
Summary

This report presents a formalization of a small ARM-based assembly language with explicit
structure for modelling faults on specific bit positions and registers. More specifically, we model
single event upsets that can be caused by various natural phenomena, or by malicious adversaries
exploiting bugs, such as the rowhammer bug. We leverage data/control flow analysis to obtain a
program slice towards a user-specified critical program point. The critical program point is anno-
tated with a special security assertion which is a logic formula used to verify the safety/security
properties of the program.

We present a formal static program analysis based on symbolic execution, which obtains
the path conditions on traces in the program slice to the critical program point. The collected
path conditions are in the form of logic formulas, and we utilize the Z3 SMT solver to decide
whether path conditions conjoined with the security assertion are satisfiable. The satisfiability
implies that a fault can break the security/safety properties of the program, and therefore causes
a vulnerability in the system. The formalisation of the analysis is an extension of the structural
operational semantics of the targeted assembly language.

Furthermore, we observe that the effects of faults occurring at different registers and bit
positions at different time instances during program execution may yield the same effect on
program behaviour. Since it is more practical to reason about the possible effects of faults on
program behaviour, than to reason about individual faults, we propose to categorize the set of all
possible faults into fault equivalence classes conditioned on their effect on program behaviour.
We present a formal definition of fault equivalence in terms of whether the conditional flags
may differ at program points during execution with each fault. Additionally, we propose an
algorithm for deciding whether two faults are equivalent. The algorithm leverages the path
conditions already collected by the previous symbolic execution step, and attempts, for each
program point, to prove that the flags cannot differ in two program executions with one fault
occurring in each execution.

We show how programs with fault instructions can be modelled as timed automata. This
enables us to analyse and quantify programs with statistical model checking. We leverage the
statistical model checking capabilities of the model checking tool UPPAAL.

To showcase the analysis, we conduct experiments on a simple controller program. More
specifically, we analyse the program to obtain the quantification of the risk for each vulnerable
fault found by the vulnerability analysis. We then apply a simple instruction duplication scheme
and perform experiments on this hardened version of the program to compare.

Finally, we discuss how the analysis may be extended to include loops, which were assumed
not to be present in the initial formalisation.

I

Quantitative Analysis of Single Event Upsets in ARM

Thomas Rafn Andersen, Morten Korsholm Terndrup
{tran13, mternd13}@student.aau.dk

Supervisor: Rene Rydhof Hansen

Department of Computer Science
Aalborg University

Selma Lagerløfs Vej 300, 9220 Aalborg Ø

June 14, 2018

Abstract

We propose a static program analysis for quantifying the vulnerability of programs in the pres-
ence of single event upsets. The analysis is formalised and implemented for an ARM based
assembly language, in which we provide syntax and semantics for modelling faults. The analy-
sis itself targets a user-specified critical program point and utilizes data and control flow analysis
to obtain a relevant program slice. The analysis leverages symbolic execution to collect the path
conditions on the slice towards the critical code, and the vulnerable faults are obtained by verify-
ing path conditions against a special security assertion. We show how program semantics can be
modelled as timed automata models, allowing us to analyse and quantify the risk of faults with
statistical model checking. Furthermore, due to the many possible ways single event upsets can
affect a program, we propose to analyse faults in terms of fault equivalence classes conditioned
on their effect on the behaviour of a program. We propose a definition of fault equivalence and
provide an algorithm for deciding equivalence. Lastly, we show the usefulness of the analysis
by experiments with an implementation of a simple prototype tool.

1 Introduction

In recent years, we have seen a large increase in the demand for smaller, faster, and more power
efficient hardware. Consequently, hardware with great performance for the use in hand-held
and IoT devices are becoming smaller with a much higher transistor density. However, the
lower voltages of this hardware makes it less reliable and more susceptible errors [10, 7]. These
hardware errors are known as soft errors or transient faults in the system. Such faults will not
cause permanent damage, but they can have a temporary effect on the execution of software that
is currently running on the system and therefore the overall behaviour of the system. In safety
and security critical systems, the consequences of such faults may be catastrophic.

1

One type of soft error is the Single Event Upset (SEU), which is a fault happening in the
cache or memory of a system that causes a single bit in a single register, during one execution
of a program, to flip (i.e. a zero becomes a one, or vice versa). Such a fault can happen when
electronic components are exposed to environmental hazards like cosmic rays or high energy
protons. One of the early reports of such errors came after packaging materials for CPU chips
were contaminated by a nearby uranium mine. When particles from the contamination struck
the die they could cause SEUs[12]. While a single bit changing may not sound dangerous, it
can cause various errors to happen. For instance causing a spacecraft to enter "safe mode"1.
These types of faults therefore have the potential of causing great economic loss or, in the case
of a spacecraft, ruin important, and expensive, multi-year missions. In extreme cases such faults
could even be dangerous, you would want a nuclear power plant to warn you about a potential
meltdown, wouldn’t you?

Before we get into the detail of our report, we illustrate how SEU faults can influence pro-
gram execution with a motivating example.

Example 1
Lets consider the simple alarm controller program in Listing 1.

1 short temp = read (0 xFEED);
2 short min = 0, max = 10000 , danger = 2000;
3 if (temp < min || temp > max)
4 error ();
5 else if (temp >= danger)
6 alarm ();
7 else
8 safe ();

Listing 1: Alarm controller program in C.

The program reads a value from a sensor and takes action based on the value returned by the
sensor. This value could be the temperature reading from some unreliable sensor in a larger
system. Three cases are considered in the program: (1) the sensor returned an error value, (2)
the sensor returned a dangerous value which should trigger the alarm, or (3) the sensor returned
a safe value and nothing should happen.

The program contains four variables which are susceptible to SEU faults, some of which are
able to change the program’s execution flow. Here are some examples:

• The safe value 1500 is read, and it is flipped to 3548 (flip bit 11).

Result: The alarm is sounded when it should not have.

• The dangerous value 2500 is read, and the danger variable is flipped to 4048 (flip bit 11).

Result: The input is assumed safe when it is not and no alarm is triggered.

These are just two possible SEU faults that can change the program’s execution, but there are
many other faults like these.

1https://www.nasa.gov/mission_pages/cassini/whycassini/cassini20101109.html

2

https://www.nasa.gov/mission_pages/cassini/whycassini/cassini20101109.html

While hardware based solutions exist for the problem of SEUs (such as memory with ECC),
we propose a software based static program analysis for determining whether an SEU can break
the safety/security of a program. A software based solution has the advantage that it is more
flexible and can be used without replacing existing hardware. The analysis is based on our pre-
vious work[2], and it combines data and control flow analysis with directed symbolic execution
to analyse the effects of different SEU faults on the execution of a program. To facilitate this,
we utilise special security assertions that are used in symbolic execution to detect contradictions
between register values present at given program points and at the critical program point.

Furthermore, we present a novel idea of grouping faults by their effect on program behaviour
into a set of fault equivalence classes. Grouping faults in this manner provides a meaningful ab-
straction over the complexity of reasoning about individual faults, while still providing much
better insights into the characteristics of the fault than conventional black-box fault injection
methods. We formally define fault equivalence and provide an algorithm for deciding the equiv-
alence of faults.

Finally, we apply statistical model checking through UPPAAL SMC and run simulations on
the faults we found to be vulnerable during the analysis. This allows us to estimate the risk for
various events that can happen as a result of a fault.

In summary, we consider the following to be our main contributions:

• The formalisation of a static program analysis that combines data and control flow analysis
with symbolic execution to determine program points vulnerable to SEU faults.

• A novel idea and formalisation of fault equivalence as well as a procedure for deciding
fault equivalence.

• How programs and faults can be modelled, analysed, and quantified by encoding them as
timed automata and leveraging statistical model checking.

Before we give an overview of the report, we have a quick note about the use of the words
security and safety. The analysis can be used for both safety and security critical systems, but
for brevity we use safety and security interchangeably throughout the report. This means that
any of the words covers the meaning of both in most circumstances. This is especially true when
we talk about security assertions.

The report is structured in the following way. In Section 2 we present related work. In
Section 3 we show the changes done to the language from our previous work as well as the fault
model we are using. In Section 4 we present our symbolic execution semantics, which again
are based on our previous work. In Section 5 we discuss SEU fault equivalence. In Section 6
we give an overview of our analysis. In Section 7 we describe the program representations we
are using. In Section 8 we show how we choose the SEU faults that the analysis works on. In
Section 9 we explain our quantitative analysis. In Section 10 we perform experiments with our
analysis. In Section 11 we discuss how our analysis can be extended to handle programs with
loops. In Section 12 we conclude and discuss possible future work.

3

2 Related Work

Transient faults do not only occur by natural phenomena. Kim et al. [10] discovered that when
the rows of modern DRAM modules are accessed in quick succession data may leak into adja-
cent rows. This phenomenon is known as the rowhammer bug. They showed that rowhammer
can easily be induced in x86 architecture by non-privileged cache flush instructions.

Since rowhammer breaks the assumptions about memory isolation in operating systems, the
bug was quickly found to have severe security consequences. Several proof-of-concept exploits
appeared shortly after the initial findings. First, randomized and double-sided rowhammer at-
tacks were used to gain kernel privileges by breaking out of a virtualized environment[21]. Later,
deterministic and reliable rowhammer attacks were used in an exploit for breaking memory iso-
lation of virtual machines[18] as well as in an Android-based kernel exploit[27].

Similar to rowhammer, Tang et al. [25] show how unprivileged dynamic voltage control
instructions can be used to induce bitflip faults in the secure zone of Android devices. They
leverage this to induce faults in the implementation of RSA to lift private keys, thus gaining the
ability to self-sign malicious applications on the device.

Hansen et al.[9] propose a formal analysis for verification of fault tolerance of programs by
enforcing blue/green separation, which separates the computation of critical values. They prove
how blue/green separation provides fault tolerance under data and flag SEU fault models. How-
ever, since their formalisation requires special instructions for atomically comparing multiple
values for equality, they provide gadgets - small programs that semantically provides the com-
parison needed. Furthermore, they leverage statistical model checking to quantify the risk of
faults in control register and instruction encoding SEUs. They show how blue/green separation
still provides meaningful mitigation under these aggressive fault models as well. Their analysis
targets a subset of the ARM language, which we have based our target language on.

Munkby and Schupp[16] suggest that conventional black-box fault injection methods of tran-
sient faults provide only limited insight into the behaviour of programs in the presence of faults.
Risk assessments using such techniques are therefore not useful for general comparison with
related applications. They propose to group fault injections by the usage pattern of variables,
and claim that this is a good predictor for test and fault tolerance mitigation prioritisation. They
classify variables according to their usage in the program: floating-point values, memory offsets,
or control flow guards. They develop a type system for decorating variables by the above usage
patterns, and show that variables used for floating-point operations are especially vulnerable to
faults (for their evaluation program). Their idea of usage-pattern grouping is related to our idea
of fault equivalence. However, fault equivalence classes are less approximative than theirs, since
we group faults by the actual effect on program behaviour, whereas they apply usage-patterns as
a heuristic of how susceptible variables are to faults.

Meola and Walker[13] develop a logic for reasoning about fault tolerance redundancies
based on separation logic. Similar to us, they model faults by an explicit pseudo-instruction.
Interestingly, they informally note that it is sufficient to insert faults for a variable immediately
before the variable’s value is read. This observation is directly related to our notion of fault
equivalence, as it excludes many equivalent faults.

Perry and Walker[17] analyse the problem of maintaining control flow integrity in the pres-

4

ence of bitflip faults. They formalise the operational semantics of an assembly language type
system to model invalid control flow. They leverage special intent registers, which are copies of
the intended control flow targets. They use these in order to check whether the integrity of jump
targets is preserved.

While most work on transient faults is focused on safety and security critical systems, Feng et
al.[7] forecast that, as hardware dimensions are scaled down, the frequency of transient faults is
scaled up. Because of this, they argue that handling transient faults in the context of commodity
hardware will in time become a necessity. Since non-commercial users are not likely to willingly
sacrifice much performance for fault tolerance, Feng et al. focus on "fault tolerance on the
cheap" and provide a simple, yet effective heuristic for minimal instruction duplication. Their
duplication scheme is based on classification of instructions according to the likelihood of a fault
generating a symptom and whether the instruction can cause a "user-visible" effect. However,
they do not differentiate between the types of instructions that may have a higher probability of
masking faults.

Shoshitaishvili et al.[22] present a binary analysis framework that can be used to analyse the
firmware running on embedded devices. Their analysis utilises symbolic execution and program
slicing in order to detect authentication bypass vulnerabilities (backdoors) in firmware. They
show how their analysis is able to detect exploitable backdoors in some commercially available
devices. They use a so-called security policy in order to detect security critical code. This is
the inspiration behind the security assertions that we use to detect illegal control flow in our
analysis.

Other work has also focused on analysing program binaries. This often involves convert-
ing the binary data to an intermediate language, which allows the analysis tools to analyse bi-
nary programs from different architectures. This is what is done in analysis frameworks like
angr[22, 23, 24], which also contains a symbolic execution engine. We choose to create our
own analysis and symbolic execution engine, as this allows us to work with our target language
without transforming it to an intermediate language. By letting the analysis work directly on
our ARM based language, we are able to analyse the programs on a very low level and track the
effects of individual instructions.

Reis et al.[19] present a software-based technique for achieving fault tolerance through re-
dundancy. Their technique duplicates a program’s instructions and inserts comparison instruc-
tions to compare important values at certain points in the program. This is done by duplicating
the values of a program and thereby doing certain computations twice. The values are then
checked for equivalence before they are used for critical operations. By doing this, they can
detect if a fault has happened in any of the values and react to this. We will be experimenting
with a similar duplication scheme in order to test our analysis.

3 TinyARM with Faults

This section is based on our previous work[2]. It contains an updated formalisation of the
target language, which now uses 16-bit values instead of 32-bit. Using a smaller word size
simplifies formalisation and examples, but the analysis does not depend on it in any other way.
Furthermore, the syntax and semantics of a fault instruction have been added.

5

The formalisation of TinyARM is based on the formalisation in [9] and the ARM language
reference manual[3]. The ARM language is a popular instruction set for embedded devices,
which in turn are the systems that are typically exposed to environmental factors causing SEUs,
or are available for adversaries to intentionally induce faults by techniques like rowhammer.

TinyARM is a subset of the ARM assembly language and features move, load, comparison,
branching, and arithmetic instructions[3]. Note that TinyARM does not contain any instructions
for conditional execution, which instead is realised through parameterized condition codes on
every instruction. To formally model faults in a TinyARM program, we also extend the Tiny-
ARM language to include an explicit fault instruction.

Additionally, we assume the following about the programs we analyse:

• No loops / recursion.

• No function calls.

• No indirect jumps.

Although these assumptions impose significant limitations on the class of programs that can be
expressed, it is done to simplify later analysis. We discuss issues and ideas for extending the
analysis to loops in Section 11. While we will not consider indirect jumps, they can be resolved
by existing techniques based on value-set analysis[4, 23, 9].

Before we introduce the syntax and semantics of TinyARM, we formalise the values that are
used in TinyARM.

Let B be the set of binary values:
B = {0, 1}

we consider 16-bit integer values encoded as binary numbers:

B16 = {0, ..., 15} → B

Val is the set of possible values, encoded as 16-bit integers:

Val = B16

Addresses are also encoded as 16-bit integer values:

Addr = B16

For simplicity of the following formalisations and examples, we will usually write values
as either decimal or hexadecimal values instead of full 16-bit words. When we write values as
binary, we use the subscript 2 to denote that it is a binary value, e.g. 112 = 3.

The ARM assembly language contains 16 registers that are used for different purposes[3].
Registers r0 - r12 are general purpose registers with no special hardware purpose. Registers
r13 and r14 are normally used as the stack pointer and link register. These are function related
registers and are therefore not included in the TinyARM formalisation. Finally, register r15 is
the program counter which keeps track of the ’current’ instruction.

6

We denote the set of general purpose registers as

DataReg = {r0, ...,r12}

the set of control registers (only the program counter) as

CtrlReg = {rpc}

and the set of all registers as
Reg = DataReg ∪ CtrlReg

All registers and addresses contain values, so the register and memory environments are
mappings from registers/addresses to values:

Registers = Reg → Val

Memory = Addr → Val

We denote updating a register, memory, or flag environment member x with the value v as
x 7→ v, e.g. R[x 7→ v] denotes a new register environment where register x maps to value v.

The ARM assembly language has four flags that are used to indicate conditions set by pre-
vious instructions[3]. The conditional flags keep track of negative, zero, carry, and overflow
results. Each of these flags are set to a binary value:

Flag = {fN , fZ , fC , fV } Flags = Flag → B

In TinyARM each instruction is parameterized by a conditional code, which indicates whether
the instruction should be executed based on the state of Flags . We denote the set of condition
codes as:

ConditionCode = {EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL}

The semantics for the condition codes are given by the cond function:

cond(χ, (fN , fZ , fC , fV)) =



fZ = 1 if χ = EQ

fZ = 0 if χ = NE

fC = 1 if χ = CS

fC = 0 if χ = CC

fN = 1 if χ = MI

fN = 0 if χ = PL

fV = 1 if χ = VS

fV = 0 if χ = VC

fC = 1 ∧ fZ = 0 if χ = HI

fC = 0 ∨ fZ = 1 if χ = LS

fN = fV if χ = GE

fN 6= fV if χ = LT

(fZ = 0) ∧ (fN = fV) if χ = GT

(fZ = 1) ∨ (fN 6= fV) if χ = LE

true if χ = AL

7

where χ ∈ ConditionCode.
The condition code AL is used for unconditional execution of an instruction. In the following

examples and formalisation, we normally omit the condition code AL, meaning that any instruc-
tion without a condition code will be unconditionally executed. If the condition of an instruction
does not evaluate to true, the instruction will be treated as a NOP instruction, which will just
increase the program counter.

The semantics for flag updates under addition is given by the flagsADD function. For brevity,
we show only the function for addition, as the rules for comparison, subtraction and multiplica-
tion are similar. The effects of comparison, subtraction, and multiplication instructions on the
conditional flags are shown in the functions in Appendix A.

flagsADD(v1, v2, F)(fN) =

{
1 if v1 + v2 ≥ 215

0 otherwise

flagsADD(v1, v2, F)(fZ) =

{
1 if v1 + v2 = 0

0 otherwise

flagsADD(v1, v2, F)(fC) =

{
1 if v1 + v2 > 216 − 1

0 otherwise

flagsADD(v1, v2, F)(fV) =


1 if v1, v2 < 215 ∧ (v1 + v2 ≥ 215)

1 if v1, v2 ≥ 215 ∧ (v1 + v2 < 215)

0 otherwise

In the above, v1 and v2 are the values of the registers that are used as operands of an addition
instruction, while F is the current flags environment. The reason we also have F as input is that
the MULS instruction only updates some of the conditional flags, see Appendix A. The above
functions show the effect that an addition can have on the conditional flags. We can see that the
negative flag, fN , is set if the addition of two values results in a negative value. The zero flag,
fZ , is set if the result of the addition is zero. The carry flag, fC , is set if more than 16 bits are
required to store the result of the addition. Finally, the overflow flag, fV , is set if the addition
results in a signed overflow.

We now formally define the syntax of the core TinyARM language.

Definition 1 (Syntax of TinyARM)
The set of core TinyARM instructions is defined by the following abstract syntax:

Instr := MOVχ r1, v

| MOVχ r1, r2
| LDRχ r1, a
| CMPχ r1, r2
| OPχ r1, r2, r3
| OPSχ r1, r2, r3
| Bχ a

8

where r1, r2, r3 ∈ DataReg , v ∈ Val , a ∈ Addr , χ ∈ ConditionCode, and OP ∈ {ADD,SUB,MUL}.
Note that the comparison and arithmetic instructions can only have registers as operands,

unlike the ARM assembly language where some of the operands may be immediate values.
However, we can still express the same programs since we are able to move the value into a
register (using MOVχ r1, v) prior to the comparison or arithmetic instructions. In the case of
branch instructions, we often write branch targets using labels in order to make programs easier
to follow.

In order to model that faults may occur in programs, we extend the core TinyARM language
with an explicit fault instruction as follows:

InstrF := Instr

| FAULT r, i

where r ∈ DataReg and 0 ≤ i ≤ 15.

The advantage of modelling faults as explicit instructions is twofold. First, it simplifies
our formalisation of fault equivalence in Section 5, since it allows us to reason about the exact
program point, register, and bit position that the fault affects. Secondly, it enables us to check
the possible vulnerabilities created by each fault in the vulnerability analysis step in a controlled
manner.

With the syntax defined, we now introduce the notion of a program. A TinyARM program
is a partial mapping from addresses to instructions:

Program = Addr ⇀ InstrF

Since faults can occur any time during execution, fault instructions for every combination
of register and bit position can be inserted at every program point. Although many of the fault
instructions have no effect on the registers used in the program, it represents the possibility of
such faults occurring. However, for vulnerability analysis, it is sufficient to analyse only the
faults that can affect the behaviour of the program execution. In Section 8 we examine how to
determine the relevant subset of faults for a given program.

Example 2 shows TinyARM assembly of the alarm controller program from Listing 1 in
Section 1.

Example 2
Recall the alarm controller program from Listing 1. A similar program in TinyARM is shown
in Listing 2. This program has combined the handling of error values and safe values. A couple
of fault instructions have also been added to the program.

This program starts by declaring the values that it needs during execution. It then checks the
sensor input (from Line 1) against the different bounds in the CMP instructions. Depending on
the sensor value, the program will either sound the alarm or do something else. These actions
are represented by the branch targets alarm and noalarm.

Two fault instructions have also been added to the program in Line 2 and Line 8. If the fault
in Line 2 occurs, the value from the sensor will have its least significant bit flipped. This corrupts
the input and could influence the program’s execution. The fault in Line 8 is more dangerous.

9

1 LDR r0 , 0xFEED ; Read sensor .
2 FAULT r0 , 0 ; Potential fault on r0.
3 MOV r1 , 0 ; Min. error bound.
4 MOV r2 , 10000 ; Max. error bound.
5 MOV r3 , 2000 ; Dangerous temp.
6 CMP r0 , r1 ; Check min.
7 BLT noalarm
8 FAULT r2 , 13 ; Potential fault on r2.
9 CMP r0 , r2 ; Check max.

10 BGT noalarm
11 CMP r0 , r3 ; Check danger .
12 BLT noalarm

alarm:
... ; Sound the alarm.

13 B exit
noalarm :
... ; Do not sound the alarm.
exit:

Listing 2: Alarm controller program in TinyARM.

This fault flips the upper bound that checks for error values from 10000 to 1808. This means that
any sensor value above 1808 will not sound the alarm, since they are considered sensor errors.
In this case the program can no longer sound the alarm, since the sensor value would need to be
less than 1808 and greater than 2000 at the same time in order to reach the alarm code.

The above example shows the main idea behind fault instructions. Note that the presence of
a fault instruction does not imply that the fault occurs during execution of the program. Whether
a fault occurs is determined by the following definition of a fault.

Definition 2 (Faults)
Let P ∈ Program then the faults occurring in P is a function

Faults = Addr → {true, false}

that maps addresses of a program to true or false. If the instruction at the given address is a
FAULT instruction, a Faults function controls whether the instruction is executed or skipped.
For any other instruction the Faults function has no effect. We will use f to denote some
arbitrary fault function.

We use fault functions to control which fault instructions are enabled and which are not. As
we shall see in the fault semantics, fault instructions that are not enabled are simply treated as
NOP instructions. When we discuss faults enabled at specific program points, we let fa denote a
fault function that maps to true for address a and false for any other address, that is:

fa(x) =

{
true if x = a

false otherwise

10

The fault function idea can easily extended to fault models where multiple faults can oc-
cur during program execution, by allowing multiple faults to be enabled. Under our SEU fault
model, however, we assume that exactly one fault instruction is enabled for any given fault func-
tion. Therefore the occurrence of different faults on different program executions are represented
as separate fault functions.

Before we formally define the semantics of TinyARM, we define the relation over binary
values that differ in exactly one given bit position. That is, we define the binary relation over
binary values that has a Hamming distance of exactly one[9], on a specific bit position.

Definition 3 (1-Hamming Distance Relation)
Let b1, b2 ∈ B16 and i, j ∈ {0, ..., 15} define the 1-Hamming distance relation (≡i1):

b1 ≡i1 b2 if and only if ∀j : b1(j) 6= b2(j) ⇐⇒ i = j

The program, program counter, state of the registers, memory, and flags together form the
state of the program execution called a configuration. Formally, we define configurations as

Conf = Program ×Addr × Registers ×Memory × Flags

Before we formalise the semantics of TinyARM, we define the transitions between configu-
rations. More formally, we define the binary transition relation

==⇒ ⊆ Conf × Conf

For simplicity, we adopt the notation C ==⇒ C ′ for denoting (C,C ′) ∈ ==⇒ for C,C ′ ∈ Conf .
We let ==⇒∗ denote the reflexive and transitive closure of ==⇒ , and ==⇒n denote a reduction
sequence of length n.

A TinyARM program forms a transition system according to the semantic rules shown in
Figure 1. In the semantics, a configuration can transition to another configuration if any rule
is satisfied. As the configurations process through the rules they execute the program, until the
program counter goes out of range (i.e. until the last instruction has been executed).

The semantic rules follows the semantics of ARM closely[3]. All instructions are executed
only if the conditions for the condition code are satisfied. Any flag-setting instruction updates
the state of the Flags environment according to the flags function.

In the semantic rules for the arithmetic operations, the op symbol is used to indicate the
corresponding arithmetic symbol (e.g. for ADD, op will be +).

The NOP rule is applied whenever the condition check is not satisfied. As previously men-
tioned, this has the effect of the instruction not being executed, and simply increments the pro-
gram counter to the next instruction.

Finally, if the instruction is a fault instruction, one of two cases can happen. If the fault is
enabled under the given fault function f (note that the configuration for faults are parameterized
by a global fault f) the target register r is updated to a new value. The new value is determined
by the target bit position i of the fault instruction and Definition 3. Essentially, the ith bit of the
value of r is changed to its complement. As mentioned previously, if the fault is not enabled
under the fault function f , execution simply treats the fault instruction as a NOP and proceeds to
the next instruction with the configuration intact.

11

P (PC) = MOVχ r, v cond(χ, F)
[MOV-VAL]

〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R[r 7→ v],M, F 〉

P (PC) = MOVχ r1, r2 cond(χ, F)
[MOV-REG]

〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R[r1 7→ R(r2)],M, F 〉

P (PC) = LDRχ r, a cond(χ, F)
[LDR]

〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R[r 7→M(a)],M, F 〉

P (PC) = CMPχ r1, r2 cond(χ, F) F ′ = flagsCMP(R(r1), R(r2), F)[CMP]
〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R,M,F ′〉

P (PC) = OPχ r1, r2, r3 cond(χ, F)
[OP]

〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R[r1 7→ R(r2) op R(r3)],M, F 〉

P (PC) = OPSχ r1, r2, r3 cond(χ, F) F ′ = flagsOP(R(r1), R(r2), F)[OPS]
〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R[r1 7→ R(r2) op R(r3)],M, F ′〉

P (PC) = Bχ a cond(χ, F)
[B]
〈P,PC , R,M,F 〉 ==⇒ 〈P, a,R,M,F 〉

P (PC) = Instrχ ¬cond(χ, F)
[NOP]

〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R,M,F 〉

P (PC) = FAULT r, i f(PC) = true v ≡i1 R(r)[FAULT true]
f ` 〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R[r 7→ v],M, F 〉

P (PC) = FAULT r, i f(PC) = false
[FAULT false]

f ` 〈P,PC , R,M,F 〉 ==⇒ 〈P,PC + 1, R,M,F 〉

Figure 1: Formal semantics of TinyARM with faults.

4 Symbolic Execution

This section is based on our previous work[2]. It contains a modified way of collecting flags and
conditions during symbolic execution. Furthermore, symbolic execution semantics for the new
fault instruction and our security assertion have been added.

In this section we formalise the analysis for collecting the path conditions that must be
satisfied in relevant program executions by symbolic execution, as well as how we utilize special
assertions to detect vulnerable program traces caused by faults.

Symbolic execution is a technique for analysing the behaviour of programs by abstracting
execution on many different inputs at the same time. The main idea is that a specific program
trace can be encoded as the logical conjunction of the conditions that must be satisfied for a
program point to be reached. The behaviour of a program can therefore be expressed as a set of
conditions on registers, memory, and flags used in the control flow of an execution. This means

12

that the primary objective of symbolic execution is to construct a logic formula that expresses the
conditions on resources used in conditional instructions. Since such logic formulas encode the
behaviour of the program, we have effectively reduced the problem of reasoning about program
behaviour to the domain of logic. We can obtain solutions to satisfy the paths by solving the
formulas with an SMT solver.

We formalize symbolic execution as operational semantics as Schwartz et al.[20]. While the
formalisation is unambiguous and provides a straightforward implementation of the analysis, it
should be noted that the complexity of this implementation is not efficient since it is exponential
in the number of branches, in the number of path conditions and has an exponential-size formula
for each branch[20]. However, we let the complexity of the analysis be an implementation detail,
but note that there exists more efficient methods for calculating the path condition, e.g. clever
caching of sub formulas or using the weakest precondition[20].

We extend the core operational semantics of TinyARM in order to collect path conditions
in a special condition environment during execution. Since TinyARM conditional execution
depends on the value of the conditional flags, the conditions are generated based on the flag
semantics.

When we do not know the concrete value of the register during symbolic execution, we let
the content of a register be symbolic expressions. To model these, we define an infinite set of
symbols that we can assign to registers:

Symbol = { si | i ∈ N }

We also define the function NewSymbol which returns a new fresh symbol each time it is used.
Furthermore, we define the following expression language, which is used to describe register

values during symbolic execution.

ρ := v | s | ρ+ ρ | ρ− ρ | ρ ∗ ρ

where v ∈ Val and s ∈ Symbol .
In order to handle the new register values, we define a new Registers function. This maps a

program point to the registers and their values at that program point.

Registers+ = Addr → DataReg → ρ

The reason for recording the values of the registers at all program points is that the security
assertions can refer to the concrete values of registers at certain program points. Essentially, the
new register environments is a collection of the previous definition of register environments.

We also define a new Memory function which is used during symbolic execution.

Memory+ = Addr → Val ∪ Symbol

The Memory+ function is initialized with unique symbols on every address. As a consequence,
the memory is by default fully symbolic. We can still supply input by overriding a given address
with a specific value prior to running symbolic execution, e.g. M [0xFEED 7→ 42].

As we shall see in the semantic rules for symbolic execution, updating register and flag envi-
ronments now includes copying the the mappings from previous program points. In Example 3
we clarify how updates work on the symbolic version of the register environments.

13

Example 3 (Updating Registers)
Suppose that we have the register environment R where

R(1)(r0) = 2, R(1)(r1) = 42

and we want to update r1 to the immediate value 256 in the next program point (2). We use the
following update statement to obtain the updated register environment:

R′ = R[2 7→ R(1)[r1 7→ 256]]

and we now have that

R′(1)(r0) = 2, R′(1)(r1) = 42, R′(2)(r0) = 2, R′(2)(r1) = 256

Essentially, the values are "copied forward" and the value at the new program point is updated.
Updates on flag and memory environments are conceptually similar.

We note that while the updates in our semantics are not standard, it is inspired by copying
forward values in analysis specification with flow-logic [9], except that it is more procedural
than declarative.

Since we can no longer evaluate register values when updating the conditional flags, we
introduce the boolean expression language β. This is used to represent the path conditions, and
later on the full logic formula to be solved.

βX := x1 = x2 | x1 6= x2

| x1 < x2 | x1 ≤ x2
| x1 > x2 | x1 ≥ x2
| ¬βX | βX ∨ βX
| βX ∧ βX

where x1, x2 ∈ X .
This expression language is parameterized withX , which allows it to be used in conjunction

with other expression languages, e.g. βρ is used for path condition expressions while βα is used
for security assertions. This is done to ensure that only security assertions may refer to values
of registers, flags and memory at previous program points.

The comparison and arithmetic instructions of TinyARM still updates the value of the con-
ditional flags during symbolic execution, but since we can no longer evaluate the registers, the
effect of the update is different. The functions for updating the flags are found in Appendix B.
These new update functions simply set the value of the flags to be the boolean expression that
describes whether they are true or false.

We now define a new Flags function that provides the expressions of the conditional flags.

Flags+ = Addr → Flag → βρ

The Flags+ function also stores the previous values of the flags, since these are used later in the
analysis.

14

In order to generate conditions from conditional flags, we define the cons function that maps
a condition code χ and the state of the flags to expressions that must be satisfied for χ to hold:

cons(χ, (fN , fZ , fC , fV)) =



fZ if χ = EQ

¬fZ if χ = NE

fC if χ = CS

¬fC if χ = CC

fN if χ = MI

¬fN if χ = PL

fV if χ = VS

¬fV if χ = VC

fC ∧ ¬fZ if χ = HI

¬fC ∨ fZ if χ = LS

fN = fV if χ = GE

fN 6= fV if χ = LT

¬fZ ∧ (fN = fV) if χ = GT

fZ ∨ (fN 6= fV) if χ = LE

true if χ = AL

where χ ∈ ConditionCode.
Next, we extend the core TinyARM syntax to include security assertions used for identify-

ing whether a fault caused an illegal change in control flow. Before we do this, however, we
introduce the expressions that are used by the assertions:

α = v | r@a

where v ∈ Val , r ∈ DataReg , and a ∈ Addr . The expression r@a refers to the value of the
register r at the address a, which can be retrieved from the Registers+ environment.

We now formally extend the TinyARM language to include the security assertion.

Definition 4 (Syntax of TinyARM Assert)
TinyARM is extended to include the security assertion:

InstrA := InstrF

| ASSERT c

where c ∈ βα.

A security assertion is written in the program in order to mark the critical program point for
the analysis. The critical program point could be instructions that should only be executed under
certain privileges, or code that triggers safety measures like in the alarm controller program.

We imagine that security assertions are manually specified by the developer since assertions
in safety and security critical systems already should contain various assertion statements, or
automatically generated by some previously applied program analysis.

15

Since we updated the TinyARM syntax to include the security assertion, we need to update
the Program function to work with this instruction. We do this by redefining the old environ-
ment:

Program = Addr ⇀ InstrA

The conditions collected by the symbolic execution are handled by the Conditions environ-
ment.

Conditions = Addr → βρ

Finally, we define the configurations that are used for symbolic execution.

Conf + = Program ×Addr × Registers+ ×Memory+ × Flags+ × Conditions

Before we present the operational semantics for symbolic execution, we extend the transition
relation ==⇒ for the new type of symbolic transitions. Formally, we define the binary symbolic
transition relation

s
==⇒ ⊆ Conf + × Conf +

For simplicity, we adopt the notation C s
==⇒ C ′ for denoting (C,C ′) ∈ s

==⇒ . We let s
==⇒∗ denote

the reflexive and transitive closure of s
==⇒ , and s

==⇒n denote a reduction sequence of length n.
We also define the notion of a program trace.

Definition 5
A trace is a sequence (c, ..., c′) ∈ (Conf +)∗ such that c s

==⇒∗c′. Let Traces(c
s

==⇒∗c′) denote
the set of all traces from c to c′.

Instead of writing T ∈ Traces(c
s

==⇒∗c′), we adopt the notation T ∈ c s
==⇒∗c′ to indicate T

is a trace from c to c′.
The operational semantic rules specifying the symbolic execution analysis are shown in

Figure 2. These rules can be used to symbolically execute TinyARM programs, like the rules in
Figure 1, while collecting conditions that reason about the value of any symbol.

While the semantics for symbolic execution are similar to the core semantics in Section 3,
there are a few important differences.

One principal difference is that conditions are collected and propagated through the exe-
cution. Every rule generates conditions according to the semantics of the cons function and
conjoins them to the condition environment. Since any instruction may be executed condition-
ally depending on the condition code, we have that any instruction may potentially generate
conditions. For simplicity in the following examples and formalisation, we omit any trivial tau-
tology clauses, e.g. true ∧ true ∧ ..., resulting from the conditions generated by instructions
with the AL condition code.

Once the symbolic execution semantics have finished collecting conditions, we can use an
SMT solver in order to solve the conditions. By solving the conditions, we gain insight into the
program behaviour and information about possible symbol values. We are using the Z3 Theorem
Prover[6] for solving the conditions since it supports quantified bit vectors which provides a
straightforward way to encode the conditions generated by Definition 3 in the semantic rule for
fault instructions.

16

P (PC) = MOVχ r, v

R′ = R[PC + 1 7→ R(PC)[r 7→ v]]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ cons(χ, F)]
[MOV-VAL]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = MOVχ r1, r2

R′ = R[PC + 1 7→ R(PC)[r1 7→ R(PC)(r2)]]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ cons(χ, F)]
[MOV-REG]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = LDRχ r, a

R′ = R[PC + 1 7→ R(PC)[r 7→M(a)]]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ cons(χ, F)]
[LDR]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = CMPχ r1, r2

R′ = R[PC + 1 7→ R(PC)]

F ′ = F [PC + 1 7→ flagsSeCMP(R(rpc)(r1), R(rpc)(r2), F)

C ′ = C[PC + 1 7→ C(PC) ∧ cons(χ, F)]
[CMP]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = OPχ r1, r2, r3

R′ = R[PC + 1 7→ R(PC)[r1 7→ R(PC)(r2) op R(PC)(r3)]]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ cons(χ, F)]
[OP]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = OPSχ r1, r2, r3

R′ = R[PC + 1 7→ R(PC)[r1 7→ R(PC)(r2) op R(PC)(r3)]]

F ′ = F [PC + 1 7→ flagsSeOP(R(rpc)(r1), R(rpc)(r2), F)]

C ′ = C[PC + 1 7→ C(PC) ∧ cons(χ, F)]
[OPS]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

17

P (PC) = Bχ a

R′ = R[a 7→ R(PC)]

F ′ = F [a 7→ F (PC)]

C ′ = C[a 7→ C(PC) ∧ cons(χ, F)]
[B]
〈P,PC , R,M,F,C〉 s

==⇒ 〈P, a,R′,M, F ′, C ′〉

P (PC) = Instrχ

R′ = R[PC + 1 7→ R(PC)]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ ¬cons(χ, F)]
[FALSE]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = FAULT r, i

f(PC) = true

s = NewSymbol

R′ = R[PC + 1 7→ R(PC)[r 7→ s]]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ s ≡i1 R(PC)(r)]
[FAULT true]

f ` 〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = FAULT r, i

f(PC) = false

R′ = R[PC + 1 7→ R(PC)]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC)]
[FAULT false]

f ` 〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

P (PC) = ASSERT c

R′ = R[PC + 1 7→ R(PC)]

F ′ = F [PC + 1 7→ F (PC)]

C ′ = C[PC + 1 7→ C(PC) ∧ c]
[ASSERT]

〈P,PC , R,M,F,C〉 s
==⇒ 〈P,PC + 1, R′,M, F ′, C ′〉

Figure 2: Operational semantics for symbolic execution of TinyARM.

The LDR instruction also works different from the core semantics, since the memory can now
be symbolic. This means that reading from memory can return either a value or a new symbol.
This is one of two way that symbols are introduced. The other way is through the FAULT
instruction, which generates a new symbol and constrains this to be 1-Hamming distance from

18

the previous register value.
Another important difference is that since flags depend on symbolic values, they can no

longer easily be evaluated to true or false. This means that we cannot readily determine which
branch to select. Semantically, this means that there are two rules applicable in any conditional
instruction since the semantic rule FALSE potentially matches any instruction. In operational
semantics this implies a nondeterministic choice between the two possible rules, discarding the
path not chosen. However, in our case the goal is to explore all possible execution paths to the
target instruction.

The problem of deciding which branch to take in symbolic execution is known as the path
selection problem[20]. There are several strategies for determining which branch to take first,
including Depth-first search (DFS), random, concolic testing, and using heuristics. We adopt the
DFS strategy, since the goal is to explore every path to the target. Normally, DFS has issues with
nonterminating loops when guards contain symbolic expressions. In our case, a DFS strategy
can be readily used for an exhaustive search since we assume that the programs do not contain
loops.

The Registers+ and Flags+ environments used by symbolic execution are also different
from the Registers and Flags environments used in the core TinyARM semantics. These new
environments store the values of the registers and flags at all program points. This is done by
copying the existing values forward in the execution. This means that once a register or flag has
been set, it has the same value in the following program points, until it is redefined.

The newly added security assertion instruction (ASSERT) conjoins its conditions to the con-
ditions environment and continues execution. This means that in order to reach the code fol-
lowing the security assertion, the conditions of the security assertion should be satisfied. During
the analysis, however, we normally stop after the security assertion and checks the conditions to
verify whether the analysed fault caused an illegal flow in the program. We can do this since we
only have a single security assertion at a time, but the current semantics could be used to support
multiple security assertions, in order to enable analysis of programs where security is broken
only if two critical program points are reached.

We now give an example to illustrate how the symbolic execution works. Example 4 applies
symbolic execution on the alarm controller program, show the conditions that are generated, and
check whether they are satisfied.

Example 4 (Symbolic Execution)
Consider the alarm controller program in Listing 3. We have added a security assertion in
Line 13 which states that the only time the alarm should not be sounded is if the temperature
is outside the danger interval ([2000 .. 10000]). This means that if a run reaches the noalarm
code with a dangerous temperature, something must have changed the intended control flow.

Note that in this case the security assertion is designed to capture false negatives on the
alarm. In order to analyse false positives on triggering the alarm, another assertion should be
used.

The possible symbolic executions of the program can be represented as the graph in Figure 3.
We have contracted the vertices of the tree. When symbolically executing the program we
conceptually traverse the tree and collect the conditions on the edges. The conditions tell us
what needs to be satisfied in order for the execution to reach a given program point.

19

1 LDR r0 , 0xFEED ; Read sensor .
2 MOV r1 , 0 ; Min. error bound.
3 MOV r2 , 10000 ; Max. error bound.
4 MOV r3 , 2000 ; Dangerous temp.
5 FAULT r0 , 15 ; Possible fault on r0.
6 CMP r0 , r1 ; Check min.
7 BLT noalarm
8 CMP r0 , r2 ; Check max.
9 BGT noalarm

10 CMP r0 , r3 ; Check danger .
11 BLT noalarm

alarm:
...

12 B exit
noalarm :

13 ASSERT r0@1 < 2000 ∨ r0@1 > 10000
...
exit:

Listing 3: Alarm controller used to show symbolic execution.

1-7

8-9

10-11

12

13

exit

r0 ≥ r1

r0 < r1

r0 ≤ r2

r0 > r2

r0 ≥ r3

r0 < r3

Figure 3: Symbolic execution of Listing 3.

Lets consider two runs of the program in which the sensor reads the value 8000, that is:

M(0xFEED) = 8000

In one of the runs the fault in instruction 5 is not enabled and in the other it is.
For the fault-free run it is not possible to reach the security assertion in the noalarm code

(instruction 13). We can see this by looking at the conditions that are collected on the three

20

possible paths from instruction 1 to instruction 13:

1→ 13 = 8000 < 0

1→ 8→ 13 = 8000 ≥ 0 ∧ 8000 > 10000

1→ 8→ 10→ 13 = 8000 ≥ 0 ∧ 8000 ≤ 10000 ∧ 8000 < 2000

None of these path conditions are satisfied, hence it is not possible to reach the noalarm
code with the input 8000 in a fault-free run. It is only possible to reach the alarm code in
instruction 12. This path will have the following condition:

8000 ≥ 0 ∧ 8000 ≤ 10000 ∧ 8000 ≥ 2000

which is clearly satisfied.
If we look at the run with in the context of a the fault f5, we see that it is possible to reach

the security assertion in the noalarm code with the input 8000. When we reach the fault
instruction in address 5, the fault occurs, and the value of r0 will be changed such that the path
from the first branch becomes:

s0 ≡15
1 8000 ∧ s0 < 0

which is satisfied since s0 gets the value -24768.
This is not the intended program behaviour since an alarm should have been sounded with

an input of 8000. In order to detect this, we use the security assertion by conjoining it to the
path condition. Before we do this, however, we negate the security assertion. This is done to
ensure that all possible assignments to the assertion’s registers are considered when we solve the
conditions. In other words, in order to prove that for all inputs the execution is safe, we prove
that there exist no input such that the execution is unsafe.

For the example program, we know that r0@1 can only be 8000, however in general, r0@1
could be a symbol in which case we would have to consider several possible values. The condi-
tions, after the negated assertion has been added, will look as follows:

s0 ≡15
1 8000 ∧ s0 < 0 ∧ ¬(8000 < 2000 ∨ 8000 > 10000)

where 8000 = r0@1. The value of r0@1 can be retrieved from the register environment,
Registers+. Using De Morgan’s laws we can rewrite the conditions to:

s0 ≡15
1 8000 ∧ s0 < 0 ∧ 8000 ≥ 2000 ∧ 8000 ≤ 10000

which are satisfied. Since we negated the security assertion, a satisfied result means that the
security assertion was broken and the fault was able to change the intended control flow of the
program.

5 Fault Equivalence

Since a fault can occur at any point during execution, the number of possible fault instructions
encoded in a program by our formalisation is substantial, spanning every register at every pro-
gram point. Extending the types of faults to SEUs in memory, flags etc. result in even more

21

faults encoded. However, many faults may cause the exact same effect on the behaviour of the
program, despite having completely different characteristics, i.e. not targeting the same register
or occurring at different times during execution.

Usually, we are not interested in the effect each fault has on the behaviour of a program, but
instead on the overall possible effects that can be caused by faults. Even though the conventional
fault injection methods combined with black-box simulation provides assessment of the fault
tolerance of programs, it provides little to no insight into the nature of the faults causing the
undesirable effects.

We propose to categorize faults into a set of fault equivalence classes conditioned on the
effect they have on the behaviour of a program. Reasoning about equivalence classes of faults
instead individual faults potentially reduces the complexity of our analysis and may provide
much more useful insight into the fault tolerance of programs. Fault equivalence can also be a
useful basis for further fault analyses.

We now show examples to illustrate the idea behind equivalent faults and to show cases
where we expect faults to exhibit the same effect on the program. We then present formal
definitions of fault equivalence relations and discuss how they capture that equivalent faults
indeed cause the same effect on a program.

A simple example showcasing faults with the same effect on program behaviour is shown in
Example 5.

Example 5
Consider the TinyARM program in Listing 4 with two fault instructions.

1 LDR r1 , 0xFEED
2 FAULT r1 , 0
3 MOV r2 , 42
4 FAULT r1 , 0
5 CMP r1 , r2
6 ...

Listing 4: Equivalent faults on r1 in the least significant bit position.

Observe that the two fault instructions affect the same definition of the same register (r1 defined
in instruction 1) on the same bit position (bit 0). Also, there are no instructions in the control-
flow between the faults that affects r1 nor uses r1 in computations before the comparison in
instruction 5. Regardless of previous execution, the effect of the faults f2 and f4 is identical.
We argue that in general, there are equivalent faults at every program point in the path from the
definition of a register to the next use of the same register.

Example 6
Listing 5 shows a TinyARM program with faults on different registers and different bit positions.

Note that unlike in Example 5, the two faults target different registers and bit positions.
In order to decide if the faults are equivalent or not, we observe that in any execution, after
instruction 2, r1 maps to 1 = 12 and r2 maps to 2 = 102. We now consider the cases when
each fault occurs:

1. With f3, the 0th bit of r1 is flipped and r1 maps to 02 = 0. Since we use r1 for
multiplication in instruction 5, we get that r3 maps to 0 after instruction 5.

22

1 MOV r1 , 1
2 MOV r2 , 2
3 FAULT r1 , 0
4 FAULT r2 , 1
5 MULS r3 , r1 , r2
6 MOV r4 , 0
7 CMP r3 , r4
8 ...

Listing 5: Equivalent faults on different registers and different bit positions.

2. With f4, the 1st bit of r2 is flipped, i.e. r2 now maps to 02 = 0. Since r2 is used for
multiplication in instruction 5, we get that r3 maps to 0 after instruction 5.

By these two cases, we see that the effect of the faults differ on r1 and r2 but are identical for
r3. Assuming that r1 and r2 are not live after instruction 5, we argue that the two faults are
equivalent since they have the same effect on the live register r3.

Example 7
Consider the TinyARM program in Listing 6 which shows a program with two faults in distinct
branches.

1 LDR r1 , 0xFEED
2 LDR r2 , 0xDEAD
3 LDR r3 , 0x1234
4 CMP r1 , r2
5 BGT gt
6 FAULT r3 , i
7 MOV r4 , 0
8 B check
9 gt:

10 FAULT r3 , i
11 MOV r4 , 1
12 check:
13 CMP r3 , r4
14 BGT x
15 ...

Listing 6: Faults in distinct branches.

At first glance the two faults may seem equivalent since they affect the same register on the same
bit position. However, suppose that we execute the program with the fault f6. For all input that
causes control to flow to the gt branch, we never propagate the effects of f6, since the enabled
fault instruction is never reached. Consequently, the flags after instruction 13 are consistent with
fault-free execution. Now, consider the case when executing with fault f10. For all input that
causes control to flow to the gt branch, the r3 register is corrupted, propagating the fault to the
flags set by instruction 13. Therefore, the two faults may affect the program differently on the
same input.

The above examples illustrate cases where we expect faults to be equivalent or distinct. We
now propose definitions of fault equivalence.

23

The following definition states that two faults are simple equivalent whenever separately
executing the program with the two faults yields the same configuration in the target program
point.

Definition 6 (Simple Fault Equivalence)
Given a program P ∈ Program and the address of the target security assertion a ∈ Addr , then
two fault functions f, f ′ are simple equivalent on P (f ≡Pf f ′) if and only if the following holds
for any start configuration 〈P, pc,R,M,F 〉:

f ` 〈P, pc,R,M,F 〉 ==⇒∗〈P, t, R′,M ′, F ′〉 if and only if

f ′ ` 〈P, pc,R,M,F 〉 ==⇒∗〈P, t, R′,M ′, F ′〉

Simple fault equivalence treats computation as a black box and defines equivalence purely
in terms of whether the externally observable effects of two faults are the same.

Regarding the three example programs, we argue that the faults in Example 5 falls under
simple fault equivalence, since r1, r2, and the flags will have the same final values regardless
of the chosen fault.

The faults in Example 6 are not simple equivalent, since the activation of the first fault will
result in r1 = 0 and r2 = 2, while the second fault results in r1 = 1 and r2 = 0. This
observation leads us to that simple fault equivalence may be too strict on the final configuration.

Finally, the faults in Example 7 will have different final values for r3 and are not simple
equivalent.

This simple kind of equivalence can work in some scenarios. We may, however, want to
enforce that the control flow does not deviate significantly when running the program with two
different faults. While this may not be important in the current TinyARM language, it is impor-
tant if the language is ever extended to include function calls. In this case an execution could
change flow to call a function, and then reset the control flow changing registers before contin-
uing. This would result in the same final state as executions that do not call the function. The
function could, however, potentially influence something outside the program.

In order to relate equivalence to the control flow of a program, we introduce a new type of
equivalence. The following equivalence definition states that two faults are equivalent whenever
the flags are identical in every configuration of both fault runs for the same input.

Definition 7 (Control Fault Equivalence)
Given a program P ∈ Program and the address of the target security assertion a ∈ Addr , then
two fault functions f, f ′ are control equivalent on P (f ≡Pf f ′) if and only if the following holds
for any given start configuration 〈P, pc0, R0,M0, F0〉:

For all i > 0:

f ` 〈P, pc0, R0,M0, F0〉 ==⇒i〈P, pci, Ri,Mi, Fi〉 ==⇒∗〈P, t, Rt,Mt, Ft〉 if and only if

f ′ ` 〈P, pc0, R0,M0, F0〉 ==⇒i〈P, pci, R′i,M ′i , Fi〉 ==⇒∗〈P, t, R′t,M ′t , Ft〉

By enforcing that the flags at every instruction must be identical under both faults, the control
flow must also be identical since the condition code semantics depend directly on the content of
the flags. Furthermore, we abstract from any intermediate computation and the flow of corrupted

24

values through general purpose registers, as long as the effect on the flags are the same. We now
relate Definition 7 to the example programs.

The only instruction affecting the flags in Example 5 is the final CMP instruction. Since both
r1 and r2 will have the same values under either fault function, the comparison will update the
flags in the same way. This implies that the faults are control equivalent.

In Example 6 the flags will be updated twice: first by the MULS instruction and later by the
CMP instruction. The result of the multiplication will be zero under both fault functions, and
since the MULS instruction only updates the negative and zero flags, the flags under each fault
function will be identical after the multiplication. The CMP instruction in the end will compare
zero with zero under both fault functions, therefore its flags will be the same as well, hence the
faults are equivalent.

The faults in Example 7 are not control equivalent. The reason for this is that the flags set
by the second CMP instruction can be different, since only one of the faults are reached based on
the chosen input.

Throughout the rest of the report, we consider only Control Fault Equivalence (Definition 7).
For simplicity, we let≡Pf denote control equivalence. We do this since we are mostly concerned
with the execution flow of programs under given faults. This allows us to reason about which
faults, if any, can reach safety/security critical code in a program. Checking whether given faults
are equivalent can be done in several ways. In Section 8 we will discuss how symbolic execution
is used for deciding the equivalence of faults in our analysis prototype tool.

6 Analysis Overview

In this section we give an overview of the fault analysis and a short explanation of the steps
involved in it. A flow chart of the complete analysis is found in Figure 4.

Program
Representation

Vulnerability
Analysis

Quantitative
Analysis

Figure 4: Fault analysis flow chart.

Program Representation
The analysis starts of by building several representations of the target program. These represen-
tations serve different purposes in the analysis. The main program representation used by the
analysis is the Control Flow Graph (CFG), which shows the possible executions of the program.
Next, several dependency graphs are generated. These capture different information about how
instructions influence each other. The main purpose of the dependency graphs is to create a
backwards slice of the program. This slice can be used to limit the parts of the program that
should be analysed. The process of generating the various graphs as well as the backwards slice
is explained in Section 7.

25

Vulnerability Analysis
The next step of the analysis is to select which faults we want to analyse. Instead of analysing
every possible fault (in any register at any program point), we gradually reduce the number of
faults that we need to consider. This is done to speed up the final simulation step of the analysis.
The process of selecting faults to analyse is discussed in Section 8.

Quantitative Analysis
The last step of the analysis is to use statistical model checking to get various probabilistic results
for the program. This allows the analysis to find out how vulnerable the program is to SEU faults
by simulating a number of program executions. By doing this we can get the probability of a
given fault breaking the safety/security of the program. The quantitative part of the analysis is
discussed in Section 9.

7 Graphs and Backwards Slicing

This section is based on our previous work[2]. It contains short definitions of important program
representations that we are reusing for this report.

In this section, we describe the different ways that we represent TinyARM programs in our
analysis. These representations capture different information about the program and are known
from many common static analyses. We also discuss our use of the backwards program slice
and why it is useful.

The most important program representation that we are using is the Control Flow Graph
(CFG). This is a graph that models the transition system formed by the semantics of TinyARM.
The CFG is constructed by adding a vertex for each instruction in the target program, and adding
edges to form the transition system of the program. This captures the possible ways that the
program can be executed. Definition 8 formally defines control flow graphs.

Definition 8 (Control Flow Graph)
A Control Flow Graph (CFG), G, is a tuple G = (V,E, entry , exit) where

• V ⊆ Addr × InstrA,

• E ⊆ V × V ,

• entry ∈ V is the entry vertex, and

• exit ∈ V is the exit vertex.

Our CFGs are formed in a very straightforward way from the program’s instructions. The
only instruction type that has more than one outgoing edge is the conditional branch, which can
reach two different program points depending on the evaluation of its condition code. Other
conditional instructions will reach the next program point regardless of their execution. It is
common to group non-branching, sequentially executed instructions into basic blocks in CFGs
to increase performance and decrease model complexity. However, we have mainly focused on
smaller programs and as such do not use basic blocks. The complete transformation from a
TinyARM program to a CFG is described in Appendix C.

26

A CFG represents all possible traces for a given program. In Definition 9 we define the
notion of a path in a CFG, which is used to reason about a particular execution, similar to a
trace.

Definition 9 (Path)
Let G = (V,E, entry , exit) be a CFG. A path in G is a sequence of vertices (x1, ..., xk) ⊆ V k

such that for all j, 1 ≤ j < k, there exists an edge (xj , xj+1) ∈ E. We adopt the notation
Paths(G) for denoting the set of all paths in G. Also, when it is clear from context, we let
(a1, ..., ak) denote ((a1, i1), ..., (ak, ik)) ∈ Paths(G).

Next, we use the CFG to create the Control Dependency Graph (CDG) and the Data De-
pendency Graph (DDG). These graphs capture information about how instructions rely on each
other. The CDG shows which instructions control the execution of other instructions, and is
obtained by using a simple post dominance algorithm[8, 15].

The DDG shows which instructions have written the data that is read by other instructions
later in the program’s execution. This is found with a simple worklist algorithm that computes
a reaching definitions analysis[14]. It is important to note that our data dependencies track the
use of both registers and flags like in [11].

Before we continue to the final type of dependency graph, we define a couple of useful data
dependency related notations.

We first define the functions Reads and Writes which denote the registers and flags that are
read and written by instructions:

Reads : InstrA→ 2DataReg ∪ Flag

is the function that maps instructions to the registers and flags that they read.

Writes : InstrA→ 2DataReg ∪ Flag

is the function that maps instructions to the registers and flags that they write to.
Remark, that fault instructions do not read any register, but writes a single register (their

target) and this is reflected in the definition of Reads and Writes .
We use these functions to provide a formal definition of data dependencies.

Definition 10 (Data Dependency)
Given a CFGG = (V,E, entry , exit) and two vertices u, v ∈ V , we say that v is data dependant

on u, written u d−→ v, if and only if the following holds:

1. Writes(u) ∩ Reads(v) 6= ∅

2. there exists a register or flag, s ∈ Reads(v), and a path (u, x1, ..., xk, v) such that for all
i, where 0 < i ≤ k, we have that s 6∈Writes(xi).

Note that the definition of data dependencies extends to fault instructions as well. This
implies that any instruction that reads the value of a register directly written by a fault instruction
is data dependant on the fault instruction.

27

The CDG and DDG are used to build a composite dependency graph called the Program
Dependency Graph (PDG), which is simply the combination of the CDG and DDG. The purpose
of the PDG is to create the backwards slice of the program. An example of a PDG can be found
in Example 8.

Example 8 (Dependency Graphs)
Consider the alarm controller program in Listing 7.

1 LDR r0 , 0xFEED ; Read sensor .
2 MOV r1 , 0 ; Min. error bound.
3 MOV r2 , 10000 ; Max. error bound.
4 MOV r3 , 2000 ; Dangerous temp.
5 CMP r0 , r1 ; Check min.
6 BLT noalarm
7 CMP r0 , r2 ; Check max.
8 BGT noalarm
9 CMP r0 , r3 ; Check danger .

10 BLT noalarm
alarm:
...

11 B exit
noalarm :

12 ASSERT r0@1 < 2000 ∨ r0@1 > 10000
...
exit:

Listing 7: Alarm controller used to demonstrate dependency graphs.

The PDG for this program can be seen in Figure 5. As we mentioned earlier, the PDG is a
combination of the CDG and the DDG. In this figure, the edges from the CDG are dashed lines,
while the edges from the DDG are solid lines. The main purpose of this graph is to compute the
backwards program slice from the security assertion. This is explained below.

A backwards slice of a program is the subset of the program’s instructions that influence a
target instruction in some way:

Definition 11 (Backwards Slice)
Let G = (V,E, entry , exit) be a CFG. The backwards slice of G to t ∈ V is a subset of vertices
St(G) ⊆ V where t ∈ St(G)

We usually utilise the security assertion of a program as the target instruction, which enables
us to find all instructions that control the flow towards the critical code of the program. By using
a backwards slice we do not have to analyse the entire target program, since some instructions
may not affect the program’s security. This is useful when we want to select which faults should
be tested, since faults outside the slice cannot affect the control flow to the critical program
point. Furthermore, the slice is useful during symbolic execution, since it allows us to skip all
the instructions that are not in the slice.

To find the backwards slice, we do an exhaustive backwards search in the PDG from the
security assertion. This finds all the instructions of the backwards slice. It is important to note
that our backwards slice overapproximates which instructions influence the target. This means

28

1 : LDR r0, 0xFEED 2 : MOV r1, 0

3 : MOV r2, 10000

4 : MOV r3, 2000

5 : CMP r0, r1

6 : BLT noalarm

7 : CMP r0, r2

8 : BGT noalarm

9 : CMP r0, r3

10 : BLT noalarm

11 : B exit 12 : ASSERT r0@1 < 2000 ∨ r0@1 > 10000

99K Control dependency
−→ Data dependency

Figure 5: PDG of Listing 7.

that potential faults cannot change control flow to leave the backwards slice and re-enter it to
reach the target. If we compute the backwards slice for the program in Example 8, we can see
that all instructions, expect instruction 11, are in the slice. The reason for this is that the alarm
code only contains one instruction. In a real world applications there would be more instructions
in the alarm code and the backwards slice would be more beneficial since it removes more
instructions from the analysis.

8 Vulnerability Analysis

We now present how to analyse each fault for possible vulnerabilities. As mentioned in Section 6
we focus the analysis on a subset of all faults in order to speed up the analysis, since many faults
are irrelevant for a program’s execution (for instance a fault targeting an unused register or a
fault occurring immediately before a register is overridden by a MOV instruction). Additionally,

29

since we are interested in the possible effects that faults can cause, and not each individual
fault’s effect, we ensure that only distinct faults are considered. That is, we ensure that only one
representative fault from each fault equivalent class is selected for further analysis.

In summary, the vulnerability analysis consists of the following steps:

1. Find initial fault candidates.

2. Check each initial fault for vulnerability by collecting and solving the path conditions
from by symbolic execution.

3. Check vulnerable faults for fault equivalence and select one representative from each
equivalence class.

The result is the set of non-equivalent faults that can cause a vulnerable trace in the program.
This set of faults are the basis for the quantitative analysis.

Step 1: Finding initial faults

The analysis starts by searching for registers used in the backwards program slice to the target
instruction. The goal is to remove trivially irrelevant faults, i.e. faults that target unused registers
as well as some faults that are trivially equivalent. Although simple, this step eliminates a large
amount of irrelevant faults that would only cause unnecessary performance overhead.

The initial faults are the faults occurring immediately before their target register is read.
That is, there exist no intermediate fault instructions that target the same register on the same
bit position between execution of the initial fault and the next instruction that reads the target
register. Formally, the set of initial faults w.r.t. a slice S and a CFG G is specified as follows:

F (S,G) = {fa | (a,FAULT r, i) ∈ S ∧ (c, instr) ∈ S ∧

(a,FAULT r, i)
d−→ (c, instr) ∧

∀π = ((a,FAULT r, i), ..., (c, instr)) ∈ Paths(G) :

∀x ∈ π : x = (b,FAULT r, i) implies a = b}

Example 9
Consider the alarm controller program in Listing 8. We have only included a small subset of all
possible faults, since it is sufficient to illustrate how initial candidates are found.

Recall that fa denotes that the fault at address a is enabled and every other fault is disabled.
We now consider each fault:

• f5 6∈ F (S,G) since no instruction is data dependant on the fault in instruction 5.

• f6 ∈ F (S,G) since 6
d−→ 8 and there exist no other instance of this fault on the path from

instruction 6 to instruction 8.

• f7 ∈ F (S,G) since 7
d−→ 8 and no other instance of the fault instruction exist on a path

from instruction 7 to instruction 8.

30

• f10 6∈ F (S,G) since no instructions are data dependant on the fault in instruction 10 (r1
is not live after instruction 8).

• f11 6∈ F (S,G) since there exists another instance of the same fault (instruction 14) along
the path to instruction 16.

• f14 ∈ F (G,S) since 14
d−→ 16 and no other instances of the same fault exist on the path

to instruction 16.

• f15 ∈ F (G,S) for the same reason as f14.

In summary, we obtain the initial fault candidates: F (S,G) = {f6, f7, f14, f15}.
1 LDR r0 , 0xFEED ; Read sensor .
2 MOV r1 , 0 ; Min. error bound.
3 MOV r2 , 10000 ; Max. error bound.
4 MOV r3 , 2000 ; Dangerous temp.
5 FAULT r4 , 2
6 FAULT r0 , 4
7 FAULT r1 , 1
8 CMP r0 , r1 ; Check min.
9 BLT noalarm

10 FAULT r1 , 7
11 FAULT r3 , 13
12 CMP r0 , r2 ; Check max.
13 BGT noalarm
14 FAULT r3 , 13
15 FAULT r3 , 14
16 CMP r0 , r3 ; Check danger .
17 BLT noalarm

alarm:
...

18 B exit
noalarm :

19 ASSERT r0@1 < 2000 ∨ r0@1 > 10000
...
exit:

Listing 8: Alarm controller with faults.

Some of the initial faults may still be equivalent, such as the ones in the small example in
Figure 6. This can happen because unoptimized assembly code often have redundant instructions
that just move data between registers. These trivially equivalent faults will be handled by Step
3, where the analysis eliminates any remaining equivalent faults. Alternatively, they can also
be handled by a separate program analysis that removes the redundant instructions from the
program.

It is important that the procedure for finding the initial fault candidates is sound in the sense
that every fault equivalence class with respect to the slice is represented. Otherwise, we are miss-
ing entire classes of effects that could cause serious unintended behaviour. While we provide no
formal proof of soundness, we claim that this is true for F .

31

FAULT r0, i

MOV r1, r0

FAULT r1, i

MOV r2, r1

Figure 6: Equivalent faults not eliminated by Step 1.

Claim 1
Let G = (V,E, entry , exit) be a CFG and Su(G) be a slice of G to u ∈ V , then F (G,S) is a
sound approximation of distinct faults in w.r.t. to S.

Step 2: Symbolic Execution

After the initial fault candidates are found by Step 1, we test the vulnerability of each fault
by collecting the path conditions with symbolic execution and checking whether the security
assertion can be broken. If the assertion can be broken, then the fault caused an unintended
control flow to reach critical code. Any fault that can do this is of interest to the analysis, and
the rest of the fault candidates are discarded. The pseudocode of this procedure is shown in
Algorithm 1.

Algorithm 1 Finding faults that break the security assertion.
Input: A starting configuration, 〈P, pc,R, F,C〉. The initial faults, F . The security asser-

tion address, t ∈ Addr .
Output: A set of vulnerable faults.

1: function VULNERABLEFAULTS(〈P, pc,R, F,C〉, F, t)
2: V ← ∅
3: for all f ∈ F do
4: if f ` 〈P, pc,R, F,C〉 s

==⇒∗〈P, t, R′, F ′, C ′〉 then
5: if CHECKSAT(C ′(t)) = true then
6: V ← V ∪ {f}
7: return V

The call to the CheckSat is an abstraction of the invocation of the chosen SMT solver - in
our case, the Z3 SMT solver.

Example 10 (Symbolic Execution)
Consider again the alarm controller program in Listing 8. Recall that we found the initial fault
candidates in Example 9 to be F (S,G) = {f6, f7, f14, f15}. We now use symbolic execution to
check the vulnerability of each fault.

32

Like earlier we represent the symbolic execution of a program as a tree. The tree, which can
be seen in Figure 7, is similar to the tree in Example 4 but uses other addresses since Listing 8
contains more fault instructions.

1-9

10-13

14-17

18

19

exit

r0 ≥ r1

r0 < r1

r0 ≤ r2

r0 > r2

r0 ≥ r3

r0 < r3

Figure 7: Symbolic execution of Listing 8.

Symbol Given By Value
s0 Input Anything
s1 s1 ≡4

1 s0 Anything
s2 s2 ≡1

1 0 2
s3 s3 ≡13

1 2000 10192
s4 s4 ≡14

1 2000 18384

Table 1: Values of the symbols generated by
symbolic execution of Listing 8.

Several symbols will be generated by the symbolic execution of the program. These symbols
are summarised in Table 1. We can see that the symbol s0 represents the initial input to the
program, while the symbols s1, s2, s3, and s4 are generated by the fault instructions.

We now symbolically execute the program for each initial fault to build the path conditions
collected on the path to the security assertion. We then solve the collected path conditions
to check whether they are satisfied. If the path conditions are satisfied, we mark the fault as
vulnerable.

We start with f6. The path conditions collected to the security assertion are:

s1 ≡4
1 s0 ∧ s1 ≥ 0 ∧ s1 ≤ 10000 ∧ s1 < 2000

This formula is satisfied when s1 is in the interval [0 .. 1999]. We now add the negated security
assertion (like in Example 4) and check whether the conditions can still be satisfied:

s1 ≡4
1 s0 ∧ s1 ≥ 0 ∧ s1 ≤ 10000 ∧ s1 < 2000 ∧ ¬(s0 < 2000 ∨ s0 > 10000) =

s1 ≡4
1 s0 ∧ s1 ≥ 0 ∧ s1 ≤ 10000 ∧ s1 < 2000 ∧ s0 ≥ 2000 ∧ s0 ≤ 10000

where s0 is the value of r0@1. This formula is satisfied if s0 (the input) is in the interval
[2000 .. 10000], s1 (the corrupted value) is in the interval [0 .. 1999], and s1 ≡4

1 s0. We see that
it is possible to satisfy the conditions with the assignment s0 = 2000 and s1 = 1984. Since
the path conditions are satisfiable, f6 can break the security of the program and is returned by
Algorithm 1.

33

For f7 we collect the following path conditions:

s4 ≡1
1 0 ∧ s0 ≥ s2 ∧ s0 ≤ 10000 ∧ s0 < 2000 ∧ ¬(s0 < 2000 ∨ s0 > 10000) =

s1 ≡1
1 0 ∧ s0 ≥ s2 ∧ s1 ≤ 10000 ∧ s0 < 2000 ∧ s0 ≥ 2000 ∧ s0 ≤ 10000

Observe that s0 < 2000 ∧ s0 ≥ 2000 is a contradiction, hence the path conditions are not
satisfiable and f7 is not vulnerable.

The fault functions f14 and f15 can also break the security assertion of the program. This
can be seen if we look at their path conditions:

Cf14 = s0 ≥ 0 ∧ s0 ≤ 10000 ∧ s3 ≡13
1 2000 ∧ s0 < s3 ∧ s0 ≥ 2000 ∧ s0 ≤ 10000

Cf15 = s0 ≥ 0 ∧ s0 ≤ 10000 ∧ s4 ≡14
1 2000 ∧ s0 < s4 ∧ s0 ≥ 2000 ∧ s0 ≤ 10000

In the path conditions for both of these fault functions, s0 has to be in the interval [2000 .. 10000]
which is possible since it is fully symbolic. Furthermore, s0 should be less than the value of the
symbols generated by the faults (s3 and s4). This is always the case since both s3 and s4 are
greater than 10000 (see Table 1) while s0 ≤ 10000. Because of this, both f14 and f15 can break
the security and they are returned by Algorithm 1.

In summary the fault functions f6, f14, and f15 can break the security of the program and
are returned by Algorithm 1. Fault function f7 cannot break the security so it is not returned by
Algorithm 1.

Step 3: Equivalence Testing

The third and final step of the vulnerability analysis is to eliminate the remaining equivalent
faults according to Definition 7. This is done to further reduce the number of faults that are
considered during quantitative analysis.

Recall from Definition 7 that in order for two faults to be equivalent, the conditional flags
must be identical for every intermediate configuration in traces from the same starting configu-
ration. Since the vulnerability analysis considers only traces in the slice to the security assertion,
it is sufficient to check whether the possible contents of the flags are identical for instructions in
the slice. For testing fault equivalence, we leverage the path conditions already collected by the
symbolic execution of each vulnerable fault. Since the contents of the flags are collected by sym-
bolic execution, we can construct a formula expressing that the conditional flags are identical
and check whether it holds for every program point. More specifically, we test the equivalence
of two faults by constructing combined path conditions for each program point. The combined
path condition consists of the condition that the expressions in the flag environments must be
identical together with the base path conditions generated by the symbolic execution, i.e. the
conditions that in general must hold to reach a program point. We prove or disprove that the
combined path conditions hold for all possible runs, by checking satisfiability of its negation
with an SMT solver. If the negation of the combined path conditions are satisfiable then there
exist some input, i.e. some execution, where the flags are not identical, hence we get that the
faults are not equivalent.

The main function for equivalence testing is shown in Algorithm 2. This function iteratively

34

Algorithm 2 Computing distinct faults.
Input: Program P ∈ Program . Set of faults F . Target t ∈ Addr.
Output: A set of distinct faults.

1: function DISTINCTFAULTS(P, F, t)
2: f ∈ F
3: D ← {f}
4: for all fa ∈ F \ {f} do
5: if ∀fb ∈ D : AREEQUIVALENT(P, fa, fb, t) = false then
6: D ← D ∪ {fa}
7: return F

checks whether the initial faults are equivalent to an already tested set of distinct faults. DIS-
TINCTFAULTS calls the function shown in Algorithm 3 to determine if two faults are equivalent.

Algorithm 3 Testing equivalence of two faults.
Input: Program P ∈ Program . Faults fa, fb ∈ Addr → {true, false}. Target t ∈ Addr.
Output: true if equivalent; otherwise, false .

1: function AREEQUIVALENT(P, fa, fb, t)
2: for all T1 ∈ fa ` 〈P, pc,R0,M0, F0, C0〉

s
==⇒∗〈P, t, Rk,Mk, Fk, Ck〉 do

3: for all T2 ∈ fb ` 〈P, pc,R0,M0, F0, C0〉
s

==⇒∗〈P, t, R′k,M ′k, F ′k, C ′k〉 do
4: if PATH(T1) = PATH(T2) then
5: for all i ∈ PATH(T1) do
6: combined ← Ck(i) ∧ C ′k(i) ∧ ¬(Fk(i) = F ′k(i))
7: if CHECKSAT(combined) = true then
8: return false

return true

Algorithm 3 tests each trace with the same path in the respective symbolic execution under
fa and fb. Note that the symbolic execution is not completed again, but the path conditions are
simply taken from the previous symbolic execution in Step 2 of the vulnerability analysis.

For each instruction along the traces, the combined path conditions are constructed (Line 6)
by asserting both base path conditions and that the flags are not equal. Recall that flag environ-
ments are functions, therefore the equality assertion on Fk(i), F ik(i) is done point-wise.

If the combined path conditions are satisfiable, it is possible for the flags to differ which
implies fa 6≡Pf fb and the call to AREEQUIVALENT therefore immediately returns false. If none
of the combined path conditions are satisfiable, we have that the faults are equivalent.

In the above algorithms for equivalence testing, we check all program points in the path to
the target security assertion. Implementation wise, it is sufficient to check the combined path
conditions after every flag setting instruction along the trace, since other instructions will keep
the flags unchanged.

35

Example 11 (Equivalence Testing)
Recall the alarm controller program from Listing 8. Suppose that we want to determine whether
any of the faults from Step 2 (f6, f14, and f15) are equivalent.

There are three flag setting instructions (8, 12, 16), so it is sufficient to check the possibility
of the flags differing after every of those program points. First, we assert the path conditions
under each fault function for the given program point. Secondly, we assert that the flags under
each fault function must be identical.

Address Fault Flags

8
f6 flagsSeCMP(s1, 0, F)
f14 flagsSeCMP(s0, 0, F)
f15 flagsSeCMP(s0, 0, F)

12
f6 flagsSeCMP(s1, 10000, F)
f14 flagsSeCMP(s0, 10000, F)
f15 flagsSeCMP(s0, 10000, F)

16
f6 flagsSeCMP(s1, 2000, F)
f14 flagsSeCMP(s0, s3, F)
f15 flagsSeCMP(s0, s4, F)

Table 2: Flag values after each CMP instruction in Listing 8.

We start by checking whether f6 ≡Pf f14. We check the path and flag conditions under each
fault function after the comparison at address 8. The flag condition can be found in Table 2 and
the path conditions are the following (after contracting the multiple true conjunctions):

Pathf6 = true ∧ s1 ≡4
1 s0

Pathf14 = true

Combining the path conditions (except the trivial true) and the negated flag conditions, we get
the following:

Pathf6 ∧ Pathf14 ∧ flagsSeCMP(s1, 0, F) 6= flagsSeCMP(s0, 0, F)

This can be satisfied if, for instance, s0 = 0 as this would make the zero flag false in flagsSeCMP(s1, 0, F)
but true in flagsSeCMP(s0, 0, F). Because the flags can be different in one program point, we
do not need to test the rest since we already know that f6 6≡Pf f14.

Lets skip ahead and check whether f14 ≡Pf f15. Again we start by checking the path and flag
conditions after instruction 8. The flag condition is found in Table 2. Since we have not visited
any conditional or fault instructions, the path conditions under both faults will be the trivial true
conjunctions, so we ignore these. The combined conditions will be:

flagsSeCMP(s0, 0, F) 6= flagsSeCMP(s0, 0, F)

which is clearly a contradiction. Therefore we need to continue to the next comparison instruc-
tion at address 12.

36

The path conditions at instruction 12 are the same under both of the fault functions: s0 ≥ 0
(excluding the trivial true conjunctions). This gives us the combined conditions:

s0 ≥ 0 ∧ s0 ≥ 0 ∧ flagsSeCMP(s0, 10000, F) 6= flagsSeCMP(s0, 10000, F)

Again, it is immediately clear that the combined path conditions are unsatisfiable.
When we reach the third comparison instruction at address 16, the paths under the fault

functions will be (again excluding the true conjunctions):

Pathf14 = s0 ≥ 0 ∧ s0 ≤ 10000 ∧ s3 ≡13
1 2000

Pathf15 = s0 ≥ 0 ∧ s0 ≤ 10000 ∧ s4 ≡14
1 2000

The combined path and flag conditions after the instruction are:

Pathf14 ∧ Pathf15 ∧ flagsSeCMP(s0, s3, F) 6= flagsSeCMP(s0, s4, F)

While it is easy to see that the two path conditions are satisfiable, it is not immediately clear
whether the flag condition is satisfiable or not. Observe that when we reach instruction 16, we
know that s0 ≤ 10000 by the path conditions. From Table 1 we also know that s3 = 10192 and
s4 = 18384. By inputting these values into the calls to the flagsSe function, we can compute
the possible flag values under each fault function:

f14 :


fN = true

fZ = false

fC = false

fV = false

f15 :


fN = true

fZ = false

fC = false

fV = false

We can see that the possible values of the flags are the same under each faults function. This
means that the condition where the flags should be different is unsatisfiable and therefore the
combined conditions are also unsatisfiable. Since this is the last flag setting instruction we now
know that f14 and f15 are equivalent.

In summary, the distinct faults returned by Algorithm 2 are f6 and either f14 or f15.

We have given a symbolic execution based procedure for testing fault equivalence. It is a
natural choice for our implementation, as we have already collected the necessary analysis data
needed from the previous symbolic execution step.

An alternative procedure for determining fault equivalence is to leverage techniques from
model checking. We propose to encode two programs as a UPPAAL model - each with their
respective fault encoded as a fault instruction location. With the two models at hand, we can
then verify whether it is possible to get to the "same" location in each program, while the content
of the code-behind flags are not the same. To increase performance, it may be advantageous to
make sure that the transitions of the two programs synchronize, such that locations representing
different program points are not checked against each other.

37

9 Quantitative Analysis with UPPAAL SMC

In this section we present how to quantify the risk of each of the vulnerable faults found by the
vulnerability analysis. Accurate estimation of the risk for each fault is a desirable metric for a
multitude of fault tolerance applications.

We leverage statistical model checking capabilities of the model checking tool UPPAAL[5]
to perform quantitative analysis of the programs. Using SMC provides us with better control
over the experiments than physical fault injection experiments. Furthermore, it scales well and
simulation runs can be trivially parallelised and distributed to increase performance.

First, we present how to encode TinyARM control flow graphs and the SEU fault model as
UPPAAL models. We then discuss how to query UPPAAL SMC to get the data.

9.1 Modelling TinyARM Configurations

A UPPAAL model is a timed automaton. Informally, a timed automaton consists of a set of
locations, with one initial location, a set of clocks, clock constraints, as well as a set of actions
and edges between locations. In UPPAAL, locations have an associated invariant that must be
satisfied when the location is part of the current state of the model. Each edge can have associ-
ated guard and update statements. The guard must be satisfied before the edge is enabled. If the
edge is enabled and traversed, the update statement is executed and the state of the underlying
model is changed. The underlying state is coded in a C-like language and can be constructed to
closely represent the actual system being modelled. The state of the TinyARM abstract machine
is modelled in a straightforward manner in the underlying UPPAAL model state. The principal
part of the underlying state for the alarm controller program is shown in Listing 9.

1 reg_t r0 , r1 , r2 , r3 , r0_4;
2 bool fn , fz , fc , fv;
3 bool hit = false;
4 int16_t faultReg ;
5 int16_t faultAddr ;
6 int16_t faultBit ;

Listing 9: Example of underlying state of a TinyARM program.

The register environment is represented by 16-bit signed integer variables. Since we already
have knowledge about the structure of the program from previous analysis steps, it is sufficient
to model the registers that are live in the program. Unfortunately, UPPAAL does not directly
support 16-bit integers, so we model them using bounded 32-bit integers and handle overflow
and carry manually (in calls to a fixOverflow function).

Any registers referenced by the security assertion are also stored in a special variable, so
that we later can reference them in the model of the security assertion. In Listing 9 the special
register for the alarm controller program is r0_4. The conditional flags are simply represented
by four boolean variables.

During quantitative analysis, the hit variable is used to signify if a fault occurs or not.
The faultReg, faultAddress and faultBit variables store register, address, and bit
position targeted by the enabled fault, respectively. We store these values to get data about the
frequency of each fault through the simulation.

38

9.2 Modelling TinyARM Semantics

Recall that a vertex in a CFG represents a single instruction in the program and an edge repre-
sents the control flow between instructions. Similarly, we can represent a program as a UPPAAL
model by constructing a location for each vertex and an edge for each edge in the CFG. To
closely model the TinyARM semantics, the premises of the semantic rules are set as the guards,
and the changes to registers and flags are modelled by the update statement on the edges. Es-
sentially, this means that when a location transitions to another, the effects of the instruction
semantics are applied to the underlying state.

A CFG also contains two special vertices: the entry vertex and the exit vertex, which rep-
resent the entry and exit points of the program. The entry and exit vertices of the CFG are also
added to the UPPAAL model to mark the models’ entry and exit points, but they have no other
effect on the model.

We now show how to encode some of the TinyARM instructions in UPPAAL. We start with
the MOV instruction, since this is a simple instruction that just updates a single register.

Consider the CFG in Figure 8a and the UPPAAL model in Figure 8b. Most transitions in
the UPPAAL models also updates a program counter variable, but to keep the following figures
simple, the program counter updates are not shown.

PC : MOV r1, r2

PC + 1 : P (PC + 1)

(a) MOV instruction in a CFG.

PC : MOV r1, r2

PC + 1 : P (PC + 1)

r1 = r2

(b) MOV instruction in a UPPAAL model.

Figure 8: CFG conversion rule for MOV.

We can see that the UPPAAL model looks very similar to the CFG. The only difference is
the update statement on the edge which updates the value of r1 to be the same as the value of
r2. This is marked with a blue colour. This updates the variables used by the UPPAAL model
according to the MOV semantics. Conditional flags are set in the same way by the flag setting
instructions.

In order to model conditional execution of instructions in UPPAAL, we use guards on the
edges. An edge with a guard is only enabled if the guard evaluates to true. An example of this
can be seen in the conditional branch in Figure 9a and Figure 9b.

Here we can see how guards are used to control the flow in the model. The guards are
marked with a green colour. Instructions with the condition code EQ (equals) are executed if the
zero flag (fz) is set. We model this in UPPAAL by using the zero flag as a guard on the edges.
This means that the model can only execute the branch (transition to the instruction at a) if the
zero flag is set. Otherwise, the model transitions to the next instruction.

Other conditional instructions are encoded in a similar manner, except they will visit the sub-
sequent instruction with both their outgoing edges. An example of this can be seen in Figure 10.

39

PC : BEQ a

PC + 1 : P (PC + 1) a : P (a)

false true

(a) BEQ instruction in a CFG.

PC : BEQ a

PC + 1 : P (PC + 1) a : P (a)

¬fz fz

(b) BEQ instruction in a UPPAAL model.

Figure 9: CFG conversion rule for conditional branch.

PC : MOVEQ r1, r2

PC + 1 : P (PC + 1)

¬fz fz
r1 = r2

Figure 10: MOVEQ instruction in a UPPAAL model.

We can see that both edges from the MOVEQ instruction transition to the same instruction,
but with different guards. Furthermore, the guard that models the case where EQ evaluates to
true (fz) will have the assignment to r1. The reason for this is that the assignment should only
happen if the instruction executes (i.e. if EQ is true).

We use the LDR instruction of TinyARM as an input mechanism for a program. To model this
in UPPAAL we nondeterministically select an input value through a select statement. Note that
this implies that input values are uniformly distributed. However, for user-specific applications,
domain knowledge of the distribution of inputs may refine the quantification results substantially.

If two instructions load from the same address, we cache the value from the first instruction
such that we can use it again in the second instruction. We can see how this works in Figure 11.

PC : LDR r1, 0x1234

PC + 1 : P (PC + 1)

load1234 < INT16_MIN
s : reg_t
r1 = s
load1234 = s

load1234 ≥ INT16_MIN
r1 = load1234

Figure 11: LDR instruction in UPPAAL model.

Every address being loaded from has an associated caching variable (load1234 in Fig-
ure 11). The initial values of these cache variables are lower than the lowest 16-bit value. This
allows us to check whether they are in use by using a guard that compares their current value
against the lowest 16-bit value (INT16_MIN). If the cache variable has not been used yet, we

40

know that this is the first time loading from the given address. We do this by nondeterministically
selecting a 16-bit value and assigning this to the given register as well as the cache variable. The
next time we load from the same address, we simply use the cached value instead of selecting a
new one. In this way, we make sure that the memory is consistent throughout each simulation
run. Note that this is based on the assumption that memory is reliably protected through some
hardware mechanism, such that faults do not occur in memory. In order to handle fault models
with faults in memory, it will be necessary to extend the analysis to handle the otherwise fully
symbolic memory.

The last instruction that we show the conversion for is the ASSERT instruction which works
a little differently in the UPPAAL model. When we meet an ASSERT instruction we want to
check whether the flow is legal or illegal based on the condition in the security assertion. To do
this, we add two locations and place the ASSERT condition as a guard on the incoming edges.
This can be seen in Figure 12a and Figure 12b.

PC : ASSERT r1@1 = 0

PC + 1 : P (PC + 1)

(a) ASSERT instruction in a CFG.

PC : ASSERT r1_1 = 0

Illegal PC + 1 : P (PC + 1)

r1_1 != 0 r1_1 == 0

(b) ASSERT instruction in a UPPAAL model.

Figure 12: CFG conversion rule for ASSERT.

We can see that there are some differences between the two figures. The CFG only has
an outgoing edge from the ASSERT instruction to the next instruction in the program, while the
UPPAAL model has two outgoing edges. The UPPAAL model has an edge to the next instruction
and an edge to a location named Illegal. By using this model, we can check whether the flow
was illegal, as this would cause the model to deadlock in the Illegal location. While other
work [9, 7] take the approach continuously of observing the effects of faults on the machine
state, we can avoid such complex observer components since we focus on fault tolerance with
respect to a specific program point, and not the whole program.

The complete UPPAAL model for the alarm controller program is shown in Appendix D.

9.3 Modelling Faults in UPPAAL

Modelling the core language semantics of TinyARM programs is only one part of the quan-
titative analysis. We must also model how faults occur during program execution, such that
simulation represents realistic fault risks.

We use two different SEU models which we call the Implicit SEU Model and the Explicit
SEU Model.

The implicit SEU model represents that a single fault on any register occurs randomly with
uniform distribution throughout the execution of the program. This closely represents how SEUs
happen in real world applications, and we use it to establish a baseline probability distribution

41

of faults for our experiments in Section 10. The implicit model represents the base-line risk
assessment of faults and we use it for comparison with risk assessment of experiments with the
explicit SEU model.

The explicit SEU model encodes faults explicitly in the program structure as fault instruc-
tions, as we have presented in previous sections. Exactly one of the encoded faults are nondeter-
ministically chosen to be enabled during the execution of the program. The principal difference
between the implicit and explicit SEU model is that the explicit model encodes only the set of
non-equivalent faults that were determined to be vulnerable by the vulnerability analysis step,
while the implicit model allows faults to occur in registers that are not live or in bits that are not
vulnerable.

Implicit SEU Model

The implicit SEU model consists of three UPPAAL components: two copies of the program
under analysis, P1 and P2, as well as a separate SEU model component that performs the effects
of a fault occurring during execution. The program components do not contain any explicit fault
instruction. The reason for this is that the occurrence of faults is implied by the interleaved
execution of the separate SEU component and the program model. An example of the models
used by the implicit SEU model can be seen in Example 12.

Example 12
We can see how the P1 and P2 models work by looking at Figure 13 and Figure 14. The
models synchronize on done, which ensures that P2 is not executed before P1 has finished its
execution.

Figure 13: Example of P1.

Figure 14: Example of P2.

The SEU model for this simple program can be seen in Figure 15. This model also synchro-
nize on done to ensure that it does not start before P1 finishes. This model also uses edges with
probabilistic weights. These weights are coloured orange.

42

Figure 15: Example of implicit SEU model.

In general, the probability of a fault occurring must be uniformly distributed over the whole
execution of the program. We ensure this by performing the following steps for any simulation
run:

1. Input is nondeterministically chosen.

2. P1 is run with the input and the execution time is saved in a clock variable execTime. P1
synchronizes on done to signal completion.

3. P2 is run on the same input as P1, interleaved with the SEU component.

4. During the execution of P2, the time for the fault to occur is uniformly chosen from
[0, execTime]. This is done by the invariant in the Invariant location of the SEU
model.

Note that the execution time for the two programs should be the same for the same input, such
that we can ensure that a fault occurs before P2 terminates. Otherwise, if P1 executes fast and
P2 slow, we may get a biased distribution of faults towards instructions in the beginning of the
program. To ensure identical execution time for P1 and P2, we enforce that each location of the
program delays exactly 1. This is facilitated by a clock variable t, and adding the invariant t ≤ 1
to every location and every outgoing edge are updated with the guard t ≥ 1 as well as an update
statement resetting t to 0. Intuitively, this means that each instruction takes 1 time instance to
execute. Note that in real-world systems, instruction latency depends on various factors such as
the type of arithmetic, loads/stores with cache hit/miss from memory, or branching. With this in
mind, our scheme for enforcing uniform delays for instructions can be readily adapted to encode
the specific latencies for each type of instruction in the processor architecture for the analysed
program, ultimately yielding more precise risk quantification of faults.

Remark that since execTime is a clock, we set the clock rate execTime ′ to 0 in the Invariant
location in order to stop the clock from delaying any further, essentially making execTime a
stopwatch.

43

When a time has been uniformly chosen, the bit that the fault changes is chosen nondeter-
ministically. The reason that the bit is chosen on the outgoing edge from Invariant, and
not on each of the probabilistic edges (dashed transitions), is due to the underlying system of
UPPAAL SMC models. Here nondeterministic selection on probabilistic transitions generate an
edge for each possible value in the domain of bits. Unfortunately, this has the subtle effect of
skewing the probabilities in favour of each of the non-missed locations. While this may not have
any effect in our case, since the probability of missed is 0, it is a subtle detail that can affect the
probability estimations substantially if other weights are used.

A fault is chosen by the SEU model based on the probabilistic weights of the transitions to
the fault and miss locations. The effects of the fault are then carried out on the underlying state
by a call to the function flip shown in Listing 10.

1 reg_t flip(reg_t v, bit b) {
2 int32_t res = v ^ (1 << b);
3 return fixOverflow (res);
4 }

Listing 10: Flipping a bit in UPPAAL.

The flip function computes the new value of the register targeted by a fault by changing the
bth bit of v to its complement. This is done by left shifting 1, b times and computing the bitwise
exclusive-or of the resulting mask and the value v of the register.

Note that in the SEU model component, the probability weight for Missed is 0, since we
are analysing the case when a fault occurs with probability 1. These probability weights can be
adjusted to model cases where faults are rare, or the probability of faults in some of the registers
are greater than others, reflecting any user specific domain knowledge.

Explicit SEU Model

The explicit SEU model follows the fault semantics as well as the fault formalization from Sec-
tion 3. The UPPAAL model consists of a single program component with all distinct fault in-
structions, that was determined to be vulnerable by the vulnerability analysis, explicitly encoded
as fault instructions. Only one fault is activated per execution and this is facilitated by nondeter-
ministically selecting one fault to activate and making sure only the chosen fault instruction is
executed. Originally, we wanted to do this in the beginning of the program (i.e. from the entry
location). However, this would lead to cases where faults chosen for testing were never reached,
due to input that caused control flow of the program execution to never reach the location of
the fault instruction. As a consequence, a large number simulations where in effect invalid, and
it would be hard to control the number of usable simulation runs. To overcome this issue, we
move the fault selection to the end of the program and execute the program twice. We can see
how this works in Figure 16.

Once the program has executed, we reach the ChooseHit location in the left of the figure.
This location can be reached twice, since we execute the program up to two times. The first
time we reach ChooseHit, the hit variable will be false which tells us that the program
has just completed its first run without executing any faults. During this run, the program has
recorded all the faults that it visited. This enables us to select a fault that we are sure will

44

ChooseHit

Exit

SelectHit CheckHit

Entry

hit

¬hit
x : int[1, m + h]
hit = x > m

¬hit
hit
x : int[0, f - 1]
s = x
fair = isFair(f, fi, s)

¬fair
fair
chosen = visited[s % fi]

Figure 16: Selecting a fault in the explicit SEU model.

be visited in the second run, as long as the program uses the same input. The second time
we reach ChooseHit, hit will be true and we just transition to Exit. The transition from
ChooseHit to SelectHit determines whether we should execute the program a second time
with a fault enabled. This transition will select a value from the interval [1 .. m + h], where m
and h are weights for a fault missing or hitting, respectively.

From the SelectHit location we have two choices depending on whether a fault should
hit or not. If the hit variable is false, a fault should not occur in the program, so we just go
to Exit. If hit is true, we need to select one of the visited faults and execute the program a
second time with the selected fault enabled. We do this by selecting a random value from the
interval [0 .. f− 1], where f is the number of fault instructions in the model. The reason for the
zero-based interval is that the faults visited in the first execution are stored in a zero-based array.
Since we will be selecting a fault based on the selected number and a modulo operation, we first
check whether the selected value is fair by using the isFair function (Listing 11).

1 bool isFair (int16_t f, int16_t fi , int16_t s) {
2 int16_t fullSets = f / fi;
3 return s < fi ∗ fullSets ;
4 }

Listing 11: Checking whether selected number is fair.

The arguments for the function are: (1) the total number of faults in the model, (2) the number of
faults that were visited, and (3) the randomly selected number. We use the isFair function to
make sure that the randomly selected number has the same chance of choosing any of the visited
faults. We can see why this is useful, if we look at the outgoing transitions from the CheckHit
location.

The CheckHit location has two outgoing transitions. One of them loops back to the
SelectHit in order to select a new fault, if the previous selected fault is not fair. If the
selected fault is fair, we can take the transition to the entry location while choosing a fault to
enable. In the second run of the program, the selected fault will be executed and we can observe
its effect. As we can see, the fault is chosen by taking the modulo of the selected fault number
and the number of visited faults in the first run (fi). This modulo operation is the reason that
we use the isFair function, as demonstrated in Example 13.

45

Example 13
Recall the isFair function from Listing 11 and lets imagine a program model with ten fault
instructions, i.e. f = 10. Lets consider a first run in this program where we visit three fault
instructions. This would mean that fi = 3 and the visited array could be:

[1, 2, 3, 0, 0, 0, 0, 0, 0, 0]

where 1, 2, and 3 are the faults we visited, while the zeros are unused indices in the array.
When we select s after SelectHit, s will be a value in the interval [0 .. 9]. In UPPAAL,

select statements need to choose from a range that is known at compile time, and this is the
reason that we are not just selecting a value in [0 .. 2]. We can, however, get the selected number
to map to the indices of the visited array by doing a modulo operation with the number of
elements in the visited array. This can lead to a bias, however, since some values may be
represented more than others.

This is where the isFair function is useful. It starts by finding the number of full sets that
can be mapped to the selected value. In this example the mapping would look like this:

s : 0 1 2 3 4 5 6 7 8 9

fault : 1 2 3 1 2 3 1 2 3 1

where the top row is the selected number, s, and the bottom row is the fault that it maps to. We
can see that the full set of {1, 2, 3} appears three times, while the number 1 appears once more
than the others. This means that if s is in [0 .. 8] we can map it to a fault in an unbiased manner,
while s = 9 will increase the change of fault 1 happening.

This fairness is calculated by the isFair function. It starts by calculating the number of
full sets by doing an integer division:

fullSets = f/fi = 10/3 = 3

The value of fullSets can then be used to determine whether the selected number is
biased or not. Lets see how this works on our example by looking at s = 4 and s = 9, where
we know that 4 is fair while 9 is not. The fairness from the isFair function is given by:

s < fi * fullSets

where we know that fi = 3 and fullSets = 3.
By substituting s with the values 4 and 9, we get:

4 < 3 ∗ 3 = true

9 < 3 ∗ 3 = false

As expected, we can see that 4 is fair, while 9 is not.

Now that we have looked at the selection step of the explicit SEU model, lets have a look at
how the fault instructions work. The modelling of fault instructions can be seen in Figure 17.

46

PC : FAULT ri, j

PC + 1 : P (PC + 1)

¬hit
addFault(1)

hit and chosen != 1

chosen == 1
ri = flip(ri, 15)
faultReg = i
faultBit = j
faultAddr = pc

Figure 17: FAULT instruction in the explicit SEU model.

When the analysis generates the UPPAAL model, it assigns every fault instruction a number.
It is this number that determines whether a fault instruction is executed or not. Figure 17 shows
a fault instruction that has been given the number 1. All fault instructions have three outgoing
transitions, one is used during the first run and the other two are used during the second run.

The leftmost transition is used by the fault instruction during the first run. This is the run
where no faults are executed. Instead we collect all the fault instructions that we encounter. This
is done by calling the addFault function and passing the fault number. By doing this we store
the numbers of all encountered fault instructions in the visited array that we use during the
selection step.

During the second run, we can no longer use the leftmost transition since hit is now true.
Instead we choose one of the other transitions depending on which fault instruction was chosen
by the selection step that we described earlier. If it is the case that the current fault was not
chosen, we simply skip it by using the middle transition. If the fault was chosen, however, we
perform the given bitflip.

10 Experiments

In this section we present results of experiments with the analysis toolchain. The quantitative
analysis are conducted on two versions of the alarm controller program. The first version is
the base program that has been used throughout the report without any fault tolerance measures
applied, while the second version has been subjected to software instruction duplication based
on the vulnerability analysis.

10.1 Setup

We run the tested programs through the entire analysis pipeline. This means that faults are
selected based on the results of the vulnerability analysis. The risk of each fault is then quan-
tified with UPPAAL SMC. We then perform instruction duplication on the faults and run SMC
simulations again to check the effect. We present the initial results from the vulnerability anal-
ysis (vulnerable and non-equivalent faults) as well as the quantitative results from the statistical
model checking.

In order to extract quantitative information from a UPPAAL model, we record a snapshot
of the underlying state at appropriate program points. More specifically, we are interested in
knowing whether a simulation deadlocked in the Illegal location, since this tells us whether a

47

fault broke the security/safety of the program. Additionally, we are also interested in getting
information about the activated fault, if any was activated. This is used to build statistics over
each individual fault.

The following SMC query collects the above data:

simulate n [#<=s] { CFG.Illegal, CFG.Exit, hit, faultReg, faultBit, faultAddr }

where n is the number of simulations to run and s is the maximum number of transitions to
take in each simulation. The value of s will be a number high enough to ensure that the entire
program can be traversed.

By running the above query, we get the value of each observed location and variable for each
step taken by UPPAAL SMC. Since we are only interested in the final outcome of the simulation,
we only collect the values in the final state of the run. By doing this, we can see whether the run
ended in the Illegal or Exit location.

We also record the hit variable which tells us whether a fault occurred in the program. This
can be used to check how often a fault actually changes the control flow. The last three variables
that we record store information about the fault that happened. These variables store the register,
bit and address of the fault. We can then run a large number of simulations with the above
query to obtain data about each simulation run, which we process to get the results that we are
interested in.

10.2 Vulnerability Analysis Results

From the symbolic execution step of the analysis, we determine the faults that can cause illegal
control flow. By doing this, we obtain information about which registers and bit positions are
vulnerable at given program points. The alarm controller program is shown again in Listing 12.

1 LDR r0 , 0xFEED ; Read sensor .
2 MOV r1 , 0 ; Min. error bound.
3 MOV r2 , 10000 ; Max. error bound.
4 MOV r3 , 2000 ; Dangerous temp.
5 CMP r0 , r1 ; Check min.
6 BLT noalarm
7 CMP r0 , r2 ; Check max.
8 BGT noalarm
9 CMP r0 , r3 ; Check danger .

10 BLT noalarm
alarm:
...

11 B exit
noalarm :

12 ASSERT r0@1 < 2000 ∨ r0@1 > 10000
...
exit:

Listing 12: Alarm controller program.

The vulnerability analysis finds the vulnerabilities shown in Table 3.
This table shows the registers that are found to be vulnerable, as well as the bit positions

that they are vulnerable on. We can see that register r0 is vulnerable on numerous bit-positions.

48

Address Register Vulnerable bits
5 r0 0-15
5 r1 11-14
7 r0 0-15
7 r2 4, 8-10, 13, 15
9 r0 4-15
9 r3 0-3, 5, 11-14

Table 3: Vulnerable registers and bit positions identified by vulnerability analysis.

This is likely because r0 is used for storing the fully symbolic input, and therefore it is more
likely that there exist input values that can be flipped to cause unintended program behaviour.

Recall that the vulnerability analysis ensures no equivalent faults. As we saw in Section 8,
the vulnerability analysis correctly detects the fault equivalence of the fault immediately before
instruction 9 on register r3 bit 13 and 14 (corresponding to f14 and f15 in Example 9). This
means that the explicit SEU model only contains one of these faults before address 9.

While only two faults were determined to be fault equivalent, we note that a large number
of equivalent faults are removed by Step 1 of the vulnerability analysis. Furthermore, we expect
that the number of equivalent faults per program increases as more aggressive fault models are
considered.

10.3 Quantitative Analysis Experiments

We quantify the risk of each fault in the program by running 200000 simulations with UPPAAL
SMC. We first run simulations with the implicit SEU model to establish a baseline probability
distribution over faults. We then run simulations with the explicit SEU model to see how they
differ from the results of the implicit SEU model. As previously mentioned in Section 9.3, we
can control the hit and miss weights of faults. Since we are only interested in the runs where
faults occur we use a miss weight of zero to ensure that faults occur in all runs.

Before we present the specific results from each fault model, we first show the overall prob-
ability that any fault causes illegal control flow. These probabilities are shown in the blue bars
of Figure 18.

We first look at the vulnerability percentages for the base, unhardened program. Here we
can see that the probability is more than three times larger in the explicit SEU model compared
to the implicit SEU model. This is expected given that all faults in the explicit SEU model will
affect the program in some way, while faults in the implicit SEU model may have no effect at
all. This is because the implicit model may cause faults to occur on registers that are not live as
well as on bit positions that are not vulnerable.

The complete distribution of faults for simulations with the implicit and explicit SEU models
are shown in Appendix G and Appendix H. From the data, it is clear that register r0 is the most
vulnerable register. Additionally, we see that the most significant bits are most vulnerable. This
is useful information and could be used in combination with a device-specific susceptibility
template for physical memory to avoid placing memory pages in blocks, where the vulnerable

49

Explicit Implicit

0

1

2

3

3.26

1.01

2.96

0.12

%
R

is
k

of
fa

ul
t

Base Duplicated

Figure 18: Overall program vulnerability

bit positions are susceptible to bitflips.
In order to easier compare the numbers for implicit and explicit experiments, we now instead

look at aggregates of the data.
In Table 4 we present the probability distribution over vulnerable registers and bit positions

for the implicit SEU model. Probabilities of zero are not shown.

Bit Register

r0 r1 r2 r3

2 0.05% 0.05%
4 0.05% 0.05% 0.10%
5 0.05% 0.05% 0.10%
6 0.10% 0.10%
8 0.30% 0.25% 0.55%
9 0.50% 0.30% 0.79%
10 0.20% 0.89% 1.09%
11 6.40% 0.05% 1.88% 8.33%
12 5.56% 1.59% 4.51% 11.66%
13 12.05% 3.97% 7.24% 8.04% 31.30%
14 10.32% 5.26% 9.62% 25.20%
15 14.29% 6.45% 20.73%

49.80% 10.86% 15.18% 24.16% 100.00%

Table 4: Distribution of register vulnerabilities for the implicit fault model.

50

The table shows the frequency for specific registers and bit positions causing vulnerable flow.
As we can see, the simulations did not find any vulnerable faults on the bit positions 0, 1, 3, and
7 that were able to break the security. As we saw in Table 3, these bit positions are vulnerable for
some of the registers, but after running the simulations, it is apparent that the risk of breaking the
security by flipping these bits is very low. However, since the estimated risk is low, the number of
path condition models breaking the security is low. To further analyse these rare events, we can
leverage the SMT solver to perform "model counting" on the possible satisfying assignments
to solutions to the path conditions collected by symbolic execution. While in general, model
counting is not efficient, it may be advantageous to use when we know the number of models is
small.

We can also see that r0 and r3 are the most vulnerable registers, and that it is mainly the
most significant bits that are vulnerable.

We have collected similar results for the simulations that use the explicit SEU model. These
results can be seen in Table 5. We can see some similarities between the results of the implicit

Bit Register

r0 r1 r2 r3

2 0.02% 0.02%
4 0.09% 0.09%
5 0.08% 0.03% 0.11%
6 0.17% 0.17%
7 0.20% 0.20%
8 0.51% 0.12% 0.63%
9 0.38% 0.34% 0.72%
10 0.55% 0.75% 1.30%
11 7.41% 0.02% 1.84% 9.27%
12 7.80% 1.36% 3.38% 12.54%
13 14.20% 4.46% 6.22% 6.13% 31.00%
14 13.14% 6.07% 19.21%
15 18.32% 6.43% 24.75%

62.86% 11.90% 13.86% 11.38% 100.00%

Table 5: Distribution of register vulnerabilities for the explicit fault model.

and explicit SEU models. It is still the most significant bits that are the most vulnerable and
register r0 is still the most vulnerable register.

One big difference between the results is that the register r3 now has a significantly lower
vulnerability. As we can see, one of the reasons for this is that the implicit SEU model found
many vulnerabilities on bit 14, while the explicit SEU model did not find any. This is because
the explicit SEU model is not testing SEUs on bit 14 of register r3, since it is equivalent with bit
13. This is the downside of removing equivalent faults in the quantitative analysis, as it changes
the probabilities. To alleviate this, measures for scaling the probabilities for faults with larger
equivalence classes must be developed.

51

Another difference between the results is that r0 is now more vulnerable (about the same
amount as r3 is now less vulnerable). One reason for this is that the explicit SEU model does
not consider the windows in which registers can be flipped. It is reasonable to assume that a
register that is live for a long time without being changed is more vulnerable than a register that
is live for a short time. In the implicit SEU model this is automatically considered since faults
are distributed over the entire program. In the explicit model, however, faults are only encoded
before instructions that read registers, and register lifetimes are not considered. This may be
the cause of r0 being much more more vulnerable than the other registers in the explicit SEU
model. We consider three different addresses to flip r0 (before each comparison), while we only
consider one address for each of the other registers.

10.4 Quantitative Analysis Experiments with Duplication

In this section we describe how we perform experiments on the version of the alarm controller
program in which some instructions have been duplicated to improve fault tolerance. We are
using a simple instruction duplication scheme that uses a set of duplicate registers, which are
used to detect SEUs. The idea behind the duplication scheme is that we compare the original
registers to their duplicates before they are used for setting flags. Since it is the flags that control
the flow of a program, this scheme reduces the probability of an SEU changing the intended
control flow. This complete instruction duplication scheme can be found in Appendix E.

The duplicated version of the alarm controller program can be seen in Appendix F. The
program has been generated by finding the vulnerable instructions with symbolic execution and
duplicating them as well as all instructions that they have data dependencies on. When using
symbolic execution to find vulnerable instructions in the duplicated program, we find that it is
the same instructions that are still vulnerable. The newly added comparison instructions cannot
break the program’s security and are not vulnerable. This means that the duplicated register are
not considered by the explicit SEU model, since it only considers vulnerable registers. The im-
plicit SEU model still contains all the duplicated registers to make the fault distribution uniform
over all registers.

We are running simulations in UPPAAL SMC in the same way for the duplicated version
of the alarm controller program as we did for the base version. This means that we run 200000
simulations on both SEU models with a miss probability of zero.

We start by looking at the overall probability of any fault causing illegal flow for each fault
model. These probabilities can again be found in Figure 18 (the red bars).

The overall probability of breaking the security is not much lower for the explicit SEU model
on the duplicated code. This is because the model still targets the faults at specific program points
just before the vulnerable comparison instructions. Since the vulnerable comparison instructions
are located after the fault tolerance instructions, they bypass much of fault tolerance provided by
the duplication scheme. On the other hand, the overall probability of illegal control flow for the
implicit SEU model is about a tenth of the probability of the original program. This indicates
that the simple duplication scheme works better for the randomized faults of the implicit SEU
model. One of the reasons for the lower probability is that the model is inducing SEUs on the
duplicated registers, which cannot break the security. Another is that the SEUs are not targeted

52

and many faults are caught by the extra fault tolerance comparison instructions. This can also
be seen in Table 6, where we can see how many faults are detected by the duplication scheme.

Implicit Explicit

32.25% 15.62%

Table 6: Faults caught by instruction duplication.

We can see that about one third of the faults from the implicit SEU model are detected,
since the faults are distributed over the entire program. We cannot detect as many faults in
the explicit SEU model, which is expected since it targets the faults after the fault tolerance
instructions. This means that we can only detect the early faults on r0, which are detected by
the later comparison instructions.

11 Extension with Loops

We acknowledge the limitations of the TinyARM language, especially the omission of loop
constructs due to simplification of the analysis. We now discuss the challenges of extending the
analysis to iteration or recursive features.

The simplest form of loop is the statically bounded loop, where the loop condition is bounded
by some hard-coded value c. Such loops can simply be unrolled, i.e. transformed into a sequence
of the loop body instructions repeated c times. Preprocessing such loops beforehand, enables
the analysis to proceed without modification.

A more problematic type of loop is the unbounded loop, also called an infinite loop. Such
loops cannot readily be unrolled, and it is not clear how the analysis should proceed. Further-
more, the current fault instruction formalization is not suitable for explicitly modelling faults
occurring after some specific number of iterations in a loop.

A loop variant of the previously presented alarm controller program is shown in Figure 19.
The loop version of the alarm program is conceptually similar to the program we have previously
seen. Whether the alarm is triggered depends on the state of the unsafe variable. If the program
detects a non erroneous temperature over the safety threshold of 2000, the unsafe variable is
set to 1 and the alarm is triggered when control is transferred outside the loop body. Similar to
the loop-free alarm controller program, we have two safety cases:

• False positives: the alarm is triggered but the actual temperature reading is not unsafe.

• False negatives: the actual temperature reading is indeed unsafe, but for some reason the
alarm is not triggered.

While false positives can disrupt normal workflow of the users of the system, the conse-
quences of false negatives are potentially catastrophic.

Notice that the loop condition is unbounded. This is problematic from an analysis perspec-
tive, since the symbolic execution step of the vulnerability analysis must explore a possibly

53

1 short unsafe = 0;
2 while (! unsafe) {
3 short temp = sensor (0 xFEED);
4 if (temp < 10000 &&
5 temp >= 2000) {
6 unsafe = 1;
7 }
8 }
9 alarm ();

1 MOV r3 , 0 ; unsafe = 0
loop:

2 MOV r4 , 0
3 CMP r3 , r4
4 BNE alarm
5 LDR r0 , 0xFEED ; Read sensor .
6 MOV r1 , 10000 ; Max.
7 CMP r0 , r1 ; Check max.
8 BGE loop
9 MOV r2 , 2000 ; Danger temp.

10 CMP r0 , r2 ; Check danger .
11 MOVGE r3 , 1 ; unsafe = 1
12 B loop

alarm:

Figure 19: Alarm controller program with loop.

infinite number of traces to the target instruction. A popular approach for dealing with this prob-
lem is to bound the symbolic execution to some maximal depth in the loop. Alternatively, one
can use a concrete execution trace to guide the search. This is known as concolic testing[20].

For the above alarm controller program, we observe that one iteration of the loop body does
not affect future iterations of the loop body statements. In other words, there are no circular data
dependencies between instructions in the loop body. Additionally, the path conditions on the
variables in the loop body are invariant after the first iteration of the loop. With these observa-
tions in mind, we propose to transform the loop into a single sequential execution of the loop
body, and move the check on the unsafe variable to the end of the instructions. Essentially, we
unroll one representative iteration of the loop and check for safety after. The unrolled version of
the program can be seen in Listing 13.

1 short unsafe = 0;
2 short temp = sensor (0 xFEED);
3 if (temp < 10000 &&
4 temp >= 2000) {
5 unsafe = 1;
6 }
7 if (unsafe)
8 alarm ();

Listing 13: Single iteration of alarm controller with loop.

Since temperature readings in the loop body are fully symbolic, we get the same set of
models from solving the path conditions for the sequential transformation as we would from the
loop. The path conditions to the alarm call for both variants of the program can be found in
Table 7. In essence, this is possible since we can obtain a fixed-point on the path conditions
generated by symbolic execution. The transformation enables us to proceed with the analysis as
before, without further modification.

In Listing 14 we see a dynamically bounded robot actuator program.

54

Program Conditions

Figure 19
(s0 < 10000 ∧ s0 ≥ 2000 ∧ 1 6= 0)∨
((s0 ≥ 10000 ∨ s0 < 2000) ∧ 0 6= 0)

Listing 13
(s0 < 10000 ∧ s0 ≥ 2000 ∧ 1 6= 0)∨
((s0 ≥ 10000 ∨ s0 < 2000) ∧ 0 6= 0)

Table 7: Path conditions to alarm() after one iteration.

1 short n = read (0 x1234);
2 short i = 0;
3 while (i < n) {
4 Move ();
5 i++;
6 }

Listing 14: Dynamically bounded loop.

The program takes as input a number of steps n and moves some robot arm n units. Observe
that the loop guard depends on the increment operation in the loop body, and the increment
operation depends on itself from the previous iteration. Since a fault during any iteration of the
loop may not yield the same path conditions on the variables, we cannot apply the proposed
sequential transformation to unroll the loop.

We argue that dynamically bounded loops should be avoided in safety/security critical sys-
tems, since they are difficult to analyse and we estimate these loops to be especially susceptible
to bitflip faults since they depend on symbolic input, which we observed in the experiments on
the alarm controller program to be very vulnerable.

Lastly, we note that classifying the type of the loops in a program during analysis could be
done by checking the Program Dependency Graph for circular dependencies.

12 Conclusion and Future Work

We have formalised a small assembly language based on ARM, with explicit syntax and seman-
tics for modelling SEU faults. We have formalised and implemented a formal static analysis
for detecting the vulnerability of faults encoded in programs with respect to a critical program
point. The analysis consists of data and control flow analyses to obtain a program slice to the
critical program point, and it only considers faults along traces in the slice.

For the analysis, we have implemented a symbolic execution engine that collects path con-
ditions generated along the traces to the critical program point. By solving the path conditions
with an SMT solver, we determine which faults can break the safety/security of a program, thus
causing vulnerabilities in the system.

We have further presented a formal definition of fault equivalence and proposed an algorithm
for determining the equivalence of faults. We have shown how fault equivalence testing can
be used to reduce the number of faults needed for analysis and highlighted other benefits of
analysing fault equivalence classes rather than individual faults.

55

Furthermore, we have shown how TinyARM programs can be encoded as timed automata,
enabling modelling and analysis of programs by statistical model checking.

Finally, we have implemented an analysis toolchain and show how the analysis can be used
to quantify the risk of faults.

Future Work

Since the analysis we have presented works on an idealized ARM variant, several extensions
must be made to enable analysis of real ARM binaries.

An important modification to the quantitative analysis would be to consider the lifespan of
registers in the explicit SEU model. Currently, it does not differentiate between registers that are
live for a single instruction and registers that are live for the entire duration of the program. This
is important to consider when calculating probabilities, since registers with a longer lifespan
are more likely to be hit by SEUs. This is not a problem when using the implicit SEU model,
but since it uses unnecessary time testing faults that are not vulnerable, it is more interesting to
encode it into the explicit SEU model. This would require some metrics that can be used with
the results to normalise them according the registers’ lifespans.

One extension that can be made to the analysis is to extend it to support SEUs in other
parts of a program, aside from the registers. A simple extension would be to look at SEUs in
memory and flags. Flags are straightforward to consider SEUs in, since flags are just simple 1-
bit registers. As for memory, it is possible to look at the content of memory addresses and induce
faults into this content. This would be similar to the current analysis, since memory addresses
can interpreted similar to registers. This means that SEUs could occur at given addresses, which
would result in the stored data changing value.

While the number of equivalent faults found in our experiments were low, fault equivalence
could be extended to include SEUs in memory and flags as well. This should provide more in-
teresting equivalence classes of faults. The current equivalence definition should already be able
to handle SEUs in memory, since memory can affect the content of the conditional flags through
registers. Some faults on registers could therefore be equivalent to faults in some memory loca-
tions, since the memory is loaded into given registers before it is used. However, modifications
to the equivalence definition are needed in order to handle SEUs in flags. Currently the definition
requires flags at all program points to be the same for two faults. This will cause problems when
the faults are not flipping the same flag at the same address, since some intermediate addresses
will have different flags. To overcome this, the definition could be modified to only require
the flags to be the same at program points where conditional execution happens, e.g. MOVGT
or BLT. For all program points with unconditional execution, the flags do not have any effect
anyway and we can therefore relax this condition on the definition of fault equivalence.

For more aggressive fault models such as SEUs in the control register or the instruction en-
coding it becomes more complex how to extend the analysis. These types of faults are harder
to analyse since they can severely modify the behaviour of programs. This means that the pro-
gram representations used by the analysis need to capture these possible behaviours. One way
of doing this is to consider the possible faults in the CFG. For faults in the program counter,
this would mean that the vertices of the CFG would get more outgoing edges to capture the fact
that the faults can cause jumps to other parts of the program. Faults in the instruction encoding

56

can also be represented in the CFG. Such faults would cause the CFG to contain more vertices,
which capture the different ways that the original instructions can be mutated. A big issue with
these kinds of faults, in the current analysis, is that they can change the flow of the program
to jump backwards and thereby introduce loops. Because of this, the analysis also needs to be
extended to handle loops before it can fully handle faults in the instruction encoding. However,
under a standard SEU fault model, we conjecture that the ’loop’ induced by a fault in the control
register or instruction encoding of jump targets should result in a loop that can be handled by
the transformations discussed in Section 11.

The current fault equivalence definition assumes that the two programs are executing the
same program. This would no longer necessarily be the case when we consider faults in the
instruction encoding. These faults may change the semantics of the program and the definition
would not be able to correctly identify equivalent faults. For such faults, it may be needed to
develop a entirely different view on fault equivalence classes. In this case, it may be useful to
leverage techniques from for detecting bisimilarity of programs[1].

Since statistical model checking requires a large amount of simulations when analysing rare
events, it would be interesting to explore other ways of calculating the probabilities.

One way of calculating the probabilities could be to look at fault equivalence, and examine
whether it is a viable option for probability calculation. We could encode all possible faults into
a program and have faults for every register and bit position between all the original program
instructions. After doing this, we can find the equivalence classes for all the faults. This would
result in a number of equivalence classes with different cardinalities. Then by using these car-
dinalities, we can calculate the probability that a given fault effect happens. This could possibly
be used as a quicker way of doing the quantitative analysis.

Another way to calculate the probabilities could be to get the exact probabilities through
symbolic execution and SMT solving. To do this, we could count all models for a vulnerable
register or bit position and thereby get the precise probabilities. While counting SMT models is
a hard program, we can leverage the fact that our SMT formulas are finite. This means that they
can be transformed into equivalent SAT formulas, which can be counted by using a #SAT solver
such as sharpSAT[26].

References

[1] ACETO, L., INGÓLFSDÓTTIR, A., LARSEN, K. G., AND SRBA, J. Reactive systems:
modelling, specification and verification. cambridge university press, 2007.

[2] ANDERSEN, T. R., AND TERNDRUP, M. K. Bitflip Analysis of an ARM-based Assembly
Language. Unpublished, January 2018.

[3] ARM LIMITED. ARM Architecture Reference Manual, July 2005. Issue I.

[4] BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ, E. J. Bap: A binary analy-
sis platform. In International Conference on Computer Aided Verification (2011), Springer,
pp. 463–469.

57

[5] DAVID, A., LARSEN, K. G., LEGAY, A., MIKUČIONIS, M., AND WANG, Z. Time for
statistical model checking of real-time systems. In International Conference on Computer
Aided Verification (2011), Springer, pp. 349–355.

[6] DE MOURA, L., AND BJØRNER, N. Z3: An Efficient SMT Solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems (Berlin, Heidelberg, 2008), C. R.
Ramakrishnan and J. Rehof, Eds., Springer Berlin Heidelberg, pp. 337–340.

[7] FENG, S., GUPTA, S., ANSARI, A., AND MAHLKE, S. Shoestring: Probabilistic Soft
Error Reliability on the Cheap. In Proceedings of the Fifteenth Edition of ASPLOS on
Architectural Support for Programming Languages and Operating Systems (New York,
NY, USA, 2010), ASPLOS XV, ACM, pp. 385–396.

[8] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The Program Dependence
Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July 1987),
319–349.

[9] HANSEN, R. R., LARSEN, K. G., OLESEN, M. C., AND WOGNSEN, E. R. Formal
modelling and analysis of Bitflips in ARM assembly code. Information Systems Frontiers
18, 5 (Oct. 2016), 909–925.

[10] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE, D., WILKERSON, C., LAI,
K., AND MUTLU, O. Flipping Bits in Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (Piscataway, NJ, USA, 2014), ISCA ’14, IEEE
Press, pp. 361–372.

[11] KISS, A., JASZ, J., LEHOTAI, G., AND GYIMOTHY, T. Interprocedural static slicing of
binary executables. In Proceedings Third IEEE International Workshop on Source Code
Analysis and Manipulation (Sept 2003), pp. 118–127.

[12] MAY, T. C., AND WOODS, M. H. Alpha-particle-induced soft errors in dynamic memo-
ries. IEEE Transactions on Electron Devices 26, 1 (Jan 1979), 2–9.

[13] MEOLA, M. L., AND WALKER, D. Faulty logic: reasoning about fault tolerant programs.
In European Symposium on Programming (2010), Springer, pp. 468–487.

[14] MØLLER, A., AND SCHWARTZBACH, M. I. Static Program Analysis. https://cs.
au.dk/~amoeller/spa/, September 2017. Accessed: 18-12-2017.

[15] MUCHNICK, S. S. Advanced compiler design implementation. Morgan Kaufmann, 1997.

[16] MUNKBY, G., AND SCHUPP, S. Type inference for soft-error fault-tolerance prediction.
In Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering (2009), IEEE Computer Society, pp. 65–75.

[17] PERRY, F., AND WALKER, D. Reasoning about control flow in the presence of transient
faults. In International Static Analysis Symposium (2008), Springer, pp. 332–346.

58

https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/

[18] RAZAVI, K., GRAS, B., BOSMAN, E., PRENEEL, B., GIUFFRIDA, C., AND BOS, H.
Flip Feng Shui: Hammering a Needle in the Software Stack. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX, 2016), USENIX Association, pp. 1–18.

[19] REIS, G. A., CHANG, J., VACHHARAJANI, N., RANGAN, R., AND AUGUST, D. I.
SWIFT: Software Implemented Fault Tolerance. In Proceedings of the International Sym-
posium on Code Generation and Optimization (Washington, DC, USA, 2005), CGO ’05,
IEEE Computer Society, pp. 243–254.

[20] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been
Afraid to Ask). In 2010 IEEE Symposium on Security and Privacy (May 2010), pp. 317–
331.

[21] SEABORN, M., AND DULLIEN, T. Exploiting the DRAM rowhammer bug to gain
kernel privileges. https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, March 2015. Accessed:
11-12-2017.

[22] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C., KRUEGEL, C., AND VIGNA,
G. Firmalice-Automatic Detection of Authentication Bypass Vulnerabilities in Binary
Firmware. In NDSS (2015).

[23] SHOSHITAISHVILI, Y., WANG, R., SALLS, C., STEPHENS, N., POLINO, M., DUTCHER,
A., GROSEN, J., FENG, S., HAUSER, C., KRUEGEL, C., AND VIGNA, G. SOK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. In 2016 IEEE Symposium
on Security and Privacy (SP) (May 2016), pp. 138–157.

[24] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A., WANG, R., CORBETTA, J.,
SHOSHITAISHVILI, Y., KRUEGEL, C., AND VIGNA, G. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In NDSS (2016), vol. 16, pp. 1–16.

[25] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. CLKSCREW: Exposing the Perils of
Security-Oblivious Energy Management. In 26th USENIX Security Symposium (USENIX
Security 17) (Vancouver, BC, 2017), USENIX Association, pp. 1057–1074.

[26] THURLEY, M. sharpSAT – Counting Models with Advanced Component Caching and
Implicit BCP. In Theory and Applications of Satisfiability Testing - SAT 2006 (Berlin,
Heidelberg, 2006), A. Biere and C. P. Gomes, Eds., Springer Berlin Heidelberg, pp. 424–
429.

[27] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M., GRUSS, D., MAURICE, C.,
VIGNA, G., BOS, H., RAZAVI, K., AND GIUFFRIDA, C. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (New York, NY, USA, 2016), CCS
’16, ACM, pp. 1675–1689.

59

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

A Updating Conditional Flags

This appendix is from our previous work[2]. It has been updated to use 16-bit values.
This appendix contain the functions that are used to update the condition flags when they are

set by ADDS, SUBS, MULS, and CMP.

flagsADD(v1, v2, F)(fN) =

{
1 if v1 + v2 ≥ 215

0 otherwise

flagsADD(v1, v2, F)(fZ) =

{
1 if v1 + v2 = 0

0 otherwise

flagsADD(v1, v2, F)(fC) =

{
1 if v1 + v2 > 216 − 1

0 otherwise

flagsADD(v1, v2, F)(fV) =


1 if v1, v2 < 215 ∧ (v1 + v2 ≥ 215)

1 if v1, v2 ≥ 215 ∧ (v1 + v2 < 215)

0 otherwise

flagsSUB(v1, v2, F)(fN) =

{
1 if v1 − v2 ≥ 215

0 otherwise

flagsSUB(v1, v2, F)(fZ) =

{
1 if v1 − v2 = 0

0 otherwise

flagsSUB(v1, v2, F)(fC) =

{
1 if v1 − v2 < 215

0 otherwise

flagsSUB(v1, v2, F)(fV) =


1 if v1 < 215 ∧ v2 ≥ 215 ∧ (v1 − v2 ≥ 215)

1 if v1 ≥ 2150 ∧ v2 < 215 ∧ (v1 − v2 < 215)

0 otherwise

60

flagsMUL(v1, v2, F)(fN) =

{
1 if v1 ∗ v2 ≥ 215

0 otherwise

flagsMUL(v1, v2, F)(fZ) =

{
1 if v1 ∗ v2 = 0

0 otherwise

flagsMUL(v1, v2, F)(fC) = F (fC) MULS does not affect the carry flag.

flagsMUL(v1, v2, F)(fV) = F (fV) MULS does not affect the overflow flag.

flagsCMP(v1, v2, F)(fN) =

{
1 if v1 − v2 ≥ 215

0 otherwise

flagsCMP(v1, v2, F)(fZ) =

{
1 if v1 − v2 = 0

0 otherwise

flagsCMP(v1, v2, F)(fC) =

{
1 if v1 − v2 < 215

0 otherwise

flagsCMP(v1, v2, F)(fV) =


1 if v1 < 215 ∧ v2 ≥ 215 ∧ (v1 − v2 ≥ 215)

1 if v1 ≥ 2150 ∧ v2 < 215 ∧ (v1 − v2 < 215)

0 otherwise

61

B Updating Symbolic Conditional Flags

This appendix is from our previous work[2]. It has been updated to use 16-bit values.
This appendix contain the functions that are used to update the condition flags during sym-

bolic execution, when they are set by ADDS, SUBS, MULS, and CMP.

flagsSeADD(v1, v2, F)(fN) = v1 + v2 ≥ 215

flagsSeADD(v1, v2, F)(fZ) = v1 + v2 = 0

flagsSeADD(v1, v2, F)(fC) = v1 + v2 > 216 − 1

flagsSeADD(v1, v2, F)(fV) = ((v1 > 0 ∧ v2 > 0 ∧ (v1 + v2 ≥ 215))

∨ (v1 < 0 ∧ v2 < 0 ∧ (v1 + v2 ≥ 0)))

flagsSeSUB(v1, v2, F)(fN) = v1 − v2 ≥ 215

flagsSeSUB(v1, v2, F)(fZ) = v1 − v2 = 0

flagsSeSUB(v1, v2, F)(fC) = v1 − v2 < 215

flagsSeSUB(v1, v2, F)(fV) = ((v1 > 0 ∧ v2 < 0 ∧ (v1 − v2 ≥ 215))

∨ (v1 < 0 ∧ v2 > 0 ∧ (v1 − v2 ≥ 0)))

flagsSeMUL(v1, v2, F)(fN) = v1 ∗ v2 ≥ 215

flagsSeMUL(v1, v2, F)(fZ) = v1 ∗ v2 = 0

flagsSeMUL(v1, v2, F)(fC) = F (fC) MULS does not affect the carry flag.

flagsSeMUL(v1, v2, F)(fV) = F (fV) MULS does not affect the overflow flag.

flagsSeCMP(v1, v2, F)(fN) = v1 − v2 ≥ 215

flagsSeCMP(v1, v2, F)(fZ) = v1 − v2 = 0

flagsSeCMP(v1, v2, F)(fC) = v1 − v2 < 215

flagsSeCMP(v1, v2, F)(fV) = ((v1 > 0 ∧ v2 < 0 ∧ (v1 − v2 ≥ 215))

∨ (v1 < 0 ∧ v2 > 0 ∧ (v1 − v2 ≥ 0)))

62

C Control Flow Graph Extraction

This appendix is from our previous work[2].
This section describes the transformation rules that we apply to every TinyARM instruction

in order to transform a TinyARM program into a CFG.
We first present the transformation rules for unconditional TinyARM instructions, which can

be found in Figure 20. When building the CFG, these rules will be applied to every unconditional

PC : I

PC + 1 : P (PC + 1)

(a) Unconditional sequential instruction.
I ∈ {MOV,LDR,CMP,OP,OPS}.

PC : B a

a : P (a)

(b) Unconditional branch instruction.

Figure 20: CFG transformation rules for unconditional instructions.

instruction in the TinyARM program. The unconditional transformation rules for sequential
instructions are not very complicated, they simply add an edge between the current instruction
and the next instruction (Figure 20a). The branch transformation rule just adds an edge from the
branch instruction to its target, instead of adding an edge to the next instruction (Figure 20b).

The transformation rules for conditional TinyARM instructions are presented in Figure 21.
These rules will be applied to every conditional instruction of a TinyARM program, when the

PC : Iχ

PC + 1 : P (PC + 1)

(a) Conditional sequential instruction.
I ∈ {MOV,LDR,CMP,OP,OPS}.

PC : Bχ a

a : P (a) PC + 1 : P (PC + 1)

(b) Conditional branch instruction.

Figure 21: CFG transformation rules for conditional instructions.

CFG is being build. The transformation rules for conditional TinyARM instructions are a little
different. A conditional instruction will only be executed if its condition is true. If it is not, the
instruction will act as a NOP instruction and not do anything, except incrementing the program
counter. Conditional sequential instructions will look the same as unconditional instructions in
the CFG (Figure 21a). However, the instruction can have two different executions depending on
its condition code. We will handle the different executions during the analysis of the instruction
(if it is necessary for the specific analysis). The conditional branch acts a little different from
the unconditional branch. If the branch executes, it will jump to the program point at the branch
target, but if it does not execute it will just continue to the next instruction, like the sequential
instructions do (Figure 21b).

Together these transformation rules allow us construct CFGs that can represent any Tiny-
ARM program.

63

D Alarm Controller Program in UPPAAL

Figure 22: UPPAAL model of alarm controller program.

64

E Instruction Duplication

In this section we describe how we use the results of our analysis to duplicate the instructions of
programs in order to make them less vulnerable to SEUs.

Duplicating instructions is a common way to improve the fault tolerance of programs. In-
struction duplication involves executing instructions twice and comparing their outcomes. This
allows one to check if a fault has happened in one of the instructions, since this would result in
different outcomes between the instructions.

The obvious disadvantage of instruction duplication is that the program will run slower,
since it needs to execute instructions twice. Furthermore, extra memory will also be needed
in order to store the values of both the original registers and their copies. While some static
program analyses can help alleviate these problems, e.g. by optimising memory reusage, it still
makes sense to identify the critical instructions and only duplicate them. This can improve on
the program performance compared to duplicating all instructions.

We are working with an ARM-based language which means that we will have to consider
how the execution of instructions affects the rest of the program. This is the case since some
instructions change the conditional flags which control the future execution of the program.

As mentioned at the start of this section, we will be using the results of our analysis to
identify the instructions that should be duplicated. By using the analysis we do not have to
duplicate all instructions, since some instructions cannot change the control flow to reach critical
code. The procedure for finding the instructions that should be duplicated works in the following
way:

1. Find all faults that can cause control flow to reach critical code (given by the analysis).

2. From each of these faults: Find the next instruction, i, that reads the faulty register (this
will usually be an instruction shortly after the fault).

3. From each i perform a backwards search in the DDG to find the set of all instructions, I ,
that affects i in some way (i ∈ I).

4. Duplicate all the instructions in the I sets.

The way we duplicate an identified instruction is by adding a copy of it immediately after
the original instruction. This copy will be using separate registers, such that we can compare
the values of the original and copied registers when we use them later in the program execution.
The only places we will be comparing the duplicated registers are when they are used to set the
conditional flags. In other words we only compare duplicated registers when they are used in
CMP, ADDS, SUBS, or MULS. It is enough to compare the duplicated registers at these points,
since these instructions are the only ones that can change the program’s control flow. Further-
more, instructions that do not use any registers (only branches) will not be duplicated, since they
cannot change the program’s behaviour by themselves.

We will now show how the different instructions are duplicated and explain some of the
choices we have made in regards to instruction duplication.

First, we show how the instructions that do not affect conditional flags have been dupli-
cated. This includes the following instructions: MOV, LDR, ADD, SUB, and MUL. Listing 15

65

and Listing 16 show how an ADDχ instruction is duplicated. The duplication rules for the other
instructions are identical.

1 ...
2 ADDχ r1 , r2 , r3
3 ...

Listing 15: Before ADDχ duplication.

1 ...
2 ADDχ r1 , r2 , r3
3 ADDχ r1 ’, r2 ’, r3 ’
4 ...

Listing 16: After ADDχ duplication.

We can see that the instruction is duplicated by placing a copy of instruction between it and
the next instruction. This means that the duplicated instructions will just be a part of the com-
plete program with the only distinction being that they use separate registers. These duplicated
registers will then be used when we encounter an instruction that sets the conditional flags.

The instructions that set the conditional flags are: CMP, ADDS, SUBS, and MULS. These
instructions are not duplicated in the same way as the other instructions, since they will also
include a synchronization step that compares the registers they use with the duplicated registers.
When comparing the registers we end up updating the conditional flags of the program in a way
that did not happen in the original program. This, however, is not an issue since these instructions
will update the conditional flags again and thereby resume normal program behaviour. There will
still be a problem when doing synchronization, since the MULS instruction does not update all
conditional flags. We will get back to this issue later in the section.

In Listing 17 and Listing 18 we show how a flag setting instruction (except MULS) is dupli-
cated.

1 ...
2 ADDSχ r1 , r2 , r3
3 ...

Listing 17: Before ADDSχ duplication.

1 ...
2 Bχ execute
3 B skip

execute :
4 CMP r2 , r2 ’
5 BNE fail
6 CMP r3 , r3 ’
7 BNE fail
8 ADDS r1 , r2 , r3
9 ADD r1 ’, r2 ’, r3 ’

skip:
10 ...

Listing 18: After ADDSχ duplication.

As we can see, Listing 18 contains a lot of instructions that Listing 17 does not have. The
changes that have been made to the duplicated code are:

1. The condition code, χ, has been moved from the ADDSχ instruction to a branch at the
start. This means that we only perform the synchronization if the ADDSχ is going to be
executed. If χ is not true, we skip everything. This step can be skipped if the condition
code is AL.

2. Synchronization of the operands (r2 and r3) is performed before the ADDS instruction.
If any of the operands are different from their duplication the program fails.

66

3. A copy of the ADDS instruction has been added after the original. The copy is just a
normal ADD instruction, since we do not need to update the conditional flags twice.

The duplication of SUBS is the same as the duplication of ADDS. The duplication of CMP is
mostly the same, the only difference being that the duplication of CMP does not contain the copy
in Line 9. The reason for this is that a copy of CMP would just end up setting the flags twice to
the same values.

The duplication of MULS is similar to the duplication of the other flag setting instructions.
The difference is that we cannot use CMP instructions to do the synchronization. The reason for
this is that MULS only updates the negative and zero flags while leaving the carry and overflow
flags unaffected. If we use a CMP instruction to synchronize before the MULS instruction, we
would change the carry and overflow flags from their intended values and the MULS instruction
would not change them back. The way we overcome this issue is by doing the synchronization
with SUB and MULS instructions, as this will leave the carry and overflow flags with their original
values. This duplication scheme can be seen in Listing 19 and Listing 20

1 ...
2 MULSχ r1 , r2 , r3
3 ...

Listing 19: Before MULSχ duplication.

1 ...
2 Bχ execute
3 B skip

execute :
4 SUB r20 , r2 , r2 ’
5 MOV r21 , 1
6 MULS r20 , r20 , r21
7 BNE fail
8 SUB r20 , r3 , r3 ’
9 MOV r21 , 1

10 MULS r20 , r20 , r21
11 BNE fail
12 MULS r1 , r2 , r3
13 MUL r1 ’, r2 ’, r3 ’

skip:
14 ...

Listing 20: After MULSχ duplication.

We can see that the synchronization now uses SUB and MULS as well as two dummy regis-
ters, r20 and r21, instead of using a CMP instruction. This works in the following way:

1. After the SUB instruction in Line 4, the value of r20 will be 0 if r2 = r2’.

2. The MULS instruction in Line 6 will then multiply r20 by 1, and the result of this multi-
plication will only be 0 if r20 was already 0. This means that the zero flag will be set if
r2 = r2’.

Since BNE is executed if the zero flag is not set, we can use the above method to compare
registers for equality without updating the carry and overflow flags. This way of synchronizing
requires a few extra instructions, but we are not affecting the carry and overflow flags, which
means that the program will have these flags set to their intended values.

67

F Alarm Controller Program with Instruction Duplication

1 LDR r0 , 0xFEED
2 LDR r0x , 0xFEED
3 MOV r1 , 0
4 MOV r1x , 0
5 MOV r2 , 10000
6 MOV r2x , 10000
7 MOV r3 , 2000
8 MOV r3x , 2000
9 CMP r0 , r0x

10 BNE fail
11 CMP r1 , r1x
12 BNE fail
13 CMP r0 , r1
14 BLT noalarm
15 CMP r0 , r0x
16 BNE fail
17 CMP r2 , r2x
18 BNE fail
19 CMP r0 , r2
20 BGT noalarm
21 CMP r0 , r0x
22 BNE fail
23 CMP r3 , r3x
24 BNE fail
25 CMP r0 , r3
26 BLT noalarm
27 B exit

noalarm :
28 ASSERT r0@1 < 2000 ∨ r0@1 > 10000
29 B exit

fail:
30 B exit

exit:

Listing 21: Alarm controller program with instruction duplication.

68

G Fault Distribution Implicit

A R Bit
2 4 5 6 8 9 10 11 12 13 14 15

8 r0 0.05% 0.15% 0.05% 1.29% 0.79% 1.19% 1.64% 1.24% 6.40%

12
r0 0.05% 0.89% 0.79% 2.13% 1.49% 1.88% 7.24%
r1 0.50% 1.69% 1.64% 3.82%

16
r0 0.05% 0.05% 0.15% 0.10% 1.04% 0.89% 2.18% 1.79% 1.98% 8.23%
r1 0.45% 0.94% 1.69% 3.08%
r2 0.05% 0.25% 1.79% 1.19% 3.27%

20

r0 0.05% 0.20% 0.05% 0.79% 0.79% 1.74% 1.74% 2.23% 7.59%
r1 0.05% 0.64% 1.34% 1.93% 3.97%
r2 0.05% 0.10% 0.15% 0.20% 1.54% 1.79% 3.82%
r3 0.35% 0.84% 1.59% 2.03% 4.81%

24
r0 0.05% 0.05% 0.84% 0.94% 2.18% 1.44% 1.98% 7.49%
r2 0.10% 0.25% 1.98% 1.79% 4.12%
r3 0.30% 0.94% 1.88% 1.93% 5.06%

28
r0 0.05% 0.05% 0.74% 0.84% 1.98% 2.23% 1.34% 7.24%
r2 0.05% 0.10% 0.20% 1.93% 1.69% 3.97%
r3 0.05% 0.25% 0.99% 1.24% 1.98% 4.51%

32
r0 0.05% 0.35% 0.25% 0.45% 1.69% 2.78%
r3 0.25% 0.84% 1.49% 1.74% 4.32%

36
r0 0.45% 0.25% 0.20% 1.93% 2.83%
r3 0.05% 0.74% 0.89% 1.84% 1.93% 5.46%

0.05% 0.10% 0.10% 0.10% 0.55% 0.79% 1.09% 8.33% 11.66% 31.30% 25.20% 20.73% 100.00%

Table 8: Fault distribution for implicit SEU model.

69

H Fault Distribution Explicit

A R Bit
2 4 5 6 7 8 9 10 11 12 13 14 15

20
r0 0.05% 0.02% 0.09% 0.08% 0.26% 0.17% 0.31% 2.89% 3.23% 6.49% 6.42% 6.37%
r1 0.02% 1.36% 4.46% 6.07%

28
r0 0.02% 0.03% 0.03% 0.08% 0.06% 0.18% 0.18% 0.25% 3.08% 3.00% 6.42% 6.72% 5.84%
r2 0.12% 0.34% 0.75% 6.22% 6.43%

36
r0 0.02% 0.03% 0.06% 0.06% 0.03% 1.44% 1.56% 1.29% 6.11%
r3 0.03% 1.84% 3.38% 6.13%

0.02% 0.09% 0.11% 0.17% 0.20% 0.63% 0.72% 1.30% 9.27% 12.54% 31.00% 19.21% 24.75%

Table 9: Fault distribution for explicit SEU model.

70

	Introduction
	Related Work
	TinyARM with Faults
	Symbolic Execution
	Fault Equivalence
	Analysis Overview
	Graphs and Backwards Slicing
	Vulnerability Analysis
	Quantitative Analysis with UPPAAL SMC
	Modelling TinyARM Configurations
	Modelling TinyARM Semantics
	Modelling Faults in UPPAAL

	Experiments
	Setup
	Vulnerability Analysis Results
	Quantitative Analysis Experiments
	Quantitative Analysis Experiments with Duplication

	Extension with Loops
	Conclusion and Future Work
	Updating Conditional Flags
	Updating Symbolic Conditional Flags
	Control Flow Graph Extraction
	Alarm Controller Program in UPPAAL
	Instruction Duplication
	Alarm Controller Program with Instruction Duplication
	Fault Distribution Implicit
	Fault Distribution Explicit

