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Abstract

We propose an efficient neural network model for
visual question answering (VQA). The model uses
Faster R-CNN based image embedding approach, gen-
erating features for object-level image regions. We
add a relational reasoning module, that reasons about
object pairs explicitly, augmenting the models rea-
soning capabilities. We use a question-guided visual
attention mechanism to reduce the number of objects
considered for relational reasoning. We evaluate the
model on the VQA v2.0 dataset, achieving state-of-
the-art single-model performance. We experiment
with different ablations of our model, determining
the performance impact of different components. We
show that the relational reasoning module generally
improves model performance, and that we can reduce
the number of pairs considered significantly, without
negatively affecting performance.

1 Introduction

In recent years, the task of visual question answering
(VQA) has gained an increasing amount of interest in
research. The objective of VQA is to answer questions,
posed in natural language, in the context of a given
image, as illustrated in Fig. 1. The answers can be
either generated as free-form text, or chosen from a
given set of answer candidates [1].

VQA lies in the intersection of the fields of com-
puter vision (CV) and natural language processing

(a) What color is the bag in
front of the cat?

(b) What is the giraffe
standing behind?

(c) What are they playing? (d) How many surfboards
are there?

Figure 1: Examples of questions and corresponding
images for the VQA task.

(NLP). Images are processed using methods from the
field of CV, while NLP methods are used to process
questions and generate free-form answers [2]. How-
ever, compared to popular CV tasks such as object
recognition, VQA requires more sophisticated reason-
ing capabilities [3, 4]. Whereas object recognition
requires identification of objects in images or image
regions, VQA systems must also be able to reason
about properties of these objects, such as size and
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position, and relations between them Johnson et al.
[4]. For example, the question “What color is the bag
in front of the cat?” in Fig. 1a requires the system to
first identify the cat and the bags in the image, then
determine which bag is positioned in front of the cat,
and finally determine the color of that bag.

The majority of recent VQA models follow a similar
joint embedding approach [2]. Images are embedded
using a convolutional neural network (CNN), while
questions are embedded using a recurrent neural net-
work (RNN). Visual attention mechanisms are then
used to focus on the image regions most relevant to
the question, before the embeddings of the two modal-
ities are combined into a joint embedding, which is
then passed through a classifier, or decoded using a
RNN.

However, it was recently shown that this general
architecture might not be able to properly capture
the relational reasoning, i.e. reasoning about relations
between objects, required for certain types of ques-
tions [5]. Instead, Santoro et al. [5] propose an archi-
tecture called Relation Network (RN), that explicitly
considers image region pairs. While this architecture
improves relational reasoning capabilities, it is not
very efficient, as it considers all possible region pairs.

Additionally, the use of CNNs for embedding images
has been shown to limit VQA performance, as the
regions from the CNN might correspond poorly to
objects in the image [6, 7], as shown in Fig. 2a. As
an alternative, Anderson et al. [6] propose an image
embedding method based on the Faster R-CNN object
detection framework [8], generating embeddings for
regions at object-level, shown in Fig. 2b, better suited
for the level of reasoning required for VQA.

We propose an efficient, end-to-end trainable, joint
embedding model for general VQA, using object-level
image embeddings, and incorporating the relational
reasoning capabilities of the RN architecture. Our
model is based on that of Teney et al. [7], using the
Faster R-CNN image embedding method from An-
derson et al. [6]. We add a module for relational
reasoning, based on the RN architecture suggested by
Santoro et al. [5]. To improve the efficiency, we use
an attention mechanism to select the objects most rel-
evant to the question, and consider only these objects
in the relational reasoning module.

(a) Example CNN regions. (b) Example Faster R-CNN
regions.

Figure 2: Example CNN and Faster R-CNN image
regions.

We evaluate our model on the VQA 2.0 dataset [3],
achieving state-of-the-art single-model results.

Our main contributions are:

• We propose a joint embedding model for VQA,
using object-level image embeddings, adding a
relational reasoning module (RN module) to in-
crease the reasoning capabilities of the model.

• We use question-guided attention to reduce the
number of objects considered by the relational
reasoning module.

• We show that the relational reasoning module
generally increases VQA performance, and that
the number of objects considered for relational
reasoning can be reduced significantly without
negatively affecting performance.

The rest of the paper is structured as follows: In
Section 2 we cover recent related work on VQA, before
we introduce our model in Section 3. We describe our
experiments and present the results in Section 4, and
finally conclude on our findings in Section 5.

2 Related Work

Most recently proposed VQA models follow a similar
joint embedding approach, first embedding both the
question and image, then joining the embeddings with
some multimodal fusion method, and finally using the
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joint embedding to either predict or generate an an-
swer [2, 9]. Questions are usually embedded using
RNNs, with both long short-term memory networks
(LSTMs) [10] and gated recurrent units (GRUs)[11]
being popular choices, and image embedding is typi-
cally done with well-known CNN models, such as VG-
GNet [12] or ResNet [13], pretrained on ImageNet [14].
For combining the embeddings, approaches range from
very simple concatenation and element-wise multipli-
cation, to much more elaborate methods. Answers are
finally either predicted using a classifier, or generated
from the joint embedding by a RNN-based decoder.

One of the main challenges of joint embedding mod-
els is to ensure that image embeddings contain the
necessary information to answer a particular question.
This is difficult because images often contain a lot of
unnecessary information, as questions typically only
pertain to certain image regions. This is addressed in
most models with an attention mechanism Xu et al.
[15] and Wu et al. [2].

An attention mechanism allows the model to focus
on specific regions of the image, that are particularly
relevant to a given question. Attention mechanisms
have been shown to greatly improve VQA perfor-
mance, and they are both used and researched exten-
sively today. A simple method for question guided
visual attention is to combine the question embedding
with each image region embedding from a CNN, and
pass them through a multilayer perceptron (MLP),
generating an attention weight for each region. More
advanced approaches include iteratively querying the
image [16, 17], applying attention at multiple seman-
tic levels [18], and jointly attending both question and
image [19].

A recent approach that has shown very promising
results is called bottom-up attention, where attention
is applied in a bottom-up fashion, i.e. not guided by
the question [6]. Instead, the attention is applied
directly during image embedding, using a method
based on the Faster R-CNN object detection frame-
work [8] in combination with a ResNet CNN [6]. This
method both functions as an early attention mecha-
nism, ignoring regions of the image with no detected
objects, and it provides image embeddings for regions
at object-level, better suited for VQA.

The bottom-up attention approach can essentially

be used as a drop-in replacement for CNNs in VQA
models, as done by Teney et al. [7]. In addition
to the Faster R-CNN based image embedding, their
model uses a GRU for embedding questions, and a
simple concatenation-based question guided attention
mechanism. Embeddings are combined with a simple
element-wise fusion scheme, and the joint embedding
is passed through a classifier.

While the joint embedding approach is popular,
recent research has shown that these models might
not be able to learn the advanced reasoning required
for VQA [5, 20, 21]. A number of methods has been
proposed to address this, ranging from components
that can simply be added to existing models [22, 5],
to using composable modules to construct entire net-
works [23, 24].

Santoro et al. [5] recently proposed the Relation
Network (RN) architecture, designed specifically for
augmenting relational reasoning performance. The
RN reasons about all image regions pairs explicitly.
Image region embeddings are generated with a CNN,
and questions are embedded with an LSTM. For each
region pair, the embeddings of the two regions and
the question embedding are concatenated, and passed
through a MLP, generating a feature vector for that
region pair. These vectors are then summed to a final
embedding used for classification.

Compared to other recent approaches for augment-
ing reasoning capabilities [23, 24, 20], the RN is a
rather simple approach, that can be incorporated in
existing models. The main disadvantage of the RN is
that considering all possible image region pairs quickly
becomes very computationally expensive.

Our work is based on the RN [5] and the Faster
R-CNN based image embedding method [6, 7]. In
contrast to Santoro et al. [5], we address the compu-
tational limitation of the RN, using both bottom-up
and question guided attention mechanisms. We also
apply the RN as an additional module in a more gen-
eral VQA model. Compared to the model proposed
by Teney et al. [7], we incorporate the additional RN
based module, and simplify other components.
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3 Model

In this section, we present our model, which is based
on the joint embedding model proposed by Teney et
al. [7]. We first give a quick overview of the model,
before we describe the different model components
in more detail, and finally we describe the training
objective.

3.1 Model Overview

We treat the VQA task as a classification problem,
taking as input a natural language question and an
image. First, questions are embedded using a GRU,
and images are embedded using the Faster R-CNN
embedding method from Anderson et al. [6]. A simple
question guided visual attention mechanism is used to
focus on important image regions, and a relational rea-
soning module performs additional pair-wise reasoning
on objects. The embeddings are combined using a
simple element-wise multiplication multimodal fusion
scheme, and the joint embedding is finally passed to
a classifier. An overview of our model is shown in
Fig. 3.

3.2 Non-linear Layers

Before we describe the individual components, we de-
fine the non-linear layers used in components through-
out the model. A non-linear layer implements a func-
tion f : Rm → Rn, mapping a vector x ∈ Rm to a
vector y ∈ Rn.

Teney et al. [7] propose a non-linear layer using a
gated hyperbolic tangent activation, defined as fol-
lows:

ỹ = tanh(Wx + b) (1)

g = σ(W ′x + b′) (2)

y = ỹ � g (3)

where σ is the sigmoid function, W,W ′ ∈ Rn×m are
learned parameters, and b,b′ ∈ Rn are learned bi-
ases [7].

This function essentially passes the input vector x
through two separate non-linear layers, and combines

their outputs. However, we note that both the hyper-
bolic tangent and the sigmoid activation suffer from
the vanishing gradient problem, which might lead to
a loss of training signal [25].

Instead, we use a single non-linear layer, and an
activation function more resistant to the vanishing
gradient problem:

y = φ(Wx + b) (4)

where φ is a non-linear activation function, W ∈
Rn×m is a learnable weight matrix, and b ∈ Rn is a
learnable bias vector.

For the non-linear activation φ, we use the scaled
exponential linear unit (SELU) [26], which has been
shown to lead to fast training and good generalization
performance:

φ(x) = λ

{
x if x > 0

αex − α otherwise
(5)

where λ ≈ 1.0507 and α ≈ 1.6733 are fixed parame-
ters [26].

There are several other viable activation functions,
and in Section 4 we experiment with three pop-
ular alternatives, namely the rectified linear unit
(ReLU) [27], leaky rectified linear unit (LReLU) [28],
and exponential linear unit (ELU) [27].

Finally, we note that this simple non-linear layer
halves the number of learnable weights and biases,
compared to the gated hyperbolic tangent function,
though we can simply double the layer size to com-
pensate for this.

3.3 Question Embedding

Questions are given in natural language, repre-
sented as a sequence of words. Each question Q =
(w1, w2, . . . , wl) is embedded into a vector representa-
tion rq ∈ Rdq , where l is the sentence length, and dq
is the question embedding size.

We use the same method for question embedding as
Teney et al. [7]. First, questions are tokenized, and
each word wi ∈ Q is replaced with a one-hot encoded
vector representation vi ∈ R|V |, which is then mapped
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Figure 3: Overview of the complete model, shown with the final dimension.

to a word embedding ei ∈ Rdw as follows:

ei = Wevi (6)

where We ∈ Rdw×|V | is an learned embedding ma-
trix, dw is the word embedding size, and |V | is
the size of the vocabulary. The word embeddings
Eq = (e1, e2, . . . , el) are then fed sequentially through
a gated recurrent unit (GRU), and the final state of
the GRU is used as the question embedding rq.

3.4 Image Embedding

This component takes an image I ∈ RH×W×C as in-
put, where H, W , and C are the height, width, and
number of channels in the image, respectively, and pro-
duces a number of embeddings V = {v1,v2, . . .vk ∈
Rdv}. Here, each vi ∈ V is an embedding of a sep-
arate image region, dv is the embedding size, and k
denotes the number of image regions.

We use the bottom-up method proposed by Ander-
son et al. [6], combining the Faster R-CNN object
detection framework [8] with a ResNet-101 CNN [13],
to generate object-level image embeddings.

The method works in multiple stages. First, the im-
age is passed through a ResNet-101 CNN, generating a
feature map for the entire image. A Region Proposal
Network (RPN) is then used to propose bounding
boxes for a number of regions, that are likely to con-
tain objects. For each of these regions, a small feature
map is extracted from the ResNet-101 embedding,

using a method called region of interest (RoI) pooling.
The k regions that are most likely to contain objects
are then selected, based on an associated detection
probability. Finally, mean-pooling is used to generate
a vector embedding vi ∈ Rdv for each of these regions,
where dv = 2048 when using ResNet-101.

Compared to the embeddings generated by a CNN,
the embeddings of regions at object-level seem to bet-
ter correspond to the level of reasoning required for
VQA. In addition, this approach works as a type of
early attention. Whereas a CNN generates embed-
dings for a grid of regions over the entire image, the
object-level regions effectively discards the parts of
the image that are unlikely to contain objects.

3.5 Visual Attention

The purpose of the attention mechanism is to weigh
the visual features according to their relevance for
the question. We use a simple question-guided visual
attention mechanism, taking as input the question
embedding rq and the embedded image regions V =
{v1,v2, . . . ,vk}. The image region embeddings are
weighed by their relevance, and combined into the
final image embedding rv ∈ Rdv .

First, an attention weight ai is generated for each
region embedding vi ∈ V . The region embedding
vi and question embedding rq are both mapped to
dh-dimensional representations, using non-linear layer
fva and fqa . These representations are then combined
using the Hadamard product (element-wise multiplica-
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tion), and the combined embedding is passed through
a non-linear layer fa : Rdh → Rdh and then a linear
layer:

ai = wa fa

(
fva (vi)� fqa(rq)

)
+ ba (7)

where wa ∈ Rdh is a learnable parameter vector,
ba ∈ R is a bias scalar, and � is the Hadamard
product.

Finally, the attention weights a = (a1, a2, . . . , ak)
are normalized across regions with the softmax func-
tion, the region embeddings are multiplied with their
respective attention weight, and the weighted em-
beddings are summed, resulting in a single attended
image embedding rv ∈ Rdv :

α = softmax(a) (8)

rv =

k∑
i=1

αivi (9)

This attention mechanism is a variation of that used
by Teney et al. [7], where they simply concatenate
the region embeddings with the question embedding,
therefore not requiring the initial non-linear transfor-
mation to get equal dimensions. We use the Hadamard
product for combining the embeddings here, as it
seems to generally outperform concatenation [1, 29].

3.6 Relational Reasoning Module

We extend the model with a relational reasoning mod-
ule, based on the Relation Network (RN) architec-
ture [5]. Intuitively, this module will augment the rela-
tional reasoning capabilities of the model, by explicitly
considering combinations of image region pairs.

The module takes as input the question em-
bedding rq, the image region embeddings V =
{v1,v2, . . . ,vk}, and the previously computed atten-
tion weights α, and outputs a single relational em-
bedding rr ∈ Rdh .

First, the attention weights α are used to select
the m most relevant regions Va ⊂ V , where |Va| = m,
m < k, and the selected regions correspond to the
n highest attention weights. A relational embedding

rij ∈ Rdh is then generated for each region embed-
ding pair (vi,vj) ∈ Va × Va, by passing the concate-
nated embeddings of the regions vi,vj ∈ Rdv and
the question rq ∈ Rdq through a non-linear layer
fr : R2 dv+dq → Rdh . Finally, the embeddings for
all pairs are summed, producing the final relational
embedding rr:

rij = fr(vi ⊕ vj ⊕ rq) (10)

rr =

m∑
i=1

m∑
j=1

rij (11)

where ⊕ denotes concatenation of vectors. Here, em-
beddings are concatenated to differentiate between
pairs with different orderings, i.e. (vi,vj) and (vj ,vi)
should produce distinct embeddings rij , rji such that
rij 6= rji.

There are several differences between this relational
reasoning module, and the RN model proposed by
Santoro et al. [5]. The main differences are as follows:

• We use attention to select a subset of image region
embeddings Va ⊂ V , where |Va| = m, |V | = k,
and m < k. Selecting n to be significantly smaller
than k, this results in much fewer region pairs
being considered, as we have |Va × Va| = n2,
|V × V | = k2, and n2 � k2.

• We incorporate the RN in a joint embedding
model, as a separate relational embedding rr,
which is used in combination with the question
and image embeddings rq and rv.

• The relational module uses embeddings gener-
ated with the bottom-up approach described in
Section 3.4, where regions better correspond to
objects in the image. This allows the module to
reason at an object-level, more suitable for the
task of VQA.

3.7 Multimodal Fusion

The multimodal fusion combines the question em-
bedding rq, the attended image embedding rv, and
the relational embedding rr into a joint embedding
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rj ∈ Rdh , which is then passed to the classifier. The
question and image embeddings are first mapped to
dh-dimensional vectors using non-linear layers fqm and
fvm, respectively, and then combined with the rela-
tional embedding, which is already dh-dimensional,
using the Hadamard product:

rj = fqm(rq)� fvm(rv)� rr (12)

where � is the Hadamard product. We use the
Hadamard product again, as a simple and effective
method for multimodal fusion, which is also used by
Teney et al. [7].

3.8 Classifier

We treat the VQA task as a multi-label classification
task, where multiple answers could be considered
correct, e.g. in case of ambiguous questions or answer
synonyms, as done by Teney et al. [7]. The N most
frequent answers are used as possible classes, and the
classifier outputs a separate probability for each label
being correct, instead of a probability distribution
over all N labels.

We use a simple classifier, taking the joint embed-
ding rj as input. The joint embedding is first passed
through a non-linear layer fc : Rdh → Rdc , where dc
is the hidden size of the classifier. The dc-dimensional
representation is then passed through a linear layer,
and finally the sigmoid activation is used to produce a
score ŝi ∈ (0, 1) for each label, giving the final output
ŝ = (ŝ1, ŝ2, . . . , ŝN ):

ŝ = σ
(
Wc fc(rj) + bc

)
(13)

where W ∈ RN×dc is a learnable weight matrix, bc ∈
RN is a learnable bias, and σ denotes the sigmoid
activation applied element-wise.

While we follow the same approach as Teney et al.
[7], we use a simpler classifier. Teney et al. [7] suggests
splitting the classifier into text and an image parts,
which are pretrained using prior information about
the answer candidates, in the form of pretrained word
embeddings and embeddings of images scraped from
Google Images. However, this approach both adds
complexity to the model, and makes it difficult to

reproduce results, prompting us to use the simpler
approach instead.

3.9 Objective

Following the approach of Teney et al. [7], the model
is trained in a multi-label setting, where each training
example can have multiple answers, each associated
with a soft accuracy score in (0, 1). Formally, each
training example di ∈ D, where D is the training
dataset, is labeled with soft target scores si ∈ (0, 1)N ,
where each entry represents the accuracy score for the
corresponding answer.

The output of the classifier can be considered as
separate predictions for each label, indicating the
probability of that label being correct. To calculate
the loss, we therefore compute the binary cross en-
tropy separately for each label, and then sum these
across the labels and training examples, giving us the
following loss function:

L = −
|D|∑
i

N∑
j

sij log(ŝij)− (1− sij) log(1− ŝij)

(14)
where i iterates over the |D| training examples, j
iterates over the N labels, s denotes the ground truth
scores, and ŝ is the predictions.

4 Experiments

In this section we present our experiments. We start
by introducing the dataset and experimental setup,
before presenting our experimental results.

4.1 Dataset

We train and evaluate our model on the VQA v2.0
dataset [3]. The dataset uses MSCOCO [30] real-
word images, posing a number of questions for each.
It contains a total of 1.1M questions across 204K
images, split into 443K training, 214K validation,
and 447K test questions. Each question is annotated
with 10 ground-truth answers, provided by different

7



human annotators, to account for variations in human
answers.

Annotations for the test split are not publicly avail-
able, so results for this split are obtained by submit-
ting the predicted answers to an official evaluation
server. Evaluation can be done on two different sub-
sets of the test split, namely test-standard and test-
dev. However, the evaluation server allows only a
very limited number of daily and total submission.
Therefore, we use the validation split to evaluate ab-
lations of our model, and only use the test-standard
and test-dev splits to evaluate our best performing
model.

4.2 Evaluation Metric

Performance is evaluated using the official VQA eval-
uation metric [1]:

acc(a) = min

(
#humans that answered a

3
, 1

)
(15)

Essentially, an answer is considered correct if it
matches at least three human annotations, partially
correct, to varying degree, if it matches one or two,
and incorrect otherwise.

4.3 Experimental Setup

For question embedding, we use word embeddings of
size dw = 300, initialized with GloVe embeddings [31]
pretrained on the Wikipedia/Gigaword corpus.1 Em-
beddings for words not in the GloVe vocabulary are
initialized with weights drawn from a standard normal
distribution. The GRU uses a single hidden layer of
size dq = 1024, and we use a fixed question length
l = 14, truncating or zero-padding questions as re-
quired.

For efficiency, the image embedding is done as a
preprocessing step, using publicly available prepro-
cessed image features with k = 36 objects per image,
and dv = 2048.2 The preprocessed features are gener-
ated with a Faster R-CNN based bottom-up model [6]

1https://nlp.stanford.edu/projects/glove/
2https://github.com/peteanderson80/bottom-up-attention

trained on the Visual Genome dataset, using a ResNet-
101 CNN pretrained on ImageNet.

To get the possible classes, we select answers that
appear more than 8 times in the combined training
and validation sets, giving N = 3129 possible classes.
The hidden size of the classifier is dc = 2048.

We use a hidden embedding size of dh = 1024,
m = 8 objects for the relational reasoning module,
the SELU [26] non-linear activation, and apply weight
normalization [32] on all layers. For regularization
we apply dropout with probability p = 0.4 after each
non-linear layer, and perform early stopping after 5
consecutive epochs with no improvement in validation
score.

Models are trained using Adamax [33] with α =
0.002, β1 = 0.9, and β2 = 0.999, using a batch size
of 512. For comparison to current state-of-the-art
models, we evaluate our best performing configuration
on both the test-dev and test-standard splits, using
both the train and validation splits for training. We
evaluate ablations of our model on the validation split,
using just the train split during training.

Initial experimentation with model architecture and
parameters was performed on a single NVIDIA GTX
1060 6GB GPU, while the final models used for evalu-
ation were trained on two NVIDIA Tesla M60 GPUs.

4.4 State-of-the-Art Comparison

We first evaluate the overall performance of our model,
comparing it to current state-of-the-art approaches.

4.4.1 Baseline models

We adopt the following models as baselines for this
comparison:

• Multimodal Compact Bilinear Pooling
(MCB) [29]: Winning entry of the 2016
VQA Challenge, applying the efficient multi-
modal fusion method MCB in a joint embedding
classification model. The model uses a ResNet-
152 CNN for image embedding, a LSTM for
questions, and a simple attention mechanism.

• MUTAN [34]: A joint embedding model, that
uses a ResNet-152 CNN for image embedding,
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and GRU for question embedding, and a new
tensor-based fusion scheme called MUTAN.

• Bottom-up attention [7]: The winning entry of
the 2017 VQA Challenge, and the model that in-
spired our model. It is similar to our model, with-
out the relational module, but using the gated
hyperbolic tangent non-linear activation, a con-
catenation based attention mechanism, a classi-
fier split into and image- and text-parts. They
use 485K additional training examples from Vi-
sual Genome, and pretrain the classifier using
pretrained word embeddings and images scraped
from Google.

• Bottom-up attention (our implementation): This
is a re-implementation of the bottom-up attention
baseline model [7]. We include this implemen-
tation as a baseline to compare the models in a
similar experimental setting, and we could not
reproduce their setting. For this implementation
we (1) do not use extra Visual Genome data, (2)
do not pretrain the image-part of the classifier,
and (3) use a fixed number of image embeddings
k = 36 for each image, instead of an adaptive k.

4.4.2 Results

The results are shown in Table 1, where we call our
model Attended Relation Network (Att-RN). Our
model achieves state-of-the-art performance, with an
accuracy of 68.79% on test-std and 68.49% on test-
dev, ∼ 3% higher than the MUTAN and bottom-up
attention baselines, and ∼ 6.5% higher than MCB.

Looking at the results for the three different answer
categories, we see that our model consistently scores ∼
3% higher than the bottom-up attention baseline on all
three categories. Compared to MUTAN however, our
model performs much better on the number category,
increasing performance by ∼ 6%.

We also note that our re-implementation of the
bottom-up attention baseline, achieves a very similar
overall performance to the original model, though
distributed differently across the categories. This
raises some question regarding the efficiency of using
the extra Visual Genome data and the pretrained
classifier, though we did not further investigate this.

4.5 Ablation Experiments

We perform experiments with different model abla-
tions, in order to determine the contributions of key
components in the model.

4.5.1 Ablation models

We consider the following main variations:

• No RN: Model without the RN module.

• RN-unique: The RN module generates only
unique unordered pairs of region embeddings,
reducing the total number of pairs considered to(
m
2

)
.

• RN-Hadamard: In the RN module, the image em-
beddings and question embedding are mapped to
equal dimensions with separate non-linear layers,
and then combined using the Hadamard product.

• RN-weighed: Here, the image embeddings are
weighed by their corresponding attention weight,
before they are used in the RN module.

• ResNet-101 embedding: This model uses a
ResNet-101 CNN for embedding images. Images
are cropped to size 224 × 224, and features are
extracted from the the last convolutional layer,
resulting in a feature map of size 7×7×2048. The
ResNet is pretrained on ImageNet and kept fixed
during training. The embeddings can therefore
be preprocessed, and used as a simple drop-in
replacement.

To evaluate the effect of using a subset of region
embeddings for the RN module, we perform experi-
ments with a varying number of regions k. Finally,
we determine the effect of simplifying the non-linear
layer through experiments with different non-linear
activation functions.

4.5.2 Results

The results of our ablative experiments are shown
in Table 2. We start be analyzing the performance
of the RN module. We see that removing the RN
module lowers performance by 1.19%, indicating the
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VQA v2 test-dev VQA v2 test-std

Model Yes/No Num Other All Yes/No Num Other All

MCB [29, 3] - - - - 78.82 38.28 53.36 62.27
Bottom-up att. (our impl.) 82.11 42.54 56.05 65.25 - - - -
Bottom-up attention [7] 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67
MUTAN [34] 81.96 41.62 57.07 65.57 82.07 41.06 57.12 65.71
Our model: Att-RN 85.02 47.65 59.34 68.49 85.10 47.32 59.50 68.79

Table 1: Results on the VQA v2.0 dataset for our model (Att-RN) and current single-model state-of-the-art
approaches.

the RN module does indeed improve the reasoning
capabilities of the model.

Using only unique unordered pairs in the RN mod-
ule gives results similar to removing the module.
While this method does lower the number of pairs
considered from 64 to 28, compared to our best model
with m = 8, it still uses nearly twice as many pairs
as the model with m = 4. We therefore attribute the
performance loss here to the use of unordered pairs.
However, the model with the Hadamard RN also dis-
cards information about the ordering of pairs, and
still score ∼ 0.6% higher than not using a RN module.
This may simply be due to Hadamard being a better
multimodal fusion method. We still observe a lower
performance (−0.6%) compared to our best perform-
ing model, further indicating the importance of using
ordered pairs. Using weighed image embeddings in
the RN module lowers performance by 0.97%. We
hypothesize that, as the weights are normalized across
all regions with the softmax function, many regions
will have low attention score, discarding information
needed in the RN module.

Comparing the RN variations with m = 4 and
m = 12 objects, we see that the number of objects m
can have a significant impact on performance, with
the k = 4 model scoring 0.77% lower than the k = 8
configuration. From the k = 12 variation we see that
increasing k does not necessarily increase overall per-
formance, in this case actually lowering it slightly,
though it does improve performance on the number
category. This shows that the attended RN mod-
ule, aimed at lowering computational complexity com-
pared to the full RN, can be applied without hindering

performance.

Using pretrained ResNet-101 embeddings lowers
performance by 2.87%, confirming previously reported
results [7, 6] that the Faster R-CNN based method
does indeed result in image embeddings better suited
for VQA.

Finally, we consider the performance of different
non-linear activation functions. Overall, we see that
our model is very sensitive to different parameter set-
tings. The ELU activation is very similar to SELU,
, and as expected, it also performs similarly. Using
the ReLU activation drastically lowers performance
(−3.55%). LReLU adds a small gradient for negative
values, which improves performance somewhat com-
pared to ReLU, though the accuracy is still 1.62%
lower than using SELU. The gated tanh activation
performs very poorly in our setting, lowering perfor-
mance by 6.42% compared to the SELU activation.

5 Conclusion

In this paper we propose an efficient joint embedding
neural network model for VQA. The model uses a
Faster R-CNN based image embedding approach, that
generates features for regions at object-level. We
augment the reasoning capabilities of the model by
adding an attended relational reasoning module, that
explicitly reasons about pairs of relevant objects.

We evaluate our model on the VQA v2.0 dataset,
where we achieve state-of-the-art single-model perfor-
mance. We show that the relational reasoning mod-
ule improves performance for general VQA, and that
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VQA v2 val

Yes/No Num Other All

Reference model (RN, m = 8, Faster R-CNN, SELU) 83.30 45.01 57.43 65.52

No RN module 81.65 43.21 56.76 64.33
RN-unique 81.89 43.23 56.45 64.27
RN-Hadamard 82.30 44.82 57.03 64.92
RN-weighed 82.17 44.27 56.51 64.55
RN module with m = 4 objects 82.30 44.08 56.88 64.75
RN module with m = 12 objects 83.19 45.35 57.24 65.43

ResNet-101, 7× 7 - - - 62.65

ELU 83.00 45.21 57.32 65.38
ReLU 79.27 42.43 53.99 61.97
LReLU 80.74 43.48 55.88 63.60
Gated tanh, hidden size 512 76.83 40.03 50.67 59.10

Table 2: Results on the VQA v2.0 validation split for different ablations of our model. The reference model is
the best configuration of our full model, using Faster R-CNN + ResNet-101 image embedding, a RN module
with k = 8 objects, and the SELU non-linear activation.

question-guided visual attention can be used to greatly
reduce the number of pairs considered for relational
reasoning, without negatively affecting performance.
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