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Danish Abstract
Teknologiudviklingen går i dag i retning af at ting skal være kloge. Dette er i tråd med
IoT (Internet of Things), hvor det ønskes at ting skal være forbundet og i nogen omfang
være i stand til at tage beslutninger. Som eksempel kan nævnes fremtidens smart-home,
som regulere varme/lys/aircondition i huset, sådan at når beboerne er hjemme er der be-
hageligt at være og når huset er tomt skal der spares på ressourcerne. Det kan ydermere
udvikles til at omfatte andre funktion, som for eksempel at huset låser dørene op når
beboerne kommer hjem. For at alt dette kan lade sig gøre, er der brug for data. Huset
skal vide hvor dets beboer er og hvad de ønsker. Dette kan betyde at nogle mennesker
vil føle sig overvåget og de er modvillige til at afgive disse data. Derfor er der brug for
metoder til at lave sikre beregninger på data som skal hemmeligholdes.

Denne specialeafhandling dokumenterer en undersøgelse om hvorvidt metoder fra research-
feltet sikkert distribueret beregninger (SDB), kan kombineres med algoritmer ofte an-
vendt indenfor regulering og automatisering. Formålet er at kunne lave estimeringer og
optimeret løsninger når det tilgængelige data ønskes hemmeligholdt. Fremgangsmåden
til dette er at studere kendte algoritmer og forsøge at omdanne disse til SDB protokoller
ved brug af metoderne fra området.

Rapportens første halvdel har fokus på at opnå en basis forståelse for problemstillingen
og betingelserne i SDB. Herunder introduceres to secret sharing ordninger, henholdsvis
en additiv ordning og Shamir’s secret sharing ordning. Begge ordninger er baseret på
endelige legemer, hvilket sætter visse begrænsninger. Der introduceres ligeledes to SDB
protokoller, som kan beregne henholdsvis summen og produktet af et sæt hemmelige
værdier. Disse protokoller er blandt dem der i dag anvendes i praksis. Ideen er at alle
andre SDB protokoller til udregning af mere generelle funktioner på hemmeligt data,
kan skabes ud fra disse to protokoller.

Sidste halvdel af rapporten beskæftiger sig med at anvende den opnåede viden til at
skabe nye SDB protokoller. Konkret undersøges 3 forskellige algoritmer fra hver deres
felt, nærmere bestemt: optimerings algoritmen gradient metoden med backtracking lin-
jeafsøgning, en reguleringsalgoritme til at regulere trykket i et vandnetværk og estimer-
ingsmetoden mindste kvadraters metode. For at konverter disse metoder til SDB pro-
tokoller skal der blandt andet bruges operationerne sammenligning og division. Det
undersøges derfor hvordan disse kan beregnes som en SDB protokol.

Gennem rapporten ønskes det at sammenligne resultater opnået med de tre nævnte
algoritmer med resulter opnået med de tilsvarende SDB protokoller. Derfor er alle
metoder implementeret i matematik software systemet, SageMath, således at simulering
er muligt. Disse simuleringer viser at approksimativt opnås de samme resultat fra begge
implementeringer.
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Slutteligt konkluderes det at der er mulighed for at bruge metoder fra SDB til at opstille
protokoller, som gøre det muligt at udfører en hel algoritme på hemmeligholdt data.
Protokollerne som er forslået til sikker beregning af de tre algoritmer, skal ikke ses som
færdige protokoller, men derimod fungerer de som et proof-of-concept. Afhandlingen
viser derfor, at der er god grund til videre research indenfor dette område.
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Reading Guide
This thesis is divided into two parts. The first part consists of two chapters, where the
first is concerned with introducing the motivation and objectives of the thesis, while
the second provides an introduction to secure multiparty computation (MPC). Thus,
the reader who is familiar with secure MPC can skip chapter 2. It is assumed that the
reader is familiar with finite fields and finite field arithmetic.

The second part of the thesis consist (besides of the conclusion) of three chapters,
where each one is devoted to a particular algorithm, which is of interest to the field
of control and automation. The goal is to convert each of the three algorithms into
secure MPC protocols. To evaluate the success of the conversion, algorithms and secure
protocols are implemented in the mathematics software system SageMath, such that
comparison by simulations are possible. The implementations can be seen using the
following links:

• Chapter 3, Gradient Descent as a Secure MPC Protocol:
http://sage.math.gordon.edu/home/pub/132

• Chapter 4, Pressure Control Algorithm as a Secure MPC Protocol:
http://sage.math.gordon.edu/home/pub/133

• Chapter 5, The Methods Of Least Squares as a Secure MPC Protocol:
http://sage.math.gordon.edu/home/pub/131/

The concern of the second part is to investigate whether results from secure MPC can
be used to create privacy preserving control algorithms.

References will be denoted by [author surname, year, page number].

http://sage.math.gordon.edu/home/pub/132
http://sage.math.gordon.edu/home/pub/133
http://sage.math.gordon.edu/home/pub/131/
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Notation and Terminology

[x1, . . . , xn] A 1× n vector.

[x1, . . . , xn]> A n× 1 vector.

[x, fx]t Shamir sharings of a secret, x, using a t degree polynomial fx.

[x]t Same as [x, fx]t .

[x] Sharings of a secret, x, using any secret sharing scheme having secure
protocols for addition and multiplication.

[x]B Bitwise sharings of a secret x.

x A vector.

X A matrix.

Ik The k × k identity matrix.

0k The k × 1 vector of zeros.

1k The k × 1 vector of ones.

∨ Bitwise OR-operator.

⊕ Bitwise XOR-operator.

Fp The finite field of p elements.

Secret A value in Fp , which is to remain hidden in any calculations.

Shares "Parts" of secrets s, such that it takes some or all "parts" to reconstruct
s.

Wrap-around p The term wrap-around p is used to denote the situation where for in-
stance (a + r) mod p < a, for a, r ∈ Fp. Hence, the situation where
a ∈ Fp is increased but the outcome is less than a.

Wrap-around
zero

The term wrap-around zero is used to denote the situation where for
instance (a − r) mod p > a, for a, r ∈ Fp. Hence, the situation where
a ∈ Fp is decreased but the outcome is larger than a.
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1
Objectives and Motivation

The objective of this thesis is to investigate the possibility of combing theory form the
field of cryptography, specifically secure multiparty computation (MPC), with methods
within the field of control and automation. In particular, the focus is on the problem of
making calculations on data, which are hidden by encryption. Why this problem is of
interest to the field of control and automation, is described in the following motivational
section.

1.1 Motivation: The Smart-Projects
During the last decade several smart-projects has started to develop. These are projects
like smart-homes, smart-grids, and smart-transportation, [Alaa et al., 2017], [Khattak
et al., 2012], [Paul et al., 2017]. The purposes of these projects are for instance to cut
down on resource losses, optimize the use of renewable energy sources, optimize solutions
from an economic perspective, and simply to increase living standards.

For instance, some of the challenges of the modern power grid, is to optimize power
production to balance power consumption and at the same time use as much renewable
energy as possible. However, the renewable energy sources are intermittent, as they may
produce anything from too-little to too-much power. Thus, one of the ideas in the future
smart-grid is to reverse the situation where power production adapts to consumption and
instead make consumers adapt to production. To accommodate this, the future smart
devices, like smart-washing machine, smart-dishwasher, and smart-meters must be able
to decide when to turn on and when not to. To make this decision-making possible, the
idea is to make the price of power reflect the production, such that the price is low when
production is large. The smart-devices can then be set to turn on only when the price of
energy is low, which is also beneficial for the consumer. The future electrical smart-car
will also attempt to charge its battery only when the price of power is low. In fact, the
electrical cars can help the problem of fluctuating power production, as they can be used

3



4 Chapter 1. Objectives and Motivation

as small power banks, that is filled when power production is high and drained when
production is low, [Khattak et al., 2012].

Another way to solve the issue of producing too much energy, is to use smart-heat
pumps in district heating facilities, [Fischer and Madani, 2017]. These facilities must
then adapt to heating consumption and power production. In this way, the future
power-grid, smart-transportation, smart-house, and smart-heating facilities are closely
connected and they are all controlled by data from multiple sources.

The future smart-transportation system will also depend on data from many sources.
Consider for instance autonomous vehicles as public transportation, [Pereira et al., 2017].
The vehicles should be connected with different traffic controller units, that, for instance,
will enable the autonomous vehicle to adjust its speed to match traffic light and find the
route that is least occupied. Besides of being convenient for the passenger, this has the
potential to increase road and intersection capacities, while reducing pollution, traffic
accidents, and so on.

A common challenge these smart-projects faces is the secure exchange of data. In the
mentioned examples, a lot of different decisions are made based on various calculations
on various data. For instance, the smart grid needs to decide the price of power based
on the estimated consumption and production. The consumption is estimated based
on the consumption profile of the consumers. Regarding the smart transportation, the
route of each vehicle is calculated based on traffic and also the passengers location
and destination. The problem arise as the users may be hesitant to reveal such data.
For instance, homeowners may not want to share their individual consumption profile
and the passengers of an autonomous car may not want to reveal their stopovers or
destination with other parties. Hence, the obstacle is to do calculations on private data,
while ensuring no information leakage.

1.2 Objectives and Scope
The first objective of this thesis is to obtain a basic understanding of secure MPC
and to gain knowledge on the state-of-the-art methods within secure MPC. The second
objective is to exploit this knowledge to create secure MPC protocols, for doing various
calculations on private (encrypted) data. It should be pointed out that the concern is
to investigate whether this can be done, and thus very little focus is put on improving
efficiency of any kind.

The approach is to consider different algorithms, which are of interest to the field
of control. In particular, these are algorithms for optimization, estimation, and control.
The idea is to use the methods from secure MPC to convert these well-known and
frequently used algorithms into secure MPC protocols.

The aim of this report can be summarized as follows:

• How can results from secure multiparty computation be used to create privacy pre-
serving control algorithms?



2
Secure Multiparty Computation

In this chapter the subject of secure multiparty computation is presented. Only some
methods within this field are introduced, these are so-called BGW-like methods. BGW
stands for Ben-Or, Goldwasser and Wigderson, which is the names of the authors of
one of the most fundamental results of secure multiparty computation, [Asharov and
Lindell, 2011]. This result was published in 1988 and since then some modifications has
been introduced. This report focuses on these modified BGW-like methods, which are
introduced in [Cramer et al., 2015], for instance. Since 1988 completely new methods
has been created, but at this moment it is assumed that the modified BGW-like methods
suits the need for this thesis the best.

Section 2.1 provides an introduction to the setup in secure MPC, hereunder the
term adversaries are introduced and it is discussed how to define security. In Section 2.2
two secret sharing schemes are introduced. Section 2.3 presents the idea in using a
preprocessing phase before executing a secure MPC protocol. Section 2.4 states two
methods to deal with active adversaries. Finally, Section 2.5 provides a summery of
the chapter.

2.1 Introduction to Secure Multiparty Computation

This section is based on the paper [Orlandi, 2011] and the book [Cramer et al., 2015].
Secure multiparty computation (MPC) is concerned with creating methods that let a
set of parties jointly compute a function, while ensuring the privacy of certain values.
An intuitive example would be a set of parties, P1, . . . , Pn, that want to compute some
function that takes one input from each party. That is, each party has a value, x1, . . . , xn,
which is input to the function y = f(x1, . . . , xn) and all parties want to know the output
of the function. The parties do not trust each other, thus they want to keep their input
value private.

5



6 Chapter 2. Secure Multiparty Computation

A simple solution to this problem is to employ a trusted third party to do the
computation. In this way, the parties would not have to reveal their private value to
anyone but the trusted party. However, in secure MPC it is assumed that a trusted party
can only exist in an ideal world, since it is a strong assumption that an incorruptible
party exists. Thus, in the real world of secure MPC the parties must compute the
function themselves in order to achieve privacy. To do this, secure protocols are used
and it is the aim of secure MPC to create these secure, privacy preserving protocols.

The ideal and real worlds of secure MPC are illustrated in Figure 2.1.

P1

x1

P2

x2

P3

x3

P4

x3

Pn

xn

Trusted party

(a) Ideal-world.

P1

x1

P2

x2

P3

x3

P4

x3

Pn

xn

(b) Real world

Figure 2.1: Illustration of the two worlds in secure MPC; the ideal-world and the real-world. The gray
boxes represents parties with a private value and arrows illustrates secure channels for communication.

The concern in secure MPC is not only to do computations on secret data, but also
to keep the computations secure against malicious behavior.

2.1.1 Adversaries

The aim of malicious behavior can be to learn private information or to cause the result
of the computation to be incorrect. Any entity behaving maliciously is considered an
adversary.

The adversary works by taking control of a subset of the parties, which are then
referred to as corrupted parties. Conversely, a party that is not corrupted is referred to
as an honest party.

An adversary may either be external or internal, and furthermore there may be
multiple adversaries attacking the same protocol. However, the adversaries attacking
the same protocol are assumed to cooperate, thus without loss of generality it suffices
to consider one adversary who is in control of all the corrupted parties.

The adversary can behave in two ways; it can either be active or passive. In the case
of a passive adversary, all parties follow the protocol, but the adversary learns all values
that the corrupted parties learn and attempts to use this to learn private information.
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An active adversary takes one step further as he may also instruct the corrupted parties
to deviate from the protocol attempting to manipulate the result of the computation.

2.1.2 Definition of Security

Once a protocol is created it must be proved that the protocol is secure. For this purpose,
a definition of security is necessary. As described previously, the behavior of an adversary
can either be passive or active. Therefore, it is also common to distinguish between
active and passive security, such that a protocol, which is only secure against a passive
adversary, can be stated. It should be obvious that a protocol that is secure against an
active adversary is also secure against a passive one. In section 2.4 two approaches to
deal with active adversaries are presented, until then the focus is on security against a
passive adversary.

Intuitively, a secure protocol ensures that no adversary is able to learn any private
information, that the result of the computation is correct, that the input values are
independent and so on. As can be seen, this list of properties that a secure protocol
must satisfy could turn out to be extremely long, given that adversaries may attack
in numerous ways. Thus, instead of attempting to produce such a list, the so-called
simulation paradigm is used to show that a given protocol is secure. In this paradigm, a
protocol execution in the real-world is compared to doing the corresponding computation
in the ideal-world. The idea is that, if the knowledge of the real-world adversary can
be generate in the ideal-world, then the real-world adversary has learned nothing more
than he can in the ideal-world, and hence the protocol is secure.

Pn

xn

Pt+1

xt+1

Trusted party Simulator

Pt

xt

P1

x1

Corrupted parties

Figure 2.2: Illustration of an ideal-world computation with the parties P1, . . . , Pn, each having a private
value x1, . . . , xn. In the figure, the first t parties are corrupted. The illustration gives intuition about
the simulation paradigm, where the simulator generates a view for the ideal-world adversary, based on
information received by the trusted party and the corrupted parties. Arrows illustrates secure channels
for communication.

Figure 2.2 illustrates how the simulator carries out the communication between the
corrupted parties and the trusted party. If the simulator is capable of generating a view
for the adversary, so that the adversary cannot distinguish between being in the ideal-
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world and the real-world, the protocol must be secure since the ideal-world is secure
by definition. Before a formal definition of security can be stated, the terms view and
simulator must be defined.

Definition 2.1 (View)
The view, vi, of a party, Pi, is a list of the values that Pi get to know during protocol
execution. That is, vi is a vector with the private value, xi, of Pi in the first entry.
Each time Pi calculates a value it is added to vi and each time Pi receives a message
it is added to vi. The view of multiple parties, Pp, . . . , Pq, is written as

vC =

 vp...
vq

 , (2.1)

where C denotes the set of indicies of the parties.

Later it will be seen that when Pi calculates a value it is based on random choices
and similarly when Pi receives a message from party Pj , the message will also be based
on random choices made by Pj . The view, vi, is therefore a random vector and cannot
be calculated deterministically. Thus, when saying that the view of the ideal-world and
real-world adversary must be indistinguishable, it is not meant that the two vectors must
be identical, but rather that their distributions must be identical. To define when two
random vectors are indistinguishable, the term statistical distance is used.

Definition 2.2 (Statistical Distance)
Define X0 and X1 as two random variables on the same probability space and let D
be their common sample space. The statistical distance, δ(X0, X1) is defined as

δ(X0, X1) = 1
2
∑
d∈D
|Pr[X0 = d]− Pr[X1 = d]|, (2.2)

[Cramer et al., 2015, p. 16]

Furthermore, the set {X(κ)}κ∈N is called a family of random variables and now the
term indistinguishability can be defined.

Definition 2.3 ((Perfect) Indistinguishability)
Let X0 and X1 be as in Definition 2.2. X0 and X1 are perfectly indistinguishable,
denoted X0 ≡ X1, if for all κ ∈ N

δ(X0(κ), X1(κ)) = 0, (2.3)
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[Cramer et al., 2015, p. 21].

Remark, indistinguishability inDefinition 2.3 is in most literature, including [Cramer
et al., 2015], referred to as perfect indistinguishability. However, in this report this is the
only type of indistinguishability that is considered, thus the word perfect is omitted.

Now, a simulator can be defined, using the definitions just presented, see Defini-
tion 2.4.

Definition 2.4 (Simulator)
Let P1, . . . , Pn be a set of parties each with a secret value, such that Pi has the
value xi for i = 1, . . . , n. Let C ⊂ {1, . . . , n} denote the indices of corrupted parties,
such that |C| ≤ t, for an integer t < n. Furthermore, let vC be the view of the
corrupted parties and let y = f(x1, . . . , xn), where f is some function. A simulator is
an efficient probabilistic algorithm, that given {xj , y}j∈C , generates a random vector,
s({xj , y}j∈C), with values that are indistinguishable from the view of the corrupted
parties, vC . That is,

s({xj , y}j∈C) ≡ vC , (2.4)

[Cramer et al., 2015, p. 40]

Finally, a protocol that is secure against a passive adversary is defined in Defini-
tion 2.5.

Definition 2.5 (Security against a passive adversary)
Let P1, . . . , Pn be parties, and assume that at most t < n of them are corrupted by
a passive adversary. A protocol is said to be secure against a passive adversary, if
the protocol generates a view for the corrupted parties, which can also be generated
by a simulator given in Definition 2.4. That a protocol is secure against a passive
adversary, means that the adversary will not gain knowledge on any secret values
belonging to honest parties, and that the protocol ensures that all parties learn the
correct output, [Prabhakaran and Sahai, 2013, p. 9].

The setup of secure MPC has been presented, the focus is now on the building block
of the secure MPC protocols presented in this report, namely secret sharing.

2.2 Secret Sharing
Secret sharing covers methods for allowing a party to distribute a secret amongst a set
of parties without revealing the secret. It is done in such a way, that each participant
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receives a piece of information that reveals nothing about the secret. In fact it takes
some or all of the pieces of information to recreate the secret. The piece of information
is referred to as a share, see Definition 2.6.

Definition 2.6 (Share)
Let s be a secret value and k an integer. Assume that there exist an algorithm, which
produces the values, si, i = 1, . . . , k, such that si is known for some or all i, s can be
calculated. Each si value is referred to as a share of s.

It is assumed that secure channels exist between each pair of participants, such that
a particular share is learned by solely the participant it was meant for. In regards to this,
Definition 2.7 states what is meant by distributing shares and broadcasting a value.

Definition 2.7 (Distribution and Broadcasting)
Let P1, . . . , Pn be parties. Assume that there exist a secure channel between every
pair of parties and that {sji}i=1,...,n are shares of a secret value sj , which belong to
party Pj . When a party, Pj , distributes the shares of sj , it means that Pj securely
sends the value sj1 to party P1, sj2 to party P2 and so on and so forth till party Pn
has received sjn .

On the other hand, when a party Pj broadcasts a value a, it means that Pj makes
a known to all parties.

Note that distribution is much more costly than broadcasting, since it requires the
use of secure channels to make sure that the message is solely learned by the intended
receiver. Conversely, when broadcasting a value, anyone is allowed to learn the value,
therefore it could for instance be announced using the Internet.

It is often in secret sharing schemes assumed that the secret is an element of a
finite field, Fp , where p, the cardinality of the field, is a prime. One reason why it is
advantageous to consider finite fields is that, it is often necessary to have some uniformly
random numbers available, these can easily be sampled from a finite field.

There exist various secret sharing schemes, two well known ones are the additive
sharing scheme and Shamir’s secret sharing scheme.

2.2.1 Additive Sharing Scheme

As the name suggests the additive scheme defines the shares of a secret, such that the
sum of all shares equals the secret. To be precise, if s ∈ Fp is a secret and s1, . . . , sn are
shares of s, then

s =
n∑
i=1

si mod p. (2.5)

The protocol for creating additive shares of a secret is stated in Protocol 2.1.
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Protocol 2.1 (Additive Sharing Scheme)
Given a secret s ∈ Fp.
Outputs the shares s1, . . . , sn of s, where si ∈ Fp for i = 1, . . . , n.

1. Draw n − 1 values from a uniform distribution on Fp . The n − 1 values are
referred to as s2, . . . , sn. Furthermore, choose a value s1 ∈ Fp, such that

s =
n∑
j=1

sj mod p. (2.6)

To see why the additive sharing scheme is of interest to secure MPC, suppose that
n parties each have a secret value, and they want to compute the sum of all values. A
secure MPC protocol for this, is stated in Protocol 2.2.

Protocol 2.2 (Addition (Additive Sharing Scheme))
Given that party Pi, for i = 1, . . . , n, holds the shares aji ∈ Fp for j = 1, . . . , n, of the
secrets a1, . . . , an, where aj ∈ Fp belongs to party Pj . The shares are created using
Protocol 2.1.
Outputs

∑n
i=1 ai to all parties.

1. Each party, Pi, i = 1, . . . , n, computes the value

di =
n∑
j=1

aji mod p. (2.7)

2. Each party, Pi, i = 1, . . . , n, broadcasts the value di.

3. All parties compute

y =
n∑
i=1

di mod p. (2.8)

That Protocol 2.2 is secure under Definition 2.5 is showed in the following proof.

Proof. First of all, by associativity of addition it is trivial that the protocol ensures cor-
rect function evaluation in the passive adversary case. To prove that all input values are
kept private, it must be shown that there exists a simulator according toDefinition 2.4.

Assume that the parties P1, . . . , Pt are corrupted and that Pt+1, . . . , Pn are honest
parties. Let T = {1, . . . , t} and N = {1, . . . , n} be index sets. Table 1 gives the view of
the real-world and ideal-world adversary.
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Real-world Ideal-world

Values known to
the adversary

{xi}i∈T
y

{aij}(i,j)∈T×N
{aij}(i,j)∈{t+1,...,n}×T

{di}i∈N

{xi}i∈T
y

Table 2.1: View of the real- and ideal-world adversary for Protocol 2.2.

Now it must be shown that all values the real-world adversary sees can be generated
by the simulator in the ideal-world.

The first values that must be generated are {aij}(i,j)∈T×N . As seen in Figure 2.2,
in the ideal-world the corrupted parties communicate with the simulator as if it was
the trusted party. Thus, the simulator receives {xi}i∈T from the corrupted parties and
then it can generate {aij}(i,j)∈T×N according to Protocol 2.1. Hence, the distribu-
tion of {aij}(i,j)∈T×N in the ideal-world is indistinguishable from the distribution of the
corresponding values in the real-world.

The next values are {aij}(i,j)∈{t+1,...,n}×T . These values give no information about
xi and they can be simulated as uniformly random values on Fp. To show that this is
true, consider the map φ : Fpn−t → Fp,

φ(ait+1 , . . . , ain) =

 n∑
j=t+1

aij + c

 mod p = xi, (2.9)

where c =
∑
j∈T aij is a known constant.

Now, if every xi ∈ Fp has the same number of preimages of φ, it is proved that no
information is gained from knowing c.

Consider the following sets

S0 = {(ait+1 , . . . , ain) ∈ Fp | xi = 0} (2.10)
S1 = {(ait+1 , . . . , ain) ∈ Fp | xi = 1} (2.11)

... (2.12)
Sm−1 = {(ait+1 , . . . , ain) ∈ Fp | xi = m− 1}. (2.13)

Now, if all sets have equal cardinality, then xi ∈ Fp has the same number of preimages.
To show that this is the case, consider the map ψ : Sk → Sl

ψ(ai,t+1, . . . , ain) = (ait+1 , . . . , (ain + l − k) mod p), k < l. (2.14)

By observing that ψ is bijective, it is clear that the sets, S0, . . . , SN , have equal
cardinality. This means that given {aij}(i,j)∈{t+1,...,n}×T , it is not possible to guess
xi with a higher probability than not knowing these values. Thus, the values can be
simulated as uniformly random variables on Fp, which again makes the real-world and
ideal-world distribution of {aij}(i,j)∈{t+1,...,n}×T indistinguishable.
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The last values for the simulator to generate are {di}i∈N . It is seen that no informa-
tion about private values can be gained from any of these values, because they give no
information about aij for any i, j. This means that in the view of the real-world adver-
sary, {di}i∈N are uniformly random variables, with the dependence that they sum to y.
The simulator can calculate {di}i∈T from {aij}(i,j)∈N×T , which all are values previously
generated by the simulator. dt+1, . . . , dn−1 can be drawn uniformly on Fp and dn is cho-
sen such that y = (

∑
i∈N di) mod p. Hence, a simulator according to Definition 2.4

exist.

Now, if the parties instead wishes to multiply all their secrets, there is no obvious
way to do that using the additive sharing scheme. Since the additive sharing scheme
and Protocol 2.2 works because of the associativity of addition, an idea that comes
to mind is using the associativity of multiplication, to create a secret sharing scheme
and secure protocol for multiplication. Suppose that a multiplicative sharing scheme is
defined similarly to the additive sharing scheme in Protocol 2.1, with the distinction
that the shares, s1, . . . , sn of the secret, s ∈ Fp, are such that

s =
n∏
i=1

si mod p. (2.15)

Using this, a protocol for multiplying secrets is stated in Protocol 2.3.

Protocol 2.3 (Multiplication (Multiplicative Sharing Scheme))
Given that party Pi for i = 1, . . . , n, holds the shares aji ∈ Fp for j = 1, . . . , n, of the
secrets a1, . . . , an, where aj ∈ Fp belongs to party Pj . The shares are created using
the multiplicative sharing scheme.
Outputs

∏n
i=1 ai to all parties.

1. Each party, Pi, i = 1, . . . , n, computes the value

di =
n∏
j=1

aji mod p. (2.16)

2. Each party, Pi, i = 1, . . . , n broadcasts the value di.

3. All parties compute

y =
n∏
i=1

di mod p. (2.17)

Unfortunately, Protocol 2.3 is not secure. To see this, consider Example 2.1 which
gives an example of how a party can learn information about a private value of another
party.
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Example 2.1
Let P1, P2, P3, be participants in the execution of Protocol 2.3. Let p = 3 and the
private value of Pi be ai ∈ F3 for i = 1, 2, 3. For the protocol to be secure, no party
must gain any information about the private value of other parties. Consider the case
where y = 0, a1 = 0, a2 = 1 and a3 = 2. Then P1 and P2 knows that at least one of the
other parties has private value equal to zero. This does not make the protocol insecure
since this would also happen in the ideal-world. However, consider Equation (2.15).
Since y = 0, then either a11 , a12 or a13 must be equal to zero. Say that a12 = 0, then
P2 learns that x1 = 0, which makes the protocol insecure.

Even if Protocol 2.3 was secure, it would not really help with the fact that, when
doing secure MPC it will often be necessary to compute more general functions than
the sum or product of all secrets. Hence, a secret sharing scheme that can be used
in secure protocols for both addition and multiplication will be needed. Remark, it is
possible to introduce secure multiplication for the additive scheme, however it involves
complicated tricks, which are out of the scope of this report. Instead the report proceeds
by introducing Shamir’s secret sharing scheme.

2.2.2 Shamir’s Secret-Sharing Scheme

Shamir’s secret sharing scheme uses Lagrange polynomials to create shares of a secret
s ∈ Fp. A polynomial f(x) ∈ Fp of degree t < n is chosen such that f(0) = s and the rest
of the coefficients are random. The shares of s is then determined as s1 = f(1), . . . , sn =
f(n) and the shares of the secret is distributed according to Definition 2.7. Shamir’s
scheme uses exclusively finite field arithmetic, thus any arithmetic in any stated protocol
or proof of a protocol using Shamir’s scheme uses finite field arithmetic.

Protocol 2.4 states Shamir’s secret-sharing scheme formally.

Protocol 2.4 (Shamir’s Secret-Sharing Scheme)
Given a secret s ∈ Fp and an integer t < n, where n is the number of participants.
Outputs the shares s1, . . . , sn of s.

1. Choose coefficients {a1, . . . , at} ∈ Fpt uniformly at random.

2. Define the polynomial f(x) = s+ a1x+ · · ·+ atx
t in Fp.

3. Define the shares of s as s1 = f(1), . . . , sn = f(n).

The protocol is from [Cramer et al., 2015, p. 244].

Protocol 2.5 states how a secret is reconstructed given at least t+ 1 shares of the
secret.
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Protocol 2.5 (Output Reconstruction)
Given at least t+ 1 shares, si for i ∈ C, where C ⊆ {1, . . . , n}, is the set of indices of
the shares.
Outputs the reconstructed secret s.

1. Construct the polynomial
h(x) =

∑
i∈C

sili(x), (2.18)

where li(x) is called a Lagrange basis polynomial and is given by

li(x) =
∏

j∈C,j 6=i

x− j
i− j

. (2.19)

2. The secret s is given as s = h(0).

The protocol is from [Cramer et al., 2015, p. 244].

The technique used in Protocol 2.5 is called Lagrange interpolation. According to
this theory, a polynomial f(x) ∈ Fp of degree at most t, can be expressed through t+ 1
points of f(x). That is,

f(x) =
∑
i∈C

f(i)li(x), (2.20)

where C ⊆ Fp with cardinality |C| = t + 1 and li(x) are given in Equation (2.19).
When the li(x) polynomial is evaluated in i ∈ C it equals one and when evaluated in
k ∈ C, where k 6= i, it equals zero. This is seen as

li(k) =
∏

j∈C,j 6=i

k − j
i− j

= k − 1
i− 1 · · ·

k − k
i− j

· · · k − (t+ 1)
i− (t+ 1) = 0, for k 6= i, (2.21)

li(i) =
∏

j∈C,j 6=i

i− j
i− j

= 1. (2.22)

Hence,
∑
i∈C f(i)li(x) evaluates to f(x)∀x ∈ C. That Equation (2.20) holds for x /∈ C,

is seen as each li(x) polynomial has degree at most t, which means that
∑
i∈C f(i)li(x)

is a polynomial of degree at most t. Therefore, g(x) = f(x)−
∑
i∈C f(i)li(x) is zero on

all points in C. Since it is assumed that |C| > t, the polynomial g(x) has more zeros
than its degree and thus according to the fundamental theorem of algebra, it must be
the zero polynomial. Hence, it follows that f(x) =

∑
i∈C f(i)li(x) ∀ x ∈ Fp.

Note that in the classical reconstruction phase of Shamir’s scheme, the whole poly-
nomial is reconstructed, as shown in Protocol 2.5. However, when the interest is in cal-
culating the secret s = f(0), the reconstruction phase can be optimized for this purpose.
Since f(0) is all that is needed, the Lagrange basis polynomials in Equation (2.19)
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li(x) can be simplified to
ri = li(0) =

∏
j∈C,j 6=i

−j
i− j

. (2.23)

The vector
r = [r1, . . . , rn]> , (2.24)

is called the recombination vector and note that it does not depend on h(x). Hence,
the same recombination vector r works for all polynomials of degree t < n. Using this,
Protocol 2.5 can be simplified to directly compute h(0),

h(0) =
∑
i∈C

risi. (2.25)

Theorem 2.1 gives two important facts about Shamir’s secret-sharing scheme.

Theorem 2.1
Let s1, . . . , sn be shares of a secret, s ∈ Fp, which has been determined using Shamir’s
secret-sharing scheme, Protocol 2.4. Let t < n be the degree of the polynomial used
in the secret-sharing. Then the following holds;

1. s can be reconstructed if t+ 1 or more of the shares are known.

2. Each share is a uniform random variable and thus any set of fewer than t + 1
shares contains no information about s.

Proof. This proof is from [Cramer et al., 2015, p. 34]. That s can be reconstructed from
t+ 1 or more shares are given by Lagrange interpolation theory.

For the second hypothesis, assume that only t shares are known and that C ⊆ Fp with
cardinality |C| = t and 0 /∈ C. According to Lagrange interpolation theory, the original
polynomial f(x) cannot be reconstructed from less than t+1 points. However, it must be
shown that no information is gained from the t shares. Since the uniform distribution is
independent from the secret s, it suffices to prove that the shares s1, . . . , st are distributed
uniformly. Recall that the coefficients a = {a1, . . . , at} ∈ Fpt are uniformly distributed
and f(x) = s+

∑t
j=1 ajx

j . This can be seen as an evaluation map from Fpt to Fpt, as a
is mapped to {f(i)}i∈C .

To see that this map is invertible, take any {f(i)}i∈C ∈ Fpt. Then f(x) is known on
t+1 points since it is also known that f(0) = s. This means that Lagrange interpolation
can be used to compute f(x) and a ∈ Fpt. That is, the evaluation map is invertible.
Any invertible map from Fpt to Fpt maps the uniform distribution on Fpt to the uni-
form distribution on Fpt, [Cramer et al., 2015, p. 34]. Thus, the shares are uniformly
distributed and since it takes t + 1 shares to reconstruct s, any less shares reveals no
information about s.
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Using Shamir’s secret sharing scheme to produce shares of a secret, allows a function
of secrets to be computed directly on the shares of the secrets. Consider Protocol 2.6
that securely computes the sum of n secrets.

Protocol 2.6 (Addition (Shamir’s Secret-Sharing Scheme))
Given that each party, Pi for i = 1, . . . , n, has a secret input value xi ∈ Fp.
Outputs y =

∑n
i=1 xi, where y ∈ Fp.

1. All parties agree on a polynomial degree t < n.

2. Each party, Pi, i = 1, . . . , n, uses Shamir’s secret-sharing scheme in Proto-
col 2.4 and distributes the shares of their private value, xi. Table 2.2 shows
the polynomial of each party and which shares each party receives in this step.

Party Polynomial Received Shares
P1 f1(x) = x1 + a1,1x+ . . .+ a1,tx

t f1(1), f2(1), . . . , fn(1)
P2 f2(x) = x2 + a2,1x+ . . .+ a2,tx

t f1(2), f2(2), . . . , fn(2)
...

...
...

Pn fn(x) = xn + an,1x+ . . .+ an,tx
t f1(n), f2(n), . . . , fn(n)

Table 2.2: The polynomial and received shares of each party.

3. Each party, Pi, i = 1, . . . , n, computes the value, di

di =
n∑
j=1

fj(i). (2.26)

4. Each party, Pi, i = 1, . . . , n, broadcasts the value di.

5. Each party computes the recombination vector, r, defined by Equation (2.23)
and (2.24).

6. Each party computes

y =
n∑
i=1

ridi. (2.27)

The protocol is from [Cramer et al., 2015, p. 39].

That Protocol 2.6 is secure in the sense of Definition 2.5 is given in the following
proof.

Proof. To see that the protocol ensures that all parties learn y = x1 + · · ·+xn, define the
polynomial h(x) = f1(x) + · · ·+ fn(x). It can be seen that h(0) = y and that h(i) = di.
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Thus, when d1, . . . , dn are shared between all parties, all parties have n shares of the
secret y. Since t < n, each party can reconstruct h(x) and compute y = h(0).

To see that the protocol is secure, assume that P1, . . . , Pt are corrupted parties and
that Pt+1, . . . , Pn are honest parties. To improve readability, define the index sets T =
{1, . . . , t} and N = {1, . . . , n}. Furthermore, let h(x) be the degree t polynomial with
constant term y. To show that Protocol 2.6 is secure, there must exist a simulator
capable of generating a view for the ideal-world adversary that is indistinguishable from
the view of the real-world adversary. Table 2.3 gives the view of the real-world and
ideal-world adversary.

Real-world Ideal-world

Values known to
the adversary

x1, . . . , xt
y

{fj(i)}(i,j)∈N×T
{fj(i)}(i,j)∈T×{t+1,...,n}

{di}i∈N

x1, . . . , xt
y

Table 2.3: Overview of the view of the real-world and ideal-world adversary.

The first values that the simulator must generate are {fj(i)}(i,j)∈N×T . The simulator
receives x1, . . . , xt from the corrupted parties and hence it can generate {fj(i)}(i,j)∈N×T
according to Protocol 2.4.

The next values to be generated are {fj(i)}(i,j)∈T×{t+1,...,n}. According to Theo-
rem 2.1, any share is a uniform random variable and any set of fewer than t+ 1 shares
holds no information. Hence, {fj(i)}(i,j)∈T×{t+1,...,n} can be simulated as being uniformly
random on Fp .

Finally, the simulator must generate{di}i∈N defined in Equation (2.26). These
values are all shares of the polynomial h(x) = f1(x) + · · · + fn(x) of degree t. The
simulator knows {di}i∈T from {fj(i)}(i,j)∈T×N and it knows that h(0) = y, thus the
simulator knows t + 1 shares of h(x). The simulator can use Lagrange interpolation to
construct h(x) and afterwards it can calculate {di}i∈{t+1,...,n} = {h(i)}i∈{t+1,...,n}.

As mentioned, Shamir’s scheme also allows the creation of a secure MPC protocol
for multiplication of secrets. Unfortunately, such a protocol is more complicated than
Protocol 2.6. This is because Protocol 2.6 takes advantage of the fact that when two
degree t polynomials are summed the resulting polynomial is also of degree t, whereas
when two degree t polynomials are multiplied the resulting polynomial is of degree 2t.
The degree of the polynomials must always be smaller than the number of parties, n,
otherwise there will not be enough shares to reconstruct the polynomial. Hence, the idea
is to first compute the product between two secrets and then multiply that result with
the next secret and so on. This is stated in Protocol 2.7, which for obvious reasons
requires that t < n/2.
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Protocol 2.7 (Multiplication (Shamir’s Secret-Sharing Scheme))
Given that each party, Pi for i = 1, . . . , n, has a secret input value xi ∈ Fp.
Outputs y =

∏n
i=1 xi, where y ∈ Fp.

1. All parties agree on a polynomial degree t < n/2.

2. Each party, Pi, i = 1, . . . , n, uses Shamir’s secret-sharing scheme in Proto-
col 2.4 and distributes the shares of their private value, xi, see Table 2.2.

3. Define h(x) as the 2t degree polynomial h(x) = f1(x)f2(x). Note that h(0) =
x1x2 and furthermore that Pi holds the share h(i) of h(x). Refer to the share
h(i) as ki = f1(i)f2(i).

4. Each party computes the recombination vector, r, defined by Equation (2.23)
and (2.24).

5. Repeat steps (a) till (e) for b = 3, . . . , n.

(a) Each party Pi, distributes a share of ki to each party using Protocol 2.5.
An overview of this step is seen in Table 2.4.

Party Polynomial Recieved Shares
P1 h1(x) = k1 + b1,1x+ . . .+ b1,tx

t h1(1), h2(1), . . . , hn(1)
P2 h2(x) = k2 + b2,1x+ . . .+ b2,tx

t h1(2), h2(2), . . . , hn(2)
...

...
...

Pn hn(x) = kn + bn,1x+ . . .+ bn,tx
t h1(n), h2(n), . . . , hn(n)

Table 2.4: Overview of step (a).

(b) Each party, Pi, i = 1, . . . , n, calculates

di =
n∑
j=1

rjhj(i). (2.28)

Remark that di is the i’th share of some degree t polynomial, g(x), which
evaluates to h(0) in zero.

(c) Redefine h(x) from item 3, as the 2t degree polynomial h(x) = g(x)fb(x).
(d) Each party, Pi, i = 1, . . . , n, redefines ki as

ki = difb(i). (2.29)

Note that ki is a share of h(x).

6. Each party, Pi, i = 1, . . . , n, broadcasts the value di.
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7. Each party computes

y =
n∑
i=1

ridi. (2.30)

The protocol is from [Cramer et al., 2015, p.39].

Equation (2.28) should be explained further than a remark. What happens is that
h(0) can be reconstructed by

h(0) = r1k1 + r2k2 + · · ·+ rnkn (2.31)

= r1

(
n∑
i=1

rih1(i)
)

+ · · ·+ rn

(
n∑
i=1

rihn(i)
)

(2.32)

= r1


n∑
i=1

rihi(1)︸ ︷︷ ︸
d1

+ · · ·+ rn


n∑
i=1

rihi(n)︸ ︷︷ ︸
dn

 . (2.33)

This shows that di must be a share of a polynomial, g(x), that has constant term
h(0). To see that g(x) is of degree t, consider g(i),

g(i) = r1h1(i) + r2h2(i) + · · ·+ rnhn(i), (2.34)

where {ri}i∈{1,...,n} can be seen as scaling factors. Hence, g(i) is the sum of n polynomials
of degree t evaluated in i. Thus, g(x) is itself of degree t. That Protocol 2.7 is secure
is proved at the end of Protocol 2.10.

Secure multiplication as stated in Protocol 2.7 seems complicated and the protocol
itself is difficult to read, because one has to keep in mind all shares of all the secrets.
Furthermore, from now on, all secure MPC protocols stated in this report uses Shamir’s
secret sharing scheme unless otherwise stated. Thus, there is motivation for introducing
a new notation for shares, which will improve readability.

2.2.3 A Compact Notation for Shares by Shamir’s Scheme

From Protocol 2.6 and 2.7, it is seen that the first steps, which could be referred to
as an input-sharing phase, and the final step, which could be referred to as an output-
reconstruction phase, is identical. Therefore, it is beneficial to state a general protocol
with these two phases and a computation-phase in the middle. Before doing so, it is
convenient to introduce a new notation, which will improve readability.

Definition 2.8
Let a ∈ Fp and f(x) be a random polynomial over Fp with f(0) = a and degree at
most t. Define [a; f ]t as n shares of the secret a, calculated from f(x),

[a; f ]t = [f(1), . . . , f(n)]>, (2.35)
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with n being a positive integer.

With this notation follows some trivial, yet very important and useful facts, see
Lemma 2.1.

Lemma 2.1
Let a, b, c ∈ Fp and f(x) and g(x) be polynomials over Fp with degree at most t. Then
it holds that

[a; f ]t + [b; g]t = [a+ b; f + g]t, (2.36)
c[a; f ]t = [ca; cf ]t, (2.37)

[a; f ]t ∗ [b; g]t = [ab; fg]2t, (2.38)

where ∗ denotes the Schur-product, meaning entrywise multiplication, [Cramer et al.,
2015, p. 38].

Proof. The proof of the first two equalities is trivial, thus the focus is on the last equality.

[a; f ]t ∗ [b; g]t = [f(1), . . . , f(n)] ∗ [g(1), . . . , g(n)] (2.39)
= [f(1)g(1), . . . , f(n)g(n)] (2.40)
= [(fg)(1), . . . , (fg)(n)] (2.41)
= [ab; fg]2t, (2.42)

where the last equality is seen to be true by the following observation;

(fg)(x) = (a+ a1x+ . . .+ atx
t)(b+ b1x+ . . .+ btx

t) (2.43)
= ab+ (a1b2 + a2b1)x+ . . .+ (atbt)x2t, (2.44)

that clearly shows that (fg)(x) has constant term ab and is of degree 2t.

With the new notation it is convenient to define a compact way to express the actions
the parties can do with and on the shares. This is introduced in Definition 2.9.

Definition 2.9
Let Pi denote a party with secret a ∈ Fp and let [a; f ]t be as in Definition 2.8. To
remind the reader about distribution of shares, when Pi distributes [a; f ]t, it means
that Pi securely sends the share f(j) to party Pj for j = 1, . . . , n. Conversely, when
all parties have received a share of a secret a computed from the polynomial f , it is
said that the parties hold [a; f ]t.
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To describe the situation where the parties hold [a; fa]t and [b; fb]t and each party Pi
computes fa(i)+fb(i) or fa(i)fb(i), it is said that the parties computes [a; fa]t+[b; fb]t
or [a; fa]t ∗ [b; fb]t, respectively.

When a value x is opened, it means that each party Pi broadcasts fx(i), and
afterwards all parties can do Lagrange interpolation to learn the value of x.

Protocol 2.8 states a general protocol for secure MPC using Shamir’s secret sharing
scheme.

Protocol 2.8
Given that each party, Pi for i = 1, . . . , n, has a secret input value xi ∈ Fp.
Outputs y = g(x1, . . . , xn), where y ∈ Fp.

• Input-sharing: Each party, Pi, i = 1, . . . , n with private value, xi ∈ Fp, dis-
tributes [xi; fxi ]t.

• Computation: This phase depends on g and thus it cannot be described in
detail. However, generally the parties hold [x1; fx1 ]t,. . ., [xn; fxn ]t and by dividing
g into simpler functions the parties can evaluate g. In the end the parties hold
[y; fy]t.

• Output-reconstruction: Each party, Pi, i = 1, . . . , n, broadcasts fy(i).
Then all parties can use Lagrange interpolation to compute y = fy(0).

The idea inProtocol 2.8, is that the input-sharing and output-reconstruction phases
are the same for all protocols using Shamir’s secret sharing scheme. Thus, from now,
when defining a protocol it is only necessary to specify the computation phase, since the
remaining two phases are given in Protocol 2.8. Furthermore, it will only be necessary
to prove security of the computation phase, since the proof of Protocol 2.6 already
has proved security of the input-sharing and output-reconstruction phases. This way of
describing protocols is demonstrated by Protocol 2.9 and Protocol 2.10, which are
protocols for addition and multiplication, respectively.

Protocol 2.9 (Computation-phase: Addition)
Given that the parties hold [a; fa]t and [b; fb]t and that t < n.
Outputs [y; fy]t, where y = a+ b.

1. The parties compute [y; fy]t = [a; fa]t+[b; fb]t, where fy = fa + fb.

Note, that Protocol 2.9 is essentially the same as Protocol 2.6, but using the
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introduced notation and Protocol 2.8, it can be stated much more compactly. The
proof of security of Protocol 2.9 is already given in the proof of Protocol 2.6.

Protocol 2.10 (Computation-phase: Multiplication)
Given t < n

2 and that the parties hold [a; fa]t and [b; fb]t.
Outputs [y; fy]t, where y = ab.

1. The parties compute [ab;h]2t = [a; fa]t∗[b; fb]t, where h = fafb.

2. Each party Pi distributes [h(i); fi]t.

3. The parties compute
n∑
i=1

ri[h(i); fi]t = [
n∑
i=1

rih(i);
n∑
i=1

rifi]t (2.45)

= [h(0);
n∑
i=1

rifi]t (2.46)

= [ab;
n∑
i=1

rifi]t (2.47)

By defining fy =
∑n
i=1 rifi, it is seen that the parties now hold [y; fy]t, [Cramer

et al., 2015, p. 39].

Note that Protocol 2.10 can be repeated if more than two private inputs are to be
multiplied and thus Protocol 2.10 is essentially the same as protocol Protocol 2.7.
It is now showed that Protocol 2.10 (and thus also Protocol 2.7) is secure.

Proof. Assume that t parties are corrupted and that these are referred to as P1, . . . , Pt.
Let N = {1, . . . , n}, T = {1, . . . , t} be index sets. To see that Protocol 2.10 is secure
under Definition 2.5, consider the view of the real-world and ideal-world adversary.

Real-world Ideal-world

Values known to
the adversary

{fa(i)}i∈T
{fb(i)}i∈T

{fi(j)}(i,j)∈T×N
{fi(j)}(i,j)∈{t+1,...,n}×T

{fy(i)}i∈T

{fa(i)}i∈T
{fb(i)}i∈T
{f ′y(i)}i∈T

Table 2.5: View of ideal-world and real-world adversary of Protocol 2.10.

There must exist a simulator that can generate {fi(j)}(i,j)∈T×N and {fi(j)}(i,j)∈{t+1,...,n}×T
and {fy(i)}i∈T must be indistinguishable from {f ′y(i)}i∈T .
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First of all, the simulator receives the values {fa(i)}i∈T and {fb(i)}i∈T from the
corrupted parties. Given that h = fafb, means that the simulator can calculate {h(i)}i∈t
and from these it can easily generate {fi(j)}(i,j)∈T×N , by choosing random polynomials
f1, . . . , ft.
{fi(j)}(j)∈T for a fixed i, are t shares of [h(i); fi]t. According to Theorem 2.1, these

are uniformly random variables and can be simulated as such.
Finally, the {fy(i)}i∈T are also uniformly random variables just as {f ′y(i)}i∈T are.

Hence these sets are indistinguishable.

That protocols for addition and multiplication has been specified is not accidental.
The reason is that all finite functions over a finite field can be expressed as a polyno-
mial, and to evaluate a polynomial all that is needed is the operations of addition and
multiplication. Thus, by the addition and multiplication protocols, all finite functions
can be computed. This fact is stated more formally in Proposition 2.1.

Proposition 2.1
Every function g : Fp → Fp can be represented as a polynomial over Fp .

Proof. Let g : Fp → Fp be any function. Since Fp is a finite field, it contains a finite
number of elements, F1, . . . , Fq, where q is the number of elements in Fp . For the
proposition to be true, there must be a q degree polynomial h, such that g(i) = h(i)∀ i ∈
Fp. Determining h, can be done by solving the following linear system of equations

a0 + a1F1 + a2F
2
1 + · · ·+ aqF

q
1 = g(F1) (2.48)

a0 + a1F2 + a2F
2
2 + · · ·+ aqF

q
2 = g(F2) (2.49)

... (2.50)
a0 + a1Fq + a2F

2
q + · · ·+ aqF

q
q = g(Fq). (2.51)

This system can also be written as
V a = g, (2.52)

where a = [a0, a1, . . . , aq]>, g = [g(F1), . . . , g(Fq)]> and

V =


1 F1 F 2

1 · · · F q1
1 F2 F 2

2 · · · F q2
...

...
... . . . ...

1 Fq F 2
q · · · F qq

 . (2.53)

Clearly, p exists if Equation (2.52) can be solved for a, which is equivalent to saying
that h exists if V has a nonzero determinant. V has the Vandermonde-structure and
hence the determinant of V is

∏
i<j(Fi−Fj). Since Fi 6= Fj when i 6= j, the determinant

of V is nonzero and thus the proof is complete.
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2.3 Improving Efficiency by Preprocessing
Given that all finite functions defined on a finite field can be represented as polynomials,
the protocols for addition and multiplication has the potential of being used frequently.
For this reason it is of course desirable that these protocols are as time efficient as
possible at the time of execution. To speed up protocol evaluation, it turns out that
doing some preprocessing before the actual protocol execution, improves efficiency sig-
nificantly. To see what this preprocessing consists of it is important to note that it is
usually not local computations done by each party, which is time consuming in practice,
but rather communication. When a party, Pi, distributes [a; fa]t, where a is some secret,
the communication between Pi and each of the other parties must be secure to ensure
that only the intended receiver gets the message. However, communication in the form
of broadcasting is much less costly since anyone is allowed to learn the message. There-
fore, if any distribution can be exchanged with broadcasting, the protocol will be more
efficient.

When considering Protocol 2.9 and Protocol 2.10, it is noticed that the former
requires only local computations, whereas the latter requires each party to distribute
a value. Thus, Protocol 2.10 could be improved by turning the distribution into
broadcasting using a preprocessing phase. To do this, three random values, referred to
as a Beaver’s triplet, is introduced.

Definition 2.10 (Beaver’s Triplet)
Let a, b ∈ Fp be uniformly random and unknown to all parties. Then the triple [a; fa]t,
[b; fb]t, [c; fc]t where c = ab is called a Beaver’s triplet. Saying that the parties hold a
Beaver’s triplet means that the parties hold [a; fa]t, [b; fb]t and [c; fc]t, [Cramer et al.,
2015, p. 164].

Before explaining how a Beaver’s triplet can improve time efficiency for the multi-
plication protocol, consider how the parties can create a triplet. The method is referred
to as Beaver’s trick and is introduced in Protocol 2.11.

Protocol 2.11 (Beaver’s Trick)
Given t < n

2 .
Outputs [a; fa]t, [b; fb]t and [c; fc]t, where a and b are unknown random numbers and
c = ab.

1. Each party Pi, i = 1, . . . , n, distributes [ai; fai ]t and [bi; fbi
]t, where ai, bi ∈ Fp

are uniformly random values chosen by Pi.

2. The parties compute [a; fa]t =
∑n
i=1[ai; fai ]t.

3. The parties compute [b; fb]t =
∑n
i=1[bi; fbi

]t.
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4. The parties invoke Protocol 2.10 to compute [c; fc]t = [a; fa]t ∗ [b; fb]t.

The protocol is from [Cramer et al., 2015, p. 164].

The preprocessing phase of a protocol execution consists of the creation of a large
number of Beaver’s triplets, which can take a lot of time given the communication needed.
The reason why a large number of triplets must be created, is because each can only
be used in one calculation. Protocol 2.12 demonstrates how a Beaver’s triplet can be
used to speed up an execution of the multiplication protocol.

Protocol 2.12 (Computation-phase: Multiplication Using Beaver’s Triplet)
Given that the parties hold [a; fa]t and [b; fb]t and furthermore, that the parties hold
a Beaver’s triplet, [α; fα]t, [β; fβ]t, [γ; fγ ]t.
Outputs [y; fy]t, where y = ab.

1. The parties compute [d; fd]t = [a; fa]t − [α; fα]t.

2. The parties compute [e; fe]t = [b; fb]t − [β; fβ]t.

3. The parties open d and e.

4. The parties compute

[y; fy]t = de+ d[β; fβ]t + e[α; fα]t + [γ; fγ ]t. (2.54)

The protocol is from [Cramer et al., 2015, pp. 164-165].

Proof. To see that Protocol 2.12 ensures that all parties learn y = ab, consider the
computations throughout protocol execution. First the parties compute [a; fa]t−[α; fα]t
and [b; fb]t−[β; fβ]t, meaning that the parties hold [d; fd]t and [e; fe]t, respectively, by
Equation (1) and (2). Consider the following calculation

y = ab (2.55)
= (a− α+ α)(b− β + β) (2.56)
= (d+ α)(e+ β) (2.57)
= de+ dβ + eα+ αβ (2.58)
= de+ dβ + eα+ γ, (2.59)

which shows that Equation (2.54) indeed computes the product of a and b.
To show that the protocol is secure, all that is needed is to see that making the

values d and e known to all parties does not reveal information about a or b. That the
rest of the protocol is secure, can be seen from the proof of protocol Protocol 2.10.
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Since α is uniformly random, so is −α and using the fact that adding a constant to a
uniformly random variable still is a uniformly random variable, it is easily seen that d
is just a uniformly random variable. The same goes for e. Thus, broadcasting d and e
reveals no information about a or b.

It should be noted that secure multiplication is possible for an additive secret sharing
scheme, given that a Beaver’s triplet is available and that it is shared using the additive
scheme.

As seen in the preceding proof, theoretically the values e and d should reveal no
information. This fact, is now demonstrated in a more practically manner. Recall that
p is the cardinality of the finite field, n is the number of parties and t is the number
of corrupted parties. Simulating the execution of Protocol 2.12 5000 times, with
p = 97, n = 10 and t = 4, shows that e and d are uniformly distributed on F97. The
histograms for d and e from the described simulation, is seen in Figure 2.3.
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(a) Histogram of the values of d.
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(b) Histogram of the values of e.

Figure 2.3: Histograms, showing that the values d and e are uniformly distributed on F97, when
simulating Protocol 2.12 5000 times, with p = 97, n = 10 and t = 4.

Since the compact notation [a; f ]t = [f(1), . . . , f(n)] was introduced, a few protocols
has been considered. It should be clear by now that the polynomial f is actually of no
concern, since it is just a random polynomial. The concern is rather the secret a. Thus,
the notation can be made even more compact by suppressing f from it. Hence, from
this point let [a]t = [a; fa]t.

Throughout this section, the focus has been on passive security and protocols that are
passively secure. The techniques presented are among those used in practice. However,
in practice it is often not sufficient to assume only passive adversaries, one must also
consider active ones.
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2.4 Actively Secure MPC Protocols
In this section a few suggestions on how to deal with an active adversary is given. As
mentioned previously an active adversary may deviate from the protocol, thus an actively
secure protocol must be able to either verify that transmitted messages are valid or to
correct invalid ones. Both these options are considered in the following. First, an error-
correcting algorithm is presented.

2.4.1 Error-Correcting Algortihm

The error-correcting algorithm can be used in reconstruction phases, to ensure that the
correct value is reconstructed even if t parties have transmitted an erroneous share of
the value. There is, however, an upper bound on t, namely 3t+ 1 ≤ n.

Suppose that a party receives shares of a value, a, from all parties and wants to recon-
struct a. Refer to the share received from party Pi as yi. The points (1, y1), . . . , (n, yn)
are then points on the polynomial fa, which in zero evaluates to a. However, it is pos-
sible that fa(i) 6= yi for up to t of the points, since at most t parties are corrupted
by an active adversary. Thus, Lagrange interpolation is not a good option, since it is
unknown which points are correct and which are not. Instead, the idea is to define two
polynomials e(x) and h(x) such that fa(x)e(x) = h(x). Hence, if somehow h(x) and
e(x) can be determined, then fa(x) can be calculated as well.

e(x) is called an error locator polynomial and is a degree t polynomial that is defined
as being zero for all i where yi is incorrect. This is written formally as,

e(i) = 0 whenever fa(i) 6= yi, 1 ≤ i ≤ n. (2.60)

As stated, it is required that the degree of e(i) is t, but recall that fa(i) 6= yi for at
most t points. For this reason e(i) is allowed to be zero for other i than those where
fa(i) 6= yi as long as it is degree t.

An important property of e(i) is that

yie(i) = fa(i)e(i), 1 ≤ i ≤ n. (2.61)

Now, if h(x) is defined as the 2t degree polynomial h(x) = fa(x)e(x), it is seen that

yie(i) = h(i), 1 ≤ i ≤ n. (2.62)

This means that the coefficients of h(x) and e(x) can be determined by solving the
following n equations in 3t+ 1 unknowns

y1

e(1)︷ ︸︸ ︷
(e0 + e1 + . . .+ 1t) =

h(1)︷ ︸︸ ︷
h0 + h1 + . . .+ h2t12t (2.63)

...

yn

e(n)︷ ︸︸ ︷
(e0 + e1n+ . . .+ nt) =

h(n)︷ ︸︸ ︷
h0 + h1n+ . . .+ h2tn

2t, (2.64)
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where et = 1. This system can be solved, since if it were so that y1, . . . , yt were erroneous,
then fa(x) can be calculated based on interpolation of the correct points, e(x) can be
stated as

e(x) = (x− 1) · · · (x− t), (2.65)

and h(x) can be calculated from fa(x) and e(x). In this way, two polynomials, e(x) and
h(x), that satisfy Equation (2.62) exist. In a similar way, two polynomials, e(x) and
h(x), must exist when it is unknown which t of the yi values are erroneous.

In fact, there may be several e(x) and h(x) polynomials that satisfiesEquation (2.62)
and thus it cannot be guaranteed that e(x) and h(x) are unique. Nonetheless, it can be
guaranteed that fa(x) is unique. This result is stated in Lemma 2.2.

Lemma 2.2
Let (e1(x)), h1(x)) and (e2(x), h2(x)) be two distinct pairs of polynomials that both
satisfy Equation (2.62) for a known set of points (x1, y1), . . . , (xn, yn). Furthermore,
e1(x) and e2(x) are of degree t, h1(x) and h2(x) are of degree 2t and 3t+ 1 ≤ n. Then
it holds that

h1(x)
e1(x) = h2(x)

e2(x) . (2.66)

Proof. In the sequel, it is shown that

h1(x)e2(x) = h2(x)e1(x), (2.67)

holds. Note that, h1(x)e2(x) and h2(x)e1(x) are polynomials of degree at most 3t. By
subtracting these polynomials, a new polynomial of degree at most 3t is formed as

R(x) = h1(x)e2(x)− h2(x)e1(x). (2.68)

Now, from Equation (2.62), the following holds

yie1(xi) = h1(xi) and yie2(xi) = h2(xi), ∀ i = 1, . . . , n. (2.69)

Using this in Equation (2.68), with 1 ≤ i ≤ n, yields

R(xi) = (yie1(xi)) e2(xi)− (yie2(xi)) e1(x) (2.70)
= 0 (2.71)

This shows that R(x) has at least n roots. Since 3t < n, R(x) has more zeros than its
degree and thus it must be the zero polynomial. This concludes the proof.

The algorithm is known as the Berlekamp-Welch algorithm and is written formally
in Algorithm 2.1.
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Algorithm 2.1 (Berlekamp-Welch Algorithm)
Let f(x) be the degree t polynomial, that is to be reconstructed using n known but
possibly erroneous points. Denote the points as (x1, y1), . . . , (xn, yn) where xi 6= xj
for i 6= j, and furthermore let f(xi) 6= yi for at most t ≤ n−1

3 values of i. Note that
previously it was assumed that x1 = 1, . . . , xn = n, however, generally this does not
have to be the case.

1. Define the vectors

x =



e0
e1
...

et−1
h0
h1
...
h2t


, b =


−y1x

t
1

−y2x
t
2

...
−ynxtn

 , (2.72)

where e0, . . . , et−1, h0, . . . , h2t are unknowns, and the matrix

A =


y1 y1x1 y1x

2
1 · · · y1x

t−1
1 −1 −x1 −x2

1 · · · −x2t
1

y2 y2x2 y2x
2
2 · · · y2x

t−1
2 −1 −x2 −x2

2 · · · −x2t
2

...
...

... . . . ...
...

...
... . . . ...

yn ynxn ynx
2
n · · · ynx

t−1
n −1 −xn −x2

n · · · −x2t
n

 . (2.73)

2. Solve
Ax = b, (2.74)

for x.

3. Construct e(x) as the polynomial

e(x) = e0 + e1x+ · · ·+ xt, (2.75)

and h(x) as the polynomial

h(x) = h0 + h1x+ · · ·+ h2tx
2t. (2.76)

4. f(x) is given as

f(x) = h(x)
e(x) . (2.77)

The algorithm is from [Smart, 2016, p. 411].
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This section has provided an algorithm to reconstruct the correct secret in the output-
reconstruct phase of a secure protocol, even if active adversaries has corrupted up to one
third of the parties. Sometimes it is necessary to verify shares during protocol execution,
without having to open secrets. The following section introduces a way to do this.

2.4.2 Verification of Shares

In this section, the method of verification of shares is introduced. To do this, the
general protocol used in passively secure protocols, Protocol 2.8, is adjusted to included
verification of shares whenever needed. To see the proofs of security of the protocols in
this section refer to [Beerliová-Trubíniová and Hirt, 2008].

Recall that Protocol 2.8 consists of an input-sharing phase, a computation phase,
and an output-reconstruction phase. Here, a preprocessing phase is added in the begin-
ning. The preprocessing phase is in [Beerliová-Trubíniová and Hirt, 2008] referred to as
a preparation phase, thus this section will follow the terminology of the source and use
the word preparation phase.

The following gives an overview of the phases and states where verification of mes-
sages is needed.

1. Preparation phase: This phase consists of the creation of all the Beaver’s triplets
needed for protocol execution. Recall that using Beaver’s trick to create a Beaver’s
triplet, every party must choose a random number, which they distribute. Since
corrupted parties can deviate from the protocol, it is necessary to ensure that the
values are random and that they have been distributed correctly.

2. Input-sharing phase: In this phase each party holding an input distributes it.
No message verification is needed in this phase.

3. Computation phase:
Linear function: Each party applies the linear function on their shares. No mes-
sages are sent and therefore no verification is required.
Multiplication: Use Protocol 2.12. The values d and e are opened, thus verifica-
tion of shares is necessary.

4. Output-reconstruction phase: In this phase the parties broadcast the values
needed to reconstruct the output value. It is thus necessary to verify the shares.

Assume throughout the section that t < n
3 , where n is the number of participating

parties and t is the number of corrupted parties. First, consider how the preparation
phase can be constructed to ensure correct creation of Beaver’s triplets.

Preparation phase

As described, the goal of the preparation phase is to create a number of Beaver’s triplets.
The first issue is to be able to create a random number, which is unknown to all parties.
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Imagine that Beaver’s trick is used. Since the adversary is assumed to be active, it is
possible that corrupted parties have not chosen a random number and that they have
not distributed the number with a polynomial of the correct degree. To overcome these
two issues, it turns out that so-called hyper-invertible matrices can be of help.

Definition 2.11 (Hyper-invertible Matrices)
A r × c matrix M , of which every square sub-matrix is invertible, is called a hyper-
invertible matrix. Specifically, let R ⊆ {1, . . . , r} and C ⊆ {1, . . . , c} with
|R| = |C| > 0 and let MR be the matrix consisting of the rows i ∈ R of M and
MC be the matrix consisting of the columns j ∈ C of M . M is hyper-invertible, if
for any R,C as defined above the matrix (MR)C is invertible. [Beerliová-Trubíniová
and Hirt, 2008].

It is not necessary to know how hyper-invertible matrices can be created in order to
understand how they are used to generate shares of random numbers, however a way to
do so is given in Appendix A.

Two useful properties of hyper-invertible matrices are given in the following lemmas.

Lemma 2.3
LetM be a n×n matrix, that is hyper-invertible and let [y1, . . . , yn] = M [x1, . . . , xn].
For any A,B ⊂ {1, . . . , n} with |A|+ |B| = n, there exist an invertible map f : Fpn →
Fpn, that maps the values {xi}i∈A, {yi}i∈B to the values {xi}i∈Ā, {yi}i∈B̄. [Beerliová-
Trubíniová and Hirt, 2008].

Proof. Let y = Mx and yB = MBx = MA
BxA +M Ā

BxĀ. Since M is hyper-invertible,
xĀ = (M Ā

B)−1(yB −MA
BxA). yB̄ is computed similarly.

Lemma 2.4
LetM be a n× n matrix, that is hyper-invertible and let φ : Fpn → Fpn be the linear
map induced by M . If k of the input coordinates are fixed to arbitrary values, then
the affine map φ′ induced by φ from the remaining n − k input coordinates to any
n− k output coordinates, is a bijection.

Proof. The n − k input coordinates corresponds to a subset, C, of the columns of M ,
and the n − k output coordinates corresponds to a subset, R, of the rows of M . Let
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z ∈ Fpn−k be an input vector to φ′ and consider x ∈ Fpn, where xC = z and xC̄ consists
of the k fixed coordinates. Then

φ′(z) = MRx = MC
RxC +M C̄

RxC̄ . (2.78)

It is easy to see that φ′ is a bijection, since M C̄
RxC̄ is fixed and MC

R is invertible.

A hyper-invertible matrix is then used in the following way. First, all parties agree
on a hyper-invertible matrix M , which is available to all parties. Then, each party, Pi,
generates and distributes a random value si. Note that it is not assumed that all parties
are honest, thus some si values may be erroneous in some way. The properties ofM , al-
lows the parties to check some shares for consistency, while keeping the remaining shares
random and unknown. How a consistency-check is done, is stated in Definition 2.12.

Definition 2.12 (Consistency-check)
When a party, Pi, does a consistency-check of [s]t, it means that Pi receives all shares
of [s]t and checks that all shares lie on a degree t polynomial. If this is the case, [s]t
is consistent, if not Pi declares failure.

Protocol 2.13 states the protocol for producing n− 2t random numbers and after-
wards it is shown that the protocol produces consistent sharings, and that the produced
numbers are random and unknown to the adversary.

Protocol 2.13 (Generate Random Numbers)
Given a hyper-invertible matrix M that is publicly known.
Outputs [r1]t, . . . , [rn−2t]t, where r1, . . . , rn−2t er random, unknown numbers.

1. Every party Pi, i = 1, . . . , n, chooses a random value si and distributes [si]t.

2. The players compute

([r1]t, . . . , [rn]t) = M([s1]t, . . . , [sn]t). (2.79)

3. For i = n− 2t+ 1, . . . , n, every party Pj , j = 1, . . . , n, sends their share of [ri]t
to Pi. Pi then checks that [ri]t is consistent, and if not, Pi declares failure.

4. If no party has declared failure, the n− 2t sharings [r1]t, . . . , [rn−2t]t are output
of the protocol.

The protocol is from [Beerliová-Trubíniová and Hirt, 2008].
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Lemma 2.5
If 3t < n, Protocol 2.13 outputs n − 2t consistent sharings when up to t out of n
parties are corrupted by an active adversary, [Beerliová-Trubíniová and Hirt, 2008].

Proof. In step 3. of Protocol 2.13, 2t of the [ri]t sharings are checked for consistency
by 2t distinct parties. Note that, t of the parties checking a sharing can be corrupted.
However, if all parties having checked a sharing for consistency, says "accept", then out
of the 2n sharings [s1]t, . . . , [sn]t, [r1]t, . . . , [rn]t, at least n must be consistent. Namely,
the n − t sharings inputted by honest parties, and the t sharings checked by honest
parties. In this way, according to Lemma 2.3, all 2n sharings must be consistent, since
the remaining sharings can be computed from the consistent ones.

Lemma 2.6
Even if an adversary has corrupted up to t out of n parties, where 3t < n, Proto-
col 2.13 outputs n − 2t sharings of numbers which are random and unknown to the
adversary, [Beerliová-Trubíniová and Hirt, 2008].

Proof. To see that the outputted sharings are unknown to the adversary, note that the
adversary knows t of the input sharings, sk, namely those given by corrupt players, and
it also knows at most t output sharings, rk, namely those reconstructed by corrupted
players. According to Lemma 2.3, a total of n input/output values are needed to
construct the remaining n input/output values. Since 2t ≤ n, the adversary cannot
construct the input/output values that it does not know.

To see that the outputted sharings are random, note that according to Lemma 2.4,
when fixing the 2t sharings known by the adversary, there exist a bijective mapping from
any other n − 2t sharings inputted by honest players to the outputted sharings. Since
the honest players have chosen random numbers, the bijective mapping ensures that the
outputted sharings are also random.

The parties can now generate random numbers, and thus they can generate the
values a and b of a Beaver’s triplet. Consider now how the parties can compute the
last value c = ab. As they did in the case of a passive adversary, the parties can use
Protocol 2.10. However, this protocol involves that each party distributes a value, and
thus this distribution must be validated. This can be done by using a reconstruction
protocol, which includes verification of shares.

Protocol 2.14 (Reconstruction)
Given PR, which is the party allowed to reconstruct [s]t.
Outputs s only for PR to know.
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1. Every party Pi sends their share of [s]t to PR.

2. In the case that there exists a degree t polynomial f such that all shares lie on
it, PR computes s = f(0). Otherwise PR declares failure.

The protocol is from [Beerliová-Trubíniová and Hirt, 2008].

Now a protocol for the generation of Beaver’s triplets can be stated.

Protocol 2.15 (Generate Triplet)
Given [a]t, [b]t, [r]t, [r]2t, where a, b and r are random numbers and 2t < n.
Outputs ([a]t, [b]t, [c]t), where c = ab.

1. The parties compute [c]2t = [a]t[b]t.

2. The parties compute [q]2t = [c]2t − [r]2t.

3. Use Protocol 2.14 towards all parties to reconstruct q publicly.

4. The parties compute [c]t = [r]t + q.

5. The output of the protocol is ([a]t, [b]t, [c]t).

The protocol is from [Beerliová-Trubíniová and Hirt, 2008].

Remark, it must also be checked that the sharings [r]t and [r]2t, indeed reconstructs
the same value r. This can be achieved by modifying Protocol 2.13, like it is done
in [Beerliová-Trubíniová and Hirt, 2008, p. 10]. Here, it is preferred to keep things as
simple as possible, thus the modification is not implemented.

Yet, it has not been explained what to do when a party has declared failure in any
of the protocols presented in this section. To this report, it is not of great importance
how to handle this in practice, it is only important that there is a way to handle it.
In [Beerliová-Trubíniová and Hirt, 2008], a technique called player-elimination is used
to eliminate parties that are assumed to be corrupt. This method is here described
concisely and the interested reader can read more in [Beerliová-Trubíniová and Hirt,
2008, p. 12].

Basically, when a party has declared failure, it must be determined which party
caused the failure, and then this party is eliminated from any further participation.
To keep of track of declared failures, each party is equipped with a bit that tells if
the party is either happy or unhappy. For instance, a party declares failure by setting
his happy-bit to unhappy. To find out whether any failures has happened, a so-called
consensus-protocol is used. This protocol allows all parties, Pi, holding a value xi, to
reach an agreement on a value x if xi = x ∀ i.
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The preparation-phase, as stated in [Beerliová-Trubíniová and Hirt, 2008, p.12], is
given in Protocol 2.16.

Protocol 2.16 (Preparation)
Given L, which is the number of Beaver’s triplets needed for the computation phase.
Let a segment denote the generation of one Beaver’s triplet.
Outputs L Beavers triplets.

1. For each segment k = 1, . . . , L do:

(a) Every party sets their happy-bit to happy.
(b) Triplet Generation: Protocol 2.15 is invoked to generate a Beaver’s triplet.
(c) Fault Detection: The parties must reach agreement on whether or not at

least one party is unhappy:
i. Every party Pi broadcasts their happy-bit. If party Pi receives at least

one unhappy-bit, Pi gets unhappy.
ii. The parties run a consensus protocol on their happy-bits. If they are

all happy, the generated triplet are correct and the segment is finished.
Otherwise, proceed to the following step.

(d) Fault Localization: Localize E as a subset of the parties, with |E| = 2 and
at least one party being corrupt:
i. Choose a party, Pr, as referee.
ii. Every party, Pi, sends everything they have received and every random

number they have chosen during the actual segment to Pr.
iii. Pr reproduces every message, x, that should have been sent to Pi from

Pj and checks if this is in agreement with the message, x′, that Pi
claims to have received from Pj . If x 6= x′, Pr broadcasts (l, i, j, x, x′),
where l is the index of the message.

iv. The accused parties broadcasts whether they agree with Pr. If Pi
disagrees, E = {Pr, Pi}, if Pj disagrees, E = {Pr, Pj}. Otherwise,
E = {Pi, Pj}

(e) Player Elimination: Eliminate the parties in E from the protocol, set n =
n− 2, t = t− 1, and repeat the segment.

The protocol is from [Beerliová-Trubíniová and Hirt, 2008].

The preparation-phase consists of many computations, and thus it may be time
consuming. However, remark that this phase can be completed before the parties has
even decided on an input to the actual computation.
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Computation phase

Consider now the computation-phase. As seen in the beginning of this section, there is no
verification of shares for an addition protocol. Thus, solely a protocol for multiplication
is presented, see Protocol 2.17. This protocol is very similar to Protocol 2.12, the
only difference being that broadcasted values needs to be verified in Protocol 2.17.

Protocol 2.17 (Computation phase: Multiplication)
Given that the parties hold [a]t and [b]t and a Beaver’s triplet ([α]t, [β]t, [γ]t).
Outputs [y]t, y = ab.

1. The parties computes [d]t = [a]t − [α]t and [e]t = [b]t − [β]t.

2. Invoke Protocol 2.14 towards all parties to publicly reconstruct d and e.

3. The parties compute

[y]t = de+ d[β]t + e[α]t + [γ]t. (2.80)

The protocol is from [Beerliová-Trubíniová and Hirt, 2008].

Output-reconstruction phase

The last phase to consider is output-reconstruction. However, the protocol to use has
already been introduced as Protocol 2.14. It should be noted that when a value is
opened, as y for instance is in the reconstruction phase, all parties can broadcast their
share of y and each party uses Protocol 2.14 on their received shares. This is more
efficient than if each party secretly sends their share to each of the other parties.

2.5 Summary
In this chapter an introduction to secure MPC has been presented. As described, the
objective of secure MPC is to create secure protocols that allow a set of parties to
calculate a function of each of their individual input, without them having to reveal
their input. Secure MPC also takes into account that adversaries may attempt to attack
these protocols. There is distinguished between a passive adversary and an active one.
The former follows the protocol, but attempts to obtain information any way he can,
while the latter is assumed to also deviate from the protocol.

The building block of the secure protocols presented in this report is secret sharing
schemes. A secret sharing scheme is a method for a party to share a secret value
with other parties, without actually revealing what the secret is. There exists different
schemes for this, in this report solely two has been presented. One is the additive
secret sharing scheme, which creates shares of a secret in such a way that the sum of all
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shares equals the secret. The second one is Shamir’s secret sharing scheme, which uses
a polynomial of degree t to create the shares. In this way only t+ 1 shares are necessary
to reconstruct the secret, which can be done by using Lagrange interpolation.

Passively secure protocols for addition and multiplication were stated and two dif-
ferent approaches to deal with active adversaries was presented.



Part II

Application
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Prerequisites
The remaining part of this thesis is concerned with using the gained knowledge about
secure MPC to convert simple known algorithms to secure MPC protocols. The goal
is to understand the implications and pitfalls of doing this conversion, and to compare
the results gained from a secure implementation to a non-secure implementation of the
algorithms.

For the protocols stated in this part of the report, it is assumed that Shamir’s secret
sharing scheme is used. However, it is actually not a must, since any secret sharing
scheme with secure addition and multiplication can be used. To underline this fact, the
notation of the sharings of a secret x, which is [x]t, will from now be denoted as [x].

The following still holds for two secrets a, b:

[a] + [b] = [a+ b], (2.81)
k[a] = [ka], (2.82)

[a][b] = [ab]. (2.83)

Unless otherwise stated, all arithmetic in the rest of the report is finite field arith-
metic. Furthermore, the adversary in the protocols stated in the remaining chapters is
assumed to be passive.





3
Gradient Descent as a Secure MPC
Protocol

The objective in this chapter, is to get some experience in converting an algorithm to
a secure protocol and learn what some of the challenges might be. Thus, accuracy of
the protocol is not the main concern, even though the matter is discussed at the end.
It is desired to keep things simple, such that it is not the algorithm itself that causes
difficulties, rather the focus is on understanding the implications of the secure MPC
setup. At the same time it is desired to investigate algorithms that is of interest to
the field of control, thus the optimization algorithm gradient descent is chosen. For the
sake of keeping things simple, a quadratic function is chosen as cost function for the
optimization.

Section 3.1 provides a short introduction to the method of gradient descent. In
Section 3.2 it is discussed how the gradient descent method could be converted to a
secure MPC protocol. Section 3.3 provides simulations of both the gradient descent
algorithm and the secure gradient descent protocol. Finally, Section 3.4 provides a
summery of the chapter.

The reader is assumed to be familiar with the method of gradient descent, thus the
following method is meant as a recap.

3.1 Method of Gradient Descent
Suppose that it is desired to minimize some convex cost function, f : Rm → R. By as-
suming the function is convex any local minimum is the global minimum. More precisely,
there exist x∗, for which it holds that

f(x∗) ≤ f(x) ∀ x ∈ Rm. (3.1)

43
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The minimum can be found by an iterative process of updating a point xk ∈ Rm, at
each iteration k, by moving it a step in the direction of the negative gradient. At each
iteration it holds that f(xk) < f(xk−1) until xk = x∗. The size of the step can be
either fixed or at each iteration obtained by a line search method. The interested reader
is referred to [Boyd and Vandenberghe, 2004, pp. 464 - 466] to learn about line search
methods and for a more thorough review on the method of gradient descent. Here it is
sufficient to state the method formally, see Algorithm 3.1.

Algorithm 3.1 (Gradient Descent)
Input: A starting point x0 ∈ Rm.

1. For k = 0, . . ., till stopping criterion is reached, do:

(a) ∆x = −∇f(xk),
(b) Either use γ = C > 1, where C ∈ R is a fixed constant, or obtain γ through

a line search method.
(c) xk+1 = xk + 1

γ∆x,

[Boyd and Vandenberghe, 2004, p. 466].

The stopping criterion in Algorithm 3.1 can either be that a fixed number of
iterations is reached, that the difference between xk and xk−1 is below some threshold,
or that the gradient of f(xk) is below some threshold.

One line search method, which is quite efficient, while at the same time being very
simple is backtracking line search. It works in the way that it starts with a somewhat
large estimate of the step size, and then reduces it iteratively until a satisfying reduction
of the cost function is achieved. The backtracking line search is formally introduced in
Algorithm 3.2.

Algorithm 3.2 (Backtracking Line Search)
Input: a descent direction ∆x for f(x), α ∈ (0, 0.5) and β ∈ (0, 1).

1. Initialize γ = 1.

2. while f(x) + α 1
γ∇f(x)>∆x < f(x+ 1

γ∆x):

(a) γ = β + γ,

[Boyd and Vandenberghe, 2004, p. 464]

As an example, consider the cost function, f : R2 → R, given as

f(x) = (x+ [−5, 0]>)>(x + [−5, 0]>), (3.2)
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which has optimum value x∗ = [5, 0]>. Figure 3.1 (a), (b), (c) and (d) depicts f(x),
along with the decreasing sequence of {f(xk)}k=0,...,20, where the sequence {xk}k=0,...,20
is obtained using Algorithm 3.1. Figure 3.1 (a) and (b) use a fixed, but distinct γ,
whereas (c) and (d) use backtracking line search both with α = 0.1, but distinct β. For
all figures x0 = 20.
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(c) β = 0.3.
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(d) β = 0.7.

Figure 3.1: Illustration of Algorithm 3.1 for finding the minimum of f(x) = (x + [−5, 0]>)>(x +
[−5, 0]>), which has optimum value x∗ = [5, 0]>. The values x0 = 20 are chosen for all figures. (a)
and (b) use a fixed γ, with different values, while (c) and (d) use backtracking line search both with
α = 0.1, but with different β.

Now, the challenge turns up, if it is desired to keep the cost function, f(x), se-
cret and calculate the minimum privately. The next section discusses how to convert
Algorithm 3.1 to a secure MPC protocol.
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3.2 Converting the Gradient Descent Algorithm to a Se-
cure MPC Protocol

In this section the goal is to create a secure MPC protocol for calculating the gradient
descent solution to the problem of minimizing a secret function f(x). To restrict the
problem, it is assumed that f(x) is a quadratic function. The first question that arises
is how to keep a function secret. In the scope of this chapter, it is assumed that the form
of the function is public, but coefficients are secret. This means that, assuming f(x) is
differentiable and that its gradient can be found analytically, the form of the gradient
is public as well, which again in many cases entails that the parties can compute the
optimal value, x∗, from the secret coefficients of the function. However, as the purpose
of this chapter is to gain knowledge on creating secure protocols, assume that the parties
must estimate both the gradient and the optimal value, where the latter is achieved using
a secure implementation of the gradient descent algorithm.

To convert Algorithm 3.1 to a secure MPC protocol, the steps (a),(b),(c) of
Algorithm 3.1 are discussed in order to find a secure MPC equivalence. In the first
step, (a), the descent direction is assigned to be the negative gradient of f(x) evaluated
in the k’th estimate of x∗. This step can be achieved securely, by approximating the
gradient using the differential quotient, such that

∇̂f(xk) =
[
f(x+ [h, 0, . . . , 0]>)− f(x)

h
, . . . ,

f(x+ [0, . . . , 0, h]>)− f(x)
h

]>
, (3.3)

where h ∈ R is strictly positive. The estimate of ∇f(x) improves in accuracy as h→ 0.
The obvious problem with this approach is that in the secure protocol h /∈ R, but

rather h ∈ Fp. Thus, h can only be as low as one. What impact this requirement will
have on the final result will be discussed later.

The second step, (b), involves either letting the step size, γ, be a fixed constant, C,
or using a line search method to obtain it. By letting C ∈ Fp be a positive integer the
former choice is easy to perform in a secure protocol. For the later choice, backtracking
line search can be used. As seen in Algorithm 3.2, this method requires two operations
not yet considered in this report, namely comparison and division.

The comparison operation is tricky to convert to a secure MPC protocol. The reason
is that a finite field is not an ordered field. To see this, consider the following relations
between field elements of a finite field Fp:

0 < 1 + 1 < · · · < 1 + . . .+ 1︸ ︷︷ ︸
p times

= 0. (3.4)

However, what can also be seen from Equation (3.4), is that it is possible to compare
two elements of a finite field as long as none of the elements has made a so-called wrap-
around. To see what is meant by a wrap-around, consider the example where a value
a ∈ Fp is increased but the outcome is less than a. For instance, (a + r) mod p < a
or (ar) mod p < a for r ∈ Fp. This, is in the report referred to as a wrap-around p.
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Similarly, a value a ∈ Fp has wrapped-around zero if (a− r) mod p > a. How to handle
these wrap-arounds, when it is desired to do comparison is discussed later.

Something similar is the case for division. First of all, it is important to note that
division in the finite field Fp does not produce even nearly the same result as division in
R . To see this, consider the inverse of 5, which in R is 0.2. Considering the finite field
F7, the inverse of 5 can be found by finding a field element, e, such that

5e mod 7 = 1. (3.5)

In this way, it is seen that the inverse of 5 ∈ F7 is 3. Similarly, considering F11,
5−1 mod 11 = 9. Hence, division in a finite field has little to do with division in
R . If results produced by a secure implementation of Algorithm 3.1, should be com-
parable to results produced by Algorithm 3.1, division cannot be carried out in the
finite field. Neither can the division be carried out in R , since this possibly will produce
a non-integer result, which can then not be represented in Fp for further calculations.
Here, this problem is solved by approximating the division with integer division, mean-
ing that an integer result is guaranteed. In some cases it may be necessary to introduce
scaling to keep the error, introduced by the approximation, from being too large. Note
that, similarly to comparison, when doing integer division in a secure MPC protocol the
result will not be as expected if a wrap-around has occurred for either the dividend or
divisor. How to handle this is discussed later in the report. Finally, it should be noted
that integer division by a public constant is much less complicated than division by a
secret. For this reason, it is assumed that γ is publicly known.

The final step (c) also relies on division, but besides of that it does not need any
protocol not already presented in this report. The following two sections discusses the
creation of secure MPC protocols for comparison and integer division by a public con-
stant, respectively.

3.2.1 Secure MPC: Comparison

The objective is now to create a secure MPC protocol for comparison, or more accurately
a "less-than" protocol. The ideas in the work [Damgård et al., 2006] are used and the
reader is referred to this work for the proofs of the protocols presented in this section.
The protocol takes inputs a, b ∈ Fp and outputs 1 if a < b and 0 otherwise. State-of-
the-art secure MPC protocols for comparison relies on bit decomposition. To see why
it is useful to compare bit representations, assume that a 6= b and let a0, . . . , al−1 be
such that a =

∑l−1
i=0 ai2i and let b0, . . . , bl−1 be such that b =

∑l−1
i=0 bi2i. Now, if i0 is the

largest index i where it holds that ai 6= bi, then a < b if and only if bi0 = 1.
To determine if ai 6= bi, the bitwise operations exclusive OR (XOR), which is sum-

mation modulo 2, and prefix-OR (PRE-OR), is used. The PRE-OR of a bit-sequence k
defines a new bit-sequence k′, such that

k′i = ∨l−1
j=ikj . (3.6)

As seen by Equation (3.6), the PRE-OR can be computed by using the bitwise OR-
operator multiple times.
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For this reason, this section will beside from introducing a secure comparison proto-
col, introduce secure sub-protocols for the XOR and OR operations. Before this is done,
an arithmetic approach to evaluating the truth of a < b, is stated in Algorithm 3.3.

Algorithm 3.3 (Less-Than)
Input: a, b ∈ Fp.

Output: y =
{

1 if a < b

0 otherwise

1. Define (a0, . . . , al−1) and (b0, . . . , bl−1), where ai, bi ∈ {0, 1} for i = 0 . . . , l − 1,
such that a =

∑l−1
i= ai2i and b =

∑l−1
i= bi2i.

2. Define the bit-sequence (e0, . . . , el−1), where ei = ai ⊕ bi.

3. Define the bit-sequence f0, . . . , fl−1, where fi = ∨ij=0ej .

4. Define the bit-sequence g0, . . . , gl−1, where gi = fi − fi+1 for i = 0 . . . , l − 2 and
gl−1 = fl−1.

5. Define the bit-sequence h1, . . . , hl−1, where hi = gibi.

6. y =
∑l−1
i=0 hi.

This algorithm is written with inspiration from [Damgård et al., 2006].

A few arguments to the correctness of Algorithm 3.3 is given. Suppose that it
is desired to determine whether a < b, where a 6= b for two integers a, b. Defining
a0, . . . , al−1 and b0, . . . , bl−1 such that a =

∑l−1
i=0 ai2i and b =

∑l−1
i=0 bi2i, respectively.

Then, recall that if i0 is the largest index i where it holds that ai 6= bi, then a < b if
and only if bi0 = 1. Thus, by producing a bit-sequence, g = (g0, . . . , gl−1), that is zero
everywhere except for the i0’th bit, then

∑l−1
i=0 bigi produces a 1 if a < b and 0 otherwise,

which is done in steps 5. and 6. in the algorithm.
Now, consider the creation of g. g can be produced by first taking the XOR between

the bit representations of a and b. This will produce a bit-sequence, e = (e0, . . . , el−1)
which is 1 in ei0 and 0 in ei for i > i0.

To make ei = 0 for i < i0, involves calculating the PRE-OR of e. This creates a
bit-sequence f = (f0, . . . , fl−1), where fi = ∨l−1

j=1ej . This means that fi = 0 for i > i0
and fi = 1 for i ≤ i0. Then g is created by gi = fi− fi+1 and gl−1 = fl−1. In this way,
g is a bit sequence, where gi0 = 1 and gi = 0 for ∀i 6= i0.

To convert Algorithm 3.3 to a secure MPC protocol, it is necessary to introduce
secure protocols for the XOR and PRE-OR operations. Computing the XOR of two bits
securely is not complicated and thus this protocol is stated without further introduction.
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Protocol 3.1 (XOR)
Given that the parties hold [a1] and [b1], where a1, b1 ∈ {0, 1}.
Outputs [y], where y = a1 ⊕ b1, where ⊕ denotes the XOR operator.

1. The parties compute [d] = [a1]− [b1].

2. The parties compute [y] = [d][d].

Proof. Security of Protocol 3.1, follows from the fact that it relies solely on addition
and multiplication, which both previously have been proved to be secure. That the
protocol returns the correct result is trivial.

Computing the PRE-OR of a bit-sequence securely can be done by using a secure
implementation of the OR-operator on an input bit-sequence. The OR-operation of a
bit-sequence, (a0 . . . , al−1), is 0 if ai = 0, ∀i and 1 if ai = 1 for at least one i = 0, . . . , l−1.
There is a simple formula for this computation which is stated in Protocol 3.2.

Protocol 3.2 (OR)
Given That the parties hold [a0], . . . , [al−1], where (a0, . . . , al−1) is a bit-sequence of
l bits.
Outputs [y], where y = ∨l−1

i=0ai.

1. The parties invoke Protocol 2.10 to compute [y] = 1−
∏l−1
i=0(1− [ai]).

Proof. Security of Protocol 3.1, follows from the fact that it relies solely on secure
protocols. Correctness of the protocol is trivial.

Finally, the secure "less-than" protocol can be stated, but before doing so notation
for a bitwise shared secret is introduced.

Definition 3.1
Let a ∈ Fp and let a0, . . . , al−1 be the bit representation of a, such that a =

∑l−1
i=0 ai2i

and let P1 . . . , Pn be parties. Saying that a is bitwise shared, noted [a]B, means that
the parties hold [a0], . . . , [al−1].

Protocol 3.3 (Less-Than)
Given that the parties hold [a]B and [b]B.

Outputs [y], where y =
{

1 if a < b

0 otherwise
.
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1. For i = 0, . . . , l−1 the parties invoke Protocol 3.1 to compute [ei] = [ai]
⊕

[bi].

2. The parties invoke Protocol 3.2 multiple times to define ([fl−1], . . . , [f0]), where
[fi] = ∨(l−1)−i

j=0 ej .

3. The parties define [gl−1] = [fl−1].

4. For i = 0, . . . , l − 2 the parties compute [gi] = [fi]− [fi+1].

5. For i = 0, . . . , l − 1 the parties invoke Protocol 2.10 to compute [hi] = [gi][bi].

6. The parties compute [y] =
∑l−1
i=0[hi].

The protocol is from [Damgård et al., 2006, p. 297].

The proof of Protocol 3.3 can be found in [Damgård et al., 2006].
As discussed, to do comparison it is required that the inputs are represented by bits.

This means that to compare two secrets, a secure protocol for bit decomposition is a
necessity. The following section introduces this protocol.

3.2.2 Secure MPC: Bit Decomposition

Decomposing a shared secret into sharings of its bits can be done by adding a random
number, r, to the secret, a, such that a value, v, which can be opened is obtained. By
bit-decomposing v and afterwards bit-wise subtracting r, a secret bit-decomposition of
a is obtained. The requirement is that the parties can obtain sharings of a uniformly
random number, [r], as well as sharings of its bit-representation, [r]B. This can be done
by the parties first obtaining [r]B and afterwards calculates [r]. How to obtain a bitwise
shared random number is described in [Cramer et al., 2015, p. 190]. For the rest of the
report, it is assumed that the parties can obtain sharings [r] and [r]B in a preprocessing
phase.

Before formally stating a secure protocol for bit-decomposition, consider a secure
protocol for binary subtraction. A binary subtraction is done by iterating through the
bits starting from the least significant bit and at each calculation keeping track of the
carry bit. Without further introduction the secure protocol for binary subtraction is
stated in Protocol 3.4.

Protocol 3.4 (Binary Subtraction)
Given that the parties hold [a]B and [b]B.
Outputs [y]B, where y = a− b.

1. The parties invoke Protocol 3.1 to compute [y0] = [a0]⊕ [b0].

2. The parties compute [c] = (1− [a0])[b0].
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3. For i = 1, . . . , l the parties do

(a) The parties compute [c′] = [bi][c].
(b) The parties invoke Protocol 3.1 to compute [e] = [bi]⊕ [c].
(c) The parties invoke Protocol 3.1 to compute [yi] = [ai]⊕ [e].
(d) The parties compute [c] = [c′] + (1− [ai])[e].

Proof. Protocol 3.4 is seen to be secure, since it relies solely on secure protocols. Cor-
rectness of the protocol is most easily seen by constructing truth tables. First consider
the bit y0, for which the following truth table can be constructed:

a0 b0 y0 c

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

In the truth table, the different possibilities for the bits a0 and b0 are seen, as well
as the corresponding results for the bit y0 and the carry bit. It is now easy too see that
the formulas

y0 = a0 ⊕ b0, (3.7)
c = (1− a0)b0, (3.8)

gives the desired results. For the subsequent bits yi for i = 1, . . . , l − 1, the following
truth table can be constructed:

ai bi cprev yi cnext
0 0 1 1 1
0 0 0 0 0
0 1 1 0 1
0 1 0 1 1
1 0 1 0 0
1 0 0 1 0
1 1 1 1 1
1 1 0 0 0

In the truth table the possibilities for the bits ai, bi and the carry bit from the
previous calculations, cprev, are seen. Furthermore, the results for the bit yi and the
carry bit for the next calculation, cnext, are stated. Again, it is now easily verified that
the formulas

yi = a0 ⊕ (b0 ⊕ cprev), (3.9)
cnext = bicprev + (1− ai)(bi ⊕ cprev), (3.10)
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gives the desired results.

Now it is straight forward to state the secure protocol for bit-decomposition, see
Protocol 3.5.

Protocol 3.5 (Bit-decomposition)
Given that the parties hold [a], and [r], [r]B, where r ∈ Fp is a l-bit uniformly random
number and [r], [r]B are obtained in a preprocessing phase.
Outputs [a]B.

1. The parties compute [d] = [a] + [r], and opens d.

2. The parties compute the bitwise decomposition of d and distributes [d]B.

3. The parties compute the bitwise decomposition of d′ = d + p and distributes
[d′]B.

4. The parties invoke Protocol 3.3 to securely compute [b] =
{

[1] if d < r

[0] otherwise
,

using [d]B and [r]B.

5. The parties define [s]B, by computing [si] = [b][d′i]+(1−[b])[di] for i = 1, . . . l+1.

6. The parties invoke Protocol 3.4 to compute [y]B = [s]B − [r]B.

The protocol is from [Cramer et al., 2015, p. 189].

Refer to [Cramer et al., 2015, p. 189], for a proof of Protocol 3.5.
To improve readability later in the report, a protocol that combine Protocol 3.5

and Protocol 3.3, is introduced in Protocol 3.6.

Protocol 3.6 (Integer Comparison)
Given that the parties hold a and b.

Outputs [y], where y =
{

1 if a < b

0 otherwise.
.

1. The parties invoke Protocol 3.5 twice to compute both [a]B and [b]B from [a]
and [b], respectively.

2. The parties invoke Protocol 3.3 to securely compute [y] =
{

[1] if a < b

[0] otherwise.
,

using [a]B and [b]B.
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3.2.3 Secure MPC: Division By Public Constant

Protocol 3.7 gives the protocol to divide a secret by a publicly known constant. That
the protocol gives the desired result is trivial and security follows from the fact that only
local computation and secure protocols are used.

Protocol 3.7 (Division By Public Constant)
Given that that parties hold [q] and that k is a publicly known integer.
Outputs [y], where y = bqk−1c.

1. Party P1, chooses a random value r and computes r> = brk−1c.

2. Party P1 distributes both [r] and [r>].

3. The parties compute [z] = [q] + [r].

4. The parties open [z] only for party P2 to see.

5. Party P2 computes z> = bzk−1c and distributes [z>].

6. The parties compute [y] = [z>]− [r>].

The protocol is from [Dahl et al., 2012, p. 12].

Refer to [Dahl et al., 2012, p. 12] for a formal proof of Protocol 3.7.
Finally, the secure protocol for the gradient descent algorithm can be stated in the

following section.

3.2.4 Secure MPC: Gradient Descent

Using the protocols stated in the preceding sections, a secure MPC protocol for the
method of gradient descent can be stated. To improve readability, the protocol is stated
in the two-dimensional case, meaning that the input to the cost function is a scalar
rather than a vector.

Before stating the protocol, there is some unfinished business to attend to regarding
the comparison and division needed in the secure protocol. As described previously,
when doing comparison and division it is critical to handle wrap-arounds appropriately.

Consider first the comparison operation in Algorithm 3.2, restated here for conve-
nience.

f(x) + α
1
γ
∇f(x)>∆x < f(x+ 1

γ
∆x). (3.11)

Assuming that the function f(x) is quadratic, the rightmost term of the inequality is
always positive, thus by choosing p large enough, a wrap-around cannot occur for this
term. However, considering the leftmost term a subtraction is seen. This means that
a wrap-around zero can happen for this term. Fortunately, this can be detected by



54 Chapter 3. Gradient Descent as a Secure MPC Protocol

comparing the minuend and subtrahend, clearly, if the subtrahend is larger than the
minuend a wrap-around zero occurs. Furthermore, if a wrap-around zero has occurred
for the leftmost term of the inequality, the outcome of the comparison should be 1, since
the rightmost term is always positive.

Concerning the division in the protocol, it can be seen that it is solely used to compute⌊
∆x
γ

⌋
, where ∆x is the negative gradient of f(x). However, in the secure protocol it is

beneficial to convert some of the additions to subtractions and defining ∆x = g, where
g is the derivative of f(x). This means that, the division to worry about is

⌊
g
γ

⌋
. γ can

be chosen in such a way that no wrap-arounds occur, so the only worry is g. Recall that
g is approximated by the differential quotient, hence in the secure protocol

g = f(x+ 1)− f(x), (3.12)

since h = 1. If a wrap-around zero has occurred to g, this can again be detected by
comparing the minuend and subtrahend in Equation (3.12). By noting that −ab =
−
(
a
b

)
, it suffices to "remove" the wrap-around from g before the division and adding it

again after the division. This is all done securely in Protocol 3.8.
Previously, it was also noted that some times it can be beneficial to introduce scaling

in connection to integer division, thus protocol Protocol 3.8 is built such that it con-
siders both the case where scaling is desired and the case where it is not. Later, results
of both options are compared.

Protocol 3.8 (Gradient Descent)
Given that f(x) is a convex function with secret, integer coefficients that can be
evaluated using only addition and multiplication. The parties hold all coefficients of
f(x) and [xstart]. The scaling constant C, the step size γ, and the integer maxiter are
public.
Outputs [xmaxiter ], where xmaxiter is the estimate of x∗ after maxiter iterations.

1. If scaling is desired: The parties compute [x0] = C[xstart]. Otherwise:
[x0] = [xstart].

2. For k = 0, . . . till maxiter − 1 is reached, do:

(a) If scaling is desired: The parties invoke Protocol 3.7 to compute
[xk] =

⌊
[xk]
C

⌋
.

(b) The parties compute [g1] = f(1 + [xk]).
(c) The parties compute [g2] = f([xk]).
(d) The parties compute [g] = [g1]− [g2].
(e) The parties invoke Protocol 3.6 to securely compute

[H] =
{

[1] if g1 < g2

[0] otherwise
, using [g1] and [g2].



3.3. Simulation 55

(f) The parties compute [S] = (−1)[H] + (1− [H]) = 1− 2[H].
(g) The parties either use γ = C ∈ Fp, where C > 1 is a fixed constant, or

obtain γ using backtracking line search as:
i. The parties set G = 1.
ii. While G = 1, the parties do:

A. The parties invoke Protocol 3.7 to compute [T ] = [S]
⌊

[S][g]
γ

⌋
.

B. The parties compute [T ′] = [g2]− [T ].
C. The parties invoke Protocol 3.6 to securely compute

[K] =
{

[1] if g2 < T

[0] otherwise
, using [g2] and [T ].

D. The parties compute [H] = f([xk]− [T ]).
E. The parties invoke Protocol 3.6 to securely compute

[k] =
{

[1] if T < H

[0] otherwise
, using [T ] and [H].

F. The parties invoke Protocol 3.2 to compute [G] = [k] ∨ [K].

(h) If scaling is desired: The parties compute [xk+1] = [xk]−
⌊
C
γ

⌋
[g]. Otherwise,

the parties compute [xk+1] = [xk]− [T ].

3. If scaling is desired: the protocol returns [Cxk+1].

Proof. Security follows since solely secure protocols are used in the calculations. A
formal proof of correctness of the protocol is not given. However, that the protocol does
output the desired result has been argued for immediately before stating the protocol
and in the beginning of Section 3.2.

3.3 Simulation
In this section Protocol 3.8 is simulated in order to see if it works as intended. For
comparison, also Algorithm 3.1 is simulated. To see how the results from the simula-
tions of the two methods compare, the squared error of the parameter estimate, denoted
e2
k, at each iteration, k, is computed. To be clear

e2
k = (xk − x∗)2 for k = 0, 1, . . . . (3.13)

The following parameters are used for Protocol 3.8 in the calculations:

• The number of parties, n = 4.

• The degree of the polynomial for Shamir’s scheme, t = 1.

• The cardinality of Fp , p = 1125899839733759.
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A cost function to minimize is chosen to be f(x) = (x−[3])2, which clearly has x∗ = 3.
The parameter in common for all simulations are x0 = xstart = 20. Furthermore, for
Protocol 3.8 the scaling constant is chosen to be C = 215. Refer to the estimate of x∗
given by Algorithm 3.1 to each iteration k as xk, and by Protocol 3.8 as xMPCk

.
The rest of the section is divided into the following subsections:

1. Simulations of Protocol 3.8 with fixed γ.

2. Simulations of Protocol 3.8 with backtracking line search.

3.3.1 Simulation of Protocol 3.8 with Fixed γ

Figure 3.2 shows the squared error of approximating x∗ with Algorithm 3.1 and
Protocol 3.8, where a fixed step size, γ = 10 is used. Furthermore, scaling is used in
Protocol 3.8.
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(a) The squared error for the first 25 itera-
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Figure 3.2: Simulation of Algorithm 3.1 and Protocol 3.8 for finding the minimum of f(x) =
(x − 3)2. For both methods a fixed step size, γ = 10 is used. Regarding Protocol 3.8 scaling is used.
Figure (a) shows the squared error of each of the estimates for the first 25 iterations. Figure (b) shows
a zoom on the squared error for 20-50 iterations.

Figure 3.2a shows that the estimates obtained with Protocol 3.8 converges simi-
larly to the estimates obtained with Algorithm 3.1. But, Figure 3.2b reviles that the
estimates obtained with Protocol 3.8 does in fact not converge, rather the estimates
oscillates between two values after the first 20 iterations. This happens because of the
poorly estimated derivative. It can be shown that when xMPCk

= 3, then the derivative
is estimated to be 1, meaning that xMPCk+1 = 3 + γ. When xMPCk

is below 3 the
derivative is estimated to -1, which causes the oscillations. This behavior is actually
avoided when not using scaling in Protocol 3.8.
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Figure 3.3 shows the squared error of approximating x∗ with Algorithm 3.1 and
Protocol 3.8, where a fixed step size, γ = 3 is used. Furthermore, scaling is not used
in Protocol 3.8.
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Figure 3.3: Simulation of Algorithm 3.1 and Protocol 3.8 for finding the minimum of f(x) =
(x− 3)2. For both methods a fixed step size, γ = 3 is used. Regarding Protocol 3.8 no scaling is used.
Figure (a) shows the squared error of each of the estimates for the first 25 iterations. Figure (b) shows
a zoom on the squared error for 20-50 iterations.

The reason that the oscillating behavior is avoided when not using scaling, is that
even though the derivative is still approximated as 1 when xMPCk

= 3, this entails that⌊
g
γ

⌋
= 0, when g = 1 and γ = 3.
It should be noted that if the step size for instance was chosen as γ = 10, the estimate

of x∗ using Protocol 3.8 without scaling, would converge to 7 because the derivative at
this point would be estimated as 9 < 10. Thus, the reason that Protocol 3.8 performs
so good in Figure 3.3, even though scaling is not used, is because γ is very low. This
motives the use of backtracking line search to determine γ.

3.3.2 Simulation of Protocol 3.8 using Backtracking Line Search

Figure 3.4 shows the squared error of approximating x∗ with Algorithm 3.1 and
Protocol 3.8, where a backtracking line search is used to determine the step size, γ, in
each iteration. Furthermore, scaling is not used in Protocol 3.8. For Algorithm 3.1,
the parameters α = 0.1 and β = 0.5 are used.
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Figure 3.4: Simulation of Algorithm 3.1 and Protocol 3.8 for finding the minimum of f(x) =
(x − 3)2. For both methods γ is determined at each iteration using backtracking line search, regarding
Algorithm 3.1, the parameters α = 0.1 and β = 0.5 are used. Regarding Protocol 3.8 no scaling is
used.

3.4 Summery
The focus of this chapter was not to create a perfect, secure MPC optimization protocol.
Rather the goal was to learn about the challenges of converting a known algorithm to
a secure protocol. What was discovered, is that not all operations are as simple to
convert to a secure protocol as addition and multiplication. The reason that addition
and multiplication are quite simple to convert, is that they can be computed directly
on shares. The same cannot be said about operations such as comparison and division,
since comparing shares does not correspond to comparing the secrets. Likewise, will
dividing shares not correspond to division of the secrets.

It was however shown in this chapter that it is possible to create protocols that can
compare secrets through their shares and that can approximately divide secrets through
their shares. It was also pointed out that doing this means that care must be taken when
wrap-arounds occur. For instance, if the operation −2

2 is carried out using finite field
arithmetic on shares in F23, what will be carried out is the operation

⌊
21
2

⌋
= 10 6= −1. A

similar problem arises if it is desired to compare −1 < 5, which in F23 becomes 22 < 5,
which is false, opposite the expected result, which is true.

In Section 3.3 it was shown that similar results are obtained when using a secure
implementation of the gradient descent method and a non-secure implementation. How-
ever, simulations were solely carried out with a simple quadratic cost function such as
f(x) = (x−a)2, where a ∈ Fp. It should be noted that there are still many limitations to
the solution presented in this chapter. For instance, it is required that the cost function
can be evaluated using addition and multiplication and it must have integer coefficients.



4
Pressure Control Algorithm as
a Secure MPC Protocol

In this chapter a simple control algorithm is considered and it is investigated how it can
be converted to a secure MPC protocol.

Section 4.1 gives an introduction to the control algorithm, while Section 4.2 dis-
cusses how it can be converted into a secure MPC protocol. Section 4.3 provides a
simulation of the algorithm as well as a simulation of the secure MPC protocol. Finally,
Section 4.4 provides a summery of the chapter.

4.1 Introduction to the Control Algorithm
This section provides a short presentation of the problem that the control algorithm
solves and finally the algorithm itself is stated.

Consider a water distribution network, which contains a pump, two valves, and two
nodes where the water pressure can be measured. This system is seen at Figure 4.1.

n1

n2

v1

v2

Figure 4.1: A water distribution network with (from the left) a pump, two nodes, and two valves.

Let y1(t) be the measured pressure at node n1 at time t and y2(t) be the measured

59



60 Chapter 4. Pressure Control Algorithm as a Secure MPC Protocol

pressure at node n2 at time t. Assume, that in the system there is a minimum pressure
requirement formulated as

yi(t) ≥ r, ∀ t, and i = 1, 2, (4.1)

where r is the desired pressure, which in this system is assumed to be constant in time
and nodes. In the following, assume that r = 8 bar, and that the pump is running at a
fixed speed, producing a pressure of 8 bar at the nodes when the valves are closed. Note
that if the valves are opened the pressure in the network drops accordingly. Neglecting to
account for any dynamics in the system, Figure 4.2 shows a simulation of the pressure
in the system, where C1(t) is the pressure drop over v1 at time t and C2(t) is the pressure
drop over v2 at time t.

0 10 20 30 40
0

2

4

6

8

t

ba
r

y1(t)
y2(t)
C1(t)
C2(t)

Figure 4.2: Illustration of water pressure and water consumption.

As seen in Figure 4.2, the water pressure at the nodes drops below r multiple times.
This behavior can be accounted for by making the speed of the pump adapt to the water
consumption. Therefore, consider now the distribution network in Figure 4.3, where
the pump is controlled by a signal, κ(t), instead of running at a fixed speed.

κ(t)
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v2

Figure 4.3: A water distribution network with (from the left) a pump, two nodes, and two valves.
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To calculate the control signal, κ(t), it is assumed that the total water demand in
the network is periodic, as C1(t) and C2(t) shows in Figure 4.2, where the length of a
period is seen to be 10. The water pressure is measured at the nodes w times within a
period. The vector of measurements at node i for the k’th period is referred to as yi,k,
and it is assumed that the desired pressure is constant in time and nodes. In this way,
the control parameter vector κk = [κ(1 +k), . . . , κ(w+k)], is the pressure increases that
the pump must deliver at the k’th period.

To determine κk the difference between desired and measured pressure is calculated.
The error vector, ek, for the k’th period, is given as

ek = max
i
{r − yi,k}, i = 1, 2, (4.2)

where r = r1 with 1w ∈ Rw is the vector of ones and max {·} is defined element-wise.
As seen, the value at the j′th entry of ek is the largest difference between measured and
desired pressure amongst the nodes at time j, for j = 1, . . . , w.

The following update law for the control parameter vector, κk+1, for the k + 1st
period is proposed

κk+1 = κk +Kek, k = 1, 2, . . . , (4.3)

where K ∈ R is a control gain, which should be chosen such that 0 < K < 2, to
ensure convergence. The iterative calculation of κk is referred to as the pressure control
algorithm and is stated in Algorithm 4.1.

Algorithm 4.1 (Pressure Control Algorithm)
Constants: r,K, where r is the desired pressure at the nodes and K ∈ R is a control
gain.
Initialization: κ1 = r, where r = r1w.

1. For k = 1, . . . do:

(a) For i = 1, . . . , n, the pressure at node i is measured w times within the
period k. The measurements are collected in a vector referred to as yi,k.

(b) Calculate the error signal ek for the k’th period as

ek = max
i
{r − yi,k}, (4.4)

where max{·} is element-wise.
(c) Calculate the control parameter vector for the next period, k + 1, as

κk+1 = κk +Kek. (4.5)

The algorithm is from [Jensen et al., 2017].
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The interested reader is referred to [Jensen et al., 2017], for a more elaborate pre-
sentation of the algorithm.

Figure 4.4 shows a simulation of the system in Figure 4.3 where Algorithm 4.1
is used to calculate κ(t).
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Figure 4.4: Simulation of the system in Figure 4.3, where Algorithm 4.1 is used to calculate κ(t)
and K = 1.

Now, imagine that the nodes, where the pressure measurements in the network is
made, is placed at the end-users. Then it would be preferred to keep these measurements
secret. Thus, the next section discusses how Algorithm 4.1 can be implemented in the
setting of secure MPC.

4.2 Converting the Pressure Control Algorithm to a Se-
cure MPC Protocol

By assuming that the desired pressure in the nodes, r, is public knowledge, it is seen
from Algorithm 4.1 that the operations needed in the algorithm is max and addition.
The next section will present a secure MPC protocol for computing the maximum of a
number of secret values.

4.2.1 Secure MPC: the max-function
This section investigates the implementation of a secure MPC maximum-function. To
be clear, the goal is to determine shares of the largest secret-value out of a number of
secret values.

Since a comparison has already been stated in Protocol 3.3 it is relatively straight
forward to create a protocol to compute the maximum value of a number of secrets.
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This protocol is stated in Protocol 4.1.

Protocol 4.1 (Maximum Value)
Given that the parties hold [x1]B, . . . , [xn]B.
Outputs [y]B, where y = max{x1, x2, . . . , xn}.

1. The parties define [h]B = [x1]B.

2. For i = 2, . . . , n the parties

(a) invoke Protocol 3.3 to securely compute [c] =
{

[1] if h < xi

[0] otherwise
, using [h]B

and [xi]B.
(b) The parties compute [h]B = (1− [c])[h]B + [c][xi]B.

3. The parties define [y]B = [h]B.

Proof. Since Protocol 4.1 relies only on secure protocols, it is concluded that it is
secure. Correctness of the protocol is trivial.

4.2.2 Secure MPC: Pressure Control Algorithm

The secure protocol for Algorithm 4.1 can be now stated. Before doing so, notation
for a shared vector is defined.

Definition 4.1
When the parties hold shares of vector, a = [a0, . . . , an] it means that the parties hold
shares of each of the entries in a. Hence, if the parties hold [a], it means that the
parties hold [a0], . . . , [an].

Protocol 4.2 (Pressure Control Algorithm)
Given that party Pi for i = 1, . . . , n, knows the vector of measurements yi,k ∈ Fpw×1

for a period k, for i = 1, . . . , n and that r and K are public knowledge and r = r1w.
The parties hold [κk].
Outputs [κk+1], where κk+1 is the control signal for the k + 1′st period.

1. Each party, Pi, for i = 1, . . . , n computes erri = [erri,1, . . . , erri,w] = r − yi,k.

2. Each party, Pi, for i = 1, . . . , n calculates the bitwise representation of erri,j for
j = 1 . . . , w.
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3. Each party, Pi, for i = 1, . . . , n distributes [erri,j ]B for j = 1, . . . , w.

4. For j = 1, . . . , w the parties invoke Protocol 4.1 to calculate
[ej ]B = max{[err1,j ]B, . . . , [errn,j ]B}.

5. The parties define the shared vector [ek] = [
∑l−1
i=0[e1i ]2i, . . . ,

∑l−1
i=0[ewi ]2i].

6. The parties compute [κk+1] = [κk] +K[ek].

Proof. Correctness follows from the fact that solely secure protocols are used. Correct-
ness is not proven formally, however, it can be verified that the protocol follows the
structure of Algorithm 4.1, which gives the desired output. Furthermore, the follow-
ing section shows by simulation, that Algorithm 4.1 and Protocol 4.2 gives the same
output.

4.3 Simulations
In this section simulation results from Algorithm 4.1 is compared to simulation results
from Protocol 4.2. The system in Figure 4.3 is simulated twice; first where the
control signal, κ(t) is calculated using Algorithm 4.1 and second where the control
signal κMPC(t) is calculated using Protocol 4.2.

The following parameters are used in the simulations:

• The number of parties, n = 4.

• The degree of the polynomial for Shamir’s scheme, t = 1.

• The cardinality of Fp , p = 1125899839733759.

• The control gain, K = 1.

• The desired pressure, r = 8.

• The length of a period, w = 10.

• The measurement of water pressure, y1 and y2, are seen in Figure 4.5.
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Figure 4.5: Comparison of the control signal obtained with Algorithm ?? and Protocol 4.2, respec-
tively.

As expected, Figure 4.5 shows that simulating Protocol 4.2 gives the exact same
results as simulating Algorithm 4.1.

4.4 Summary
In this section a simple pressure control algorithm was introduced. The only new function
that was converted into a secure MPC protocol was the max-function. The way that
it was created was to use the comparison protocol presented in the previous chapter to
compare every pair of secrets until the maximum amongst the secret was found. Using
this, the pressure control algorithm was successfully converted to a secure MPC protocol.

At the end of the chapter a simulation of Protocol 4.2 is compared to a simulation
of Algorithm 4.1. Fortunately, the exact some result is obtained in both simulation,
which was expected.





5
The Method of Least Squares as
a Secure MPC Protocol

Least-squares methods are essential in estimation theory and regression analysis and
moreover it is often used in adaptive control algorithms, [Nguyen, 2018, p.125]. There-
fore, the method is considered to be of high importance to the field of control theory,
and as such it is crucial that it can be implemented in the setting of secure MPC. The
goal in this chapter is to study a simple estimation algorithm that uses the method of
least squares, and investigate the possibilities of converting it to a secure MPC protocol.

In Section 5.1 an introduction to recursive linear regression is provided and in
Section 5.2 it is investigated how to convert the method to a secure MPC protocol.
Section 5.3 provides simulations of the recursive least squares equations as well as simu-
lations of the secure MPC protocol calculating the same equations. Finally, Section 5.4
provides a summery of the chapter.

5.1 Introduction to Recursive Linear Regression using the
Method of Least Squares

The problem of recursive linear regression is studied. This section serves as a reminder
of the setup of this problem and its solution, in the form of the recursive least squares
equations.

Suppose that an unknown linear system takes a vector of inputs and outputs a linear
combination of these. Given m observations of inputs and outputs, it is desired to
determine the parameters of the system. More precisely, the linear system is modeled as

ym = Xmw, (5.1)

where ym = [y1, . . . , ym]>, xi = [x1,i, . . . , xq,i] for i = 1, . . . ,m,Xm = [x>1 , . . . ,x>m]> and

67
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w = [w1, . . . , wq]>. yi, xi for i = 1, . . . ,m are observed outputs and inputs, respectively.
It is desired to determine the vector of parameters w.

Assuming that m > q, Equation (5.1) describes an overdetermined system of equa-
tions. Since this system in general is inconsistent, the goal is to find the parameters that
makes the best solution in a least squares sense. Thus, w is approximated by finding
the parameters which minimizes the sum of squared residuals;

ŵ = min
w
||ym −Xmw||2. (5.2)

The solution to this problem is the so-called normal equations

ŵ = (X>mXm)−1X>mym, (5.3)

where it is assumed that Xm has full column rank. For a more thorough review of the
method of least squares and the derivation of the normal equations, see [Haykin, 2014,
pp. 400-412].

Now, consider the case where all observations are not available at once but rather
arrive one at a time. In this case it is desirable to update the estimate of w to account
for the new data rather than solving Equation (5.3) from scratch. This is known as
recursive linear regression. To see how it can be achieved, consider ŵN , as the estimate
of w at time N ∈ N,

ŵN = (X>NXN )−1X>NyN . (5.4)

Given a new observation of input and output, (xN+1, yN+1), the estimate ŵN+1 can be
written as

ŵN+1 =

[ XN

xN+1

]> [
XN

xN+1

]−1 [
XN

xN+1

]> [
yN
yN+1

]
. (5.5)

To make Equation (5.5) more tractable, define the matrix

SN = X>NXN , (5.6)

and note that

SN+1 =
[
XN

xN+1

]> [
XN

xN+1

]
(5.7)

= SN + x>N+1xN+1. (5.8)

Furthermore, since

SNŵN = (X>NXN )(X>NXN )−1X>NyN (5.9)
= X>NyN , (5.10)
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it is easy to see that

SN+1ŵN+1 = SNŵN + xN+1yN+1 (5.11)

=
(
SN+1 − xN+1x

>
N+1

)
ŵN + xNyN+1 (5.12)

= SN+1ŵN − xN+1x
>
N+1ŵN + xN+1yN+1, (5.13)

which again entails that

ŵN+1 = ŵN + S−1
N+1xN+1

(
yN+1 − x>N+1ŵN

)
. (5.14)

As seen, Equation (5.14) requires a matrix inversion, which is a computationally
expensive operation. However, in this case it is possible to use the matrix inversion
lemma [Haykin, 2014, p. 453], which offers a more convenient way to calculate the
inverse of SN+1.

By letting PN = S−1
N+1 and using the matrix inversion lemma, PN+1 can be calcu-

lated as

PN+1 = PN −
(
1 + x>N+1PNxN+1

)−1
PNxN+1x

>
N+1PN . (5.15)

Now a recursive least squares algorithm can be stated, see Algorithm 5.1.

Algorithm 5.1 (Recursive Least Squares)
Initialization:

• P 0 = Iq.

• ŵ0 = 0q, where 0 ∈ Rq×1 is the vector of zeros.

1. For N = 1, . . . do

(a) Define the input to the system at time N as xN ∈ Rq and the observation
of the output of the system at time N as yN ∈ R.

(b) Make the following calculations

PN = PN−1 −
(
1 + x>NPN−1xN

)−1
PN−1xNx

>
NPN−1, (5.16)

gN = PNxN , (5.17)
eN = yN − x>NŵN−1, (5.18)

(c) The parameter estimate, ŵN at time N is

ŵN = ŵN−1 + gNeN . (5.19)

The algorithm is from [Haykin, 2014, p. 454].
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Now, if it is preferred to keep the observations, xN and yN , private, a secure imple-
mentation of Algorithm 5.1 is needed.

5.2 Converting the Recursive Least Squares Equations to
a Secure MPC Protocol

From Algorithm 5.1 it is seen that the operations used are subtraction, division and
multiplication. Subtraction can be done securely similarly to doing addition securely.
Hence, the only operation to consider is division. If it was acceptable for the division
to be carried out in the finite field Fp , it would be easy to state a protocol for this
operator. However, as pointed out in Chapter 3, to be able to compare a secure MPC
estimate of w, to a non-secure estimate of w, the division cannot be carried out in the
field. It is not straight forward how this division should then be carried out, thus in the
following three possibilities are considered.

Idea One: The first idea is to perform the division after protocol execution, meaning
that the protocol should output a vector w̃ and a denominator, d, such that ŵ = w̃./d,
where ./ denotes element-wise division. By choosing a finite field with cardinality large
enough to ensure that no wrap-arounds occur, this technique works as intended. How-
ever, because of the recursions in the problem formulation, especially the denominator
seems to grow without bound, requiring |Fp| ≈ ∞. To see this, consider Equation
(5.16), (5.17), (5.18), and (5.19), where no division is performed, but instead the
nominator and denominator for every expression is kept track of. Thus, rather than
computing n

d , this is written as (n, d). To write the equations like this, it is necessary to
add three equations to keep track of the different denominators. The term dN+1 refers to
the calculation of 1+x>N+1PNxN+1, which is the denominator in Equation (5.16). DN

is the denominator for PN and thus the denominator for PN+1 is dn+1DN . Furthermore,
dwN is the denominator for ŵ at time N . Note that d0 = D0 = dw0 = 1.

dN+1 = DN · 1 + x>N+1PNxN+1 (5.20)
DN+1 = DNdN+1 (5.21)
dwN+1 = dwN ·DN+1 (5.22)
PN+1 = (dN+1PN − PNxN+1x

>
N+1PN , DN+1) (5.23)

gN+1 = (PN+1xN+1, DN+1) (5.24)
eN+1 = (dwNyN+1 − x>N+1ŵN , dwN ) (5.25)
ŵN+1 = (DN+1ŵN + gN+1e, dwN+1). (5.26)

To see how the denominator of PN , gN , e, ŵN evolves for each recursion in terms of dN ,
see Table 5.1.
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Time P g e w̃

1 d1 d1 1 d1
2 d1d2 d1d2 d1 d2

1d2
3 d1d2d3 d1d2d3 d2

1d2 d3
1d

2
2d3

...
...

...
...

...
m d1 · · · dm d1 · · · dm dm−1

1 dm−2
2 · · · dm−1 dm1 d

m−1
2 · · · dm

Table 5.1: The denominator of PN , gN , e, w̃N in Equation (5.23), (5.24), (5.25), and (5.26)
in terms of dN from equation Equation (5.20), corresponding to each round of

recursion.

As seen from Table 5.1, dwN grows exponentially, requiring the cardinality of Fp to
be infinitely high. Therefore the idea cannot be used.

Idea Two: The second idea is to perform the division in Fp and at the end use
rational reconstruction to recover ŵ. Rational reconstruction is described in [Monagan,
2004], and according to this p > 2|n|d when n, d ∈ Fp is the nominator and denominator,
respectively. Again, since dwn grows rapidly because of the recursions, this method will
also require Fp to have an infinite cardinality, thus this idea will not work either.

Idea Three: The final idea is to approximate the division in Q by integer division.
The downside of this idea is that, only an approximative result can be expected as
outcome of a protocol that builds on approximations. However, in lack of a better idea,
this option is chosen. The following section discusses how to modify the recursive least
squares equations to use integer division.

5.2.1 Modifying the Recursive Least Squares Equations to use Integer
Division

The first thing to be aware of when substituting division with integer division, is that
when the divisor is larger than the dividend, the result becomes zero. This may be a very
obvious observation, however it may not be so obvious, that this may entail convergence
issues. For instance, using the identity matrix as initialization for P 0, entails that P i is
the identity matrix for all i = 1, . . . and thus does not converge to the desired matrix.
To see this, refer to the last term of Equation (5.16) as MN+1, such that

MN+1 =
(
1 + x>N+1PNxN+1

)−1
PNxN+1x

>
N+1PN . (5.27)

Letting P 0 = I, M1 becomes

M1 = (1 + x>n+1xn+1)−1xn+1x
>
n+1. (5.28)

From Equation (5.28), it is seen that the divisor is one added to the inner product of
xn+1. Since the inner product of a vector, can be proven to be larger than all indices of
the outer product of the same vector, it is seen thatM1 is the zero matrix. Then P 1 is
also the identity matrix, and hence P i is the identity matrix for i = 1, . . .. In this way
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the algorithm does not converge. Fortunately, the problem can be solved by introducing
scaling of MN before the division. To state the recursive linear regression equations
using scaling and integer division, the operation of integer division is formally defined.

Definition 5.1 (Integer Division)
Let a, b, c, d, z ∈ Fp be integers. The term integer division, refers to the operation of
dividing two integers and afterwards truncating the result, such that the output is also
an integer. The operation is denoted by the symbol \, such that

a\z =
⌊
a

z

⌋
. (5.29)

Furthermore, let .\ denote the element-wise integer division operation such that[
a c
b d

]
.\z =

[ ⌊
a
z

⌋ ⌊
c
z

⌋⌊
b
z

⌋ ⌊
d
z

⌋ ] . (5.30)

The scaling is introduced by letting P 0 be initialized as CI, where C ∈ Fp is an
appropriately chosen integer. The integer recursive least squares algorithm is stated in
Algorithm 5.2.

Algorithm 5.2 (Integer Recursive Least Squares)
Initialization:

• Let C ∈ Fp be a positive, large enough integer.

• P 0 = CIq.

• w0 = 0q.

1. For N = 1, . . . do

(a) Define the input to the system at time N as xN ∈ Fpq×1 and the observation
of the output of the system at time N as yN ∈ Fp.

(b) Make the following calculations

PN = PN−1 −
((
PN−1xNx

>
NPN−1

)
.\
(
C + x>NPN−1xN

))
(5.31)

gN = PNxN , (5.32)
eN = yN − x>NŵN−1\C, (5.33)

(c) The parameter estimate, ŵN at time N is

ŵN = ŵN−1 + gNeN . (5.34)
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To implement Protocol 5.2 in the setting of secure MPC, the operations needed are;
subtraction, addition, multiplication, integer division, and division by public constant.
It is solely integer division of secrets, which has not already been implemented securely
in this report. Thus, the following section is devoted to introducing this operation.

5.2.2 Secure MPC: Integer Division

This section builds on the ideas from [Dahl et al., 2012]. Let nom, d ∈ N be two l−bit
integers and y = bnomd c be the integer, it is desired to determine. Furthermore, assume
that k is an appropriately large integer, that is publicly known. The idea is to compute
a "k-shifted" approximation of 1

d by â = b2k

d c and afterwards calculate the desired result
y = â·nom

2k . The reasoning behind this idea is that the division by 2k is simpler since 2k
is public. The technique to compute â is inspired from the Taylor Series. To recap the
Taylor Series, the following holds for 0 < α < 1,

1
α

=
∞∑
i=0

(1− α)i =
w∑
i=0

(1− α)i + εw, (5.35)

where εw =
∑∞
i=w+1(1−α)i. Thus, ε can be seen as an error term, which is dependent on

w. To get some intuition about the size of εw, consider the case where 0 < (1− α) < 1
2 ,

εw =
∞∑

i=w+1
(1− α)i = (1− α)w+1

∞∑
i=0

(1− α)i ≤ 2−w−1 1
α
≤ 2−w. (5.36)

Hence, for 1
2 < α < 1, ε is bounded by 2−w. By choosing integers k, ld, and w the Taylor

Series can be be used to compute an approximation of 2k

d in the following way;

2k

d
= 2k−ld 1

d/2ld (5.37)

= 2k−ld
(

w∑
i=0

(
1− d

2ld
i
)

+ εw

)
(5.38)

= 2k−ld(w+1)
w∑
i=0

(
1− d

2ld

)i
2ldw + 2k−ldεw (5.39)

= 2k−ld(w+1)
w∑
i=0

(
1− d

2ld

)i
(2ld)i2ld(w−i) + 2k−ldεw (5.40)

= 2k−ld(w+1)
w∑
i=0

(
2ld − d

)i
2ld(w−i) + 2k−ldεw. (5.41)

By discarding the last term of Equation (5.41), the approximation â = 2k

d yields

â = 2k−ld(w+1)
w∑
i=0

(
2ld − d

)i
2ld(w−i). (5.42)
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Letting k = l2 + l, ld = blog2(d) + 1c and w = l entails that k ≥ ld(w+ 1), ensuring that
â is an integer as desired. Furthermore, by manipulating Equation (5.42) it can be
seen that â can by computed as a product of 2k−ld and a polynomial with coefficients
equal to one evaluated in (2ld − d)2−ld ,

â = 2k−ld(w+1)
w∑
i=0

(
2ld − d

)i
2ld(w−i) (5.43)

= 2k−ld(w+1)
w∑
i=0

(
2ld − d

)i
2−ldi2ldw (5.44)

= 2k−ld
w∑
i=0

(
(2ld − d)2−ld

)i
. (5.45)

As a recap of the described method, to compute an approximation of bnomd c it is
necessary to retrieve [2ld ], [2−ld ], and to divide a field element with 2k.

Secure calculation of 2ld

[2ld ] can be calculated using the prefix-OR of [d], hereafter denoted by [D], since it
holds that [2ld ] = [D] + 1. Therefore, the idea is to calculate the prefix-OR of [d]. In
Section 3.2.1 a protocol for securely calculating the OR-operation was given, namely
Protocol 3.2. This means that the prefix-OR can be calculated after decomposing
[d] into bits, which can be achieved with Protocol 3.5. The protocol is stated in
Protocol 5.1.

Protocol 5.1 (PRE-OR of an integer)
Given that the parties hold [d].
Outputs [y], where y = 2ld , for ld = blog2(d) + 1c.

1. The parties invoke Protocol 3.5 to achieve [d]B.

2. The parties invoke Protocol 3.2 to define the bit sequence [u]B, where [ui] =
∨l−1
j=i[dj ], for i = 0, . . . , l − 1.

3. The parties compute [y] = 1 +
∑l−1
i=0[ui]2i.

The protocol is from [Dahl et al., 2012, p. 11].

Dealing directly with bits in a secure MPC protocol induces a vast amount of commu-
nication, thus it is preferred to avoid bit decomposition. The work [Dahl et al., 2012, pp.
19-23] introduces a secure way of obtaining [D], without resorting to bit-decomposition.
Since it is a long an not very readable protocol, it is stated in Appendix B and the
report settles with Protocol 5.1.

In the next section, it is considered how to compute [2−ld ].
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Secure calculation of 2−ld

Now that 2ld can be calculated securely, it is simple to compute its inverse [2−ld ]. The
reason for this, is that 2−ld can be seen as the inverse field element of 2ld and not
as a division. The protocol for computing the inverse of a field element is given in
Protocol 5.2.

Protocol 5.2 (Inverse Field element)
Given that the parties hold [x] and [r], where r is a random number.
Outputs [y], where y = x−1.

1. The parties invoke Protocol 2.10 to compute [w] = [x][r] and opens w.

2. The parties compute [y] = w−1[r].

Proof. Security follows from the fact that solely secure operations are used, as well as
the fact that w is a uniformly random number, thus opening it leaks no information.
Correctness is trivial.

5.2.3 Secure MPC: Integer Division Protocol

Finally, the integer division protocol is stated in Protocol 5.3.

Protocol 5.3 (Integer Division)
Given that the parties hold [nom] and [d], where nom and d are two l−bit integers.
Outputs [y], where y = nom\d.

1. The parties invoke Protocol 5.1 to compute [2ld ] = [D] + 1.

2. The parties invoke Protocol 5.2 to compute [2−ld ].

3. The parties compute [d′] = ([2ld ]− [d])[2−ld ].

4. The parties compute [â] = 2k[2−ld ]
∑w
i=0[d′]i.

5. The parties compute [q] = [nom][ã].

6. The parties invoke Protocol 3.7 to compute y = [q]2−k.

The protocol is from [Dahl et al., 2012].

Refer to [Dahl et al., 2012] for a proof of Protocol 5.3.
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5.2.4 Secure MPC: Detecting wrap-around zero

Now, there is still one issue to consider, namely that when performing integer division
in Fp , the desired result is ensured only if no wrap-arounds has occured for both the
dividend and divisor. To remind the reader of the problem, suppose that it is desired to
calculate

d = (−a mod p)\a, (5.46)
in Fp using Protocol 5.3. The desired result is −1 mod p, since −1 is the result
achieved if the calculation was done in R . However, to see that the desired result would
not be achieved, consider a = 2 and p = 23, the result of Equation (5.46) is

d = 21\2 = 10 6= −1 mod 23 = 22. (5.47)

Hence, if either or both of the nominator and denominator has wrapped-around zero,
the desired result will not be achieved. However, by noting that

−a
b

= −
(
a

b

)
, (5.48)

the desired result to Equation (5.46), can be computed in three steps. The first step
is to "remove" the wrap-around zero by computing a new nominator, nomnew:

nomnew = (−1 mod p) · (−a mod p) (5.49)
= ((p− 1) · (p− a)) mod p (5.50)
= (p2 − ap− p+ a) mod p (5.51)
= a. (5.52)

The second step is to compute Equation (5.46) using the new nominator, to obtain
d̂,

d̂ = nomnew\a = a\a = 1. (5.53)
The third step is to "add" the wrap-around again to obtain d,

d = ((−1 mod p)d̂ mod p) = (−d̂) mod p = (p− 1). (5.54)

This example focuses on wrap-around zero. Similarly, the desired result would not
be achieved, if a wrap-around p has occurred for either or both of the nominator and
denominator. However, that no wrap-around p can occur, can be achieved by choosing
p large enough.

Ensuring that no wrap-around zero occurs is more challenging. First, consider where
this problem may happen in the integer least squares algorithm, for convenience the
equations (5.31) - (5.34) are restated.

PN = PN−1 −
((
PN−1xNx

>
NPN−1

)
.\
(
C + x>NPN−1xN

))
(5.55)

gN = PNxN , (5.56)
eN = yN − x>NŵN−1\C, (5.57)
ŵN = ŵN−1 + gNeN . (5.58)
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The only equations that involves integer division, is Equation (5.55) and Equa-
tion (5.57). In both equations the divisor is always positive, which is easy to see by
noting that PN is a positive definite matrix and C is a positive integer. Furthermore,
the dividend in Equation (5.57) is also positive, when assuming that w1, w2 > 0 and
that xi ≥ 0 ∀ i. However, the dividends in Equation (5.55) may or may not have
wrapped around zero. To detect whether or not a wrap-around zero has occurred to
the dividends in Equation (5.55), recall the requirements to integer division made in
Section 5.2.2. To remind the reader of the requirements, consider the computation of,⌊

a

b

⌋
, (5.59)

for two secrets a, b ∈ Fp, where a, b er two l−bit integers. Recall that the idea is to
compute 2k

d , where it is required that k = l2 + l < p. Thus, p ≥ 2l2+l. Using this, it is
seen that a, b < p

2 . This means that if a > p
2 a wrap-around zero has occurred. This fact

is formally written in Proposition 5.1.

Proposition 5.1
Let a < p

2 be an integer in Fp, then it holds that

(−1 mod p)a mod p > p

2 . (5.60)

Proof. To see that Equation (5.60) holds, note that

(−1 mod p)a mod p = (p− 1)a mod p (5.61)
= ap− a mod p (5.62)
= p− a (5.63)

>
p

2 , (5.64)

where the inequality is true, given the assumption that a < p
2 .

As seen, in this case a wrap-around zero can be detected using comparison.
Since a secure protocol for bit-decomposition is available, comparison of two secrets

can be achieved through Protocol 3.5 and Protocol 3.3. This means that a secure
protocol for detecting a wrap-around zero can be stated.

Protocol 5.4 (Wrap-around zero detection)
Given that the parties hold [a], where a < p

2 .

Outputs [y], where y =
{

1, if a has wrapped around zero,
0, otherwise.

.

1. The parties invoke Protocol 3.5 to achieve [a]B.
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2. The parties decompose m = p
2 into bits and create [m]B.

3. The parties invoke Protocol 3.3 to compute [y] =
{

[1] if m < a

[0] otherwise,
, using [m]B

and [a]B.

Proof. Security follows since only secure protocols are used. Correctness follows from
Proposition 5.1.

5.2.5 Secure MPC: Recursive Least Squares Equations

Based on protocols previously stated, a protocol for the secure recursive least squares
equations can now be presented. The protocol is a secure implementation of Algo-
rithm 5.1, and can be seen in Protocol 5.5.

Protocol 5.5 (Recursive Least Squares)
Given that for each time N = 1, . . . the parties get to hold [yN ] and [xN ], where yN ∈
Fp and xN ∈ Fpq×1 are observations of output and input, respectively. Furthermore,
C ∈ Fp is a public integer, P 0 is the q × q identity matrix, and let ŵ0 = 0q be the
q × 1 vector of zeros. The parties hold [P 0], [ŵ0].
Outputs [CŵN ], where ŵN is the parameter estimate at time N .

1. For N = 1, . . . do:

(a) The parties compute [d] = C + [xN ]>[PN−1][xN ].
(b) The parties compute [K] = [PN−1][xN ][xN ]>[PN−1].
(c) For each entry [Ki,j ] in [K], the parties invoke Protocol 5.4 to compute

[Hi,j ] =
{

[1], if [Ki,j ] has wrapped around zero
[0], otherwise

.

(d) For each entry [Hi,j ] in [H], the parties compute
[Gi,j ] = [Hi,j ] (−[Ki,j ]) + (1− [Hi,j ]) [Ki,j ] = [Ki,j ] − 2[Hi,j ] [Ki,j ].

(e) The parties invoke Protocol 5.3 to compute [Q] = [G].\[d].
(f) The parties compute [PN ] = [PN−1]− [Q].
(g) The parties compute [gN ] = [PN ][xN ].
(h) The parties invoke Protocol 3.7 to compute [w′] = ([xN ]>[ŵN−1])\C.
(i) The parties compute [eN ] = [yN ]− [w′].
(j) The parties compute [ŵN ] = ([ŵN−1] + [e][g]).

2. The protocol outputs [CŵN ].
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Proof. Security follows since solely secure protocols are used. A formal proof of correct-
ness is not provided. However, throughout the chapter arguments for the correctness
has been given.

5.3 Simulations
In this section Protocol 5.5 is simulated and the results are compared to simulations
of Algorithm 5.1. To compare results from both methods, the mean squared error
(MSE) is used. The MSE of the parameter estimate at time N is defined as

eMSEN
= 1
q

q∑
i=1

(wi − ŵiN )2, for N = 1, 2, . . . . (5.65)

Regarding Protocol 5.5, the following parameters are used in all simulations:

• The number of parties, n = 4.

• The degree of the polynomial for Shamir’s scheme, t = 1.

• The cardinality of Fp ,
p = 1363005552434666078217421284621279933627102780881053358473.

• The scaling constant, C = 27.

• The allowed bit length of the nominator and denominator in Equation (5.31)
and (5.33), l = 13.

A minor discussion of the parameter choices is in order. The first thing that sticks
out is how huge p is. The reason for its size, is that l and p depends on each other. Since
it is desired to have l large, p must be large. To see why a large l makes p so enormous,
recall that secure integer division works by calculating a k-"shifted" approximation of
the denominator. To achieve accuracy, it is required that k ≥ l2 + l. Putting k = l2 + l,
means that k = 182, when l = 13. Furthermore, it is required to both multiply and
divide by 2k = 2182 = 6129982163463555433433388108601236734474956488734408704,
thus this number must be represented in the finite field, meaning that p must be larger
than this number.

Also the scaling constant C should be remarked on. Intuitively, C should be large to
obtain as much accuracy from the integer division as possible. However, with the bound
that the denominator and nominator can at most be l = 13 bits, C multiplied with the
input data may not exceed 13 bits. In this way there is also a dependence between C
and the input data. Considering the first iteration, where P 0 is the identity matrix,
the nominator, which contains C2, is 214xx>. Assuming the values in x are small, the
denominator is 13 + 1 bits, which in the simulation has proved to work. This fact also
explains why the data in the following simulations have been chosen the way they have.

It should be pointed out that the bit-decomposition protocol, Protocol 3.5, and the
protocol to generate bitwise sharings of a random number, has not been implemented
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in the simulation software. Assuming that they would return the correct result once
implemented, this should not affect the results in this section.

Refer to the estimate of w at time N obtained from Algorithm 5.1 as ŵN and from
Protocol 5.5 as ŵMPCN

.
The rest of this section is divided into the following three subsections;

1. Estimation of parameters of a one dimensional system.

2. Estimation of parameters of a two dimensional system.

3. Estimation of parameters of a three dimensional system.

5.3.1 Estimation of Parameters of a One Dimensional System

This section simulates the use of Protocol 5.5 and Algorithm 5.1 by estimating the
parameters of a one dimensional linear system. The data displayed in Figure 5.1 are
used as test data.
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x

y

Test data

Figure 5.1: Test data, described by the equation y = 2 + 5x.

The test data are a line given by the equation

y = 2 + 5x. (5.66)

Thus, the true parameter vector is w = [2, 5]>. The observations of input are x =
0, . . . , 14 and the observations of output are calculated using Equation (5.66).

Estimating w using Protocol 5.5 and Algorithm 5.1 and the described observa-
tions of input and output, gives the eMSEN

for both estimates respectively, as seen in
Figure 5.2.
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Figure 5.2: Estimating w = [2, 5], using the observations seen in Figure 5.1. ŵ is the estimate
obtained with Algorithm 5.1, and ŵMSE is the estimate obtained with Protocol 5.5.

As seen in Figure 5.2, the results from Protocol 5.5 are similar to the results
obtained from Algorithm 5.1.

It is also interesting to test whether Protocol 5.5 is robust to disturbances. There-
fore the observations of x are now changed to being uniformly random integers on the
interval [0, 9]. For each observation of y a random number is drawn from a Gaussian dis-
tribution with mean value zero and variance two, and this is added to the corresponding
observation of y. In Figure 5.3 the observations are marked with a red ∗.
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Figure 5.3: Test data, where the observations of y are corrupted by Gaussian disturbances. The data is
described by the equation y = 2 + 5x and the disturbances on y are drawn from a Gaussian distribution
with mean value zero and variance two.
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The estimates of w obtained with Algorithm 5.1 and Protocol 5.5 using the
observations given by Figure 5.3, gives the eMSEN

for both estimates respectively, as
seen in Figure 5.4.
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Figure 5.4: Estimating w = [2, 5], using the observations seen in Figure 5.3. ŵ is the estimate
obtained with Algorithm 5.1, and ŵMSE is the estimate obtained with Protocol 5.5.

As seen in Figure 5.4, it seems that Protocol 5.5 is slightly more sensitive to
noise compared to Algorithm 5.1. However, the same tendencies are seen for both
convergence curves, thus the differences are assumed to be caused by the approximations
caused by integer division for Protocol 5.5.

5.3.2 Estimation of Parameters of a Two Dimensional System

This section simulates the use of Protocol 5.5 and Algorithm 5.1 by estimating the
parameters of a two dimensional linear system. The test data is now described by the
equation

y = 2x1 + 5x2, (5.67)

thus the true parameter vector is w = [2, 5]. As observations of x1 the numbers 0, . . . , 19
are chosen. As observations of x2 uniformly distributed random numbers on the interval
[0, 9] are chosen. The test data are seen in Figure 5.5.
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Figure 5.5: Test data described by the equation y = 2x1 + 5x2.

The estimates of w obtained with Algorithm 5.1 and Protocol 5.5 using the
observations given by Figure 5.5, gives the eMSEN

for both estimates respectively, as
seen in Figure 5.6.
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Figure 5.6: Estimating w = [2, 5], using the observations seen in Figure 5.5. ŵ is the estimate
obtained with Algorithm 5.1, and ŵMSE is the estimate obtained with Protocol 5.5.

As seen in Figure 5.6, the obtained results with Protocol 5.5 are very similar to
those obtained with Algorithm 5.1. Only the estimate ŵMPC2 sticks out. The reason
for this is the truncation happening in Equation (5.57). What concretely happens is
that

y2 − (x>2 ŵMPC1)\27 = 0 (5.68)
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This means that the estimate of the parameter vector is not updated at time N = 2,
causing the same mean square error for the estimate two times in a row.

It it also interesting to see what happens when the output observations of the two
dimensional system is subject to disturbances. The observations of x1 are now uniformly
random integers on the interval [0, 9] and the observations of x2 are uniformly random
integers on the interval [0, 4]. The observations of y are given by Equation (5.67). For
each observation of y, a random number is drawn from a Gaussian distribution with
mean value zero and variance two, which is added to the corresponding observation of
y.

The estimates of w obtained with Algorithm 5.1 and Protocol 5.5, giving the
described observations, gives the eMSEN

for both estimates respectively, as seen in Fig-
ure 5.7.
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Figure 5.7: Estimating w = [2, 5], using the described observations. ŵ is the estimate obtained with
Algorithm 5.1, and ŵMSE is the estimate obtained with Protocol 5.5.

5.3.3 Estimation of Parameters of a Three Dimensional System

This section simulates the use of Protocol 5.5 and Algorithm 5.1 by estimating the
parameters of a three dimensional linear system. The test data is now described by the
equation

y = 2x1 + 5x2 + 7x3i , (5.69)

thus the true parameter vector is w = [2, 5, 7]. The observations for both x1, x2 and x3
are chosen to be uniformly random integers on the interval [0, 4]. The observations of y
are given by Equation (5.69).

The estimates of w obtained with Algorithm 5.1 and Protocol 5.5, gives the
eMSEN

for both estimates respectively, as seen in Figure 5.8.
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Figure 5.8: Estimating w = [2, 5, 7], using the observations described by Equation (5.69). ŵ is the
estimate obtained with Algorithm 5.1, and ŵMSE is the estimate obtained with Protocol 5.5.

As seen in Figure 5.8, it seems that the convergence rate for Protocol 5.5 is slightly
faster than for Algorithm 5.1. This is considered to be coincidental.

It it also interesting to see what happens when the output observations of the three
dimensional system is subject to disturbances. The same observations for x1, x2 and x3
are used. The observations for y are still given by Equation (5.69), however, for each
observation of y, a random number is drawn from a Gaussian distribution with mean
value zero and variance two, which is added to the corresponding observation of y. The
estimates of w obtained with Algorithm 5.1 and Protocol 5.5, gives the eMSEN

for
both estimates respectively, as seen in Figure 5.9.
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Figure 5.9: Estimating w = [2, 5, 7], using the observations described. ŵ is the estimate obtained with
Algorithm 5.1, and ŵMSE is the estimate obtained with Protocol 5.5.

It is concluded that adding more inputs to the linear system, such that more param-
eters needs to be estimated, does not decrease the accuracy of the parameter estimates.

5.4 Summary
In this chapter a secure MPC protocol for calculating the recursive least squares equation
has been proposed. The protocol is a naive conversion of the recursive least squares
algorithm. It was found that division of two secrets was needed, and thus a secure
protocol for approximating this operation was stated.

The problem that was encountered, was that wrap-arounds has a huge impact when
integer division is performed in the protocol. A way to detect these wrap-arounds was
found, given that some assumptions for the data holds. Thus, for this particular problem
the solutions works, but it is not a general solution. Another problem was that for the
the division not to give zero, which would result in divergence of the algorithm, scaling
had to be introduced. As was discussed in the chapter, there are some requirements
regarding the size of the scaling constant. Obviously, it cannot be too small, since
accuracy would be lost, but neither can it be to big since there are restrictions on the
size of the nominator and denominator in the secure integer division.

A solution was proposed, and simulations shows that for the test data chosen, the
expected results were obtained. However, choosing arbitrarily large data does not work,
both due to the scaling constant and the size of the field. Hence, to use this protocol in
general there are a few issues that needs attention.
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Conclusion and Future Work

In this thesis the aim has been to examine the potential in using results from the field
of secure multiparty computation to reach privacy preserving control algorithms. In
particular, the objective of the thesis has been to answer the following:

• How can results from secure multiparty computation be used to create privacy pre-
serving control algorithms?

In the concern of secure MPC computation, security is not only that a secret must
remain hidden, but also that malicious behavior cannot corrupt protocol execution.
However, generally passive security is considered separately from active security. In this
report, the main focus has been on passive security and thus no conclusions can be made
regarding active security.

It has been established that secure protocols for various operations such as integer
division, bit decomposition, and comparison already exist. Thus, the question has more
specifically been how to use the ideas in these existing protocols to put together a secure
protocol for entire algorithms, and furthermore whether iterations in the algorithms
would effect the result.

In the thesis, three iterative algorithms, namely the gradient descent method, a water
pressure control algorithm, and the recursive least squares equations, has been converted
into secure protocols. For the creation of these protocols, important topics such as
communication and computation complexities has not been considered. Furthermore,
there are still some unanswered questions regarding the protocols, which will be discussed
in the following section.

The secure version of all three algorithms have been written in software in order to
simulate their behavior. The results of the simulations were compared to simulations
from a non-secure implementation of the corresponding algorithms. For all three algo-
rithms similar results were obtained from the secure and non-secure implementations.

87
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The main conclusion is that there is a potential for using secure multiparty compu-
tation methods to create privacy preserving algorithms. The proposed secure solutions
for the three algorithms, stated in this thesis, should not be seen as finished protocols,
rather they serve as a proof of concept. In this way, the thesis has shown that there are
grounds for further research within this topic.

6.1 Future Work
This section will point out some of the subjects, that has not been attended to in this
thesis. The section can in this way work as inspiration to future work within this line
of research.

6.1.1 Comparison

Three algorithms are converted to a secure protocol in this report. All three of them
uses, in some way or the other, comparison. For this reason, it has become clear that the
operation of comparison is used frequently, in all kinds of algorithms. State-of-the-art
solutions to a secure comparison protocol, involves bit-decomposition. This imply that
instead of each party having two shares (one for each of the secrets), they must each
have 2l shares, if each secret is l-bit long. Thus, the communication and computation
complexity rises significantly, when secrets are bitwise shared. A suggestion for future
work is therefore to look into the possibilities of creating a secure comparison protocol,
that does not rely on bit-decomposition.

6.1.2 Scaling in Connection With Secure Integer Division

In Chapter 5, the recursive least squares equations were converted to a secure MPC
protocol. To do this, secure integer division was needed. As was discussed, scaling
had to be introduced, because in one equation the denominator was larger than the
nominator, which would result in zero, entailing that the algorithm would not converge.
There was, however, the problem that the scaling constant can, for accuracy, not be too
low, but neither can it be too large because the product between the constant and the
data sample has too be below a certain limit. Thus, if the data is secret and nothing
can be assumed about the size of the data, how one picks a suitable scaling constant is
an open question.

6.1.3 Other Secret Sharing Schemes or Encryptions

In this report all focus has been put on Shamir’s secret sharing scheme. It could be
interesting to investigate other schemes or encryptions for their properties, to see if there
are other schemes that fits the purpose better. For instance, performing comparison
using Shamir’s scheme to hide the secrets, seems to be almost impossible to do without
bit-decomposition. Maybe some other scheme would be better, at least for comparison.
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6.1.4 Designing Algorithms for the Purpose of Privacy Preservation

In this thesis, the approach has been to naively convert known algorithms into secure
MPC protocols. As was clear in more than one occasion, the explored algorithms was
not exactly designed to be computed using finite field arithmetic. It could be interesting
to see if other results are achieved if the algorithm is designed to be a secure MPC
protocol.
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A
Creating Hyper-invertible Matri-
ces

A hyper-invertible n×n matrix over a finite field Fp with |Fp| > 2n, can be constructed
by exploiting the linearity of Lagrange interpolation. The method is given in

Construction A.1 (Hyper-invertible Matrix)
Let α1, . . . , αn and β1, . . . , βn be fixed points in Fp. Let f : Fpn → Fpn be a func-
tion that maps (x1, . . . , xn) to (y1, . . . , yn), such that (β1, y1), . . . , (βn, yn) are points
of the polynomial g of degree n − 1. The polynomial g is defined by the points
(α1, x1), . . . , (αn, xn). The matrix M = λi,j=1,...,n, where λi,j =

∏n
k=1,k 6=j

βi−αj

αj−αk
, that

expresses the linear function f , is hyper-invertible.
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B
PRE-OR of Integer Without Bit-
Decomposition

The work [Dahl et al., 2012, pp. 19-23] introduces a secure way of obtaining the PRE-
OR, [D], of an integer, without resorting to bit-decomposition. This protocol is presented
here. The protocol consists of many computations, for this reason it is divided into four
steps each with a number of substeps. The four steps are;

1. Add randomness: Random numbers are added to the input, to retrieve a value,
which can be opened without leakage of information.

2. Create the sequenceH = 1 . . . , 1, Hld, 0, . . . , 0: Create a bit sequence,Hl+1, . . . ,H0,
where Hi = 1 for i > ld and Hi = 0 for i < ld. By the calculations used to create
H, it is unknown whether Hld is 0 or 1.

3. Calculate the value of Hld : By determining Hld , the desired prefix-OR can be
computed from H.

4. Transform H into D: If Hld = 1,H is bit-shifted once to the left and afterwards
subtracted from the bit sequence of 1’s. If Hld = 0, D is obtained by subtracting
H from the bit sequence of 1’s.

The substeps of the four steps are seen in Protocol 5.1. The derivation of the steps
and substeps as well as the proof of security of the whole protocol can be found in [Dahl
et al., 2012, pp. 19-23].

Protocol B.1 (PRE-OR of an integer)
Given that the parties hold [d], [r] and [r]B, where d is a l−bit integer and r is a
l−bit unknown random number. [r] and [r]B are obtained in a preprocessing-phase.
Outputs [y], where y =

∑ld+1
i=0 Di2i, where D = [dld+1, . . . , D0] is the prefix-OR of d.
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96 Appendix B. PRE-OR of Integer Without Bit-Decomposition

1. Add randomness

(a) Each party, Pi for i = 1, . . . , n, chooses a κ-bit, random value r>i
and

distributes it.
(b) The parties compute

[e] = [d] + [r] +
n∑
i=1

(
[r>i]2l

)
, (B.1)

and afterwards the parties open [e].
(c) The parties compute ē = e mod 2l.

(d) The parties invoke Protocol 3.3 to compute [B] =
{

1 if [r]B < ē

0 otherwise.
.

(e) The parties compute [ẽ]B = Bē+ (1−B)(ē+ 2l).

2. Create the sequence H = 1 . . . , 1, Hld, 0, . . . , 0

(a) The parties invoke Protocol 3.1 to compute [e′]B = [ẽ]B ⊕ [r]B.
(b) The parties invoke Protocol 3.2 to define [E]B, where [Ei] = ∨l−1

j=i[e′j ].
(c) The parties compute [h]B by computing [hi] = [ri]− [ri][ẽi] for i = 0 . . . , l.
(d) Let 1l denote the bit string of l 1’s. The parties compute [h′]B = [h]B +

1l+1 − [
1−→
E ]N , where

x−→a means that a is bit-shifted x times to the right.
(e) The parties invoke PRE-AND to compute [H]B = PRE∧[h′]B.

3. Calculate the value of Hld

(a) The parties invoke Protocol 3.1 to compute [H ′]B = [H]B ⊕ 1l+1.
(b) The parties compute [ẽ0]B = [H ′]B ∧ [ẽ]B, by setting [ẽ0i] = [H ′i][ẽi].
(c) The parties compute [r0]B = [H ′]B ∧ [r]B, by setting [r0i] = [H ′i][ri].
(d) The parties invoke Protocol 3.3 to compute

[B1] =
{

1 if [ẽ0]B < [r0]B

0 otherwise.
(e) The parties compute [Haim] = 1− [B1].

4. Transform H into D

(a) The parties compute [D̄]B = [Haim][
1←−
H ]B + (1− [Haim])[H]B.

(b) The parties compute [D]B = 1l+1 − [D̄]B.
(c) The parties compute [y] =

∑l+1
i=0[Di]2i.

The protocol is from [Dahl et al., 2012, pp. 19-23].
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