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Summary

Recommender systems usually recommend single items or a list of individual
items for a user. In this thesis we delve into bundle recommendation in the context
of food. The thesis presents the problem of how to recommend healthy bundles to
a user and what should be considered when presenting a bundle to a user. Differ-
ent approaches have been done to evaluate the healthiness of food recipes. Many
of them utilize a scoring function to evaluate how healthy the recipes are and these
scoring functions are usually based on already established nutritional guidelines.
Most of these scoring functions are based on the nutritional content in recipes, such
as calories, fat, etc. and most only consider the healthiness of one meal. Therefore,
an assumption can be made that these health scores are not that reliable for indi-
cating a healthy eating habit. In this thesis we present a health scoring function
which is not based on nutrition but the proportions of the ingredients themselves.
We introduce two versions of our scoring function which is mainly based on the
food pyramid in order to determine what is the best proportion of ingredients in
a recipe. One version is better suited for calculating a weekly meal plan, whereas
the other version is more suited for individual recipes. The scoring function is then
adapted to calculate the proportions in a bundle of dinner recipes. By providing
bundles with the best split of ingredient proportions to a user, it can be assumed
that a user will eat more balanced. The algorithm for creating bundles is based on
previous work. In the previous version of the algorithm only aspects such as di-
versity of a bundle is considered. Diversity is defined as how dissimilar the recipes
are in the bundle. We adjust the algorithm to consider the healthiness of a bundle
and use a trained SVD model for generating a personalized list of recipes used for
bundle creation.

Both an SVD and a KNN algorithm is tested in regards to the implementation.
An offline test for both SVD and KNN was therefore conducted in order to de-
termine the accuracy of the two approaches. We also test the bundle algorithm
in a offline setting in which we evaluate the performance by its precision, recall,
diversity and health. Several different versions of the algorithm is tested, where
each version is based on different weighted parameters.

We also look into how bundles can be presented to a user, since the complexity
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of presenting bundles is greater than presenting a single item. We look into three
different layouts for a bundle, a list, grid and pie layout. These three layouts are
looked into as they are also researched in another paper regarding recommenda-
tions. We test which layouts are most enjoyable for users by conducting a user
study with 16 participants. The participants were exposed to all three layouts and
after the test a focus group interview was conducted. The interviews were done
in order to both elaborate on the users thoughts regarding the layouts and what is
important when recommending food items. The results of the user study gave an
indication of what layout was preferred and what aspects should be presented in
a recipe item.
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Chapter 1

Introduction

Eating healthy is widely known to be essential to maintaining a fit and healthy
physical condition. In precise technical terms, eating healthy means consuming ap-
propriate amounts of both macro- and micro-nutrients [4]. Macro meaning energy
contributing nutrients such as fat, carbohydrates and protein. Micro-nutrients on
the other hand, represents essential vitamins and minerals [3]. Even though much
research has been conducted in this field, in order to specify optimal amounts
of the nutrients, these numbers change regularly as new research is conducted.
The complexity involved in understanding a healthy diet is also apparent by the
many different careers and educations in the field, such as clinical dietitian and
nutritional consultants. As such, it is not expected that every person knows and
understands everything regarding macro- and micro-nutrients as well as following
the recommended intakes. Therefore, in order to reach out to as many people as
possible, many different simplified nutritional guidelines have been made. These
guidelines have different forms and content. Some use a pyramid or a pie-chart
diagram in order to illustrate the optimal proportions regarding food. In Denmark
the most well known nutritional guideline is the food pyramid which has existed
since 1976 [2]. These simplifications differ from e.g, the World Health Organization
(WHO) and the Food Standards Agency’s (FSA) nutritional guidelines, in that they
do not show the precise optimal amounts of macro and micro-nutrients but instead
illustrate different food groups and their optimal proportions. This can be argued
to be an easier way to illustrate a healthy diet, especially for home cooked meals
were it can be difficult to determine the amount of nutrients. A report conducted
from 2011 to 2013 by the Danish National Food Institute shows that there generally
is a positive development regarding healthy diets in Denmark. However, still many
areas need improvement e.g, only 3% of the Danish population have a satisfactory
level of saturated fat, half of the children and 1/3 of adults eat to much sugar and
the fiber contents are for the most on a bare minimum of the recommended [27, p.
130-135]. This thesis investigates recommender systems in the context of healthy



meals and what considerations should be made for developing such a system.

1.1 Related work

Recommendation algorithms have been implemented within a wide range of sys-
tems and domains. Especially shopping and streaming services have benefited
from research and progress of machine learning by providing a more personalized
user experience [6]. However, in the case of nutritional food recommendations,
there have been experiences on how recommendation algorithms affect the users
behaviour / recommendations negatively. Due to the nature of recommenders, a
negative pattern has been discovered where people who prefer unhealthy recipes
are recommended more unhealthy recipes [9]. In regards to this problem and the
general problem of overweight, some papers have investigated how to include a
health score in food recommender systems.

Healthiness

Elsweiler et. al [12] presents a method for recommending healthy meal plans, un-
der certain constraints. The health score in this paper is measured in relation to
a persons recommended daily caloric intake and the caloric distribution of key
macro nutrients in the meal plan. This approach can help control weight gain or
weight loss but in regards to maintaining an overall healthy diet it does not con-
sider many important nutrients (fibers, vitamins, etc). Another recent approach
is to calculate the health score based on dietary guidelines from the World Health
Organization (WHO) and the United Kingdom’s Food Standards Agency (FSA) [9].
The approach based on WHO uses 7 out the 15 macro-nutrients listed in the guide-
lines to determine the healthiness of a meal [31]. The approach based on FSA gives
recipes a score that only relates to 4 of the foods macro-nutrients (sugar, sodium,
fat, saturated fat). This approach for the scores utilizes a so-called traffic light sys-
tem consisting of the colors green, amber, and red [9]. However, both of these score
can be said to be too simple to evaluate a diet in depth. Another aspect of these
health scores is that they are based on macro-nutrient values, which can be difficult
to understand for the average citizen. This is also recognized by different organi-
zations which have developed more comprehensible models for recommending a
healthy and diverse diet. In Denmark the food pyramid is the most well known.
This model illustrates optimal proportions for different categories of food in or-
der to more easily illustrate a healthy diet[18]. Out of the aforementioned health
guidelines WHO and the danish food pyramid are used to measure a healthy diet
over a day, a week or a longer period of time. Besides the FSA score, some work
has been done on calculating healthiness of individual meals. The Healthy Meal
Index (HMI) has been tested as a way to measure healthiness of meals served to

2 Chapter 1. Introduction



kids [23]. By looking at the HMI Adequacy Score ranging from 0-65, it’s possible
to score individual meals based on the presence of 14 different foods needed for a
healthy diet. The downside of the HMI is however that it does not consider pro-
portions of the meal, which can end in misleading results. Another approach is the
healthy eating plate which recommends proportions in a healthy meal [24]. This is
however based on American standards, which have very different health guidelines
from Denmark. As an example, potatoes are not counted as healthy vegetables in
the healthy eating plate. Research has also been done to measure if diverse diets
generally results in a healthy diet. Drescher et al. [11] measure the healthiness of
a persons food basket by considering the healthiness of individual foods based on
the nutritional guidelines from the German Nutrition society(DGE).

Bundle recommendations

Previous work has also been done on how to recommend bundles of food recipes
to groups of people. The bundle recommendations were based on solving the
problem of selecting dinner for groups of two or more people. Putting recipes to-
gether in a bundle, allowed the possibility of recommending weekly dinner plans,
in which metrics such as diversity in a bundle was important to not recommend a
weekly dinner plan with too similar recipes. Since a system recommending weekly
dinner plans with similar recipes would make the users grow tiresome of the spe-
cific foods[20].

Interfaces

On another note, analyzing recommenders has also come a long way. From mostly
looking at the algorithmic accuracy to viewing the recommender system as a whole
[21] [19] [28]. Based on the framework presented by Pu et al. [28] research has
been made to see the specific impact different interfaces have on the perception
of recommender systems. The framework is for example used by Chen et al. [7]
to investigate how three different interfaces in a movie recommender affects users
confidence, enjoyability and overall perception of the interface’s.

Chapter 1. Introduction 3



1.2 Problem statement

Based on the area of recommending healthy diets and the different nutritional
guidelines presented in the related work, this thesis will focus on how to recom-
mend healthy bundles of food recipes to a user. This is due to how a bundle can
be used to represent a meal plan. In order to recommend healthy meal plans how-
ever, an appropriate method of determining the healthiness of a meal is required.
When considering an implementation of a healthy meal recommender system, as-
pects such as the complexity of bundles in regards to presentation should also be
considered as it could possibly affect the user experience of the system.
The problem statement of this master thesis is as follows:

e How can we recommend healthy meal plans to a user?
This question, leads to the interest of investigating the following sub-questions:

e How can we implement a health function to evaluate the healthiness of a
meal plan?

e What considerations should be made in regards to presenting bundles of
food items to a user?

These questions, and the knowledge needed to answer them will be investi-
gated in the following sections.
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Chapter 2

Background Methods

This chapter describes the different methods used in this project and is structured
into three sections. The first section describes the different recommendation ap-
proaches used within this project. The second section describes how these recom-
mendation approaches can be evaluated. Whereas the last section describes how
to approach user experience in recommender systems.

2.1 Recommendation approaches

211 SVD

Singular-value decomposition (SVD), which originates from linear algebra, is a
matrix factorization technique that factorizes a matrix into three other matrices,
see figure In the context of recommender systems the original matrix A is a
m X n user/item matrix, where m is the number of user rows and n is the number
of item columns. P is a m x r orthogonal matrix, X is a diagonal r x r matrix whose
values are sorted in a decreasing order and Q' is a n x r transposed matrix.

n r r n

I QT I

Figure 2.1: SVD - Matrix factorization



In recommendation systems, the SVD of a matrix discovers so-called latent fea-
tures. These features could for example, in the context of movie recommendation,
be thought of as the actors in the movies or its genre. However, it is not possible
to know for certain what these latent features are in SVD. The latent features are
represented in the matrices P and QT, where the values in P indicate how relevant
a latent feature is for a particular user, and values in Qf expresses how relevant
the latent features are for a given item. The values in matrix X are the weights for
each of the latent features, where a greater weight implies greater importance. As
mentioned earlier, the values in X are sorted so the greatest weights are at the left
topmost part of the diagonal matrix[13 p. 83]. An important property of SVD is
that it can produce a best approximation matrix with a lower rank than its original
matrix. This property is possible due to how the matrix X is sorted. The dimension
reduction is done by setting the lowest values in X to 0, essentially removing them
as they have no real importance due to their low values. Removing low values in
% also results in a simplification of matrix P and Q. This is known as low-rank
approximation, in which SVD has the property to always produce the best-rank
k matrix of the original matrix, where k in this sense also indicates the cutoff in
matrix Y. See figure which illustrates the approximation. Matrix B is in this
case a matrix with rank k and is the best approximation to the original matrix A
from figure which had rank r [14].

n

&TIK

k
K «—>

— > ‘_’kId

Figure 2.2: SVD - Low rank approximation

SVD in a recommendation context

One of the drawbacks of SVD is that the original matrix has to be dense, i.e. it must
not miss any values, in order to compute SVD on it. This drawback is especially
important when thinking of using SVD in the context of item recommendation,
since user/item matrixes in this context are often sparse, as users usually never
rate all of the items that are available. Therefore in this context, SVD can never
be computed in the traditional sense. Different approaches have been used to
overcome this obstacle, such as replacing the missing values in the matrix with
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zeros, this however skews the perception of how the user rates items due to zero
implying a strong dislike for an item. Another approach, which is based on the
best-rank k approximation property of SVD, states that the matrix which only
contains the users and the items they have rated, can be used to find the best rank
approximation of the matrix containing all users and all items. This reduced matrix
still has missing values as users often don’t rate the same items, hence SVD can’t
be computed traditionally. Instead of computing the SVD, this approach utilizes
learning to find the latent features in matrices P and QT for the known rating
values in the approximation matrix. Learning is possible, since users and items
can be represented as vectors q; and qy respectively. The dot product between the
two gives a predicted rating, see equation which can be held up against the
known rating value and the error can be calculated. As for the missing values in
the matrix, they are disregarded, as it is not possible to measure the error between
a missing value and a predicted rating.

?ui - %‘T *Pu (2.1)

In order to determine how far off the predicted rating is compared to the actual
rating, an error is computed, see equation An optimization method is then
used for minimizing the error between the predicted and actual rating. The SVD
algorithm used in this project utilizes the Stochastic Gradient Descent (SGD) opti-
mization procedure for minimizing the error[33].

ewi = 1y — qi" - pu (2.2)

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is as mentioned an optimization procedure,
where optimization is the process of finding parameters that minimize a cost func-
tion. SGD differs from Gradient Descent (GD) in the sense that SGD selects a single
random data point in the training set to approximate a gradient of the cost func-
tion, whereas GD uses the whole training set to get an exact gradient[30, p. 185].
Another difference between the two approaches is when a step is taken, namely
when the update of the parameters is performed. In GD the update is performed
after an epoch, i.e. a pass over the training set. However in SGD, a more itera-
tive approach is used by performing the value update after each training sample.
When applying SGD in SVD, it is used for finding the feature values p, and q;
that minimize the sum of squared error function In equation k is used to
denote the training set containing all the known rating values for each user/item
pair.

min(p,q) Z (rui — EliT : Pu)Z (2.3)
(u,i)ek
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In order to avoid overfitting and ensure a more general model, a regularization
term is introduced in the cost function, see equation The regularization term
penalizes the magnitude of feature values. The regularization parameter Lambda(A)
controls the extent of the regularization [13} p. 68].

min(p,q) ¥ (i = ai" - pul® + MIail P+ pul P .4
(u,i)ek
As mentioned earlier, SGD performs updates on the parameters in order to mini-
mize the sum of squared errors, and in the case for SVD there are two update rules.
An update rule is used for the user-feature value p, and the item-feature value q;,
see equations [2.5/and When an update is performed, it is done simultaneously
for both q; and py.

qi < qi+v - (eui - pu—A-q:) (2.5)

Pu = puty-(Cuiqi—A-pu) (2.6)

Gamma () denotes the learning rate, i.e. how big the steps are when moving
towards the minimum. The specified value of the learning rate is a balancing act.
A too low learning rate would increase the number of iterations required to get
to the best values, and a too high learning rate opens up for the possibility of
overshooting the best value. A consequence of a high learning rate is therefore the
possibility of never being able to converge. A is the regularization parameter which
is used for penalizing large values as they can have a too great contribution to the
predicted rating. Therefore with a regularization parameter, the update value is
decreased depending on how large the current feature value is[13] p. 84].

Ilustration of SVD

This section will illustrate each step performed in learning a SVD model for pre-
dicting ratings for a user. At first the values of the learning rate, epochs, etc. have
to be specified. The algorithm then takes a rating matrix as input, consider for

example table

User /Item matrix

Pizza | Chicken Salad | Fish Soup | Beef Stew
User-1 4 2 3
User-2 1 2
User-3 3 3 2 3
User-4 2 4 4

Table 2.1: User/item rating matrix
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First the matrices P and QT are initialized with arbitrary values, for the sake of this
illustration, the value 0.1 is used for initialization, see table 2.2]and

Matrix P
Feature; | Feature, | Features
User-1 0.1 0.1 0.1
User-2 0.1 0.1 0.1
User-3 0.1 0.1 0.1
User-4 0.1 0.1 0.1

Table 2.2: Matrix P initialized with the value 0.1

Matrix QT
Pizza | Chicken Salad | Fish Soup | Beef Stew
Feature 0.1 0.1 0.1 0.1
Feature, 0.1 0.1 0.1 0.1
Features 0.1 0.1 0.1 0.1

Table 2.3: Matrix QT initialized with the value 0.1

When P and QT have been initialized, SGD can be used to learn the best feature
values in both of the matrices. So for a given number of epochs, and for each
known ry; in the user/item matrix, the derivatives of the error function is calcu-
lated. Equation 2.7| shows the partial derivative in respect to the item and [2.8] in
regards to the user.

d 2 _

aqieuz =-2 Cui pu (27)
d

Seut = =2 ey i 2.
apa eui g (2.8)

When the derivatives have been computed, they are then used to update the

values of p, and q;, see equation 2.9]and

gi—v-(—2-eyi-pu) =qi+ 7 (eui- Pu) (2.9)
qi < qi +v - (eui - pu)

Pu—"1(=2-eui-qi) = pu+7-(eui-qi) (2.10)
Pu < Put+v- (eui ) ql)
An example of updating feature; in the first iteration is illustrated below. The
learning rate is set to 0.05 in the example. First a rating prediction is done for a
user, for this particular example a rating prediction is done for the item Pizza by
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user-3. After the prediction, the partial derivatives of the squared error is computed
followed by a simultaneous update to the vectors p, and gi. The vectors p, and g;
are updated with the values 0.1299 in the first iteration.

017 [0.1
eii=3—01]-101| =297
01| |01

3 [0.17

Teuﬁ:—z-z.w- 0.1

i 0.1]

3 [0.17

a—elli2:—2-2.97- 0.1

Pu 0.1]
[0.17 [0.17 [0.17  [0.02971  [0.1297]
gi < [01] +0.1-(297- [0.1]) = [0.1] + [0.0297| = [0.1297
10.1] 0.1 01]  10.0297]  [0.1297]
[0.17 [0.17 [0.17  [0.0297]1  [0.1297]
pu < |01 +0.1-(297-[0.1|) = |0.1| + |0.0297| = [0.1297
10.1] 0.1 01] 10.0297]  [0.1297]

When the algorithm is done learning all the feature values, i.e. it has run the
specified amount of epochs, a prediction can be made for the missing entries. Since
SVD is computationally a expensive procedure, in the sense that the model has to
be recomputed when new data is available, another approach to predicting ratings
is considered.

2.1.2 KNN

In this thesis a K-Nearest-Neighbours (KNN) algorithm is also used for predicting
item ratings for a user. The algorithm is based on user-user collaborative filtering.
Intuitively, the algorithm finds the k most similar users for a given user and then
computes a predicted rating. A similarity function is used to find the similarity
between user u and the rest of the users in the dataset. Each similarity value is
stored and the algorithm then selects the k most similar users to u for predicting
the rating value. A benefit of this algorithm is that it does not need to train a
model in order to do predictions. However, a drawback to this approach is a
high consumption of memory, relative to the dataset. Equation is used for
predicting a rating. Here sim denotes a similarity function, u is the selected user,

10 Chapter 2. Background Methods



and v is a user in the neighbourhood of u. The prediction function simply performs
a summation of all the similarity values multiplied with a rating value for all the
users in the neighbourhood, and finally averages over the similarity values. Using
a similarity function, ensures that rating values from users that are more similar to
u are given a greater weight in the rating prediction [17].

Y sim(u,0) - 1y
vEN}‘(u)

Y sim(u,0)

vENK(u)

(2.11)

Twi =

The algorithm is flexible in the sense that it can use different similarity functions,
but in this thesis the algorithm is set up to use the Cosine Similarity, see equation

212
2 Tui * Voi

i€l

2 rii' Z r'zz)i

iel,w ieluv

(2.12)

cosine_sim(u,v) =

In cosine similarity the two users u and v are considered as two rating vectors
(ry, ry) and the cosine angle of them depicts how similar they are. The cosine
similarity output of 1 indicates the vectors are similar, i.e. they are pointing in the
same direction, whereas closer to 0 indicates dissimilarity, see figure Cosine
similarity sums the multiplications of all the ratings of user u and v, where it treats
the missing values as 0. It then divides with the square root of each users squared
ratings multiplied. Treating the missing values as 0 ensures that only ratings users
have in common are considered.

Figure 2.3: Cosine Angle of two vectors
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Ilustration of KNN

The section will briefly illustrate how KNN predicts an item rating for a user. The
KNN illustration uses the same user-rating table as in the SVD example, see table
As the table is fairly small, the k for the algorithm is set to two. Meaning the
neighbourhood of the selected user consists of 2 similar users, of which a rating
prediction is made. This illustration will show the steps to predict a rating for the
item Fish Soup for user-1. The first step of the algorithm, is to go over the dataset
and compute the similarities in order to find the 2 most similar users to user-1.
The similarities are calculated for each user using cosine similarity. An example
calculation of cosine similarity between user-1 and user-3 is shown in equation [2.13]

(4-3)+(2:3)+(0-2)+(3-3) 27

= = 0.9005
VA2 22 402 432.4/32 432422432 29.9826

(2.13)

cos_sim(userl, user3) =

User-2 | User-3 | User-4
User-1 | 0.4982 | 0.9005 | 0.4951

Table 2.4: Similarities computed for user-1

The rest of the computed similarities for the illustration is listed in table Look-
ing at table [2.4] the 2 most similar users to user-1 are user-2 and user-3. When the
neighbourhood of user-1 has been found, a rating prediction can be made by using
equation Equation illustrates how the predicted rating for Fish Soup is
calculated.

o (04982-1) + (0.9005-2) _ 2.2992
“T (04982 +0.9005)  1.3987

= 1.64 (2.14)

The final result of predicting the rating for Fish Soup by user-1 using the KNN
algorithm with k specified as 2, results in a predicted rating of 1.64.
2.1.3 Bundle Recommendation

This section will describe the approach for generating bundles of items, in which
a bundle is defined as a collection of items. The approach to bundling food recipe
items is an algorithm from previous work [20].

Bundle Algorithm

The algorithm uses two functions for generating a specified amount of bundles.
The main function is Bundle One-By-One (BOBO), see algorithm (I} which con-
trols how many bundles are to be made. BOBO then calls the second function
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Pick_Bundle, see algorithm 2, which is used for generating one bundle at a time.

The algorithm in terms of functionality can be summarized into three parts:

1. Generating a list of items which the bundle algorithm uses as a starting point.

This part sorts the list of all available items based on popularity, meaning that
the items first in the list are the most popular.

. The process of selecting items to be added to a single bundle, using the
function Pick_Bundle(). Here several scores are calculated for adding an item
to the bundle. For example a score regarding the diversity of the bundle for
adding that specific item is calculated. The item which gets the highest total
score is selected and added to the bundle. This process continuously adds
items until the size constraint of the bundle has been met.

. Continuously generating multiple bundles until the number specified has
been met, using the algorithm BOBO. This part also performs the action of
removing items from the list of all items, so that the algorithm does not

duplicate bundles.

Algorithm 1 Bundle One-By-One

Input: I, Cgjze, number of bundles k
Output: a set k of bundles

Bundles < ©
Pivots <— DescendingSort(1,opop)
while | Bundles| <k do
w < Pivots|0]
Pivots < Pivots — {w}
B <« PickBundle(w, I, Cgize)
Pivots < Pivots — B

Bundles < Bundles U B
end

return Bundles

Chapter 2. Background Methods
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Algorithm 2 Pick_Bundle
Input: w, Cgize, I
Output: a bundle B

B + {w}

activeList < I — {w}

while B.Count < C;,, do
[ <= argmax; e activeScorey (B U {i})
B+ BU{i}
activeList < active — i

end

return B

Score metrics

In order to select which item is added to a bundle, several different score metrics
are calculated for each case of adding an item. These scores are summed up to a
total score and the item giving the bundle the highest total score is added. The
different score metrics used are: Diversity, Popularity and Estimated Appreciation.
In the subsections below, different equations are used to illustrated the intuition of
the various functions. The notation used in the equations is listed in table

I Refers to a given set of items

i Refers to an item i € I

j Refers to an item j € I

P | Refers to a package/bundle P, where P C I
S

u

Refers to a set of items

Refers to a user

Table 2.5: Notation used in equations for bundle score metrics

Diversity

The purpose of this particular score is to determine how diverse the bundle of
items are. An item which is not similar to the items already in a bundle would
get a higher score and thus a higher chance of being added to the bundle. The
function Intra-Package Diversity (IPD) is used for calculating the diversity of the
bundle, see equation [2.15

~ Yijepl—sim(i,j)

IPD(P) = P (2.15)

14 Chapter 2. Background Methods



i and j denote two items and P is a particular bundle. IPD is a simple function
that calculates the pairwise distance between the items in the bundle and then
averages with the number of items in the bundle. The similarity (sim) measurement
currently used in the algorithm is Jaccard similarity, which considers each recipe
as a set and the members of the set as ingredients. Jaccard similarity is formally
defined as the intersection between two sets divided by the union of them, see
equation A threshold value 7 is also specified, in which the value is set to 0.5.
This means that if the output of jaccard similarity function is less than 0.5, then the
two sets are not considered similar.

_ |SiN Sj’
IRETE]

J(S;,S5) (2.16)

Popularity

The popularity of an item is based on how often it has been rated by users (pop).
The popularity score of a single item is calculated using the Overall Popularity
(opop) function, see equation 2.17]

: pop(i)
opop(i) maxerpop() € [0,1] (2.17)
The opop function is then extended to calculate the overall popularity of the bundle
instead of just a single item, see equation The function sums up the overall
popularity of all the items in the bundle and then takes the average.

opop(P) = Ziepﬁf‘op(i) € 10,1] (2.18)

Estimated Appreciation

The estimated appreciation (eapp) is a personalized score, used for calculating
how interesting an unrated item is for a user. The function is based on an item-
item collaborative filtering approach, see equation Eapp is calculated for the
selected item i, and j is an item already rated by the user u. Similarities are then
computed for item i and the various items j and multiplied with the rating of j
given by user u and finally the value is divided by the similarity.
Yies, ratingu(j) x sim(i, j)
ea i) = : e (2.19)
ppa(i) Yjes, sim(i,j)

Equation is also extended to estimate the interest a user would have in the
bundle, see equation [2.20]

eappu(P) = Ziepﬁ,’fr’”(i) € [0,1] (2.20)
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Metric weights

As each of the four metrics mentioned above has an influence on which items are
added to a bundle, it is possible to introduce a weight for each of the metrics. The
weights can therefore be used to specify different types of bundling algorithms.
An algorithm focusing heavily on diversity would produce bundles with more
diverse items, but might suffer in regards to personalization or popularity. The
score function with weights can be seen in equation which sums the scores
from the four metrics into a total score for a bundle.

Scorey(P) = Ceapp X eappu(P) + Copop X 0pop(P) + Cgiy x IPD(P) (2.21)

The different weights for each metric is represented as C which is a simple coef-
ficient, where a higher coefficient therefore denotes a higher importance for the
algorithm.

2.2 Evaluation Metrics

This section will briefly describe the evaluation metrics used in this thesis. The
metrics are used for two different cases, one being a recommender system pre-
dicting what rating a user u would give an unrated item i. The other is to find
the most interesting item for a user, i.e. recommending items that a user would
actually use[13, p. 42].

2.2.1 Mean Absolute Error

Mean Absolute Error (MAE) is used for evaluating rating predicting systems.
Equation illustrates the intuition of MAE. The term § denotes the predicted
rating by the recommender system and y denotes the actual rating value given by
a user. The result given by MAE can then be used to determine how accurate the
recommender system is, in terms of rating predictions.
Xyl
j=len
n

MAE = (2.22)

2.2.2 Precision and Recall

Precision and Recall are two metrics used in the case of recommending useful
items to a user. In this case there are four possible outcomes, see table These
outcomes occur when a system recommends an item and the user either uses
the item(true-positive), i.e. its a good item, or the user won’t use the item(false-
positive), i.e. its a bad item. Two other outcomes are when the recommender
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system does not recommend a good item(false-negative) and when it does not rec-
ommend a bad item (true-negative). The precision of the recommender system is
based on how many good items are recommended out of all recommended items,
see equation Recall on the other hand is based on how many good items were
recommended out of all good items available, see equation m

Recommended | Not recommended
Used True-Positive (tp) | False-Negative (fn)
Not used | False-Positive (fp) | True-Negative (tn)

Table 2.6: Possible results of item predictions [13} p. 275]

#tp

PreciSiOTl - m (2.23)
__ fitp
Recall = m (2.24)

2.3 User experience of recommender systems

Early on, recommender evaluation was typically focused on improving the algo-
rithms in regards to e.g. accuracy and precision. These metrics are indeed impor-
tant in order for a recommender to be successfull. However, around the year 2005
different articles were published which address the importance of viewing a rec-
ommender system as a whole[21]. The view here is that recommenders should be
seen in terms of how they support and interact with users. This means that, among
other things, the way the user interacts and receives information must be consid-
ered along with the users motivation and perception of the system. These are the
three key areas identified in the framework designed by McNee et al. where each
contains subcategories [21]. More recently, additional frameworks have appeared,
which are more focused on the evaluation of recommender systems. Whereas Mc-
Nee et al.’s framework is meant as a design guide. Among the newer frameworks
are Pu et al. [28] and Knijnenburg et al [19]. These two frameworks are somewhat
similar in the categories they identify as important in evaluating a recommender.
Pu et al. identifies 4 higher level categories as: the perceived system qualities,
users’ beliefs, their subjective attitudes, and their behavioral intentions [28, p.158].
Knijnenburg et al identifies 6 areas, where most are similar to Pu et al. expanding
with the areas of personal characteristics and situational context. In the user study
performed in this project it was decided to follow the framework developed by Pu
et al. as this framework is used in a paper related to this project[7]. The framework
of Pu et al will therefore be further detailed in the following section [2.3.1}
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User Perceived Quality User Beliefs User Attitudes Behavioral Intentions
Recommendation Accuracy | Perceived Ease of Use | Overall Satisfaction | Use Intentions

Recommendation Novelty | Control Confidence & Trust | Purchase Intentions
Recommendation Diversity | Transparency

Interface Adequacy Perceived Usefulness

Explanation

Information Sufficiency
Interaction Adequacy

Table 2.7: ResQue Framework[28]

2.3.1 ResQue framework

Pu et al. has developed the framework: Recommender systems’” Quality of user
experience(ResQue). This framework is based on existing work within the field of
recommender evaluation, usability and user experience in general. The goal is to
unify the work within user experience evaluation of recommender systems. The
framework identifies four key evaluation areas of recommender systems where
each have sub constructs describing them. In total 15 constructs are identified, see
table

Initially different candidate questions are identified to measure these constructs.
These initial questions were reviewed in a pilot study and by experts in the field
in order to prune and modify questions. The questions were evaluated in a two
month study with 239 participants in order to do a statistical evaluation of the
questions reliability and validity. For measuring the reliability of the questions on
the same constructs, Cronbach’s alpha is used. After several iterations of remov-
ing and combining constructs they reach Cronbach’s alpha values of « > 0.5 for
all constructs. Where most achieve values of « > 0.7 which indicates acceptable
internal reliability. For measuring the validity of the questions, factor loading was
used. Here they find a correlation values > 0.5 with the lowest being 0.699 which
indicates a strong correlation between the questions and the constructs.
In the end the result is a well evaluated framework presenting 15 constructs and
32 questions for evaluating the important aspects of a recommender system. Ad-
ditionally, they also present a short version of ResQue. Here they state that instead
of applying all 32 questions, 1 from each construct can be used for a short version
of the framework[28]].
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Chapter 3

Implementation

Based on the presented background methods, a bundle recommendation system
was implemented. The purpose of the system is to recommend healthy bundles
to users based on personal preference. This chapter first describes a web crawler
used for expanding the existing dataset. Following this is a description of the
implemented health score. Lastly, the implemented bundle and recommendation
algorithms are presented. The code for all implementations, except the web appli-
cation and database can be found in appendix

3.1 Ingredient crawler

Due to the scope of this project, a dataset of ingredients was needed to evaluate
the healthiness of recipes and thereby bundles of recipes. From a previous imple-
mented crawler, made by the authors of this project [20], a dataset was collected
containing both users, ratings and recipes. In order to add nutritional information,
a new crawler was constructed and fine tuned to crawl the site Epicurious.com.
The scripting language Python was used to write the crawler using regular expres-
sions to match ingredients to categories. Regular expressions are made available
in python through a module called re. re makes it possible to define a set of rules
for strings given as input based on the theoretical concepts of regular expression.
To match a string such as "1/4 cup tomato" the following regular expression [3.1]is
used.

matchObj = re.match(v'(.x)cup(.x)’, ingredient) (3.1)

To initialize the code above, the crawler loops through the HTML code containing
ingredients for a given recipe. Each line in the HTML is then given as input to
the expression as a variable ingredient. Each ingredient element is then compared
to multiple regular expressions similar to the one above, but with different weight
parameters such as cup, ounce and pound. Once a match is found, which in this
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case is for the parameter ‘cup’, the regular expression looks for a left and right
side match group of the word "cup’. This is expressed in python using parenthesis
around the regular expression. To gain a match on any combination of characters
or integers the signs ".* is used as the parameters. The dot(.) stands for any char-
acter or integer and the star(*) stands for zero of more occurrences. As a result
matchObj will be assigned two match groups which in this case will be "1/4" as
the first group and the second being "tomato’. This makes it possible to use the
first element as the amount, and the second element as the ingredient name. If
an ingredient is not within our saved list or the pattern doesn’t match a regular
expression, the ingredient will be saved in a separate file for failed matches. This
file will then be used to manually update the ingredient list before a new iteration
takes place.

With the script capable of collecting strings defined as ingredients in the HTML
source code, classification was needed to transform a string into a pre-categorized
ingredient. This was achieved with a predefined “accepted ingredient list”. The
list was based on data from the Danish Technical University (DTU) [32], where
common danish ingredients were weighted and named. The list was translated
into English and standard ingredient weights were manually defined, such that,
e.g. 1 tomato weighs 75 grams. Additionally, different measurements such as cup
and tablespoon were translated to grams. It was then possible to make continu-
ous lookups, looping over each recipe and its ingredients. By taking the tomato
example, the match groups (1/4) and (tomato) are identified. A cup of tomato is
estimated to weigh 200 grams, so 200/4 = 50 grams which is added to the database
as the amount of tomato within that particular recipe.

The result of the script was a list of ingredients along with the required amount
for each recipe and attached category values based on the location within the food
pyramid.

Another approach for categorizing ingredients would be to use an information
retrieval algorithm, such as the Porter Stemming algorithm[25]. The algorithm
works by indexing words based on predefined rules. The benefit of this algorithm
would have been that ingredients such as Chickens, Chicken and Chicken wing,
would all have been identified and indexed in a single category; Chicken, if the
correct rules were in place. The rules are based on words(stems) and affix(suffix).
The stems are the index word you wish to keep, whereas the suffix is something
following the stem that can be changed or removed. A simple rule for removing
the last 's’ on any word would be s — € such that chickens — chicken. However
our main problem is not in the indexing of ingredients but in the calculation of
ingredient weights. Therefore, the algorithm was not implemented.
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3.2 Health score

For developing a health score in this project it was decided to base it on the most
well known nutritional guide in Denmark, the food pyramid.

3.2.1 Food pyramid

The Danish food pyramid was first seen in 1976. Since then many revisions have
been made, where the latest is from 2011. The food pyramid illustrates how to
combine foods in order to achieve a healthy diet[5].

N
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- 0
Overste top 2 % Okse/lammekod 57 °

Svinekod 13 %, lever 3 % > Top 13 %
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Figure 3.1: Detailed food pyramid [18]
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During development of the health score, several question arose of how to interpret
the food pyramid to a single score. When looking at the detailed food pyramid,
2 different ways of dividing it can be identified, see figure The first one di-
vides the pyramid into 4 sections: "Overste top 2%" (Upper top), "Nederste top
11%"(Lower top), "Midte 44%" (Middle), and "Bund 43%" (Bottom). The second
approach, is to divide the pyramid into the 23 different food categories. Both of
these divisions were investigated. Using all 23 food groups for a health score could
be useful when calculating a full weeks food plan. However, meals would almost
never contain all 23 food groups making this approach unsuitable for individual
meals. Therefore, as the scope of this project is to only consider dinner meals, this
approach was not be followed. Now, the only thing remaining was that the food
pyramids proportion guidelines is based on weekly intake. As such, it was decided
to look at how the food pyramid could be adjusted to consider an individual meal.
Here the healthy eating plate was found as a solution.
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3.2.2 Healthy eating plate

4 &
HEALTHY EATING PLATE
)

Use healthy oils (like
olive and canola oil)
for cooking, on salad,
and at the table. Limit
butter. Avoid trans fat.

ATER Drink water, tea, or coffee
(with little or no sugar).
Limit milk/dairy

(1-2 servings/day) and
juice (1 small glass/day).
Avoid sugary drinks.

The more veggies -
and the greater the
variety - the better.
Potatoes and French fries

Eat a variety of whole grains
(like whole-wheat bread,
whole-grain pasta, and

don't count. brown rice). Limit refined
HEALTHY grains (like white rice
Eat plenty of fruits of all PROTEIN sl el
colors. Choose fish, poultry, beans, and
nuts; limit red meat and cheese;
O avoid bacon, cold cuts, and
& STAY ACTIVE! other processed meats.
© Harvard University
5] Harvard T.H. Chan School of Public Health Harvard Medical School fzieiy
The Nutrition Source Harvard Health Publications .«‘&f
www.hsph.harvard.edu/nutritionsource www.health.harvard.edu

Figure 3.2: Healthy Eating Plate [24]

The healthy eating plate was created at Harvard school of public health, and is
meant as a guideline for eating balanced meals, see figure The key points of
the healthy eating plate are as follows[24]:

e Make most of your meal vegetables and fruits — 1/2 of your plate

¢ Go for whole grains — 1/4 of your plate

Protein power — 1/4 of your plate

Healthy plant oils — in moderation

Drink water, coffee, or tea

Stay active

These recommendations for a single meal, can be used to readjust the food
pyramid to better represent a single meal. This was done by translating the healthy
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eating plate to the categories of the food pyramid. The bottom of the food pyramid
can be seen as the equivalent to the vegetable section of the healthy eating plate.
As such the proportions here are changed from 0.43 to 0.5 as in the healthy plate.
The middle of the food pyramid can be seen as the whole grain section of the
healthy eating plate, and thus the middle is readjusted from 0.44 to 0.25. The two
top sections of the food pyramid then has to account for the last 25% of the healthy
eating plate. This comes to readjusted values of top 1 from 0.02 to 0.0385 and top
2 from 0.11 and 0.2115, see table 3.1

‘ Original food pyramid Recalculated food pyramid

Top 1 0.02 0.0385
Top 2 0.11 0.2115
Middle | 0.44 0.25
Bottom | 0.43 0.5

Table 3.1: Recalculated food pyramid

Now, in order for this re-calibration to still confer with the food pyramid, the
remaining meals of the day must then be assumed to contain more from the middle
of the pyramid, less from the top and slightly less from the bottom. This can also
fit with the danish food culture, where breakfast generally consists of either bread,
cereals, milk-products or fruits as found by [10, p.21] and [8, p.23]. These foods are
all considered as the middle category. For lunch the biggest food is rye-bread with
toppings followed by fruits and vegetables on the side [8} p.25]. These foods belong
with the middle and bottom of the pyramid. With a small amount belonging to
the top, as the toppings typically are cold cuts of meat. For snacks throughout
the day fruits are the biggest category followed by different types of bread and
biscuits/cookies [8), p.28-29] which all belong to the middle category.

So in summation, throughout the day most snacks and meals for an average
dane are coming from either the middle or bottom of the pyramid with a small
section from the top, mostly in the form of cold cuts. The recalculation of the food
pyramid in regards to dinner meals makes sense in having increased the amount
of meat allowed and the decrease in fruit, breads and dairy products as this is
typically covered through the day.

As the recalculated health score is only based on assumptions both the original
proportions and the recalculated will be pursued throughout the implementation.

3.2.3 Health score function

With these considerations and assumptions made for the food pyramid, it still
needed to be represented by a function in order for it to be usable. This function
should take the different proportions of a recipe as input and then output a single
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score bounded between 0 and 1 to indicate the healthiness of the recipe.

The health score is implemented by using two different linear functions for each
of the four different sections of the food pyramid. Each section uses two functions,
one for calculating below the optimal and one for above Here is an example
shown of the bottom score. The red graph scores proportions below the optimal
and the blue scores proportions above. Choosing the correct function is ensured
in the implementation. Additionally, the score is also rounded to zero in case
of minus values. Pseudo code for the entire health score algorithm is shown in

Algorithm 3| below.

-
--

2xx+0
2*xx42
1.5
E 1 Optimal
0.5
0
0 0.2 04 0.6 0.8 1

Figure 3.3: Health score graph for bottom proportion where 0.5 is optimal

The algorithm simply works by summing the 4 section scores and taking the mean.
The algorithm it self calls 4 other functions to calculate the individual proportion
scores. An example of such a function can be seen in Algorithm |4/ below. This
algorithm simply checks which function to use for calculating the proportion score.
Whether greater or smaller than the optimal value. Lastly it rounds to zero in
case of a negative value. The scores for the remaining proportions (middle, topl
and top2) use the same algorithm as the bottom score, Algorithm [4, with changed
functions to fit the optimal proportions appropriately. See appendix|Dfor all health
score functions.
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Algorithm 3 CalculateHealthScore
Input: Recipe
Output: HealthScore

HealthScore < (CalculateTop1Score(Top1Proportion) +
CalculateTop2Score(Top2Proportion) +
CalculateMiddleScore(MiddleProportion) +
CalculateBottomScore(BottomProportion))/4;

return HealthScore

Algorithm 4 CalculateBottomScore
Input: BottomProportion
Output: BottomScore

if BottomProportion > Optimal Proportion then
| BottomScore <— —2 % BottomProportion + 2

else
| BottomScore < 2 x BottomProportion

end

if BottomScore < 0 then
|  BottomScore < 0

end
return BottomScore

3.3 Bundle Recommendation - adjustments

This section will describe what changes have been made to the bundle algorithm
mentioned in chapter 4l The main adjustments to the bundle algorithm is that we
introduce a health parameter to compute the healthiness of the bundles. Secondly,
we use a trained SVD model to provide a list of top rated items for a given user
instead of using the most popular items as in the previous version of the algorithm.
So instead of using a sorted list of items based on popularity, the algorithm now
uses a personalized list of items provided by a SVD recommender.

Health

One of the new adjustments that has been done to the algorithm is the inclusion
of a health metric. This health metric is based on the approach in section [3.2.3]
for calculating the healthiness of a recipe. This health property is based on the
proportions of a recipe instead of its nutritional contents. The optimal proportions
are based on the food pyramid. This is implemented by calculating the optimal
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proportions for a bundle instead of just continuously adding recipes with the best
proportions to the bundle. This is due to how a bundle in this project represents
a weekly dinner plan, hence it fits well with the recalculated health score as it
is based on dinner meals. Since the health property is utilized for the bundle
and not just a single recipe, the proportions of a bundle is defined as the sum
of proportions of all the recipes in the bundle. The health function used in the
bundling algorithm therefore tries to select the recipes whose proportions best fit
with the recipes already in the bundle in order to make the proportions of the
bundle as close to the optimal as possible, see algorithm (3l A high health score of
a bundle thus denotes a bundle whose proportions are close to the optimal. The
proportions is as mentioned based on the food pyramid, meaning it is based on
the pyramids four parts: Top 1, Top 2, Middle, Bottom. The four proportion parts
of a bundle is defined in the equations: In the equations P denotes
a bundle and amount denotes the amount of ingredients.
Y icpamount € Topl

Top1Prop(P) = Y.icp amount € Topl, Top2, Middle, Bottom (3:2)

Y icp amount € Top2
Top2Prop(P) = 33
op2Prop(P) Y .icpamount € Topl, Top2, Middle, Bottom 5:3)

. B Y icpamount € Middle
MiddleProp(P) = Y iep amount € Topl, Top2, Middle, Bottom (34)

Y icpamount € Bottom
BottomProp(P) = ’
ottomProp(P) Y icpamount € Topl, Top2, Middle, Bottom (-5

With the proportion parts of a bundle described, a score for each part can be
computed. The proportion score computed for each part is using algorithm
described in section Finally when the proportion scores for each part is
calculated, a final health score for a bundle is computed. The health score for a
bundle is calculated using equation

_ Top1Score(P) + Top2Score(P) + MiddleScore(P) + BottomScore(P)
B 4

health(P)
(3.6)

With the introduction of a health parameter, the bundle algorithm requires an
update to the total score function. Equation 3.7is the new score function used in
the bundle algorithm which considers the healthiness of the bundles.

Scorey(P) = Ceapp X eappu(P) + Copop X 0pop(P) + Caiy X IPD(P) 4 Chealtn X health(P)
(3.7)
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3.4 Recommender

The following section covers the design and implementation of the algorithms SVD
and KNN used within this project to provide predictive ratings between users and
dinner recipes. As an essential part of generating bundles, the rating scores for a
given user and all dinner recipes had to be calculated. The reason being, that the
bundle algorithm bases its bundle creation around the recipes which received the
highest predicted rating for a given user.

In order to decrease the sparsity of the dataset, the design and implementation
of the SVD algorithm in this project relies on previous discoveries of how ratings
for recipes can be predicted using ingredients [20]. Here it was discovered that it is
advantageous to use the fact that a few ingredients can represent many hundreds
of recipes, see figure Disassembling recipes to ingredients showed a slight
decrease in accuracy. However, sparsity was greatly reduced, compared to relying
on the recipes alone.

Recipe, Recipe,
ratings ratings
Foodl Food2 Food3 Food4 Food5S
Break down phase: Reconstruction phase:
Transfer ratings from Transfer ratings from
Recipe to Food Items Food items to Recipes

Figure 3.4: Recipe to ingredient model [20]

Users within the dataset had on average rated 2.34 recipes compared to an average
of 15.59 ingredients. The total sparsity were therefore reduced from 99.76% down
to 89.88% when looking at rated recipes compared to rated ingredients with dinner

tag, see table

Rated with dinner tag | Ingredients | Recipes
Total amount 154 971
Total Rated Amount | 14049 2113
Users 901 901
Sparsity 89.88% 99.76%

Table 3.2: Sparsity of dinner recipes
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Based on this knowledge and the pros and cons of this design approach, a func-
tion was constructed to handle the disassembling and reassembling of recipes in
dataset. Recipes are disassembled to ingredients before they are given to the SVD
algorithm as input. The ingredients are then assembled back to recipes when the
SVD model has been trained.

The implementation was made using the programming language Python. Python
is one of the most popular programming languages, for machine learning, with a
lot of frameworks available [29] p. 13]. The SVD and KNN algorithm used within
this project is implemented using the Surprise framework by Nicolas Hage[16].
The framework was chosen for the project as it was possible to reuse previous
made code for predicting recipe ratings, as this framework was also used within
the previous work.

It was however necessary to extend upon previous work and implementations
as no online version of the previous implementation was tested. When imple-
menting the SVD algorithm within an online system, where new users emerge and
ratings are continuously provided by users, problems such as computation time,
updating training data and unknown users arose. To tackle such problems KNN
were decided as the algorithm to handle new users who had yet to be part of the
trained model. If a new user requests a bundle the API calls to the recommender
will automatically switch to KNN in order to locate a similar existing user within
the system.

3.5 Web Application

Beside the implementation of the bundle algorithm, healthscore and predictive rat-
ing algorithms KNN and SVD, a web application has been designed and deployed.
The web application was made in order to combine different aspects of a recom-
mender into a functioning system and thereby be able to further understand the
healthy food domain within the context of recommender systems. For the imple-
mentation of the web application the Angular 5 framework was used to provide the
frontend where users can navigate and interact with the generated food bundles
[15].

The Angular 5 framework facilitated rapid development and test of our com-
bined solution as it provides the tools to build a modern and responsive web ap-
plication using TypeScript and HTML. Besides Angular 5, bootstrap 4 is used, as
the main styling reference throughout the application. Bootstrap 4 makes the ap-
plication look modern with layout styles easy to recognize by users, from other
applications around the web [26]]. The web application layout can be found in Ap-
pendix [Al The layout of the application follows a recognizable pattern seen from
services like Netflix and Facebook. A menubar is in the top of the browser en-
abling you to navigate between pages, see In order to use the system, a user
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has to create an account and login using the details provided upon creation, see
Once logged in, a new user is presented with a rating page and a random
selected recipe, which has to be rated on a scale between 1 and 4 stars. 1 star sym-
bolize a negative preference for the recipe and 4 stars symbolize a strong positive
preference for the recipe. The user has to rate 10 random selected recipes in order
to navigate to the next and final part of the web application, which is the bundle
recommendations. Bundles can within the system be viewed in three different lay-
outs, either as a Pie List[A.3]or Grid Common for all of them, is that they
follow the same 4 star rating system as used when a user first logged in. This is
done to provide a certain familiarity in the way bundles are represented as the user
now receives much more information compared to individual recipes. The three
different layout styles are selected based on the paper [7].

The entire frontend is deployed through Google Firebase, which is part of the
Google cloud solution. Firebase Hosting, enabled us to freely host our web appli-
cation as it provides a deployment package for Angular projects. Besides Firebase
Hosting, the application needed support for user profile creation and authentica-
tion. To avoid coding this our selves, it was decided to use Firebase Authentication.
Through the Firebase Authentication API, our web application is capable of creat-
ing and authenticating user profiles and assign them with a unique user ID. The
ID is then linked to the database where all data about recipes ratings and existing
users are stored.

Besides Google Firebase, services such as Microsoft Azure and pythonEverywhere.com
is part of the application architecture as well. This is due to different payment plans
on the services, making some services more beneficial than others for certain tasks.
The Microsoft Azure service was used to host a server with API's communicat-
ing with a database for retrieving and inserting data. The Microsoft Azure server
was also used to employ a API using the bundle algorithm in order to provide the
front-end with bundles. PythonEverywhere.com was used to host and deploy the
entire SVD and KNN recommender implementation. As with the Microsoft Azure
APT’s, the recommender implementation also rely on a REST architecture to ensure
clear communication between the different services [22]. An overall application ar-
chitecture can be seen in figure
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Chapter 4

Evaluation

Besides the implementation of the entire food recommendation system, each part
of the bundle recommendation is evaluated individually. This chapter will describe
the offline evaluations done on SVD, KNN and the bundle algorithm. Finally, the
conducted user study is described. Each part starts with a explanation of how the
testing was done followed by the results.

4.1 Offline Testing

411 SVD/KNN

In order to test the accuracy of the chosen recommendation algorithms SVD and
KNN, offline tests was conducted. The tests were conducted using 5-fold cross
validation. 5-fold cross validation works by dividing the data into 5 equal sized
folds, namely 20% each. Each of these folds are then used as a test fold on a model
which is trained on the remaining 4 folds (80%). The benefit of this approach
is the ability to use all data for both testing and training to ensure that a given
accuracy is not acquired by randomness due to a given fold. Since the model used
for our recommendation is based on ingredients and not recipes, the dataset had
to be prepared before a 5-fold cross validation could take place. This is due to
no explicit ratings being available for the ingredients. It is therefore necessary to
compute the folds of 20% test and 80% training data before disassembling recipes
to ingredients. There will however be some overlap in ingredients due to several
ingredients being part of multiple recipes, see figure This should be avoided, as
recipes from the training set can influence the ingredient ratings in the test set and
thus skew the results of the test. To overcome this obstacle we decided to remove
all explicit ingredient ratings from the training set for overlapping ingredients.
The predicted recipe ratings is then achieved by only summing up the predicted
ingredient ratings and taking the mean.
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The approach to the offline testing can be summarized in four main parts, as illus-

trated in figure

1. First the test fold and training fold is calculated for all users within the
dataset to ensure that each user gets a 20% test fold and 80% train fold. Each
users data is fetched individually and then divided into folds. Once every
users rated recipes are divided, the disassembling into ingredients begin.

2. Ingredients are fetched for the recipes within the training set and given as
input to either the SVD or KNN algorithm. The input format is (User ID,
Ingredient ID, Rating Value). Based on this, a matrix is constructed and
ingredient ratings are predicted.

3. The test fold consisting of rated recipes, is now scanned to identify the ingre-
dients needed within each recipe.

4. Once a list of ingredients for each recipe within the test fold is created, a look
up is made in the trained model of user ingredients, which is outputted from
the SVD or KNN algorithm in step 2. The recipes are then assembled and the
predicted rating for each recipe is calculated.

Once the four steps are completed each predicted recipe rating from the test set is
compared to it’s original rating given by users.

SVD Offline testing

The parameters of the SVD used within the application and for offline testing are
as follows. The epochs, in which SGD is iterated, is set to 20 and 30 to test both
values. The learning rate is set to 0.005, whereas the regularization parameter is
set to 0.02 and the number of features within the SVD is kept at it’s default which
is 100.

The evaluation of the SVD algorithm is as mentioned done using 5-fold cross val-
idation. Each fold is then iterated 10 times, to get an MAE for each iteration. The
results for each fold and it’s iterations can be seen in table 4.1 for 20 epochs. The
results for 30 epochs can be seen in appendix [C} Based on the two tests, the 20
epochs is found to be superior with an MAE of 0.7238 compared to 0.7524. Even
though a promising result for SVD had been found, it was deemed necessary to
test KNN as well.

KNN Offline testing

Whereas the SVD algorithm is iterated 10 times for each fold, the evaluation of
KNN is only run once for each fold, this is due to no learning function being
present in KNN. The results are therefore static. It is however possible to change

Chapter 4. Evaluation 33



SVD - epochs = 20
20 epochs | test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10
Fold 1 0.6249 | 0.6289 | 0.6227 | 0.6238 | 0.6242 | 0.6239 | 0.6247 | 0.624 0.6235 | 0.6236
Fold 2 0.6539 | 0.6554 | 0.6532 | 0.6532 | 0.653 0.656 0.6543 | 0.6517 | 0.6552 | 0.6535
Fold 3 0.9917 | 0.9897 | 0.9883 | 0.99 0.9935 | 0.9919 | 0.9895 | 0.9881 | 0.9889 | 0.9892
Fold 4 0.7208 | 0.7235 | 0.7205 | 0.7191 | 0.721 0.7203 | 0.7198 | 0.7205 | 0.7213 | 0.7208
Fold 5 0.6313 | 0.6301 | 0.6281 | 0.6291 | 0.6305 | 0.6318 | 0.6286 | 0.628 0.6277 | 0.6296
MAE 0.72452 | 0.72552 | 0.72256 | 0.72304 | 0.72444 | 0.72478 | 0.72338 | 0.72246 | 0.72332 | 0.72334
Average MAE: 0.7238

Table 4.1: SVD results epochs = 20

KNN(k-max=10, k-min=1) Results
Fold 1 Fold 2 Fold 3 fold 4 Fold 5
0.6196 0.6193 1.0032 0.7512 0.7263
Average MAE: 0.7438

Table 4.2: KNN results k-max = 10

the max k and min k parameter for KNN, which defines how many neighbors the
algorithm should take into evaluation. KNN will therefore be tested with different
k values to see which derives the best possible result.

The first test of KNN was run with a value of k-max = 40, see appendix |C} as
this is the default value in the Surprise framework. The second evaluation was ex-
ecuted using a smaller k-max value of 10. A last KNN test was done using k-max
= 23, see appendix [C| The value of k-max = 23 is chosen as it is the square root of
the number of users, which is a common default value of K [29, p. 91].

Based on the offline testing of SVD and KNN the MAE comparison between the
two algorithms shows that SVD computes the lowest MAE score, indicating best
accuracy. The best SVD score was found to be 0,7238 with epochs = 20, see table
4.1, compared to the best KNN MAE of 0.7438, see table 4.2.

4.1.2 Bundle algorithm

In order to measure the performance of the bundle algorithm, an offline exper-
iment was conducted. Since offline testing isn’t conducted with real users, an
existing dataset containing users, recipes and ratings were used. Different versions
of the bundle algorithm are tested, where each version of the algorithm is defined
by the weights of the parameters Popularity (Pop), Estimated Appreciation (Eapp),
Diversity (Div) and Health. In total 11 versions of the algorithm are tested. Gener-
ally there are 3 different categories of weights as shown below.
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e Maximum weight for each of the parameters.
e Parameters weighted equally.

e Two parameters given maximum weight e.g. health+diversity is weighted
highly.

The performance of the algorithm is also tested based on the returned number of
bundles, where the number varies between 5, 10 and 15. The performance metrics
used to evaluate the algorithm are precision, recall, diversity and health. Precision
measures how the algorithm performs in regards to selecting relevant items in
its recommendation. Recall measures how many of the users relevant items are
selected in the recommendation [13, p. 283-284]. Diversity is measured as well,
since it is considered a good quality in recommendation lists [13, p. 316]. The
diversity measures how dissimilar the items are in a bundle. The diversity metric
is calculated using Mean Intra-Package Diversity (MIPD), see equation Here k
is the number of bundles recommended to the user. The health metric is used
to measure which algorithms recommend the most healthy bundles, based on the
recalculated food pyramid health score. The health metric is calculated using Mean
Health (MH) which is a simple average of the health scores, see equation

K .

diversity = MIPD(Py, ..., P;) = lel;:D(PZ) (4.1)
k ,

health = ME(P,, ., P,) — Zi=L¢ath(P) (4.2)

k
Since the metrics precision/recall require true ratings to determine relevant / not
relevant items and the dataset mainly contains users with 1-3 ratings, a decision is
made to only select the most active users. An active user in this case is considered a
user who has rated 7 or more recipes, thus 65 users are used for the offline testing.
The number of recipes used for the offline test is 404, hence many of the recipes
are still unrated by users. An unrated item can possibly be, either a relevant item
or irrelevant item. Since the quality of an unrated item can’t be determined, it
is disregarded in the calculation of precision and recall [13, p. 283]. This means
that only items with a true rating (either relevant or irrelevant) is considered in the
precision/recall calculations. An item is considered relevant for a user if it has a
rating greater or equal to 3, otherwise it is considered irrelevant.

Bundle algorithm - Results

The testing results of all the different bundle algorithm versions are reported in
the tables and Each version of the algorithm can be compared to each
other according to precision, diversity, recall and health. Across all three of the
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different k (5, 10, 15) the diversity is reported to be relatively high ranging between
62-74% in every version. It is obvious the the version weighting diversity highly
performs best in this regard. However, it is interesting to see when weighting
other parameters highly that the diversity still remains relatively high. In the case
when k is 5, the highest drop in diversity is 11.46%, between the versions Div and
Health+Pop. In regards to precision however there are considerable differences be-
tween versions. Especially when k is 5 several versions report a low precision with
a value ranging from 52-58% whereas the best performing version, precision-wise,
is Health+Eapp at 72.44%, which is roughly a 20% difference. When increasing k to
10 and 15, the precision goes up to a range between 76-86%. The best performance
in terms of precision is reported when k is set to 15 and popularity is weighted
highly, see version Pop and Div+Pop. Another finding in regards to popularity is
the level of healthiness. When popularity is weighted highly in the algorithm, the
findings report the lowest levels of healthiness across all three k’s. This result can to
some extent confirm the assumption that users go for more unhealthy food, since
the popularity of a recipe is defined as the number of times it has been rated. As
for recall, the value increases when the number of recommendations is increased.
All versions of the algorithm which include the health parameter have the best
performance in regards to recall when k is 15. The results of the tests give indica-
tions that weighting health highly is a viable option. There is expected to be some
trade-offs when weighting one metric over another. When weighting health highly,
small drops in precision and diversity are expected, but at the benefit of increased
healthiness.

k=5

Precision(%) | Diversity(%) | Recall(%) | Health(%)
Equal 70.86% 67.99% 27.46% 53.60%
Div 68.82% 74.31% 26.37% 45.23%
Eapp 70.31% 68.03% 27.46% 52.34%
Pop 52.30% 69.42% 23.97% 33.30%
Health 69.87% 65.67% 15.39% 74.79%
Health+Div 70.39% 67.96% 15.34% 73.37%
Health+Pop 59.32% 62.85% 14.45% 70.38%
Health+Eapp 72.44% 62.87% 24.19% 54.95%
Eapp+Pop 61.14% 67.21% 22.87% 38.72%
Eapp+Div 57.83% 73.03% 25.29% 46.39%
Div+Pop 57.94% 70.10% 22.21% 41.08%

Table 4.3: Results when the returned number of bundles is set to 5
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k=10

Precision(%) | Diversity(%) | Recall(%) | Health(%)
Equal 80.13% 67.94% 31.02% 54.30%
Div 85.11% 74.32% 30.70% 46.80%
Eapp 80.08% 67.96% 31.03% 53.90%
Pop 84.89% 69.42% 28.68% 33.02%
Health 76.68% 65.94% 29.12% 75.90%
Health+Div 78.61% 68.07% 26.73% 73.94%
Health+Pop 78.35% 68.75% 25.40% 71.58%
Health+Eapp 78.15% 66.41% 25.99% 55.60%
Eapp+Pop 80.84% 67.24% 23.06% 40.76%
Eapp+Div 83.16% 73.34% 25.32% 47.55%
Div+Pop 84.96% 70.14% 22.55% 41.55%

Table 4.4: Results when the returned number of bundles is set to 10

k=15

Precision(%) | Diversity(%) | Recall(%) | Health(%)
Equal 81.12% 67.79% 42.25% 51.50%
Div 84.92% 74.25% 39.29% 44.40%
Eapp 81.07% 67.81% 38.81% 50.81%
Pop 86.62% 69.40% 35.33% 33.20%
Health 78.34% 65.94% 46.42% 75.86%
Health+Div 78.70% 67.93% 44.44% 72.73%
Health+Pop 79.69% 68.51% 45.04% 51.63%
Health+Eapp 79.91% 66.26% 41.46% 55.96%
Eapp+Pop 82.23% 67.27% 36.13% 38.91%
Eapp+Div 53.97% 73.25% 38.15% 43.20%
Div+Pop 86.84% 70.11% 36.34% 40.92%

Table 4.5: Results when the returned number of bundles is set to 15
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4.2 Health score

Paired t-tests were conducted for all health scores in order to confirm whether
there was a statistical significant difference between the scores. For all paired tests
there were found acceptable p-values of P < 0.05, see appendix for p-values.

In this project two versions of a health score have been created. The hypothesis is
that the readjusted health score should better reflect what a healthy dinner meal is.
Therefore, as the recipes considered in this test are all dinner meals, the readjusted
score should reflect that with healthier scores.

Optimally, it would be possible to evaluate in regards of absolute error or squared
error, as it would indicate the accuracy of the health scores. However, in or-
der to evaluate accuracy, a true baseline healthiness of the recipes is required.
Unfortunately this is not available, and using one of the health scores investi-
gated(WHO/FSA) as a baseline is not possible. The reason being that the health
scores are based upon different health guidelines and it cannot be said that one
is more correct than the other. However, even though the health scores are based
upon different guidelines, looking at the correlation between the health scores can
still give an indication of agreement. The intuition is that even though the health
scores are different, they should at least share some positive correlation. A strong
negative correlation of -1 would indicate that the scores completely disagree on
recipes where a positive correlation would suggest agreement between the health
scores. The correlation matrix can be seen in table

Pearson' ‘ WHO FSA Health score H(‘eahh score
correlation matrix recalculated | original
WHO 1

FSA 0,297623 | 1

Health score -0,004890 | 0,018723 | 1

recalculated

Health score 0,002883 | 0,012235 | 0,460888 1

original

Table 4.6: Health score correlations

The correlations show that WHO and FSA have a weak positive correlation. Indi-
cating that there is some general agreement on the recipe health scores. For both
the recalculated and the original health scores, compared to WHO and FSA, there
is a correlation of approximately 0. There may be many reasons for this, one being
that they are based on different health guidelines. However, a positive correlation
greater than zero was expected. It was initially though that because the values
of WHO and FSA are ordinal, on a scale of 0-6, and the developed health scores
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Figure 4.3: Histogram of original and recalculated health score

have continuous values, that it might influence the correlation values. However,
a spearman’s rank correlation was also done which show very similar correlation
values. See appendix for the spearman’s rank correlation matrix.

Looking at the two versions of the health score in this project(original and recalcu-
lated) it was also expected to find the recalculated health score to generally assign
higher scores to dinner recipes. By looking at a histogram of the two health scores,
see figure [4.3] this is also confirmed.

4.3 User study

In this project it was also of interest to see what impact different interface lay-
outs would have on the users perceptions of a meal plan recommendation system.
Therefore, the test setup is very similar to the one used in [7], by using the same
three types of interfaces and measure on the same subjective measures. The differ-
ences lie in the type of recommender system. In [7] they test a movie recommender
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where the users were given a specific task of finding a movie of a specific theme.
As such it is of interest to see if there are similarities in the findings for a movie
recommender system and a meal recommender systems were recommendations
are shown in bundles of 7.

4.3.1 Measures

Chen et al. [7] uses both objective measures and subjective measures. Their objec-
tive measures are clicks and time spent. In the study conducted in this project, only
time is logged in order to measure the objective effort. The reason being that clicks
is not really of interest in terms of first click, distinct clicks, etc. In the study by
Chen et al. [7] it makes sense to see which items are clicked, as a show of interest,
as their system is more exploratory in nature. However, in the case of this project,
as exploration is very limited and bundles should be viewed as a whole, clicking
behaviour is not of much relevance. Furthermore, due to time constraints it was
not expected to obtain a lot of users for the study, so it was also expected to have
scarce data for statistical evaluation. Therefore, the main focus of the study was to
gain qualitative data.

The subjective measures used were also similar to the measures used by Chen et
al. [7]. The measures and their respective questions are shown in table

Measures Questions 1-5 likert scala.

Decision confidence I am confident in the bundle ratings i made
The presentation made it easy to see and
understand the contents of a bundle
Enjoyability The presentation of a bundle was enjoyable

Perceived interface competence

Table 4.7: Subjective measures and questions

These subjective measures are just a subset of all the measures identified in the
framework explained in section as in this study we are only interested in the
interface. In the end of the questionnaire, users were also asked to select a favorite
of the three interfaces.

4.3.2 Test setup

The users were asked to participate in the test in focus groups ranging from 2-5
persons. The reason for using focus groups was to promote discussions between
users in post-study interviews.

Task were completed individually, where each user was given a paper with 3 tasks
and questionnaires. They were initially introduced to the system and the tasks at
hand. Each user was asked to take on the role of a fictitious character and were
given 10 recipes which indicate the character’s taste in food. They were then asked
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to rate 5 different bundles of recipes for each interface layout (list, grid, pie) which
results in 15 different bundles in total. The ordering of interfaces was shuffled
between users to reduce bias in the viewing order. After rating 5 bundles, on each
interface, the users were asked to complete questionnaires regarding their experi-
ence. A follow-up interview was done when every person in the focus group was
done. The full questionnaire can be seen in appendix [B.1/and interview summaries
can be found in appendix - In total 16 users participated (6 female) with
most users being friends and family. 14 were 20-30 of age, with the remaining(2)
being 50-55.

4.3.3 User study results

Objective measures - Time spent

Time stamps were collected during the studies to measure the time spent on dif-
ferent interfaces. The averages of the three different interfaces are shown in table
measured in seconds. Even though pie has a shorter time spent there is no
statistical significance (p > 0.05 in three paired t-tests).

| List | Grid | Pie
Mean | 40.05 | 42.87 | 37.97

Table 4.8: Time averages on interfaces

Subjective measures

Overall from the questionnaire the overall favorite chosen was grid with 11 votes,
list with 4 and pie with 1 (16 total). This corresponds well with the findings of the
subjective measures. Here it is found that the interface competence and enjoyability
of the grid interface is significantly higher compared to pie. Also, list is significant
higher than pie in regards to enjoyability. Furthermore, this also corresponds well
to the focus group interviews where most users mentioned that the pie interface
seemed cluttered or confusing. P values for all t-tests can be seen in appendix

L . Mean
Subjective measures (1-5 likert) List Crid Pic
Question 1 - Decision confidence | 3.9375 3.9375 4.0625
Question 2 - Interface competence | 4.125 4.375*P | 3.75
Question 3 - Enjoyability 4.3125*P | 4.5625*P | 3.3125

Table 4.9: Subjective measures - * denotes statistical significance in two tailed paired t-tests. List(L),
Grid(G) and Pie(P)
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Focus group interview

From the focus groups the most general comments where on images and recipe
descriptions which failed to load. This can of course have an impact on the per-
ception of the interfaces when evaluating them. Most agreed that images were the
most important when rating bundles. Lastly, many felt that the pie interface was
cluttered or confusing. Many additional comments where given where most were
wanted features of the system.
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Chapter 5

Discussion

Dataset

The dataset used within this report is as mentioned, in section 3} crawled from
the site Epicurious.com. The categorization of the data was done using predefined
categories from the danish food pyramid. However, due to the different steps
needed to achieve the final list of crawled ingredients, namely writing the crawler,
translating the ingredients from Danish to English, categorizing its position within
the food pyramid and defining the weights in grams, we have to take a certain
error rate into account. Some ingredients were simply not crawled, as they were
not a part of the accepted ingredient list, furthermore some ingredients would get
a wrong weight measure. An example of such, was the ingredient “chicken”. If
the user who defined the recipe did not specify the amount, for example as “1
chicken breast” our crawler would categorize it as a whole chicken weighing 2400
grams. This was due to static predefined values, which in some cases proved to be
difficult to determine as certain ingredients weigh differently based on their size.
We also noticed that user’s had different ways of describing ingredients which
resulted in some ingredients being misclassified. An example could be “onion”
compared to “chili onion dip” which are classified in the same category, but are
clearly different food products. To deal with the classification problems, we made
the script write a file of all ingredients with weights of over 1000 grams, or those
who simply weren’t recognized by the crawler. The file was then used later for
manual processing. Furthermore, we decided to discard all recipes associated with
less than five ingredients. We do however know that certain ingredients are still
missing for a small amount of recipes and we have also found several ingredients
throughout the project period which have been tagged with the wrong weight
amount. This is however something that we are aware of but still need to address,
as the following results are affected by such errors.
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SVD/KNN

The two recommender approaches used to initialize the generation of a bundle
within this project is SVD and KNN. Both algorithms are based on a collaborative
approach where the SVD is item-based and KNN is user-based. The main algo-
rithm, SVD, was chosen based on previous work were it performed well. However,
this thesis does not test any other algorithmic approach to how recommendations
could have been made or even improved beyond the current MAE score. Addi-
tionally, only a single parameter was changed in the SVD, namely the amount of
epochs. Similarly with KNN, the algorithm was only implemented to deal with
new users, which were yet to be part of the SVD model. Again no real changes
to the parameters or similarity function were made and the results are therefore
only reflecting a small area of what might be possible to test and achieve. The
limited testing of the two algorithms came as a result of time constraints within
the project and it could therefore be interesting to further investigate and test how
recommendations could be improved by testing several parameters within each
algorithm.

Bundle recommendation

A crucial part in testing the bundle algorithm is the dataset used. The dataset
used, consisting of 901 users and 971 recipes, is a somewhat sparse dataset where
approximately half of the users only have rated 1 item each. Due to the sparsity
it was difficult to get sufficient ground truth regarding user ratings for calculating
precision and recall. Therefore, it was decided to only select the most active users
in the dataset for the testing, which resulted in 65 users whom had rated at least
7 recipes. Testing the algorithm on 65 users severely effects the validity of the
tests. As the 65 users still haven’t rated a lot of the recipes within the dataset,
there are many unrated recipes occurring in the recommended bundles. These
unrated recipes had to be disregarded as they can possibly be either good or bad
recipes for the user, so only recipes in which a ground truth was present were
considered. Due to these issues, the precision and recall may be skewed. Ideally
the testing would be done with a dense dataset such that precision and recall was
always calculated using bundles with no items disregarded. The results regarding
diversity could also possibly be misrepresented due to the similarity function used
in the diversity calculation. The current similarity function used for the calculating
diversity is jaccard similarity which does not capture the amount of the ingredients
present in the recipes. Hence with jaccard similarity, a salad with a bit of chicken
is considered the same as a chicken recipe with a bit of salad on the side. The
calculated diversity might therefore give a misleading perspective on how diverse
the recipes actually are in the bundles. In regards to which algorithm produces the
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healthiest bundles, this is based on which algorithm scores highest using our health
score function. A high health scores indicates that the proportions of the bundles
fit the food pyramid as best as possible. There is however no way to validate if
these "healthy" bundles actually give a benefit to a users health. As these bundles
represent weekly dinner plans for a user, it only considers a single meal during a
whole day. Since eating healthy is usually associated with all meals eaten and not
just a single meal, makes it hard to confirm if the benefits of the recommended
dinner plans in regards to health. A dinner is however usually the largest meal
eaten during the day(in a Danish context) and the healthy bundles can therefore
somewhat ensure that a person gets a balanced amount of ingredient proportions
during the week.

Health scores

The health scores developed in this paper are based upon the health guidelines
from the Danish food pyramid and the meal guidelines from the healthy eating
plate. The healthy eating plate is used in order to readjust the Danish guidelines
towards a single meal.

Analyzing these health scores proved quite difficult as true evaluation is not possi-
ble. This is due to the fact that health guidelines is not an exact science. However,
it can be argued that different health guidelines should be somewhat positively
correlated. This was also found in the case between the FSA and WHO score,
even though they are based on different guidelines. However, the health scores
developed in this report did not share any correlation between these two scores.
However, as it is assumed that there should be a positive correlation, there may
be different factors as to why this is not found in the results. As discussed in the
dataset section earlier, the crawled ingredient information introduces several pos-
sibilities for errors when calculating the developed health score. And, as the WHO
and FSA are not reliant on this information, any errors in this data will make in-
consistencies in the health scores. On the other hand, the nutritional information
for the FSA and WHO health scores is also based on a natural language processing
API which is provided by EDAMAM]II]. It is not known how the conversion from
natural language to nutritional information is done in this API, so any differences
from the method used in this project will also cause inconsistencies between the
health scores.

User study

In this project a user study was also conducted in order to investigate the impact
of interfaces on bundle recommendations. Due to a small amount of users the ob-
jective measures were not conclusive. In regards to the subjective measures it was
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found that the grid interface was perceived as the most competent, enjoyable and
was also voted as favorite the most. This is not consistent with the results found
the paper by Chen et al. [7] which suggests that users perceived the pie interface as
having best competence and enjoyability. However, the system used in the study
by Chen et al. allows users to browse and explore movie recommendations before
picking one they like. In the system developed in this project, the purpose is to rate
food bundles which does not promote much exploration, as every item is required
to be reviewed. Therefore direct comparison may not provide much insights into
which interface is overall superior. It should be said that there are some limitations
of both studies. First of all, the amount of users in both studies is small, 16 and
24 users respectively. Secondly in both studies all the rating means are not really
that different. They are all around 3-4 on a 1-5 likert scale. This may indicate that
the users do not really perceive that big of a difference between all the interfaces.
So there is not really a clear like and dislike towards the interfaces. One reason
which could explain the general positive ratings for all interfaces are that in both
studies users where chosen among friends, family and colleges. According to Rec-
ommender Systems Handbook [13] p.323], the use of these types of users is not
recommended as they may want to please/not critique the system. Lastly, some
error may also be directly linked to the system in the thesis, as the early version of
the system did have it’s flaws. Some of the reoccurring comments was on images,
recipe descriptions and images which failed to load. This can of course have an
impact on the subjective measures.
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Chapter 6

Conclusion

This thesis explores the area of food recommendation, in which the focus is to
recommend healthy meal plans to a user. The main problem statement of the
thesis is:

e How can we recommend healthy meal plans to a user?

This question, leads to the interest of investigating the following sub-questions:

e How we can implement a health function to evaluate the healthiness of a
meal plan?

e What considerations should be made in regards to presenting bundles of
food items to a user?

Since the focus of this thesis is recommending weekly meal plans, we want to
recommend a bundle containing 7 dinner recipes meant for each day of the week.
We build upon a bundling algorithm used in previous work in which two main
adjustments have been made. One of the adjustments was to incorporate a trained
SVD model to the bundle algorithm. Another adjustment was to include a health
function to the algorithm in order to evaluate the healthiness of a bundle.

Several different approaches to evaluating the healthiness of individual recipes
was investigated, such as WHO and FSA used in related work. As most of these
approaches used the nutritional content of a recipe to evaluate the healthiness,
we instead present a new approach looking at the proportions of ingredients in
a recipe. Our approach is mainly based on the Danish food pyramid to evaluate
the best proportions. We introduce two versions of our approach, one used for
evaluating a full week of eating and another better suited for evaluating single
dinner meals. Both scores are tested for any correlation with the WHO and FSA
approaches. The results however indicate no correlation between them.
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Different versions of the bundle algorithm was tested in an offline setting where
metrics such as precision, diversity and the healthiness was used to evaluate the al-
gorithms. We also test if the number of returned bundles by the algorithm has any
influence on its performance. The results of the testing indicate that the precision
increases and the diversity slightly decreases as the number of returned bundles
increases. The versions weighting health highly do, as expected, produce healthier
bundles than versions which do not weight health highly. Weighting health highly
show only a slight loss of precision and diversity.

Besides the whole process of generating bundles and evaluating the healthiness
of a bundle, another interesting question is the aspect of presenting bundles to a
user. As a presentation of a bundle is more complex than presenting a single
item, we investigate different possible layouts for a bundle and how they possibly
affect users. The layouts tested in this thesis is inspired from the paper by Li
Chen and Ho Keung Tsoi[7], which investigates the 3 layouts list, grid, and pie in
a movie recommendation context. We evaluate the layouts in a user study with
16 participants where they were presented a bundle of 7 recipes for each layout.
The layouts are evaluated in regards to decision confidence, interface competence
and enjoyability. The findings of the user study show that the users generally
preferred the grid layout over the pie layout. The grid layout had significantly
higher interface competence and enjoyability when compared to the pie interface.
Our findings is therefore not consistent with the findings in [7], but our system is
not used in the same domain as their, thus a direct comparison between our results
and theirs would not be meaningful.
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Chapter 7

Future work

In regards to developing a food recommender system this project has provided
a lot of insights. From the user study a lot of insights were especially gained in
regards to what features should be implemented in a future system. Among these
features were the the inclusion of needed utensils, cooking time, budget and ability
to customize the presented bundles, see appendix B|for all mentioned features. The
future work of more specific areas of the project are described below.

Recommendations

Due to time constraints the evaluation of the SVD and KNN algorithm used within
this project is limited in regards to a single parameter change within each of them.
To further investigate how the MAE could be further improved a more compre-
hensive evaluation could prove beneficial. Such tests should take a deeper look at
how each of the parameters within the algorithms are influencing the overall re-
sults. It could also be interesting to complement the test by taking new algorithmic
approaches into the final implementation to test whether the two chosen for this
project are the most accurate given the task presented.

Health score

In regards to the problems between the correlation of the developed health scores
and the WHO and FSA, these errors could be avoided if one should develop a
complete system from the ground up. The solution would simply be to restrict
natural language when users specify ingredients in a recipe. Such that users should
always select ingredients and their amounts from an accepted ingredients list.
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Bundle algorithm

In the current iteration of the bundle algorithm the only constraint is the size of a
bundle. One of the comments in the conducted user study was that it would nice
to have constraints such as cooking time for the recommendations. The cooking
time would be appreciated as there is often limits on how much time one would
spend on cooking. The comments regarding the cooking time gave suggestions
of allowing the possibility to constrain the bundles to only include recipes with
a cooking time of 20 minutes. As for future validation of the bundle algorithms
performance, a more dense dataset would be preferred. This is due to how a dense
dataset would provide a better ground truth to recipes we currently have available
but are still unrated.

User study

The user study in the project had a very small amount of participants with a very
narrow demographic. So in future work it is recommended that a study on a
larger scale is conducted. This study could also be expanded to include the full
framework presented by Pu et al. [28] in order to investigate the overall system
more in depth.
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Appendix A

Web application Layout

A.1 Front page

(1 NutriBundle Home | Login

> 3)
NutriBundle Dashboard 4
Login pa dit personlige dashboard og fa anbefalet ugentlige opskrifter baseret pé dine
smagsleg, samt den kendte danske madpyramide. Hvis du ikke har en bruger, kan lave
en ved hjzelp af enten din email eller Facebook g ’
Login ~ Opret '

Din vej til en sund livsstil

Opret Bedom Nyd
Opret din egen personlige profil, ved hjeelp af Bedem opskrifter du kan lide pa en skala fra et Modtag en samling af opskrifter, der er
email eller Facebook til fire skreeddersyet til netop dine smagsleg

" 3 &

Figure A.1: Web application front page
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A.2 Login page

() NutriBundle Home | Login

NutriBundle

Login Side

Login

Login med Facebook

f Login med Facebook (Disabled in Alpha version)

Login med Email

Email addresse

Email A

Password

Password

’ Log ind ‘ Opret bruger

Figure A.2: Web application login page
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A.3 List interface

Vurder Pakke

Nedenfor ses en gruppering af opskrifter, som svare til en uges aftensmad. Opskrifterne er seerlig skraedersyet til dig, baseret pa dine tidligere
bedemmelser. Du bedes give denne gruppering en samlet bedemmelse.

Beef Bourguignonne Pot Pie
Se vejledning Bedom

Se Ingredienser Du bedes bedemme pakken
praesenteret pa siden ved hjeelp
af stjernerne nedenfor. 4 stjerner
symbolisere "synes rigtig godt
om" og 1 stjerne er "synes ikke

Chicken and Vegetable Quesadilla godtom”.

Se vejledning Bedommelse

Se Ingredienser

Bedem pakke

Asian Salmon Bowl with Lime Drizzle

Se vejledning
Se Ingredienser

Best-Ever Barbecued Ribs

Se vejledning
Se Ingredienser

Pecan-Crusted Pork Tenderloin Pinwheels with

Figure A.3: Web application - Bundle list view
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A.4 Grid interface

Vurder Pakke

Nedenfor ses en gruppering af opskrifter, som svare til en uges aftensmad. Opskrifterne er seerlig skraedersyet til dig, baseret pa dine tidligere
bedemmelser. Du bedes give denne gruppering en samlet bedemmelse.

Info! Reekkefolgen pa opskrifterne er vejledende, de skal séledes ses som en helhed. X

Bedom

Du bedes bedemme pakken
praesenteret pa siden ved hjeelp
af stjernerne nedenfor. 4 stjerner
symbolisere "synes rigtig godt
om" og 1 stjerne er "synes ikke

godt om".
Bedemmelse
Tofu and Leek Stir-Fry with Stir-Fried Brussels Sprouts ) )
Ground Beef with Garlic and Chile Bedom pakke
Se vejledning Se vejledning
Se Ingredienser Se Ingredienser

Fettucine with Peas, Panfried Trout with Pecan
Asparagus, and Pancetta Butter Sauce

Se vejledning Se vejledning

Se Ingredienser Se Ingredienser

Figure A.4: Web application - Bundle Grid view
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A.5 Pie interface

Vurder Pakke

Nedenfor ses en gruppering af opskrifter, som svare til en uges aftensmad. Opskrifterne er saerlig skraedersyet til dig, baseret pa dine tidligere
bedemmelser. Du bedes give denne gruppering en samlet bedemmelse.

Info! Reekkefolgen pé opskrifterne er vejledende, de skal séledes ses som en helhed. %

Bedom

Du bedes bedemme pakken
praesenteret pa siden ved hjeelp
af stjernerne nedenfor. 4 stjerner
symbolisere "synes rigtig godt
om" og 1 stjerne er "synes ikke

dt om".
Sausage and Broccoli Ziti with Skillet-Roasted godtom
Rabe Torta Root Vegetables Bedemmelse
Se vejledning Se vejledning
Se Ingredienser Se Ingredienser

Bedem pakke

DISCOVER

pPIxabay

FREE IMAGES

NO HOTLINKING a

Pizza 6: Pan-fried Chile and Cheese Tart Soy-Marinated Fish
Hawaiian Pizza o o

Se vejledning Se vejledning
Se vejledning Se Ingredienser Se Ingredienser

Se Ingredienser

Oranae-Seented Rluefich Slow-Rnasted Park

Figure A.5: Web application - Bundle Pie view
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Appendix B

Focus group interviews

B.1 Full questionnaire

See attached zip-file: Liste - Questionnaire.pdf

B.2 Unique comments

Would be nice to have some information about which cooking utensils are needed.

User 1 Fx. do i need a grill, a large oven tray, etc.
Easier if it was local recipes (Both in regards to the general
User 8 . . - . -
danish food culture and in regards to ingredient availability)
Would like to see number of ingredients needed.
User 9 | Saw many spices as unnecessary.
Wish that you could filter on different things
Would like to see budget/prices of dishes and wish there was some
User 11 | considerations regarding utilizing the ingredients fully.
To not have leftover ingredients.
Would like to be able to have more flexibility in bundles. That is, to
be able to change/insert individual items in bundles (fx, i would
User 12 | . . . .
like to have pizza(something unhealthy) on Friday, so make
the rest of the week healthy).
It was fine to rate the bundles from the shown information.
User 13 . s
Would mainly use for inspiration based on own taste preferences.
Mainly evaluated from pictures - the first impression.
List and grid very close
User 20 List and grid were more manageable as the user was accustomed to these formats.

Pie was too much information at once. No idea where to start.
Many of the dishes seemed to pretty complex for every day dinner.
Recipes looked more like weekend dinners.

Table B.1: Individual comments - only unique comments shown
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B.3 General comments

e Missing some pictures was a concern.

e Recipe instructions failing to load.

e Ingredients list was somewhat confusing.
e Generally used images for rating.

e Used ingredients list and instructions if the image and name was not suffi-
cient.

e Pie seemed confusing or cluttered.

B.4 Additional features wanted

e Cooking utensils needed

e Cooking time

e Budget

e Key ingredients displayed

e Categories on ingredients

e Maximizing ingredient usage

e Ability to specify/lock items in bundle
¢ Ability to swap items in bundle

e Specify for how many people.
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Appendix C

Tables appendix

C.1 Paired t-test p-values

TVV.O tailed WHO FSA Rating
paired t-test recalculated
WHO

FSA 7,59E-53

Rating recalculated | 1,05E-20 | 3,14E-13

Rating original 1,98E-123 | 2,73E-03 | 9,91E-86

Table C.1: Two tailed paired t-test p-values

C.2 Spearman’s rank corrleation matrix

Spearman’s rank

Health score

Health score

. . | WHO FSA .
correlation matrix recalculated | original
WHO 1
FSA 0,297623175 | 1
Health score -0,007276096 | 0,014534677 | 1
recalculated
Health score

0,049395605 | -0,017561676 | 0,486454253 | 1

original

Table C.2: Spearman’s rank correlation
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2 tailed paired

List - Grid Grid - Pie List - Pie
t-test p values
Decision confidence | 1 0,431957081 0,4973105458
Interface competence | 0,2997219144 | 0,02759109391 0,2702110644
Enjoyability 0,1638756137 | 0,005132618168 | 0,006442512189

Table C.3: Subjective measures two tailed paired t-tests p values

C3 SVD-K=30

SVD -k =30
30 epoch | test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10
Fold1 | 0.62197 | 0.62061 | 0.62 0.62003 | 0.61902 | 0.62069 | 0.62126 | 0.618 | 0.62037 | 0.6218
Fold 2 0.64749 | 0.644 0.64498 | 0.64647 | 0.64494 | 0.64673 | 0.64767 | 0.64559 | 0.64499 | 0.6474
Fold3 | 1.00709 | 1.00678 | 1.00666 | 1.00762 | 1.01017 | 1.00685 | 1.00909 | 1.00772 | 1.0095 | 1.0072
Fold4 | 07161 | 071172 | 071049 | 071075 |0.71081 | 0.71259 | 0.71116 | 0.71142 | 0.71321 | 0.70933
Fold5 | 0.7744 | 077297 | 0.77566 | 0.77729 | 0.77577 | 0.77701 | 0.77387 | 0.77547 | 0.77452 | 0.78452
MAE 0.75341 | 0.751216 | 0.751558 | 0.752432 | 0.752142 | 0.752774 | 0.75261 | 0.75164 | 0.752518 | 0.75405
Total MAE: 0.7524
Table C.4: SVD results k = 30
C4 KNN-k=23
KNN(k-max=23, k-min=1) Results
Fold 1 Fold 2 Fold 3 fold 4 Fold 5
0.6305 0.6320 0.9856 0.7397 0.7521
Total MAE: 0.7479
C.5 KNN -k =140
KNN(k-max=40, k-min=1) Results
Fold 1 Fold 2 Fold 3 fold 4 Fold 5
0.7533 0.7547 0.9663 0.6494 0.6423
Total MAE: 0.7532
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Appendix D

Health score functions

D.1 Recalculated health functions

<optimal >optimal
Top 1 | 25.97402597*x-1.58336885E-16 | -25.97402597*x+2
Top 2 | 4.72813239*x-4.41226916E-16 | -4.72813239*x+2
Middle | 4*x+0 -4*x+2
Bottom | 2*x+0 -2*x+2

Table D.1: Recalculated health functions

D.2 Original health functions

<optimal >optimal
Top1 | 50*x-7.35680456E-17 -50*x+2
Top 2 | 9.09090909*x+1.65666092E-16 | -9.09090909*x+2
Middle | 2.27272727*x+1.65666092E-16 | -2.27272727*x+2
Bottom | 2.3255814*x-2.6490016E-16 -2.3255814*x+2

Table D.2: Original health functions
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Appendix E

Code

E.1 SVD/KNN implementation

See attached zip-file: SVD-KNN-api.zip

E.2 Bundle algorithm - adjusted

See attached zip-file: BundleWithHealth.rar

E.3 SVD/KNN testing implementation

See attached zip-file: Python Implementation.zip

E.4 Nutrition crawler

See attached zip-file: nutricrawler4.0.zip
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