
The tightness of the inertia bound
of graphs

When is the inertia bound not tight?

Master’s Thesis
Nicolai Aarup Nielsen

Aalborg University
Department of Mathematical Sciences

Fredrik Bajers Vej 7G
DK-9220 Aalborg Ø



Copyright © Aalborg University 2018



Department of Mathematical Sciences
Fredrik Bajers Vej 7G

9220 Aalborg Ø
http://www.math.aau.dk

Title:
The tightness of the inertia bound of graphs

Theme:
When is the inertia bound not tight

Project Period:
Spring 2018

Project Group:
4.213c

Author:

Nicolai Aarup Nielsen

Supervisor:
Leif K. Jørgensen

Copies: 2

Page Numbers: 35

Date of Completion:
June 1, 2018

Abstract:

This report on algebraic graph theory
presents an upper bound for the inde-
pendence number of a graph, and stud-
ies whether or not this bound is attain-
able for all graphs. This bound is known
as the inertia bound.
Starting by introducing some prelimi-
nary graph and matrix theory, the re-
port derives the inertia bound, as well
as conditions, under which the bound is
not tight, and examples of graphs that
do attain the bound.
Next, it introduces the Paley graphs and
presents some of their properties, with
special focus on the Paley graph on 17
vertices and some of its induced sub-
graphs.
Using these properties, it is then proven
that no matter what weights are as-
signed to the edges of a Paley 17 graph,
it cannot attain the inertia bound.
Thus, not all graphs have tight inertia
bound.
The report concludes with a presenta-
tion of subjects apt for further study,
such as further looking into what prop-
erties of graphs result in tight iner-
tia bounds, or examining what hap-
pens with the inertia bound, when the
weights of graphs are taken over differ-
ent fields.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.

http://www.math.aau.dk




Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Graph and matrix theory 3
2.1 Graphs and matrix representations . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Interlacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Two graphs that attain the inertia bound . . . . . . . . . . . . . . . . . . . . 12

3 Paley 17 15
3.1 Paley graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The induced subgraphs of P (17) . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 The inertia bound of Payley 17 21
4.1 Tight weight matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The inertia bound is not tight . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Equality of the isotropic bound 27
5.1 Conditions for attaining the bound . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 The isotropic bound over ordered fields and real numbers . . . . . . . . . . . 29
5.3 The inertia bound attained with adjacency matrices . . . . . . . . . . . . . . 31

6 Conclusion 33

Bibliography 35

v



vi Contents



1. Introduction
In algebraic graph theory, there is a close connection between graphs and matrices. It is
common to use matrices to define graphs, or use graphs to visualize matrices. Properties of
the matrices can then be analysed and connected to properties of the associated graphs. An
example of such a connection exists between the independence number α(G) of a graph G,
and the eigenvalues of corresponding weight matrices W . These weight matrices are real and
symmetric matrices such that the entries wi,j = 0 if the edge {i, j} doesn’t exist in the graph
G. From this definition, the weight matrix W has real eigenvalues, and so the amount of
these can be denoted as n+(W ) for the number of positive eigenvalues of W and n−(W ) for
the number of negative eigenvalues. Then, for any weight matrix W of a graph G of order
n, the connection between α(G) and the eigenvalues of W is given as the so-called inertia
bound:

α(G) ≤ min{n− n+(W ), n− n−(W )}. (2.10)

This bound is attributed to Dragoš M. Cvetković, and appears in his 1971 Ph.D. thesis. Thus,
it is also known as the Cvetković bound.

For inequalities and bounds such as the inertia bound, it is interesting to examine the
conditions for which equality occurs, known as the bound being tight or the graph attaining
the bound, and when the inequality is sharp. Specifically, one can pose the question: Does
each graph G of order n, have a weight matrix W, such that

α(G) = min{n− n+(W ), n− n−(W )}?

While equality in the inertia bound is possible for smaller graphs, with examples of this in
Section 2.4, the purpose of this report is to show, that the answer to the above posed question
is in fact no. This will be done using the graph P (17), which is the Paley graph on 17 vertices,
and by studying the properties of it and its weight matrices.

1.1 Overview
Chapter 2 will focus on the preliminary graph and matrix theory, which allows for the deriva-
tion of the inertia bound. Starting with definitions of graphs, their properties and associated
adjacency matrices, it moves on to examine the properties of the eigenvalues of matrices of
this type. Using this theory on eigenvalues and adjacency matrices, the inertia bound is
presented as a logical consequence of their properties. The chapter concludes with a few
examples of graphs, that attain the inertia bound, showing that equality can occur for some
graphs.

Chapter 3 introduces the Paley graphs, and in particular the Paley graph on 17 vertices.
It also present a number of properties for Paley 17, which will be used to show, that the
inertia bound for the graph Paley 17 isn’t tight. Two induced subgraphs of Paley 17, G1 and
G2, are also introduced, and the conditions for which they have specific numbers of positive
and negative eigenvalues are presented. These properties are needed for the final proof.

In Chapter 4 the sign of triangles present in Paley 17 are determined, together with the
sign of all the edges of the graph. Thanks to specific diagonal matrices, there will be only two
possible ways to distribute these signs. As will be shown in the final proof of this chapter,
none of these ways, will lead to a tight weight matrix for Paley 17.
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2 Introduction

Finally, Chapter 5 looks to generalize the problem of the tight inertia bound to consider
general fields, and not just the real numbers. This is done by introducing the isotropic bound
- the generalized equivalent to the inertia bound. The chapter also looks at the conditions
for equality in the bound in a general field, and under which conditions regular adjacency
matrices for graphs can be used to attain the bound.



2. Graph and matrix theory
This chapter will introduce the basic graph theory, that allows for proving the existence of
the inertia bound. It also provides the basis, on which can be discussed, whether the bound
is tight for certain graphs.

2.1 Graphs and matrix representations
Graphs and matrices are closely connected in algebraic graph theory, with one being used to
visualise the other in alternative ways. As there are different properties associated with each
visualisation, graph or matrix, it is necessary to go through some of the most important here.

A graph G is defined from two sets. The set of vertices in the graph V , and the set of
edges E.

Definition 2.1 (Graph): A graph is given by G = (V,E), where V = {v1, v2, . . . } is a
non-empty, finite set of vertices on the graph and E is the set of edges in G. The elements
of E specifically can be denoted as single elements e1, e2, . . . , or as two-element subsets of V ,
such that if u, v ∈ V and an edge connects them, then {u, v} ∈ E. Two vertices u and v are
adjacent, written u ∼ v, if {u, v} ∈ E(G). Otherwise, they are non-adjacent. 4

The graphs that are examined in this report, will be exclusively simple, non-directed and,
with the exception of Chapter 5, real graphs. This means that no two vertices can have
more than one edge connecting them directly, no vertex can be connected directly to itself,
in a so-called loop, and an edge {u, v} can be considered the same as the edge {v, u}. These
constrictions become more relevant when matrix representation of graphs is introduced later.

Automorphisms can exist on graphs. It is defined like so:

Definition 2.2 (Graph-automorphism): Let G = (V,E) be a graph which has vertices
v1, v2, · · · ∈ V (G). An automorphism of G is a permutation σ : V → V of V (G) such that
v1 ∼ v2 if and only if σ(v1) ∼ σ(v2). 4

Given any graph G = (V,E), the setup of its vertices and edges can be expressed in matrix
form through the use of a so-called adjacency matrix.

Definition 2.3 (Adjacency matrix): Given a graph G = (V,E) an adjacency matrix A
can be constructed, by letting the entry ai,j be equal to the number of edges connecting the
two vertices i and j. 4

It is clear that the adjacency matrix will always be a square matrix. Also, as we are only
concerned with simple graphs, A will consist of only 1’s and 0’s. It will also be symmetric,
as any edge {i, j} in the edge-set is equivalent to an edge {j, i} as well. Finally, as a simple
graph has no loops, the diagonal of A will be all 0’s. The name "adjacency matrix" stems
from two adjoined vertices being said to be adjacent.

If, instead, two vertices are non-adjacent, they are said to be independent. The indepen-
dence between vertices in graphs will play a greater role later, specifically the independence
number of a graph.

Definition 2.4 (Independence number): Given a graph G, the independence number
α(G) of G is given as the cardinality of the lagest subset of vertices in G, for which all
pairs of vertices of the subset are independent. 4

3



4 Graph and matrix theory

Looking at Figure 2.1 and example of a graph G with α(G) = 3 can be seen. G contains
multiple independent sets of vertices, but the cardinality of the largest possible set is 3.

1

2

3

4

5

6

7

G

Figure 2.1: In the above graph G, vertices 2 and 5 make up an independent set. However, so does the set
of vertices 2, 4 and 6. As such α(G) = 3.

A special property of graphs depend on their independence number.

Definition 2.5 (α-crital graphs): A graph G = (V,E) is α-critical if α(G) < α(G−e) for
all e ∈ E(G). 4

This means, that if you cannot remove any edge from G without increasing α(G), then G is
α-critical.

Going back to matrices, if M is a matrix, then a specific type of submatrix is the principal
submatrix, which is formed by omitting corresponding rows and columns from M . Formally,
it will be defined as follows:

Definition 2.6 (Principal submatrix): An m×m matrix M is an m×m principal sub-
matrix of an n× n matrix N , if M is obtained from N by omitting any n−m rows and the
corresponding n−m columns from N . 4

For matrices based on graphs, an induced subgraph, which takes a subset of the vertices
of the graph and those of their edges, which adjoin only vertices in the subset, is analogue
to forming a principal submatrix. This is because if vertex i and all connected edges are
removed from the graph, then row i and column i is removed from the adjacency matrix of
the graph. This forms a principal submatrix per Definition 2.6. An example of this process
is shown in Figure 2.2.

The binary way of denoting vertex-neighbourhoods used in the adjacency matrix is not
the only way of expressing graphs. Specifically, when considering real-life examples, it is
often more evident to denote a connection between vertices by some value that symbolises
a correlation between them, such as distance, difference or something similar. If this is the
case, the graph is known as a Weighted Graph.

Definition 2.7 (Weighted graph): Let G = (V,E) be a graph of order n, with vertex set
V and edge set E. G is a weighted graph if the edges (i, j) has some weight wij ∈ R for all
edges (i, j) ∈ E(G). 4

The goal of using this type of graph, is to ensure generality, as the edges of a regular, simple
graph can be said to have a weight of 1. Thus, showing that a specific result holds for any
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7

G

A =



0 1 1 1 1 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 1 0 1 0
1 0 0 0 1 0 1
1 1 0 0 0 1 0



1

2

3

4

5

6

g

B =



0 1 1 1 1 1
1 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 0 1 0


Figure 2.2: Looking at the example graph G from Figure 2.1, by removing vertex 7 and all connected edges,
an induced subgraph g is formed. The adjacency matrix B corresponding to g is also a principal submatrix
of the adjacency matrix A corresponding to G, with row and column 7 removed.

weighted graph, means that it works in general for otherwise un-weighted graphs as well. A
special adjacency matrix can be made for weighted graphs, using the weights of the edges as
entries.

Definition 2.8 (Weighted adjacency matrix): The edge weights wij , 1 ≤ i, j ≤ n of a
weighted graph of order n form the (i, j)-elements of the weighted adjacency matrix W of
that graph. For two non-adjacent vertices i and j, the matrix entry (i, j) is zero. 4

In the same vein as for for the weighted graph, any adjacency matrix can be said to be
weighted, with all ”weights” having a value of 1 in the otherwise non-weighted adjacency
matrix. An example of a weight matrix for a weighted graph is shown in Figure 2.3.

1

2

3

4

5

6

7

G

1

1
4

1

1
4

1

1
4

1
2 2

2

2 1
2

2
W =



0 1 1
4 1 1

4 1 1
4

1 0 1
2 0 0 0 2

1
4

1
2 0 2 0 0 0

1 0 2 0 2 0 0
1
4 0 0 2 0 1

2 0
1 0 0 0 1

2 0 2
1
4 2 0 0 0 2 0



Figure 2.3: The graph G from Figure 2.1, when given the set of edge weights as above, has the matrix W
as its corresponding weighted adjacency matrix.

The weigted adjacency matrix of a graph G is also known as the weight matrix of G.

Definition 2.9 (Tight weight matrix): A weight matrix W of a graph G is called tight if

α(G) = min{|G| − n+(W ), |G| − n−(W )}.



6 Graph and matrix theory

Here n+(W ) and n−(W ) describe the number of positive and negative eigenvalues of W
respectively, including their multiplicity. 4

An important note for the weighted adjacency matrix is, that given G as a simple graph,
containing no loops or double edges, W will be a both real and symmetric n× n matrix.

As W is a real, square matrix, it of course has eigenvalues. As these eigenvalues will play
a role in finding the inertia bound, it is relevant to look into some results and techniques
concerning them.

2.2 Eigenvalues
There are multiple ways of finding the eigenvalues of matrices. One such way, is to find the
zeros for the characteristic polynomial of the matrix. Given a matrix A, the characteristic
polynomial is given by

φ(A, λ) = det(λI −A), (2.1)

where λ is an eigenvalue to A, corresponding to an eigenvector x, with I being the identity
matrix. Another way of finding the eigenvalues of a matrix, is to look at eigenvectors, as, if

Ax = λx, (2.2)

then λ is an eigenvalue of A.
For matrices based on simple, non-weighted graphs, this final method can be further

refined. As the adjacency matrix A of a graph G has its rows and columns indexed by
the vertices V (G) of G, A can be viewed as a linear mapping on RV (G), that is, the space
of real functions on V (G). If f ∈ RV (G) then the vertices u ∈ V (G) are assigned a value
f(u) ∀u ∈ V (G). The image Af of f under A is given by

(Af)(u) =
∑

Auvf(v), (2.3)

where u and v are vertices in V (G). As A is a matrix with only entries of 0 and 1, (2.3) can
be rewritten as

(Af)(u) =
∑
u∼v

f(v). (2.4)

Here, u ∼ v means that the vertices u and v are adjacent, and so, by (2.4), the value of Af
at vertex u is given by the sum of the values of f at the neighbours of u. Using (2.2), and if
we suppose f is an eigenvector of A with eigenvalue λ, then

λf(u) =
∑
u∼v

f(v), (2.5)

meaning that the sum of the values of f at the neighbours of u is λ times the value of f on
u. Conversely, if some f satisfies (2.5) for some λ, then f is an eigenvector of the graph, as
is the case in Figure 2.4. If multiple eigenvalues are equal, this eigenvalue is said to have a
higher multiplicity.

For a real, symmetric n×n matrix A, the set of eigenvalues of A will be denoted as ev(A)
Given a eigenvalue λ ∈ ev(A), let Eλ, which is called a principal idempotent of A, be the
matrix representing an orthogonal projection onto the eigenspace of λ. Then

E2
λ = Eλ,
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0

-1

0 0

1
0

-1

1 -1

1

Figure 2.4: An eigenvector to the Petersen graph gives the following values to its vertices. As the sum of
all neighbours to a vertex equals the value of the vertex itself, this eigenvector has corresponding eigenvalue
1. [Godsil and Royle, 2001]

and since two distinct eigenspaces of A are orthogonal as well, it follows that for two eigen-
values λ, τ ∈ ev(A), λ 6= τ ,

EλEτ = 0.

As there exists a basis for Rn consisting of eigenvectors of A,

I =
∑

λ∈ev(A)
Eλ.

From this, one can see that

A =
∑

λ∈ev(A)
λEλ. (2.6)

Equation (2.6) is also known as the Spectral Decomposition of A. Generally, for any polyno-
mial f , it follows from (2.6) that

f(A) =
∑

λ∈ev(A)
f(λ)Eλ. (2.7)

Now, since this f can be chosen, so that it vanishes for all but one of the eigenvalues of A, it
follows from (2.7) that Eλ is a polynomial in A. The matrices Eλ are linearly independent
as if

∑
λ aλEλ = 0, then

0 = Eτ
∑
λ

aλEλ = aτEτ ,

meaning that the principal idempotents form a basis for the vector space of all polynomials
of A. Therefore this vector space has dimension equal to the number of distinct eigenvalues
of A.

Equation (2.7) also holds for rational functions - functions that can be expressed as the
ratio f/g of two other polynomials - as long as this rational function is defined at all eigenvalues
of A. To see this, consider the function g, which from Equation (2.7) has an inverse function

g(A)−1 =
∑

λ∈ev(A)
g(λ)−1Eλ.
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Then
f(A)
g(A) = f(A)g(A)−1 =

∑
λ∈ev(A)

f(λ)g(λ)−1E2
λ =

∑
λ∈ev(A)

f(λ)
g(λ)Eλ.

This gives the special case of (2.7) for rational functions:

(xI −A)−1 =
∑

λ∈ev(A)
(x− λ)−1Eλ, (2.8)

which can be used to prove some results, improtant for the theory of interlacing, which will
be presented in Section 2.3.

Theorem 2.10: Let A be a real, symmetric n × n matrix, and let B be the principal sub-
matrix of A, obtained from deleting the ith row and column of A. Then

φ(B, x)
φ(A, x) = e>i (xI −A)−1ei,

where ei denotes the ith standard vector. Recall that φ(A, x), presented in (2.1), denotes the
characteristic polynomial of A.

Proof: It is clear from the standard determinantal formula, that when it is used for the
inverse matrix one gets (

(xI −A)−1
)
ii

= det(xI −B)
det(xI −A) .

Note that the left side here, is taken for the ith row and column. Thus,(
(xI −A)−1

)
ii

= e>i (xI −A)−1ei,

which is enough to complete the proof.

Corollary 2.11: For any graph G,

φ′(G, x) =
∑

u∈V (G)
φ(G \ u, x).

Proof: From (2.8),

tr(xI −A)−1 =
∑
λ

(x− λ)−1 tr(Eλ),

and by Theorem 2.10,

tr(xI −A)−1 =
∑

u∈V (G)

φ(G \ u, x)
φ(G, x) .

Now, by denoting the multiplicity of λ as a zero to the polynomial φ(G, x) by mλ, one can
reach the partial fraction expansion

φ′(G, x)
φ(G, x) =

∑
λ

mλ

x− λ
. (2.9)

As Eλ is a symmetric matrix with E2
λ = Eλ, its eigenvalues are all 0 or 1. The trace of

Eλ is equal to its rank, but its rank is the dimension of the eigenspace associated with λ,
and thus tr(Eλ) = mλ. This completes the proof.
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A rational function f/g is called proper if the degree of f is less than the degree of g. Proper
rational functions has a partial fraction expansion. Given a proper rational function p = f/g,
this can be seen by the following:

The function f(x) can be expanded using its eigenvalues λ1, . . . , λr and their multiplicities
m1, . . . ,mr.

f(x) = (x− λ1)m1(x− λ2)m2 . . . (x− λr)mr .

Then differentiating f and dividing f ′(x) with f(x) yields

f ′(x)
f(x) = m1(x− λ1)m1−1(x− λ2)m2 · · ·+m2(x− λ1)m1(x− λ2)m2−1 . . .

(x− λ1)m1(x− λ2)m2 . . . (x− λr)mr
.

By denoting fi(x) = mi(x − λi)mi−1 and reducing the fraction, we get the partial fraction
expansion as presented in [Godsil and Royle, 2001, p. 188].

r∑
i=1

fi(x)
(x− λi)mi

.

In the expansion mi will be a positive integer, and fi(x) a non-zero polynomial of order less
than mi. The numbers λi are called the poles of p, and specifically, mi is the order of the
pole at λi. A λi for which mi = 1 is called a simple pole. The expansion in (2.2) reduces to
the form seen in (2.9), as the fi(x) can be further reduced in the fractions.

Theorem 2.12: Let A be a real, symmetric, n×n matrix and b a vector of length n. Define
ψ(x) as the rational function b>(xI − A)−1b. Then all zeros and poles of ψ are simple, and
ψ′ is negative everywhere it is defined. If λ and τ are two consecutive poles of ψ, then the
closed interval [λ, τ ] contains exactly one zero of ψ.

Proof: By Equation (2.8)

b>(xI −A)−1b =
∑

λ∈ev(A)

b>Eλb

x− λ
,

implying that the poles of ψ are simple. Differentiating both sides yields

ψ′(x) = −
∑
λ

b>Eλb

(x− λ)2 .

Using (2.8), the right side above equals −b>(xI −A)−2b, and thus

ψ′(x) = −b>(xI −A)−2b

As b>(xI − A)−2b is the squared length of (xI − A)−1b, this implies that ψ′ < 0 for all x
that are not poles of ψ. This, in turn, implies that each zero of ψ must be simple.

Now suppose that λ and τ are two consecutive poles of ψ. As they are simple poles,
ψ must be a strictly decreasing function on the interval [λ, τ ], and positive for values of x
in this interval sufficiently close to λ, and negative for values of x sufficiently close to τ .
Thus, accordingly, the interval must contain exactly one zero of ψ.

With this, we can introduce a special property of eigenvalues, which will allow us to derive
the inertia bound.
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2.3 Interlacing
Given a real, n × n, symmetric matrix A, the different eigenvalues of A can be ordered
according to their values. Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be one such, non-increasing
ordering. If another matrix B is real and symmetric, but an m × m matrix, with m ≤ n,
then the eigenvalues of B interlace with the eigenvalues of A if

λn−m+i(A) ≤ λi(B) ≤ λi(A), for i = 1, . . . ,m.

The next result will show, how the eigenvalues of a principal submatrix, introduced in
Definition 2.6, of a symmetric matrix A interlace with the eigenvalues of A.

Theorem 2.13: Let A be a real, symmetric, n×n matrix and let B be a principal submatrix
of A with order m×m. Then for i = 1, . . . ,m

λn−m+i(A) ≤ λi(B) ≤ λi(A).

Proof: This proof uses induction on n. For m = n it is clear that the inequality holds.
Assume m = n− 1. By Theorem 2.10 the following holds for some i:

φ(B, x)
φ(A, x) = e>i (xI −A)−1ei.

This is a rational function, as it is a ratio of two characteristic polynomials. Denote this
rational function by ψ. By Theorem 2.12, ψ(x) has only simple poles and zeros, and each
consecutive pair of poles is seperated by only a single zero. The poles of ψ are zeros of
A and the zeros of ψ are zeros of B. For a real, symmetric matrix M and a real number
k, let n(k,M) denote the number of indices i such that λi(M) ≥ k. Look now at the
behaviour of n(k,A)−n(k,B) as k decreases. For k greater than the largest pole of ψ, the
difference n(k,A)− n(k,B) starts out at zero, but, since each pole is simple, the value of
the difference will increase by one each time k passes through a pole of ψ as it decreases.
Since each zero is simple as well, the difference will decrease by one as k passes through
a zero. There is exactly one zero between each pair of consecutive poles, so the difference
will alternate between 0 and 1. It follows that λi+1(A) ≤ λi(B) ≤ λi(A) for all i.

Suppose now that m < n − 1. Then B is a principal submatrix of another principal
submatrix C of A, with order (n− 1)× (n− 1). By induction

λn−1−m+i(C) ≤ λi(B) ≤ λi(C),

and as we have already shown that

λi+1(A) ≤ λi(C) ≤ λi(A),

it follows that the eigenvalues of B interlace the eigenvalues of A.

Using interlacing, a bound can be put on the size of the independence number introduced in
Definition 2.4. For a symmetric matrix A, let n+(A) denote the number of positive eigenvalues
of A, and n−(A) denote the number of negative eigenvalues of A.

Theorem 2.14: Let G be a graph with n vertices, and let A denote the symmetric n × n
matrix, which has Auv = 0 if the vertices u and v of G are not adjacent. Then

α(G) ≤ min{n− n+(A), n− n−(A)} (2.10)
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Proof: Let S be an induced subgraph of G created from an independent set of vertices of
size s. Let B be the adjacency matrix of S, which means it is a principal submatrix of A.
B is then the zero matrix. From Theorem 2.13

λn−s+i(A) ≤ λi(B) ≤ λi(A),

but as λi(B) = 0 for all i we can infer that

0 ≤ λs(A),

and thus that

n−(A) ≤ n− s.

The same argument can be applied using −A in place of A to deduce that n+(A) ≤ n− s.
As such

s ≤ n− n+(A)

and

s ≤ n− n−(A),

meaning that

s = α(G) ≤ minn− n+(A), n− n−(A).

Note that in the above, A is really the adjacency matrix of G. As the only requirement of A
is symmetry, Theorem 2.14 also holds for any weight matrix W to a graph G.

Note also the similarity between Equation (2.10) and the definition of tight weight matri-
ces in Definition 2.9. Equation (2.10) is one way to describe the inertia bound. Consequently,
a graph has a tight weight matrix if and only if its inertia bound is tight - meaning that there
is an equality in (2.10). Another, equivalent way of expressing this bound uses the multiplicity
of zero as an eigenvector in the weight matrix W . Denote this value by n0(W ), then

α(G) ≤ n0(W ) + min{n+(W ), n−(W )}. (2.11)

In fact, this version of the inertia bound holds true as long as the matrix W has entries from
an ordered field F [Elzinga, 2007]. This will be looked further into in Chapter 5.

The reason for the name inertia bound, stems from the definition of the inertia of a matrix.

Definition 2.15 (Matrix inertia): For an n×n matrix A, the inertia of A is given as the
ordered set

(n+(A), n−(A), n0(A)),

where n+(A) denotes the number of positive eigenvalues of A, n−(A) the number of negative
eigenvalues of A and n0(A) the multiplicity of 0 as an eigenvector of A. 4

As can be seen from (2.10) and (2.11), the inertia of a matrix plays a large role in determining
the inertia bound.

Graphs for which Equation (2.10) or (2.11) are equalities, are also said to attain the
inertia bound. As the inertia bound is attributed to Dragoš M. Cvetković, it is also known
as the Cvetković bound [Sinkovic, 2018].

Recall the definition of a tight weight matrix given in Definition 2.9. By using Theorem
2.13 a special case can be found, where the weight matrix is never tight.
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Theorem 2.16: Let W be a weight matrix for a graph G of order n. If W has a principal
submatrix with α(G)+1 positive eigenvalues and a principal submatrix with α(G)+1 negative
eigenvalues, then W is not tight.

Proof: A consequence of Theorem 2.13, is thatW has at least α(G)+1 positive eigenvalues
and at least α(G) + 1 negative eigenvalues. So

n−(W ) ≤ n− α(G)− 1

and
n+(W ) ≤ n− α(G)− 1

and thus
min{n− n−(W ), n− n+(W )} ≥ α(G) + 1 > α(G).

As this inequality is strict, W is not tight.

This result will be used to prove the non-tightness of the Paley 17 graph. Many graphs,
however, do possess tight weight matrices, which is also why this property of Paley 17 is
important, as it shows that this is definitely not the case for all graphs. Some examples of
graphs with tight inertia bound will be shown next.

2.4 Two graphs that attain the inertia bound
To show that there are cases where graphs can attain the inertia bound, this section will look
closer at two smaller graphs, and see that equality occurs in Equation (2.11). First studied is
the Petersen graph, which is seen in Figure 2.4. The Petersen graph, which will be denoted
by P henceforth, has independence number α(P ) = 4. Using the adjacency matrix AP of P ,
seen in Figure 2.5, the eigenvalues can be calculated.
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4
5
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7 8

9
AP =



0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0


Figure 2.5: The Petersen graph P and its corresponding adjacency matrix AP .

The matrix AP has the eigenvalues 1 with multiplicity 5, 3 with multiplicity 1 and −2
with multiplicity 4. Thus, it has 6 positive eigenvalues and 4 negative, and the right half of
Equation (2.11) becomes

n0(AP ) + min{n+(AP ), n−(AP )} = 0 + min{6, 4} = 4.

Thus, Equation (2.11) becomes an equality, as

α(P ) = 4 = n0(AP ) + min{n+(AP ), n−(AP )}.
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The second example, will be the complete bipartite graph K2,3. Complete bipartite graphs
Km,n are defined as having a partition of its vertices into two smaller sets of vertices of size
m and n respectively, with each of these sets being independent sets, but with each vertex of
one set connected to every vertex of the other. As such, it is clear that for complete bipartite
graphs Km,n, m ≤ n, α(Km,n) = n. Giving K2,3 a set of edge-weights and a corresponding
weight matrix WK2,3 as in Figure 2.6, the eigenvalues of the matrix can be calculated.

0 1

2 3 4

-3 2 5 1 4 2
WK2,3 =


0 0 −3 2 5
0 0 1 4 2
−3 1 0 0 0
2 4 0 0 0
5 2 0 0 0



Figure 2.6: The complete bipartite graph K2,3 with a set of edge-weights, and its corresponding weight
matrix WK2,3 .

These eigenvalues are found to be one instance of zero as an eigenvalue, two positive
eigenvalues, and two negative. Thus

n0(WK2,3) + min{n+(WK2,3), n−(WK2,3)} = 1 + min{2, 2} = 3,

and so there is an equality in Equation (2.11), as

α(K2,3) = 3 = n0(WK2,3) + min{n+(WK2,3), n−(WK2,3)}.

As it turns out, ways of constructing weight matrices exist for all graphs on 10 or fewer
vertices, such that equality occurs in Equation (2.11) [Sinkovic, 2018]. This is in part, what
leads to the question of whether this is possible for all graphs. As will be made apparent,
that is not the case, as there exists a graph, for which Equation (2.11) has a sharp inequality.
This graph is called the Paley 17 graph, the Paley graph on 17 vertices. It and its properties
are the main focus of the next chapter.
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3. Paley 17
It was previously shown, that the independence number of graphs are bounded by the inertia
bound, with some graphs being able to attain the bound for given weight matrices. This
chapter will introduce a special class of graphs, the Paley graphs, that will help show, that
not all graphs can attain the inertia bound. Specifically, It is the properties of the Paley
graph on 17 vertices, that makes the bound unattainable.

3.1 Paley graphs
First is the definition of the special class of graphs. The different Paley graphs are dependent
on primes, and the numbering of their vertices.

Definition 3.1 (Paley graph): Let q be a prime power, such that q ≡ 1 mod 4. Then the
Paley graph P (q) has as vertex set, the elements of the finite field GF (q) with two vertices
adjacent if and only if their difference is a non-zero square in GF (q). 4

In the definition, the condition of congruence on q means that −1 is a square in GF (q). Thus
any pairing {u, v} of vertices are only adjacent if either u− v or v − u is a square in GF (q).
This means Paley graphs must be undirected.

One property that Paley graphs have, which will be used to great effect, is that they are
transitive over vertices, edges and arcs in the graphs.

Definition 3.2 (Transitive graphs): The three types of graph transitivity are defined as
follows:

A graph G is vertex-transitive if its automorphism group acts transitively on V (G).
That is, for any two vertices of G there is an automorphism mapping one to the other.

A graph G is edge-transitive if its automorphism group acts transitively on E(G).

A graph G is arc-transitive if its automorphism group acts transitively on the arcs of
G. An arc in G is an ordered pair of adjacent vertices in G.

[Godsil and Royle, 2001] 4

Of these three transitive properties arc-transitivity is the strongest one, as, necessarily, arc-
transitive graphs are both vertex- and edge transitive. The opposite doesn’t always hold true,
however [Godsil and Royle, 2001, pp. 35-36].

That Paley graphs possess these transitive properties, comes as a consequence of the
following theorem.

Theorem 3.3: The function σab : V → V, σab(v) = av + b, where v ∈ V , a is a non-zero
square in GF (q) and b ∈ GF (q), is an automorphism of P (q).

Proof: It is easily noted, that σab is bijective. Let now v1, v2 ∈ V (P (q)), with their images
σab(v1), σab(v2) and let a be a non-zero square in GF (q). Since v1 ∼ v2 if and only if
v1−v2 is a non-zero square in GF (q), and since a is a non-zero square as well, then v1−v2
is a non-zero square if and only if a(v1 − v2) is a non-zero square. Further, a(v1 − v2) is
a non-zero square if and only if av1 − b− (av2 − b) is a non-zero square, which it is if and
only if σab(v1) ∼ σab(v2). This proves the automorphism.

15
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The automorphism of Theroem 3.3 provides the necessary conditions for vertex-, edge-
and arc-transitivity of Paley graphs. The arc-transitivity, and thus the vertex- and edge-
transitivity as well, can be shown as follows. Let an arc in a Paley graph P (q) be given
as (u1, v1), {u1, v1} ∈ E(P (q)). Assume that the arc (u2, v2) also exists in P (q), then an
automorphism σab, as in the above theorem, for which σab(u1) = u2 and σab(v1) = v2 can be
constructed. As

au1 + b = u2,
av1 + b = v2

⇒ a = u2 − v2
u1 − v1

,

letting b = u2 − au1 constructs an automorphism σab for which if (u1, v1) is an arc in P (q),
then (σ(u1), σ(v1)) = (u2, v2) is an arc. As such, P (q) is arc-transitive.

Besides their transitive properties, Paley graphs are also noted for being self-complemen-
tary and strongly regular [Bollobás, 2001, p. 316]. One especially interesting Paley graph is
P (17), for, as will be shown, its inertia bound is not tight.

Example 3.4 (Constructing Payley 17): For q = 17 the field GF (17) is constructed by
the integer arithmetic modulo 17, meaning that its vertices span the range [0, 16] . The dif-
ferent numbers with square roots modulo 17 are

±1 with square roots ± 1 for + 1 and ± 4 for − 1;
±2 with square roots ± 6 for + 2 and ± 7 for − 2;
±4 with square roots ± 2 for + 4 and ± 8 for − 4;
±8 with square roots ± 5 for + 8 and ± 3 for − 8.

Thus in P(17), each vertex x is adjacent to the vertices x±1 (mod 17), x±2 (mod 17), x±4
(mod 17) and x± 8 (mod 17). P (17) is depicted in Figure 3.1.
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Figure 3.1: The Paley 17 graph P (17).

To properly show, that the inertia bound of P (17) is not tight, other properties of Paley 17
and its subgraphs will be presented.

Property 1: Paley 17 has independence number α(P (17)) = 3.
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One can see this for one self using, for example, Figure 3.1. Here the vertices 1,7 and 12
are one set of independent vertices, which are otherwise adjacent to all other vertices of the
graph. Other sources, [Shearer] and [Exoo], have computed the independence numbers of
Paley graphs spanning up to 10 000 vertices and also found the independence number of
P (17) to be 3.

Property 2: The graph P (17) is α-critical.

As P (17) is arc-transitive, the symmetry of the graph means, that if removing any edge
increases α(P (17)), then it is α-critical. Deleting the edge {0, 1} means that vertex 0 is
independent from all the vertices 1, 7 and 12 mentioned above. Thus a new independent set
[0, 1, 7, 12] is created, and so α (P (17)− {0, 1}) = 4. Thus P (17) is α-critical.

As mentioned in Example 3.4 the non-zero squares modulo 17 are ±1,±2,±4 and ±8. A
k-edge of P (17) is an edge {v1, v2} for which v1− v2 = ±k (mod 17), k ∈ {1, 2, 4, 8}. For any
of these values of k, the set of k-edges form cycles of length 17 as follows:

k k − edge cycles
1 0− 1− 2− · · · − 16− 0
2 0− 2− 4− · · · − 14− 16− 1− 3− · · · − 13− 15− 0
4 0− 4− 8− 12− 16− 3− 7− 11− 15− 2− 6− 10− 14− 1− 5− 9− 13− 0
8 0− 8− 16− 7− 15− 6− 14− 5− 13− 4− 12− 3− 11− 2− 10− 1− 9− 0

This gives rise to the next property of P (17).

Property 3: P (17) has a 2-factorization consisting of four cycles of length 17.

We will use a− b− c triangles to show isomorphism between subgraphs of P (17).

Definition 3.5: Let G be a graph of order n. An a−b−c triangle in G consists of an a-edge,
a b-edge and a c-edge, that form a triangle 4(u, v, w), u, v, w ∈ V (G) with three mutually
adjacent vertices of G. 4

For example, in P (17) the sets of vertices 4(0, 1, 2), 4(0, 2, 4), 4(0, 4, 8) and 4(0, 8, 9) form
respectively a 1 − 1 − 2 triangle, a 2 − 2 − 4 triangle, a 4 − 4 − 8 triangle and an 8 − 8 − 1
triangle.

Theorem 3.6 (Property 4): There exists an automorphism of P (17) which maps the tri-
angle 4(0, 1, 2) to any other triangle. Meaning that the group of automorphisms on P (17)
act transitively on its triangles.

Proof: The P (17) graph has 68 triangles, which can be found from its characteristic poly-
nomial. These are 17 of each of the example triangles mentioned above. 17 1 − 1 − 2
triangles, 17 2− 2− 4 triangles, 17 4− 4− 8 triangles and 17 8− 8− 1 triangles.

Recall Theorem 3.3. The automorphisms given by σ1b, b ∈ {0, 1, . . . , 16} will map
4(0, 1, 2) to any 1− 1− 2 triangle depending on b. Similarly, the automorphisms σab for
a ∈ {2, 4, 8}, b ∈ {0, 1, . . . , 16} maps 4(0, 1, 2) to any of the 2−2−4, 4−4−8 or 8−8−1
triangles in P (17).

The sign of the triangles will also serve a function in showing, whether the weight matrix of
P (17) is tight. It will be defined as follows:

Definition 3.7 (Sign of a triangle): Given a graph G with weight matrix W , the sign of
a triangle in G is the sign of the product of the entries of W which correspond to the edges
of that triangle. 4

These properties of P (17) and its triangles will be used in Chapter 4 to show that it does not
attain the inertia bound. Also needed for this, will be some specific subgraphs of P (17).
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3.2 The induced subgraphs of P (17)

In the following, two specific induced subgraphs of P (17), G1 and G2, and their principal
submatrices will be examined. When the entries in the submatrices are of non-zero weight,
their determinants will be non-zero as well. This, together with the inertia bound (2.10)
will be used to show how the eigenvalues of the principal submatrices of G1 and G2 are
distributed. Either 3 positive to 4 negative, or 4 positive to 3 negative eigenvalues.

Starting with G1, let it be given with weights as in Figure 3.2, with the corresponding
weight matrix W1.
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W1 =



0 a b 0 0 0 0
a 0 c d 0 0 0
b c 0 0 e 0 0
0 d 0 0 f g 0
0 0 e f 0 0 h
0 0 0 g 0 0 0
0 0 0 0 h 0 0



Figure 3.2: The principal subgraph G1 of P (17) and its weight matrix W1.

Property 5: G1 is an induced subgraph of P (17).

This is most easily shown, by reverting the vertex-numbering of G1 back, so it is consistent
with the numbering in P (17). This is done in Figure 3.3, where, also, the vertices and edges
are shown as they appear in P (17).
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Figure 3.3: G1 with the same vertex-numbering as in P (17). It is indeed an induced subgraph of P (17).
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Property 6: For the weight graph W1

det(W1) = 2abcg2h2.

While this is easily calculated, it is a long process, and so the proof of this statement will be
skipped. Instead, if one feels it necessary, it can be verified through the use of calculation
tools.

Theorem 3.8 (Property 7): Let the product abcgh 6= 0.

• If abc > 0, then n+(W1) = 3 and n−(W1) = 4.

• If abc < 0, then n+(W1) = 4 and n−(W1) = 3.

Proof: Equation (2.10) will be used on G1 and W1. Note that G1 has 7 vertices, so n = 7.
Since α(G1) = 3 - which is easily verified - Equation (2.10) becomes

3 ≤ min{7− n+(W1), 7− n−(W1)}.

This means that n+(W1) ≤ 4 and n−(W1) ≤ 4. As abcgh 6= 0 it follows that det(W1) 6= 0,
meaning that all eigenvalues are non-zero. Thus either n+(W1) = 3 and n−(W1) = 4 or
n+(W1) = 4 and n−(W1) = 3. Now, if abc > 0 then det(W1) > 0, making the product of
the eigenvalues of W1 positive and so n−(W1) = 4. For abc < 0 it is the opposite case,
with det(W1) < 0, and so n−(W1) = 3.

Next is the induced subgraph G2. Let it be given as in Figure 3.4, and with weight matrix
W2.
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W2 =



0 a 0 0 0 0 0
a 0 b c d 0 0
0 b 0 e 0 f 0
0 c e 0 g 0 0
0 d 0 g 0 0 h
0 0 f 0 0 0 i
0 0 0 0 h i 0



Figure 3.4: The principal subgraph G2 of P (17) and its weight matrix W2.

Property 8: The graph G2 is an induced subgraph of P (17).

In the same style as for G1, the proof of this is presented in Figure 3.5.
It will also be shown for G2, how the eigenvalues are distributed. Once again it pertains

to the determinant of W2.
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Figure 3.5: G2 with the same vertex-numbering as in P (17). It is indeed an induced subgraph of P (17).

Property 9: For the weight graph W2,

det(W2) = −2a2efghi.

As with the determinant of W1, this is easily proven, or otherwise shown through the use of
computational tools.

Theorem 3.9 (Propterty 10): Let the product aefghi 6= 0.

• If efghi < 0, then n+(W2) = 3 and n−(W2) = 4.

• If efghi > 0, then n+(W2) = 4 and n−(W2) = 3.

Proof: The proof of this is analogue to that of Theorem 3.8. It is easily verified that G2
has α(G2) = 3, and it has 7 vertices so n = 7. Thus, by (2.10),

3 ≤ min{7− n+(W2), 7− n−(W2)}.

This means that n+(W2) ≤ 4 and n−(W2) ≤ 4. As aefghi 6= 0, det(W2) 6= 0, meaning that
either n+(W2) = 3 and n−(W2) = 4 or n+(W2) = 4 and n−(W2) = 3. If efghi < 0 then
det(W2) > 0 and so n−(W2) = 4. For efghi > 0 it is the opposite case, with det(W1) < 0,
and so n−(W1) = 3.

The goal of introducing the induced subgraphs G1 and G2 is to use Theorem 3.6 to show
that the triangles of P (17), introduced in Section 3.1, are part of isomorphic copies of the
subgraphs. This will be used to deduce the connection between the signs of the triangles of
P (17), and whether the weight matrix of P (17) is tight or not.
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Some final results, pertaining to the weight matricesW of graphs, are needed before it can be
shown, that the weight matrix of P (17) is never tight. It will be shown what conditions are
needed to obtain a tight weight matrix, and then proven that these condition cannot exist
for P (17) and its weight matrices.

4.1 Tight weight matrices
One problem stemming from the use of the weighted adjacency matrix, is that, in theory,
the weight of a given edge could be zero. Usually, this is not the case, and the zero weight
is more often reserved for the case where the vertices are not adjacent, but this problem can
be avoided for α-critical graphs with tight weight matrices, by using the following property.

Theorem 4.1: Let G be a α-critical graph with a tight weight matrix W . Then wij 6= 0 for
all edges {i, j} ∈ E(G).

Proof: Assume that W is a tight weight matrix of a graph G of order n, so that

α(G) = min{n− n+(W ), n− n−(W )},

and that wij = 0 for some edge {i, j} in G. Then W is also the weight matrix for
G − {i, j}, and so α(G − {i, j}) ≤ min{n − n+(W ), n − n−(W )} by the inertia bound.
Then α(G− {i, j}) ≤ α(G) which is a contradiction to the definition of α-critical graphs.

As it has previously been stated, in Property 2, that P (17) is α-critical, this gives rise to the
following property:

Property 11: Any tight weight matrix W of Paley 17 has wij 6= 0 for all of the edges
{i, j} ∈ E (P (17)).

This property allows the usage of the two theorems concerning the eigenvalues of the induced
subgraphs G1 and G2 of P (17), Theorems 3.8 and 3.9. The proof of the following theorem,
regarding the triangles that make up P (17), is also a consequence of that property.

Theorem 4.2: Let W be a tight weight matrix of P (17). Every triangle of P (17) has the
same sign.

Proof: Let W be a tight weight matrix of P (17). Suppose now, for the sake of contradic-
tion, that some triangle 41 exists in P (17), which has a different sign than the triangle
4(0, 1, 2). Without loss of generality, assume the sign of 4(0, 1, 2) to be negative. By
Theorem 3.3 an automorphism σ exists on P (17), which maps 4(0, 1, 2) to 41. This
means that σ maps G1 to some isomorphic subgraph which contains 41. Call this isomor-
phic subgraph H1. By Property 11 the entries of W that correspond to edges in P (17)
are non-zero.

Then Theorem 3.8, and the different signs of the triangles, imply that the principal
submatrix of W corresponding to G1 will have 4 positive and 3 negative eigenvalues.
Meanwhile the principal submatrix of W corresponding to H1 will have 3 positive and 4
negative eigenvalues.

Recall that α(G) = 3, then, according to Theorem 2.16, W is not tight, which is a
contradiction. Thus, all triangles must have the same sign.

21



22 The inertia bound of Payley 17

This fact for the triangles of P (17) will be used to determine the possible distributions for
the signs of the edges of P (17). To reduce the number of cases that need to be examined,
the following theorem is introduced.

Theorem 4.3: Let A be a symmetric n × n matrix with non-zero sub- and superdiagonal,
meaning, respectively, the entries of the matrix that are just below and just above the main
diagonal. There exists a matrix D, with diagonal entries dii ∈ {−1, 1}, such that the sub-
and superdiagonals of DAD are positive.

Proof: The proof of this theorem is by induction on n. If n = 2 and the entries a12 = a21 > 0
then simply letting D = I2, the unit matrix, gives the necessary result. So assume instead
that a12 = a21 < 0. Let D be a diagonal matrix with just one entry 1 and one entry −1.
Then the off-diagonal entries of matrix DAD will be positive.

Assume the hypothesis to be true for n = k. Let A be a symmetric matrix of order
k + 1, and with non-zero entries in the sub- and superdigaonals. Let A1 be the principal
submatrix of A which omits row and column k + 1. As A1 is a k × k symmetric matrix,
there exists a diagonal matrix D1, so that D1A1D1 has positive sub- and superdiagonals.
By using these submatrices, we can construct the following equation

DAD =
[
D1 0
0 d

] [
A1 a
a> ak+1,k+1

] [
D1 0
0 d

]
=
[
D1A1D1 dD1a
da>D1 d2ak+1,k+1

]
.

Note here, that an appropriate choice of d will determine the sign of the matrix entries
(DAD)k,k+1 = (DAD)k+1,k. This concludes the proof.

No matter the choice of entries in D, D2 will always be the unit matrix. Thus the matrices
A and DAD are similar, and with the same eigenvalues.

Example 4.4 (Constructing D for a Paley 13 graph): An example of the construction
of a matrix D as in Theorem 4.3 will be given here. The tight weight matrix for the Paley
13 graph, presented in [Sinkovic, 2018, p. 40], will be used, as it is a symmetric matrix
with non-zero sub- and superdiagonal, and with these containing both negative and positive
values. This matrix will be denoted by A.

A =



0 −2 0 −4 2 0 0 0 0 −4 3 0 2
−2 0 2 0 3 3 0 0 0 0 4 3 0

0 2 0 −4 0 −2 3 0 0 0 0 −4 2
−4 0 −4 0 3 0 2 −2 0 0 0 0 2

2 3 0 3 0 3 0 4 −2 0 0 0 0
0 3 −2 0 3 0 4 0 2 3 0 0 0
0 0 3 2 0 4 0 3 0 −2 3 0 0
0 0 0 −2 4 0 3 0 3 0 3 2 0
0 0 0 0 −2 2 0 3 0 −4 0 −4 2
−4 0 0 0 0 3 −2 0 −4 0 2 0 2

3 4 0 0 0 0 3 3 0 2 0 −2 0
0 3 −4 0 0 0 0 2 −4 0 −2 0 2
2 0 2 2 0 0 0 0 2 2 0 2 0



.

Thus, a diagonal matrix D, such that DAD has positive sub- and superdiagonal, must be
constructed so that DAD changes the sign of entries a1,2 = a2,1, a3,4 = a4,3, a9,10 = a10,9 and
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a11,12 = a12,11. The following matrix D fulfils this purpose.

D =



−1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1



.

As can be computed

DAD =



0 2 0 −4 2 0 0 0 0 4 −3 0 2
2 0 2 0 −3 −3 0 0 0 0 4 −3 0
0 2 0 4 0 2 −3 0 0 0 0 4 −2
−4 0 4 0 3 0 2 −2 0 0 0 0 2

2 −3 0 3 0 3 0 4 −2 0 0 0 0
0 −3 2 0 3 0 4 0 2 −3 0 0 0
0 0 −3 2 0 4 0 3 0 2 −3 0 0
0 0 0 −2 4 0 3 0 3 0 −3 2 0
0 0 0 0 −2 2 0 3 0 4 0 −4 2
4 0 0 0 0 −3 2 0 4 0 2 0 −2
−3 4 0 0 0 0 −3 −3 0 2 0 2 0

0 −3 4 0 0 0 0 2 −4 0 2 0 2
2 0 −2 2 0 0 0 0 2 −2 0 2 0



,

and as can be seen, the sub- and superdiagonals of DAD have only positive entries. Further,
the eigenvalues of each of the matrices A and DAD can be confirmed to be the same, and as
such, their inertia are the same as well.

As a consequence of Theorem 4.3, any weight matrix of P (17) can be assumed to have positive
entries on its sub- and superdiagonal. These entries correspond to all 1-edges in P (17) with
the exception of the {0, 16}-edge. That leaves only two cases to consider when using Theorem
4.2 to determine the signs of the edges of P (17). The first case, where all 1-edges of P (17)
are positive, and the second case, where all the 1-edges are positive except the edge {0, 16},
which is negative.

Theorem 4.5: Let W be a tight weight matrix of P (17) and assume that all 1-edges are
positive. Then all edges of P (17) are positive and the sign of every triangle of P (17) is
positive.

Proof: Let W be a tight weight matrix for P (17). By Theorem 4.2, all triangles in P (17)
have the same sign. Assume that sign to be negative. As every 2-edge in P (17) belong to
a 1− 1− 2 triangle, and as all 1-edges have positive sign, the 2-edges must have negative
sign. As every 4-edge belong to a 2− 2− 4 triangle, every 4-edge must have negative sign
as well. So too for the 8-edges, as they all belong to a 4− 4− 8 triangle, the 8-edges must
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be negative. But then the 8 − 8 − 1 triangles of P (17) will have positive sign, meaning
that it is not possible for all 1-edges in P (17) to have positive sign while all triangles have
negative sign.

Thus, all triangles must have positive sign. By a similar argument to above, this forces
all 2- 4- and 8-edges in P (17) to be positive as well. 2-edges beacuse of the 1 − 1 − 2
triangle, 4-edges because of the 2 − 2 − 4 triangle and 8-edges because of the 4 − 4 − 8
triangle.

Theorem 4.6: Let W be a tight weight matrix of P (17) and assume that all 1-edges are
positive with the exception of the {0, 16}-edge, which is negative. Then the remaining edges
are negative except the 2-edges {0, 15} and {1, 16}, the 4-edges {0, 13}, {1, 14}, {2, 15} and
{3, 16}, and the 8-edges {0, 9}, {1, 10}, {2, 11}, {3, 12}, {4, 13}, {5, 14} {6, 15} and {7, 16}.
Also, the sign of every triangle is negative.

Proof: Let W be a tight weight matrix for P (17). By Theorem 4.2, all triangles in P (17)
have the same sign. Assume that sign to be positive. As every 2-edge in P (17) belong
to a 1 − 1 − 2 triangle, and as all 1-edges except edge {0, 16} have positive sign, all 2-
edges, except {1, 16} and {0, 15}, must have positive sign. As every 4-edge belong to a
2 − 2 − 4 triangle, and all 2-edges except {1, 16} and {0, 15} are positive, every 4-edge,
except {0, 13}, {1, 14}, {2, 15} and {3, 16}, must have positive sign as well. Since every
8-edge belong to a 4 − 4 − 8 triangle, and all 4-edges except {0, 13}, {1, 14}, {2, 15} and
{3, 16} are positive, all 8-edges, except {0, 9}, {1, 10}, {2, 11}, {3, 12}, {4, 13}, {5, 14}
{6, 15} and {7, 16} must be positive. Look now at the 8− 8− 1 triangle 4(0, 8, 9). As the
edge {0, 9} is the only one with negative sign, this triangle has negative sign as well. Thus,
a contradiction to every triangle having positive sign. This means that every triangle must
have negative sign. Note that by changing this property also switches the sign of all edges
in the argument above. Therefore, all 2-edges are negative with the exception of {1, 16}
and {0, 15}, all 4-edges are negative with the exception of {0, 13}, {1, 14}, {2, 15} and
{3, 16} and all 8-edges are negative with the exception of {0, 9}, {1, 10}, {2, 11}, {3, 12},
{4, 13}, {5, 14} {6, 15} and {7, 16}.

With these results it can be proven that the inertia bound of P (17) is not tight.

4.2 The inertia bound is not tight
The strategy for proving that the inertia bound of Paley 17 is not tight, is to prove that,
given the results of Section 3.2 and 4.1, P (17) cannot have a tight weight matrix.

Theorem 4.7: The Paley graph on 17 vertices has no tight weight matrix.

Proof: Suppose for contradiction, thatW is a tight weight matrix of Paley 17. By Theorem
4.3, there exists a diagonal matrix D, such that the entries of the sub- and superdiagonal
of DWD are positive. As D is a diagonal matrix, non-zero entries of W stay non-zero in
DWD, and entries of zero in W remain zero in DWD. Furthermore, as D2 is the unit
matrix, DWD is similar to W . This means that DWD is a tight weight matrix for P (17).
Let DWD = W̃ .

The entries of the sub- and superdiagonal of W̃ correspond to the 1-edges in P (17),
except the edge {0, 16}. By Property 11, all entries of W̃ corresponding to edges in P (17)
are non-zero. This will allow the use of Theorems 3.8 and 3.9. There are now two cases to
consider, the first case where {0, 16} is positive, and the second where {0, 16} is negative.
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In the first case, all edges of P (17) will be positive, as per Theorem 4.5. Thus, all
entries of W̃ will be positive as well. According to Property 8 and Theorem 3.9, G2 is an
induced subgraph of P (17), and W̃ has a principal submatrix corresponding to G2, with
four positive eigenvalues. At the same time, according to Property 5 and Theorem 3.8, G1
is an induced subgraph of P (17), and W̃ has a principal submatrix corresponding to G1,
which has four negative eigenvalues.

Thus, in the case where the edge {0, 16} of P (17) is positive, W̃ has principal sub-
matrices which have four positive and four negative eigenvalues. By Theorem 2.16, as
α (P (17)) = 3, W̃ is not tight. A contradiction.

In the second case, all the 1-edges of P (17) are positive, except for {0, 16}. By Theorem
4.6, all other edges of P (17) are negative, with the exception of the 2-edges {0, 15} and
{1, 16}, the 4-edges {0, 13}, {1, 14}, {2, 15} and {3, 16}, and the 8-edges {0, 9}, {1, 10},
{2, 11}, {3, 12}, {4, 13}, {5, 14} {6, 15} and {7, 16}. Now, the induced subgraph G2, which
has vertices 0,1,2,3,6,12 and 13 (see Figure 3.5), has a 5-cycle consisting of the edges {0, 1},
{1, 3}, {3, 12}, {12, 13} and {13, 0}. Of these, the edges {0, 1}, {3, 12}, {12, 13} and {13, 0}
are positive, while {1, 3} is negative. Thus, by Theorem 3.9, W̃ has a principal submatrix
corresponding to G2, which has four negative eigenvalues. The induced subgraph G1, with
vertices 0,1,2,6,7,12 and 14 (see Figure 3.3), has a triangle, which consists of the edges
{0, 1}, {0, 2} and {1, 2}. By Theorem 4.6, this triangle will have negative sign, and so, by
Theorem 3.8, W̃ has a principal submatrix corresponding to G1. which has four positive
eigenvalues.

This means that in the case where the edge {0, 16} of P (17) is negative, W̃ still has
principal submatrices with four positive and four negative eigenvalues. Again, by Theorem
2.16, W̃ is not tight.

Thus, there does not exist a tight weight matrix W for P (17)

This means, that although graphs can attain the inertia bound given in Equations (2.10)
and (2.11), one cannot assume that all graphs can achieve equality always. Thus, when
examining the independence number of specific graphs, it is either necessary to compute the
independence number, or otherwise determine which properties of the graphs lead to tight or
non-tight weight matrices.

With the proof, that the inertia bound of P (17) is not tight, it is also relevant to look
closer at the induced subgraphs of P (17). Specifically, [Sinkovic, 2018] shows, that for the
subgraph obtained by deleting any one vertex of P (17) together with its associated edges,
the inertia bound of the resulting subgraph is also not tight, thus providing another example
of a graph with this property.

One can also look further into the properties that lead to attaining the bound, and
whether specific subgraphs of P (17) has these properties. Further, the inertia bound can be
generalized, to be over any field F, instead of just over the real numbers, as has been the case
in this report. This problem will be presented in the following, final chapter, together with
some conditions of equality in the inertia bound.
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5. Equality of the isotropic bound
In this chapter the inertia bound derived in Chapter 2 will be generalized over a field F.
Further properties for equality in the bound will also be presented, both in the general case
and for graphs with weights from R. This chapter is based on [Elzinga, 2007], and as it
intents to give a short presentation of some of the results of this work, those with relevance
to the inertia bound, it will not go into the same amount of detail. For further study, the
sourced paper is recommended.

5.1 Conditions for attaining the bound
Define Fn as the vector space of all n× 1 column vectors with entries from a field F, and let
ei, i ∈ [n] denote the i’th standard basic vector. A matrix, the entries of which are elements
of F, is called an F-matrix.

If S is a subset of a set V of vertices to a graph G, let then US = span{ei|i ∈ S} the
subspace of Fn spanned by the vectors ei, i ∈ S. If S is an independent set, then the principal
submatrix of an adjacency matrix A corresponding to S is a zero matrix, and so x>Ay = 0 for
all x, y ∈ US . Denote by ιF(A) the maximum dimension of a subspace U , such that x>Ay = 0
for all x, y ∈ U. Then

α(G) = |S| = dim(US) ≤ ιF(A)

=⇒ α(G) ≤ ιF(A). (5.1)

Similarly to the definition of a weight matrix with entries in R, a weight matrix can be defined
with entries in the F-space.

Definition 5.1 (F-weight matrix): An F-weight matrix of a graph G is a symmetric F-
matrix Â such that Âij = 0 whenever {i, j} /∈ E(G). 4

Now, a subspace U of Fn is said to be Â-isotropic, if x>Ây = 0 for all x, y ∈ U . By the above
argument, the maximum dimension of an Â-isotropic subspace ιF(Â) is an upper bound to
the independence number of a graph G. That is,

α(G) ≤ ιF(Â). (5.2)

This parameter, ιF(Â), is called the Witt index of the matrix Â [Elzinga, 2007, p. 6]. Let

ι∗F(G) = min
Â
ιF(Â)

denote the minimum Witt index of G over all F-weight matrices Â. As each F-weight matrix
Â serve as an upper bound for α(G), we have

α(G) ≤ ι∗F(G). (5.3)

This bound is called the isotropic bound on α(G) over the space F.
Thus, this is an alternative way to bound the size of the independence number of graphs.

Similar to the work done by [Sinkovic, 2018], the properties of the Witt index can be found

27
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and examined to determine for which cases the isotropic bound holds equalities or inequalities.
This is done in [Elzinga, 2007].

In his work, Elzinga expands on some of the results presented in [Artin, 1957], among
them Witt’s Theorem, in order to show the conditions necessary for a tight isotropic bound
over a given field. The presentation of these conditions rely on a theorem, for which some
notation will be introduced.

If a vector x = (xi)i∈[n], and a subset S of [n] are given, then xS denotes the restriction
of x to S, given by (xi)i∈S .

Two square matrices A and B of the same order are permutation similar, which is written
as A ∼ B, if B = P>AP for some permutation matrix P . If A and B are symmetric matrices,
then they are also said to be congruent. Further, for a field F with 2 6= 0, one can always
obtain a diagonal matrix from a symmetric matrix A, by performing the correct simultaneous
elemental row and column operations on A, as shown by [Newman, 1972, pp. 62-63]. As such,
for fields F with 2 6= 0, there exists a diagonal matrix D, such that A = P>DP for some
invertible matrix P , and so A is congruent to a diagonal matrix D.

Theorem 5.2: Let A be a symmetric matrix of order n with entries from a field F with
2 6= 0 and let S be the set of indices of a principal zero submatrix of A. Then ιF(A) ≥ |S|
with equality if and only if the associated partitioned matrix

[ S

S O B
B> C

]
∼ A (5.4)

satisfies the following condition:

If Bx = 0, and x>Cx = 0 then x = 0.

Proof: The proof of the inequality ιF(A) ≥ |S| is similar to the arguments that lead to
Equation (5.1), but using S as the index set of a maximum principal zero submatrix of A.

Assume now that S is the index set of a principal zero submatrix of A, and |S| = ιF(A),
and let x be a vector such that Bx = 0 and x>Cx = 0. Denote the complement of S in
[n] by S̄ and let W be the subspace of vectors w ∈ Fn with wS arbitrary and wS̄ = tx for
some t ∈ F. Then w>Aw = 2tw>SBx+ t2x>Cx = 0 for all w ∈W . Thus W is A-isotropic,
and x = 0, because otherwise ιF(A) ≥ dimW > |S|, which is a contradiction.

Now, assume that the conditions on vectors x holds for a set S of indices of a principal
zero submatrix of A, but ιF(A) > |S|. As the subspace US = span{ei|i ∈ S} is A-isotropic
and dimUS = |S| < ιF(A), a theorem of Witt [Artin, 1957, p. 122] implies that there is an
A-isotropic subspace properly containing US . Thus there is a vector w 6= 0 with wS = 0
such that u+w is A-isotropic for all u ∈ US . Let x = wS̄ . Then, for the partition in (5.4),
u + w = uS ⊕ x so (u + w)>A(u + w) = 2u>SBx + x>Cx for all u ∈ US . Taking u = 0
implies that x>Cx = 0. Then 2u>SBx = 0 for all u ∈ US . Because 2 6= 0 in F, and because
the entries in uS are arbitrary, this implies that Bx = 0. But x 6= 0, meaning there is a
contradiction.

Recalling Equation (5.3) implies the following corollary to Theorem 5.2, describing the con-
ditions for attaining the isotropic bound.

Corollary 5.3: Let G be a graph with n vertices and let F be a field with 2 6= 0. Then
α(G) = ι∗F(G) if and only if for some maximum independent set S of vertices in G and some
F-weight matrix Â of G (partitioned as in (5.4)), the only C-isotropic vector in the nullspace
of B̂ is the zero vector.
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Meaning that for equality to appear in (5.3) for a graph G, the F-weight matrix of G must
have a partition as in (5.4), for which both Bx = 0 and x>Cx = 0 only if x = 0. An example
of graphs that fulfils the conditions of Corollary 5.3 will be presented below.

Example 5.4 (Bipartite graphs fulfil Corollary 5.3): Let G = (V1, V2, E) denote a bi-
partite graph with the partition of its vertices into the sets V1 and V2, with |V1| ≤ |V2|, and
edge set E. The maximum independent set of G is then the partitioned vertex set V2. A set
of vertex disjoint edges, edges that have no end point vertices in common, can be constructed
going from V1 into V2. Denote this vertex disjoint set of edges byM . Such a setM is referred
to as a matching in G [Elzinga, 2007, p. 13]. Let the entries of M be of non-zero weight,
then a weight matrix Â can be constructed, which has zeroes everywhere but the entries of
M . Then Â can be partitioned as in (5.4) by

Â ∼
[ V2

V2 O B̂

B̂> Ĉ

]
=
[
O1 M
M> O2

]
,

by letting the entries in B̂ correspond to only the vertex disjoint edges in M . As O1 will
correspond to the largest principal zero submatrix of Â, the conditions of Corollary 5.3 still
apply to Â.

To show equality in Equation (5.3) it will be enough to show that the only vector in the
nullspace of B̂ is the zero vector. As the disjoint edges of M make up B̂, the columns of B̂
are independent, and so B̂x = 0 only for x = 0. Thus equality exists in (5.3) for all bipartite
graphs - an example of which was seen earlier, in Section 2.4.

Next will be some properties of the isotropic bound when looking at an ordered field such as
R.

5.2 The isotropic bound over ordered fields and real numbers

As [Elzinga, 2007] mentions in his thesis, the inertia bound, as presented in Chapter 2, is
really a special case of the isotropic bound, where the space F is replaced by the space of real
numbers R. Specifically, for a weight matrix W of a graph G, with entries of an ordered field
F,

ιF(W ) = n0(W ) + min{n+(W ), n−(W )}, (5.5)

as the inertia of a matrix is well-defined, given that its entries are from an ordered field. This
means, that it is possible to write Equation (2.11) using the minimum Witt index:

α(G) ≤ ι∗F(G). (5.6)

As R specifically is an ordered field, this does not have any effect on the results of previous
chapters, but it means that the equations (2.11) and (5.6) are equivalent ways of expressing
the inertia bound. However, working in unspecified ordered fields makes it possible to show
the equality in Equation (5.5).

As observed earlier, for a field F with 2 6= 0, there exists a diagonal matrix D, such that
A = P>DP for a symmetric F-matrix A. By [Newman, 1972, p. 69], if F is an ordered field,
then the number of positive, negative and zero diagonal entries of D are the same for all
other diagonal matrices congruent to D. For now, denote by n+(A), n−(A) and n0(A) the
number of positive, negative and zero elements of the diagonal entries of D. Then the inertia
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of A over the ordered field F is the triple (n+(A), n−(A), n0(A)), similarly to the inertia over
R. Denote the number of nonnegative and nonpositive diagonal entries of a matrix D by
respectively n+

0 (A) = n0(A) + n+(A) and n−0 (A) = n0(A) + n−(A).
If a matrix A is of order n, a subspace U of the field Fn is said to be respectively positive

semidefinite or negative semidefinite with respect to A if, respectively, u>Au ≥ 0 or u>Au ≤ 0
for all u ∈ U .

Theorem 5.5: Let A be an n × n symmetric matrix with entries from an ordered field F.
If U is respectively positive semidefinite or negative semidefinite with respect to A, then,
respectively, dimU ≤ n+

0 or dimU ≤ n−0 (A), and in each case there exists a subspaces U
such that equality is attained.

Proof: Let P be an invertible matrix and D a diagonal matrix such that A = P>DP .
Then x>Ax = (Px)>D(Px) and it follows, that a subspace U is positive semidefinite with
respect to A if and only if the subspace W = PU = {Pu|u ∈ U} is positive semidefinite
with respect to D. Thus, it is sufficient to prove the result for a subspace W that is
positive semidefinite with respect to a diagonal matrix D = diag(d1, . . . , dn).

Let V − = V −(D) be the subspace of Fn spanned by the n−(D) standard basis vectors
ei for which di < 0. Then dimV − = n−(D) and x>Dx < 0 for all nonzero vectors x ∈ V −.
Therefore, if W is positive semidefinite with respect to D, then W ∩ V − = {0}. Thus
dimW + dimV = dim(W + V −) ≤ n so dimW ≤ n− n−0 (D) = n+

0 (A). Equality is then
attained by the D-isotropic subspace V +

0 (D) spanned by the n+
0 (D) standard basis vectors

ei for which di ≥ 0.
Replacing A by −A in the above gives the corresponding proof for U negative semidef-

inite.

A corollary to the above theorem gives the case of equality in Equation (5.5).

Corollary 5.6: If (n+(A), n−(A), n0(A)) is the inertia of a symmetric n× n matrix A with
entries from an ordered field F, then

ιF(A) ≤ n0(A) + min{n+(A), n−(A)}.

Equality holds if each positive element of F is a square.

Proof: If U is an A-isotropic subspace, then U is both positive semidefinite and negative
semidefinite with respect to A. Then, by Theorem 5.5,

ιF(A) ≤ min{n+
0 (A), n−0 (A)} = n0(A) + min{n+(A), n−(A)}.

Now let P be an invertible matrix, and D = diag(d1, . . . , dn), such that P>AP = D.
If each positive element of F is a square, then there exists positive field elements ai such
that di = a2

i when di > 0 and di = −a2
i when di < 0. Let D̂ = diag(a−1

i , . . . , a−1
n ) where

ai = 1 if di = 0. Then D̂>DD̂ is a diagonal matrix with diagonal entries 1, −1 or 0. Thus,
by replacing P with PD̂, we may assume that D is a diagonal matrix with n+(A) entries
equal to 1, n−(A) entries equal to −1 and all other entries 0.

Let p = min{n+(A), n−(A)} and suppose that the diagonal entries are ordered so that
di = (−1)i, for i = 1, . . . 2p. Let W be the subspace consisting of all vectors x with
xi−1 = xi for even i, 2 ≤ i < 2p arbitrary when di = 0 and xi = 0 otherwise. Then W is
a D-isotropic subspace and U = PW is an A-isotropic subspace. Also dimU = dimW =
n0(A) + p = n0(A) + min{n+(A), n−(A)}.
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Thus, for ordered fields F, of which R is one, by Corollary 5.6,

α(G) ≤ ιF(W ) ≤ n0(W ) + min{n+(W ), n−(W )},

for all weight matrices W of a graph G. Further, the congruence between the diagonal
matrices D, with the number of positive, negative and zero values of the diagonal entries
being the same, is what leads to the possibility of looking specifically at the eigenvalues, in
the case of the real numbers. This is because a symmetric matrix A with elements of R,
such as a weight matrix for graph, is always diagonalisable. This means, that there exists
a diagonal matrix D with its entries being the eigenvalues of A, and an invertible matrix P
with its columns the eigenvectors of A, such that A = P−1DP .

A final result for the inertia bound is relevant to show here, as it pertains to when graphs
attain the inertia bound from just their regular adjacency matrix.

5.3 The inertia bound attained with adjacency matrices
Some graphs will attain the inertia bound even from their ordinary adjacency matrices. This
property is dependent on which types of subgraphs can be obtained from the main graph,
and how a decomposition of the graph can be made. A series of new properties must be
presented before the result can be proven, however.

A vertex cover V ′ of a graph G, is a subset of V (G), such that if an edge {u, v} ∈ E(G) then
u ∈ V ′ ∨ v ∈ V ′. This means, that V ′ is a set, such that every edge in E(G) has an endpoint
in V ′. For an example of a vertex cover, see Figure 5.1.
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G

Figure 5.1: A vertex cover of the graph G is marked in red.

Further, a minimum vertex cover is a vertex cover of the smallest possible size. The vertex
cover number of a graph G, denoted by τ(G), is then the cardinality of the minimum vertex
cover. The vertex cover in Figure 5.1 is not the minimum vertex cover, as a cover of smaller
size can be made. That is shown in Figure 5.2, from which it can be seen that τ(G) = 4.

It is clear, that any vertices not included in a vertex covering of a graph must be inde-
pendent. From this insight can be seen, that for a graph G of order n

n = τ(G) + α(G), (5.7)

as the smallest vertex covering necessarily leads to the largest possible independent set of
vertices.

A biclique in a graph G is a complete bipartite subgraph of G, that is, a subgraph Km,n

with |G| ≥ m+n,m ≤ n. A star in G is a biclique determined by a single vertex and some or
all of its incident edges, meaning a complete bipartite subgraph of the type K1,n. A biclique
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Figure 5.2: A minimum vertex cover of the graph G is marked in red. Note that then τ(G) = 4.

decomposition of G is a partition of the edge set of G by bicliques in G. Meaning the edge
sets of the bicliques span the edge set of G.

By [Kratzke et. al., 1988], if a graph G has adjacency matrix A, then a biclique decompo-
sition of G has at least max{n+(A), n−(A)} bicliques, and if the decomposition has precisely
max{n+(A), n−(A)}, then G is called eigensharp. Note, intuitively, that the vertex cover
number τ(G), is equal to the minimum number of stars needed to partition the edge set of
G.

Theorem 5.7: Let G be a graph of order n with ordinary adjacency matrix A. Then

α(G) = n0(A) + min{n+(A), n−(A)}

if and only if G has an eigensharp decomposition of stars.

Proof: From (5.7), τ(G) = n−α(G). Then α(G) = n0(A)+min{n+(A), n−(A)} if and only
if τ(G) = max{n+(A), n−(A)}, which it is if and only if G has an eigensharp decomposition
of stars.

There are, of course, many other properties pertaining to the inertia bound, both over ordered
fields and general fields, and the above results are simply ones with relevancy to preceding
chapters. The sources below provide a more in-depth view of these many properties, as well
as tackle more questions regarding the inertia bound.



6. Conclusion
Using preliminary theory of graphs and matrices, specifically that of weight matrices and
eigenvalues, it has been shown, that the inertia bound cannot always be tight. The inertia
bound, derived in Chapter 2 as

α(G) ≤ min{n− n+(W ), n− n−(W )}, (2.10)

for a graph G of order n with weight matrixW , is indeed not tight for the specific graph Paley
17. This is because, given a theoretical tight weight matrix of Paley 17, an induced subgraph
can always be found, which fulfils the criteria of Theorem 2.16, causing a contradiction to
occur.

Chapter 3 introduced these induced subgraphs for Paley 17, the subgraphs G1 and G2,
together with results determining the amount of positive and negative eigenvalues for their
weight matrices, depending on the weights of their edges. Important to note is, that no
matter these weights, G1 and G2 will have either four positive or four negative eigenvalues.

These results are used in Chapter 4 to determine that no matter what tight weight matrix
W is given for Paley 17, these two principal submatrices G1 or G2 will fulfil the criteria of
Theorem 2.16, with one having α(P (17))+1 positive eigenvalues, and the other α(P (17))+1
negative eigenvalues. Thus, for all weight matrices of Paley 17, the inertia bound is not tight,
and the answer to the question posed in the introduction, of if there always is a way to attain
the inertia bound, is no.

This question, however, is not the only point of interest given the inertia bound. Although
equality cannot be found for any given graph G, one can still look further into the properties
that lead to attaining the bound for given graphs, as is done in Chapter 5. Further, one can
study if, and which, of the subgraphs of Paley 17, might attain the inertia bound, or one can
study how large of a gap in the bound is present for different graphs.

While this report focuses on weight matrices with real values, a point of study would also
be what other properties are present for weight matrices over other fields. For example, the
results of interlacing, presented in Section 2.3, also hold true for Hermitian matrices, matrices
with entries from C that are equal to their own conjugate transpose. So it might be possible,
that a tight Hermitian weight matrix for Paley 17 exist. Further, as referenced in Chapter 5,
[Elzinga, 2007] goes deeper into the theory behind the inertia bound, and generalizes it for
any field, not just R, with more properties and conditions for attaining the bound.
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