Comparison . 82

5

8 Reflection 84

9 Conclusion 89

10 Future Work 91

I Appendix 94

A Kernel Launch Parameter Test 95

6

1. Introduction

In this chapter we present the motivation for the thesis, the problem statement
that is derived from the motivation, the tasks and priorities we define based on
our problem statement, the development process, and initial design decisions.

1.1 Motivation

It have been shown, that some heavy computational problems can be solved
drastically faster using GPUs as accelerators, compared to traditional CPU exe-
cution. This have led to the development of multiple frameworks and tools to
enable development on this platform.

In a previous project[1], we analyzed existing languages enabling GPGPU de-
velopment. The goal of that project was to find representatives of different lan-
guage groups, and compare the development experiences of using them. We
concluded that GPGPU development generally is very difficult, as it requires
the adaption of a new programming model, which gives a very steep learning
curve for a developer. This leads to a lot of time spent learning the program-
ming model, rather than solving problems. In some cases GPU acceleration is
not the solution to performance issues, which means that a developer poten-
tially wastes her time learning this programming model.

We found that frameworks for GPGPU development in compiled languages gen-
erally require a very specific compilation process, often by forcing the developer
to use a custom compiler developed as a piece of the framework. This means
that developers who already depend on some specific compiler for some feature
might be unable to also incorporate the GPGPU framework.

In this project we want to create a framework, prioritizing high abstraction over
absolute performance. This framework should allow developers to build accel-
erated applications without limiting their compiler choice. During the devel-
opment of the framework we want to investigate the implications of not imple-
menting the framework in the form of a compiler.

1.2 Problem Statement

Based on our motivation in Section 1.1, we describe our goal as a problem state-
ment. Then we specify which tasks we need to perform to achieve it, and delimit
our goal.

Can a GPGPU framework to abstract the underlying programming model be cre-
ated, as a library that does not limit the developers choice of compiler, and how
does it compare to other frameworks that do?

7

1.2.1 Tasks

We have defined the following tasks to reach the goal described in our problem
statement:

Create overview of related works
As others have made attempts at making GPGPU development simpler,
we can learn from their design choices and results.

Research framework design principles
Identify good practices for developing frameworks.

Design framework
Design the architecture and API of the framework.

Implement framework
Implement the design and discuss the challenges, and possible solutions,
that arise from limitations.

Develop demo applications
Showcase features what is possible in the framework, and to compare with
implementations in related works.

Evaluation of our framework
Review how our framework compares to the related works.

1.2.2 Delimitation

The problem can be approached in various ways, but the following are not the
priority of the project:

Outperforming CUDA/OpenCL
While we want the framework to perform well, we do not attempt to reach
better performance than CUDA and OpenCL, as this would be unfeasible
due to cost of abstractions.

Being "Complete"
While we want to provide the functionality for a developer to develop GPGPU
applications, we prioritize experimentation over being complete, as we
want to experiment with which abstractions can work.

1.3 Development Process

In section 1.2.1, we define the tasks that need to be performed to reach the goals
in our problem statement. These tasks have a linear dependency which moti-
vates us to follow a waterfall inspired development process. This process is sep-

8

arated into two major parts; Design and implementation of our framework, and
comparison between our framework and other frameworks. Before we start the
comparison part, we will have completed the design and implementation part.

The implementation was done in incremental steps. Each step corresponds to
a implementation of a feature that is a foundation for upcoming steps. The im-
plementation is explained throughout chapter 5.

1.4 Thesis Prerequisites

In our previous thesis[1], we compared multiple languages with frameworks sup-
porting development targeting the GPU. We observed how CUDA and OpenCL
are the frameworks that offer the most explicit device control, and can be the
choice for developers with knowledge of how to fine tune a GPGPU application.
Based on this experience we make some decisions, that set the direction of the
thesis.

1.4.1 Language Selection

Our goal of this thesis is the construction of a framework that can assist in pro-
viding applications with an initial benefit of GPGPU acceleration, where our
framework is replaceable by another framework with a more low-level program-
ming model when the developer is prepared for the steep learning curve of tra-
ditional GPGPU development. It is therefore convenient to keep our framework
in the same language these low-level approaches. As CUDA and OpenCL are
used from C++ and C these are relevant. The abstractions allowed in C++, in the
form of templates and lambdas, makes it more attractive for us, as we want to
provide high-level abstractions. As such C++ is our language of choice, and the
framework we create in this thesis is based on C++.

1.4.2 Platform

Generating code to execute on a GPU can be done in various ways, either target-
ing a high-level languages like CUDA, or assembly like languages such as PTX.
Targeting a high-level language gives the benefit of the compilation tool chain
being able to perform optimizations, while targeting an assembly like language
gives more explicit control.

LLVM[2] is a collection of compiler tools and technologies, which can be used
to construct compilers and other tool chains for specific needs. One of the tech-
nologies of LLVM is the LLVM Intermediate Representation language, which can

9

be constructed using LLVM tools. LLVM Intermediate Representation is a a plat-
form agnostic language that can be compiled to platform specific code for any
supported platform. A platform that is supported is NVIDIA GPUs, through the
NVPTX Back-End, which allows us to compile LLVM Intermediate Representa-
tion to PTX code. Targeting LLVM Intermediate Representation allows us to gen-
erate code on a higher abstraction level than PTX, with optimizations provided
by LLVM. Compared to a high-level language such as CUDA, we get more explicit
control over the execution. We choose to target LLVM Intermediate Representa-
tion, as it seem to be of a convenient abstraction level between CUDA and PTX,
and as it allows for expanding to other platforms than NVIDIA GPUs based on
the available LLVM Back-Ends.

Using LLVM Intermediate Representation as the target platform, we can generate
PTX code. To launch kernels written in PTX we need to use the CUDA Driver API.
Memory management on the device also need to be done through this API, as
it is done outside kernels. This decision requires YAGAL to be used on a system
with a NVIDIA GPU, but can allow for easier transition for the developer into
CUDA as YAGAL constructs use CUDA constructs.

10

2. Related Works

Before we design our framework, we consider other frameworks that attempt to
reach similar goals. This allow us to make more informed decisions when we
design our framework, as we then know how others have approached similar
problems, and what their result was. We also learn how others have provided
abstractions for the underlying architecture, giving us inspiration for our API
design.

2.1 Selection of Related Works

To direct the content of this chapter we go through the frameworks we want
to cover, and why we chose them. We then describe our examination of each
framework.

The frameworks we examine in this chapter are:

Thrust
Thrust is promoted by NVIDIA, who are the developers of CUDA, as a high
level interface to GPU Programming[3].

C++ AMP
C++ AMP is promoted by Microsoft, who is the developers of DirectX, as a
C++ language extension to enable data-parallel acceleration[4].

Bolt
Bolt is developed by the HSA Foundation to provide a high level library to
provide abstractions on top of low level programming models.[5].

SkelCL
SkelCL is a research project that attempts to make GPU development eas-
ier with a concept called algorithmic skeletons.[6].

PACXX
PACXX is a research project that attempts to make GPU development eas-
ier by combining host and device code in standard C++.[7].

We consider the frameworks in regard to:

Goals
Understanding the goals of a framework help us identify the motivation
behind its design choices.

Programming Model
Understanding the programming model of a framework helps us form an
overview of which approaches have been tried, and what is currently pos-
sible.

11

To give a demonstration of the programming model, we implement the
Single-Precision A * X plus Y, SAXPY, computation. It is a calculation where
the iterations of the main loop can be executed in any order. SAXPY is seen
in listing 2.1.

1 for (int i = 0; i < N; i++){
2 result[i] = a * x[i] + y[i];
3 }

Listing 2.1: The SAXPY computation in C.

Implementation
Investigating the implementation helps us to understand how the pro-
gramming model have been facilitated, and can give us insight of different
approaches. While not all related works are open source, we are still able
to get an architectural overview of their process.

Key Points
We put an emphasis on the most critical points of the frameworks, from
our perspective, giving us some points to keep in mind when we design
our own framework.

2.2 Thrust

Thrust is a C++ library that allow developers to implement high performance
applications with minimal programming effort. This section is based on Thrust’s
overview document[8] and Github page[9].

2.2.1 Goals

The aim of Thrust is to make high performance application development as easy
as possible. It is designed to be similar to STL, with the intention of being con-
cise, readable, and efficient. It is intended to supply developers with containers
and fundamental algorithms, with user defined behavior, rather than specific
numeric algorithms as provided by BLAS. It is also intended to be interoperable
with CUDA.

2.2.2 Programming Model

Thrust is modeled on STL, and follows the model of calling functions with itera-
tors as arguments to instruct where input, and output is located.

12

Listing 7.5 shows how the SAXPY computation can be implemented in Thrust,
and the usage of iterators to manage data access is shown.

The execution of SAXPY is done in line 17, and shows how iterators are used to
define input and output locations.

1 size_t N = 1 << 29;
2 float a = 11;
3
4 // initialize host vectors
5 thrust :: host_vector <float > h_x(N);
6 thrust :: host_vector <float > h_y(N);
7
8 //fill with random data
9 std:: generate(h_x.begin(), h_x.end(), rand);

10 std:: generate(h_y.begin(), h_y.end(), rand);
11
12 //copy to device
13 thrust :: device_vector <float > d_x = h_x;
14 thrust :: device_vector <float > d_y = h_y;
15
16 // perform saxpy
17 thrust :: transform(d_x.begin (), d_x.end(), d_y.begin(), d_x.

,→ begin(), [=] __device__(float x, float y){return a * x + y
,→ ;});

18
19 //copy results back to host vector
20 h_x = d_x;

Listing 2.2: Thrust SAXPY example.

2.2.3 Implementation

Thrust is a designed to be compiled by the NVIDIA compiler, nvcc, as seen on
figure 2.1.

The memory management is performed through types defined in the library, ab-
stracting direct allocation management, and functions can be defined as lamb-
das with the annotation __device__ which is the CUDA Runtime annotation for
kernels. With nvcc as the compiler, Thrust can achieve the high-level design
shown in listing 7.5, where the Thrust data types interface with STL algorithms
and use an extended C++11 syntax for lambdas.

The compilation process is static, and results in a single executable with both
host and CUDA Runtime code included.

13

Figure 2.1: Thrust Compilation Process.

2.2.4 Key Points

The API of Thrust is structured to imitate that of STL, and a C++ developer is
therefore familiar with it. It can be very verbose with multiple operations on the
same container since the usage of the containers is based on iterators.

Thrust is a header only implementation, but is dependent upon the CUDA Run-
time, and requires the NVIDIA compiler nvcc to be used.

2.3 C++ AMP

C++ AMP stands for Accelerated Massive Parallelism, and is a framework that al-
lows a developer to write code to be executed on data-parallel hardware, and is
built upon Direct3D. C++ AMP is developed by Microsoft as a framework and as
an open standard for implementing parallelism in C++. Their choice of Direct3D
is interesting since OpenCl and CUDA existed at the time. The information dis-
cussed in this section was gained from Microsoft’s C++ AMP page [4].

2.3.1 Goals

The goal of the C++ AMP specification is to provide a way of writing code for
data parallel hardware directly within the C++ language. Microsoft implemented
the specification based upon Direct3D, and the HSA Foundation later did it for

14

OpenCL.

2.3.2 Programming model

A feature of C++ AMP is that kernel functions is here expressed in C++ as re-
stricted lambdas, meaning that a subset of C++ is available.

Construction of matrices is done by first creating an array, and then wrap it with
the array_view that is provided by C++ AMP. To show an example, an array is
constructed below:

1 float matrix [] = {1, 2, 3, 4};

To construct a matrix with two dimensions, the matrix array is wrapped with
array_view:

1 array_view <float , 2> mat(2, 2, matrix);

Here the <float, 2> specifies that the mat matrix consist of floating point val-
ues and two dimensions. (2, 2, matrix) indicates that the mat matrix will
have two rows and two columns, and will be populated with the data from the
matrix array;

Listing 2.3 shows SAXPY implemented in C++ AMP. The array_views are con-
structed at line 11 to 13. It is still needed to specify the views, even though this
example only utilize one dimension. The z_v array_view is at line 14 marked
with the discard_data() function. This is done to indicate that z_v is used
purely as an output container, and to avoid wasting resources transferring it
to device since the contents will be overwritten. At line 16 the function par-
allel_for_each() method is called and given two arguments. z_v.extend
indicates the compute domain. The lambda at line 19 are marked with re-
strict(amp) which states that the lambda should be executed on device and
that only a subset C++ functionality is available for execution.

1 const size_t N = 1024;
2 float a = 10;
3
4 std::array <float , N> x;
5 std::array <float , N> y;
6 std::array <float , N> z;
7
8 std:: generate(x.begin(), x.end(), rand);
9 std:: generate(y.begin(), y.end(), rand);

10
11 array_view <const float , 1> x_v(size , x);
12 array_view <const float , 1> y_v(size , y);
13 array_view <float , 1> z_v(size , z);
14 z_v.discard_data ();
15

15

16 parallel_for_each(
17 z_v.extent ,
18
19 [=](index <1> idx) restrict(amp){
20 z_v[idx] = a * x_v[idx] + y_v[idx];
21 }
22)

Listing 2.3: SAXPY computation in C++ AMP.

2.3.3 Implementation

C++ AMP is a framework that enables simple manipulation of large dimensional
arrays by introducing a new language feature called restricted for C++.

Data is managed within regular std::arrays. array_views can be constructed
to represent these arrays as matrices on the GPU and is used to manipulate
them.

Lambdas are used to construct the logic of a kernel for execution on the GPU.
The C++ AMP keyword restricted is required on the lambda to indicate that
the lambda is intended for execution on the GPU, and has limited functionality.

To execute a kernel, the kernel defining lambda is given to the parallel_for_-
each function which also manages copies to and from the device of the data
described by the array_views.

The compilation chain of C++ AMP can be seen in Figure 2.2. Here the C++ AMP
headers are included within the user code, and is compiled by the Microsoft Vi-
sual C++ compiler (MSVC). The result is an executable file that utilizes Direct3D
to execute on the GPU. In addition to providing a library that must be included
in the code, C++ AMP adds an additional keyword to the language and therefore
requires a compiler that implements the specification, such as the MSVC com-
piler for windows. The C++ AMP specification is however open such that other
compiler vendors could support it in the future.

16

Figure 2.2: C++ AMP Compilation Process.

2.3.4 Key Points

A unique feature of C++ AMP is that it outputs to Direct3D. We assume that this
decision might have been made due to Direct3D being developed and main-
tained by Microsoft as well.

C++ AMP is meant to extend C++ with parallelism, but using arrays on the GPU
requires that they are wrapped within an array_view, and lambdas are restricted.

C++ AMP is dependent upon the MSVC compiler.

2.4 Bolt

Bolt is a library providing abstractions for heterogeneous computing. This sec-
tion is based on Bolt’s documentation[5] and Github page[10].

2.4.1 Goals

The goal of Bolt is to provide high performance library, that contain implemen-
tations of common algorithms, following the structure of STL. It is intended to
make heterogeneous development easier, and is designed to provide an appli-
cation that can execute on either a CPU or any OpenCL capable unit.

2.4.2 Programming Model

Bolt is modeled on STL, and follows the model of calling functions with iterators
as arguments to instruct where input and output is located.

17

Bolt provide functions for modifying STL containers, and the library determines
whether the computation should happen on host or device.

The example shown in Listing 2.4, shows how the library interfaces with an STL
vector.

From line 11 until the next comment it is shown how the function is defined and
implemented with the C++ AMP back-end. It is done with a C++11 lambda and
C++ AMP’s restrict classifier.

From line 17 it is shown how, instead of a lambda, a functor is needed when us-
ing the OpenCL back-end. The functor is then defined inside a BOLT_FUNCTOR
macro to statically generate relevant OpenCL code.

1 const size_t N = 1024;
2 float a = 10;
3
4 std::vector <float > x(N);
5 std::vector <float > y(N);
6 std::vector <float > z(N);
7
8 std:: generate(x.begin(), x.end(), rand);
9 std:: generate(y.begin(), y.end(), rand);

10
11 //bolt with c++ amp back -end
12 auto saxpyLambda = [=] (float xx, float yy) restrict(cpu ,amp) {
13 return a * xx + yy;
14 };
15 bolt:: transform(x.begin (), x.end(), y.begin (), z.begin ,

,→ saxpyLambda);
16
17 //bolt with opencl back -end
18 BOLT_FUNCTOR(SaxpyFunctor ,
19 struct SaxpyFunctor{
20 float _a;
21 SaxpyFunctor(float a): _a(a) {};
22 float operator () (const float& xx, const float& yy){
23 return _a * xx + yy;
24 };
25 };
26);
27 boltcl :: transform(x.begin (), x.end(), y.begin (), z.begin ,

,→ SaxpyFunctor(a));

Listing 2.4: SAXPY computation in Bolt.

2.4.3 Implementation

Bolt is an abstraction library on top of either C++ AMP or OpenCL.

The developers of Bolt has made an effort in making it compatible with STL

18

types and algorithms. To this end, data can be implicitly managed with STL
vectors, where data needed for a kernel will be copied to the device before ex-
ecution, and back to the host after. Bolt also provides device specific types for
explicit memory management such as device_vector which allocates data di-
rectly in device memory.

Lambda expressions are used to express kernel functions when C++ AMP is the
targeted back-end. The procedure is similar to how it is done in C++ AMP which
is described in Section 2.3, but Bolt will handle the interaction with data and the
array_views of C++ AMP is therefore not needed. The restricted keyword is
still used to tell the compiler that only a subset of C++ functionality is available
within the lambda scope.

Functors are used to express kernel functions when using OpenCl as the targeted
back-end. A functor allows the construction of a struct that can be called as a
regular function, by overloading the parenthesis operator.

One of the two supported back-ends is C++ AMP, and the compilation chain can
be seen on Figure 2.4. Here the user code has included the Bolt headers which in
turn make use of the C++ AMP headers. MVSC is used for compilation since it is
a compiler that supports C++ AMP. This results in an executable file that utilizes
Direct3D for execution on the GPU.

Figure 2.3: Bolt, targeting OpenCL, compilation process.

The other of the two supported back-ends is OpenCL, and the compilation chain
can be seen on Figure 2.3. It is the same procedure as with C++ AMP, except that
Bolt makes use of OpenCL headers, it is not dependent upon the MVSC com-
piler, and it utilizes the OpenCL run-time.

19

Figure 2.4: Bolt, targeting C++ AMP, compilation process.

2.4.4 Key Points

STL containers are more seamlessly integrated than they are in C++ AMP since
no array_views are needed. Bolt manages allocations on a device, and provides
device_array for cases where data should be manually managed.

As a library on top of other frameworks it shows some code artifacts of the un-
derlying framework. With C++ AMP as target, the use of the restrict classifier on
lambdas is necessary. BOLT_FUNCTOR is a macro is used to overcome the lan-
guage gap between C++ and OpenCL C, when OpenCL is set as targeted back-
end. Both examples show that workarounds to support the target back-end
sometimes will show up in the API.

2.5 SkelCL

SkelCL (Skeleton Computing Language) is a library aiming to provide abstrac-
tions for parallel programming on multi GPU systems. It is developed as a re-
search project by Michel Steuwer et.al at University of Münster, Germany. This
section is written based upon the information available on their website [11] and
in their paper [6].

20

2.5.1 Goals

The developers of SkelCL state that programming for GPUs result in complex,
lengthy and error prone programs. This is due to the process of writing GPU
code typically being reliant on low-level programming approaches as seen with
OpenCL and CUDA.

To avoid the pitfalls of the traditional low-level approaches, the library SkelCL
provides abstractions in the form of algorithmic patterns, parallel container data
types, and management of transfers between host and device.

SkelCl can be used on single GPU systems, but is developed for systems with
multiple GPUs, and introduces the feature called data (re)distributions which
manages data among the available GPUs.

2.5.2 Programming Model

The programming model is centered around parallel skeletons, which is pre-
implemented high-level patterns that can be customized for a given problem.
The available skeletons are map, zip, reduce, scan, mapOverlap, end allpairs.

An implementation of the SAXPY computation in SkelCL is shown in listing 2.5.
After SkelCL is initialized, which happens at line 4, skeletons can be constructed.
The Zip skeleton is specified with the parameters <float(float,float)>, in-
dicating that the resulting Zip function expects two floats, and that a single float
will be returned. The given string specifies the function of the skeleton. At line
13 the calculation is performed based on the constructed skeletons.

1 size_t N = 1024;
2 float a = 10;
3
4 skelcl ::init();
5
6 Zip <float(float ,float)> saxpy("float func(float x, float y,

,→ float a){return a * x + y;}");
7
8 skelcl ::Vector <float > X(N);
9 skelcl ::Vector <float > Y(N);

10 skelcl ::init(X.begin(), X.end());
11 skelcl ::init(Y.begin(), Y.end());
12
13 saxpy(out(Y), X, Y, a);

Listing 2.5: The SAXPY computation in SkelCL.

21

2.5.3 Implementation

SkelCL is a library built upon OpenCL. This allows host and kernel code to be
contained within one source file, as opposed to the traditional OpenCL approach.
The implementation is done entirely in a library, which allows the developer to
use it without enforcing a compiler choice.

Memory management is handled through either the Vector or the Matrix tem-
plate classes, where the allocations are managed on the device.

Kernel functionality is provided through C++ constructs that generate OpenCL
code, which is then given to the OpenCL run-time. The generated code is con-
structed as a OpenCL kernel string, by providing different hard coded content
based on the used skeleton, concatenated with the user provided string, such as
the one in listing 2.5 line 6. It provides the features of OpenCL with minimum
analysis of user code.

The compilation chain is shown in figure 2.5, where the highlight is the library
layers with SkelCL in front of OpenCL, and the use of a non-specified compiler,
as the implementation is a library.

Figure 2.5: SkelCL compilation process.

2.5.4 Key points

A key point of SkelCL is the data containers it provides, namely vectors and ma-
trices. They are available on both host and device. When one of these data con-
tainers is allocated or deallocated on the host, it is automatically also allocated
or deallocated on the device(s). Furthermore, memory transfers between host

22

and device are managed implicitly.

Another key point of SkelCL is how it is designed to function on systems with
multiple GPUs. The data (re)distribution mechanism describes how a container
is distributed among the available GPUs. This feature abstracts the need to man-
age which parts of the container gets assigned to which GPU. The data con-
tainers can be considered as self contained entities. A developer must specify
a model for how the data should be distributed, with the available options being
single, copy, block, and overlap.

A last key point is that SkelCL generate OpenCL code based upon skeletons which
reduces the amount of needed analysis of user code. This results in an OpenCL
string that can be delivered to the OpenCL runtime for execution.

2.6 PACXX

PACXX is a unified programming model that uses a custom compiler based on
Clang and LLVM. It is a research project created by Michael Haidl and Sergei
Gorlatch, both from University of Münster, Germany. The information in this
section is based upon their PACXX paper released in 2014[7]. PACXX is not offi-
cially released yet and there are no given release date, but the compiler can be
found on Github[12].

2.6.1 Goals

The PACXX paper states that OpenCL and CUDA are error-prone since with these
approaches, host code is written in C/C++ with a restricted, C-like API to handle
memory management, and device specific code is written with a parallel pro-
gramming model. The aim of PACXX is to avoid the traditional pitfalls of GPU
programming by unifying host and device code and thereby allowing a devel-
oper to utilize C++14 and STL features.

2.6.2 Programming Model

As the goal of PACXX suggests, the programming model is similar to a regular
C++ approach, such that the developer will not have to change mindset when
programming. There are some exceptions; The developer still needs to evaluate
the threads and blocks she want to use. The developer must use the kernel class
that PACXX provides to construct a kernel function. Lastly, PACXX generates
and compiles device code at run-time, and there are no restrictions as to what
a kernel function can call, but all code used in combination with a kernel must

23

be known at run-time. Another restriction is that functions from pre-compiled
libraries cannot be used by a kernel function.

Listing 2.6 shows a SAXPY implementation using PACXX. A lambda function
called saxpy is created on line 6, which describes SAXPY. The thread id will be
fetched, as seen on line 7, and then the elements corresponding to that thread of
each vector will be used for the SAXPY computation. The amount of threads and
blocks are determined at line 12 and 13. Then, at line 15, the kernel function is
constructed using the PACXX provided kernel class. The SAXPY computation
is executed at line 16.

1 main() {
2 size_t = 1 << 24;
3 float a = 2;
4 std::vector <float > x(n), y(n), z(n);
5
6 auto saxpy = [](const float& a, const vector <float >& x, const

,→ vecotr <int >& y, vector <float >& z) {
7 auto i = Thread ::get().global.x;
8 if (i >= x.size()) return;
9 z[i] = x[i] * a + y[i];

10 };
11
12 size_t threads = 128;
13 size_t blocks = (n + (threads * 2 - 1)) / (threads * 2);
14
15 auto saxpy_gpu = kernel(saxpy , {{ blocks}, {threads }});
16 saxpy_gpu(a, x, y, z);
17 }

Listing 2.6: SAXPY computation in PACXX.

2.6.3 Implementation

PACXX is a framework centered around a compiler created with LLVM, named
pacxx++. Using a special purpose compiler allows for quality of life features,
such as defining kernel functionality in C++11 lambdas, at the cost of forcing
that compiler to be used by the developer. The compilation is multi-staged,
meaning that the main program is statically compiled, and the kernels are com-
piled before use, allowing kernels to vary depending on run-time state.

An important feature of PACXX is that the code written by the developer is stan-
dard C++, and can be compiled and executed on many platforms. The pacxx++
compiler is able to identify lambdas that can be compiled for a GPU, and create
a unified programming experience.

On figure 2.6 it is shown how a program compiled with pacxx++ includes the
PACXX Run-time. This run-time is able to generate LLVM Intermediate Repre-

24

sentation code and translate that to either PTX code for the CUDA Run-time or
SPIR code for the OpenCL Run-time, using the LLVM support for those targets.

Figure 2.6: PACXX Compilation Process[13].

2.6.4 Key Points

PACXX allows a developer to write device specific code with C++14 lambdas with
few restrictions, and must still take threads and blocks into account.

PACXX uses LLVM to generate PTX and SPIR code at run-time. This is interest-
ing as it provides more opportunities and freedom for abstractions than a static
header library would. PACXX is also multi-staged such that run-time compiled
kernels can vary depending on state.

2.7 Summary

Through considering the frameworks in this chapter, we gained some insights
which allow us to make better decisions in the design of YAGAL.

25

2.7.1 Compilation

The compilation processes are diverse. The following variants have been shown
in this chapter:

• Thrust is a library extension over CUDA, and inherits the compilation pro-
cess of CUDA.

• C++ AMP is a standard that requires the compiler to implement it.

• Bolt is a library extension over either OpenCL or C++ AMP, and the com-
pilation process is either using any compiler and linking to the OpenCL
library, or using a compiler that implements the C++ AMP standard.

• SkelCL is a library that wraps the construction of OpenCL kernel strings
within objects, and the compilation can be done using any compiler and
by linking to the OpenCL library.

• PACXX is a framework and a compiler where developers can define ker-
nel functions with limited lambdas and regular C++. The kernels are then
generated during run-time.

Only SkelCL, and Bolt when targeting OpenCL, allow any compiler to be used.
The common part is that both generate OpenCL kernels as strings, ready for the
run-time.

PACXX is interesting as it implements a compiler that takes normal C++ code
and compiles some of it to GPU kernels using LLVM and its intermediate rep-
resentation. The use of LLVM is enabling support for both NVIDIA’s PTX and
Khronos Group’s SPIR platform. It has the drawback of requiring a specific com-
piler, which might be troublesome for some developers to integrate.

2.7.2 Data Storage

The general approach observed for managing allocations is by providing con-
tainer classes such as thrust::host_vector to wrap that functionality. This
seems like a reasonable choice, as it helps the developer perform allocations,
free memory, and transfer data between host and device, through constructors
and destructors.

Accessing data from these containers is generally performed through iterators or
direct access with syntax as an array access. This seems like a convenient choice,
but it might invite the developer to perform logic on the CPU by copying data
back and forth, which seem counter intuitive as many small copies are slower
than a few large copies, due to the memory transfer overhead[14].

26

2.7.3 Lambdas

The general approach observed for modifying data is to provide some high-
level functions such as boltcl::transform that take some representation of
a function to perform on each element. This function is represented in various
ways, either through functors, strings, or C++ 11 lambdas with additional syntax.
Lambda handling is interesting since the related works each have a unique way
of handling them. A distinction can be made between those that require spe-
cific compilers, and those that does not. Those that require specific compilers
are able to freely add syntax to define new kinds of lambdas. Those that do not
require a specific compiler require the developers to provide the logic in such a
way that the library can extract the intent.

In general, supporting lambdas seems to be a problematic but useful feature,
that appear most elegant when done by a framework that provides a compiler
with support for syntax expansion.

27

3. Design Principles

As we are inexperienced in writing and documenting C++ libraries and APIs, we
need to identify some guidelines to consult during our development process.
The guidelines are presented in this section along with the knowledge we gain
as a result. This knowledge is utilized for designing the framework in chapter 4.

We consider The Little Manual of API Design[15], as it is written by Jasmin Blance-
hette, who have experience from The Qt Company in creating C++ APIs. We also
consider the Standard Library Guidelines[16] from isocpp.org, as guidelines for
the standard library of C++ can be relevant to us as well.

3.1 The Little Manual of API Design

The Little Manual of API Design is written by Jasmin Blancehette, and contains
key insights into API design that were discovered during development of the
Qt application development framework by Trolltech, which later became The Qt
Company. It provides some core API design principles which can assist us in our
framework design phase. The principles cover good characteristics of APIs, the
design process, to guidelines. We focus mostly on the characteristics since the
design process is focused on collecting information and extending existing APIs.

The Little Manual of API Design describes good characteristics of an API as fol-
lows:

Easy to learn and memorize
The API should use meaningful naming conventions that are consistent
throughout the entirety of the library. The API should be minimal such
that it is easy to memorize, and consistent, such that the developer can
reapply the knowledge gained in one area of the API in another.

Leads to readable code
The API should lead the developer towards readable code. The API should
not force a developer to write excess of boilerplate code nor specify irrele-
vant information.

Hard to misuse
The API should be designed in a way that it minimizes the risk of using it
wrong. This includes not forcing the developer to call methods in a strict
order and avoid implicit side effects.

Easy to extend
Frameworks and libraries can be extended over time, and this should be
kept in mind during the design of the API.

Complete
This is an ideal to pursue. Since it might be impossible to create a com-

28

plete API, it should allow developers to extend it or customize it to fit their
needs.

3.2 Standard Library Guidelines

The Standard Library Guidelines are a refined version of a set of ideas from the
ISO standards committee members from 2012. The guidelines have been as-
sembled in order to assist the C++ community in getting libraries accepted and
included in the standard. The guidelines cover writing documentation and ex-
amples, designing library components and public interfaces, and coding con-
ventions. The guidelines are very general, and gives an idea about what a C++
developer would expect of a library.

3.3 Strategy for use of guidelines

We consider the points of The Little Manual of API Design to be principles worth
considering when making general decisions regarding the API design. The points
of the Standard Library Guidelines is much more specific to some implementa-
tion details, and as such we use those to look up specific things, such as naming
conventions.

29

4. Framework Design

The design of the framework, including API and architecture, is described in this
chapter. The thought process behind decisions are included here to provide rea-
soning for the choices when multiple options are present.

4.1 Design Approach

We consider designing YAGAL a task that can be separated in two sub tasks; de-
signing the API, and designing the architecture.

The API is the front-end of the framework, which is what a developer is going
to see when using the framework. Designing the API is the task of defining the
programming model of the framework, including what functions and types are
made available to developers. The API design dictates the usage and learning
experience for developers, and som principles to guide the development of this
part is covered in chapter 3.

The architecture is the structure of the framework, its run-time environment,
its compilation process, and platform support. Architectural design decisions
define which use cases are possible to facilitate, and have an impact on how a
developer will incorporate the framework into her work flow.

4.1.1 Design Order

We expect the order of design to be able to change the final outcome, as both
API and architecture design can set requirements and limitations for the other.
The order of which these get designed is important, and different approaches
are discussed here.

API First

When the API is designed before the architecture, we expect the following pros
and cons, in no specific order:

Pros:

• The API design can be done with ease of use as the primary goal.

• The API design can be done without having to let architectural details
propagate into it.

• The architecture design can be developed towards specific tasks.

Cons:

30

• The architecture can be limited due to some API design decisions being
unfeasible on some platforms, such as requiring features of a specific ven-
dor.

• The API usage might be too different from the underlying implementa-
tion, resulting in some computations being more expensive than needed,
such as abstracting memory location can result in multiple redundant data
transfers.

• The API design might impose requirements on the architecture that are
difficult to implement or self conflicting, such as two actions in the API
requiring two different architectures to be meaningful.

• The API design might require features that make the compilation process
convoluted for the developer, such as requiring custom pre-processing
before compilation.

In general, this approach is more likely to make YAGAL ergonomic to use, but it
might be at at the cost of architectural simplicity.

Architecture First

When the architecture is designed before the API, we expect the following pros
and cons:

Pros:

• The framework structure will be simpler to explain.

• Performance optimizations will be more convenient to implement.

• Allow a convenient tool chain, with a well defined compilation process.

Cons:

• The API design might have implementation details revealed.

• The API design might be constrained, due to limitations in the architec-
ture.

In general, this approach is more likely to make YAGAL consistent, but it might
come at a cost in the form of limitations in the API.

Decision

As the goal of this thesis is to make a framework that makes it fast and simple for
a developer to try GPGPU accelerated code, we choose to design the API first,
as it will put the ergonomics of the framework first. As making the underlying
architecture work is an implementation problem for us, it is not a concern for a
developer.

31

This decision is one we reflect on in chapter 8, as it is done on our assumption
at the time.

4.2 API Design

In this section we discuss the design of the API, and the reasoning behind the
design decisions.

4.2.1 Goals

As it is stated in the motivation in section 1.1, we prioritize high abstraction over
absolute performance. We avoid exposing kernel logic and put a layer of ab-
straction upon the general GPU model by managing kernel function setup and
setup of blocks and threads for the developer.

In the following sections we discuss some of the options and decisions taken
while designing YAGAL.

4.2.2 Data Types

We want to provide a developer with types that makes it convenient to work with
the GPU. It is difficult to define what makes types accessible and easy to work
with since there are multiple factors in play, such as the context of the program-
ming language, the context of application, and what an individual developer
sees as convenient. In this section and subsections, we explore some of these
factors in the form of memory model, the actual data types, and how types are
accessed, in order to determine how the types of YAGAL should be designed.

Memory Model

We consider two general methods for managing the underlying memory of YA-
GALs data types. One is that the data types represent a unified memory layout,
where the actual location of the data is handled by YAGAL, involving any data
transfers required to perform computations. The other is to provide methods
for a developer to control the location of the data, giving her more work, but
more explicit control.

In the case of YAGAL being able to manage memory transfers between host and
device implicitly, data should be available and behave as regular STL data types
when used on host, and be available for use on device. Bolt and PACXX man-
age memory this way, as seen in related works in chapter 2. An advantage of

32

this approach is that a developer does not need to be concerned about mem-
ory when working with YAGAL. A downside is that the developer loses control of
when transfers are happening, which can come at a high performance cost. It
may also create difficulties for a developer when she want to replace YAGAL with
CUDA.

Memory in C++ is managed explicitly, and an experienced C++ developer is used
to know and be in control of how and where data is stored. As YAGAL is a C++
library, it makes sense to let developers manage memory themselves. Based on
this we decided that YAGAL will facilitate ways to manually manage where data
is allocated and be able to control transfers between host and device. In related
works in chapter 2 we saw that Thrust, C++ AMP, and SkelCL manages memory
this way.

We decided that YAGAL will provide developers with the means to manage al-
location and transfers of data between host and device themselves, instead of
handling it implicitly.

Supported Types

There are many types that YAGAL can potentially provide. To stay within the
time frame of this thesis, we decide to keep the current amount of provided types
to a minimum. The types we have considered are arrays, vectors, and maps.

vectors are contiguous memory that can be used as arrays with the possibility
of being dynamically resized, in contrast to arrays which are contiguous mem-
ory with a static size. The frameworks in chapter 2 all provide vectors with
the exception of C++ AMP that uses arrays and array_views. Based on this,
we want YAGAL to support vectors, but it is unclear to what degree of compli-
cations the implementation of vectors would introduce, due to their dynamic
functionality. arrays on the other hand, appear to be more simple to imple-
ment due to them being statically sized. We will therefore focus on implement-
ing vectors and have arrays as fallback solution, as the possibility of being
able to dynamically resize a data collection is a quality that makes it easier for
developers to use.

In regard to multidimensional support for vectors and/or arrays, it is conve-
nient to have as it makes some tasks easier to implement, but it is of low priority
as it is a more specialized feature, that is not needed by all developers, in contrast
to single dimension arrays or vectors. It would be useful for YAGAL to support it,
but it will not be prioritized.

The map data container is an interesting option, since the GPU could be utilized
to perform lookups. This however does not contribute to the overall goal of YA-
GAL, as we have not observed this feature in any of the tools covered in chapter 2
and the introduction of this feature does not contribute to YAGAL being replace-

33

able. map will therefore not be supported.

Accessing Data

When a data container is in use, there are multiple possible methods of access-
ing the data that can be expected.

When a single element is required, either for read or write, we consider two op-
tions:

• Using container.get(index) and container.set(index, value) to
read and modify.

• Using container[index] to read and modify.

We chose to implement get and set functions, as the square bracket accessing
can be developed on top of these at a later point if needed.

It is more problematic when more than a single element is needed. There are
multiple options we consider:

• Providing iterators to provide iteration over data, as is tradition in C++.

• Providing a pointer to the first element and a number of elements to let a
developer control access, as is tradition in C.

• Providing the number of elements to let the developer use single element
accessing methods.

• Providing casting rules to let a developer cast a collection to another type
that provides the needed accessing methods at the cost of a data transfer
to host.

We chose to provide a developer with the device pointer to the data, and the
number of elements contained, giving the developer information enough to use
the single element accessors. This also allow direct access to the memory for
other frameworks if multiple frameworks are used together.

Providing iterators is problematic as it motivates the developer to make many
small copies back and forth between device and host. Instead we chose to pro-
vide a method to create a STL vector containing a copy of the device data, which
can provide iterators for the device data copy. The device data copy can then
be copied back to the device. This results in only two transfers per collection
being required, which is to prefer compared to two transfers per element in a
collection.

34

4.2.3 Functions

We chose to experiment with a different function structure compared to the re-
lated works in chapter 2. Where the related works generally define some kind
of kernel function, and then apply it to a collection, we want to build the ker-
nel on the collection to make the kernel definition appear as methods on the
collection.

Calling Execute on a Collection

We build a kernel on a collection lazily, when a developer use an execute method.
She can build up kernel functionality by appending method calls on the col-
lection. The methods represent actions that the developer want to perform on
the collection. The actual kernel function will be generated and executed based
on the stored actions, when she calls the execute method on the collection that
have actions queued.

An advantage of this approach is that it could prevent unnecessary data transfers
between host and device since it might be possible to bundle necessary logic
within a single kernel function.

A disadvantage of this approach is that it could be a cause for confusion for
the developer. When the developer applies add(5) to a collection, a developer
might expect the addition to have already taken place.

Function Chaining

We want to make a single kernel able to execute multiple actions, such as adding
and multiplying a value in sequence. To enable this each function call must
return a reference to the collection object so that multiple actions can be queued
before the final execute call.

This will allow a program, that adds 5 to all elements of a collection, before mul-
tiplying them with 2, to be written as collection.add(5).multiply(2).exec(),
which we find to be intuitive to read in comparison to the definition and usage
separation of kernels from the related works.

Allowing chaining of functions also allow the framework to determine how, and
if, kernels should be split, such that the example above would result in executing
a single kernel doing both actions, rather than executing an add kernel and a
multiply kernel in sequence.

Primitive Functions

Functions should be provided to give developers a baseline of functionality. These
functions represent simple action to append to collections. Such a function

35

could be collection.add(X) which will add X to each member of the collec-
tion.

Here are some primitive functions representing actions that each take either a
single value or a collection:

collection.add(X)
Add a value X to each element of the collection or add entries of a given
collection X to the corresponding entries of the collection.

collection.sub(X)
Subtract a value X from each element of the collection or subtract entries
of a given collection X from the corresponding entries of the collection.

collection.div(X)
Divide each element in the collection by value X or divide each entry by
each corresponding entry of a given collection X.

collection.mult(X)
Multiply each value of the collection by the value X or multiply each entry
of the collection by each corresponding entry of the collection X.

These functions also serve as a way for us to get started experimenting with code
generation since the operations involved are relatively simple. We implement
these primitive functions to provide base functionality.

Higher Order Functions

We implement higher order functions in order to allow us to experiment with
different methods of passing one function to another. Higher order functions
provide an additional layer of abstractions for the developer.

Here is a list of higher order functions that have been considered for implemen-
tation:

Transform
Takes a function that describes how to transform each element in the col-
lection.

Sort
Sorting a collection requires another collection traversal strategy compared
to a transform.

Contains
Checking whether a collection contains an element that satisfies some
predicate require the ability to return a value.

Filter
Creating a new collection with some elements from the original collection

36

requires the ability to dynamically share where potential elements should
be inserted between threads.

The list above is not an exhaustive list as there are other higher order functions
that can be relevant. We prioritize working on transform, as it is a function that
allow us to focus on function passing, while reusing the collection traversal strat-
egy of the primitive functions. If successfully implemented we can revisit other
higher-order functions.

4.3 Architecture Design

In this section we discuss the design decisions made regarding the architecture
of YAGAL, including use of external technologies, and compatibility.

4.3.1 Using LLVM and CUDA Driver API

In related works in chapter 2 we see that there are frameworks which use LLVM
to build a compiler that output either PTX or SPIR code. We also see that there
are frameworks that, without a compiler, generate OpenCL code. We have not
found any frameworks that, without a compiler, translates to CUDA or PTX. This
is interesting, and we want to attempt this, to figure out why that can be.

A part of LLVM is the intermediate language, known as LLVM Intermediate Rep-
resentation. It is designed to be higher level than most assembly languages, and
is used by LLVM as a source of compilation when compiling to a final target, such
as PTX. LLVM Intermediate Representation is a higher level language than PTX,
and is thereby easier to generate code for. The idiomatic use of LLVM is to build
a compiler with the passes provided by the LLVM, and additional passes defined
by the compiler developer, but as we want to avoid building a compiler that a
developer is forced to use to be able to utilize our framework, we can not do this.
Instead we want to use the LLVM framework by including it in our library in such
a way, that the user of YAGAL compiles the necessary components of LLVM into
her executable. This allows us to generate LLVM Intermediate Representation
and use one of LLVMs back-ends to target PTX inside the YAGAL library.

When we can generate PTX code we can focus on executing it, which is done
using the CUDA Driver API. The CUDA Driver API differs from the CUDA Run-
time API by being slightly more verbose, but allowing PTX to be invoked, and
not requiring the NVIDIA compiler. Using the LLVM library in conjunction with
the CUDA Driver API allows us to handle code generation and execution without
requiring a specific compiler.

Using the LLVM library and the CUDA Driver API does impose dependencies

37

that the developer is required to have available. While the compiler choice is
still up to the developer, the need to install these two libraries is still present as
a prerequisite to using YAGAL.

Figure 4.1 illustrates an overview of YAGAL. We show that the source is clean C++
with nothing but YAGAL library inclusion. This source, when compiled, results
in an executable that contains the logic of the program, together with the YAGAL
logic to both generate LLVM Intermediate Representation and manage memory,
together with the LLVM Translator which translates the LLVM Intermediate Rep-
resentation to PTX. The run-time requirement of a CUDA Driver is present as it is
the part that facilitates memory management and code execution on the GPU.

38

Figure 4.1: Architectural overview of YAGAL.

4.3.2 CUDA Compatibility

In cases where programs are unable to be expressed in YAGAL, we want to pro-
vide a fall back solution. We will do this through letting the developer execute
arbitrary PTX code, through the CUDA Driver API. To allow this we want our
abstractions to provide access to the relevant device pointers to the GPU.

39

This solution still require the developer to have PTX code that solves the prob-
lem. Normally this would mean writing CUDA code, and compile that to PTX,
which is a long workaround. As such it is not ideal, but we decide that it is better
to provide a problematic workaround, rather than none.

40

5. Framework Implementation

The framework implementation is performed in incremental steps, as described
in the development process section 1.3. This chapter contain implementation
details of the steps in order of completion.

5.1 Management of Device Memory

We have created the template class yagal::Vector<T> to represent a vector of
elements of type T, where the data is allocated on the device. This class is con-
structed to follow the idea of section 4.2.2, where we state that we want the de-
veloper to have explicit control of where memory is located. A code snippet with
a stripped down version of the class, only showing the relevant content, is shown
in Listing 5.1, and line number references in this section refer to that listing.

The yagal::Vector class contains a device pointer that is used by the CUDA
driver API, and an integer that indicates the number of elements stored begin-
ning at that address. The memory layout is shown on table 5.1. The lifetime of
the object is directly related to the lifetime of the data. When the object is cre-
ated the necessary allocation is made on the device through the CUDA driver
API, and when the object is destroyed, the allocated memory is freed.

Main memory Device memory
Data pointer Data
Data size

Table 5.1: Information locations of a yagal::Vector.

yagal::Vector uses an std::vector<T> to provide a constructor and casting
options for data transfers. The constructor copies data from an std::vector
to our yagal::Vector with CUDAs memcpy function as a part of the object ini-
tialization, as shown at line 9. To transfer data back, we overload the casting
operator to an std::vector, copying the data from the device to the result
std::vector as seen at line 23.

Accessing single data elements is done through get and set functions, as seen at
line 30. These functions perform the needed memory transfer for the developer.
They are intended only for tasks regarding a single value, as a transfer is needed
for every use, and manipulations of the entire vector should be done either in
main memory by the CPU, or in device memory by the GPU.

We chose not to implement an iterator for the yagal::Vector in order to avoid
motivating CPU computations on device memory. This makes it different from
an std::vector, but iterating over elements can still be done, by copying the
data from the device to an std::vector.

41

There is no support for resizing of a yagal::Vector. Implementing this is trou-
blesome as there is no such thing as realloc in the CUDA Driver API. A possible
workaround is to initially allocate all available memory and manage that in a
layer below the yagal::Vector, however then we also make it impossible for a
YAGAL program to use the CUDA Driver API for any other tasks, which we feel
is a unnecessary restriction. This does show up in the API of YAGAL, as there is
no functions such as push_back() or resize() on the yagal::Vector, and an
initialization with the size of zero will cause a compile time error, as there is no
possible meaning of it.

1 namespace yagal{
2 template <typename T>
3 class Vector{
4 private:
5 CUdeviceptr _devicePtr;
6 size_t _count;
7
8 public
9 // Constructors

10 Vector(int elementCount)
11 : _count(elementCount)
12 {
13 _devicePtr = yagal::cuda:: malloc(_count * sizeof(T)

,→);
14 }
15
16 Vector(const std::vector <T>& source)
17 : _count(source.size())
18 {
19 _devicePtr = yagal::cuda:: malloc(_count * sizeof(T)

,→);
20 yagal::cuda:: copyToDevice(_devicePtr , source.data()

,→ , _count * sizeof(T));
21 }
22
23 // Cast (Copy out)
24 operator std::vector <T>(){
25 std::vector <T> result(_count);
26 yagal::cuda:: copyToHost(result.data(), _devicePtr ,

,→ _count * sizeof(T));
27 return result;
28 }
29
30 // Accessors
31 T getElement(int index){
32 T result;
33 yagal::cuda:: copyToHost (&result , _devicePtr + (

,→ index * sizeof(T)), sizeof(T));
34 return result;
35 }
36
37 void setElement(int index , T value){

42

38 yagal::cuda:: copyToDevice(_devicePtr + (index *
,→ sizeof(T)), &value , sizeof(T));

39 }
40
41 // Destructors
42 ~Vector (){
43 yagal::cuda::free(_devicePtr);
44 }
45
46 }
47 }

Listing 5.1: Vector class, showing only code relevant to memory management.

5.2 Execute PTX

Executing PTX code on the GPU is a central part of YAGAL’s functionality, and
the library achieves this by interacting with the CUDA driver API. All CUDA re-
lated code in YAGAL are contained within the yagal::cuda namespace.

To execute the PTX code, it is passed to the function executePtxWithParams as
a string, along with a vector containing the input parameters as seen on Listing
5.2. The last two parameters corresponds to block and grid dimensions. The op-
timal values for these vary depending on algorithm and data sizes. We chose to
default to 128, 1, 1 for both, as it results in 128∗128 = 16384 instances of the
kernel, which is sufficient to make use of all threads of any current GPU. When
tested on sample calculations we found this to be a well performing configura-
tion compared to other configurations. Results from these tests can be found in
appendix A.

To ensure that the GPU is ready, the initIfNeeded() function at line 11 is called
which creates a CUDA context if one does not already exists.

At line 15 a CUDA module is created by calling cuModuleLoadDataEx(), which
is part of the CUDA C API. It takes PTX code as a C-string, and outputs to the
provided module container.

A function handle, which is represented by a string containing the name of the
function, is needed in order to determine which function within the module to
execute. The handle is identified by calling cuModuleGetFunction() at line 19.
Here a function called kernel is requested from within the module. kernel is
the hardcoded name of a function that is created by YAGAL.

The module is executed on the GPU at line 23 by a call to the function cu-
LaunchKernel and the module is then unloaded at line 35 by cuModuleUn-
load(). The module have now been executed and the functionality within it

43

is not needed anymore, therefore the module is unloaded.

1 int executePtxWithParams(
2 const std:: string& ptx ,
3 const std::vector <CUdeviceptr *>& kernelParams ,
4 std::tuple <int ,int ,int > blockDimensions = {128, 1, 1},
5 std::tuple <int ,int ,int > gridDimensions = {128, 1, 1}){
6 CUmodule cudaModule;
7 CUfunction function;
8 CUlinkState linker;
9 int devCount;

10
11 initIfNeeded ();
12
13 // Create module for object
14 checkCudaErrors(
15 cuModuleLoadDataEx (&cudaModule , ptx.c_str(), 0, 0, 0));
16
17 // Get kernel function
18 checkCudaErrors(cuModuleGetFunction(
19 &function , cudaModule , "kernel"));
20
21 // Kernel launch
22 _p.info() << "cuda kernel launching" << std::endl;
23 checkCudaErrors(cuLaunchKernel(function ,
24 std::get <0>(gridDimensions),
25 std::get <1>(gridDimensions),
26 std::get <2>(gridDimensions),
27 std::get <0>(blockDimensions),
28 std::get <1>(blockDimensions),
29 std::get <2>(blockDimensions),
30 0, NULL ,
31 (void **) kernelParams.data(),
32 NULL));
33
34 // Cleanup
35 checkCudaErrors(cuModuleUnload(cudaModule));
36 _p.info() << "cuda kernel executed successfully"
37 << std::endl;
38
39 return 0;
40 }

Listing 5.2: int executePtxWithParams().

5.3 Queuing Actions

To modify a yagal::Vector, we create a concept of actions. These actions con-
tain the necessary information for generating a kernel, that executes the corre-
sponding logic.

44

An action is an intended task to be performed on the yagal::Vector, and is
constructed as a result of a developer calling a function on the yagal::Vector.
For instance, calling myVector.add(5) will result in an AddAction being cre-
ated with a copy of the parameters, 5 in this example, needed to perform the
calculation. The developer must then call myVector.exec() to perform all ap-
plied actions. We use the actions as the source of our code generation, as we
generate code to perform exactly the content of the action.

The template class Vector<T> is expanded, as seen in Listing 5.3. A vector of Ac-
tion<T> elements are added to the fields at line 7, it contains the actions need-
ing to be performed on the Vector<T>, in the order they were added. Functions
have been added to generate actions that are placed in this vector. An exam-
ple of this is Vector<T>& add(T value) at line 12, which creates an action that
represents adding a value to all elements in the Vector<T>, and places it at the
back of the _actions vector. The other added function is Vector<T>& exec(),
which is the function that consumes the action vector, generates LLVM IR based
on the consumed actions, translates the LLVM IR to PTX, loads the PTX on the
device, and executes it. The content of the Vector<T>& exec() function is not
the focus of this section, and is explained in section 5.4.6.

1 namespace yagal{
2 template <typename T>
3 class Vector{
4 private:
5 /* omitted fields */
6
7 std::vector <std:: shared_ptr <internal ::Action >> _actions

,→ ;
8
9 /* omitted functions */

10
11 public:
12 Vector <T>& add(T value) {
13 _actions.emplace_back(new internal ::AddAction <T>(

,→ value));
14 return *this;
15 }
16
17 /* omitted functions */
18
19 Vector <T>& exec(){
20 /* omitted logic */
21 }
22 }
23 }

Listing 5.3: Vector<T> action additions.

Figure 5.1 contain a class diagram of the inheritance for actions. The template
class Action<T> is the single top level class in the hierarchy and is shown at

45

the top of the class diagram. The every bottom level class is a concrete action
that can be performed on a yagal::Vector<T> and are shown at the bottom
of the class diagram as AddAction and AddVectorAction. These actions are
grouped by mid level classes, that are shown in the class diagram as SimpleAc-
tion and ParameterAction, which define the input parameters. An example is
the AddAction<T> being a SimpleAction<T>, as it takes a single input value to
perform the action on an element of the yagal::Vector<T>, and the Simple-
Action<T> being an Action<T> to allow us to contain it with other actions in
the vector on line 7.

Figure 5.1: Class diagram for Action.

5.4 Generation of LLVM IR

We generate LLVM Intermediate Representation, which we now refer to as LLVM
IR, which can later be transformed to PTX code, and be executed. We use the
tools provided by the LLVM library to generate this LLVM IR, as they manage
details such as variable names and references.

The LLVM IR is based on a nested structure as seen on Figure 5.2, where LLVM
Module is the program, LLVM Function is a function that is a member of the
module, LLVM Basic Block is a code block, and LLVM Instruction is an in-
struction.

When a yagal::Vector’s exec function is called, the queued actions are used
as source for the LLVM IR generation. The procedure for LLVM IR generation is
as follows:

1. Generate LLVM Module with platform information.

2. Generate LLVM Function with parameter information extracted from the

46

Figure 5.2: The LLVM IR hierarchy.

set of actions on the Vector.

3. Generate LLVM Basic Block to perform logic of a single action.

4. Repeat step 3 until all actions have a corresponding LLVM Basic Block.

5. Connect LLVM Basic Blocks by branching instructions to create program
flow.

6. Generate LLVM Metadata for functions.

The benefit of this procedure is that it allows multiple actions to be compiled to
a single kernel function, and then be executed on the GPU in a single step.

The implementation of the procedure is presented in the following subsections.

5.4.1 Generating an LLVM Module

The LLVM Module is the outer most abstraction of LLVM IR. In our implemen-
tation we encapsulate it in the class IRModule. This class contains functions
needed to generate LLVM IR, and the LLVM Module as a member variable that
are accessed through these functions. A listing showing an extract of the class
with the relevant content can be seen in listing 5.4.

Before we can create any LLVM objects, an LLVMContext is needed. A LLVMCon-
text is a container of the state that LLVM is in, and is declared at line 8.

47

With the contextwe create the module in the constructor chain at line 23, along
with the initialization of the intrinsics which will be used by the kernel to fetch
information at run-time. An architecture must then be defined for the mod-
ule. We provide the string "nvptx64-nvidia-cuda", as it is a key in the LLVM
library, that is used to look up target information during code generation.

1 namespace yagal :: generator{
2 // Representation of a module in llvm ir.
3 // Contains the logic to configure a llvm module and provide

,→ functions for the rest of the library to add
,→ functionality to a module

4 class IRModule{
5 public:
6 /* Some fields omitted */
7
8 llvm:: LLVMContext context;
9 llvm:: Module module;

10
11 uint64_t elementsToHandle;
12 std::vector <llvm:: Function*> kernels;
13 std::vector <llvm:: BasicBlock*> userBlocks;
14
15 //Core function variables
16 llvm:: Function* getThreadIdxIntrinsic;
17 llvm:: Function* getBlockIdxIntrinsic;
18 llvm:: Function* getBlockDimxIntrinsic;
19 llvm:: Function* getGridDimxIntrinsic;
20 llvm::Value* currentIndexValue;
21
22 IRModule(uint64_t numberOfElements):
23 module("yagalModule", context),
24 getThreadIdxIntrinsic(llvm:: Intrinsic ::

,→ getDeclaration (&module , llvm:: Intrinsic ::
,→ nvvm_read_ptx_sreg_tid_x)),

25 getBlockIdxIntrinsic(llvm:: Intrinsic ::
,→ getDeclaration (&module , llvm:: Intrinsic ::
,→ nvvm_read_ptx_sreg_ctaid_x)),

26 getBlockDimxIntrinsic(llvm:: Intrinsic ::
,→ getDeclaration (&module , llvm:: Intrinsic ::
,→ nvvm_read_ptx_sreg_ntid_x)),

27 getGridDimxIntrinsic(llvm:: Intrinsic ::
,→ getDeclaration (&module , llvm:: Intrinsic ::
,→ nvvm_read_ptx_sreg_nctaid_x)),

28 elementsToHandle(numberOfElements)
29 {
30 //Set platform specific variables for the module.
31 module.setTargetTriple("nvptx64 -nvidia -cuda");
32
33 _p.debug () << "ir module constructed" << std::endl;
34 }
35
36 // Create a function ready for insertion with a

,→ IRBuilder.

48

37 llvm:: Function* createKernel(int numberOfParameters){
38 /* omitted */
39 }
40
41 // Creates the return point of a kernel , and links

,→ blocks together , to effectively make them labels.
42 void finalizeKernel(llvm:: Function* kernel){
43 /* omitted */
44 }
45
46 // Update metadata of module to correctly tag the kernel

,→ functions.
47 void updateMetadata (){
48 /* omitted */
49 }
50
51 /* other functions omitted */
52 };
53 }

Listing 5.4: The IRModule class.

With the module created, we can build LLVM Functions to create our kernel.

5.4.2 Generating an LLVM Function

An LLVM Function can be mapped to a GPU kernel, as a GPU kernel is a function
callable on the GPU. The code we use to generate an LLVM IR function is shown
in listing 5.5.

Before we can declare the function, we need to prepare argument types, as seen
from line 2 to 5 by providing type information and address space of parameters.
The second parameter to getFloatPtrTy, 1 indicates which address space the
parameter is in, with 1 being the global memory of the device.

We construct the function as a member of the module on line 7, by providing
type information, linking method for external functions, name, and containing
module. The type information consists of the return type void, as we expect no
direct return value from a kernel, the previously constructed parameter types,
and whether the number of parameters can vary. The linkage refers to the visi-
bility of the function, with external meaning that it can be accessed from other
modules.

To make sure the function follows the calling convention and parameter parsing
of the platform, we use the setCallingConvention function, as seen on line
14.

1 llvm:: Function* createKernel(int numberOfParameters){
2 std::vector <llvm::Type *> kernel_arg_types;
3 for(int i = 0; i < numberOfParameters; i++){

49

4 kernel_arg_types.push_back(llvm::Type:: getFloatPtrTy(
,→ context , 1));

5 }
6
7 auto kernel = llvm:: Function :: Create(
8 llvm:: FunctionType ::get(llvm::Type:: getVoidTy(context),

,→ kernel_arg_types , false),
9 llvm:: Function :: ExternalLinkage ,

10 llvm::Twine("kernel"),
11 &module
12);
13
14 kernel ->setCallingConv(llvm:: CallingConv :: PTX_Kernel);
15
16 return kernel;
17 }

Listing 5.5: The createKernel function.

With the function created we can build LLVM Basic Blocks within them, to pro-
vide functionality to the kernel.

5.4.3 Generating an LLVM Basic Block Based On an Action

The functionality needed of a kernel is dictated by the actions described in sec-
tion 5.3. All actions have a function that generates a corresponding LLVM Basic
Block. This function can be seen on line 6 in listing 5.6.

First we create an LLVM Basic Block at line 10, by providing the LLVM Context of
the LLVM IR container, a name, and the function that should contain it. We then
create an LLVM IRBuilder, which is an object that provides functions for gen-
erating LLVM IR from LLVM objects, and adds the block to the vector of blocks,
that should be managed by the LLVM IR container.

After constructing the LLVM Basic Block, we get a pointer to the first kernel pa-
rameter, which is the vector we are manipulating. We can now build the LLVM
IR.

We use the IRBuilder to create the following instructions as seen in listing 5.6:

• Line 20 creates the load instruction, that loads the index of the value that
should be modified.

• Line 21 creates the getElementPtr instruction, that gets the pointer to
the correct element of the vector based on index.

• Line 22 creates the load instruction, that loads the value of the vector be-
fore modification.

50

• Line 23 creates a constant value based on the value the AddAction was
constructed with.

• Line 24 creates the add instruction for floating point values, that adds the
constant to the loaded value, and assigns a temporary value for the result.

• Line 25 creates the store instruction, that stores the temporary value at
the address of the element pointer.

1 template <typename T>
2 class AddAction : public SimpleAction <T>{
3 public:
4 AddAction(T v): SimpleAction <T>(v) {}
5
6 void generateIR(yagal :: generator :: IRModule& ir, llvm::

,→ Function* kernel , int& inputVectorCounter){
7 _p.debug () << "generateIR for add action called." <<

,→ std::endl;
8
9 // Prepare the block to fill in

10 auto actionBlock = llvm:: BasicBlock :: Create(ir.context ,
,→ llvm::Twine(ir.getNextBasicBlockName ()),kernel);

11 llvm::IRBuilder <> builder(actionBlock);
12 ir.userBlocks.push_back(actionBlock);
13
14 // Prepare argument
15 auto vecVal = kernel ->arg_begin ();
16 vecVal ->setName("vec");
17
18 //Build llvm ir
19 int alignment = 4;
20 auto indexVar = builder.CreateAlignedLoad(ir.

,→ currentIndexValue , alignment , "i");
,→

21 auto ptrVal = builder.CreateGEP(vecVal , indexVar , "ptr"
,→);

22 auto tmpVal = builder.CreateAlignedLoad(ptrVal ,
,→ alignment , "tmp");
,→

23 auto inputConst = llvm:: ConstantFP ::get(llvm::Type::
,→ getFloatTy(ir.context), (float)this ->value);

24 auto retVal = builder.CreateFAdd(tmpVal , inputConst , "
,→ ret");

25 builder.CreateAlignedStore(retVal , ptrVal , alignment);
,→

26 }
27 };

Listing 5.6: The AddAction class.

Now that we can build a LLVM Basic Block we are almost ready to execute the
code. There still is no return statement in the function, and the code is still in-
valid as not all possible execution paths return.

51

5.4.4 Connecting LLVM Basic Blocks

Now that we can generate LLVM Basic Blocks in a function, we need to go through
all basic blocks of a function and ensure that they are connected in a way that
leads to the function executing all basic blocks and returning when done.

To control the flow, two additional basic blocks are created, one representing the
entry, and one representing the exit. The entry block contains an unconditional
branch to the first basic block, and the exit block contains the return statement.
We then iterate all basic blocks in the function, and add a branch instruction at
the end, leading to the next basic block. When we reach the last basic block, we
make it branch to the exit block. Figure 5.4.4 shows the resulting flow, and with
that we are done modifying the content of the function.

Figure 5.3: The connections of Basic Blocks.

5.4.5 Generating LLVM Metadata

The LLVM Function is ready to be executed on the GPU, but is not marked as
a GPU kernel yet. The NVPTX back end requires us to provide the function we
want marked as a kernel, and to do this we use LLVM Metadata. On listing 5.7 we

52

show how we use the LLVM API to create a metadata node tagging our function,
named "kernel", as a kernel function.

1 void updateMetadata (){
2 auto metadata = module.getOrInsertNamedMetadata("nvvm.

,→ annotations");
3 auto oneconstant = llvm:: ConstantInt ::get(llvm::Type::

,→ getInt32Ty(context), 1);
4 std::vector <llvm:: Metadata *> ops{
5 llvm:: ValueAsMetadata :: getConstant(module.getNamedValue

,→ ("kernel")),
6 llvm:: MDString ::get(context , "kernel"),
7 llvm:: ValueAsMetadata :: getConstant(oneconstant)
8 };
9 auto metadata_node = llvm:: MDTuple ::get(context , ops);

10 metadata ->addOperand(metadata_node);
11 }

Listing 5.7: The updateMetadata function.

5.4.6 Putting The Steps Together

Now that we have all necessary components for building LLVM IR, we can put
them together. We do this with the exec function on the yagal::Vector<T>.

At line 2 in Listing 5.8 we construct the IRModule, which will construct an LLVM
Module ready for LLVM Function insertion, as described in section 5.4.1.

At line 5 to 12 we prepare the parameters to kernel function. We do this by col-
lecting the CUdeviceptrs of all vectors required by actions queued on the vec-
tor, so they are ready to be provided to the kernel.

At line 15 to 19 we generate an LLVM Basic Block as described in section 5.4.2,
and create a basic block for each action in this function as described in section
5.4.3.

At line 22 we link the basic blocks of the function together, to complete the func-
tion, as described in section 5.4.4.

At line 23 we create the metadata needed to let the compiler identify the function
as a kernel, as described in section 5.4.5

At line 27 we can translate the constructed LLVM IR to PTX, and be ready to
execute it. How the translation is performed is covered in section 5.5.

At line 32 we call the function described in section 5.2, to execute the kernel with
our parameters.

At line 35 we empty the action vector to be ready for a new action queue on the
same vector.

53

1 Vector <T>& exec(){
2 yagal:: generator :: IRModule ir(_count);
3
4 //Count number of cuda parameters needed , starting at 1 to

,→ include the vector itself.
5 std::vector <CUdeviceptr*> devicePointers ({& _devicePtr });
6 for (auto& a : _actions){
7 if(a->requiresCudaParameter ()){
8 auto pa = static_cast <internal :: ParameterAction <T

,→ >*>(a.get());
9 auto ptr = pa ->getDevicePtrPtr ();

10 devicePointers.push_back(ptr);
11 }
12 }
13
14 // Generate llvm ir blocks.
15 int inputVectorCounter = 0;
16 auto kernel = ir.createKernel(devicePointers.size());
17 for (const auto& a : _actions){
18 a->generateIR(ir , kernel , inputVectorCounter);
19 }
20
21 //Link blocks and update metadata.
22 ir.finalizeKernel(kernel);
23 ir.updateMetadata ();
24
25 // Generate code
26 _p.debug () << ir.toString () << std::endl;
27 yagal:: generator :: PTXModule ptx(ir);
28 auto ptxSource = ptx.toString ();
29 _p.debug () << ptx.toString () << std::endl;
30
31 // Execute kernel
32 yagal::cuda:: executePtxWithParams(ptxSource , devicePointers

,→);
33
34 // Cleanup
35 _actions.clear();
36
37 return *this;
38 }

Listing 5.8: The exec function.

5.5 Replacing LLVM LLC

LLVM LLC is a command line tool that takes LLVM IR as input and converts it
to assembly language for a specified architecture such as PTX. Since LLVM LLC
is a command line tool, it becomes difficult to include this in YAGAL, since this

54

Figure 5.4: Yagal using LLC. Figure 5.5: YAGAL with
LLC replacement.

would require the library to start, and be dependent upon, an external process.
This can be seen on Figure 5.4 where YAGAL starts the LLVM LLC process and
provides it with the LLVM IR, and must await the result.

The source code for LLVM LLC is open source and available on GitHub[17], and
we have implemented a subset of it to fit our use case by using the original im-
plementation as an example.

The subset of LLVM LLC we implemented involves PTX generation as single pur-
pose. It have been implemented directly into YAGAL in order to avoid being
dependent upon an external processes. This has resulted in the flow which is
shown by Figure 5.5 where the LLVM LLC tool is no longer involved in the pro-
cess.

The PTX generation is contained within the PTXModule class. This class func-
tions as a container to generate and hold PTX code based on a given IRModule.
The constructor of the PTXModule class can be seen in Listing 5.9, and line ref-
erences in this section is referring to this Listing.

The initializeLlvmTargetIfNeeded function invokes LLVM C macros if they
haven not already been invoked. This initializes the LLVM backend for NPTX
which is needed for converting LLVM IR to PTX. The initializeLlvmPassReg-
istryIfNeeded function specifies which passes the NPTX backend should per-
form upon the LLVM IR.

55

At lines 5 through 15 we set the variables needed for the target machine. These
variables represent options that would have been provided to LLVM LLC as com-
mand line arguments.

At line 27 we initialize the PassManager. A PassManager is an LLVM structure
that manage the compilation passes. The compilation passes we need are spec-
ified in the initializeLlvmPassRegistryIfNeeded function.

A LLVMTargetMachine is instantiated at line 34 along with a MachineModule-
Info pointer. These contain meta information regarding the target machine
which are necessities for LLVM.

The data layout for the PtxModule is set at line 39. The data layout describes
how data is to be laid out in memory. The data layout for the GPU in our test
machine is e-i64:64-i128:128-v16:16-v32:32-n16:32:64.

The given passes are registered and initialized by call to the addPassesToEmit-
File function at line 41. The output buffer is also registered here, which is where
we can read the resulting PTX code fom.

Finally, the passes are executed at line 45. The result is then witted to a the _-
string variable, which is a member of the PtxModule class, at line 47. The _-
string variable is later in the process passed to CUDA through yagal::cuda::cudaHandler
for execution.

1 PTXModule(IRModule& ir){
2 initializeLlvmTargetIfNeeded ();
3 initializeLlvmPassRegistryIfNeeded ();
4
5 std:: string arch("nvptx64");
6 llvm:: Triple triple(llvm::Twine("nvptx64 -nvidia -cuda"));
7 std:: string error;
8 const llvm:: Target *target(
9 llvm:: TargetRegistry :: lookupTarget(

10 arch , triple , error));
11 std:: string cpuStr("sm_20");
12 std:: string featureStr("");
13 llvm:: CodeGenOpt :: Level optLevel(
14 llvm:: CodeGenOpt :: Aggressive);
15 llvm:: TargetOptions options;
16
17 std:: unique_ptr <llvm:: TargetMachine >
18 targetMachine(target ->createTargetMachine(
19 triple.getTriple (),
20 cpuStr ,
21 featureStr ,
22 options ,
23 llvm::None ,
24 llvm:: CodeModel ::Small ,
25 optLevel));
26
27 llvm:: legacy :: PassManager passManager;

56

28
29 llvm:: SmallVector <char , 512> buffer;
30 auto bufferStream =
31 std:: make_unique <llvm:: raw_svector_ostream >(buffer);
32 auto outputStream = bufferStream.get();
33
34 llvm:: LLVMTargetMachine &llvmtm =
35 static_cast <llvm:: LLVMTargetMachine &>(* targetMachine);
36 llvm:: MachineModuleInfo *mmi =
37 new llvm:: MachineModuleInfo (& llvmtm);
38
39 ir.module.setDataLayout(
40 targetMachine ->createDataLayout ());
41 targetMachine ->addPassesToEmitFile(
42 passManager , *outputStream ,
43 llvm:: TargetMachine :: CGFT_AssemblyFile , false , mmi);
44
45 passManager.run(ir.module);
46
47 _string = std:: string(buffer.begin(), buffer.end());
48
49 _p.debug () << "ptx module constructed" << std::endl;
50 }

Listing 5.9: PTXModule constructor based on a given IRModule.

5.6 Matching Number of Threads with Vector Elements

As described in section 5.4, we can generate PTX code from actions to modify
vectors. There is however a problem which is not handled at this point: The el-
ement modified by a kernel is chosen, by using the kernels index as index in the
vector. This mean that in cases of a vector having more elements than threads,
the execution would not modify all values in the vector, and in the case of more
threads than elements, the execution would go out of bounds, possibly corrupt-
ing other data.

The solution to this problem is to implement logic for the kernels that prevents
execution of logic on elements that are out of bounds, and ensure that all ele-
ments in a vector will be modified exactly once.

With threads being organized in blocks, and blocks being organized in a grid, we
use a method called striding, where each thread of each block handle a specific
index in the vector before jumping to the next dedicated index. This logic is
implemented to follow the process:

1. Set current index value to thr ead I d X +blockDi mX ∗bl ockI d X .

2. If the index value is valid in the vector, handle logic, otherwise exit.

57

3. Increment the current index value by bl ockDi mX ∗ g r i dDi mX .

4. repeat from step 2.

We only consider the x dimension, although we can use up to three, as a ya-
gal::Vector only have a size in a single dimension.

We implement this feature, by extending any function we generate with two
LLVM Basic Blocks and extending the entry block. The entry block will have the
logic for the initialization of the index value, and branch to the first new block,
rather than the first user block. The first new block is for checking whether the
condition of the index being valid is met, and branch based on that to either the
user block chain or the exit block. The second new block is for incrementing the
index value by the number of threads, and branch to the condition block. The
last user block will be changed to branch to the increment block, rather than the
exit block. This implementation is illustrated on figure 5.6, where it is shown
how the different blocks are connected.

Figure 5.6: How blocks are connected within our generated LLVM IR.

5.7 LLVM Optimizations

The use of LLVM have provided advantages for YAGAL, such as LLVM IR and
optimizations of generated code. This section contains some examples of where
YAGAL have made use of these advantages.

The LLVM code generation tools have multiple optimization levels for the gen-
erated code. We have made use of it for the conversion of LLVM IR to PTX. This is
done by setting the code generation optimization flag with CodeGenOpt::Level
optLevel(CodeGenOpt::Aggressive). To show an example we have the code
in Listing 5.10 where a yagal::vector is made and two add functions chained
on it. When equivalent PTX code is generated without optimizations, it will re-
sult in the code shown on listing 5.11. With the aggressive flag set, the resulting
PTX code results in what can be see on listing 5.12. What can be seen here is that
the non-optimized version consists of more labels and have multiple unneces-
sary instructions. The optimized version have rearranged the code by having
the add instructions happen under the same label at lines 29 and 30, and having

58

only a single store to global instruction at line 31. These kind of optimizations
would have been difficult to make if we were generating PTX directly and not
utilizing LLVM IR.

Another major advantage of utilizing LLVM IR is that it have a higher level of
abstraction that PTX. LLVM IR allows function definitions with return types and
provide unlimited amount of registers. This means that we do not need to take
platform and hardware specifics into account since we let LLVM handle it during
code generation.

1 yagal::Vector <float > v({1.0, 2.0, 3.0});
2
3 v.add(5).add (5).exec();

Listing 5.10: Chained yagal::Vector::add.

5.8 More Accessible PTX

In the design at chapter 4 we mention that we want to allow execution of external
PTX code. To do this, we implement functionality to execute custom PTX and
export of generated PTX.

We provide PTX management through two functions on the yagal::Vector.
The first function is an overload of the exec function that, instead of generat-
ing PTX and executing it, executes a given string of PTX. The second function
generates the PTX based on the actions on a vector, but instead of executing it,
returns it as a string.

5.8.1 Overload of exec

The exec overload is shown in listing 5.13. The parameters to the function are
in order:

ptxSource
The PTX to execute as a STL string.

otherVectors
A vector of the other relevant vectors CUdeviceptrs.

blockDimensions & gridDimensions
The parameters used to start the kernel, these are optional and defaults to
the values mentioned in section 5.2.

The function collects all CUdeviceptrs, including the one on the vector which

59

1 .version 3.2
2 .target sm_20
3 .address_size 64
4
5 // .globl kernel
6
7 .visible .entry kernel(
8 .param .u64 kernel_param_0
9)

10 {
11 .local .align 4 .b8 __local_depot0

,→ [4];
12 .reg .b64 %SP;
13 .reg .b64 %SPL;
14 .reg .pred %p<2>;
15 .reg .f32 %f<5>;
16 .reg .b32 %r<12>;
17 .reg .b64 %rd <8>;
18
19 mov.u64 %SPL , __local_depot0;
20 cvta.local.u64 %SP, %SPL;
21 ld.param.u64 %rd1 , [kernel_param_0

,→];
22 mov.u32 %r1 , %ntid.x;
23 mov.u32 %r2 , %tid.x;
24 mov.u32 %r3 , %ctaid.x;
25 mul.lo.s32 %r4 , %r3, %r1;
26 add.s32 %r5 , %r2, %r4;
27 st.u32 [%SP+0], %r5;
28 bra.uni LBB0_1;
29 LBB0_1:
30 ld.u32 %r6 , [%SP+0];
31 setp.lt.u32 %p1, %r6, 100;
32 @%p1 bra LBB0_4;
33 bra.uni LBB0_3;
34 LBB0_2:
35 mov.u32 %r7 , %ntid.x;
36 mov.u32 %r8 , %nctaid.x;
37 mul.lo.s32 %r9 , %r7, %r8;
38 ld.u32 %r10 , [%SP+0];
39 add.s32 %r11 , %r10 , %r9;
40 st.u32 [%SP+0], %r11;
41 bra.uni LBB0_1;
42 LBB0_3:
43 ret;
44 LBB0_4:
45 ld.s32 %rd2 , [%SP+0];
46 shl.b64 %rd3 , %rd2 , 2;
47 add.s64 %rd4 , %rd1 , %rd3;
48 ld.global.f32 %f1, [%rd4];
49 add.rn.f32 %f2 , %f1, 0f40A00000;
50 st.global.f32 [%rd4], %f2;
51 bra.uni LBB0_5;
52 LBB0_5:
53 ld.s32 %rd5 , [%SP+0];
54 shl.b64 %rd6 , %rd5 , 2;
55 add.s64 %rd7 , %rd1 , %rd6;
56 ld.global.f32 %f3, [%rd7];
57 add.rn.f32 %f4 , %f3, 0f40A00000;
58 st.global.f32 [%rd7], %f4;
59 bra.uni LBB0_2;
60 }

Listing 5.11: Non-optimized generated PTX.

1 .version 3.2
2 .target sm_20
3 .address_size 64
4
5 // .globl kernel
6
7 .visible .entry kernel(
8 .param .u64 kernel_param_0
9)

10 {
11 .reg .pred %p<2>;
12 .reg .f32 %f<4>;
13 .reg .b32 %r<9>;
14 .reg .b64 %rd <4>;
15
16 ld.param.u64 %rd1 , [kernel_param_0

,→];
17 mov.u32 %r1 , %ntid.x;
18 mov.u32 %r5 , %tid.x;
19 mov.u32 %r6 , %ctaid.x;
20 mad.lo.s32 %r8 , %r6, %r1, %r5;
21 mov.u32 %r7 , %nctaid.x;
22 setp.lt.u32 %p1, %r8, 100;
23 @%p1 bra LBB0_3;
24 bra.uni LBB0_2;
25 LBB0_3:
26 mul.wide.s32 %rd2 , %r8, 4;
27 add.s64 %rd3 , %rd1 , %rd2;
28 ld.global.f32 %f1, [%rd3];
29 add.rn.f32 %f2 , %f1, 0f40A00000;
30 add.rn.f32 %f3 , %f2, 0f40A00000;
31 st.global.f32 [%rd3], %f3;
32 mad.lo.s32 %r8 , %r1, %r7, %r8;
33 setp.lt.u32 %p1, %r8, 100;
34 @%p1 bra LBB0_3;
35 LBB0_2:
36 ret;
37 }

Listing 5.12: Optimized generated PTX.

60

the function is called on at line 2 to 5, and forwards the arguments to the exe-
cutePtxWithParams function shown in section 5.2.

1 Vector <T>& exec(const std:: string& ptxSource , const std::vector
,→ <CUdeviceptr *>& otherVectors , std::tuple <int , int , int >
,→ blockDimensions = {128, 1, 1}, std::tuple <int , int , int >
,→ gridDimensions = {128, 1, 1}){

2 std::vector <CUdeviceptr*> devicePointers ({& _devicePtr });
3 for(const auto& e: otherVectors){
4 devicePointers.push_back(e);
5 }
6
7 // Execute kernel
8 yagal::cuda:: executePtxWithParams(ptxSource , devicePointers

,→ , blockDimensions , gridDimensions);
9 }

Listing 5.13: exec overload to just execute PTX.

5.8.2 Introduction of exportPtx

The function that creates PTX code based on actions is named exportPtx and
is shown in listing 5.14.

The single parameter it takes determines if the queued actions should be deleted
after PTX generation at line 5.14. This is implemented to allow a refactoring of
the initial exec function to use this function for generating PTX and still be able
to access the vectors provided to the actions. When at the default value, true, it
clean the vector, allowing a new queue of actions to be filled.

The function performs the logic that was previously found in exec, as it pre-
sented in section 5.4.6, except the preparation of devicePointers being replaced
by a count of them at at line 5 to 10, and no execution of PTX is happening.

1 std:: string exportPtx(bool clearActions = true){
2 yagal:: generator :: IRModule ir(_count); lst:exportPtx:irmodule
3
4 //Count number of cuda parameters needed , starting at 1 to

,→ include the vector itself.
5 int devicePointerCount = 1;
6 for (auto& a : _actions){
7 if(a->requiresCudaParameter ()){
8 devicePointerCount ++;
9 }

10 }
11
12 // Generate llvm ir blocks.
13 int inputVectorCounter = 0;
14 auto kernel = ir.createKernel(devicePointerCount);
15 for (const auto& a : _actions){
16 a->generateIR(ir , kernel , inputVectorCounter);

61

17 }
18
19 //Link blocks and update metadata.
20 ir.finalizeKernel(kernel);
21 ir.updateMetadata ();
22
23 //Link blocks and update metadata.
24 ir.finalizeKernel(kernel);
25 ir.updateMetadata ();
26
27 // Generate code
28 _p.debug () << ir.toString () << std::endl;
29 yagal:: generator :: PTXModule ptx(ir);
30 auto ptxSource = ptx.toString ();
31 _p.debug () << ptx.toString () << std::endl;
32
33 // Cleanup
34 if(clearActions){
35 _actions.clear();
36 }
37
38 return ptxSource;
39 }

Listing 5.14: exportPtx to build PTX code.

5.8.3 PTX Posibilities

Using raw PTX it is possible to work around the build time from YAGAL. Allow-
ing the developer to control when to generate the PTX and when to execute it
separately can be beneficial in some cases.

We have made some time measurements on different methods of the different
ways a kernel can be created and executed with YAGAL. The code we measured is
shown in listing 5.15. The purpose of the logic is to take a vector, and increment
all values by one. Any measurements noted in this section are done on a test
machine described in section 7.1. They are only intended comparison relative
to each other and should not be compared to other results on other setups.

On line 13 we use the simplest form; we queue the add action with the value 1,
and immediately generate and execute the kernel. This was measured to take
22.20 milliseconds.

On line 18 we only construct the PTX ; we queue the add action with the value
1, as previously, and output the string to a variable. This was measured to take
21.92 milliseconds.

On line 23 we execute the previously generated PTX. This was measured to take
0.16 milliseconds.

62

For this example generating the PTX was about 137 times more time consuming
than executing it, which mean that if the computation were to happen multiple
times, it could be beneficial for the developer to only generate the kernel once
and apply it multiple times later.

1 typedef std:: chrono :: high_resolution_clock Clock;
2 void timeBuild (){
3 // Initialize a considerably big vector
4 std::vector <float > src(1<<16);
5 std:: srand (0);
6 std:: generate(src.begin(), src.end(), std::rand);
7 yagal::Vector <float > v(src);
8
9

10 auto t0 = Clock::now();
11
12 //Use the default method of building and executing a kernel
13 v.add(1).exec();
14
15 auto t1 = Clock::now();
16
17 //Use exportPtx to generate ptx and execute it later
18 auto ptx = v.add (1).exportPtx ();
19
20 auto t2 = Clock::now();
21
22 // Execute previously generated ptx
23 v.exec(ptx ,{});
24
25 auto t3 = Clock::now();
26
27 /* omitted delta time calculations and output statements */
28 }

Listing 5.15: Building and executing PTX in action

63

6. Challenges and Possible Solutions

While designing and implementing YAGAL we encountered unexpected chal-
lenges. In this chapter we will present the major ones, and our proposals for
how they can be worked around.

6.1 Anonymous Functions

We consider anonymous functions as an important part of a framework that al-
lows construction of other functions, which in the context of this thesis refers to
the construction of GPU kernels. Implementing support for anonymous func-
tions in YAGAL to enable developers to extend functionality is not a straightfor-
ward task, and different approaches are discussed in this section. The code ex-
amples shown in this section are not supported by YAGAL, but show how anony-
mous functions could look as a result of each of our proposed approaches. The
examples present a predicate, checking whether a squared value of a vector el-
ement is above 1000, which should be given to other non-existant YAGAL func-
tions such as filter to provide their logic.

6.1.1 Known Approaches

An initial thought is that C++11 provides expressive lambdas, which seem ideal
for a framework such as YAGAL. The problem with expanding upon this con-
struct is that it requires a compiler to be built in order to determine how to han-
dle the lambda body, as the body is not available for a library to inspect[18], and
an important part of the lambda is the body, since that is the part needed for
code generation. In the related works, in chapter 2, we see that C++ AMP and
Thrust both take the approach of using extended C++ lambdas. In both cases
they have extended the language with keywords in order to annotate the lamb-
das, and thereby tell their compiler know how the lambda should be treated dif-
ferently. Even though PACXX lambdas can be defined with clean C++ syntax, it
still requires a specific compiler in order to generate kernels that are based upon
them. In YAGAL we chose not to enforce the compiler choice on the developer,
and thereby rendering this approach as not possible.

Another method, which is used by SkelCL as described in section 2.5, and Bolt
on OpenCL as described in section 2.4, is to generate a kernel as a OpenCL string
by concatenation of strings. This approach involves user defined strings that de-
scribe the anonymous function. A problem with the approach is that it requires
the framework to be based upon OpenCL, whereas YAGAL is based on CUDA.
With OpenCL being syntactically very similar to C++, it is a usable solution for
allowing a developer to specify lambdas. In contrast, providing similar func-
tionality, where the user provides the lambda as a PTX string, is far less intuitive
due to the difference between C++ and PTX.

64

As YAGAL is not based on OpenCL, and we do not provide a special purpose
compiler, none of the related works provide a model we can re-use in YAGAL.

6.1.2 Alternative Approaches

To work around this problem we have tried to rethink the way kernel logic can
be constructed. We came up with two ideas for constructing it. One approach is
to extend the library with meta types that represent logic that would otherwise
have been provided through lambdas. Another approach is to create a CUDA C
string, and use external tools to compile it to PTX at run-time. These approaches
are discussed in the following subsections.

Creating Meta Types

A function body could be represented by objects representing the expected syn-
tax. An example of what this could look like is shown in listing 6.1 as being rep-
resented with meta types in listing 6.2. The different components of the kernel
can be constructed like the current action implementation described in chapter
5, allowing LLVM Intermediate Representation to be generated.

1 bool pred(float element){
2 return element * element > 1000f;
3 }

Listing 6.1: Pseudo C code showing a device function.

1 auto builder = KernelBuilder.New <bool , float >();
2 builder.addParameter(Parameter <float >("element"));
3 builder.addStatement(ReturnStatement <bool >(
4 GreaterThanComparison <float >(
5 builder.multiply <float >(
6 builder.getValue <float >("element"),
7 builder.getValue <float >("element")
8),
9 builder.createConstant <float >(1000)

10)
11));
12
13 auto pred = builder.getResult ();

Listing 6.2: Code showing how construction of device function in a meta type
solution could be done.

This solution is extremely verbose, and difficult to read, compared to the logic
that is being constructed. A developer would have an easier time by simply us-
ing another framework. Implementation wise it is a big task to implement all
the different kinds of operations that would be possible. It would be ideal for

65

this approach, to put the verbose constructions behind a more approachable
system, so that the developer can define the logic with a more readable method.

Wrapping by String Interpretation

The meta types presented in the previous section in listing 6.2 could be the result
of a parser. The parser could parse a well formatted C++ string, and create the
objects based upon the content of the string. With this approach it would be
simpler to make use of existing compiler techniques, such as utilizing a syntax
tree, compared to using a kernel builder as shown on 6.2. This tree could contain
all information needed for performing code generation with LLVM, but would
practically mean that YAGAL, on top of integrating a considerable part of LLVM,
needs to include other components of a compiler, that being a lexer, a parser,
and syntactical objects for building syntax trees.

A function that performs the same calculation as the above meta type example,
could with such a solution look like listing 6.3. It is similar to the example shown
in 6.1, which is what makes it attractive.

1 auto pred = yagal :: predicateFromString <bool , float >(
2 "bool pred(float element){
3 return element * element > 1000f;
4 }"
5);

Listing 6.3: Code showing possible construction of device function with string
interpretation.

Even though the solution in listing 6.3 looks more write- and readable than the
example shown in listing 6.2 it is not a solution without problems. Requiring
compilation of the string to be done at run-time will make it more difficult to get
errors or warnings presented to the developer, when compared to static com-
pilation. There is also the minor annoyance of having strings in user code that
provide functionality, as it generally makes it difficult for tools, such as an IDE,
to assist the developer in writing and checking code, e.g. by providing syntax
highlighting or error detection.

Wrapping by C-Style Macros

Bolt, targeting OpenCL, uses C macros to wrap function objects. This allows it
to have the function, after the macros interaction, syntactically checked by the
compiler, as the result would still be code. It also allows it to generate an OpenCL
code string based upon this function. As C++ and OpenCL are syntactically simi-
lar in how a function is constructed, the major part of code generation is done by
copying the content of the macro to a string constant. If such a solution should
work for YAGAL, it could be done by targeting one of the other approaches, such
as the previously mentioned string interpreter, by constructing a string for that.

66

1 auto pred = YAGALIFY(
2 bool pred(float element){
3 return element * element > 1000f;
4 }
5);

Listing 6.4: Code showing possible construction of device function with macro,
named YAGALIFY, and C++ lambda.

This solution can be considered cleaner than using strings only, but it does add
a layer of complexity to the already high stack.

Generating CUDA C

A different approach, compared to the previously mentioned approaches, is to
let a developer define a function in a string, and wrap that function in the needed
components to make it a valid CUDA C function. That function can then be sent
to the external tool nvrtc[19], NVIDIA Run-time Compiler, which generates the
PTX code needed for that function. Even though this approach requires an ad-
ditional external dependency, it does have the benefit solving the task without
inventing a new language and the means of compiling it, as the previous exam-
ples did.

Example usage can is shown in listing 6.5. Notable is the lack of CUDA keywords,
such as __DEVICE__ to declare that it is a device function. This can be inserted
by the library before parsing it to nvrtc, along with replacing other keywords we
could introduce with intrinsics. This would relieve the user of having to learn
some of the CUDA specifics involved when writing kernels.

1 auto myKernel = yagal :: ptxFromCudaString(
2 "bool pred(float element){
3 return element * element > 1000f;
4 }"
5);

Listing 6.5: Code showing a possible construction of a device function based on
a string. The string is being sent to the library, where it get extended to correct
CUDA C, before being sent to nvrtc.

6.1.3 What Is Implemented in YAGAL

In YAGAL we have no implementation of anonymous functions, or functions us-
ing them. We are convinced there is a need for them, but the approaches are too
involved for the time constraints of this project. The meta type solution is more
straightforward to generate LLVM Intermediate Representation for, but would re-
quire too much development time, and it would be inconvenient for a developer

67

to express functions with. The ideas of parsing strings, or using macros, to make
the expressions less verbose could alleviate the problems of the first method,
but will still require too much development time. The final solution, using nvrtc
might be the one that is the most fitting for YAGAL, as we already rely on execut-
ing PTX. It does however come with the cost of a tighter coupling with CUDA.

When a method of implementing anonymous functions is done, implementing
functions to use them would be possible.

6.2 Compilation Time

We implemented a subset of LLVM LLC, as described in section 5.5, in order to
translate LLVM IR to PTX code. The consequence of this decision came in the
form of additional compilation time. Even though we have stripped most of the
functionality of LLVM LLC to only contain the PTX conversion, the inclusion of
LLVM headers still have a significant impact on compilation time.

We have two proposals to how to overcome the compilation time impact for
compilation of programs using YAGAL. We could further strip the included LLVM
headers, or we could bundle pre-compiled binaries of our reimplementation of
LLVM LLC with YAGAL, requiring the developer to link to these at compile time.

6.2.1 Stripped Headers

The reimplementation of LLVM LLC was stripped of anything unrelated to the
conversion of LLVM IR to PTX code, but there are still significant overhead. This
is due to the LLVM LLC’s dependency to the rest of LLVM. To further reduce the
impact compilation time, a step deeper could be taken in order to investigate
the headers used by LLVM LLC and strip those of any unneeded functionality.
This would be a lot of work, and would be very difficult to maintain, as updates
get released for LLVM. If other approaches are available they would be preferable
compared to this.

6.2.2 Pre-compiled Binaries

Our reimplementation of LLVM LLC could be pre-compiled and bundled with
YAGAL. This would severely cut down the compilation time, since there is no
longer a need for a developer to compile it every time she compiles a YAGAL
program. This would however require a developer to link to the library binaries
when compiling a YAGAL program.

68

6.2.3 What Is Implemented in YAGAL

In YAGAL we have not implemented pre-compiled headers, even though it is
our preferred approach. We chose to prioritize implementing features higher,
and as such it was not done. Before this would be ready for a developer to use, it
is definitely a point that should be addressed.

69

7. Framework Demo and Comparison

This chapter contains the comparison between YAGAL and the frameworks from
the related works chapter 2. This includes our comparison methodology, demo
applications, and the comparison results.

7.1 Comparison Process

We want to investigate how YAGAL performs against the related works and how
usable it is. To do this we have split the comparison in two parts; the first part
covers the superficial qualities, being those that are easy to measure and com-
pare, and the second part cover the use of Cognitive Dimensions of Notations to
construct a vocabulary for evaluation of the usability.

The evaluation and comparison will be done based on a demo application that
is implemented in each of the frameworks. First the superficial qualities are
recorded and compared to an equivalent implementations in CUDA for the GPU
and in plain C++ for the CPU. Then the usability is evaluated. This is done for
each of the implementations. The findings of the evaluations are then compared
to each other in the final section of this chapter.

YAGAL does not support anonymous functions, as explained in section 6.1. As
a consequence; YAGAL is limited in terms of what can be achieved with it com-
pared to the related works. Because of this, we have chosen to implement a
demo application, that can be implemented in YAGAL.

The demo application is SAXPY, as it was presented for each of the related works
in chapter 2. The application calculated SAXPY with vectors of size 536870912,
which is the largest possible allocation size to have twice on our testing device.

Our testing device is the following machine: Hardware:

CPU: Intel Core i7-920

GPU: Zotac Geforce GTX 1070 Mini

Software:

OS Ubuntu Server 17.10

LLVM LLVM version 7.0.0svn

C++ Compiler g++ from gcc 7.2.0

CUDA Driver nvidia-384

CUDA Compiler nvcc 8.0.61

The comparison is limited to only one of the related works, which is Thrust, due
to our choice of platform. C++ AMP is dependent upon the msvc, which is only
supported on Windows platforms. SkelCL is supported on Unix systems, but

70

requires an AMD GPU due to Nvidia drivers not supporting the C++ extension
for OpenCL. We had issues compiling PACXX, as the build script did not generate
one of the necessary files for linking the compiler.

7.2 General Comparison

The General part of the comparison serves as a static metric for comparison of
the frameworks. It shows how each of the frameworks perform, and is used to
show how YAGAL measures against these. This section contain the implemen-
tation of the SAXPY computation for the CPU, CUDA, YAGAL, and Thrust with
their corresponding measurements. The section ends with a comparison be-
tween YAGAL and Thrust with the CPU and CUDA measurements as a reference
point. All time measurements are done around the execution of the kernels, ex-
cluding any data transfer.

The measurements for each implementation consist of:

Performance
The execution time of the demo application.

Lines of code
A count how many lines of code necessary for the implementation of the
demo application.

Size of executable
The size of the compiled executable.

7.2.1 CPU

Listing 7.1 contain the implementation of SAXPY executing on the CPU. The
CPU implementation serve as a reference point for the overall comparison. The
size of the vectors are set at line 7 by bit-shifting 1 by 29, and the constant a is
set in the following line. The vectors are initialized beginning at line 10 and are
filled with random values beginning at line 13. The computation is performed
at line 16.

1 #include <vector >
2 #include <iostream >
3 #include <algorithm >
4
5 int main(void)
6 {
7 size_t N = 1 << 29;
8 float a = 11;
9

10 std::vector <float > x(N);

71

11 std::vector <float > y(N);
12
13 std:: generate(x.begin(), x.end(), rand);
14 std:: generate(y.begin(), y.end(), rand);
15
16 std:: transform(x.begin(), x.end(), y.begin(), x.begin(),

,→ [=](float x, float y)->float{return a * x + y;});
17
18 return 0;
19 }

Listing 7.1: CPU SAXPY implementation.

The measurements for the CPU SAXPY computation in listing 7.1:

Performance: 12931,49 milliseconds

Lines of code: 7

Size of executable: 24 kilobytes

7.2.2 CUDA

Listing 7.2 contain the CUDA implementation of the SAXPY. The CUDA imple-
mentation serve as a reference point for the overall comparison. The kernel
function for SAXPY is defined beginning at line 3. The size of the vectors are set
at line 10 by bit-shifting 1 by 29, and the constant a is set in the following line.
The vectors are initialized beginning at line 13 and filled with random data be-
ginning at line 17. Memory for the vectors are allocated on device beginning at
line 22 and the data are copied to device beginning at line 25. The SAXPY com-
putation kernel is then performed at line 28 and copied back to host beginning
at line 30.

1 #include <iostream >
2
3 __global__ void kernel(int n, float a, float* x, float* y){
4 for(int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;

,→ i += blockDim.x * gridDim.x){
5 x[i] = a * x[i] + y[i];
6 }
7 }
8
9 int main(void){

10 int N = 1 << 29;
11 float a = 11.0;
12
13 float *h_x , *h_y , *d_x , *d_y;
14 h_x = (float*) malloc(N*sizeof(float));
15 h_y = (float*) malloc(N*sizeof(float));
16
17 for(int i = 0; i < N; i++){

72

18 h_x[i] = rand();
19 h_y[i] = rand();
20 }
21
22 cudaMalloc (&d_x , N*sizeof(float));
23 cudaMalloc (&d_y , N*sizeof(float));
24
25 cudaMemcpy(d_x , h_x , N*sizeof(float),

,→ cudaMemcpyHostToDevice);
26 cudaMemcpy(d_y , h_y , N*sizeof(float),

,→ cudaMemcpyHostToDevice);
27
28 kernel <<<128, 128>>>(N, a, d_x , d_y);
29
30 cudaMemcpy(h_x , d_x , N*sizeof(float),

,→ cudaMemcpyDeviceToHost);
31 cudaMemcpy(h_y , d_y , N*sizeof(float),

,→ cudaMemcpyDeviceToHost);
32 }

Listing 7.2: CUDA SAXPY Implementation.

The measurements for the CUDA SAXPY computation in listing 7.2:

Performance: 0,044 milliseconds

Lines of code: 18

Size of executable: 572 kilobytes

7.2.3 YAGAL

Listing 7.3 shows SAXPY implemented in YAGAL. The size of the yagal::Vectors
are set at line 6 by bit-shifting 1 by 29, and the yagal::Vectors are filled with
random data at line 12 and 13 by utilizing std::generate. The yagal::Vectors
are then instantiated at line 15 and 16 based on the generated std::vectors.

The SAXPY computation is set up at line 18 by invoking a chain of functions
on the yagal::Vector called d_x. The chained functions are multiply() with
argument a, then an add() with the argument d_y. Finally the kernel is con-
structed and executed by the final function in the chain; exec().

1 #include "yagal/vector.hpp"
2 #include <vector >
3 #include <iostream >
4
5 int main(){
6 size_t N = 1 << 29;
7 float a = 11;
8
9 std::vector <float > h_x(N);

73

10 std::vector <float > h_y(N);
11
12 std:: generate(h_x.begin(), h_x.end(), rand);
13 std:: generate(h_y.begin(), h_y.end(), rand);
14
15 yagal::Vector <float > d_x(h_x);
16 yagal::Vector <float > d_y(h_y);
17
18 d_x.multiply(a).add(d_y).exec();
19 }

Listing 7.3: YAGAL SAXPY.

Listing 7.4 shows how YAGAL can be used to generate and store PTX code and
utilize the exec() function to execute it upon the given collection.

1 //.. Omitted ..//
2
3 int main(){
4 //.. Omitted ..//
5
6 auto ptx = d_x.multiply(a).add(d_y).exportPtx ();
7
8 d_x.exec(ptx , {d_y.getDevicePtrPtr ()});
9 }

Listing 7.4: YAGAL SAXPY utilizing PTX generation.

The measurements for the YAGAL SAXPY computation in listing 7.1:

Performance with PTX generation: 57,933 ms

Performance without PTX generation: 35,011 ms

Lines of code with PTX generation: 9

Lines of code with PTX generation: 10

Size of executable: 48 megabyte

7.2.4 Thrust

Listing 7.5 shows SAXPY implemented in Thrust. The vectors used for the com-
putation are initialized as host_vectors starting line 5 and they are filled with
random data starting at line 9. The host_vectors are then copied to device
starting at line 13 by initializing device_vectors. The SAXPY computation are
then executed at line 17 by using Thrust’s transform, which takes iterators of
the device_vectors and an anonymous device function. Finally the result are
copied back to host at line 20.

1 size_t N = 1 << 29;

74

2 float a = 11;
3
4 // initialize host vectors
5 thrust :: host_vector <float > h_x(N);
6 thrust :: host_vector <float > h_y(N);
7
8 //fill with random data
9 std:: generate(h_x.begin(), h_x.end(), rand);

10 std:: generate(h_y.begin(), h_y.end(), rand);
11
12 //copy to device
13 thrust :: device_vector <float > d_x = h_x;
14 thrust :: device_vector <float > d_y = h_y;
15
16 // perform saxpy
17 thrust :: transform(d_x.begin (), d_x.end(), d_y.begin(), d_x.

,→ begin(), [=] __device__(float x, float y){return a * x + y
,→ ;});

18
19 //copy results back to host vector
20 h_x = d_x;

Listing 7.5: Thrust SAXPY example.

The measurements for the Thrust SAXPY computation in listing 7.1:

Performance: 0,103 ms

Lines of code: 10

Size of executable: 860 kilobyte

7.2.5 Comparison

The results of the general part of the evaluation are compared in this section.

Performance

The Highest execution time is the CPU implementation with 12931.49 millisec-
onds, and the lowest execution time is CUDA with 0,044 milliseconds. Thrust,
with an execution time of 0.103 milliseconds, is 2.34 times slower than CUDA.

The two execution times of YAGAL, which are 57.933 and 35,011 with and with-
out PTX generation respectively, are both multiple times slower than Thrust,
which is interesting, as it shows that there is some major difference between
the PTX we generate, and the code that get executed through Thrust.

75

Lines of code

There are no major differences in lines of code between the implementations.
The CPU implementations is 7 lines and YAGAL and Thrust is 10 lines each. The
only outlier are CUDA, taking 18 lines of code.

CUDA is, based on the measurement, more verbose the rest. This is due to that
a kernel function must be explicitly defined. Both YAGAL and Thrust handles
kernel construction implicitly.

Size of executable

The smallest of the executeables are the CPU implementation at 24 kilobytes.
The CUDA and Thrust executables are more even in size with the sizes of 572
kilobytes and 860 kilobyte respectively. The outlier in these measurements are
YAGAL with a size of 48 megabytes.

The large size of YAGAL’s executable is a result of including LLVM headers, which
resulted in a ten times larger executable, when it was not stripped for debug
symbols. We do not consider the size of the executable a big problem, as a ma-
chine with a GPU, doing computation of a caliber where GPGPU can be useful,
probably have the memory available.

7.3 Usability Evaluation

To perform usability evaluation we use Cognitive Dimensions of Notations as a
set of points we can evaluate for the compared frameworks.

Cognitive Dimensions of Notations are a collection of usability principles that is
intended to provide a vocabulary for discussion and evaluation of a given sys-
tem. We base our understanding of the notations on the paper Notational Sys-
tems – the Cognitive Dimensions of Notations framework[20]. In this project we
use it to reflect upon the API of YAGAL and use it to compare it to the related
works.

Not all of the dimensions are equally interesting when used to evaluate an API,
and we have chosen to ignore those that do not make sense when evaluating
code related solutions, such as those related to icons and other visual or auditive
features. Below is a list of the dimensions we use, and our interpretation of them:

Viscosity
Describes a systems resistance to change. How easy can code be changed
and if there are barriers that prevent changes.

76

Visibility
Describes the ability to view components easily. Whether the components
are intuitive and if information is made available for the developer. Ab-
stractions that hide information can reduce visibility.

Premature commitment
Describes constraints for the order in which a developer must complete
tasks. This includes whether the developer is forced to perform tasks in
a certain order, make premature decisions before information is made
available, and whether the decision of a developer can be reversed or changed
at a later stage of the process.

Hidden dependencies
Describes the dependencies between entities in the system where there
is no transparent link for the developer. This includes whether changes
in one part of the system lead to consequences in another, and whether
dependencies between components are made clear to the developer.

Role-expressiveness and Consistency
Describes to what degree a developer can infer the purpose of an entity
in the system and if they are consistent with the rest of the system. This
includes how intuitive the API is, whether the API can be used in multiple
ways, and whether a developer, that has learned one part of the API, can
reliably figure other parts of the API.

Error-proneness
Describes whether the system could invite a developer to make mistakes,
and if some of the constructs of the system could lead to misuse and result
in errors. It also describes how the system handles and prevents developer
errors.

Abstraction
Describes how the system handles and provide abstractions. It also de-
scribes the availability and support for developer defined abstractions.
In some systems this could involve determining the minimum and maxi-
mum levels of abstractions achievable. A systems with too many abstrac-
tions could potentially make the system difficult to learn.

Closeness of mapping
Describes the closeness of the system representation and the domain it
models. For this comparison, it describes how the system relates and
maps to working directly with the programming model of GPUs.

Diffuseness
Describes the degree of verbosity of the system. This includes the display
space needed to express functionality. We interpret this as the amount of
code.

77

Hard mental operations
Describes whether the system demands cognitive resources of the devel-
oper. This includes the complexity of the notation, and whether a devel-
oper can work out the notation within their own mental processing.

7.4 YAGAL

The usability evaluation of YAGAL is contained in this section.

7.4.1 Usability Evaluation

In this section we consider the cognitive dimensions presented in section 7.3.
For YAGAL we have implementation specific information that we do not have
about the other frameworks, and these influence our evaluation.

Viscosity

YAGAL has low viscosity. A developer can freely chain functions together mak-
ing changes in logic welcome. The computations can be performed on multiple
data sets regardless of size. The user code can be used on different CUDA com-
patible devices, compiled by various compilers without changes.

Visibility

If the developer know the underlying kernel model, YAGAL has low visibility,
but if the expectation is to modify collections with methods, it is more intuitive.
There is a limited amount of constructs to learn, so it is easy to keep an overview.

Premature Commitment

YAGAL has a strict order of how tasks should be performed; a developer must
have a collection in order to build kernels. A developer must have appended
actions on a collection to use exec() or a exportPtx() to build kernels.

A developer can split chaining upon collections, as long as she ends the chain
with an exec() or a exportPtx().

Hidden dependencies

During allocation of the first yagal::Vector YAGAL will create a context in the
CUDA driver API which will be reused in later usage of the GPU.

78

Role-expressiveness and Consistency

Usage of method overloading, in the cases of exec() and YAGALs action func-
tions such as add(), can lead to confusion for a developer.

exec() either consumes the stored actions on a collection to build and execute
a kernel, or it takes a PTX code string and other device pointers to execute that
kernel.

add() either creates an add action with another yagal::Vector as argument,
or a single value.

Error-proneness

The use of exec() can cause a developer confusion, as it can be misleading as
to when a collection is modified. To show an example, vec.add(5); has no
exec() in the chain, and vec have therefore not been modified yet.

Abstraction

YAGAL has no support for anonymous functions and no support for expressing
kernels that have more advanced functionality than traversing a collection. This
severely limits which abstractions a developer can build with YAGAL.

Closeness of mapping

The execution model of YAGAL and low level APIs, such as CUDA, are very differ-
ent. In YAGAL the developer does not build kernels directly, as they enqueue ac-
tion upon collections. When managing memory, the abstractions of YAGAL are
a thin layer above the memory allocations, allowing direct access to addresses if
needed.

Diffuseness

The actions of YAGAL make the way a developer expresses and execute kernels
compact, compared to writing a kernels, and strategies for applying them.

Hard mental operations

The API of YAGAL is based on actions, that can be perceived as building blocks,
which gives a developer a mental model of the kernel she is executing. Due to the
separation of logic into small actions, the mental operations required to express
the logic have also been divided into more digestible pieces.

79

7.4.2 Summary

Based on the general comparison, YAGAL completes the SAXPY computation
about 350 times faster than the corresponding single core CPU implementation.
The SAXPY definition and execution can be expressed with a single expression.

YAGAL have, in terms of usability, negative and positive areas. The negatives
include restricted abstractions, the compilation feedback loop, and role expres-
siveness.

The positive areas include the use of actions as abstractions which provide a
simple mental model of the process being executed. The actions of YAGAL allow
a developer to express and execute logic in a compact statements.

7.5 Thrust

The usability evaluation of Thrust is contained in this section.

7.5.1 Usability Evaluation

In this section we consider the cognitive dimensions of notations presented in
section 7.3. The evaluation is based on our exposure to and experiences with
Thrust.

Viscosity

Thrust have low viscosity, as there are no barriers to change. A developer do not
have to adjust the code in multiple places to adapt to changes.

Visibility

There are generally a high degree of visibility in Thrust. Data management is
intuitive since a developer is given explicit control in the form of host_vectors
and device_vectors, and are made responsible for copying the data between
host and device.

There are some constructions where specific internals are hard to infer such as
the transform function, that applies a transformation on all elements of a vec-
tor. It is here difficult to determine how many threads are executed, and how
different memory layers used.

80

Premature Commitment

Thrust enforces no order in which tasks must be completed. Anonymous func-
tions for instance can be declared when it is needed or it can be prepared in
advance. The only enforced task is that device_vectors must be prepared before
use.

Hidden Dependencies

The first call to the Thrust API involves that activity on device, also starts an
instance of the CUDA Run-time API causing a time overhead. Even though the
overhead is negligible, it is important to keep in mind when timing tasks.

Role-expressiveness and Consistency

Thrust imitates STL constructs, and a developer can therefore have expectations
as to how things should be done. This impacts role-expressiveness and consis-
tency both positively and negatively. Positive wise a developer will feel familiar
with the constructs of Thrust. Negative wise, it is not in every case that the con-
structs of Thrust behaves the same as in STL, due to them being parallelized
expectations of order of operations can fail.

Error-proneness

Due to the similarity to to STL, a developer might have expectation as to how the
constructs function, which impacts error-proneness negatively.

Due to the introduction of an extra set of vectors for each computation, the
number of iterators required to perform tasks are also doubled and iterators are
already a source for hard to debug problems.

Abstraction

Thrust provides various higher-order functions for general purpose algorithms.
If a specific function is needed that can not be built using their abstractions,
then it required by a developer to write kernel functions in CUDA C.

Closeness of mapping

As Thrust provide a higher abstraction level than CUDA, it hides the underlying
details, such as the execution model, and memory layers. This is significant step
away from the underlying model.

81

Diffuseness

Anonymous function can be verbose in Thrust, as they are defined in functors
rather than C++ lambdas, unless the compiler have been passed the –expt-
extended-lambda flag. This flag will allow it to pass C++ lambdas as shown in
the Thrust implementation in listing 7.5.

Hard Mental Operations

Since Thrust manages the amount of threads and blocks, as well as memory allo-
cations, there are fewer mental operations required when compared to working
directly in CUDA.

7.5.2 Summary

Based on the general comparison, thrust completes the SAXPY compilation about
290 thousand times faster than the equivalent CPU implementation. This num-
ber seem extreme, but there are a few factors to remedy them; the CPU imple-
mentation was done at a default level of optimization, without considering how
much CPU time the operating system provided it. The SAXPY computation can
be expressed with a single line of code.

Thrust have, in terms of usability, mainly positive areas. The few negatives we
have noted include Thrusts similarity to STL, which can raise false expectations
for a developer, and that the expressions of Thrust are not as expressive as ker-
nels written directly in CUDA.

7.6 Usability Comparison

This section contains the comparison between the usability of YAGAL and Thrust.

In general, YAGAL and Thrust have multiple design decisions in common, such
as the use of a vector class to model memory allocations and functions that work
on those. We emphasize the differences of the two frameworks below, and dis-
cuss the consequences for YAGAL.

The viscosity of YAGAL and Thrust are similar, with an exception in regards to
changes to the compiler. If the developer of Thrust need to change compiler,
she would have to compile the thrust component isolated from the rest of the
project, as it require a specific compiler, namely nvcc, where with YAGAL it would
be possible to simply compile it with the new compiler.

The visibility of YAGAL and Thrust are different in the level of abstraction, and
the use of actions make it more difficult to infer the logic of the underlying

82

system, compared to the code written in Thrust. Access to threads and blocks
model is not possible in Thrust, as it is in YAGAL, which is interesting, as that is
a lower level model that could be expected available in Thrust.

In regards to premature commitment, YAGAL require more than Thrust, as the
strict order the code most follow to use YAGAL, require the developer to perform
a commitment to how she solves a problem earlier than Thrust.

Thrust and YAGAL are similar in regards to hidden dependencies, as both intro-
duce an overhead at the first activity on the GPU.

Role expressiveness is a case of the two frameworks being different, but achiev-
ing similar results. We consider both to be clear about what the different con-
structs do, but where YAGAL have possibly unexpected method overloading,
Thrust have a STL inspired API, that sometimes might have surprising devia-
tions from STL.

In regards to error-proneness, both Thrust and YAGAL have issues. Thrust uses
iterators, which is a source of errors. YAGAL do not use iterators in order to avoid
this issuei Instead YAGAL introduces the exec function, which must be used to
do any transformation, which can be easy to forget. An argument can be made
for iterators having less impact, as developers of C++ already are used to those.

The biggest difference of the frameworks are in regards to abstraction. Where
Thrust is limited to use a set of general purpose higher order functions, YAGAL
does not implement such a feature. This strictly limits the abstractions that can
be build around YAGAL.

The closeness of mapping is different between the frameworks. In YAGAL we in-
troduce the action abstraction, which make it further from the underlying logic,
compared to Thrust where the content of the lambdas are written in CUDA C.

The diffuseness of the both frameworks is low, as it is possible to compactly de-
fine and use kernels. Without enabling lambda support in Thrust, it does get
more verbose and less compact.

In regards to hard mental operations, both frameworks provide abstraction over
thread and block definitions, and allow the developer to focus on the logic. Whether
the developer is comfortable with the YAGAL actions, is what decides whether it
is more or less mentally straining.

The usability of the frameworks are comparable, with the major differences be-
ing in regard to the action abstraction YAGAL provides. It is not fair to conclude
that Thrust have lower usability due to its strictly better support for abstrac-
tion by supporting anonymous functions. We do, however, consider actions as a
good usability abstraction as it gives a simple mental model for issuing changes
on an object.

83

8. Reflection

This chapter contains the reflections on the topics covered in this thesis. Each
paragraph is initiated with a title, that describes the covered topic.

Related works

Predicting the Thesis Result

During the investigation of related works, it became clear that there was no sin-
gle configuration that the frameworks adhered to. This was true in regards to
requirements for run-time and compilers, but also for their way of handling
anonymous functions. The most challenging technical problem of this project
is to support anonymous functions, and as every related work handles this topic
differently, it could be considered a warning; that this would become a big chal-
lenge. Instead of investigating further how to handle anonymous functions in
general, we decided to focus the development effort on exploring the combina-
tion of run-time and compiler-dependent/compiler-independent choice com-
bination not seen in the related works. This mean that the effort went to making
YAGAL a compiler-independent framework running on top of the CUDA Driver
API, which also supports a new abstraction regarding how to build and execute
kernels, while experimenting with integrating LLVM in such a framework. This
decision led to us trying to solve too many challenges simultaneously, where
only a subset of the challenges was accomplished. A delimitation of the prob-
lem could have been beneficial for the project, to steer the focus.

Design

API First or Architecture First

Designing the API first, and then an architecture to fit it, worked out as expected.
It may have been at the cost of how the underlying architecture is presented to
the developer, but it was convenient to have a set of features needed by the API
to design the architecture towards.

The Fit of the Action and Execution Abstractions

The abstraction we created to cover kernels was the concept of actions, where
a kernel can be constructed by putting together a chain of commands, was a
different approach to the usual kernel definition model. We were inspired to
take a different approach to this, as we saw both SkelCL with its algorithm skele-
tons, and PACXX presenting lazy evaluation in a paper[21]. We found the action

84

model to be simpler to comprehend, compared to the usually more explicit def-
inition of kernels. It is not without issues, and it can be very verbose to express
simple kernels when nesting calculations. The abstraction is interesting, and
there might be problems where this approach can be a better fit than GPU ker-
nel development.

The Fit of the Vector Abstraction

The abstraction we created to cover memory allocation was the YAGAL vector. It
was designed to be deliberately different from STLs vector, while being compati-
ble with it through copy constructor and casting. This resulted in a construction
that controlled allocation and copies between data and device, through a single
interface. This abstraction was convenient, and could be used as a base for a
matrix construction in the future.

Choice of Framework Technologies

Not Developing YAGAL as a Compiler

The decision to not implement YAGAL as a compiler, but rather as a library, was
interesting. The only related works that did this was based on OpenCL, which
we chose to differ from, and Thrust which required NVIDIAs compiler. The
problems we encountered might have been easier to solve if we could build a
compiler to read the lambdas, and possibly even introduce new keywords to
the language that could identify device functions, like Thrust does it with __-
device__. While it could solve some problems, it would also be less interest-
ing, as it would not have served the purpose of exploring the field of compiler-
independent GPGPU frameworks.

Choosing CUDA over OpenCL

The decision to base the solution on the CUDA Driver API was another inter-
esting one. The related works, that are compiler-independent, are building the
kernels as OpenCL code strings, so with YAGAL we attempted a new approach
for a compiler-independent solution. Targeting PTX as the code language was
done as it is executable by the CUDA Driver API, and LLVM supports it as a back-
end for its code generators. If YAGAL was targetting OpenCL, we would probably
have progressed further in development, but it would have impacted the novelty
of the project, as there already exist other compiler-independent frameworks
that target OpenCL, those being Bolt and SkelCL. As the goals we attempt to ac-
complish simultaneously with YAGAL have been plenty, this could still be argued

85

a better choice.

Using LLVM

The decision to use LLVM was inspired by PACXX, as they use the PTX back-
end of LLVM to generate PTX code. As YAGAL is implemented as a library, we
saw an opportunity in utilizing LLVM for code generation at run-time. This was
done by including the necessary components of LLVM in YAGAL, as code that
would get compiled into the final executable keeping YAGAL compiler indepen-
dent. LLVM is meant for compiler construction, and the experience of using it
outside of that domain was interesting, as documentation was directed at com-
piler construction. With LLVM we got the LLVM Intermediate Representation.
It provided us with a higher level of expressiveness compared to PTX. This ex-
pressiveness combined with the many features LLVM brings in regards to code
generation and optimization was a great benefit. Generally, the use of LLVM has
been a learning experience, where we took a well established framework for one
domain, namely compiler creation, and adopted it to another.

Implementation

Replacing LLC

We chose to make a re-implementation of the LLVM tool LLC as a part of YAGAL.
LLC is the tool used to translate LLVM Intermediate Representation to the various
targets LLVM supports, including PTX. We did this to make the executable, that
is built with YAGAL, avoid interaction with other processes as much as possible
due to performance and to be self contained. We did not perform performance
measurements to ensure the necessity of this, which could have been interesting
to see. We are, however, confident that performing the translations in memory is
faster than outputting intermediate code and running an external process, that
may or may not be present on the executing system, to get the same effect.

The Compilation Time

One of the problems of YAGAL is the long compilation time; for the SAXPY ex-
ample it took 43 seconds, which is a long time for such a simple program. The
compilation time is mainly due to the inclusion of large parts of the LLVM li-
brary. This could possibly have been worked around with a smarter compilation
chain compared to linking everything in a single translation unit, as we did. We
chose not to focus much on this problem during development, as we valued

86

other features higher during our development time. This might be worth inves-
tigating at a later point, but there are still more pressing issues.

Anonymous Functions

Another more functionality impairing problem is the lack of anonymous func-
tions. We consider the difficulty of providing this feature a product of the early
design decisions, as we did not expect the choice of being compiler-independent
without relying on OpenCL to hinder the implementation. This could have been
avoided if we had taken these decisions after getting a better understanding of
how they would impact the implementation of anonymous functions.

The exportPtx Conflict

We decided to have support for loading external PTX for execution, and as a
natural continuity on this we also wanted to allow the user to export the PTX that
the developer had constructed using YAGALs actions. This gave some benefits,
such as being able to generate kernels at one point and executing them later,
and giving the developer the option to not repeatedly generate the same kernel
for multiple executions of the same logic. But the benefits came at the price of
divulging the inner components of the framework, and hurting the consistency
of our abstractions.

Evaluation

Involving More People in Evaluation

The evaluation of YAGAL was done by us. This is not ideal, as we have un-
derstanding of the frameworks inner mechanism, where another person would
have a less biased view on it. As we treat YAGAL to be an experiment, we do con-
sider the current evaluation to be sufficient as a method of showing the current
state of the system. However, for getting a fair evaluation that avoid bias, more
people should be involved.

SAXPY as Example

Another critical point of the evaluation is the implemented algorithm. We chose
to implement SAXPY, as it is within what is currently possible with YAGAL. Com-
paring YAGAL based on performance or any other metric against others is not
fair, as the other frameworks can implement much more advanced algorithms

87

than YAGAL. Other algorithms of increasing complexity should be used to get a
more fair impression.

88

9. Conclusion

GPGPU development is not an easy task, and presents a steep learning curve
for a developer getting into it. There are multiple frameworks that attempt to
solve this, and they do this by providing various higher level constructs. These
frameworks have different dependencies and requirements that the developer
must fulfill, including compiler and run-time requirements.

In this project we perform an experimental design and implementation of YA-
GAL, with the aim of being compiler-independent with a comprehensible pro-
gramming model with design decisions not covered by related work.

The project started based on the problem statement:

Can a GPGPU framework to abstract the underlying programming model be cre-
ated, as a library that does not limit the developers choice of compiler, and how
does it compare to other frameworks that do?

Throughout the project we have worked with the following tasks, which have
been derived from the problem statement:

Create an overview of related works
We have identified a set of frameworks that provide abstractions for GPGPU
development, and analyzed their qualities.

Research framework design principles
We have identified a set of design principles that we have followed during
development.

Design the framework
We have designed YAGAL with a novelty not found in the related works.
YAGAL is the result of our choice of compilation method and used tech-
nologies, prioritizing experimentation over features.

Implement the framework
We have implemented a major subset of the design, and provided a dis-
cussion about methods of proceeding regarding the discovered problems.

Implement demo application
We have implemented an algorithm to show the features of YAGAL, and
to provide material for evaluating and comparing YAGAL to the related
works.

Evaluate the design and implementation of the framework
We have evaluated YAGAL in regards to measured performance and us-
ability, using the cognitive dimensions of notations, and compared it to
the related works.

We have designed YAGAL to be an compiler-independent framework, with a
run-time based on the CUDA Driver API. None of the related works that utilize
CUDA are compiler independent, which is what inspired this combination.

89

We have provided abstractions for both the memory management in the form of
a vector construction, and the construction of kernels in the form of actions. A
developer does not have to perform manual allocation and copies on the device,
our vector construction handles those tasks for her. A developer also does not
have to learn the kernel abstraction of a lower level framework such as CUDA or
OpenCL, as she can apply transformations on YAGAL vectors using the actions
as building blocks to express the kernel logic.

We have utilized the LLVM library to provide an intermediate representation, for
our generated kernels. For our run-time PTX code generation, we have made a
single purpose re-implementation of LLVM LLC, which gets packaged in the final
executable.

We have discovered that targeting a language that is not OpenCL without intro-
ducing a compiler results in anonymous functions being problematic to imple-
ment. We have proposed a set of possible solution strategies for this problem,
including the expected difficulty and implications.

Finally we conclude that it is indeed possible to create a compiler-independent
framework that utilizes the CUDA Driver API, but when high level abstractions
are needed, those require significantly more work to implement compared to
other designs.

90

10. Future Work

This chapter contains the topics that need to be addressed in the future, if the
development on YAGAL were to continue.

The project was defined under the assumption, that somewhere there is a need
for an abstraction library for GPGPU development, that does not enforce the
developers choice of compiler. Before any more time should be dedicated on
further developing YAGAL, it should be made clear whether there is a purpose of
doing so.

We proposed some approaches to the anonymous function challenge presented
in section 6.1. If development were to continue, it would make sense to fur-
ther investigate those, how they impact the action design, and implement one
of them. The most approachable proposed solution would probably be to rely
on nvrtc to translate CUDA C to PTX, and get inspiration from the related works
that target OpenCL on how to construct the CUDA C code from user constructs.

The current performance evaluation is grounded in a SAXPY implementation.
If more constructs get implemented to enable more advanced algorithms in YA-
GAL is it important to see how the performance compares to the related works.
Even as an abstraction library, the domain of GPGPU development is perfor-
mance oriented.

91

Bibliography

[1] Andreas Steen Andersen & Christian Lundtofte Sørensen & Henrik Djernes
Thomsen & Jonathan Hastrup & Morten Mandrup Hansen & Thomas Held-
bjerg Bork. “A Comparative Study of Programming languages for the GPU”.
Aalborg University, 2017.

[2] llvm-admin team. The LLVM Compiler Infrastructure. Seen 09/03/2018.
URL: http://www.llvm.org/.

[3] NVIDIA. Thrust’s NVIDIA Page. Seen 05/03/2018. URL: https://developer.
nvidia.com/thrust.

[4] Microsoft. Microsoft’s C++ AMP page. Seen 19/02/2018. URL: https://
msdn.microsoft.com/en-us/library/hh265137.aspx.

[5] Inc. Advanced Micro Devices. Bolt’s Documentation. Seen 19/02/2018. URL:
https://hsa-libraries.github.io/Bolt/html/index.html.

[6] Michel Steuwer and Sergei Gorlatch. “SkelCL: Enhancing OpenCL for High-
Level Programming of Multi-GPU Systems”. In: Parallel Computing Tech-
nologies 339.2 (2013), pp. 258 –272. ISSN: 0302-9743. DOI: 10.1007/978-
3-642-39958-9.

[7] Michael Haidl and Sergei Gorlatch. “PACXX: Towards a Unified Program-
ming Model for Programming Accelerators Using C++14”. In: LLVM-HPC
’14 (2014), pp. 1–11. DOI: 10.1109/LLVM-HPC.2014.9. URL: http://dx.
doi.org/10.1109/LLVM-HPC.2014.9.

[8] Jared Hoberock and Nathan Bell. Thrust’s Overview. Seen 20/02/2018. URL:
https://github.s3.amazonaws.com/downloads/thrust/thrust/
Thrust % 3A % 20A % 20Productivity - Oriented % 20Library % 20for %
20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=
AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_
request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-
Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009.

[9] Jared Hoberock and Nathan Bell. Thrust’s Github Page. Seen 20/02/2018.
URL: https://thrust.github.io/.

[10] Inc. Advanced Micro Devices. Bolt’s Github Page. Seen 19/02/2018. URL:
https://github.com/HSA-Libraries/Bolt.

[11] Michel Steuwer. SkelCL Website. Seen 19/02/2018. URL: https://skelcl.
github.io/.

[12] Khronos Group. Github profile for PACXX. Seen 05/03/2018. URL: https:
//github.com/pacxx.

[13] Michael Haidl et al. “Multi-stage Programming for GPUs in C++ Using
PACXX”. In: Proceedings of the 9th Annual Workshop on General Purpose
Processing Using Graphics Processing Unit. GPGPU ’16. Barcelona, Spain:
ACM, 2016, pp. 32–41. ISBN: 978-1-4503-4195-0. DOI: 10.1145/2884045.
2884049. URL: http://doi.acm.org/10.1145/2884045.2884049.

[14] Michael Boyer. Memory Transfer Overhead. seen 24/05/2018. URL: https:
//www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_
overhead.html.

92

http://www.llvm.org/
https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://hsa-libraries.github.io/Bolt/html/index.html
http://dx.doi.org/10.1007/978-3-642-39958-9
http://dx.doi.org/10.1007/978-3-642-39958-9
http://dx.doi.org/10.1109/LLVM-HPC.2014.9
http://dx.doi.org/10.1109/LLVM-HPC.2014.9
http://dx.doi.org/10.1109/LLVM-HPC.2014.9
https://github.s3.amazonaws.com/downloads/thrust/thrust/Thrust%3A%20A%20Productivity-Oriented%20Library%20for%20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009
https://github.s3.amazonaws.com/downloads/thrust/thrust/Thrust%3A%20A%20Productivity-Oriented%20Library%20for%20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009
https://github.s3.amazonaws.com/downloads/thrust/thrust/Thrust%3A%20A%20Productivity-Oriented%20Library%20for%20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009
https://github.s3.amazonaws.com/downloads/thrust/thrust/Thrust%3A%20A%20Productivity-Oriented%20Library%20for%20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009
https://github.s3.amazonaws.com/downloads/thrust/thrust/Thrust%3A%20A%20Productivity-Oriented%20Library%20for%20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009
https://github.s3.amazonaws.com/downloads/thrust/thrust/Thrust%3A%20A%20Productivity-Oriented%20Library%20for%20CUDA.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAISTNZFOVBIJMK3TQ%2F20180220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20180220T090430Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=493b9df1b251f35fd967d9ceb7c6b8df3e9d8da8529069dd3c2667c854ff3009
https://thrust.github.io/
https://github.com/HSA-Libraries/Bolt
https://skelcl.github.io/
https://skelcl.github.io/
https://github.com/pacxx
https://github.com/pacxx
http://dx.doi.org/10.1145/2884045.2884049
http://dx.doi.org/10.1145/2884045.2884049
http://doi.acm.org/10.1145/2884045.2884049
https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html
https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html
https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html

[15] Jasmin Blanchette. “The Little Manual of API Design”. Trolltech, a Nokia
company, June 19, 2008.

[16] ISO C++ Library Working Group. Standard Library Guidelines. Seen 16/03/2018.
URL: https://isocpp.org/std/library-design-guidelines.

[17] llvm-admin team. Github mirror of the LLVM project. Seen 30/4/2018. URL:
https://github.com/llvm-mirror/llvm.

[18] cppreference.com maintainers. C++ Lambda Reference. seen 28/5/2018.
URL: http://en.cppreference.com/w/cpp/language/lambda.

[19] NVIDIA. NVRTC Documentation. Seen 31/05/2018. URL: https://docs.
nvidia.com/cuda/nvrtc/index.html.

[20] Alan F. Blackwell and Thomas R.G. Green. Notational Systems – the Cogni-
tive Dimensions of Notations framework. 31-05-2018. URL: http://www.
cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.
pdf.

[21] Michael Haidl et al. “Towards Composable GPU Programming: Program-
ming GPUs with Eager Actions and Lazy Views”. In: Proceedings of the
8th International Workshop on Programming Models and Applications for
Multicores and Manycores. PMAM’17. Austin, TX, USA: ACM, 2017, pp. 58–
67. ISBN: 978-1-4503-4883-6. DOI: 10.1145/3026937.3026942. URL: http:
//doi.acm.org/10.1145/3026937.3026942.

93

https://isocpp.org/std/library-design-guidelines
https://github.com/llvm-mirror/llvm
http://en.cppreference.com/w/cpp/language/lambda
https://docs.nvidia.com/cuda/nvrtc/index.html
https://docs.nvidia.com/cuda/nvrtc/index.html
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.pdf
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.pdf
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellGreen-CDsChapter.pdf
http://dx.doi.org/10.1145/3026937.3026942
http://doi.acm.org/10.1145/3026937.3026942
http://doi.acm.org/10.1145/3026937.3026942

Part I

Appendix

94

A. Kernel Launch Parameter Test

Code used to measure:

1 void cpuTest (){
2 std::vector <float > src(1 << 29);
3 std:: srand (0);
4 std:: generate(src.begin(), src.end(), std::rand);
5
6 auto t0 = Clock::now();
7 std:: transform(src.begin(), src.end(), src.begin (), [](

,→ float x){return x+1;});
8 auto t1 = Clock::now();
9

10 std::cout
11 << std:: chrono :: duration_cast <std:: chrono :: milliseconds

,→ >(t1 - t0).count() << " ms"
12 << " on cpu:"
13 << std::endl;
14 }
15
16 void defaultParamterTest (){
17 std::vector <float > src(1 << 29);
18 std:: srand (0);
19 std:: generate(src.begin(), src.end(), std::rand);
20 yagal::Vector <float > v(src);
21
22 auto ptx = v.add (1).exportPtx ();
23
24 for(int x = 1; x <= 1024; x *= 2){
25 for(int y = 1; y <= 1024; y *= 2){
26 auto t0 = Clock::now();
27 v.exec(ptx , {}, {x,1,1}, {y,1 ,1});
28 auto t1 = Clock::now();
29
30 std::cout
31 << std:: chrono :: duration_cast <std:: chrono ::

,→ milliseconds >(t1 - t0).count() << " ms"
32 << " with "
33 << "blockDim: {" << x <<" ,1,1}, gridDim: {" << y

,→ << " ,1,1}: "
34 << std::endl;
35 }
36 }
37 }

Output of both functions, after fixing indentation and sorting by ascending times:

1 21 ms with blockDim: {1024,1,1}, gridDim: {1024 ,1 ,1}
2 21 ms with blockDim: {1024,1,1}, gridDim: {512,1,1}
3 21 ms with blockDim: {512,1,1}, gridDim: {1024 ,1 ,1}
4 22 ms with blockDim: {1024,1,1}, gridDim: {256,1,1}
5 22 ms with blockDim: {128,1,1}, gridDim: {1024 ,1 ,1}
6 22 ms with blockDim: {256,1,1}, gridDim: {1024 ,1 ,1}
7 22 ms with blockDim: {256,1,1}, gridDim: {512,1,1}
8 22 ms with blockDim: {512,1,1}, gridDim: {512,1,1}
9 23 ms with blockDim: {1024,1,1}, gridDim: {128,1,1}

95

10 23 ms with blockDim: {128,1,1}, gridDim: {128,1,1}
11 23 ms with blockDim: {256,1,1}, gridDim: {64,1,1}
12 23 ms with blockDim: {512,1,1}, gridDim: {256,1,1}
13 24 ms with blockDim: {1024,1,1}, gridDim: {16,1,1}
14 24 ms with blockDim: {1024,1,1}, gridDim: {64,1,1}
15 24 ms with blockDim: {128,1,1}, gridDim: {512,1,1}
16 24 ms with blockDim: {256,1,1}, gridDim: {256,1,1}
17 24 ms with blockDim: {512,1,1}, gridDim: {128,1,1}
18 24 ms with blockDim: {512,1,1}, gridDim: {32,1,1}
19 24 ms with blockDim: {64,1,1}, gridDim: {1024 ,1 ,1}
20 24 ms with blockDim: {64,1,1}, gridDim: {256,1,1}
21 27 ms with blockDim: {1024,1,1}, gridDim: {32,1,1}
22 27 ms with blockDim: {128,1,1}, gridDim: {256,1,1}
23 27 ms with blockDim: {256,1,1}, gridDim: {128,1,1}
24 27 ms with blockDim: {32,1,1}, gridDim: {1024 ,1 ,1}
25 27 ms with blockDim: {512,1,1}, gridDim: {64,1,1}
26 27 ms with blockDim: {64,1,1}, gridDim: {512,1,1}
27 29 ms with blockDim: {128,1,1}, gridDim: {64,1,1}
28 29 ms with blockDim: {256,1,1}, gridDim: {32,1,1}
29 29 ms with blockDim: {32,1,1}, gridDim: {256,1,1}
30 29 ms with blockDim: {512,1,1}, gridDim: {16,1,1}
31 29 ms with blockDim: {64,1,1}, gridDim: {128,1,1}
32 30 ms with blockDim: {1024,1,1}, gridDim: {8,1,1}
33 31 ms with blockDim: {32,1,1}, gridDim: {512,1,1}
34 46 ms with blockDim: {128,1,1}, gridDim: {32,1,1}
35 46 ms with blockDim: {32,1,1}, gridDim: {128,1,1}
36 46 ms with blockDim: {64,1,1}, gridDim: {64,1,1}
37 47 ms with blockDim: {16,1,1}, gridDim: {1024 ,1 ,1}
38 47 ms with blockDim: {256,1,1}, gridDim: {16,1,1}
39 47 ms with blockDim: {512,1,1}, gridDim: {8,1,1}
40 49 ms with blockDim: {1024,1,1}, gridDim: {4,1,1}
41 55 ms with blockDim: {16,1,1}, gridDim: {256,1,1}
42 57 ms with blockDim: {16,1,1}, gridDim: {512,1,1}
43 77 ms with blockDim: {32,1,1}, gridDim: {64,1,1}
44 77 ms with blockDim: {64,1,1}, gridDim: {32,1,1}
45 78 ms with blockDim: {128,1,1}, gridDim: {16,1,1}
46 78 ms with blockDim: {256,1,1}, gridDim: {8,1,1}
47 80 ms with blockDim: {512,1,1}, gridDim: {4,1,1}
48 83 ms with blockDim: {1024,1,1}, gridDim: {2,1,1}
49 87 ms with blockDim: {16,1,1}, gridDim: {128,1,1}
50 91 ms with blockDim: {8,1,1}, gridDim: {1024 ,1 ,1}
51 104 ms with blockDim: {8,1,1}, gridDim: {512,1,1}
52 109 ms with blockDim: {8,1,1}, gridDim: {256,1,1}
53 132 ms with blockDim: {4,1,1}, gridDim: {1024 ,1 ,1}
54 141 ms with blockDim: {32,1,1}, gridDim: {32,1,1}
55 142 ms with blockDim: {128,1,1}, gridDim: {8,1,1}
56 142 ms with blockDim: {64,1,1}, gridDim: {16,1,1}
57 143 ms with blockDim: {256,1,1}, gridDim: {4,1,1}
58 144 ms with blockDim: {512,1,1}, gridDim: {2,1,1}
59 147 ms with blockDim: {16,1,1}, gridDim: {64,1,1}
60 148 ms with blockDim: {1024,1,1}, gridDim: {1,1,1}
61 170 ms with blockDim: {4,1,1}, gridDim: {512,1,1}
62 171 ms with blockDim: {4,1,1}, gridDim: {256,1,1}
63 171 ms with blockDim: {8,1,1}, gridDim: {128,1,1}

96

64 226 ms with blockDim: {2,1,1}, gridDim: {1024 ,1 ,1}
65 282 ms with blockDim: {32,1,1}, gridDim: {16,1,1}
66 283 ms with blockDim: {128,1,1}, gridDim: {4,1,1}
67 283 ms with blockDim: {16,1,1}, gridDim: {32,1,1}
68 283 ms with blockDim: {256,1,1}, gridDim: {2,1,1}
69 283 ms with blockDim: {512,1,1}, gridDim: {1,1,1}
70 283 ms with blockDim: {64,1,1}, gridDim: {8,1,1}
71 291 ms with blockDim: {2,1,1}, gridDim: {256,1,1}
72 291 ms with blockDim: {4,1,1}, gridDim: {128,1,1}
73 291 ms with blockDim: {8,1,1}, gridDim: {64,1,1}
74 299 ms with blockDim: {2,1,1}, gridDim: {512,1,1}
75 416 ms with blockDim: {1,1,1}, gridDim: {1024 ,1 ,1}
76 551 ms with blockDim: {1,1,1}, gridDim: {512,1,1}
77 553 ms with blockDim: {1,1,1}, gridDim: {256,1,1}
78 557 ms with blockDim: {8,1,1}, gridDim: {32,1,1}
79 558 ms with blockDim: {2,1,1}, gridDim: {128,1,1}
80 559 ms with blockDim: {16,1,1}, gridDim: {16,1,1}
81 559 ms with blockDim: {32,1,1}, gridDim: {8,1,1}
82 559 ms with blockDim: {4,1,1}, gridDim: {64,1,1}
83 560 ms with blockDim: {64,1,1}, gridDim: {4,1,1}
84 562 ms with blockDim: {128,1,1}, gridDim: {2,1,1}
85 565 ms with blockDim: {256,1,1}, gridDim: {1,1,1}
86 1095 ms with blockDim: {1,1,1}, gridDim: {128,1,1}
87 1098 ms with blockDim: {4,1,1}, gridDim: {32,1,1}
88 1099 ms with blockDim: {2,1,1}, gridDim: {64,1,1}
89 1100 ms with blockDim: {16,1,1}, gridDim: {8,1,1}
90 1100 ms with blockDim: {8,1,1}, gridDim: {16,1,1}
91 1105 ms with blockDim: {32,1,1}, gridDim: {4,1,1}
92 1111 ms with blockDim: {64,1,1}, gridDim: {2,1,1}
93 1112 ms with blockDim: {128,1,1}, gridDim: {1,1,1}
94 2151 ms with blockDim: {2,1,1}, gridDim: {32,1,1}
95 2167 ms with blockDim: {1,1,1}, gridDim: {64,1,1}
96 2167 ms with blockDim: {4,1,1}, gridDim: {16,1,1}
97 2179 ms with blockDim: {8,1,1}, gridDim: {8,1,1}
98 2193 ms with blockDim: {32,1,1}, gridDim: {2,1,1}
99 2200 ms with blockDim: {64,1,1}, gridDim: {1,1,1}

100 2214 ms with blockDim: {16,1,1}, gridDim: {4,1,1}
101 4258 ms with blockDim: {1,1,1}, gridDim: {32,1,1}
102 4294 ms with blockDim: {4,1,1}, gridDim: {8,1,1}
103 4324 ms with blockDim: {2,1,1}, gridDim: {16,1,1}
104 4366 ms with blockDim: {8,1,1}, gridDim: {4,1,1}
105 4436 ms with blockDim: {16,1,1}, gridDim: {2,1,1}
106 4436 ms with blockDim: {32,1,1}, gridDim: {1,1,1}
107 8514 ms with blockDim: {2,1,1}, gridDim: {8,1,1}
108 8685 ms with blockDim: {8,1,1}, gridDim: {2,1,1}
109 8698 ms with blockDim: {4,1,1}, gridDim: {4,1,1}
110 8847 ms with blockDim: {16,1,1}, gridDim: {1,1,1}
111 8901 ms with blockDim: {1,1,1}, gridDim: {16,1,1}
112 10134 ms on cpu
113 16857 ms with blockDim: {1,1,1}, gridDim: {8,1,1}
114 17076 ms with blockDim: {2,1,1}, gridDim: {4,1,1}
115 17216 ms with blockDim: {8,1,1}, gridDim: {1,1,1}
116 17247 ms with blockDim: {4,1,1}, gridDim: {2,1,1}
117 26513 ms with blockDim: {1,1,1}, gridDim: {4,1,1}

97

118 26644 ms with blockDim: {2,1,1}, gridDim: {2,1,1}
119 26793 ms with blockDim: {4,1,1}, gridDim: {1,1,1}
120 45750 ms with blockDim: {1,1,1}, gridDim: {2,1,1}
121 46143 ms with blockDim: {2,1,1}, gridDim: {1,1,1}
122 84420 ms with blockDim: {1,1,1}, gridDim: {1,1,1}

98

	Introduction
	Motivation
	Problem Statement
	Development Process
	Thesis Prerequisites

	Related Works
	Selection of Related Works
	Thrust
	C++ AMP
	Bolt
	SkelCL
	PACXX
	Summary

	Design Principles
	The Little Manual of API Design
	Standard Library Guidelines
	Strategy for use of guidelines

	Framework Design
	Design Approach
	API Design
	Architecture Design

	Framework Implementation
	Management of Device Memory
	Execute PTX
	Queuing Actions
	Generation of LLVM IR
	Replacing LLVM LLC
	Matching Number of Threads with Vector Elements
	LLVM Optimizations
	More Accessible PTX

	Challenges and Possible Solutions
	Anonymous Functions
	Compilation Time

	Framework Demo and Comparison
	Comparison Process
	General Comparison
	Usability Evaluation
	YAGAL
	Thrust
	Usability Comparison

	Reflection
	Conclusion
	Future Work
	I Appendix
	Kernel Launch Parameter Test

