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Throughout the report, each chapter and section will have numbered titles and all figures, tables, and
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ber”], with ”number” being the position in the bibliography. If the citation is placed before the period
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Figures with citations are adopted or adapted from literature, while figures with no citation are created

by the authors.
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Chapter 1

Introduction

Two dimensional materials have received significant attention since the experimental realization of a

single-sheet of carbon atoms in a hexagonal lattice, known as graphene in 2004 [1, 2]. Graphene has since

then been the subject of many papers, both studying its unique properties theoretically and attempting

to take advantages of these experimentally and this extraordinary arrangement of carbon atoms is still

being exploited in novel ways today. The Dirac-cone electronic structure of graphene leads to many fasci-

nating properties, such as extreme electrical conductivity. Unfortunately, this electronic structure leaves

no room for an electronic or optical bandgap, and puts pristine graphene in the ’semi-metal’ category of

materials. The lack of a bandgap limits the usefulness of graphene in the electronics industry, especially

in semiconductor and optoelectronic devices. [3–5]

However, with graphene as inspiration another group of materials have recently hit the scientific spotlight,

namely the transition metal dichalcogenides (TMDs). The TMDs, as the name suggests, consist of a

transition metal atom and two chalcogen atoms per unit cell, considering the many transition metals the

amount of combinations enables the formation of many TMDs. Fig. 1.1 highlights the elements involved

in layered TMD materials.

Figure 1.1: Periodic table with transition metals and chalcogens highlighted. The fully colored transition
metal create layered structures with all the chalcogen atoms that are fully colored, while the framed ones
only do so with some of the chalcogens.

One of the most popular TMDs is MoS2, which has a similar lattice to that of graphene with half the

carbon atoms replaced by molybdenum and the other half by two sulfur atoms, one stacked on the other,

as shown in Fig. 1.2(a). The side view reveals that MoS2 is three atoms thick, with a layer of molybdenum
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1. Introduction

sandwiched between layers of sulfur. Throughout this thesis the name MoS2 will only be used to describe

the monolayer structure. As is typical for calculations in solid state physics, most calculations are most

easily performed in reciprocal space, thus the Brillouin zone (BZ) is an important quantity that will be

utilized extensively throughout this thesis. The Brillouin zone of MoS2 with the lattice vector definitions

from Fig. 1.2(a) is show in Fig. 1.2(b) where the irreducible BZ (IBZ) is marked in red. The IBZ contains

all necessary information of BZ due to symmetry and BZ integrals can be performed over only the IBZ

[6].

(a) (b)

Figure 1.2: Crystal structure of MoS2, (a) top view and side view of MoS2. (b) First Brillouin zone,
indicating the the irreducible Brillouin zone in red and the relevant special points.

MoS2 among with many of the other TMDs is a direct band gap semiconductor with a significant optical

band gap of 1.88 eV, allowing the fabrication of many traditional semiconductor devices such as field-

effect transistors as well as untraditional devices such as re-configurable devices [7–9]. Recently it was

found experimentally that the optical properties, i.e. the complex refractive index, of monolayer TMDs

can be tuned electrically by an applied voltage [10]. This discovery has already been utilized to create

high reflectance tunable mirrors for optoelectronic devices [11, 12].

An optical process in a semiconductor revolves around an electron absorbing a photon and jumping to an

excited state with a higher energy. In an independent-particle image this transition can for example be

from a valence state to a conduction state and can be calculated from an appropriate set of orbitals, e.g.

from Kohn-Sham orbitals obtained from DFT calculations. For some materials this can lead to results

that are in decent agreement with experiments [13]. However, such a view is generally not sufficient as

such a process fundamentally moves the system from the ground state to an excited state, making the

ground state properties insufficient. A common problem for DFT calculations is that wrong fundamental

band gaps are obtained related to the way exchange and correlation are treated [14]. Another approach

for calculating the fundamental band gap is a many-body treatment such as the GW-approximation,

which has shown to correctly predict the fundamental band gap SOURCE. However, for optical processes

the interaction between the excited electron and hole left behind must also be included. Because of this

interaction the photon energy required for absorption can be significantly lower than the fundamental

band gap, thus correctly predicting the optical band gap observed in spectroscopic measurements. An

illustration of the three levels of theory is shown in Fig. 1.3. [15]
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Figure 1.3: Illustration of the levels of theory relevant for the absorption of a photon. The leftmost
pair of bands represent a DFT calculation, where the fundamental band gap is wrong. The middle
pair of bands represent the GW approximation, which corrects the fundamental band gap, but does not
include electron-hole interactions. The electron-hole interaction creates states below the fundamental
band gap as shown in the rightmost illustration, which are called excitons that can be calculated using
the Bethe-Salpeter equation.

This bound combination of an electron and a hole is what is called an exciton, and the exciton binding

energy refers to the difference compared to the fundamental band gap. For two-dimensional materials,

such as MoS2, this effect is very important as the reduced dimensionality does not allow large separations

between the electron and hole, which leads to much higher binding energies in these materials compared

to bulk semiconductors. Furthermore, the interaction between the electron and the hole is not the usual

Coulomb interaction, but rather a screened interaction taking into account the presence of other charge

carriers, but this screening is also reduced in lower dimensions. As an example, the exciton binding energy

of silicon has been measured to be 15 meV compared to reports of binding energies of several hundred meV

for two dimensional materials [16, 17]. As mentioned earlier the optical properties of monolayer TMDs

can be tuned by electrical gating, effectively changing the carrier density inside the TMD monolayer,

which in turn influences the optical properties. This tunability is possible because the optical properties

at the relevant frequencies are completely decided by the excitons, which are very sensitive to changes in

the dielectric environment as caused by adding additional charge carriers by doping.

The goals of this thesis are to:

• Develop tools to calculate the independent particle optical properties of monolayers.

• Develop tools to calculate many-body optical properties of monolayers.

• Compare methods of introducing doping in DFT calculations.

• Study the effect of doping on the optical properties in both theoretical frameworks.

• Experimentally measure the optical properties of MoS2 with and without doping.

In Chap. 2 a theory is derived that enables the calculation of independent particle optical properties and

results of calculations for MoS2 and graphene are presented. As graphene has received so much attention

in the scientific community the optical properties of graphene are well-known, making graphene a useful
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1. Introduction

benchmark of the methodology. In Chap. 3 the problems of including doping in ab-initio calculations

are discussed and two possible models are compared and afterwards optical properties of doped MoS2

and graphene are presented. Inclusion of the interaction between an excited electron and the hole it

leaves behind requires a more complicated theory, which is presented in Chap. 4, where both theory

and numerical problems are discussed, along with the results of the theory applied to MoS2. Chap. 5

introduces the final ingredients required to extend the theory to include doping and the result of these

calculations are presented. The experimental methodology and results are presented and discussed in

Chap. 6. Finally Chap. 7 concludes this thesis.

The majority of the theoretical results are based on DFT calculations done in the GPAW code [18, 19].

The computational details for all calculations and the figures they are relevant for are given in Appendix

A.

Page 4 of 78



Chapter 2

Independent Particle Optical Properties

Optical properties are used to describe the interaction between electromagnetic waves and matter. Start-

ing from Maxwell’s equations, assuming a non-magnetic source-free isotropic material they become

∇×E(r, t) = −µ0
dH(r, t)

dt

∇×H(r, t) =
dD(r, t)

dt
+ j(r, t)

∇ ·D(r, t) = 0

∇ ·B(r, t) = 0,

(2.1)

with D being the electric displacement, j being only the induced current density as no source current is

present, B being the magnetic induction, and µ0 being the vacuum permeability. The electric displace-

ment is defined in terms of the electric field and the polarization P(r,t) as

D(r, t) = ε0E(r, t) + P(r, t), (2.2)

with ε0 being the vacuum permitivity. In a dispersive media the polarization can be written as a convo-

lution between the electric field and the time-dependent susceptibility χ(r, t) as

P(r, t) = ε0

∫ t

−∞
χ(r, t− t′)E(r, t′) dt′, (2.3)

where causality dictates the upper limit of the integral. This convolution makes the time-domain both-

ersome, but luckily Maxwell’s equations can be written in the frequency domain through the Fourier

transform. The Fourier transform of the polarization means the convolution becomes a product as

P(r, ω) = ε0χ(r, ω)E(r, ω). (2.4)

The electric displacement in the frequency domain then becomes

D(r, ω) = ε0E(r, ω) + ε0χ(r, ω)E(r, ω) = ε0(1 + χ(r, ω))E(r, ω) = ε0εr(r, ω)E(r, ω), (2.5)

with εr being the relative dielectric permitivity. The induced current density in frequency domain can

be written as

j(r, ω) = σ(r, ω)E(r, ω), (2.6)

with σ(r, ω) being the conductivity. Maxwell’s equations for the curl of the electric field and the curl of

the magnetic field in the frequency domain become

∇×E(r, ω) = iωµ0H(r, ω)

∇×H(r, ω) = σ(r, ω)E(r, ω)− iωε0εr(r, ω)E(r, ω).
(2.7)
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2. Independent Particle Optical Properties

Taking the curl of the curl of the electric field and remembering that the divergence of the electric

displacement is 0 yields

∇2E(r, ω) = iωµ0σ(r, ω)E(r, ω) + ω2µ0ε0εr(r, ω)E(r, ω). (2.8)

As µ0ε0 = 1
c2 The equation can be compacted to[

∇2 − k2
0

(
εr(r, ω) +

iσ(r, ω)

ε0ω

)]
E(r, ω) = 0, (2.9)

with k2
0 = ω2

c2 being the wave vector in free-space. Eq. (2.9) is known as the wave equation in matter,

which makes it clear that the interaction between the electromagnetic wave and matter, is described by

the relative dielectric permitivity εr(r, ω) and the conductivity σ(r, ω). Instead of dealing with both of

these quantities it is convenient to define a complex dielectric permitivity ε̃

ε̃(ω) = ε1 + iε2 = εr(r, ω) +
iσ(r, ω)

ε0ω
. (2.10)

Had the material been anisotropic, the complex dielectric permitivity would have had to be replaced with

a tensor. This complex permitivity can also be related to other meaningful complex optical properties

through the following equations

ε̃(ω) = ñ2(ω) = [n(ω) + iκ(ω)]
2

ε̃(ω) = 1 + χ̃(ω)

ε̃(ω) = 1 +
iσ̃(ω)

ε0ω
,

(2.11)

where ñ(ω) is the complex refractive index. Thus, by knowing one of these properties all of the other

properties can be found, and the interaction can be understood. It is seen that the imaginary part of

the complex dielectric permitivity governs absorption, which corresponds to the real part of the optical

conductivity. Throughout the remaining chapters the complex optical properties will be denoted without

tilde. [20, 21]

2.1 Linear perturbation theory

The optical properties of a system describes the response of a system to external electromagnetic per-

turbation, such as light. If the perturbation is considered to be small, the response of the system can be

approximated to be only linear and a suitable framework can be derived, which is done in this section fol-

lowing the formalism of [22]. The ground state wave function can be constructed as a Slater determinant,

where the orbitals are given by the time-independent Schrödinger equation

Ĥ0ϕ
0
n = E0

nϕ
0
n, (2.12)

with Ĥ0 denoting the unperturbed Hamiltonian, E0
n as the n’th eigenvalue, and ϕ0

n as the n’th eigen-

function of the ground state, where only eigenfunctions with eigenvalues below the Fermi level are used

to construct the ground state Slater determinant. Perturbing this system creates an excited state, but

instead of creating a completely new Hamiltonian, perturbation theory works by approximating the so-

lutions of the excited system by using a Hamiltonian which is the sum of the ground state Hamiltonian

and the interaction Hamiltonian Ĥ ′, describing the effects of the perturbation

Ĥ = Ĥ0 + Ĥ ′. (2.13)
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2.1. Linear perturbation theory

However, the perturbation of the system is not independent of time. Assuming the response is char-

acterized by a single frequency ω, and only including the first-order interaction Hamiltonian, the time-

dependent Schrödinger equation becomes

ih̄
∂ψ

∂t
=

[
Ĥ0 +

1

2
Ĥ1e

−iωt +
1

2
Ĥ†1e

iωt

]
ψ. (2.14)

The time-dependent wave function is given by φne
−iEnt/h̄, meaning the pertubed wave function ψ can

be written as

ψ =
∑
n

anϕne
−iEnt/h̄, (2.15)

with an being a time-dependent coefficient. Inserting into the time-dependent Schrödinger equation

ih̄
∂

∂t

∑
n

anϕne
−iEnt/h̄ =

[
Ĥ0 +

1

2
Ĥ1e

−iωt +
1

2
Ĥ†1e

iωt

]∑
n

anϕne
−iEnt/h̄, (2.16)

which can be rearranged to∑
n

(
anEnϕn + ih̄

∂an
∂t

ϕn

)
e−iEnt/h̄ =

∑
n

an

[
Ĥ0ϕn +

1

2
Ĥ1ϕne

−iωt +
1

2
Ĥ†1ϕne

iωt

]
e−iEnt/h̄. (2.17)

and utilizing Eq. (2.12) is is seen that the first term on the left-hand side cancels out the first term on

the right-hand side of the equation, thus∑
n

ih̄
∂an
∂t

ϕne
−iEnt/h̄ =

∑
n

an
2

[
Ĥ1ϕne

−iωt + Ĥ†1ϕne
iωt
]
e−iEnt/h̄. (2.18)

Multiplying from the right with 〈ϕm| and integrating, while remembering that the eigenstates are or-

thonormal so that 〈ϕn|ϕm〉 = δnm∑
n

ih̄
∂an
∂t

δnme
−iEnt/h̄ =

1

2

∑
n

an

[
〈ϕm|Ĥ1|ϕn〉 e−iωt + 〈ϕm|Ĥ†1ϕn〉 eiωt

]
e−iEnt/h̄. (2.19)

As the sum on the left-hand side only has a non-zero term when n = m it can be removed, leaving

∂am
∂t

= − i

2h̄

∑
n

an

[
〈ϕm|Ĥ1|ϕn〉 e−iωt + 〈ϕm|Ĥ†1 |ϕn〉 eiωt

]
eiEmnt/h̄. (2.20)

with Emn = Em−En. Assuming the interaction Hamiltonian is linearly proportional to the field strength,

the coefficients an will also depend on field strength. A Taylor expansion can be made with regard to

the field strength as

an = a(0)
n + a(1)

n + a(2)
n + ..., (2.21)

with the superscript indicating the order of the perturbation. Inserting the Taylor expansion into Eq.

(2.20) and utilizing the theorem on equality of polynomials

If for all x,
∑
p

bpx
p =

∑
p

cpx
p then bp = cp, (2.22)

one can write Eq. (2.20) as

∂a
(p)
m

∂t
= − i

2h̄

∑
n

a(p−1)
n

[
〈ϕm|Ĥ1|ϕn〉 e−iωt + 〈ϕm|Ĥ†1 |ϕn〉 eiωt

]
eiEmnt/h̄, (2.23)

because the integrals 〈ϕm|Ĥ1|ϕn〉 and 〈ϕm|Ĥ†1 |ϕn〉 already contain one power of the pertubation field

strength. It is thus clear that the coefficients of the total wave function can be found by an iterative

process, starting with p = 0. The zero’th order coefficient should not be time-dependent and so
∂a(0)m
∂t = 0,
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2. Independent Particle Optical Properties

meaning a
(0)
m is just some constant. The next coefficient is found by setting p = 1, and so on. However,

for linear response, only p = 1 is used. For p = 1 Eq. (2.23) becomes

∂a
(1)
m

∂t
= − i

2h̄

∑
n

a(0)
n

[
〈ϕm|Ĥ1|ϕn〉 e−iωt + 〈ϕm|Ĥ†1 |ϕn〉 eiωt

]
eiEmnt/h̄. (2.24)

By integrating over time to the time t on both sides the equation becomes

a(1)
m = − i

2h̄

∑
n

a(0)
n

∫ [
〈ϕm|Ĥ1|ϕn〉 e−iωt + 〈ϕm|Ĥ†1 |ϕn〉 eiωt

]
eiEmnt/h̄dt. (2.25)

Assuming the pertubation was not present in the infinite past, the lower limit of the integral can be

ignored, and a
(1)
m is found to be

a(1)
m = −1

2

∑
n

a(0)
n

[
〈ϕm|Ĥ1|ϕn〉

e−iωt

Emn − h̄ω
+ 〈ϕm|Ĥ†1 |ϕn〉

eiωt

Emn + h̄ω

]
eiEmnt/h̄. (2.26)

It is clear that the coefficient is divergent at Emn = h̄ω, however, by implementing losses via the damp-

ening h̄Γ in the system, the equation can be written as

a(1)
m = −1

2

∑
n

a(0)
n

[
〈ϕm|Ĥ1|ϕn〉

e−iωt

Emn − h̄ω − ih̄Γ
+ 〈ϕm|Ĥ†1 |ϕn〉

eiωt

Emn + h̄ω − ih̄Γ

]
eiEmnt/h̄. (2.27)

As the coefficients are now known any first order response can now be found. Let X̂ be the operator of

some observable, such that 〈X〉 = 〈ψ|X̂|ψ〉. Then by equations (2.15) and (2.21), the first order response

is simply

〈ψ|X̂|ψ〉 ≈
∑
m,n

[
a∗(0)
n a(0)

m + a∗(0)
n a(1)

m + a∗(1)
n a(0)

m

]
〈ϕn|X̂|ϕm〉 eiEnmt/h̄. (2.28)

a
∗(0)
n a

(0)
n = |a(0)

n |2 is interpreted as the probability of the unperturbed system to be in the state ϕn, thus

if the system is further assumed to be in thermal equilibrium the probability is given by (for fermions)

the Fermi-Dirac distribution f(En). Further it is postulated that

a∗(0)
n a(0)

m = f(En)δnm. (2.29)

Inserting this postulate into Eq. (2.28) and using Eq. (2.27)

〈ψ|X̂|ψ〉 ≈
∑
n

f(En) 〈ϕn|X̂|ϕn〉

− 1

2

∑
m,n

f(En) 〈ϕn|X̂|ϕm〉

[
〈ϕm|Ĥ1|ϕn〉 e−iωt

Emn − h̄ω − ih̄Γ
+
〈ϕm|Ĥ†1 |ϕn〉 eiωt

Emn + h̄ω − ih̄Γ

]

− 1

2

∑
m,n

f(Em) 〈ϕn|X̂|ϕm〉

[
〈ϕm|Ĥ†1 |ϕn〉 eiωt

Enm − h̄ω + ih̄Γ
+
〈ϕm|Ĥ1|ϕn〉 e−iωt

Enm + h̄ω + ih̄Γ

]
,

it is seen that the first term is not dependent on the frequency of the perturbation, and that the result

can be rearranged/grouped by frequency dependency as

〈ψ|X̂|ψ〉 =
∑
n

f(En) 〈ϕn|X̂|ϕn〉+
1

2
X(ω)e−iωt +

1

2
X∗(ω)eiωt, (2.30)

with

X(ω) = −
∑
m,n

fnm
〈ϕm|Ĥ1|ϕn〉 〈ϕn|X̂|ϕm〉

Emn − h̄ω − ih̄Γ
, (2.31)

where fnm ≡ f(En) − f(Em). This term is thus the first order time-dependent induced response due

to some perturbation. It shows that by knowing the interaction Hamiltonian and the induced response

operator, one can find the induced response.
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2.2. Optical properties of 2D semiconductors

2.2 Optical properties of 2D semiconductors

To investigate the optical properties of a 2D semiconductor, it is assumed that the semiconductor is

subjected to an electric field pointing in the plane of the semiconductor, e.g. along the x-axis such that

E = Ex̂, with a frequency ω. This electric field will interact with the electric dipole moment −er such

that the interaction Hamiltonian becomes Ĥ1 = eEr = eEx [23]. The observable is the dipole moment

density, also known as the polarization, P̂ (ω) = −ex
Ω , with Ω being the volume of the material. Using the

result from linear response theory it is seen that the polarization is given by

P (ω) = − 1

Ω

∑
m,n

fnm
〈ϕm|eEx|ϕn〉 〈ϕn| − ex|ϕm〉

Emn − h̄ω − ih̄Γ
=
e2E

Ω

∑
m,n

fnm
| 〈ϕm|x|ϕn〉 |2

Emn − h̄ω − ih̄Γ
, (2.32)

with the last part being found by utilizing that 〈ϕn|x|ϕm〉 = 〈ϕm|x|ϕn〉∗. The polarization can also be

written as P (ω) = ε0χ(ω)E, with χ(ω) being the susceptibility. The susceptibility can thus be found by

χ(ω) =
e2

ε0Ω

∑
m,n

fnm
| 〈ϕm|x|ϕn〉 |2

Emn − h̄ω − ih̄Γ
. (2.33)

As the sum in m and n is over the same set of bands, the equation can be averaged and m and n can be

interchanged. Further using fmn = −fnm and Enm = −Emn the equation becomes

χ(ω) =
e2

ε0Ω

∑
m,n

fnm
Emn| 〈ϕm|x|ϕn〉 |2

E2
mn − h̄

2(ω + iΓ)2
. (2.34)

Next the commutator trick 〈ϕm|[Ĥ0, Ô]|ϕn〉 = Emn 〈ϕm|Ô|ϕn〉, where Ô is some operator, and that the

commutator of Ĥ0 and x is [Ĥ0, x]ϕ = −ih̄
m p̂xϕ is used as 〈ϕm|x|ϕn〉 = −ih̄

mEmn
〈ϕm|p̂x|ϕn〉 assuming that

n 6= m, which are known as momentum matrix elements. Thus

χ(ω) =
e2h̄2

m2ε0Ω

∑
m,n

fnm
| 〈ϕm|p̂x|ϕn〉 |2

Emn[E2
mn − h̄

2(ω + iΓ)2]
. (2.35)

Eventually an expression that can be evaluated over the IBZ is wanted. In order to do so the matrix

elements need to be symmetrized to account for the arbitary choice of IBZ, so that

| 〈ϕm|p̂xy|ϕn〉 |2 =
| 〈ϕm|p̂x|ϕn〉 |2 + | 〈ϕm|p̂y|ϕn〉 |2

2
. (2.36)

The n and m indices are composite over band, k-point, and spin, meaning m → mkσ. Assuming no

spin-orbit coupling, spin degeneracy yields a factor of 2. Furthermore, the sum over k can be turned into

a k-integral, which will be over the entire Brillouin zone as

1

Ω

∑
k

=
A

Ω(2π)2

∫
d2k, (2.37)

with A and Ω being the area and volume of the unit cell, respectively. The susceptibility is

χ(ω) =
2e2h̄2

ε0m2(2π)2d

∑
m,n

∫
fnm

| 〈ϕmk|p̂xy|ϕnk〉 |2

Emn[E2
mn − h̄

2(ω + iΓ)2]
d2k, (2.38)

with d being the thickness of the 2D structure. As the double sum runs over all bands there will be two

types of terms, namely interband terms where n 6= m and intraband terms where n = m. Thus the total

susceptibility will be

χ(ω) = χinter(ω) + χintra(ω) = χE(ω) + χI(ω). (2.39)
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2. Independent Particle Optical Properties

In the interband contribution the photon momentum q can safely be neglected, however the same is not

true for the intraband contribution. For the interband case there will be terms where m > n and n > m,

and as the sums run over all bands the second type of terms can be interchanged, giving

χE(ω) =
4e2h̄2

ε0m2(2π)2d

∑
m>n

∫
fnm

| 〈ϕmk|p̂xy|ϕnk〉 |2

Emn[E2
mn − h̄

2(ω + iΓ)2]
d2k. (2.40)

For the intraband terms the photon momentum can not be ignored, meaning the 2D intraband suscepti-

bility should be written as

χI(ω) =
2e2h̄2

ε0m2(2π)2d

∑
n

∫
[f(Enk)− f(Enk+q)]

| 〈ϕnk+q|p̂xy|ϕnk〉 |2

∆E[∆E2 − h̄2(ω + iΓ)2]
d2k, (2.41)

with ∆E = Enk+q − Enk. However, in the limit of q → 0, the first order Taylor expansion of the

Fermi-distribution gives f(Enk+q) ≈ f(Enk) + f ′(Enk)∆E and the 2D susceptibility is

χI(ω) =
2e2h̄2

ε0m2(2π)2d

∑
n

∫
f ′(Enk)

| 〈ϕnk|p̂xy|ϕnk〉 |2

h̄2(ω + iΓ)2
d2k, (2.42)

or rewritten as

χI(ω) = −
ω2
p

ω(ω + iΓ)d
, (2.43)

where ωp is the plasma frequency and given by

ω2
p = − 2e2

ε0m2(2π)2

∑
n

∫
f ′(Enk)| 〈ϕnk|p̂xy|ϕnk〉 |2 d2k. (2.44)

2.3 Numerical implementation

As the eigenfunctions and eigenvalues of a DFT calculation are discretized in reciprocal space the k-

integral is handled numerically. Utilizing symmetry of the Brillouin zone, the integral only needs to be

performed over an irreducible Brillouin zone. The 2D interband χE2D(ω) = χ(ω)·d susceptibility becomes

χE2D(ω) =
4e2h̄2

ε0m2(2π)2

∑
m>n

IBZ∑
k

wkfnm
| 〈ϕmk|p̂xy|ϕnk〉 |2

Emn[E2
mn − h̄

2(ω + iΓ)2]
∆kx∆ky. (2.45)

With weights wk according to symmetry and ∆kx, ∆ky, being the spacing in k-space. However, point-

sampling of the k-integral may take a large number of k-points to converge, with large computational

costs. Another way to handle the k-integral is through the improved triangle method, which evaluates

an integral over the IBZ on the form

S(ω) =

∫
F (k)δ(Emn − h̄ω) d2k, (2.46)

where the k-grid is triangulated and both Emn and F (k) are assumed to be linear within each triangle.

This allows for the resonant integral to be evaluated anaytically over a line in each triangle, greatly

improving convergence in regards to the k-point sampling. [24, 25]

In order to use this integration scheme the expressions for the interband and intraband contributions

need to be modified. Starting from equation (2.40), it is seen that in the limit of vanishing dampening

the imaginary part of the susceptibility becomes

Im{χE2D(ω)} =
4e2h̄2

ε0m2(2π)2

∑
m>n

∫
fnm| 〈ϕmk|p̂xy|ϕnk〉 |2

Emn
Im

{
lim
Γ→0

1

[E2
mn − h̄

2(ω + iΓ)2]

}
d2k

=
4e2h̄2

ε0m2(2π)2

∑
m>n

∫
fnm| 〈ϕmk|p̂xy|ϕnk〉 |2

Emn
πδ(E2

mn − h̄
2ω2) d2k.
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The Dirac delta function can also be written as δ(Emn−h̄ω)/2h̄ω for ω > 0. Thus Emn inside the integral

is h̄ω for all surviving terms of the integral. Rewriting the rest inside the integral as F (k) the equation

becomes

Im {χE2D(ω)} =
12e2

2ε0m2π2ω2

∑
m>n

∫
IBZ

F (k)δ(Emn − h̄ω) d2k, (2.47)

with the 12 coming from only taking the integral of the irreducible Brillouin zone. In order to get the

Dirac delta function, the dampening was set to vanish, however, the broadening can be reintroduced by

convolution with a Gaussian line-shape function so that

Im {χE2D(ω)} =
12e2

2ε0m2π2ω2

∑
m>n

∫ ∫
IBZ

F (k)δ(Emn − h̄ω) d2k
e−(ω−ω′)2/Γ2

Γ
√
π

dω′, (2.48)

with Γ being the broadening added. The plasma frequency in Eq. (2.44) also needs to be modified

to include a Dirac delta function. In the limit of 0 K the differentiated Fermi distribution becomes a

Dirac delta function. Thus the integral can be evaluated at zero temperature and convoluted with the

differentiated Fermi-distribution afterwards as

ω2
p = − 2e2

ε0m2(2π)2

∑
n

∫ ∫
δ(E − E0)| 〈ϕnk|p̂xy|ϕnk〉 |2 d2kf ′(E0) dE0. (2.49)

2.4 Basis set considerations

The matrix elements 〈ϕmk|p̂xy|ϕnk〉 are calculated in a plane-wave basis. The Kohn-Sham orbitals in a

plane wave basis are given as

ϕnk =
1√
Ω

∑
G

Cn(G)ei(k+G)·r, (2.50)

with Cn(G) being the expansion coefficients. The momentum operators used in p̂xy is given as p̂x = −ih̄ d
dx

and p̂y = −ih̄ d
dy . The matrix elements are then given by

〈ϕmk|p̂x|ϕnk〉 =
−ih̄
Ω

∑
G

∑
G′

Cm(G′)∗Cn(G)

∫
e−i(k+G′)·r d

dx
ei(k+G)·r d3r = h̄

∑
G

Cm(G′)∗Cn(G)(Gx+kx),

(2.51)

because of the orthogonality of the plane wave basis functions, where Gx and kx are the x-components of

the G-vector and k-vector respectively. A similar equation is used for 〈ϕmk|p̂y|ϕnk〉. Due to the projector

augmented wave method used in GPAW, described in App. B, a correction to these matrix elements are

required

〈Ψmk|∇|Ψnk〉 = 〈Ψ̃mk|∇|Ψ̃nk〉+
∑
a,ij

〈Ψ̃mk|p̃ai 〉∗〈Ψ̃nk|p̃aj 〉
[
〈φai |∇r|φaj 〉 − 〈φ̃ai |∇r|φ̃aj 〉

]
, (2.52)

with Ψ being the all-electron wave function, Ψ̃ being the pseudo wave function, p̃aj being the j’th projector

on the a’th atom, and φ and φ̃ are the partial waves. The first term is the matrix element of the pseudo

wave function as given by (2.51) and all four brakets of the sum can be extracted from the result of a

GPAW calculation.

2.5 Optical properties of Graphene

Eq. (2.48) and Eq. (2.49) can now be solved with the improved triangle method from Pedersen et al.

[25]. In Fig. 2.1(a) the conductivity of graphene is shown, using the point-sampling method and the

improved triangle method for the same number of k-points in the irreducible Brillouin zone, in a grid

similar to the one shown in Fig. 2.1(b), where the real part of the sheet conductivity is calculated as
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2. Independent Particle Optical Properties

σ1(ω) = ωε0Im (χ2D(ω)) and is given in units of the quantum unit of conductance σ0 = e2

4h̄ . As h̄ω → 0

the conductivity is supposed to converge to σ0, as the graphene conductivity is reported to never fall

below this minimum value [2]. However, a great many more k-points is needed for point-sampling, than

the improved triangle method to show this behaviour. The interband conductivity also becomes 0 at

h̄ω = 0, but this is determined entirely by the density of the k-points used in the calculation around the

K special point.

(a) (b)

Figure 2.1: (a) Comparison of point-sampling and the improved triangle method for the interband
conductivity, with the green line being the Dirac model for interband conductivity. The number of k-
points used in both calculations is 1596 in the irreducible Brillouin zone. The dampening of the point
sampling was set to 0.025 eV. (b) Example of the type of grid used in the calculations, here shown for a
”10x10” grid.

The Dirac model shown in Fig 2.1 comes from a cone approximation of the highest valence band and lowest

conduction band of graphene [26]. Assuming spin degeneracy, the density of states can be calculated as

D(E) = 2
∑
n,k

δ(En,k − E). (2.53)

However, to account for the discretization of k-space the Dirac-delta function is replaced with a normalized

Gaussian as

δ(En,k − E)→ 1

γ
√

2π
e
−
(
E−En,k√

2γ

)2

, (2.54)

with some broadening γ, here chosen to be 0.0025 eV. The density of states of graphene is shown in Fig.

2.2. Close to the top of the highest occupied valence band around 0 eV, the density of states behaves

linearly, in good agreement with the Dirac model.
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2.5. Optical properties of Graphene

Figure 2.2: Density of states of graphene, showing linear behavior near the top of the highest occupied
valence band, at 0 eV.

All valence bands will be designated as vn with n starting from 1, with v1 denoting the highest valence

band and so on. The conduction bands will be designated cn with n starting from the lowest conduction

band at 1 and the next lowest conduction band being n = 2 and so on.

The conductivity of graphene for the 0 < h̄ω < 10 eV range is exclusively due to interband transitions

from v1 and c1 as shown in Fig. 2.3(a). It is seen that the conductivity has a resonance at 4 eV, which is

related to the flatness of the v1 and c1 bands between the M and K special points in the Brillouin zone.

This flatness leads to a high density of states near 4 eV, which in turn translates into the resonance in

conductivity. The v1 and c1 bands are highlighted in blue in Fig. 2.3(b). As expected, graphene behaves

like a semi-metal with the v1 and c1 bands touching in the K special point.

(a) (b)

Figure 2.3: (a) Interband conductivity of graphene, with the contribution from the v1 to c1 transition
shaded in red. (b) Graphene band structure and DOS, highlighting the v1 and c1 bands in blue, which
are mainly responsible for the conductivity of graphene.
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2.6 Optical properties of MoS2

For MoS2 the interband conductivity is a bit more complicated as shown in Fig. 2.4(a). The conductivity

starts around 1.83 eV, which is the band gap of MoS2, for a DFT calculation, corresponding to the direct

band gap in the band structure shown in Fig. 2.4(b). The 2-3.5 eV region of the spectrum is dominated

by the v1 → c1 transition.

(a) (b)

Figure 2.4: (a) Interband conductivity plot of MoS2, showing the conductivity becoming only non-zero
after 1.83 eV due to the band gap of MoS2. (b) The band structure of MoS2 along with its DOS.

In order to determine where in the BZ the spectral features originate, the k integral of Eq. (2.47) can

be limited to different regions, as is done in Fig. 2.5(a). The flat low energy part of the conductivity

originates from the K-region. The first peak at 2.73 eV is caused by the Γ region, with Fig. 2.5(b)

showing that both the Γ→M and Γ→ K part contributes to this peak. Fig. 2.5(b) also shows that just

around Γ all matrix elements are zero, so the Γ contributions of Fig. 2.5(a) all originate from the outer

parts of the Γ region. The second peak at 2.89 eV is due to the area dubbed ’Rest’, and it can be seen

from Fig. 2.5(b) that the maximum between Γ and K has eigenvalues corresponding to this transition.

(a) (b)

Figure 2.5: (a) Contribution to the v1 → c1 part of the optical conductivity from different regions of the
Brillouin zone. The inset shows the integration regions. (b) Difference in eigenvalues between the c1 and
v1 bands, with the size of circles indicating the magnitude of the momentum matrix element. Horizontal
lines indicate the transition energy of the two peaks from (a).
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Chapter 3

Doping Models

Doping is an essential process in the manufacturing and design of micro- and nano-electronics, as it is the

mechanism that enables the functionality of a range of semiconductor devices. Doping refers to adding

additional charge carriers to a region of a semiconductor material. The addition of extra holes and extra

electrons to separate adjoining regions is what creates the simplest semiconductor device, the pn junction

and more advanced devices can be built by more elaborate doping profiles. [27]

For three dimensional semiconductors, such as the archetypal silicon that is the workhorse of the semi-

conductor industry today, doping is normally done by so-called substitutional doping. In this scheme a

silicon atom in the lattice is replaced by group III or group V atoms, which respectively lack an electron

and has an extra electron compared to silicon. Focusing on the case of group V atoms, at low tempera-

ture this extra electron will reside in a state close to the conduction band that is easily excitable to the

conduction band, generating a free carrier. [27]

For the two-dimensional materials, that are the focus of this thesis, substitutional doping is also a

possibility, and has been the focus of several studies [28–30]. However, due to the reduced dimensionality

other doping strategies become possible. One such possibility is doping by adatom surface adsorption,

which has been used to create field effect transistors on MoS2 and DFT studies have been done exploring

the effect of different adatoms on the band structure of MoS2 [31, 32].

Figure 3.1: Schematic of capacitor for electrostatic doping of monolayer.

A third possibility, which while possible in 3D is more effective in 2D, is that of injecting charge carriers

by gating, essentially utilizing the field effect. From a device design perspective this can be achieved

by depositing a MoS2 layer on a dielectric layer, grown on a substrate and subsequently depositing

metallic gates on the MoS2 layer and a back-gate on the silicon substrate. A voltage across the gates will

move free charge carriers from the substrate into the monolayer and the doping can thus be controlled
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electrically. This offers the possibility of creating re-configurable devices. While this doping strategy can

be modelled on the device level, using standard semiconductor equations in conjunction with e.g. finite

element methods, it is not obvious how to include it in ab-initio calculations of the electronic properties

of MoS2. A schematic of such a device is shown in Fig. 3.1.

3.1 Electostatic doping models

For substitutional and adsorption doping the same computational strategy is essentially used in littera-

ture. A supercell containing several unit cells of the monolayer and an additional atom is constructed

and the system is relaxed to its most energetically favourable positions and a DFT calculation using the

relaxed geometry can be carried out [31, 32]. The doping density then depends on the dopant atom and

the size of the supercell, with a larger supercell leading to fewer extra carriers per unit cell. This strategy

will not adequately describe the presence of a gating potential as the electronic structure is no longer

that of the pristine monolayer but rather the supercell including interactions between the monolayer and

the adatom. However, if the relaxation procedure is ignored and the adatom is moved away from its

equilibrium position the monolayer-adatom interactions will decrease, yet charge transfer will still occur.

In a supercell of the appropriate size the bands belonging to the dopant atom will be flat as interactions

between dopants in periodically repeated unit cells are weak. The geometry of the a 3x3 supercell is

shown in Fig. 3.2.

(a) (b)

Figure 3.2: The 3x3 MoS2 supercell used in the electrostatic doping models. (a) Supercell seen from
above with an adatom above of a molybdenum atom. (b) Supercell from the side, showing the variable
z-distance ”L” between the layer and the adatom.

In order to determine the amount of charge transfer between the dopant atom and the layer, Bader

analysis can be utilized. The idea of Bader analysis is to look for regions bounded by minimas in the

electron density. Such regions will often contain a nucleus and the integrated electron density in the

region is assigned to that nucleus. [33]

Another possibility is to just add or remove a fraction of an electron from the DFT calculation and

compensate with a homogeneous background, a so called jellium, ensuring charge neutrality in the unit

cell. This model has the advantage that a supercell is not required to obtain realistic doping levels, and

everything can be done in the primitive unit cell of the material in question.
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3.1. Electostatic doping models

Calculations utilizing the doping models described above have been performed. The first model utilizes

K and Li dopant atoms, which both n-dope MoS2. The calculations are carried out as follows

1. A 3x3 supercell self-consistent-field (SCF) calculation, with the dopant atom position a variable

distance above the Molybdenum atom is performed

2. Bader analysis is used to determine the charge transfer from the dopant atom.

3. A SCF calculation with a jellium background and additional electrons equal to the charge transfer

found by the Bader analysis is done in a 3x3 supercell.

4. Non-SCF calculations, using the electron density found from the SCF calculations, with a denser

k-point grid for calculating the density of states and band structure.

5. Use the density of states to calculate the Fermi level.

DFT calculations in the GPAW code have been performed with the dopant atom 3 to 15 Å, with 1

Å steps, above the Mo atom. The supercell height was chosen to be 40 Å to ensure that the dopant

atom did not interact with the Mo layer in a periodic image. The lattice constant and the z-position

of S was chosen based on relaxation of the MoS2 with the default GPAW PAW setups in plane-wave

mode, leading to values of 3.115 Å and 1.551 Å respectively. Due to the large amount of electrons

in a 3x3 supercell and the large vacuum layer, using a plane-wave basis for these calculations is very

computationally demanding and instead a localized double-zeta-polarized (DZP) basis set was used. The

SCF ground state calculations were performed on a (4x4x1) Monkhorst Pack grid and a (70x70x1) grid

was used for calculating the DOS and a route with 200 k-points was used for evaluating band structures.

The freely available program developed by Henkelman et al. that implements an efficient algorithm for

Bader analysis was used for step 2 [34].

The band structure of a 3x3 MoS2 supercell without any dopant atom or jellium background is shown in

Fig. 3.3(a). Due to the increased size of the supercell, the 3x3 Brillouin zone is folded, causing the direct

band gap to be located at the Γ-point with a value of 1.87 eV. The calculation is in good agreement with

a similar calculation by Rastogi et al. [31].

Figure 3.3: Band structure of pristine MoS2 3x3 supercell

When a dopant atom is included in the supercell its influence depends on its distance to the layer. If it is

close to the layer the system will represent the case of an atom adsorbed on the surface, which will affect
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the shape of the bands. In this case distinguishing between the states of the layer and the states of the

dopant atom is difficult, at least from the band structure. As the atom is moved away, the interaction

should diminish and the bands of the atom should represent states which experience no interaction, i.e.

become flat. In Fig. 3.4 the band structure for K and Li with the dopant atom at a distance of 4 and 13

Å from the monolayer is shown.

(a) (b)

(c) (d)

Figure 3.4: Band structures of MoS2 3x3 supercells with (a) K at L = 4 Å, (b) Li at L = 4 Å, (c) K at
L = 13 Å, (d) Li at L = 13 Å. The black bands are from calculations including the dopant atom, while
the red bands are from a calculation with a jellium background with a charge equivalent to the charge
transfer from the dopant atom.

For all the band structures shown in Fig. 3.4 the jellium calculations are nearly identical to the pristine

MoS2 band structure shown in Fig. 3.3. In Fig. 3.4(a) and (b) K and Li atoms are placed 4 Å away from

the monolayer, in both cases the band structure differs significantly from the band structure of the jellium

calculations as expected from the argument above. When the dopant atoms are moved further away, as

shown in Fig. 3.4(c) and (d), the interaction between the layer and the dopant atoms becomes weak and

the bands align completely with those of the equivalent jellium calculation, except for a band just under

the MoS2 conduction band. For K it can be seen that this band is not entirely flat and further increasing

the distance of the dopant atom does not change it significantly, while for Li the band is completely flat.

This can be explained by the positions of K and Li in the periodic table having atomic numbers of 19

and 3 respectively, meaning that K is much larger enabling interactions with K atoms in neighbouring

supercells. Using a 4x4 supercell would increase the distance between K atoms, but would require more
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computational resources. The L-position required in order to reduce the dopant-layer interaction enough

for the bands to align is 7 Å for both K and Li.

As described earlier the charge transfer from the dopant atom to the MoS2 layer was calculated from

Bader analysis. The charge transfer as a function of the distance of the dopant atom is shown in Fig.

3.5. In both cases the charge transfer decreases asymptotically as the distance is increased. However,

for K a slight increase in the charge transfer is observed from L = 3 Å to L = 4 Å, likely due to it’s

preferred relaxed position being in that range, this is not seen for Li likely because it’s relaxed position

is smaller than L = 3 Å due to it’s small size. Considering that 7 Å is required for the dopant bands to

become flat, the model works only in the L > 7 Å range, thus the doping can be controlled from 0.3 to

0.1 and 0.2 to 0.1 electrons per supercell for K and Li respectively, corresponding to doping densities of

0.99 ∗ 1013 cm−2 to 0.33 ∗ 1013 cm−2.

(a) (b)

Figure 3.5: Charge transfer as a function of dopant atom position for (a) K and (b) Li

For each value of the charge transfer a corresponding jellium calculation was performed and for both the

dopant calculation and the jellium calculation the Fermi level was calculated. Fig. 3.6 shows the Fermi

level as a function of the charge transfer for both K and Li. In both cases the Fermi level is more well

behaved in the jellium calculations.

(a) (b)

Figure 3.6: Fermi level as a function of charge transfer above the highest valence band for (a) K and
(b) Li.
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The analysis has shown that both doping strategies are viable. However, the jellium model has a few

distinct advantages. First, it does not require a supercell to be viable, thus decreasing the computational

requirements and perhaps more importantly allowing the use of a plane-wave basis set, which makes

computing certain matrix elements significantly easier. Secondly, in the jellium model the amount of

charge added to the layer can be directly input into the calculation, whereas in the dopant model only

the z-position can be specified. The jellium model can also cover a wider range of doping concentrations.

Due to these considerations the jellium model has been used for the remainder of the calculations in this

work.

3.2 Doping in graphene

The jellium model described above can be used directly with the response theory presented in Chap.

2. At high doping concentrations a simple expression for the relation between the Fermi level and the

doping concentration can be derived leading to

EF = h̄vF
√
πn, (3.1)

where vF is the Fermi velocity [22]. Fig. 3.7 shows the Fermi level as a function of the doping concentration

from DFT calculations. The agreement with the square-root relation is very good, considering the

expected value of the Fermi velocity is around 1 · 106 m/s [35]. At low doping concentrations the

agreement is worse, which can be explained by Eq. (3.1) being derived for the limit where |EF |/kT � 1.

Figure 3.7: Fermi level versus doping concentration in graphene.

The effects on the interband conductivity is shown in Fig. 3.8(a), where graphene was doped with

2 ·1013 cm−2 electrons. It is clear that the interband conductivity at low frequencies is gone, which is due

to so-called Fermi-blocking, because the lowest states of the c1 band are now occupied. Fermi-blocking

only increases further with doping concentration as shown in Fig. 3.8(b), where graphene was doped with

10 · 1013 cm−2 electrons. Furthermore, the interband conductivity is no longer only due to the v1 → c1

transition as seen in the high frequency range near 9-10 eV, where the c1 → c2 interband transition is

contributing.
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(a) (b)

Figure 3.8: (a) Interband conductivity of graphene doped with 2 · 1013 cm−2 electrons, with the con-
tribution from the v1 → c1 transition shaded in red. (b) 10 · 1013 cm−2 electrons, with the contribution
from the v1 → c1 transition shaded in red, and the contribution from the c1 → c2 transition shaded in
blue.

This new contribution can also be explained by shift of the Fermi-level. As the Fermi-level increases more

states in the c1 band become occupied. These occupied states can then transition to the c2 band, however

the energy required is high, due to the occupied states being only near the K special point, where the

c2 band is highly separated from the c1 band as shown in figure 3.9(a-b) for 2 · 1013 cm−2 electrons and

10 · 1013 cm−2 electrons, respectively.

(a) (b)

Figure 3.9: (a) Bandstructure of graphene doped with 2 · 1013 cm−2 electrons, occupied c1 band states
shaded in blue, and a red arrow indicating the smallest transition in energy between the c1 occupied
states and the c2 band. (b) 10 · 1013 cm−2 electrons, showing the same, however the c1 → c2 transition
is now below 10 eV and therefore visible in the conductivity plot.

Furthermore the conduction bands decrease in energy with increasing doping, as is shown in Fig. 3.10

with the black solid bands being the conduction bands at 0 doping, while the red dashed bands being

the same conduction bands where graphene has been doped with 10 · 1013 cm−2 electrons. However, the

c1 band around the K special point does not change at all.
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3. Doping Models

Figure 3.10: Conduction bands of graphene at 0 doping (black solid lines) and doping with 10·1013 cm−2

electrons (red dashed lines).

It is natural that the intraband contribution to the conductivity will increase as the Fermi-level shift

increases the amount of occupied states in the c1 band. The intraband contribution for 2 · 1013 cm−2

electrons and 10 · 1013 cm−2 electrons, respectively is shown in Fig. 3.11.

(a) (b)

Figure 3.11: Conductivity of graphene doped with (a) 2 · 1013 cm−2 electrons, and (b) 10 · 1013 cm−2

electrons, showing intraband contribution becoming more important at low frequencies with increasing
doping concentration.

The effect of doping on the intraband conductivity is easier to see when looking at the plasma-frequency

as a function of the Fermi-level. In Fig. 3.12(a) it is clear that the plasma-frequency increases as the

Fermi-level is shifted away from the point where v1 and c1 has the same energy. The DFT calculation fits

well with the Dirac model, however the plasma frequency of the DFT calculation is lower for a Fermi-level

of 0 eV, however this can also be attributed to the density of the k-points used in the DFT calculation.

Fig. 3.12(b) shows a tight-binding calculation of the plasma frequency at a Fermi level of 0 eV at room

temperature with increasing k-points, showing that as more k-points are added the plasma frequency

converges to the analytical value.
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(a) (b)

Figure 3.12: (a) Plasma-frequency of graphene as a function of Fermi-level, showing the effects of
doping. (b) Tight-binding calculation of the plasma frequency for Fermi level at 0 eV, showing that
the plasma frequency converges with increasing k-point density. Triangle area denotes the area of the
triangles used in the grid for the improved triangle method.

3.3 Doping in MoS2

For MoS2 Fermi-blocking is less apparent as shown in Fig. 3.13, because the Fermi level moves only very

slowly into the conduction band.

(a) (b)

Figure 3.13: Conductivity of MoS2 doped with (a) 2 · 1013 cm−2 electrons, and (b) 10 · 1013 cm−2

electrons, showing some intraband contribution at low frequencies with increasing doping concentration.

At higher doping concentrations a small interband contribution begins to show far below 1.83 eV as

shown in Fig. 3.14(a) for MoS2 doped with 10 · 1013 cm−2 electrons. This small contribution is due to

the c1 → c2 transition from the occupied states in the valley in the c1 band between the K and Γ special

points as indicated by the red arrow in Fig. 3.14(b).
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(a) (b)

Figure 3.14: (a) Interband conductivity of MoS2 doped with 10 · 1013 cm−2 electrons, showing a small
contribution from the c1 → c2 transition. (b) Band structure of MoS2 at the same doping concentration,
with a red arrow indicating the c1 → c2 transition corresponding to around 0.6 eV.
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Chapter 4

Excitons

Thus far a framework has been presented that allows for the calculation of the optical properties within a

independent particle picture. However, this framework is in poor agreement with experiments for MoS2

[10]. In this chapter the Bethe-Salpeter framework that allows for the inclusion of excitons is presented. In

the first section the Bethe-Salpeter equation is derived, followed by an analytical model for the screening

of 2D materials. After which the calculation of matrix elements is discussed, leading to the Wannier

model, which allows for calculating approximative binding energies in a much less complicated fashion.

The remaining sections consider the details of using the Bethe-Salpeter equation and presents results for

MoS2.

4.1 The Bethe-Salpeter equation

In order to obtain more accurate optical properties, many-body effects have to be included. DFT cal-

culations are based on representing the all-electron wave function as a Slater determinant, where the

ground-state Slater determinant is given by valence Kohn-Sham (KS) orbitals. An intuitive way to ob-

tain an excited state is to replace one valence KS orbital with a conduction KS orbital. A singly excited

Slater determinant with total spin equal to zero, can be defined as a superposition of Slater determinants

with a valence spin up orbital replaced by a conduction spin up orbital and likewise for spin down

|vi → cj〉 =
1√
2

(
|v↑i → c↑j 〉+ |v↓i → c↓j 〉

)
, (4.1)

so that the excited state can be expressed in a basis of singly excited states

|S〉 =
∑

αij |vi → cj〉 . (4.2)

The Hamiltonian describing this excited state consists of a single-particle term and a Coulomb two-particle

term

H =
∑
n

h(rn) +
∑
n<m

W (rn − rm), (4.3)

where W is the screened Coulomb interaction. The equation governing this system is

H |S〉 = E |S〉 . (4.4)

Multiplying by one conjugated basis function from the left and integrating, amounts to multiplying by

the bra form of a basis function:∑
ij

αij 〈vk → cl|H |vi → cj〉 = E
∑
ij

αij 〈vk → cl|vi → cj〉 = Eαkl, (4.5)
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where the last equality is due to orthonormality of the states. Eq. (4.5) is an eigenvalue problem, and

can be solved by diagonalizing the matrix Hij,kl defined by the left side of the equation. The problem

is then to compute the matrix elements of this equation, which amounts to computing matrix elements

between Slater determinants. Using Eq. (4.1) the matrix elements become

〈vk → cl|H |vi → cj〉 =
1

2

[
〈v↑k → c↑l |H |v

↑
i → c↑j 〉+ 〈v↓k → c↓l |H |v

↓
i → c↓j 〉

+ 〈v↑k → c↑l |H |v
↓
i → c↓j 〉+ 〈v↓k → c↓l |H |v

↑
i → c↑j 〉

]
,

(4.6)

with the first two terms being between singly excited states of the same spin, and the last two terms

being cross-terms between singly excited states with opposite spin. Evaluating the diagonal elements of

the first term using the rules of matrix elements between Slater determinants yields [36]

〈v↑i → c↑j |H |v
↑
i → c↑j 〉 = 2

N∑
n 6=i

〈vn|h |vn〉+ 〈cj |h |cj〉 〈↑ | ↑〉+ 〈vi|h |vi〉 〈↓ | ↓〉

+

N∑
n,m

(2 〈vnvm|W |vnvm〉 − 〈vnvm|V |vmvn〉) + 〈vicj |W |vicj〉 〈↓ | ↓〉 〈↑ | ↑〉

−
N∑
m

(2 〈vivm|W |vivm〉 − 〈vivm|V |vmvi〉) +

N∑
m6=i

(2 〈cjvm|W |cjvm〉 − 〈cjvm|V |vmcj〉) .

The first term on the right hand side is a sum of single particle terms neglecting the i’th valence orbitals

and the 2nd and 3rd terms are corrections. The fourth term corresponds to the ground state two-particle

terms, and the remaining terms correct this for the excited state. As the last term is limited to m 6= i

a Coulomb term between the i’th spin down valence orbital and the j’th spin up conduction orbital is

added. Exchange terms require both orbitals to be the same spin and thus no exchange term between

vi ↓ and cj ↑ exists. The second term of Eq. (4.6) is exactly the same. Thus, for the diagonal, only

the cross terms remain. As there are two differences between the Slater determinants of the cross terms,

single particle terms are zero and the two particle contribution is

〈v↑i → c↑l |H |v
↓
i → c↓j 〉 = 〈v↓i c

↑
j |W |c

↓
jv
↑
i 〉 . (4.7)

Easier notation can be made by comparing with the ground state

〈0|H |0〉 = 2

N∑
n

〈vn|h |vn〉+
∑
n,m

(2 〈vnvm|W |vnvm〉 − 〈vnvm|V |vmvn〉) , (4.8)

and defining quasi-particle energies as

Ecj = 〈cj |h |cj〉+

N∑
m

(2 〈cjvm|W |cjvm〉 − 〈cjvm|V |vmcj〉)

Evi = 〈vi|h |vi〉+

N∑
m

(2 〈vivm|W |vivm〉 − 〈vivm|V |vmvi〉) ,

(4.9)

which correspond to the quasiparticle energies which could obtained from the GW approximation. Now

writing the full diagonal matrix elements on the form of the ground state matrix element gives

〈vi → cj |H |vi → cj〉 = 〈0|H |0〉+ Ecj − Evi − 〈vicj |W |vicj〉+ 2 〈vicj |V |cjvi〉 . (4.10)

As the sum in Ecj is not limited to m 6= i the third term compensates for an extra Coulomb term

compared to the single Coulomb term given by the matrix elements between up-up and down-down
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4.2. Quasi-particle energy

Slater determinants, while the fourth term compensates for the subtraction of an exchange term which is

present in the cross-terms. For the off-diagonal matrix elements, which are also given by the four terms

in Eq. (4.6), there are always two differences between the Slater determinants. For the spin up on spin

up part this yields

〈v↑k → c↑l |H |v
↑
i → c↑j 〉 = 〈c↑l v

↑
i |W |v

↑
kc
↑
j 〉 − 〈c

↑
l v
↑
i |V |c

↑
jv
↑
k〉 , (4.11)

where both terms survive after spin integration. Both cross terms yield

〈v↑k → c↑l |H |v
↓
i → c↓j 〉 = 〈c↑l v

↓
i |W |v

↑
kc
↓
j 〉 − 〈c

↑
l v
↓
i |V |c

↓
jv
↑
k〉 = 〈c↑l v

↓
i |W |v

↑
kc
↓
j 〉 , (4.12)

where the last equality is due to the spin integration. These equations can be combined to finally give

an expression for the full matrix elements

〈vk → cl|H |vi → cj〉 =
[
Ecj − Evi

]
δkiδlj − 〈clvi|W |cjvk〉+ 2 〈clvi|V |vkcj〉 , (4.13)

where the ground state has been chosen as the zero-point energy. For periodic structures the indices used

so far need to be understood as composites of band and k-point. The basis Slater determinants of Eq.

(4.1) are thus replaced with |vik → cjk′〉 considering only excited states created through optical processes,

which involve photons with negligible momentum, a fair assumption is k = k′. Thus the matrix elements

become

〈vkk → clk|H |vik′ → cjk′〉 =
[
Ecjk − Evik

]
δkiδljδkk′ − 〈clkvik′ |W |cjk′vkk〉+ 2 〈clkvik′ |V |vkkcjk′〉 .

(4.14)

This is the Bethe-Salpeter matrix. [22]

4.2 Quasi-particle energy

Figure 4.1: DFT and G0W0 band structure of MoS2, black bands are DFT while red bands are G0W0
and dashed green bands are scissor shifted DFT.

From DFT independent-particle Kohn-Sham eigenvalues can be obtained, however the energies that

enter a Bethe-Salpeter calculation should be true quasiparticle energies that include electron-electron

interactions, obtained from e.g. GW calculations. The G0W0 band structure of MoS2 has been calculated
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4. Excitons

using the GPAW code and is shown in Fig. 4.1 along with the DFT band structure. The zeros in G0W0

refer to both the Green’s function and the screened potential being found directly from DFT without

iterating for a self-consistent solution [37]. The main difference between the two band structures is that

the G0W0 conduction bands are shifted upwards, this enables the use of a scissor operator that shifts

the DFT conduction bands to align with the G0W0 bands. A scissor of 0.87 eV is used for the green

bands in Fig. 4.1, which greatly decreases the difference between the DFT and G0W0 bands, so that the

scissored DFT eigenvalues are a fair approximation for the QP energies. Unless explicitly specified the

remainder of the results presented in this chapter are calculated using scissor-shifted DFT energies, but

G0W0 calculations are revisited in Chapter 5.

4.3 Screening in 2D

Figure 4.2: Illustration of encapsulated monolayer.

The screened potential W could be found from ab-initio calculations, however this is very computationally

expensive. Instead an analytical approximation can be constructed starting Gauss’ law from [22]

∇ ·D = e2δ(r− r′). (4.15)

As D = ε0εE and the electric field relates to the potential through E = −∇W , these equations can be

combined to give

∇ · [ε(r)(−∇W (r))] =
e2

ε0
δ(r− r′). (4.16)

Writing the real-space potential in terms of the 2D Fourier transform

W (r, z, z′) =
1

4π2

∫
w(z, z′; q)eiq·r d2q, (4.17)

where q and r is the momentum and position in the xy-plane. This can be inserted into Eq. (4.16)

1

4π2

∫ [
−q2ε(z) +

d

dz
ε(z)

d

dz

]
w(z, z′; q)eiq·r d2q =

e2

ε0
δ(r− r′). (4.18)

The right-hand side can be represented in terms of its Fourier components as well and the inverse Fourier

transform can be used on both sides, leading to the equation[
−q2ε(z) +

d

dz
ε(z)

d

dz

]
w(z, z′; q) =

e2

ε0
δ(z − z). (4.19)

This equation can be solved in the geometry shown in Fig. 4.2 using the anzats

w(z, z′; q) =
e2

2ε0q


Ce−q|z−z

′| z > d

ε−1e−q|z−z
′| +Ae−q|z+z

′| +Be−q|2d−z−z
′| 0 ≤ z ≤ d

De−q|z−z
′| z < 0

. (4.20)
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4.3. Screening in 2D

In order to solve the equation using this ansatz, boundary conditions are required at both interfaces

z = {0, d}. The boundary conditions are that the potential should be continuous and that the normal

component of the D-field should be continuous i.e

w(z+, z′; q) = w(z−, z′; q)

ε+ d

dz
w(z+, z′; q) = ε−

d

dz
w(z−, z′; q).

(4.21)

Using these boundary conditions four equations can be constructed and the unknown coefficients can be

isolated leading to a solution when both z and z′ are in the layer.

w(z, z′; q) =
e2e−q|z+z

′|

2qεε0

(ε− εb + (ε+ εb)e
2qz<)(ε+ εa + (ε− εa)e2q(z>−d)

(ε+ εb)(ε+ εa)− (ε− εb)(ε− εa)e−2qd
, (4.22)

where ε, εa, εb refer to a homogeneous monolayer dielectric constant, superstrate dielectric constant, and

substrate dielectric constant, respectively. z< and z> are the smallest and largest of z and z′. To simplify

further the assumption z = z′ = d/2 is used

w(q) =
e2

2qε0

1

ε(1− ε−εa
ε−εa+(ε+εa)eqd

− ε−εb
ε−εb+(ε+εb)eqd

)
, (4.23)

which amounts to assuming a truly 2D dimensional material. Comparing with the unscreened potential

v(q) = e2

2ε0q
the denominator of the second fraction can be identified as the effective dielectric function

ε(q) = ε

(
1− ε− εa

ε− εa + (ε+ εa)eqd
− ε− εb
ε− εb + (ε+ εb)eqd

)
. (4.24)

Taylor expanding to first order around d = 0 leads to

ε(q) =
εa + εa

2
+

(
ε− 1

2
− ε2

a + ε2
b − 2ε

4ε

)
qd. (4.25)

which can be rewritten as

ε(q) = ε̄+ r0q, (4.26)

where ε̄ is the average substrate and superstrate dielectric constants, and it has been assumed that the

last term is small so that r0 = ε−1
2 d is the screening length of the material, which for MoS2 is 44.3 Å

[22]. The effective dielectric function for different substrate/superstrate combinations for MoS2 shown in

Fig. 4.3(a), and Fig. 4.3(b) shows how the real space potential is weakened by the screening.

(a) (b)

Figure 4.3: (a) Graphs of the linear screening function of MoS2 for different substrate/superstrate
combinations. (b) Screened real space potential at different r0.
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4.4 Slow-rapid approximation

In order to continue, the screened potential from the previous should be inserted into Eq. (4.14), which

results in matrix elements on the form of

Vkl,ij = 〈clkvik′ |V |cjk′vkk〉 =

∫∫
ϕ∗ck(r)ϕ∗v′k′(r

′)W (r− r′)ϕc′k′(rϕvk(r′) d3rd3r′. (4.27)

In principle the screened potential from Eq. (4.23) could be Fourier transformed and inserted, but an

approximation can be made. The orbitals used to construct the Slater determinants are on the form

ϕvk(r) =
1√
Ω
uvk(r)eik·r, (4.28)

where uvk is a lattice periodic function, which can be obtained from DFT calculations. The integral in

Eq. (4.27) can be written as

Vkl,ij =
1

Ω2

∫∫
u∗ck(r)u∗v′k′(r

′)uc′k′(r)uvk(r′)︸ ︷︷ ︸
Rapid part

W (r− r′)ei(k
′−k)·rei(k−k

′)·r′︸ ︷︷ ︸
Slow part

d3rd3r′, (4.29)

where the product of the lattice periodic parts has been identified as a rapidly varying function, and the

product of the potential and the Bloch phases as a slowly varying function. This enables the integral to

be approximated as the product of the average of the rapid part and the integral of the slow part,

Vkl,ij ≈
1

Ω2Ω2
uc

∫∫
uc

u∗ck(r)u∗v′k′(r
′)uc′k′(r)uvk(r′) d3rd3r′

∫∫
W (r− r′)ei(k

′−k)·rei(k−k
′)·r′ d3rd3r′,

(4.30)

where the periodicity of the rapid part has been used to limit the integral to the unit cell. Thus the rapid

integrals can be calculated as

Iv′k′vk =
1

Ωuc

∫
uc

u∗v′k′(r
′)uvk(r′) d3r′

Ickc′k′ =
1

Ωuc

∫
uc

u∗ck(r)uc′k′(r) d3r.

(4.31)

Returning to the slow part and introducing q = k− k′ allows the slow integral to be written as

Skk′ =
1

Ω2

∫∫
W (r− r′)e−iq·(r−r

′) d3rd3r′ =
1

Ω

∫
W (r)e−iq·(r)d3r, (4.32)

which can be identified as the Fourier transform of the screened potential which gives the screened

potential in reciprocal space, which was approximated in the previous section. The Coulomb matrix

elements can then finally be written as

Vkl,ij ≈
1

Ω
Iv′k′vkIckc′k′w(q). (4.33)

The exchange matrix elements are zero within this approximation. Assuming the lattice periodic u

functions are known in a basis of plane waves

un(r) =
∑
G

cn(G)eiG·r, (4.34)

where n is a composite band and k-index. With this notation all the rapid I integrals can be evaluated

as

Inkn′k′ =
1

Ωuc

∑
G

∑
G′

cnk(G)c∗n′k′(G
′)

∫
uc

ei(G−G
′)·r d3r =

∑
G

cnk(G)c∗n′k′(G), (4.35)

where orthonormality of the plane waves was used for the last equality.
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4.5. Wannier approximation

4.5 Wannier approximation

At this point the framework has been developed enough to become useful. The difficulty when applying

the framework at this point is calculating the Inkn′k′ factors. Within the Wannier approximation these

are approximated by Inkn′k′ = δn,n′ , which in effect decouples the bands in the Coulomb terms and

ignores the exchange terms in the BSE. This is exact for k = k′ and will thus be an okay approximation

if the k-dependence of these integrals is not too large. Furthermore the quasiparticle energies that enter

the BSE matrix are approximated within the effective mass approximation so that

Ecv(k) = Eg +
h̄2k2

2meh
, (4.36)

where meh is the effective electron-hole mass [22]. In principle this allows the problem to be transformed

to real-space rather than k-space, but as a test of the numerical implementation it is kept in reciprocal

space. Figure 4.4 shows the binding energy of the 1s exciton in MoS2 using meh = 0.28 [22]. For a

suspended MoS2 layer it can be seen that a binding energy of 0.51 eV is obtained in good agreement with

0.47 eV obtained by [38]. It is clear from the approximations above that the Wannier approximation will

always overestimate the Coulomb attraction due to approximating Inkn′k′ as a delta function, which leads

to a larger binding energy than would be obtained by a calculation where Inkn′k′ is explicitly calculated

as these factors will always less than 1 for k 6= k′. The k-grid consists of 100x100 k-points within a square

with width/height equal to the length of the in-plane reciprocal lattice vectors centered around the K

special point.

Figure 4.4: Exciton binding energy in MoS2 calculated in the Wannier approximation in k-space.

4.6 Two-band approximation

The basis in Eq. (4.1) included Slater determinants between an unspecified amount of conduction and

valence bands. Limiting the basis to Slater determinants where the highest valence orbital has been

changed with the lowest conduction orbital leads to

|S〉 =
∑
k

αk |vk → ck〉 . (4.37)

In this basis the Hamiltonian matrix elements of Eq. (4.14) can be formulated as

Hk,k′ = [Ec(k)− Ev(k)] δkk′ −
1

Ω
Ickck′Ivkvk′w(k− k′), (4.38)
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where it has been utilized that both of the band delta functions are unity. With the matrix elements

formulated in this way Eq. (4.5) can be written as
∑

k′ Hkk′αk′ = Eαk or

Ecv(k)αk −
1

Ω

∑
k′

Ickck′Ivkvk′w(k− k′)αk′ = Eαk. (4.39)

Converting the sum over k′ to an integral using
∑
k →

L
2π

∫
dk leads to

Ecv(k)α(k)− 1

4π2

∫
Ickck′Ivkvk′w(k− k′)α(k′) d2k′ = Eα(k), (4.40)

where the integral goes over the entire Brillouin zone. In order to solve the problem numerically the

equations needs to be discretized, which is easier on a square grid than on the usual hexagonal Brillouin

zone. The rectangular integration area must have the same area as the hexagonal Brillouin zone, and it

must be shaped so that it is possible to fold and cut it into the hexagonal Brillouin zone. The width and

height of the new Brillouin zone is denoted Lx and Ly respectively.

Lx is taken to be the width of the hexagonal Brillouin zone from the M special point to the −M special

point. Ly can then be found by requiring that the area of the rectangular integration area is the same as

the hexagonal Brillouin zone. The area of the irreducible Brillouin zone is

AIBZ =
1

2
KxKy, (4.41)

with Kx, and Ky being the x-y components of the K special point which is given by

K =
2π√
3a

[
1,

1√
3

]
. (4.42)

Lx will be 2 ·Kx, thus Ly is found by

ABZ = Ly · Lx = 12 ·AIBZ = 6KxKy, (4.43)

as Lx = 2 ·Kx

Ly = 3Ky =
2π

a
. (4.44)

This rectangular integration area can then be translated by some vector in reciprocal space. In Fig. 4.5 the

rectangular integration area is shown, translated so that the lower left corner is placed in
[
− 1

4Ly,−
1
2Ly

]
.

Figure 4.5: Illustration showing the new rectangular Brillouin zone. The gray circle indicates that the
k-integration performed in the diagonal of the Hamiltonian is done in polar coordinates.
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The integral can of course be written as a sum of integrals over each rectangular element of the grid. Each

of these integrals are then approximated by assuming that the function is constant within the rectangle

equal to the value at the center. This amount to rewriting Eq. (4.40) as

Ecvkαk −
1

4π2

∑
k′

Ickck′Ivkvk′w(k− k′)αk′∆kx∆ky = Eαk. (4.45)

The k = k′ term in the discretized sum is problematic as the potential is divergent. This can, however,

be remedied by converting to polar coordinates, the integral over this element is then given by

− 1

4π2

∫ 2π

0

∫ a

0

w(q)q dqdθ = − e2

4πε0

∫ a

0

q

q(r0q + ε̄)
dq = − e2

4πr0ε0
ln

(
ar0 + ε̄

ε̄

)
. (4.46)

Finally, the entries of the Hamiltonian matrix can be written as

Hkk′ =

Ecvk − e2

4πr0ε0
ln
(
ar0+ε̄
ε̄

)
k = k′

− 1
4π2 Ickck′Ivkvk′w(k− k′)∆kx∆ky k 6= k′.

(4.47)

4.7 Optical properties of excitons

The optical properties can be calculated by the many-body version of Eq. (2.35), in which the single-

particle momentum matrix elements has been replaced by many-body momentum matrix elements using

the operator

P̂ =

2N∑
n

p̂x, (4.48)

and differences in band energies replaced by exciton energies, leading to

χ(w) =
2e2h̄2

ε0m2Ω

∑
S

| 〈0|P̂ |S〉 |2

Es
[
E2
s − h̄

2(ω + iΓ)2
] . (4.49)

The many-body momentum operator is a sum of single-body operators and there is one difference between

the ground state and each of the basis states, thus the momentum matrix elements become a weighted

sum as

〈0|P̂ |S〉 =
√

2
∑
k

αk 〈vk|p̂xy|ck〉 =
√

2
∑
k

αkp̂cv,k, (4.50)

where spin degeneracy has been assumed. The single particle momentum in a basis of plane-waves can

readily be calculated from Eq. (2.51). The exciton wavefunction αk is normalized as∑
k

|αk|2 = 1, (4.51)

However, by inserting α̃k, which is normalized as∫
|α̃k|2d2k =

4π2

A

∑
k

α̃k = 1, (4.52)

so that |αk|2 = 4π2

A |α̃k|2, the equation becomes

〈0|P̂ |S〉 =
√

2

√
4π2

A

∑
k

α̃kp̂cv,k. (4.53)

Converting the sum over k to an integral and discretizing leads to

〈0|P̂ |S〉 =
√

2

√
4π2

A

A

4π2

∫
α̃kpcv(k) d2k =

√
2

√
A

4π2

∑
k

α̃kpcvk∆kx∆ky. (4.54)
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Denoting the sum over k as P and taking the absolute square leads to

| 〈0|P̂ |S〉 |2 =
2A

4π2
|PS |2. (4.55)

Finally the susceptibility can be calculated as

χ(w) =
2A

4π2

2e2h̄2

ε0m2Ω

∑
S

|PS |2

ES
[
E2
S − h̄

2(w + iΓ)2
] , (4.56)

and the 2D susceptibility as

χ2d(w) =
e2h̄2

π2ε0m2

∑
S

|PS |2

ES
[
E2
S − h̄

2(w + iΓ)2
] . (4.57)

As matrix elements are calculated from DFT instead of G0W0, the momentum matrix elements should

be renormalized such that the magnitude of each transition is conserved, which is achieved by [39]

〈vk|p̂|ck〉 = 〈vk|p̂|ck〉DFT
EGWcv (k)

EDFTcv (k)
. (4.58)

The BSE matrix couples different k states through the Coulomb interaction. If this coupling is removed,

the BSE matrix becomes a diagonal with the differences in band energies as entries. Without coupling,

the same spectrum as presented in Chap. 2 should be obtained, but be shifted in energy by the scissor

operator. Fig. 4.6 shows the spectrum obtained for MoS2 from both the BSE equation without coupling

and the one from independent particle framework discussed previously, both using a lattice constant

of 3.18 Å. The differences in the two spectra are due to the different integration/interpolation schemes

employed in the calculations. Comparing to Fig. 2.5(a) it is seen that good agreement is obtained.

One difference is that in Fig. 2.5(a) the maximum conductivity for the v1 → c1 transition was the

first peak, but now it is the second. These differences can be explained by differences in numerical

implementation, i.e Fig. 2.5(a) was calculated using the improved triangle method compared to the

discretization/interpolation scheme used for the BSE and differences in the momentum matrix elements

caused by using a different lattice constant for the DFT calculation Fig. 4.6 is based on.

Figure 4.6: Optical conductivity for the c1 → v1 transition of MoS2 calculated from Eqs. (4.47) &
(4.57), when ignoring the Coulomb interaction.
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4.8 Numerical implementation

The Ickck′ and Ivkvk′ integrals are given by Eq. (4.35), however, as it is impossible to include plane-waves

with all G-vectors in the basis of the underlying DFT calculation, truncation of the basis set is required.

In GPAW, and most other plane-wave DFT packages, this truncation is achieved by limiting the kinetic

energy of the plane-waves to some value, commonly referred to as the cut-off energy. The kinetic energy

of each basis function does not depend solely on G but also on the k-point, thus different k-points will

have different bases, which makes evaluation of Eq. (4.35) difficult. To deal with this problem only

the G-vectors that are common among all k-points are used in the evaluation of these integrals. This

approach only works if the coefficients that are not used are small, or in other terms that the overlap

integral of uk(r) using only the common G-vectors is close to 1 when uk(r) is normalized with respect

to the basis functions in the original calculation. It was found that this overlap integral differs from 1 in

the order of 10−7.

The amount of Slater determinants required to converge exciton energies and wave functions can be

large, i.e. Eq. (4.37) should be evaluated on a fine k-point grid on the order of 100x100 k-points. A DFT

calculation of this size is computationally expensive, and functions such as Ecv(k) are smooth and can

as such be interpolated from a DFT calculation with a coarser k-point grid. A convenient interpolation

scheme can be crafted by triangulating the coarse mesh and apply barycentric linear interpolation in each

triangle. Using Fig. 4.7 the interpolation of a function F (k), which is explicitly calculated at the corners

can be found from

F (k) =
A1

A
F (k1) +

A2

A
F (k2) +

A3

A
F (k2), (4.59)

where A1 refers to the area of the region in the triangle defined by the three k-points k, k2, k3 and A is

the total area. This interpolation scheme is employed where DFT calculations are done on Monkhorst-

Pack grids with k-points added on the edges of the rectangular BZ to ensure that extrapolation is never

necessary, and the important quantities are calculated on rectangular grids that do no have time-reversal

symmetry, to reduce symmetry in the basis set entering Eq. (4.37).

(a) (b)

Figure 4.7: (a) Interpolation scheme employed for all required quantities. (b) The phase of c1 is removed
so that c1 becomes c′1 which is entirely real, c2 is the coefficient of a different basis function for the same
k and c′2 has the phase adjusted by φ1
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One important issue arises when interpolating complex quantities such as the basis coefficients of the

Kohn-Sham orbitals. The coefficients have an arbitrary k-point dependent phase which must be removed,

as otherwise interpolation is impossible. This is done by requiring that the coefficient corresponding to a

specific G that is nonzero and large is entirely real and that the phase of all other coefficients are defined

in relation to that. As an example, consider that the coefficient of Gn are chosen to be real for all k,

then the Gn coefficient of k1 can be written as Ck1(G1) = |Ck1 | exp(iφn1) then all coefficients of k1 are

multiplied by exp(−iφn1). For k2 all coefficients are multiplied by exp(−iφn2) and so on. This phase

convention is illustrated in Fig. 4.7(b). The difference between adjusting the phase and not adjusting the

phase is shown in Fig. 4.8, which clearly illustrates that interpolation without adjusting the phase would

be a bad idea. For momentum matrix elements the PAW correction has been neglected as it breaks the

phase convention and has been found to be a small correction for the two bands in question.

(a) (b)

Figure 4.8: Pseudocolor plots of the real part of the G = 0 coefficient on a 100x100 grid interpolated
from 55x55 Monkhorst-Pack grid, (a) with phase correction, (b) without phase correction.

In regions where the surfaces that are being interpolated are not actually linear, interpolation will in-

troduce an error. A quantification of this error is the overlap of the interpolated lattice periodic part

of the orbitals un(r) which should equal 1. Fig. 4.9 shows the average overlap after interpolating to

a 100x100 grid from a range of Monkhorst-Pack grids. It is clear that as the grid size increases the

interpolation error decreases and asymptotically approaches zero. The small non-monotonic behaviour is

due to differing placements of the grid points causing the change over triangular interpolation regions to

be better approximated by a linear function. Considering this error the remaining calculations are based

on 50x50 Monkhorst-Pack grid DFT calculations.
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(a) (b)

Figure 4.9: (a) Average overlap of interpolated 100x100 grid from a range of Monkhorst-Pack grids as
a function of grid size and total number of k-points. (b) The position of the 1s exciton conductivity peak
and the conductivity at the peak position as functions of grid size.

To ensure that enough states were included in Eq. (4.37) the optical conductivity was calculated on

grids ranging from 30x30 to 110x110. The position of the conductivity peak and the value at the peak

corresponding to the 1s exciton is plotted in Fig. 4.9 as calculated from the different grids. The position

of the peak decreases as more states are included in the calculation, while the maximum conductivity of

the 1s exciton changes by 0.04 σ0 between a 80x80 to a 110x110 grid calculation. The remaining results

are calculated on 100x100 grids unless otherwise specified.

4.9 Substrate effects

The framework developed thus far allows for including the substrate and the superstrate dielectric con-

stants through the average between the two ε̄, which when increased will further screen the electron-hole

interaction and lower the exciton binding energy. Exciton energies Es are calculated with the zero point

at the top of the valence band, and thus the exciton binding energy is given by

Ebinding = Eg,GW − Es, (4.60)

where Eg,GW is the fundamental band gap. The exciton binding energy of the lowest exciton in MoS2

with varying dielectric environments is shown in Fig. 4.10(a). The same tendency can be observed from

plots of the optical conductivity in Fig. 4.10(b), where the resonance of the A-exciton moves to higher

energies and becomes weaker. It has been shown that changing the dielectric environment has very little

effect on the position of the lowest exciton peak, but rather changes the GW band gap, which is not

taken into account in this calculation [40].

The decrease in binding energy can be explained through increased screening, but the decrease in the

strength of the resonance must be caused by the exciton being composed of states that are less optically

active.
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(a) (b)

Figure 4.10: (a) Binding energy of the lowest energy exciton in MoS2 for different dielectric enviroments
from BSE and Wannier calculations. (b) Optical conductivity of MoS2 for ε̄ = 1, 5, 10.

Fig. 4.11 shows color plots of the exciton wave function in reciprocal space of the lowest lying state with

an average substrate dielectric function of 1 and of 5. In both cases the regions around the two K special

points are the dominant contributors to the exciton wave function, however, as the screening increases

the wave function becomes more localized in k-space.

Figure 4.11: Absolute value of the expansion coefficients of the lowest energy exciton for ε = 1 and
ε = 5 and the corresponding optical conductivity spectra. The colored areas in the spectra are the
contributions of this exciton to the optical conductivity
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4.10 Spin-orbit interaction

It is well known that the spin-orbit interaction splits the highest valence band near the K special point,

as shown in Fig. 4.12, where the spin-orbit coupling at K is found to be ∆E = 0.151 eV, which is in

good agreement with [38]. Experimental measurements find that two distinct exciton peaks are measured

in MoS2, which is caused by splitting of the valence band [41, 42]. These effects could be included in

the BSE calculation by extending the framework to include more than one pair of bands and using DFT

wave functions where spin-orbit coupling has been included, however, the inclusion of more bands makes

the framework more complicated and much more computationally expensive. Instead the effect can be

included phenomenologically by shifting the energy of the two lowest lying exciton energies by ±∆E/2

and normalizing the momentum matrix elements of these four new states according to

|PS |2 →
1

2

Es ± 1
2∆E

Es
|PS |2. (4.61)

The one half factor removes the spin degeneracy factor included in Eq. (4.57) and the second fraction

scales the conductivity so the magnitude of the individual peaks is conserved independently of the size of

∆E . This is done for the two lowest lying states to ensure that the same optical conductivity is calculated

independently of whether p̂x or p̂y is used, as one exciton couples to p̂x and the other p̂y with nearly

identical energies. The result of this phenomenological model is shown in Fig. 4.12(b).

(a) (b)

Figure 4.12: (a) MoS2 DFT band structures including spin-orbit coupling (black lines) and without
spin-orbit coupling (red lines). (b) Optical conductivity of MoS2 as calculated within the BSE framework
with and without phenomenological inclusion of spin-orbit coupling.
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4.11 Couloumb and exchange integrals

So far the slow-rapid approximation has been used, which neglects exchange and underestimates the

Coulomb interaction. The Coulomb and exchange integrals can be written in general as

Eαβγδ =

∫∫
φ∗αkα(r)φβkβ (r)W (r, r′)φ∗γkγ (r′)φδkδ(r

′)d3rd3r′, (4.62)

with φ(r) being single particle orbitals, and W (r, r′) being either the screened or unscreened potential.

The single particle orbitals are Bloch waves, where the product of the lattice periodic functions u(r) of

two different orbitals are expanded in Fourier as

u∗αkα(r)uβkβ (r) =
∑
Gαβ

Iαβ(Gαβ)eiGαβ ·r, (4.63)

with the other orbitals expanded similarly. The potential W is also expanded, however, only in 2D Fourier

components as

W (r, r′) =
1

Ω

∑
p‖,G‖

W (p‖ + G‖)e
i(p‖+G‖)·(r−r′), (4.64)

with p‖ being limited to the first Brillouin zone. The integrals can now be written as

1

Ω

∑
p‖,G‖,Gαβ ,Gγδ

w(p‖+G‖)Iαβ(Gαβ)Iγδ(Gγδ)

∫∫
ei((kβ−kα)+Gαβ+p‖+G‖)·rei((kδ−kγ)+Gγδ−p‖−G‖)·r′d3rd3r′.

(4.65)

The z-part of the integrals demand that Gαβ and Gγδ both have a zero z-component. The only surviving

terms of the sum are those that fulfill both of the following conditions

(kβ − kα) + Gαβ + p‖ + G‖ = 0

(kδ − kγ) + Gγδ − p‖ −G‖ = 0.
(4.66)

As p‖ is limited to the first Brillouin zone it can only cancel with the k’s, thus

(kβ − kα) = p‖ = (kδ − kγ) = q

Gαβ = −G‖

Gγδ = G‖.

(4.67)

Thus the integrals for exchange and Coulomb can both be written as

Eq = Ω
∑
G

w(q + G‖)Iαβ(−G‖)Iγδ(G‖). (4.68)

Remembering that the I’s are related to the lattice periodic functions u(r), they can be found by ex-

panding the u(r)’s in a plane wave basis. Thus

1

Ω

∑
G1,G2

c∗αkα(G1)cβkβ (G2)ei(G2−G1)·r =
∑
Gαβ

Iαβ(G‖)e
iG‖·r, (4.69)

with c’s being the plane wave expansion coefficients. As only Iαβ(−G‖) is needed, the only terms that

survive are those where −G‖ = G2 −G1. Remembering that G‖ has a zero z-component this means

that the z-component of G1 and G2 must be the same. The I’s are thus

Iαkαβkβ (−G‖) =
∑
G1

c∗αkα(G1)cβkβ (G1 −G‖). (4.70)
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A similar expression can be found for the other orbital product as

Iγkγδkδ(G‖) =
∑
G1

c∗γkγ (G1)cδkδ(G1 + G‖). (4.71)

Thus, in a plane wave expansion the integrals can be found as

Eαβγδ =
1

Ω

∑
G‖

w(q + G‖)Iαkαβkβ (−G‖)Iγkγδkδ(G‖). (4.72)

For Coulomb in the two-band approximation the α and β bands are both the same valence band, the γ

and δ bands are both the same conduction band and the k’s are different giving

EC =
1

Ω

∑
G‖

w(q + G‖)Ivk′vk(−G‖)Ickck′(G‖). (4.73)

If only the G‖ = 0 term is used it can be seen that the equation reverts to the slow-rapid approximation

derived in Sec. 4.4. For exchange the α and γ band are the same valence band, while the β and δ bands

are the same conduction band. The Bloch phases cancels for exchange thus kα = kβ and kγ = kδ, so

that q = 0. Also the G‖ = 0 term is not allowed in exchange, meaning the exchange matrix element is

given as

EX,αβγδ =
1

Ω

∑
G‖ 6=0

V (G‖)Ivkck(−G‖)Ick′vk′(G‖). (4.74)

In the two-band approximation the Hamiltonian matrix elements become

Hk,k′ = Ecv(k)− 1

Ω

∑
G‖

Ickck′(−G‖)Ivk′vk(G‖)w(k− k′ + G‖) +
2

Ω

∑
G‖ 6=0

Ivkck(−G‖)Ick′vk′(G‖)V (G‖).

(4.75)

Using the same discretization as was used for Sec. 4.6 the Bethe-Salpeter equation becomes

Ecvk +
1

4π2

∑
k′

[ ∑
G‖ 6=0

2 · Ivkck(−G‖)Ick′vk′(G‖)V (G‖)

−
∑
G‖

Ickck′(−G‖)Ivk′vk(G‖)w(k− k′ + G‖)

]
αk′∆kx∆ky = Eαk.

(4.76)

As previously the k = k′ term of the Coulomb part is divergent when G‖ = 0 and can be calculated in

the same way as Eq. (4.46). In order to actually calculate these matrix elements the sum over G‖ needs

to be truncated, which can be done by limiting the kinetic energy of the plane-waves to some maximum,

in a similar way to how the plane-wave basis of a DFT calculation is truncated. Fig. 4.13(a) shows the

different sets of G‖ that the summation can be limited to. Each set is defined by a number dubbed the

circle number C# and all G-vectors within/on that circle are included in a calculation done with that

C#. For the 7 sets of G’s shown in Fig. 4.13(a) the exciton binding energy has been calculated. It is

found that including the G’s lowers the binding energy by 0.05 eV which corresponds to 11% compared

to the slow-rapid approximation, suggesting that going beyond the slow-rapid approximation may be

necessary for obtaining accurate results. This increased accuracy does come at the cost of dramatically

increased computation time. For the 50x50 K-grid used for the calculations in Fig. 4.13(b) C# = 0 takes

10 minutes and the time increases linearly with the amount of G‖ so that C# = 1 takes 70 minutes and

nearly 8 hours for C# = 6. The difference of the binding energy at C# = 0 in Fig. 4.13(b) compared to

previous calculations are due to the lower k-grid and using G0W0 QP directly in Fig. 4.13(b) whereas

scissor-shifted DFT eigenvalues have been used for all previous results.
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(a) (b)

Figure 4.13: (a) Representation of the sets of G-vectors that the calculation can be truncated to include,
each point represents a G-vector, it’s color corresponds to the first set it is part of. Each set contain all
other sets defined by circles with smaller radii. (b) Convergence of the exciton binding energy versus the
circle number, calculated on a 50x50 k-point grid and using G0W0 QP energies.
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Chapter 5

Doping and Excitons

For the single-particle response calculations in Chap. 3 including doping through the jellium model

is simple, as all that is required is a DFT calculation with the jellium included. However, including

doping in the BSE framework developed in Chapter 4 requires a few additional considerations. Doping

adds additional charge carriers, and these charge carriers will screen the electron-hole interaction in

addition to the screening by the intrinsic monolayer, thus a new expression for the effective dielectric

function is required. This additional screening can be modelled by adding a so-called Lindhard function

to the effective dielectric function. Furthermore a derivation of the Bethe-Salpeter equation where the

occupation factors of the orbitals used to construct the basis of Slater determinants are not binary, leads

to a Fermi function appearing on the non-diagonal terms of the BSE matrix [43]. In the slow-rapid

approximation this means that the BSE matrix should be constructed according to

Hkk′ =

Ecvk − e2

4πr0ε0
ln
(
ar0+ε̄
ε̄

)
k = k′

− 1
4π2 fvc(k)Ickck′Ivkvk′w(k− k′)∆kx∆ky k 6= k′,

(5.1)

so that the coupling due the Coulomb interaction is suppressed between state, where electrons have been

added or removed compared to the intrinsic case where fvc = 1.

5.1 Screening by additional charge carriers

A thorough derivation of the screened potential could start with the single-particle density response

function. This function relates total potential, which is the sum of the external/applied potential and

an induced potential caused by the electron-electron interactions in the material, to the induced charge

density. The microscopic dielectric function can be defined in terms of this density response function

and thus it relates to the screened potential. Eventually, one can arrive at an expression for the density

response function on the form

χG,G′(q, ω) =
2

Ω

∑
n,m,k

(
f(Enk)− f(Emk+q)

)Inmkq(G)Inmkq(G′)

h̄ω + Enk − Emk+q
, (5.2)

where Inmkq(G) is the Fourier component of the product of the lattice periodic functions i.e. it is given

by Eq. (4.63). The Lindhard function amounts to neglecting everything but the G = G′ = 0 part of

the density response function and assuming that only one band is important and using an effective mass

description for that band. With these approximations the Brillouin zone integrations can be carried out

analytically and an expression for the frequency dependent Lindhard function can be found. In the static
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limit ω = 0 one gets the effective dielectric function [22]

ε(q) = ε̄+ r0q +
gm∗e
a0q

1− θ(q − 2kF )

√
1−

4k2
F

q2

 . (5.3)

The first two terms is the linear model for the intrinsic monolayer from Sec. 4.3 and the third due

to doping where m∗e is the effective electron mass, a0 is the Bohr radius, g is the product of spin and

valley degeneracies and kF is the Fermi wave vector which can be found from the doping density n as

kF =
√

4πn
g and θ is the Heavi-side step function. Fig. 5.1(a) shows the inverse of this function for

several doping concentrations. This expression is only valid for zero kelvin, so to include temperature

the following expression should be used

ε(q) = ε̄+ r0q +
gm∗e
a0q

Lt

(
q

kF
,
kT

EF

)
, (5.4)

where EF is the Fermi level at the temperature T . The Fermi distribution broadened Lindhard function

L(z, t) is given by

Lt(z, t) =
2

z

∫ z2/4

0

1[
exp(x−sgn(t)

|t| + 1
]√

z2 − 4x
dx. (5.5)

This integral can be evaluated numerically using a trapezoidal integration scheme, alternatively a dif-

ferent expression can be obtained by employing integration-by-parts and that expression can be solved

numerically. The integration-by-parts expression works well for higher doping concentrations, but was

found to lead to numerical problems at low doping concentrations because of overflows in the exponential

functions, therefore Eq. (5.5) was solved numerically using trapezoidal integration with 5000 points for

x for all concentrations/q-points. The inverse of the effective dielectric function for a range of doping

concentration is shown in Fig. 5.1(b). Compared to the undoped case it is seen that at small q the ef-

fective dielectric function no longer approaches one but trends towards infinity, so that the electron-hole

interaction becomes greatly reduced at large separations in real-space due to the extra screening.

(a) (b)

Figure 5.1: Inverse effective dielectric function for different doping concentrations using parameters for
MoS2 for (a) Zero temperature (b) Room temperature.

Interestingly it is seen that the screening decreases with temperature meaning the binding energy should

be higher at room temperature. The BSE matrix is still given by Eq. (4.47), but now Eq. (5.4) should be
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used for the screened potential, which means that the analytical expression for the diagonal is no longer

valid. Instead it needs to be calculated through

Wdiag = − e2

4πε0

∫ a

0

1

(r0q + ε̄+ L(q))
dq, (5.6)

where L(q) denotes the third-+ term of Eq. 5.4 including the front factor. With L(q) in the denominator

this can no longer be calculated analytically and must be done numerically.

For every matrix element Eq. (5.5) needs to be evaluated in order to calculate the screening. Even

for a small k-grid with 900 k-points this means the time it takes to calculate the BSE matrix increases

by a factor of 10, because this integral is evaluated ∼405000 times. To solve this problem the inverse

dielectric function is evaluated at 5000 points between q = 10−10 Å−1 and the maximum q that enters

the calculation and linear interpolation is employed for each q that enters the BSE matrix. This approach

makes including additional screening negligible in terms of computational time.

Returning to the Wannier approximation the effects of the Lindhard function can be analyzed without

obtaining ab-initio wave functions and eigenvalues for each doping concentration. Within the effective

mass approximation the zero-temperature Fermi level relates to the Fermi wave vector as E0
F =

h̄2k2F
2me

and the Fermi level with temperature can be found from EF = kT ln(exp(E0
F /kT )− 1) [22]. The binding

energy of the 1s exciton in MoS2 with doping has been calculated using the Wannier approximation, with

and without temperature as shown in Fig. 5.2.

Figure 5.2: Wannier exciton binding energy in MoS2 at various doping concentrations, with (red line)
and without (black line) temperature included in the Lindhard function.

5.2 Quasiparticle energies with doping

As mentioned in Chap. 4, the energies entering the Bethe-Salpeter equation should be quasiparticle

energies, which can be calculated through the G0W0 approximation. However, screening also enters in

the G0W0 calculation, and the QP energies will change accordingly. In the undoped BSE calculations

a scissor shift was determined to be appropriate, but with screening by additional carriers, a scissor

operation is not guaranteed to be a good approximation. G0W0 eigenvalues have been calculated for a

range of doping concentrations, and the band structures of a few of them are shown in Fig. 5.3.
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(a) (b)

(c) (d)

Figure 5.3: MoS2 band structures from DFT (black lines) and G0W0 (red lines) and G0W0 room
temperature Fermi level (red line) for different doping levels, (a) 0 cm−2, (b) 1 · 1012 cm−2, (c) 2 · 1012

cm−2, (d) 3 · 1012 cm−2. The G0W0 band structures are interpolated from a 36x36 Monkhorst-Pack grid
using piecewise cubic 2D interpolation, dots represent calculated data points.

Two important effects are present in the G0W0 band structures, the band gap becomes smaller also known

as band gap renormalization, which is an effect that other studies have also found, however, it is also

clear that the effective electron mass decreases as the doping increases [44]. Changes in the effective mass

influences the additional screening added by the Lindhard term in the effective dielectric function and

will thus be quite important. Both of these effects make it necessary to include QP energies directly for

G0W0 calculations rather than scissor shifted DFT calculations. The G0W0 calculations are performed

on 36x36 Monkhorst-Pack grids and then interpolated by a piecewise cubic 2D interpolation scheme both

for viewing band structures and for the QP energies entering the BSE equation. The room-temperature

Fermi level is calculated based on the interpolated grid and is shown in Fig 5.4(a). As expected the

Fermi level is below the conduction band edge at low doping concentrations and moves into the band

as the doping level increases. The band gap as a function of doping concentration is shown in Fig. 5.4,

showing a 0.4 eV decrease between 0 and 1 · 1013 cm−2 doping concentrations. Both properties behave

monotonically from 0 to 7 · 1012 cm−2 where the band gap increases sharply which is somewhat puzzling.
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(a) (b)

Figure 5.4: (a) Room temperature G0W0 Fermi level relative to the conduction band at different doping
concentrations. (b) G0W0 band gap for different doping concentrations.

The effective masses were found by fitting a matrix A to the 17 k-points closest to the K special point

according to

E =
h̄2

2me
kTAk. (5.7)

The eigenvalues of A is the inverse effective mass, for intrinsic MoS2 this yields an effective electron

mass of 0.54, in good agreement with Rasmussen et al. who calculated a mass of 0.55 for MoS2 [38].

Figure 5.5(a) shows the band structure zoomed in around K plotted alongside the parabola defined by the

effective mass, showing that this technique fits the mass quite well, even though the amount of k-points

is low.

(a) (b) (c) (d)

Figure 5.5: Conduction band of MoS2 for G0W0 around the K-point and parabolic band from calculated
effective masses for (a) 0 cm−2, (b) 1 · 1012 cm−2, (c) 2 · 1012 cm−2, (d) 3 · 1012 cm−2

However, in Fig. 5.5(b-d), which shows similar zooms around the K for different doping concentrations, it

is seen that the fit becomes worse when doping is included. It is clear from Fig. 5.5(b-d) that the fit is not

perfect, however, it should be noted that fitting overestimates the effective mass but including the obtained

masses will still be a better approximation than using the mass of the intrinsic case regardless of the

doping concentration. Fig. 5.6 shows the effective electron and hole masses versus doping concentration,

with a quadratic fit between 0 · 1012 cm−2 and 3 · 1012 cm−2.
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Figure 5.6: Effective mass as a function of doping concentration for both electron and hole. Effective
masses are calculated from the 17 nearest k-points to the K special point from 36x36 G0W0 calculations.
Fits are 2nd order polynomials.

The fits of the effective mass presented in Fig. 5.6 can be used in the Wannier model, so that both the

effective exciton mass present in the effective mass approximation for the dispersion of the bands and

the effective electron mass in the Lindhard screening term become functions of the doping concentration,

rather than being independent of the doping concentration as in Fig. 5.2. At low temperature the effect

is barely visible, however, at room temperature this doping dependence causes the binding energy to

decrease faster than if it had been neglected.

Figure 5.7: Exciton binding energy from the Wannier model, solid lines are calculated using the polyno-
mial fit to calculate effective masses from Fig. 5.6, dashed lines are calculated using an effective electron
mass of 0.55 and electron-hole mass of 0.28 independently of doping concentration.
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5.3 Doped MoS2

The exciton binding energy as a function of doping is shown in Fig. 5.8. It is found that the binding

energy decreases steadily with doping concentration, dropping under 100 meV for doping concentrations

higher than 1.33 ·10−12 cm−2. The model thus matches the experimentally found behaviour of decreasing

the binding energy as the doping concentration is increased [10].

Figure 5.8: Freestanding MoS2 exciton binding energy versus doping concentrations using G0W0 QP
energies in the slow-rapid approximation and doping dependent effective mass in Lindhard screening.

The optical conductivity of MoS2 was calculated according to Eq. (4.57) at a range of doping concentra-

tions as shown in Fig. 5.9. Experimentally it is found that the position of the exciton absorption peak is

unaffected by increased doping. This behavior is not replicated in the calculation, visible from both Fig.

5.9 and Fig. 5.10(b).

Figure 5.9: Optical conductivity of MoS2 at different doping concentrations, legends are in 1012 cm−2.

However, the calculation does show that with increasing doping concentration the conductivity of the

first exciton peak decreases, see Fig. 5.10(a). Fig. 5.10(a) shows both the conductivity of the first peak
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and the absolute square of the momentum matrix element corresponding to |PS |2 with S = 0 in Eq.

(4.57) normalized according to |P0|2 in the undoped case, dubbed ’normalized momentum’ in the figure.

The conductivity has an inverse dependence on h̄ω, meaning even if |P0|2 was independent of doping

concentration the conductivity would decrease due to the increase in the exciton position. It is however

found that |P0|2 also decreases monotonically with doping.

(a) (b)

Figure 5.10: (a) Maximum optical conductivity and normalized momentum of the lowest energy exciton.
(b) Position of the exciton peak as a function of doping concentration.

5.4 Doped hBN encapsulated MoS2

The effective dielectric constant used allows for including screening caused by substrate/superstrate and

a calculation has been performed with MoS2 encapsulated in hBN with a dielectric constant of ε̄ = 4.5.

The intrinsic binding energy of MoS2 is reported to be 0.220 eV [45], with the model resulting in a

value of 0.166 eV. Again it is observed that the binding energy becomes nearly zero when the doping

concentration reaches 2 · 1012 cm−2.

Figure 5.11: Binding energy of lowest exciton in hBN (ε̄ = 4.5) encapsulated MoS2 at different doping
concentrations with slow-rapid BSE with G0W0 QP energies
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The optical conductivity has also been calculated for hBN encapsulated MoS2 as shown in Fig. 5.12,

and the same behavior as in the suspended case is observed; as the doping concentration increases the

maximum conductivity of the lowest lying exciton decreases monotonically and the same is true for the

normalized momentum, see Fig. 5.13(a). However, in this case the band gap renormalization is large

enough to keep the exciton position nearly constant with a maximum difference of the position of the

conductivity peak of 0.06 eV as seen in Fig. 5.13(b). This is, however, not a completely fair comparison.

While an approximation of the screening caused by the encapsulation is included in the BSE calculation,

the QP energies are still calculated from a G0W0 calculation of suspended MoS2.

Figure 5.12: Optical conductivity of hBN (ε̄ = 4.5) encapsulated MoS2 at different doping concentra-
tions calculated with slow-rapid BSE with G0W0 QP energies. Legends are in 1012 cm−2

(a) (b)

Figure 5.13: (a) Maximum optical conductivity of the A exciton from slow-rapid BSE for hBN encapsu-
lated MoS2. (b) Position of the exciton peak as a function of doping concentration for hBN encapsulated
MoS2.
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5.5 Dynamic screening

The use of a static dielectric screening has been found to be insufficient in litterature, as it underestimates

the binding energy at high doping concentration. The model presented by Gao et al. includes a plasmon-

pole approximation for the dielectric function [44]. In their plasmon-pole approximation (PPA) the

dielectric function is self-consistently updated according to

ε−1(q, Eint) = ε−1(q, 0) +

Eint

(
1− ε−1(q, 0)

)3/2

ωp(q) + Eint
√

1− ε−1(q, 0)
, (5.8)

where ε−1(q, 0) is the static dielectric function and Eint is a quantification of electron-hole interaction

energy given by Eint =
∑

kEcv(k)|αk|2 − ES and ω(q) =
√

2πnq is the plasma frequency and n is

the total 2D charge density. This is solved self-consistently as the screening depends on Eint and Eint

depends on the screening. The convergence criteria has been chosen to be that the difference in the

smallest eigenvalue of the BSE matrix being below 10−5 Ha. As has been shown previously the inclusion

of the Lindhard screening term causes the inverse dielectric function to go to 0 at low q signifying infinite

screening for long-range interactions in real-space. Inspection of Eq. (5.8) shows that at low q the PPA

effective dielectric function goes to 1, which allows long-range interactions in real-space increasing the

binding energy. The choice of n is somewhat arbitary Gao et. al. uses 26 valence electrons per unit

cell plus doping, which corresponds to the amount of electrons in the pseudopotential they use for the

calculation. The inverse effective dielectric function at different doping concentrations for n = 26 after

convergence has been reached is plotted in Fig. 5.14(a), clearly the PPA screening is equal or smaller

than the static screening for all q which will increase the exciton binding energy. To study how the choice

of n influences the calculation the PPA screening at a doping concentration of 1 · 1012 cm−2 has been

calculated for n = 7, 14, 26 and is plotted in Fig. 5.14(b). As mentioned n = 26 corresponds to including

semi-core states for MoS2, n = 14 corresponds the number of electrons in the block of bands near the

Fermi level and n = 7 is half of that.

Figure 5.14: (a) Converged PPA dielectric function at different doping concentrations, full lines are
PPA and dashed lines are static (b) Converged PPA dielectric function for different choices for the number
of electrons in the plasma frequency at a doping concentration of 1 · 1012 cm−2.

The binding energy versus doping of the lowest lying exciton in MoS2 has been calculated for different

choices of n, and is shown in Fig. 5.15. As expected the binding energy is increased for all doping

concentrations irrespectively of the choice of n, including for zero doping. In the undoped case Gao et

al. finds that the PPA decreases the binding energy by 40 meV compared to a static calculation, this
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is clearly not reproduced in Fig. 5.15 with increases of 80 meV, 120 meV and 200 meV for n = 26, 14,

7. Secondly the exciton binding energy is not stabilized at higher doping concentrations as it is in Gao

et al.’s calculation, this can be explained by an inconsistent used of the PPA model. Gao et al. use the

PPA model for both the the GW and BSE calculations causing bandgap renormalization and exciton

renormalization to cancel, thus stabilizing the binding energy at higher doping concentrations.

Figure 5.15: Exciton binding energy versus doping for different choices of the number of electrons
entering the plasma frequency n.

Although the theory that has been presented has in most cases been in good agreement with experiments

and other levels of theory, there is room for improvement. The use of an analytical expression for the

screening can allow for calculations without having to perform expensive quasiparticle calculations, but as

it has been found that the effective masses depend significantly on doping in practice a G0W0 calculation

is still required. For example, if one wants to compare the optical properties of a large amount of TMDS

doing several G0W0 calculations for each material would require enourmous computational resources.

Furthermore, as the screened potential is determined during the G0W0 calculation one might as well not

approximate and just utilize the potential already calculated. The level of theory used in this thesis is

thus at an unfortunate middle ground between computational efficiency and accuracy of the theory, any

improvement should focus on either of these. A study of the physics behind the decreasing effective mass

with increased doping concentration could allow one to estimate this dependence and include this effect

in the model without requiring a G0W0 calculation. On the other side, using the screened potential

from the G0W0 calculation would return the framework to an ab-initio model which one would expects

increases agreement with experiments.
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Chapter 6

Experimental Results

Two 1x1 cm samples of monolayer MoS2 on thermally grown SiO2 on a degenerately doped Si-substrate

were obtained from the company ”2D semiconductors”, the MoS2 layer was grown by atmospheric pressure

chemical vapor deposition. The SiO2 thickness was chosen to increase constrast in microscopy images to

make the characterization and fabrication processs easier, studies have shown that maximum contrast can

be reached with a SiO2 thickness between 230-280 for a wide range of wavelengths thus 260 nm was chosen

[46]. The first sample was characterized by photoluminescence, and Raman spectroscopy measurements,

as well as AFM, while the second and last sample was characterized with Raman spectroscopy.

6.1 Characterization of MoS2

Raman Spectroscopy was used to determine the amount of layers of the first MoS2 sample, by looking

at the relative position of the Raman peaks, E1
2g and A1g as shown in Fig. 6.1(a) from Li et al. For

a monolayer the relative difference in Raman shift for a 532 nm laser line for E1
2g and A1g is 18 cm−1,

while for a bilayer the relative difference is 22 cm−1 according to [47].

(a) (b)

Figure 6.1: (a) Raman scattering taken from Li et al., showing how the Raman peaks change position
in relation to each other, depending on the amount of layers of MoS2. It is seen that the A1g blue-shifts,
while the E1

2g red-shifts with increasing amount of MoS2 layers. [47] (b) Histogram of difference in Raman
peak position for E1

2g and A1g for 160 measurements performed in an array on the first sample.
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160 measurements were done in an array on the first MoS2 sample using a 532 nm excitation laser line.

Comparing the relative position of the Raman peaks E1
2g and A1g for all measurements gives the histogram

shown in figure 6.1(b). A Gaussian fit gives a peak difference of 19.6 cm−1 for the sample, thus closer

to the reported 18 cm−1 for monolayer MoS2, than the 22 cm−1 for bilayer MoS2. The second sample

showed similar Raman peak positions, with an average peak position of 19.6 cm−1, over 3 measurements.

Furthermore the two samples were indistinguishable in an optical microscope, with a homogeneous layer

covering the entire samples, except for slight inconsistencies in the corners.

PL spectroscopy showed that the first sample exhibited large photoluminescence, in comparison to the

Raman-peaks seen on the far left in figure 6.2(a). This is in agreement with Splendiani et al. who did a

similar experiment on different amounts of layers of MoS2, and found that monolayer MoS2 had a high

photoluminescence in comparison to the Raman peaks as seen in Fig. 6.2(b). However, the shape and

location of the photoluminescence peak for the sample is not similar to Splendiani et al.. Splendiani

asserts that the two photoluminescence peaks are due to the direct excitonic transitions known as A1

and B1, however, neither are easily visible in the PL spectra of the sample. [41]

(a) (b)

Figure 6.2: (a) 5 PL spectra of MoS2 sample taken at random locations on the sample, normalized to the
Raman peaks seen on the far left, showing a large photoluminescence near 690 nm in comparison to the
Raman peaks. (b) PL spectra from Splendiani et al., showing a large photoluminescence for monolayer
MoS2 at 625 nm and 675 nm. [41]

As both of the optical measurements above were somewhat inconclusive, with differences in Raman shifts

being consistently in between what is reported for monolayer and bilayer and the excitonic transition

not being clearly visible in photoluminescence spectroscopy, AFM images were taken to ensure that the

sample was monolayer. AFM measurements were done in a corner of the first sample, which showed only

triangular islands of MoS2 on SiO2 as seen in Fig. 6.3(a). The measurements shows, as indicated by

figure 6.3(c) that the MoS2 layer has a thickness of 6.8 Å, which agrees well with the thickness reported

by Li et al. and Splendiani et al. for a monolayer. [41, 47]
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(a) (b)

(c)

Figure 6.3: (a) Image of island growth in a corner of one of the MoS2 sample. (b) AFM height image,
with two shaded areas indicating locations for the histograms in figure (c). The upper left shaded area
is SiO2, while the lower left shaded area is MoS2. (c) Height-histogram of the two blue-shaded areas of
figure (b), indicating a height difference between the two shaded areas of 6.8 Å.

6.2 Fabrication of capacitor

In order to gate the MoS2 monolayer plate capacitors were fabricated, to function similarly to the

schematic shown in Fig. 3.1. The silicon substrate was heavily doped in order to act as one side of

the capacitor, while an array of gold plates were fabricated on top. The sample had about 250nm SiO2

thermally grown on both sides, allowing for better contrast of the MoS2 in an optical microscope as

shown in Fig 6.4(a). The gold plates on the first sample were made by E-beam lithography (EBL), and

were 100x100 µm in size and 70 nm thick. However, it proved to be extremely difficult to wire bond to

these gold plates for several reasons. In order to ensure that successful wire bonding was possible for the

second sample, a more rapid fabrication method was required so that test contacts could be produced

on Si substrates. For this reason direct laser writing was used over EBL as it has micrometer resolution

and is orders of magnitude faster than EBL. It was found that wire bonding had a higher success rate

on 300x300 µm contacts of 140 nm thickness. To confirm that the wires had successfully bonded, the

resistance over the wires and the gold-plates was measured resulting in resistances of 1− 3Ω.
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In order to ensure electrical contact to the Si substrate, a hole through the bottom SiO2 layer was etched

with hydrofluoric acid, while the MoS2 layer was coated with photoresist to be protected during the

application of the hydrofluoric acid as shown in Fig. 6.4(b). Then the bottom was coated with 70 nm

gold by magnetron sputtering and the photoresist was removed as shown in Fig. 6.4(c). Afterwards

the gold plates on top needed to be made. First the sample was spin-coated to a layer of about 2 µm

photoresist, which was then exposed using direct laser writing and developed as shown in Fig. 6.4(d).

Then the sample top was sputtered with 7 nm titanium and 140 nm gold as shown in Fig 6.4(e). After

liftoff in acetone using ultrasound the sample had 167 gold plates on top of the MoS2 layer. The finished

sample was attached to an aluminum backplate using conductive silver epoxy and pieces of goldplated

PCBs were mounted on the top of the aluminum using insulating tape and wire bonding was done from

the PCB to the gold contacts on the MoS2 layer, as schematically shown in 6.4(f).

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Illustration of fabrication process: (a): MoS2 sample before fabrication. (b): Etching of
bottom SiO2 layer with hydroflouric acid, while the top is protected by a layer of photoresist. (c): 70
nm gold is sputtered on the bottom of the sample. (d): Photoresist is put on top, and exposed to direct
laser writing at 167 300x300 µm squares, and then developed. (e): 7 nm Titanium and 140 nm gold is
sputtered on the top of the sample. (f): Photoresist is removed by liftoff and sample is connected to
external power supply.

The 167 gold contacts were made on top of the MoS2 layer, distributed in the pattern shown in Fig.

6.5 to allow different spacing between the gold plates. A picture of the sample (in all its glory) after

fabrication and mounting is shown in Fig. 6.5(b).

Page 58 of 78



6.3. Reflection experiment

(a) (b)

Figure 6.5: Illustration of the 300x300 µm gold plates fabricated using direct laser writing, with 100,
200, 300, and 400 µm spacing.

6.3 Reflection experiment

After the fabrication of the gold plates the sample was investigated using reflection spectroscopy, using

an optical microscope equipped with a field iris diaphragm to limit the field of view to only include the

MoS2 using a halogen light source, Fig. 6.6 shows a schematic of the measurement equipment. An Andor

Shamrock 303i spectrometer cooled to -40 °C was used for measurements.

Figure 6.6: (a) Schematic of the measurement setup for reflection spectroscopy.

Signal spectra were obtained for areas with and without MoS2. A reference spectrum was measured using

a mirror and a background spectrum was measured with the internal shutter of the spectrometer closed.

The reflectance was calculated as

R =
signal− background

reference− background
. (6.1)

The reflectance of the sample on spots with and without MoS2 is shown in figure 6.7(a). For further

analysis the reflectance data was smoothed with a moving average filter, showing fairly clearly two valleys

in reflectance near 1.9 and 2.0 eV as seen in Fig. 6.7(b) which correspond to the absorption of the A and

B exciton of MoS2[41, 48].
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(a) (b)

Figure 6.7: (a) Reflectance of the sample on spots with and without MoS2, showing some noise from
the experiment. (b) Smoothed reflectance of the sample on spots with and without MoS2. Two small
valleys can be seen near 1.9 eV and 2.0 eV, respectively for the spot with MoS2.

However, it is difficult to find the minima of these valleys. Therefore, the derivative of the reflectance with

respect to frequency was calculated, making it easier to find the minima position of the valleys, as shown

in Fig. 6.8. Due to noise in the data the differentiated reflectection still contains a considerable amount

of noise, leading to an uncertainty in the position of the minimas. Therefore, the minimum in each valley

was determined and the lower and upperbound of the minima position were set as the frequencies where

the derivate of the reflectance differed 10% from the minimum value.

Figure 6.8: Derivative of the reflectance, showing the positions of the A and B excitons, indicated by
vertical dashed lines. The dotted lines indicate the uncertainty of the exciton positions.

Then the exciton position was calculated as the average of the position of both dotted vertical lines, with

the uncertainty being the distance to the lower/upper bound. Using this procedure the exciton position

was found to be 1.846±0.016 eV and 1.983±0.28 eV, which is in excellent agreement with Splendiani et
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al., who reports A1 and B1 exciton peaks at 1.85 eV and 1.98 eV, respectively [41]. As these valleys

correspond to the A1 and B1 exciton of MoS2, where the difference comes from spin-orbit splitting of

the valence band. The spin-orbit splitting is 0.137±0.044 eV, which is in fair agreement with [17], whom

report a splitting of 0.160 eV for MoS2.

In order to compute the refractive index, a 4 medium transfer matrix model was used with air/MoS2/SiO2/Si

as explained in App. C. The refractive index of MoS2 was modeled using a sum of Lorentz oscillators, as

done in [10],

ε = A+
∑
j

Fj
ω2 − ω2

j − iωΓj
, (6.2)

with A,Fj , ωj ,Γj being fitting parameters. The fit of the reflectance for 9 Lorentz oscillators is shown in

Fig. 6.9(a). After fitting the transfer matrix model to the reflectance data, the refractive index shown in

Fig. 6.9(b) was found.

(a) (b)

Figure 6.9: (a) Fit of the smoothed reflectance data, showing good agreement within 1.8 eV to 2.5 eV.
(b) The refractive index of MoS2 used in the transfer matrix model for the fit.

The real part of the refractive index shows fairly good agreement with [49] around 1.8 eV and 2.0 eV,

however, the transfer matrix model used in this thesis was limited to a fairly small frequency range and

does not agree well beyond 2.0 eV.

Reflectance was also measured, while the Mos2 was gated via the gold plate capacitors. The measured

reflectances with gating show no difference compared to the above measurements except for a constant

reflectance shift over the entire spectrum. Yu et al. finds that the reflectance changes by 0.005 at the

position of the A-exciton when applying -50 V compared to 0 V, which is a very small chance. Applying

the same analysis of the derivate as above no changes in the exciton positions were found. The reflectance

spectrum at 0V, 60V and -60V across the capacitor is shown in Fig. 6.10.
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Figure 6.10: Reflectance from the MoS2 sample, while the sample was gated with -60V, 0V, and 60V.
No conclusive difference can be seen from the reflectance data.

During the fabrication process the MoS2 layer underneath some of the gold contacts was damaged which

would cause the gating to be ineffective for these contacts. It is expected that the measurements in Fig.

6.10 were performed on one of these, and that more measurements in another region would hopefully

show the expected tunability of the optical properties.
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Chapter 7

Conclusion

The introduction pointed out the goals of this thesis, the first one of which was to develop tools to

calculate the optical properties of monolayer materials in the independent particle picture. The theory

has been reviewed and code has been written that uses DFT wave functions from GPAW. As expected

the agreement with experiment is rather poor for MoS2, as electron-hole interactions are not taken into

account. This has however served as an introduction to the calculation of optical properties and the use

of GPAW, aiding the development of more accurate models. The main motivation for this work was the

observation of tunable optical properties related to doping of TMDs, in order to include doping in DFT

calculations two models have been proposed and compared, with the jellium background model found

to be more controllable and easier to use. It has been found that high doping concentrations in the

jellium model shift the conduction bands down, moving optical transitions to lower energies. However,

the prominent effect of doping in the independent particle framework is Fermi blocking of the lowest

states in the conduction band and the appearance of transitions between conduction bands. Thus such

a calculation does not at all reveal the expected tunability.

It is evident that the independent particle framework cannot correctly explain the optical properties of

MoS2, thus a more sophisticated theory that includes the important electron-hole interaction has been

presented. The screened electron-hole interaction is included through an analytical expression for the

screening in a 2D material which along with the slow-rapid approximation allows for efficient calcula-

tions of the optical properties of intrinisic MoS2. The slow-rapid approximation discards the exchange

interaction and part of the Coulomb interaction, the viability of this approximation has been investigated

showing a 10% deviation. In order to adapt this framework to handle doping an additional analytical

term was added to the screening and the effect of doping on quasiparticle energies was investigated. It was

found that doping both renormalizes the fundamental band gap and dramatically decreases the effective

electron mass near the K special point. The effect of doping on the optical properties is to decrease the

exciton binding energy and decrease the optical conductivity showing good agreement with the tunability

found in experiments. The main qualitative disagreement with experimental results is the position of

the excitonic transition not being constant. An improvement of the screening model was attempted by

combining the analytical model with a plasmon-pole model, however this does not improve the results.

The reflectance of intrinsic MoS2 have been measured through refletance spectroscopy and Kramers-

Kronig analysis in combination with a transfer matrix model has been used to obtain the optical prop-

erties, from which it was possible to identifiy the position of the excitonic transitions. A MoS2 sample

was prepared that could be electrically gated, however the measurements did not show the tunability of

the optical properties. Although it is expected that additional measurements would show the predicted

behaviour.
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Appendix A

Computational Details for Ab-initio

Calculations

The parameters used for the majority of the results of the ab-initio calculations are presented here.

For all calculations, convergence criteria of the self-consistent DFT cycle were set to the default GPAW

ones, which at the time of the calculations were:

• Energy difference per valence electron for three last iteration below 0.5 meV.

• Change in integrated absolute density below 0.0001 electron per valence electrons.

• Integrated residuals of KS equations below 4 · 10−8 eV2 per valence electron.

For the calculations in Chap. 2, corresponding to datasets MoS2-1 and C2-1 in table A.1, the lattice

constants were found by BFGS optimization until the forces were below 5 · 10−3 eV/Å. In all DFT

calculations occupation numbers were set according to the Fermi distribution with a thermal energy

of 0.025 eV. Convergence was checked for datasets MoS2-1 and C2-1 in relation to number of k-points,

energy cutoff and vacuum. All DFT calculations were performed using the Perdew-Wang LDA functional

[50]. The remaining parameters can be found in table A.1. The headers in the table refer to the following

• Dataset: Self-explanatory.

• Setup: The PAW setup used for the calculation. The numbers refer to the amount of valence

electrons for that atom

• Lattice constants: In-plane lattice constant and distance between sulfur atoms for MoS2.

• Cutoff: Energy cutoff for plane waves in DFT basis.

• Vacuum: The height of the supercell

• SCF k: k-grid used for self-consistent calculation, always Monkhorst-Pack grids.

• NSCF k: k-grid used for non self-consistent calculation. M and T refer to Monkhorst-Pack and

triangular grids respectively.

• Bands: Number of conduction bands
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Dataset Setup Lattice constants Cutoff Vacuum SCF k NSCF k Bands

MoS2-1 Mo:14, S:6 3.11 Å, 3.10 Å 800 eV 15 Å M:12x12x1 T:55x55x1 +12

C2-1 C:4 2.44 Å 800 eV 15 Å M:12x12x1 T:55x55x1 +12

MoS2-2 Mo:14, S:6 3.18 Å, 3.13 Å 750 eV 20 Å M:20x20x1 M:50x50x1 +4

MoS2-GW Mo:14, S:6 3.18 Å, 3.13 Å 750 eV 20 Å M:36x36x1 NA NA

Table A.1: Settings and parameters used for DFT calculations.

Lattice constants for datasets MoS2-2/MoS2-GW are taken from [38]. G0W0 calculations were performed

based on the SCF calculation of the MoS2-GW dataset, using a truncated Coulomb interaction with 200

bands used for construction of relevant quantities and a plane wave cutoff of 50 eV, which [51] notes

converges the calculation. For BSE calculations, where QP energies are taken from G0W0 and not

scissor-shifted DFT, QP energies are retrieved from MoS2-GW and wave function information from

MoS2-2. Table A.2 shows which figures are made with each dataset.

Dataset Figures
MoS2-1 2.4, 2.5, 3.13, 3.14

C2-1 2.1, 2.2, 2.3, 3.8, 3.9, 3.10, 3.11, 3.12
MoS2-2 4.1, 4.6, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 5.3, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12,5.13

MoS2-GW 4.1, 4.13, 5.3, 5.4, 5.5, 5.6, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13

Table A.2: Dataset to figure relations.
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Appendix B

Projector Augmented Wave method

One of the numerical problems with calculating the electronic structure of matter, is the high kinetic

energy of the electrons in the atomic region, near the atom cores, which results in rapid oscillations of

the true wave function near the atom cores that are difficult to handle numerically. One way to solve

this problem is to create some region around the atom cores, where the coulomb potential is replaced

with a so-called pseudo potential that retains some property of the wave function in the atomic region,

but creates a smooth wave function as well. However, when using pseudo potentials the information of

the true wave function is lost in the atomic region. [52]

Another method is the projector augmented wave (PAW) method. Here, a single particle pseudo wave

function |Ψ̃〉 is created that is related to the single particle true wave function |Ψ〉 (e.g. KS orbital)

through a linear transformation

T = 1 +
∑
R

TR, (B.1)

where the TR is a local term, which only acts close to the R atom, in the so-called augmentation sphere

region. This also means that outside the augmentation spheres the true wave function is identical to the

pseudo wave function. Within each augmentation sphere ΩR the wave functions are split up in a basis

of partial waves, so that the pseudo wave function is

|Ψ̃〉 =
∑
i

ci |φ̃i〉 ,∈ ΩR, (B.2)

with φ̃i being the i’th pseudo partial wave of that augmentation region, ci being the expansion coefficients,

and the true wave function is

|Ψ〉 = T |Ψ̃〉 =
∑
i

ci |φi〉 ,∈ ΩR, (B.3)

with φi being the i′th true partial wave of that augmentation region. As |φi〉 = T |φ̃i〉, the coefficients

are the same.

As the true wave function is identical to the pseudo wave function except within the augmentation

sphere, the true wave function can be found by subtracting the pseudo partial waves from the pseudo

wave function and adding the true partial waves as

|Ψ〉 = |Ψ̃〉 −
∑
i

ci |φ̃i〉+
∑
i

ci |φi〉 ,∈ ΩR. (B.4)

In order to make sure the partial waves only act within their augmentation region they must be identical

outside the augmentation region. [52] Since the transformation operator is linear the coefficients must be

linear functionals of the pseudo wave function, and can be found as

ci = 〈p̃i|Ψ̃〉 ,∈ ΩR, (B.5)
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where |p̃i〉 is some fixed function, called the projector function. By the definition of the pseudo wave

function the projector function has to obey

〈φ̃i| |p̃j〉 = δij ,∈ ΩR, (B.6)

so that the pseudo wave function is still determined by

|Ψ̃〉 =
∑
i

ci |φ̃i〉 =
∑
i

|φ̃i〉 〈p̃i|Ψ̃〉 ,∈ ΩR. (B.7)

Thus, the true wave function is found by

|Ψ〉 = |Ψ̃〉+
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|Ψ̃〉 ,∈ ΩR. (B.8)

The benefit of this method is that instead of calculating the true wave function, with its highly oscillating

part near the atom cores, one can instead calculate the smooth pseudo wave function and determine the

partial waves of each atom core and the projector functions. The true partial waves could be the radial

solutions of the Schrödinger equation for an isolated atom, making the partial waves orthogonal to the

core states, and for each true partial wave there is a pseudo partial wave and a projector function. [53]

Using the PAW method one needs to consider that it is not the true wave function that is being calculated

and so all expectation values derived from the pseudo wave function need to be corrected in order to

obtain the true expectation values. The true expectation value for some operator A is

〈A〉 =
∑
n

fn 〈Ψn|A|Ψn〉 , (B.9)

with fn being the occupation of the n’th band. However, it can also be found through the pseudo wave

function as

〈A〉 =
∑
n

fn 〈Ψ̃n|Ã|Ψ̃n〉 , (B.10)

where the new operator Ã = T †AT . It can be shown by expanding the transformation operators and

neglect terms related to non-local operators the expectation value becomes [52]

〈A〉 =
∑
n

fn 〈Ψ̃n|A|Ψ̃n〉+
∑
a,ij,n

fn 〈Ψ̃n|p̃ai 〉
∗ 〈Ψ̃n|p̃aj 〉

[
〈φai |A|φaj 〉 − 〈φ̃ai |A|φ̃aj 〉

]
. (B.11)
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Appendix C

Transfer Matrix Method & Constrained

Kramers Kronig Analysis

Experimentally, the reflectance of the MoS2 device described in Chap. 6 is measured. In order to obtain

the dielectric function from this measurement a relation between the reflectance and the dielectric function

is required, which can be obtained through the transfer matrix method.

(a) (b)

Figure C.1: (a) Four medium stack, corresponding to the case of MoS2 on SiO2 over Si in air. (b)
Single Lorentizan oscillator with center position ω1.

In the transfer matrix method the total field is described by forward (EF ) and backward (EB) propagating

waves, which at any position in the system of interest are the sum of all waves propagating in that

direction. For an arbitrary multilayer structure the forward and backward propagating waves on either

side of the multilayer structure can be related through the system matrix M[
EF,1

EB,1

]
= M

[
EF,N

EB,N

]
, (C.1)

where the superscripts denotes the medium. An illustration for a four layer stack is shown in Fig. C.1(a)

[54]. The system matrix can be found through multiplication of transmission matrices and propaga-

tion matrices, that describe reflection/transmission at interfaces and propagation through a bulk region

respectively.
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Light propagating through an interface will be partly reflected and partly transmitted, which in linear,

isotropic, homogeneous media can be described by the Fresnel reflection and transmission coefficients,

which when assuming normal incidence and TE-polarization are

rij =
ni − nj
ni + nj

, (C.2)

tij =
2ni

ni + nj
, (C.3)

where ni denotes the refractive index on the reflection side, and nj is the refractive index of the trans-

mission side [55]. In terms of the Fresnel coefficients the transmission matrix from medium i to medium

j is

Tij =
1

tij

[
1 rij

rij 1

]
. (C.4)

The matrix on the right-hand side is the transmission matrix of the interface between materials i and j.

After light has propagated a length d through a medium the phase will have advanced by e−ikd where k is

the component of the wave-vector in direction of propagation, thus a propagation matrix can be defined

that relates the fields just after an interface to the fields just before the next interface

Pi =

[
eiδi 0

0 e−iδi

]
, (C.5)

where δi = k0nidi and k0 is the wave vector in vacuum. The system matrix can be calculated by

multiplication of transmission and propagation matrices. [54]

M = T12P2T23P3..TN−1,N. (C.6)

Looking at the case where light only enters the system from one side, it is clear that the total reflection

coefficient is

r =
M21

M11
, (C.7)

which can be converted to reflectance by taking the absolute square

R = |r|2. (C.8)

For a 4 medium system consisting of air, MoS2, SiO2 and Si, as depicted in Fig. C.1(a), the reflectance

can be found as

R =

∣∣∣ 1
t12t23t34

(
r34

(
r12r23e

2id2 + 1
)

+
(
r12e

2id2 + r23

)
e2id3

)∣∣∣2∣∣∣ 1
t12t23t34

(r34 (r12 + r23e2id2) + (r12r23 + e2id2) e2id3)
∣∣∣2 . (C.9)

The same expression could have been found if TM polarization had been assumed, as the two are equiv-

alent under normal incidence. The refractive index of air is set to 1, while the frequency dependent

refractive indices for SiO2 and Si are obtained from [56, 57]. The dielectric function of the MoS2 layer is

modelled by a sum of Lorentz oscillators

ε(w) = A+
∑
i

fi
w2
i − w2 − wΓi

, (C.10)

where A describes a bulk term and fi, wi, Γi is the strength, position and dampening of the i’th oscillator,

respectively, which is a common approach for this kind of analysis [10, 42]. This model is known as

constrained Kramers-Kronig analysis. A benefit of this model is that each individual oscillator obeys

the Kramers-Kronig relation between the real and imaginary part of the dielectric permitivity inherently.
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Fig. C.1(b) shows a single oscillator [58]. One problem is that the Kramers-Kronig relations relate the

entire real part of the spectrum to the entire imaginary part, which in principle means that oscillators

outside the measured frequencies influence dielectric permitivity in the region of interest [42]. Using Eq.

(C.10) the reflection obtained from (C.9) can be fitted to experimental measurements, where the fitting

parameters are oscillator strengths, positions, and dampenings.
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Appendix D

Implementation

While some of the numerical details have been covered in the main text, a brief description of the general

implementation is in order. All calculations are based on the GPAW DFT code, which outputs ’.gpw’

files for all results. These files are generally quite large due to the large amount of plane wave coefficients

and k-points, e.g. 6 GB for the 55x55 grids used for independent particle calculations. All code was

developed in Python for easy implementation with GPAW. Native Python is quite slow and not very

appropriate for numerical calculations, however with the Numpy library, which implements MATLAB-

like array operations fairly fast code can be developed, if for-loops are replaced by vectorized operations.

Python implements so-called object oriented programming that allows for creating classes that are data

structures with built-in methods, which has been utilized extensively. Any object can be ”pickled”, which

converts it to a byte-stream, including data and methods.

For the independent particle calculations the starting point is a GPAW calculation resulting in one of the

above mentioned gpw files. In order to enable revisions and additions to the code the scheme shown in

Fig. D.1 was used, with each step representing an instance of a Python class object. The idea is that the

large GPW file can be converted to a much smaller ’pickle’ file where plane-wave coefficients have been

converted to momentum matrix elements. This makes the files much easier to work with and ensures

that momentum matrix elements are only calculated once per DFT calculation. The pickled object can

then be read by the main code, where the remaining calculations are performed, i.e calculating the DOS,

Brillouin zone integrations, and so on. This object can then be saved and passed to other code for plotting

and other analysis. In addition to the advantages presented thus far, this scheme has the advantage that

the main code works for all types of initial data as long as it can be pickled correctly. This means that

no changes need to be made to the main code if for example pseudo potentials are used instead of PAW

which changes the calculation of momentum matrix elements, which is done in the pickler. Similarly

ABINIT calculations can be used instead of GPAW with only changing the pickler-part of the code, or

tight-binding based eigenvalues/momentum matrix elements can be used instead of DFT.
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GPAW file

TB data

ABINIT file

Pickler Pickled file Main code Results
Analysis
& Plotting

Figure D.1: Flowchart representing the structure of the code for independent particle calculations. The
green boxes are files, while the white are code.

For the Bethe-Salpeter code a similar strategy was used, with a few differences due to the complications

introduced by the BSE framework. As momentum matrix elements are no longer the only required piece

of wave function information, and interpolation is done to arbitary k-point grids, all the coefficients

for the included bands are required. However, the BSE code is much more susceptible to memory-

related problems due to the large size required of the BSE matrix and it is still beneficial to not include

unnecessary data from the gpw-file. Furthermore the BSE calculation requires data, not only from a DFT

calculation, but also a G0W0 calculation meaning multiple files are required. Thus creating a pickled

intermediate file is nice for ensuring the correct data is passed along the code. The scheme for the BSE

code is shown in Fig. D.2. First the set of G-vectors that are present for all k points in the DFT calculation

are found for the specific k-point grid and energy cutoff and lattice constants of the DFT calculation

are found. This information is saved, as it takes a significant amount of time to calculate and does not

change if e.g. the doping is changed. After this the coefficients of these G-vectors are compared among

all k-points to find one that has a large coefficient for all k-points so that the interpolation scheme works

properly. This information is passed onto a pickler that extracts the coefficients and DFT eigenvalues

along with QP energies from an appropriate G0W0 output file. The pickler also triangulates the DFT

k-point grid and calculates the barycentric linear interpolation functions. The pickled file/object can

then be passed onto the main BSE code that interpolates to a k-point grid of arbitary size, within the

rectangular Brillouin zone and sets up the BSE matrix. As the BSE matrix is hermitian only the upper

diagonal is calculated and all operations for creation of the Hamiltonian are vectorized over rows within

Numpy, which greatly speeds up this part of the calculation and is a practical way of parallelizing the

calculation over CPU cores. For diagonalization an algorithm that overwrites the input matrix with

eigenvectors was used to save memory. This structure offers some of the versatility that the independent

particle-code has, i.e. it is relatively simple to change from GPAW to ABINIT but as the main code

heavily depends on a plane-wave basis, changing the basis of the DFT calculation is not possible without

major changes.

GPAW File

G0W0 File

Pickler Pickled file Main code

G-vectors

Results
Analysis
& Plotting

Figure D.2: Flowchart representing the structure of the code for Bethe-Salpeter calculations. The green
boxes are files, while the white are code.
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[23] Jenö Sólyom. Fundamentals of the Physics Solids, volume 2. Springer, 2009.

[24] T. G. Pedersen. Analytic calculation of the optical properties of graphite. Phys. Rev. B, 67:1–4,

2003.

[25] T. G. Pedersen, C. Flindt, J. Pedersen, A.P. Jauho, N. A. Mortensen, and Pedersen K. Optical

properties of graphene antidot lattices. Physical Review B, 77(245431):1–6, 2008.

[26] K. Nomura and A.H. MacDonald. Quantum Transport of Massless Dirac Fermions. Phys. Rev. Lett.,

98:076602, 2007.

[27] D. A. Neamen. Semiconductor physics and devices. McGraw-Hill, 2012.

[28] J. Suh, T. Park, D. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair,

J. Chang, S. Tongay, and J. Wu. Doping against the Native Propensity of MoS2: Degenerate hole

doping by cation substitution. Nano Lett., 14.12:6976–6982, 2014.

[29] Q. Yue, S. Chang, S. Qin, and J. Li. Functionalization of monolayer MoS2 by substitutional doping:

a first-principles study. Phys. Lett. A, 377.19-20:1362–1367, 2013.

[30] A. Ramasubramaniam and D. Naveh. Mn-doped monolayer MoS2: an atomically thin dilute magnetic

semiconductor. Phys. Rev. B, 87.19:195201, 2013.

[31] P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, and Y. S. Chauhan. Doping strategies for monolayer

MoS2 via surface absorption: A systematic study. J. Phys. Chem. C, 118:30309–30314, 2014.

[32] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Gou, and A. Javey. Degenerate n-Doping of

Few-layer Transition Metal dichalcogenides by potassium. Nano Lett., 13:1991–1995, 2013.

[33] R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford University Press, 1994.

Page 76 of 78



Bibliography

[34] G. Henkelman, A. Arnaldsson, and H. Jónsson. A fast and robust algorithm for Bader decomposition

of charge density. Comput. Mater. Sci., 36:354–360, 2006.

[35] C. Hwang, D. A. Siegel, S. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zetl, and A. Lanzara. Fermi

velocity engineering in graphene by substrate modification. Sci. Rep., 509:1–4, 2012.

[36] J. P. Dahl. Introduction to the Quantum World of Atoms and Molecules. World Scientific, 2009.
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