
Pointer-CNN for
Visual Question Answering
Jakob Svidt

Aalborg University
jsvidt13@student.aau.dk

Jens Søholm Jepsen
Aalborg University

jjepse12@student.aau

June 14, 2018

Abstract

Visual Question Answering(VQA) is an interesting problem from a research per-
spective, as it is an intersection of the Computer Vision and Natural Language
Processing (NLP) domains. Many recent methods focus on improving features,
attention mechanisms and hyper-parameter tuning. Most approaches model the
problem with a fixed-sized classifier over the answers. We propose a Pointer-CNN
classifier for multiple choice in VQA, which achives state of the art performance
on both the VQA v1.0 and reasonable performance on the Visual7W data set. We
provide an analysis and discussion of performance of the model on different question
categories of VQA v1.0, to identify the shortcomings of our architecture.

1. Introduction
In recent years neural networks have been successfully applied to problems across a vast
variety of domains, such as Natural Language Processing (NLP), Computer Vision(CV)
and many other domains. In Natural Language Processing, models using variations
of Recurrent Neural Networks (RNNs), attention mechanisms and pre-trained word-
embeddings have achieved human performance on tasks such as Question Answering [1].
The aim of this task is to correctly answer questions given a Wikipedia article. In the
field of Computer Vision, Object Classification gained a lot of momentum following the
introduction of Convolutional Neural Networks, and the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) [2], [3]. Several models, such as ResNet, VGG
and GoogleNet have since achieved super-human performance on the task [4], [5], [6].
Convolutional neural networks have likewise been used successfully on the task of Object
Detection, with varieties of R-CNN models and lately YOLO [7], [8].

Visual Question Answering is an intersection of all of the domains mentioned above.
The task is specified as follows: given an image, and a question posed in natural language,
provide a natural language answer to the question with the image as context. Two tasks

1

can be specified within this problem: multiple choice, where the task is to choose between
a number of question specific answer candidates. Open-ended, where the model has to
produce an answer only given the image and question. Although the sub-domains of
CV and NLP have achieved impressive performance, VQA seems to be a more difficult
problem to solve. [9], [10]

There might be several reasons why this problem is difficult. Answering questions
about images requires high-level knowledge about real-word concepts, and how they are
represented visually and in language. Since much work has been done in both the image
and natural language domain, one of the main challenges of VQA is finding common
ground between these two modalities, to be able to reason about them in concert. State
of the art methods tend to use features transferred from these two domains. In the
image domain these features are usually from image classification and object detection
models[11], and in the language domain they are usually pre-trained word-embeddings[12].
Since these features come from different sources, there is no connection between the
visual and linguistic features representing the same concept, which means there is a gap
between features transferred from different domains. The fact that the problem consists
of three input sources of which two are text, namely question and image, means there is
a predominance of features from the language domain. This makes it easy for models
to rely more on the linguistic features from the question, and ignore the visual features
from the image[9]. Using transferred features might introduce other issues. The object
classification and detection domains only consider the objects in the image, although the
image may contain information about the background or there might even be a need for
external knowledge not appearing on the image. Our main contributions are:

1. A Pointer-CNN which achieves state of the art performance on the multiple choice
task on VQA v1.0.

2. A way of modeling the problem, such that we can have a variable number of answer
candidates instead of a fixed set.

The rest of the paper is structured as follows: Related work, where we review the
field Visual Question Answering in terms of datasets and model and model components,
showing that not much work has been done investigating the effects of different classifiers.
Problem Formulation, where we briefly state the problem that we are trying to solve. In
Proposed Model, we describe the different model components used to extract features
from the input, combine them and produce an answer. Experiments, where we introduce
the datasets, evaluation metrics and our results. The Conclusion section summarises
our findings. In Future work, we discuss our ideas for further improvements, given our
findings. In addition, we provide an optional Appendix, that briefly covers the main
concepts needed to understand the work presented in this paper.

2. Related Work
Recently, the field of Visual Question Answering has gained a lot of traction. Especially
following the introduction of the VQA challenges and datasets [13], [14], [15]. Other

2

(a) Q: What sport
is this?
A: Tennis

(b) Q: Where is the
cow standing?
A: Field

(c) Q: Who flies
the plane?
A: Pilot

(d) Q: What time of
day is it?
A: Sunset

Figure 1: The task of Visual Question Answering results in an answer, given an image
and a question.

datasets have also contributed to the interest in VQA, such as: Visual7W [16], DAQUAR
dataset [17], Visual Madlibs Q&A [18], COCO-QA [19] and Visual Genome [20].

Most models built for the tasks in these datasets focus on improving image features,
language features, attention mechanisms, or finding a better architectures and hyper-
parameter tuning [21], [22], [23], [10]. While these approaches have pushed the state of
the art, not much work has been done to improve the part of the model that provides
the answer. Jabri et al. argue that current approaches can be divided into generative
and discriminative models[9].

Generative Models produce an answer by encoding information about the image and
question, and passing that encoding to a decoder represented by an RNN. The RNN
generates the answer word by word. While this approach seems attractive, since the
solution space is only limited by the vocabulary. It has proven difficult to jointly learn
suitable features along with a decoding model [24], [25].

Discriminative Models choose an answer by classification. In the multiple choice task
the classes are the number of answers associated with a given question-image pair. Many
current approaches can only classify over a fixed number of answer choices[15], requiring
the number of answer candidates for all questions to be the same, therefore requiring
changes to the model architecture to train it on datasets with a different number of
answer choices. Jabri et al. [9] model the problem as a binary-classification problem
over triples of image, question and answer for each answer candidate, which allows them
to train the same model on datasets with a different number of classes, without any
parameter or architectural changes. The simplicity of their model, however, reduces the
model performance on the VQA v1.0 multiple choice task.
In open-ended, a common approach is to classify over the top-k most common answers
or answers that appear more than n-times in the training data. The classifier is typically
modeled by a feed forward neural network that outputs a probability distribution over
the top-k answers. This limits the number of answers the model can produce to these k
answers, effectively limiting the solution space. Teney et al. [10] found that choosing an
n of 8, resulting in 3129 answer candidates, for the open-ended task, made their model
perform the best.

3

Inspired by pointer networks [26], that are discriminative models where the set of
output classes depend on the input, we try to combine the strengths of the different
discriminative models described above.

3. Problem Formulation
The problem of visual question answering can be defined as: A model M(I,Q,AI,Q)
takes an image I as a tensor of dimensions (width× height× channels), a question Q as
a sequence of word indices and a set of answer candidates AI,Q where each member cn

is a sequence of word indices and produces the probability of each cn being the correct
answer. In the multiple choice task AI,Q varies depending on the image and question. In
the open-ended task this can simply be considered the set of all possible answers.

4. Proposed Model
In this section we propose the Pointer-CNN neural network model for the multiple choice
VQA task. In the following sections Wname refers to a learnable matrix of weights,
and bname refers to a learnable bias vector and the subscript name identifies in which
component they occur. The constant Hdim refers to the common hidden size, which
we use throughout the model. σ denotes the activation function(A.1.1), which is the
Exponential Linear Unit (ELU), unless otherwise stated. ELU works as in equation 1.

σi(zi) =
{
zi, if zi > 0
ezi − 1, otherwise

(1)

Figure 2 shows an overview of our proposed model for the multiple choice task. In the
following section we describe the components of that model.

4.1. Image embedding
Computer vision tasks are complex, and require large datasets to specify them, and lots
of processing power to train. Since the amount of labelled images in visual question
answering tasks are relatively small, compared to other computer vision tasks, we use
image features transferred from other models trained on these larger datasets.

The input image is represented as a tensor of W ×H × C. We follow the approach of
Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang [11] and embed the image
using features extracted from a pre-trained R-CNN object detection model. This model
is trained on RGB images of size 448 × 448. The R-CNN works in two stages, object
localization and classification. One part of the model proposes a number of bounding
boxes containing objects, with associated confidence scores. The other part of the model
classifies the sub-images contained in these bounding boxes. The activations of the last
layer of the classification model is used as the features for each of the regions. The top
36 object proposals are used, sorted by proposal confidence. This gives us a set of 36
image features of dimension 2048, where each vector represents the features of a detected

4

Figure 2: Overview of the proposed model for the multiple choice task. Where numbers
above lines indicate the size of the features passed trough to the next operation.
K is the number of regions from the CNNs. q is the length of the question. a
is the length of the answer. #a is the number of answer candidates. P is the
probability that a given a is the correct answer

object, just before classification. Each of these vectors are transformed through a single
layer, to the common hidden size, as shown in equation 2. This is done in order to have
a common feature size for both language and image features, so they can be fused later
in the network.

rn = σ(inW + b) (2)

Where rn ∈ R is the image region embedding corresponding to the feature vector in, and
the dimensions of W are 2048×Hdim. This step gives us the set R = {r0..r36} of region
embeddings.

4.1.1. Object Classification

As an alternative to the image features from object detection, we also experiment with
using features from variations of Resnet[27] (see A.2), trained on the object classification
task. To use the features from a pre-trained CNN, we take the activations of the CNN,
just before pooling and classification, resulting in a spatial feature map. Using an image
of size 224 × 224 × 3, we get 7 × 7 feature maps for the convolution operations in the
CNN, which we use as image region embeddings. Each of the k feature maps are passed
trough a neural network, mapping the embeddings to Hdim, represented as 1024 on figure
2.

5

4.2. Question and Answers Embedding
The language specified by the visual question answering datasets, is quite limited, in that
many words only occur a single or a few times. This means that learning a language
model from scratch, would result in a very crude model, that would have very limited
knowledge of the semantic and contextual information of words. To circumvent this, we
use word embeddings pre-trained on a large language corpora. These word embeddings
supply the model with semantic information not directly present in the datasets, allowing
the language model to generalize.

The question and answers are fed to the model as sequences of word indicies. The
question is a single sequence Q = [q1, . . . , qn] and the answer candidates is a set of
sequences AQ,I = {[c1,1, . . . , c1,m], . . . , [ck,1, . . . , ck,m]}, one for each answer candidate k.
These are embedded by first converting each word index to its corresponding pre-trained
word embedding. We use the publicly available embeddings from GloVe [12], providing
us with a word vector of size 300. Each of word embeddings in the sentence are then fed
through a Recurrent Neural Network(RNN)(see section A.4), to capture the contextual
information of the sentence. We are using a Gated Recurrent Unit (GRU) RNN, as this
solves the vanishing gradient problem associated with standard RNNs [28]. This gives
us a sentence vector with the size of the last layer in the RNN. As we have multiple
answer candidates, the answers encoder returns a feature tensor with the number of
answer candidates |AI,Q| ×Hdim. The RNNs for both question and answers, have the
same architecture and shared weights, to allow the model to learn a common language
model for both text types. Two individual layers, one for questions and one for answers,
are used to transform the last hidden state of the RNN to Hdim.

We also experiment with using a simple BoW embedding of sentences, where the RNN
above is replaced by a simple sum over the word embeddings to produce a sentence
embedding, before it is passed through the transformation to Hdim. This step produces
a question embeddign q and a set of answer embeddings {a0 . . .an}.

4.3. Multi-modal fusion
To allow the model to jointly reason over both question, answer and image, we fuse the
information contained in the three embeddings. To fuse the text and image embeddings,
we experiment with two methods, the hadamard product and concatenation. The choice
of fusion determines how the model is constrained, when learning the embeddings of the
different modalities. Concatenating the embeddings of the modalities places no constraint
on the learned embedding, whereas using the hadamard product forces the model to learn
a common embedding space for the modalities, because of the multiplicative interactions
between the embeddings. We find that hadamard fusion is superior to concatenation, as
is reported in the literature [10].

We define a function fuse(x,y) that fuses two embeddings by hadamard product (�):

fuse(x,y) = x� y (3)

where x and y are the two embeddings.

6

4.4. Image attention
By using an attention module the model can focus on the relevant regions of the
image, given a particular question. This module first fuses each of the image region
embeddings with the question, and then transforms these fused embeddings to a number
of scalar values, representing the relevance of each of the image regions given the question
embedding. The unnormalized region weights, u are calculated as in equation 4.

un = fuse(rn,q)Watt + batt (4)

The scalar values are normalized by passing them through a softmax function in
equation 5.

wj = euj∑K
k=1 e

uk
for j = 1..k (5)

Each of the image region embeddings are scaled by their corresponding scalar weights,
and then summed, to obtain a fixed size vector of the common hidden size in equation 6.

i =
∑

rn∈R,wk∈w
rn ∗ wn (6)

The vector i is the weighted sum over the image region embeddings of the whole
image, and referred to as the image embedding. We also experiment with implicit
attention[29], that simply averages the region embeddings after fusing them with the
question embedding, as in 7.

i =
∑

rn∈R fuse(rn,q)
|R|

(7)

4.5. Answer Fusion
Each of the multiple choice answers are fused the answer embeddings with both the
question and image embedding, to obtain a set of multi-modal answer embeddings, one
for each answer, that contain information about all of the three input types, before they
are passed along to the classifier.

fn = fuse(fuse(i,q),an) (8)

4.6. Classification
We approach the problem as either a multi-class or multi-label classification problem,
where the classes are determined by the multiple choices provided with the question.
Considering the problem as a multi-class classification task, means that we assume a
question can have only one answer. This assumption does not take into account language
ambiguities and questions with subjective answers, as are present in the VQA dataset.
For instance, the question ”is the tea hot?” can be difficult to determine only based on

7

an image. If we model the problem as a multi-label classification task, we allow for the
possibility of a question having multiple correct answers, thus alleviating the problems of
the multi-class formulation, as Teney et al. [10]. This is closely related to the approach
used by Jabri et al. [9] who formulate the problem as a binary classification over a
tuple of question, image and a single answer candidate, where we consider all answer
candidates at the same time. When modelling the problem as a multi-class classification,
the outputs of the network are normalized by a softmax, and in the case of multi-label
the outputs are normalized by a sigmoid. The multi-class classification output of the
model is defined in equation 9.

softmax(x) = P (AQ,I |Q, I) (9)

where AQ,I is the set of answer choices for image Q, I, and x is the log-probabilities
given by the model. The multi-label classification problem is defined as in equation 10.

sigmoid(xn) = P (cn = g|Q, I) (10)

where g is the ground truth answer, P (cn = g|Q, I) is the probability of answer
candidate cn ∈ AQ,I being the correct answer and x is the log-probabilities given by the
model. To perform hard classification given the two types of output above, we simply
select the answer candidate with the highest probability.

4.6.1. Pointer-CNN

We propose a Pointer-CNN (P-CNN), inspired by the work of Vinyals, Fortunato, and
Jaitly [26] as well as Wang and Jiang [30]. The purpose of the P-CNN is to enable the
model to output a probability distribution over answers that is dependent on the input.

This allows us to combine the positive effects of having the answers as inputs, as
observed by Jabri et al. [9], and still model the problem directly as multi-class or
multi-label, instead of as a binary classification problem or classification over a fixed
set of answer candidates as in many of the open-ended solutions [10], [23], [22]. We
show that this formulation of the problem, allows the model to achieve higher accuracy
on the multiple choice task. A central part of the P-CNN architecture is treating the
answers as inputs, which allows the model to utilize semantic answer information from the
pre-trained word-embeddings. The input to the P-CNN is the sequence of multi-modal
answer embeddings [f1, . . . , fk]. These are passed through three layers of 1-dimensional
convolutional layers with Hdim filters size of k = 3, where the last layer transforms
the hidden state to a single scalar for each of the multi-modal answer embeddings,
corresponding to the unnormalized log-probability of the answer being correct. Using
convolutional layers instead of fully connected layers, makes the model invariant to the
ordering of the set of answers and means that the model only needs to learn a mapping
from k ∗Hdim to Hdim, instead of having to learn a mapping from |AI,Q| ∗Hdim to Hdim.
Using convolutions also allows us to train and evaluate the model on questions with a
varying number of answer candidates as opposed to most current methods that require a
fixed number of answer candidates.

8

The output ol of all but the last convolutional layers l of the P-CNN is defined in 11
and the inputs [x1 . . .xn] are the multimodal answer embeddings [f1 . . . fn] for the first
layer, and the outputs of the previous layer [ol−1,1 . . .ol−1,n] for the subsequent layers.

ol,n = σ(concat(xn−bkc, . . . ,xn+bkc)Wl + bl) for x1 . . .xn (11)

Where the learnable weights Wl are of dimensions (Hdim ∗ 3)×Hdim. The output oL of
the last convolutional layer L is defined as follows:

oL,n = concat(xn−bkc, . . . ,xn+bkc)WL + bL for x1 . . .xn (12)

Where the dimensions of WL are (Hdim ∗ 3) × 1 to transform the embedding to a
single output logit for each answer candidate. If we model the problem as multi-class,
the log-probabilities are normalized by a softmax, producing a multinomial distribution
over answer choices. In the case of multi-label, we normalize each log-probability using a
sigmoid, obtaining a set of binomial distributions, one for each answer candidate.

4.7. Training
To train the model we minimize an objective function L(B) using the Adam optimizer[31],
with default parameters: learning rate = 10−4, β1 = 0.9, β2 = 0.99 and ε = 1e−8. Adam
is a variant of Stochastic Gradient Descent(SGD) and B is a batch in the form of a set
containing tuples of (y, ŷ) where y is the ground truth, and ŷ is the model prediction.
The size of the batch can vary, depending on the experiment. Teney, Anderson, He, and
Hengel [10] find that using large batch sizes of 512 improves performance on their models.
We use a batch size of 384, unless otherwise specified under experiments, due to memory
limitations of the GPU.

Depending on the way we model the problem we use one of two different objective
functions. When modelling the problem as a multi-class classification problem, where
an example belongs to one, and only one, class, we use categorical cross entropy loss,
defined as follows:

LCCE(B) = −
∑

y,ŷ∈B

|y|∑
i=1

yi ∗ log(ŷi) (13)

Where y is the ground truth in the form of a one-hot vector, and ŷ is the model prediction
as a probability distribution. When modelling the problem as a multi-label classification
problem, we use the binary cross entropy loss:

LBCE(B) = −
∑

y,ŷ∈B

|y|∑
i=1

yi ∗ log(ŷi) + (1− yi) ∗ (1− log(ŷi)) (14)

Where yi is the ground truth probability of the example having the i-th label, and ŷi is
the model prediction. Note that in this formulation an example can have zero or more
labels.

The model is regularized using Dropout[32] between layers, to reduce overfitting.
Dropout is used between each layer of the network. We generally use use a keep

9

probability of p = 0.5, following the approach of [33]. Except for after the layers just
before the answer fusion, where we use a keep probability of 0.8, since the multiplicative
interaction of the fusion results in an effective dropout of p3 for the fused features, and
0.83 ≈ 0.5.

We perform model averaging, by maintaining a moving average of the model parameters,
that is updated after every gradient descent step, as follows: θmoving = θmoving ∗ λ +
θ ∗ (1− λ) where λ is the moving average factor of 0.999, θ are the model parameters
after the gradient update, and θmoving are the moving average parameters. The moving
average parameters are only used during evaluation.

4.8. Open-Ended
In this section we briefly describe how our proposed model can be adapted to be used on
the open-ended VQA task. We describe where this model differs from the one proposed
for the multiple choice task.

Input For this model the input is still an image and a question as above, but no answer
candidates are provided. Instead we use the top-k most common answers in the
training data as a fixed set of answer candidates AQ,I for all question image pairs.
Though we set this fixed k when training, we can add additional answer candidates
when evaluating the model.

Answer embedding Embedding all the top-k answer candidates using an RNN as above,
would be costly and time-consuming. Instead we create a fixed BoW embedding of
each answer candidate, that consists of the average over the word-embeddings that
constitute the answer.

Answer fusion Fusing all the top-k answers with the image and question, proved to
be too memory consuming to be feasible. Instead we use an approach inspired
by Ha, Dai, and Le [34], where the model learns to produce the weights of a
transformation matrix Tn of dimensions Hdim ×m, given an answer candidate.
The fused embedding of the question and answer, is transformed by the matrix
produced for each answer candidate. This results in a feature vector of size m for
each answer candidate, that is the fused multi-modal answer embedding.

Training The training procedure is the same as above using the binary cross entropy loss
LBCE(B), except that the ground truth answers are soft-scores, as used by Teney,
Anderson, He, and Hengel [10].

4.9. Implementation
For reproduction purposes we state the graphics card and ML framework used in this
project as well as the pre-processing done on the inputs of the model. We have imple-
mented our models using PyTorch, and performed experiments using a GTX 1080ti. It
takes between 25-30 epocs for the models to converge’ taking around 10-12 hours.

10

4.9.1. Image pre-processing

When using R-CNN object detection features, the images are simply mapped to their
corresponding R-CNN features, as described in 4.1. In the configurations where we use
pre-trained convolutional neural networks, the RGB images are scaled to 224× 244 pixels.
They are then normalized to have the same mean and standard deviation as the data
the networks were trained on. This results in a mean of 0.485, 0.456, 0.406, and standard
deviation of 0.229, 0.224, 0.225, for the three colour channels respectively.

4.9.2. Text pre-processing

All text, both questions and answers, is first tokenized by lower casing all characters,
replacing all punctuation with spaces and replacing all numbers with their corresponding
numerals. The text is then split by spaces into tokens. We construct a vocabulary that is
a mapping from each unique token, to a unique integer id. Before being fed to the model,
questions and answers are tokenized, and their tokens are mapped to their vocabulary
ids.

5. Experiments
In this section we evaluate the model proposed above on three datasets and two tasks,
compare our results with state of the art, and discuss our results. We conduct an ablation
study to motivate the final configuration of the proposed model.

5.1. Datasets
We evaluate our model on two different tasks within VQA, the multiple choice and open
ended task. In the multiple choice task the datasets provide an image, a question, a
number of answer candidates for each question and the ground truth. In the open ended
task the dataset only provides an image, a question and a ground truth answer. We
evaluate our model on 3 different datasets. Information about the datasets can be found
in table 1.

Number of
Images

Number of
Questions

Avg. Q
per image

Average
Q length

Average
A length

Multiple
Choice

Open
ended

VQA v2.0 204,721 1.105,904 - - - no yes
VQA v1.0 204,721 614,163 3.0 6.2 1.1 yes yes
V7W 47,300 327,939 6.93 6.9 2.0 yes no

Table 1: VQA datasets

Visual7W(V7W) is the smaller of the datasets. It provides 4 answer choices per
question, where the incorrect answers are generated by humans.

VQA v1.0 provides 18 answer choices per question, of which only 1 is correct. The
incorrect answers were generated automatically by random sampling from a fixed set of
answers. This dataset has been shown to contain a bias in the questions, meaning that

11

models quite easily gain performance, relying only on the statistics of the questions and
the corresponding answers.[9] For instance, for questions starting with ”do you see a..”,
the answer ”yes” is the correct for 87% of the questions. Likewise ”tennis” is the correct
answer 41% of the time for questions starting with ”what sport is..”.

VQA v2.0 tries to combat this bias, by adding more questions, and having a more
balanced set of answers.

All three datasets are split into three parts, training, validation and test sets. In the
case of V7W all data for all 3 splits are available to the public. For VQA v1.0 and v2.0
only the answers for training and validation are publicly available, and the full test-set is
refered to as test-standard, with a subset of it refered to test-dev. To validate the model
on the test-standard and test-dev set, model predictions are submitted for evaluation on
a website provided by the authors of the dataset. This website maintains a leaderboard
of all public submissions. Submissions are limited to 10 times a day and 9999 times in
total on test-dev set and to 1 per day and 5 in total on the test-standard set.

5.2. Methodology
The authors of the VQA v1.0 and VQA v2.0 datasets introduce a soft-score evaluation
metric, to account for subjectivity in answers, as each question has 10 ground truth
answers from 10 individual annotators:

accuracy(ans) = min(# humans that said ans
3 , 1) (15)

The metric in 15, gives the maximum score of 1, if at least three annotators agree
with the model predictions, and otherwise a fraction of the number of annotators that
agree with the model divided 3. The performance on the Visual7W dataset is simply
the percentage of correct answers. Before evaluating the answer a number of processing
steps is done[15]:

• Making all characters lowercase

• Removing periods except if it occurs as decimal

• Converting number words to digits

• Removing articles (a, an, the)

• Adding apostrophe if a contraction is missing it

• Replacing all punctuation (except apostrophe and colon) with a space character.

The results reported on the test-dev and test-standard set on VQA v1.0 and VQA
v2.0, and the test-set on V7W, are obtained by first training the model for 55 epochs
on the training set, while evaluating its performance on the validation set every epoch.
The epoch that produces the best results on the validation set is recorded. Then the
model is trained from scratch on both the training and validation set, for the number

12

of same number of epochs that produced the best results on the validation set. This is
avoid unintentionally overfitting on the test-set. This is the approach followed by Teney,
Anderson, He, and Hengel [10].

5.3. Results
We report results for the multiple choice task on V7W and VQA v1.0, along with the
open-ended task on the VQA v2.0 dataset. We compare our results with the state
of the art results found in VQA papers, along with the the best models on the VQA
leaderboards. Since some leaderboard results are posted recently, not all of them have
accompanying papers describing the underlying approach. Thus we are not able to
compare the technical differences between those models and ours. Since we are only
allowed 5 submissions in total on the test-standard set, we mostly report on the test-dev
set. Models with a ”*” indicate that they are evaluated on test-dev.

Although the main focus of our work has been on the multiple choice task, we also
report preliminary results on the open-ended task.

5.3.1. Ablation study

To motivate our final architecture, and to show the effect of different design choices,
we perform an ablation study. To be able to run more experiments, we have only
systematically tested the different model configurations on the VQA v1.0 multiple choice
task. Table 2 shows the results of different configurations of our models. The reference
model is the configuration with the highest accuracy. The other models are identical to
the reference model, with the exception of a single component or hyper-parameter change
to measure the effect of this component. A description of the different configurations
and their results can be found below:

Reference model Figure 2 shows the architecture of the reference model. Questions and
answers are embedded using pre-trained GloVe embeddings that are fed through
an RNN. Image features are from a pre-trained object detection R-CNN, and
attended over by the hadamard attention module. The question, image and answer
embeddings are fused by hadamard product. Finally a P-CNN of three layers with
filter size 3 produces the un-normalized log-probabilities of the answer candidates,
that are normalized by a softmax, for multi-class classification. This configuration
uses model averaging.

Bow In this configuration the RNN is replaced with a simple sum over the pre-trained
word embeddings, as discussed in section 4.2. The BoW language encoder performs
worse than the RNN. This is expected as the RNN is able to capture the sequential
information in the questions, as well as choose and weight what information is
important in the sentence.

Imagenet This model uses image features produced by a Resnet101[27] pre-trained on
the Imagenet[2] dataset. We find that using these features reduces model accuracy,

13

VQA v1.0
Models All Yes/No Numb Other Test-dev
Language
BoW 69.52 80.21 44.74 67.75 -
Image
Imagenet 67.62 80.60 43.45 63.97 -
Attention
Implicit 68.02 81.47 44.85 63.76 69.82
Concatenation 68.44 81.36 45.26 64.60 70.18
Classifier
Sigmoid 71.38 82.71 45.80 69.32 73.00
MLP 71.16 81.96 46.70 69.21 72.82
Other
No-ans-interaction 69.33 80.19 44.20 67.52 73.44
No-model-avreage 70.34 81.47 45.80 68.18 71.82
ReLU 69.52 79.58 45.27 68.08 69.82
Reference Model 71.28 82.57 47.26 68.87 73.09

Table 2: Experiments with different components and parameters on multiple choice for
VQA v1.0

consistent with the findings of Anderson, He, Buehler, Teney, Johnson, Gould, and
Zhang [11].

Implicit Using implicit attention instead of explicit. As discussed in section 4.7.

Concatenation Concatenation to fuse image and question embeddings before passing
them to the attention layer significantly reduces accuracy. [10].

Sigmoid Modelling the problem as multi-label classification, by normalizing the model
outputs with sigmoids, produces results comparable with those of the reference
model.

Multilayer Perception(MLP) Replacing the P-CNN (section 4.6.1) with an MLP in-
creases the number of model parameters, and reduces the accuracy by a few
percentage points.

No-ans-interaction Using a filter size of 1 in the P-CNN, removes the interaction between
the answer candidates (see 4.6.1), and results in lower accuracy on the validation
set. Surprisingly, though, it increases overall accuracy on the test-dev set. This
indicates that the effects of answer interaction needs to be investigated further.

No-model-average Not applying model averaging. As discussed in section 4.7 model
averaging could be interpreted as a cheap ensemble model, thus performing worse
than a model with this component.

14

RelU Using a ReLU activation function instead of an ELU, lowers accuracy on both
the validation and test-set. This might be due to the hard threshold of ReLU,
negatively impacting the hadamard fusion. When the value passed through a ReLU
is negative, its activation is 0, meaning that no gradient can flow through it. When
fusing with the hadamard, this results in embedding elements of ei = 0 in the fused
embedding whenever just one of the corresponding elements in the question, answer
or image embeddings are zero.

Looking at the results, we see that all of the different components each contribute
to the overall performance. The attention mechanism and activation function seem to
be very important. We observe that the models generally obtain higher accuracy on
the test-dev set compared to the validation set. We suppose this is due to a different
distribution of questions and answers in the test-dev set.

5.3.2. Multiple Choice

We report results on Visual7W and VQA v1.0 for the multiple choice task. In table 3 we
compare our models with state of the art models.

VQA v1.0 Visual7W
All Yes/No Numb. Other All What Where When Who Why How

Methods
MLP [9] - - - - 67.1 64.5 75.9 82.1 72.9 68.0 56.4
MLP - Pre-trained VQA [9] - - - - 68.5 66.4 77.1 83.2 73.9 70.7 56.7
MCB [35] 70.1 - - - 62.2 60.3 70.4 79.5 69.2 58.2 51.1
Hierarchical Co-attention[23] 66.1 - - - - - - - - - -
HDU-USYD-UNCC 75.35 87.70 48.66 70.59 - - - - - - -
Our Models
Pointer-CNN 74.55 84.26 47.76 72.04 66.5 64.2 73.5 80.9 72.9 66.1 57.7
Ensemble Model* 76.62 85.89 51.87 74.26 - - - - - - -

Table 3: Multiple choice results on VQA v1.0 and V7W. Results are reported on the
test-standard for VQA v1.0 and the test set for Visual7W. The ”-” character
indicates that the accuracy for the given category was not available. Models with
a ”*” indicate that they are evaluated on test-dev. Models that are not cited
directly in the table, are taken from the official leaderboard of the challenge, at
the time of submission, thus papers are not available.

Ensemble networks have been shown to be a powerful method to improve accuracy of
machine learning models, and is commonly used in VQA [10]. We use a simple ensemble
model, where the configuration is the same for all constituent networks, but with random
initializations. Due to the stochastic nature of the training producedure, this makes
the constituent networks converge to different local minima, and thus produce slightly
different results. The output of the ensemble is produced by summing all the output logits
of each constituent network, and selecting the answer with the highest log-probability. We
experimented with the effects of ensembling before we found the best model configuration.
Since training ensemble models are very time, we have only made one for the Sigmoid

15

model, however the positive effects of ensembling can be seen by the performance increase
from 73.00 to 76.62, when using an ensemble model of 9.

Comparing the results on the Visual7w dataset we see that, the state of the art model
have been pretrained on VQA, thus the most comparable model is MLP only trained on
Visual7W. Our results are not quit as good at that model. We suspect that this is due
to the fact that we did not have the R-CNN features available for this dataset, thus we
would expect a similar increase in performance as on the VQA v1.0 dataset.

5.3.3. Open-ended

In table 4 we see two baselines listed. These baselines are provided by the VQA team [14]
to put the accuracy of the models into perspective. Prior, is the accuracy obtained by
always answering the most common answer in the dataset, which is ”yes”. Language only,
is an LSTM-based model, where the model is not given the image as input. Furthermore
table 4 shows a list of methods, which are a combination of methods found the literature
as well as the top performing models on the VQA leaderboard. As the latest VQA
challenge is fairly new not many papers have been released stating accuracy. Thus, we
use reference model from Goyal, Khot, Summers-Stay, Batra, and Parikh [14] as well as
the winners of the last challenge [10].

VQA v2.0
All Yes/No Numb Other

Baselines
Prior [14] 25.98 61.20 00.36 01.17
Language only [14] 44.26 67.01 31.55 27.37
Methods
Tips and tricks [10] 70.34 86.60 48.64 61.15
Tips and tricks Single Model* [10] 65.38 81.82 44.21 56.05
MCB [14], [36] 62.27 78.82 38.28 53.36
d-LSTM+n-I [14] 54.22 73.46 35.18 41.83
Tohoku CV Lab 71.12 87.29 53.25 61.13
casia iva 71.31 86.98 51.05 62.31
HDU-USYD-UNCC 72.09 87.61 51.92 63.19
Our Model
Pointer-CNN* 65.98 82.47 45.69 56.52

Table 4: Open-ended Results on VQA v2.0 test-standard. Models that are not cited
directly in the table, are taken from the official leaderboard of the challenge, at
the time of submission, thus papers are not available. Models with marked with
”*” are evaluated on the test-dev set instead of test-standard.

Looking at the different answer categories, it is noticeable, that every model performs
the worst in the number category. This could imply that, even though features from
object detection models have been used, the models still find it difficult to reason about

16

the connection between the k-regions provided. Even though the number of possible
answer candidates is limited to a number, usually 1− 10. Yes/No answers perform the
best among the categories. This is expected as the possible answer candidates of this
answer type is limited to either ”yes” or ”no”. Likewise, this category has an advantage,
because many answers are related to this category as ”yes” and ”no” are the most
common answers.

We have included the Single model from Tips and Tricks paper [10] also evaluated
on test-dev, to get a sense of comparison. Based on the results of the single model, we
assume that we would get reasonable performance, if we were to make an ensemble model
as well. In the future work we will discuss ideas of how to make our open-ended model
perform better.

We have experimented with expanding the number of answer candidates at evaluation
time, going from 3129 to either 4000 or 10000 candidates. This does not seem to impact
the results of the model, in either a positive or negative way. We presume this is due to a
couple elements of our model. The model used for this experiment is the reference model,
since the P-CNN has a filter size of 3, and we do not shuffle the answer categories, the
CNN always see the same surrounding answers for each given answer candidate. This
might result in that the model is making some false assumptions. If we were to shuffle
the data, this would make the problem more closely related to the multiple choice task.
Moreover, the additional answer candidates added appear less times in the data, and
might not have word embeddings available, thus making it near impossible to generalize
over all answers. This will be discussed more extensively in the section future work.
Though the results of this does not seem impressive, we believe that in order to push
the VQA domain further, models need to produce an answer based on a larger language
corpora.

5.4. Discussion
Each question in the VQA datasets is assigned to exactly one of 65 question categories.
These categories can help us understand where the different models perform well and
where they struggle. In table 5 we see a comparison between 4 different models and their
accuracy in the different question categories.

Question Category ImageNet NoAnsInt Reference # Ques
are there 71.63 75.68 74.68 5877
what brand 56.01 54.96 58.94 1600
what room is 88.52 93.88 93.86 1647
what color is 65.67 83.05 84.67 2649
is 80.03 78.41 82.36 6079
are they 79.30 79.47 82.41 3074
what number is 39.47 34.11 35.55 1668
what sport is 95.47 96.59 96.68 2527
are 77.37 75.49 77.54 4912
is the 78.03 78.11 80.33 34927

17

what is the person 79.92 79.88 82.88 1729
how many 43.13 44.81 47.57 42339
does this 80.60 79.93 81.31 4396
is there a 89.34 89.42 89.85 9982
is he 79.79 82.38 84.77 2534
what 59.48 60.42 62.10 34608
does the 79.84 77.73 81.03 6103
is the person 78.51 75.94 78.60 1694
where is the 54.58 54.96 55.09 6734
what animal is 82.58 82.07 83.53 2001
how 40.46 40.09 42.63 4740
what is the woman 75.37 79.74 78.37 1706
none of the above 66.76 65.09 67.91 16973
who is 53.00 53.06 53.92 2154
is the woman 77.34 77.64 79.15 1938
are the 77.99 77.52 79.12 10701
how many people are 45.33 49.60 49.80 4276
what is on the 60.23 64.36 65.30 4254
has 76.79 76.02 79.73 1827
was 86.39 81.84 88.46 1551
what type of 67.95 68.81 70.46 7962
is this an 81.69 81.59 82.52 1981
do 74.38 76.07 77.90 3012
what is the man 79.71 81.41 82.15 5238
which 54.87 53.32 56.14 5382
are these 80.75 79.54 82.38 5782
what are 75.68 80.13 81.12 3277
what is the 64.16 66.13 66.87 24502
where are the 57.46 53.73 56.26 2161
is this a 82.89 81.05 84.12 16024
can you 77.07 74.12 78.29 1728
what time 67.85 65.58 69.09 2914
what are the 67.44 69.64 70.96 7225
are there any 72.96 78.64 80.80 2790
what color are the 62.09 76.56 78.78 6183
why 34.98 36.09 35.06 3347
what is this 80.58 81.54 82.36 3970
how many people are in 46.29 48.55 53.28 2071
do you 82.57 80.52 84.62 1971
is this 80.62 81.00 82.87 16444
why is the 38.07 36.11 40.14 1544
what is the color of the 74.05 79.89 85.31 1750
what is 62.97 65.18 66.20 13561

18

could 89.64 89.08 90.47 1698
is that a 81.13 79.28 83.05 1585
what is in the 66.91 70.82 71.61 3990
what does the 51.42 47.21 51.75 4075
what kind of 66.44 68.57 69.48 11192
is it 86.44 87.67 89.52 7345
is the man 79.10 77.92 81.13 4972
what is the name 44.57 37.64 47.67 1618
is there 84.65 84.86 86.41 6513
what color is the 65.06 77.18 78.99 27962
what color 51.11 71.86 71.67 3032
is this person 76.34 77.48 80.05 1756

Table 5: Accuracy over question types for 4 different models for 3 models from the
ablations

Comparing the results of NoAnsIt (no-answer-interaction) and the reference model we
see a small increase in accuracy across almost every category. Surprisingly there is a big
difference between the results in ”what is the name” with 10.03%. Apparently the the
answer interaction helps the model get a better sense of what is written.

Looking at the results of the model trained on Imagenet, we observe that categories
that require reasoning over multiple objects or where the question could reference any
object located in the image, this model seems to get worse results. This evident on
question categories such as: ”what color are the”, ”what is the color of the”, ”what room
is” and ”what is on the”. For question types closely related to the object classification
task, such as ”what animal is” and ”what sport is”, this model performs similarly to the
reference model.

We see a big differences in accuracy between the question types. Questions that are
similar to the classification problem are easily answered. These include ”what sport is”,
”is there a”, ”could”, ”is it” and ”what room is”. More complex question types, such as
”why”, ”how” and ”how many”, have considerably lower accuracy. This could be due to
the fact that the image features used, both from object detection and classification, are
used for classification purposes in their original domains, and are therefore not required
to contain knowledge of concepts that do not pertain to the classification task.

Another reason for the models’ inability to answer many of the more complex questions,
might be that the knowledge required to answer these types of questions is not present
in the datasets, even when transferring knowledge implicitly through pre-trained image
and word embeddings. Especially in the case of ”why” questions, access to additional
knowledge might allow the model to reason about more complex concepts.

Categories such as ”what number is” and ”what is the name”, would require that the
model be able to read text and digits in the images, which would most likely require
much more examples, or additional features transferred from a model trained to solve this
task. The highest scoring model gets 35.55 and 47.67 in these two categories respectively.

19

5.4.1. Transferability

We conduct experiments where we evaluate the model trained on the Visual7W dataset
on the VQA v1.0 and vice versa. If the model is able to generalize over both language
and images it should achieve decent performance when transferred to another dataset.

When evaluating a model on VQA v1.0 trained on Visual7W, we see that the model
struggles in several categories. It achieves an overall accuracy of 21.54. Though this
seems low we observe that the model gets 88.93 in ”what sport is”, 61.64 in ”what is the
person” and 58.97 in ”what is the man”. We suspect this performance is due to, that
these questions are similar to questions available in the Visual7W dataset. Most models
get the highest score on ”Yes/No” answers on this data set, however the transferred
model only gets 13.47. As all the questions in the Visual7W dataset starts with either
”What, Where, When, Who, Why or How” the model has little knowledge about a
simple ”Yes/No” questions. Furthermore, as the amount of data in Visual7W is fairly
low compared to VQA(Table 1), it would be impressive if the model were able to be fully
or partly transferable. Evaluating a model trained on VQA, on Visual7W achieves 51.51.
Though this is more than the 21.54, it sill do not perform as well as models only trained
only on the Visual7W data. This indicate that the models not able to fully generalize
over the problem, but instead finds dataset specific patterns.

6. Conclusion
We have proposed a novel discriminative classification model for Visual Question An-
swering, that can be trained on different datasets with the same hyper-parameters and
architecture, and achieve state of the art performance on the multiple choice task on
the VQA v1.0, and reasonable performance on the Visual7W dataset, while only being
trained on the data available in the dataset. We discussed the different elements of the
model, where it falls short and where it stands out, as well as in what domains we believe
it can be improved in future work.

We do not claim to have made any breakthrough advancements in the VQA area, but
we hope that this work will be useful in future work on investigating the use of different
classification mechanisms, that ultimately will be able to generalize better as well as not
being limited by a fixed number of answer candidates.

7. Future Work
As previously discussed, the models seem to struggle with questions regarding text and
digit recognition. Since non of the pretrained image or language features are with in this
domain, this is to be expected. We believe that introducing transferred knowledge from
this domain could increase the performance of the model in these domains.

When using GloVe, some words do not appear in the word embeddings, this makes
it almost impossible for the model to extract information for those words. This could
partly explain why rare answer candidates that do not appear often are difficult for the

20

model to predict. FastText provide word embeddings similar to GloVe, but contrary
to GloVe, these provide features for words not encountered during the training of the
embeddings. These embeddings are generated using a n-gram approach. We suspect that
using FastText could help the model generalize over more answer candidates.

Finding a common embedding space for the models seems to be difficult for the models,
as the model jointly have to learn this along with solving the task. We suspect that
experiments with providing the model with word embeddings, of the predicted classed
from the object detection model, could help the model with counting as well as positional
questions. Likewise experiments, extracting image features from the words, by using the
image vector for dog instead of the word vector could be interesting.

As seen in table 2 some models had very similar performance. The random initialization
of the weights might have a say in this. In order to get a better sense of how the model
performs across different initializations, we could run the models several times and report
the standard deviation given those results. When working with deep learning, many
assumptions are made regarding how the model interprets different parts of the input
data. In order to understand the reasoning of the model better, we could trace back
the flow of the model from the answer prediction to the inputs, to see what pixel values
as well as words it weighs higher than other for a given example. LIME is a tool, that
should allow us to do that[37].

Even though VQA models seem to achieve relatively good results, a sub-task within
the VQA datasets have been made, called balanced pairs[14], where each question is
assigned two disjoint answers, each with an image assigned. In order for the answer to
be considered correct, the model have to answer each of the answers correctly. Teney,
Anderson, He, and Hengel [10] report an accuracy of 34.66 on a model that otherwise
have achieved 63.15. While this is far less impressive, we feel like this is a more suitable
measure for the VQA models.

Acknowledgments
We would like to thank our supervisor Peter Dolog, and the Department of Computer
Science at Aalborg University, for the guidance and discussions throughout this work.

References
[1] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+ questions

for machine comprehension of text”, CoRR, vol. abs/1606.05250, 2016. arXiv:
1606.05250. [Online]. Available: http://arxiv.org/abs/1606.05250.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database”, in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 248–255.

21

http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large
scale visual recognition challenge”, Int. J. Comput. Vision, vol. 115, no. 3, pp. 211–
252, Dec. 2015, issn: 0920-5691. doi: 10.1007/s11263-015-0816-y. [Online].
Available: http://dx.doi.org/10.1007/s11263-015-0816-y.

[4] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
and T. P. Lillicrap, “A simple neural network module for relational reasoning”,
CoRR, vol. abs/1706.01427, 2017. arXiv: 1706.01427. [Online]. Available: http:
//arxiv.org/abs/1706.01427.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions”, CoRR,
vol. abs/1409.4842, 2014. arXiv: 1409.4842. [Online]. Available: http://arxiv.
org/abs/1409.4842.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[7] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection”, CoRR, vol. abs/1506.02640, 2015. arXiv:
1506.02640. [Online]. Available: http://arxiv.org/abs/1506.02640.

[8] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks”, CoRR, vol. abs/1506.01497, 2015.
arXiv: 1506.01497. [Online]. Available: http://arxiv.org/abs/1506.01497.

[9] A. Jabri, A. Joulin, and L. van der Maaten, “Revisiting visual question answering
baselines”, in European conference on computer vision, Springer, 2016, pp. 727–739.

[10] D. Teney, P. Anderson, X. He, and A. van den Hengel, “Tips and tricks for visual
question answering: Learnings from the 2017 challenge”, CoRR, vol. abs/1708.02711,
2017. arXiv: 1708.02711. [Online]. Available: http://arxiv.org/abs/1708.
02711.

[11] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,
“Bottom-up and top-down attention for image captioning and VQA”, CoRR,
vol. abs/1707.07998, 2017. arXiv: 1707.07998. [Online]. Available: http://arxiv.
org/abs/1707.07998.

[12] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre-
sentation”, in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[13] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and D. Parikh, “Yin and Yang:
Balancing and answering binary visual questions”, in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[14] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the V
in VQA matter: Elevating the role of image understanding in Visual Question
Answering”, in Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

22

https://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1708.02711
http://arxiv.org/abs/1708.02711
http://arxiv.org/abs/1708.02711
http://arxiv.org/abs/1707.07998
http://arxiv.org/abs/1707.07998
http://arxiv.org/abs/1707.07998

[15] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh,
“VQA: Visual Question Answering”, in International Conference on Computer
Vision (ICCV), 2015.

[16] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei, “Visual7w: Grounded question
answering in images”, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4995–5004.

[17] M. Malinowski and M. Fritz, “A multi-world approach to question answering about
real-world scenes based on uncertain input”, CoRR, vol. abs/1410.0210, 2014. arXiv:
1410.0210. [Online]. Available: http://arxiv.org/abs/1410.0210.

[18] L. Yu, E. Park, A. C. Berg, and T. L. Berg, “Visual madlibs: Fill in the blank
image generation and question answering”, CoRR, vol. abs/1506.00278, 2015. arXiv:
1506.00278. [Online]. Available: http://arxiv.org/abs/1506.00278.

[19] M. Ren, R. Kiros, and R. S. Zemel, “Image question answering: A visual semantic
embedding model and a new dataset”, CoRR, vol. abs/1505.02074, 2015. arXiv:
1505.02074. [Online]. Available: http://arxiv.org/abs/1505.02074.

[20] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y.
Kalantidis, L. Li, D. A. Shamma, M. S. Bernstein, and F. Li, “Visual genome:
Connecting language and vision using crowdsourced dense image annotations”,
CoRR, vol. abs/1602.07332, 2016. arXiv: 1602.07332. [Online]. Available: http:
//arxiv.org/abs/1602.07332.

[21] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the v in
vqa matter: Elevating the role of image understanding in visual question answering”,
arXiv preprint arXiv:1612.00837, 2016.

[22] J. Singh, V. Ying, and A. Nutkiewicz, “Attention on attention: Architectures
for visual question answering (VQA)”, CoRR, vol. abs/1803.07724, 2018. arXiv:
1803.07724. [Online]. Available: http://arxiv.org/abs/1803.07724.

[23] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-image co-attention
for visual question answering”, CoRR, vol. abs/1606.00061, 2016. arXiv: 1606.
00061. [Online]. Available: http://arxiv.org/abs/1606.00061.

[24] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask your neurons: A neural-based
approach to answering questions about images”, CoRR, vol. abs/1505.01121, 2015.
arXiv: 1505.01121. [Online]. Available: http://arxiv.org/abs/1505.01121.

[25] Q. Wu, C. Shen, A. van den Hengel, P. Wang, and A. R. Dick, “Image captioning and
visual question answering based on attributes and their related external knowledge”,
CoRR, vol. abs/1603.02814, 2016. arXiv: 1603.02814. [Online]. Available: http:
//arxiv.org/abs/1603.02814.

[26] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks”, in Advances in
Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds., Curran Associates, Inc., 2015, pp. 2692–
2700. [Online]. Available: http : / / papers . nips . cc / paper / 5866 - pointer -
networks.pdf.

23

http://arxiv.org/abs/1410.0210
http://arxiv.org/abs/1410.0210
http://arxiv.org/abs/1506.00278
http://arxiv.org/abs/1506.00278
http://arxiv.org/abs/1505.02074
http://arxiv.org/abs/1505.02074
http://arxiv.org/abs/1602.07332
http://arxiv.org/abs/1602.07332
http://arxiv.org/abs/1602.07332
http://arxiv.org/abs/1803.07724
http://arxiv.org/abs/1803.07724
http://arxiv.org/abs/1606.00061
http://arxiv.org/abs/1606.00061
http://arxiv.org/abs/1606.00061
http://arxiv.org/abs/1505.01121
http://arxiv.org/abs/1505.01121
http://arxiv.org/abs/1603.02814
http://arxiv.org/abs/1603.02814
http://arxiv.org/abs/1603.02814
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[28] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using RNN encoder-decoder for statistical machine
translation”, CoRR, vol. abs/1406.1078, 2014. arXiv: 1406.1078. [Online]. Available:
http://arxiv.org/abs/1406.1078.

[29] J. Kim, S. Lee, D. Kwak, M. Heo, J. Kim, J. Ha, and B. Zhang, “Multimodal residual
learning for visual QA”, CoRR, vol. abs/1606.01455, 2016. arXiv: 1606.01455.
[Online]. Available: http://arxiv.org/abs/1606.01455.

[30] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer
pointer”, CoRR, vol. abs/1608.07905, 2016. arXiv: 1608.07905. [Online]. Available:
http://arxiv.org/abs/1608.07905.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, CoRR,
vol. abs/1412.6980, 2014. arXiv: 1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, J. Mach.
Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014, issn: 1532-4435. [Online].
Available: http://dl.acm.org/citation.cfm?id=2627435.2670313.

[33] Z. Yang, X. He, J. Gao, L. Deng, and A. J. Smola, “Stacked attention networks for
image question answering”, CoRR, vol. abs/1511.02274, 2015. arXiv: 1511.02274.
[Online]. Available: http://arxiv.org/abs/1511.02274.

[34] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks”, CoRR, vol. abs/1609.09106, 2016.
arXiv: 1609.09106. [Online]. Available: http://arxiv.org/abs/1609.09106.

[35] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach,
“Multimodal compact bilinear pooling for visual question answering and visual
grounding”, arXiv preprint arXiv:1606.01847, 2016.

[36] ——, “Multimodal compact bilinear pooling for visual question answering and
visual grounding”, CoRR, vol. abs/1606.01847, 2016. arXiv: 1606.01847. [Online].
Available: http://arxiv.org/abs/1606.01847.

[37] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust you?”: Explaining the
predictions of any classifier”, CoRR, vol. abs/1602.04938, 2016. arXiv: 1602.04938.
[Online]. Available: http://arxiv.org/abs/1602.04938.

24

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1606.01455
http://arxiv.org/abs/1606.01455
http://arxiv.org/abs/1608.07905
http://arxiv.org/abs/1608.07905
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1511.02274
http://arxiv.org/abs/1511.02274
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1606.01847
http://arxiv.org/abs/1606.01847
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938

A. Apendix
A.1. Neural Networks
The architecture of a simple neural network generally consists of 3 layers. An input layer,
which takes a set of features (n) from our data as input (x), and passes them on to the
next layer. A hidden layer, which is a set of neurons (h) that has a weight vector (w)
as well as a bias assigned to it. We take the dot product between the input and the
weight vector, add the bias (b), and then apply the activation function (σ). The result
is passed on the the next layer (z). The mathematical expression of this operation for
a single neuron on the hidden layer, is described in equation (16). The output layer is
basically the same as the hidden layer, except the output vector (y) is the size of the
desired output.

zi = σi(
n∑
j

xj ∗wji + bi) (16)

Feeding input data trough the network and transforming it trough the network param-
eters (W,B), is known as the forward pass. In order to make the network lean from the
data we need two more steps.

After the forward pass we calculate the error (E) using our objective function L also
known as the loss function. As shown on equation (17). Where y is the output and ŷ is
the target.

E = L(y, ŷ) (17)

We want to minimize the total loss, using stochastic gradient decent or variations of it.
To do this, we need to calculate the gradients of the network parameters. The gradients
is calculated using Backpropagation which is applying the chain rule recursively trough
the network.

Finally these steps are repeated until the error is minimized.

A.1.1. Activation Functions

To allow the neural network to approximate non-linear functions, a non-linearity is applied
after each linear transformation. These non-linearities are called activation functions.

A common choice is the Rectified Linear Unit(ReLU), as it has been shown to perform
well in deep neural networks, especially on computer vision tasks.

σ(zi) =
{
x, for x > 0
0, otherwise

(18)

One of the nice properties of the ReLU functions is that it has a constant gradient of
1, when it is active, allowing gradients to propagate further in the network. However,
networks using ReLU suffers from dead neurons, since both the output and the gradient

25

of the ReLU becomes 0 when it is inactive, which stops gradients from flowing completely,
which can cause some neurons to never be activated, on any training example.

The Exponential Linear Unit(ELU) maintains the constant gradient of 1 for inputs
greater than 1, but has a small gradient for negative inputs, allowing gradients to flow,
and alleviating the problem of dead neurons.

σi(zi) =
{
zi, if zi > 0
ezi − 1, otherwise

(19)

The output of the sigmoid is a value in the range [0, 1], making it useful for producing
outputs that can be interpreted as probabilites. We use the sigmoid at the output layer
of the model, when treating the problem as multi-label classification.

σ(zi) = 1
1 + e−zi

(20)

The softmax activation function normalizes the inputs, so that they sum to one. For
this reason its output is a valid probability distribution, and it is often used in multiclass
classification problems. It is also used in the explicit attention model, to normalize the
attention weights.

σ(z)j = ezj∑K
k=1 e

zk
for j = 1..k (21)

A.2. Convolutional Neural Networks
An image is usually represented by a number of pixels structured in a tensor with the
dimensions Chanel ×Width × Height (C×W ×H) The images provided to VQA models
are generally 224× 224× 3. If a simple neural network were to take this as input it would
be huge amount of parameters to train. Furthermore, the network would not capture the
spacial relations of the pixels.

An effective way of dealing with these problems is by using Convolutional Neural
Networks (CNN). A CNN is essentially a feed-forward network, that we slide across the
image. This provides of with a number of features, on which we then can perform the
same operations on, to gradually extract features until we are able to classify an image.
Since objects locations may vary for different images. This smaller network learns a
function able to detect different objects located in different places of the image. This is
the notion of spatial invariance. A CNN consists of two main operations: convolutions
and pooling.

Convolutions extract features from a image, called a feature map (z). These are
extracted by what is known as a filter, which is a weights tensor (W) that we stride across
the image. We multiply the input values with the weight and sum them together. The
filter size and the stride determine the the size of the resulting feature map. Considering
a 5× 5 image on which we apply a filter of size 3× 3 with a stride of 1, would result in a
feature map of size 3× 3. To extract more features from the image we simply apply more
features, which increases the depth of the resulting feature map. As well as in standard

26

neural networks, we add an activation function to be able to approximate non-linear
functions.

The k-th entity of the feature map can be found using equation 22. Where i and j are
the positions of the map and xij is the corresponding window of the input image.

zk
ij = σ(

∑
Wk ∗ xij + bk) (22)

The pooling operation is used to reduce the dimensionality of the features while keeping
the most important. This is also known as downsampling. There a 3 different types of
pooling: max, average and sum. For pooling we define a filter, apply one of the 3 types
on all the elements in that filter, resulting in a down-sampled set of features. Considering
a 4× 4 feature map and a pooling operation with a 2× 2 filter would result in a 2× 2
feature map.

These two operations are used several times to gradually extract features and lowering
the dimensionality. In order to classify an image a feed forward neural network is added
at the end. Using the features the network is able to predict the labels. Similar to other
neural networks the CNN is trained iterative using stochastic gradient decent, where the
gradients are found using back propagation, until the error is sufficiently minimized.

A.3. Word vectors
To add additional information to the words, we can encode the words as word-vectors.

A popular way of encoding words, is by using GloVe [12]. GloVe is an unsuper-
vised learning algorithm, that have been trained on different data sets(Common Crawl,
Wikipedia, Twitter). The different data result in different word-vectors. On the website
the different embeddings are available for download. Thus, we do not have to run the
algorithm our-self. There exist feature vectors of different dimensions, spanning from
50d to 300d. The most commonly used vectors are 300d. Along with providing more
information, having a dense vector with lower dimensionality reduces the number of
weights in the first layer from the input layer. Since the input layer is of size 300 instead
of the size of the vocab encoded as a one-hot vector. Since questions and some answers
are represented as sentences, we aim to encode the whole sentence, which we can then
pass along in the model. One way of representing a sentence is to treat it as a bag
of words, an unordered set of word encodings. To obtain a sentence embedding from
this bag of words, one simply sums or averages the word encodings in the bag of words.
However, using this method, the sentence structure is discarded, which might be essential
for certain problems.

A.4. Sequential Models
In order to capture the sequential information from the word order of sentences, a common
approach is to use different variations of Recurrent Neural Networks (RNN).

RNNs have been proven to be able to solve sequential problem within the NLP domain.
This is done by adding the notion of time to a simple feed forward neural network.

27

Figure 3: Visual representation of the notion of time in a RNN

In practice this is done by using a neural network for each time step (t) in the sequence
S, with shared parameters for each timestep. In order to capture the sequentiality, a
weight vector v is added between the corresponding neurons in the hidden layer for each
timestep. Visualized in figure 3. Likewise equation 23 shows the procedure for a single
neuron in the hidden layer.

zt
j = σt

j((
n∑
i

xt
i ∗wt

ij) + (
h∑
i

zt−1
i ∗ vt−1

i) + bt
j) (23)

However, simple RNN models suffer from what is known as the vanishing gradient and
exploding grading problem. When dealing with long sequences, the multiplicative effects
with in the network, make the gradient either explode or vanish as we back propagate
further along the time steps.

Popular RNN variations that deal with the vanishing gradient problem includes Long
Short-term Memory(LSTM) and Gated Recurrent Unit(GRU). We use a GRU RNN, as
it has been shown to perform as well as the LSTM, while being less computationally
expensive

28

	Introduction
	Related Work
	Problem Formulation
	Proposed Model
	Image embedding
	Object Classification

	Question and Answers Embedding
	Multi-modal fusion
	Image attention
	Answer Fusion
	Classification
	Pointer-CNN

	Training
	Open-Ended
	Implementation
	Image pre-processing
	Text pre-processing

	Experiments
	Datasets
	Methodology
	Results
	Ablation study
	Multiple Choice
	Open-ended

	Discussion
	Transferability

	Conclusion
	Future Work
	Apendix
	Neural Networks
	Activation Functions

	Convolutional Neural Networks
	Word vectors
	Sequential Models

