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1 Introduction
In recent years, deep neural networks has become increasingly good at
learning a very accurate mapping of high dimensional data inputs, such as
images, onto some label prediction. The challenge currently at hand, is
the models ability or lack thereof to generalize on input transformations
that are different from the once encountered during training. Generalizing
on a task is considered the task within the overall field of artificial intel-
ligence, as it essentially represent robustness of a trained model’s ability
to accurately predict on the infinite number of novel input scenarios, the
real world actually consist of. One of the most promising answers in the
recent years, within the study in text and image classification, is called
transfer learning. The method refers to the ability to transfer valuable
knowledge obtained from one task onto another, and will be thoroughly
discussed throughout this report. This method is considered one of the
biggest current drivers for machine learning in the commercial world (Ng,
2016). Several of the multi million dollar companies in the tech world such
as google, actually offers a large variety of free machine learning models,
already trained to perform very general tasks, on extremely large datasets
(“Word2vec”, n.d.; “Pre-trained models” n.d.). The overall idea is then to
finetune one of those pre-trained models to your own task at hand. However
fine-tuning the model with the right amount is a delicate matter, as too
much re-training can cause catastrophic forgetting, thereby losing otherwise
valuable knowledge from the previous task (Howard & Ruder, 2018). Near
the end of this report several empirical tests on some of the state-of-the-
art approaches when performing transfer learning will be investigated. In
addition, the report aims to search for a possible similarity or dissimilarity
measure for estimating how much relevant information can be transferred
between to two tasks. Yet, before digging into the implementation of these
two objectives, a more clear understand of what transfer learning is must
be established.
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2 Definition of Transfer Learning
This study calls for a deep understanding of what transfer learning is and
how it has been used. This section will therefore focus on defining the
term within machine learning, while investigating different implementa-
tions that are considered most successful. Transfer learning refers to the
method where information and knowledge gained from pre-training a model
towards a certain task, often denoted as a source task, can be transferred
and used to create a high performance model for a new target task, if the
source and target tasks are considerably related (Weiss et al, 2016).

The general outcome of training a machine learning model on a dataset, is
to tune its parameters such that it can fit a particular input (e.g. en image)
to some output (a label). The amount of parameters needed is proportional
to the complexity of the task the model has to perform. However, as the
parameters of the model increases, so does the amount of data needed for
tuning them. The need for transfer learning occurs mainly when there are
scarce amount of data available, making the creation of a well perform-
ing model a difficult task. The scarcity could be due to data being rare,
inaccessible, expensive and/or time consuming to obtain, which is quite
common in a real world scenario. Fortunately, as big data repositories
becomes more extensive and publically available, e.g. Kaggle (“Welcome
to Kaggle Datasets”, n.d.), ImageNet (Russakovsky et al., 2015), Cifar10
(Krizhevsky, 2009), finding existing data sets that are similar to your own
task, is often possible. This makes transfer learning a feasible and appeal-
ing machine learning approach (Weiss et al, 2016).

Finding ways to alternatively acquire more data in order to increase a mod-
els ability to generalize is not an unusual phenomenon. Another very com-
mon trick closely related is called data augmentation. It transforms your
current data into multiple slightly altered instances, thereby increasing the
amount of data points available for training. In the case of a image-dataset,
the input can be changed with e.g. rotating, cropping or noise inducting
the original image, without altering the overall semantic meaning of the
given picture (its label). Whether it is augmenting on the data that you
currently have, or finding a similar dataset to train you model on first, it’s
all with the motivation of increasing the amount of data your model sees to
make it invariant to a wide variety of transformations (Goodfellow et al.,
2016, p. 236).
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Pan et al. (2010) and Weiss et al. (2016) have both done an extensive
study on the field of transfer learning that we will closely follow, while
interpreting it all for a image classification problem. They both define
transfer learning as concerning the concepts of a domain D and a task T .
The domain D consists of two components, namely, a feature space X and
a marginal probability distribution P(X) over the feature space, where X
= {x1, ..., xn} ε X . In regard to an image classification problem, X is the
feature space where all images are located, xi is equal to the ith image
instance and X is the sample of images used for training.
Given a domain D = X , P (X), a task consists of two components; A label
space Y and a predictive function f(·). The predictive function is tuning
through the training data which in turn consisting of pairs xi ε X and
yi ε Y . This classification function is used when predicting the label yi of
its associated xi and is denoted as the conditional probability distribution
P (Y |X). We can therefore write the task as T = Y , P (Y |X).
Given a source domain Ds, a corresponding source task Ts, a target domain
Dt and a target task Tt, the objective of transfer learning is to help improve
the learning of the target task Tt using the information gained from train-
ing towards the source task Ts and domain Ds, where Ds 6= Dt or Ts 6= Tt
(Pan et al, 2010).

The common method to improve generalization across different distribu-
tions between source and target domains and/or tasks is to assume that the
feature space between source and target are the same i.eDs = Dt, orTs = Tt.
This method is also known as homogeneous transfer learning (Weiss et al,
2016). In order to deal with homogeneous transfer learning problems there
are three common approaches; (1) Trying to correct for the marginal dis-
tribution differences (P (X)), (2) trying to correct for the conditional dis-
tribution differences (P (Y |X)) or (3) trying to correct for both marginal
and conditional distribution simultaneously (Weiss et al, 2016).

However, in many real world applications, having the same feature space
between source and target is not always given, thus finding a method for
transferring knowledge learned from similar tasks, is highly sought for.
This method is known as heterogeneous transfer learning and pertains to
the differences between source and target domains. Due to the definition
of transfer learning four scenarios arise where the conditions may vary, in
the sense that real world transfer learning problems might involve a mix-
ture of the conditions. These scenarios are depicted below with examples
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pertaining to our image classification problem:

1. Xs 6= Xt. The feature space of the source and target domains are
incomparable. An example could either be the feature difference in
images of cats and airplanes - However, Yosinski et al (2014) argues
that such two (and most other) image classes may have more in com-
mon than initially thought as they share the space of low level features
such as edges and color blobs.

2. P (Xs) 6= P (Xt). The marginal probability distributions of source
and target domain are inconsistent. An example would be where Xs

solely consist of images of elephants andXt of mice, and they are both
labeled ’animal’. Both datasets are part of the animal distribution
yet each individual class distributions are not overlapping each other
in the high dimensional space.

3. Ys 6= Yt. The label space between the source and target task are
different. Here an example could be two datasets of identical images
of cats and dogs, however in one of the datasets the gender is labeled,
where in the other the specie is labeled - identical data points yet the
task is different.

4. P (Ys|Xs) 6= P (Yt|Xt). The conditional probability distributions be-
tween the source and target tasks are different from each other. An
example could be two unbalanced datasets of images of cats and dogs,
here the probability of predicting cat or dog differs depending on the
dataset the model has been trained on.

2.1 Negative transfer

A substantial majority of all real world datasets that are considered similar,
differs with different extends on each of the four conditions. For transfer
learning to work properly and indeed enhance the target learner, there must
be a close relation in the four conditions stated above, between the source
and target at hand (Pan et al, 2010; Weiss et al 2016). But what will
happen if this relation is vague or almost non-existing? In such cases, the
source learner might induce a negative effect on the target task, causing an
unwanted decrease in performance.

The most accepted approach when creating any convolutional neural net-
work, and many other machine learning models, is to initialize its weights
with random values either normally or uniformly distributed (“Variables:

4



Creation, Initialization, ...”, 2016; “Usage of initializers”, n.d.; “Source code
for torch.nn.init”, n.d.). Thus, for transfer learning not to have a negative
effect, the re-trained model having pre-trained weights, must outperform
on the target task, compared to starting with random weights. In literature
the effect of obtaining a worse outcome using transfer learning is referred to
as ‘negative transfer’, and is unfortunately a seldom researched area (Pan
et al, 2010; Weiss et al, 2016). Foreseeing the performance outcome of pre-
training a model on similar versus dissimilar datasets has been proven very
difficult. The transfer learning method therefore calls for a way to estimate
this outcome. When again considering the four conditions presented by
Pan et al. (2010) and Weiss et al. (2016), it might be possible to construct
separate measures for each condition to somehow make a well-founded as-
sumption on how well knowledge from one dataset can be transferred onto
another.

One condition that might be feasible to investigate is the 2nd. It suggests
that dataset distributions that lies close to each other in high-dimensional-
space, may share some similarity. In this report we investigate how well
the Modified Hausdorff distance measure (Dubuisson & Jain, 1994) can be
used for such purpose. This distance measure will be discussed further later
in the report.

However, It could be argued that some for the conditions it might be impos-
sible to systematically evaluate, or even redundant to do so; For instance,
estimating the feature space of the source and target domains (condition
1) calls for some form of low to high level feature extraction. The current
state-of-the-art method for extracting relevant task features are through a
machine learning model trained on the specified dataset. However, if you
have a model that can already extract those genuinely true target features,
pre-learning on a source dataset becomes completely redundant, since the
true features should be able to, by definition, separate your target classes
perfectly. Therefore, using a model to extract features of two datasets and
after somehow measure the similarity between the two feature sets, with
the purpose of estimating how well pre-training on the source dataset can
increase the target task, seem rather counterintuitive.

The next section will aim to establish a better understanding of the differ-
ent studies done in the field of knowledge transferability from one neural
network to another. Two papers in particular will be covered; "How trans-
ferable are features in deep neural networks" by Yosinski et al (2014), who
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makes a large empirical study on the transferability of different layers and
when layers go from general to task specific, and another more recent paper
by Howard & Ruder (2018) who introduces a new method of re-training a
model, called ‘Discriminative Finetuning’ with ‘Gradual Learning Rates’.
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3 Related works

3.1 From general to specific

Yosinski et al (2014) investigates when features in a deep neural network
transitions from general to specific throughout the different layers as well as
how this transition affects the transferability. In Parallel different transfer
learning techniques, such as randomly initializing weights, freezing layers
and fine-tuning are tested to see their influence on the performance. The
basis of their research spawn from the intuitive notion that the first layers
of a deep neural network finds small general features, such as Gabor filters
and color blobs, whereas the last layers of the network finds features that
are more specific towards the given task (Yosinski et al, 2014). They define
a set of features learned from some task A (source), are general if it can
be used for another task B (target). Furthermore, they argue that layer
generality is dependant on the similarity between the datasets used for task
A and B, reaffirming the 2nd condition given by Pan et al (2010) and Weiss
et al (2016).

They run two experiments using the currently largest dataset available
called ‘ImageNet’ consisting of 1000 classes with a total of about 1.4 million
images. In the first experiment they test which layer the network transitions
from general to task specific. They divide ImageNet into two datasets each
consisting of 500 randomly chosen classes. Then two convolutional neural
networks similar to the Alexnet architecture (5 conv. and 3 fully connected
layers) are trained, resulting in a network for each dataset. The networks
are called baseA and baseB. From the base models two new networks are
made per layer (Yosinski et al, 2014);

1. A control network where the first n amount of layers (e.g. 1-3) from
baseA are copied and frozen. Then the next n amount of higher
layers (e.g. 4-8) are initialized by random and trained on dataset A.
By doing so a baseline for the performance is found.

2. Atransfer network where the first n amount of layers from baseB
are copied and frozen. Then the nextn amount of higher layers are
initialized randomly towards dataset B.

If the transfer network (2) performs as well as the control network (1) it
shows that n-th layer features are general, towards task B. If performance
drops then the n-th layer features are specific towards task A. Yosinski et al.
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(2014) repeats this process for all number of layers (1,2,...,8), and likewise
reiterate the process using fine-tuning instead of freezing the layers.

Figure 1: Lines connecting the means of each treatment. Dark blue line represents a
BnB network. Light blue line represent BnB+ networks, or fine-tuned versions of BnB.
Dark red line is AnB networks, and light red lines are the fine-tuned AnB+ versions
(Yosinski et al., 2014, p. 5).

The experimental results using layer-wise freezing does indeed show that
the later layers of the network are less general, as performance drop notably
when transferring features from the last layers. The results regarding the
effectiveness of fine-tuning shows very promising results. It increases the
performance throughout all layers compared to both the base performances
as well as having layers frozen. In particular fine-tuning can help recover
the fragile co-adaptations observed on the control network and improves
overall generalization (see figure 1). Indicating that fine-tuning all layers is
the superior technique, a notion that also reported by Howard et al (2018)
and Girshick et al (2014). Furthermore, a surprising behaviour is found in
the control network, where a performance drop occurs in the middle lay-
ers. This is argued to be due to fragile co-adaptation, where the successive
layers in the network cannot recreate the same co-adapted features as in
the base-network. No further elaboration is given and whether it may be
due to the structure of the network needs additional investigation as it is
merely suggested that it occurs in the convolutional layers, and not in the
fully connected ones.

The second experiment performed differ only in the way that two new
datasets are created that are supposed to represent two distant tasks that
are as semantically different as possible. This is achieved by Yosinski et
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al. (2014) manually dividing the ImageNet into two distinct datasets, one
being images of only man-made objects (e.g. buildings, tools, cars, etc.)
while the other dataset only contains images of natural objects (e.g. trees,
rivers, animals, etc.). Once again the above process is iterated using the
dissimilar datasets.

Figure 2: Performance degradation vs. layer. Comparing the performance plot of net-
works trained on of the random A/B split (red diamonds) and “natural vs man-made”
A/B split (orange hexagons), all normalized by subtracting their base level performance
(Yosinski et al., 2014, p. 8).

When analyzing the results of the dissimilar datasets it can be seen that
the performance drops compared to datasets that are, to some extent, sim-
ilar (see figure 2). This corresponds with the various definitions mentioned
earlier, that the task must be related in some way. Unfortunately, the ex-
tent to which the two datasets are different is not precisely quantified in
Yosinski et al.’s experiment - Other than stating one containing images of
“man-made” objects and the other of “natural” objects. In other words, the
authors give no objective or standardize measure for describing the relat-
edness between its two datasets.

Similar to the work by Yosinksi et al (2014), Azizpour et al (2015) also
investigates the generic and specific features produced a by convolutional
neural network. Their research revolves around finding what factors of a
network that can be optimized for various transfer learning tasks and how
transferability is affected by the distance between these tasks. The order in
which the tasks are reported is equivalent to how distant they are supposed
to be for one another. The list is as follow; Image Classification, Attribute
Detection, Fine-grained Recognition, Compositional and Instance Retrieval
(Azizpour et al., 2015). Thus, the tasks furthest apart is the image classi-
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fication task and the instance retrieval task.

What Azizpour et al. (2015) discovered from the experiment is that factors
like dimensionality reduction, using techniques such as principal component
analysis (PCA), can prove helpful for reducing the curse of dimensionality
as well as boost performance for more distant tasks. Furthermore, they
find that fine-tuning has a positive impact on performance even when the
distance between the datasets are large, which is coherent with the find-
ings of Yosinski et al (2014). However, similar to Yosinski et al (2014), no
quantified distance measure is reported upon, in order to find the distance
between the tasks referred to throughout the paper. The reasoning and ar-
guments for the distance between the tasks are purely based on the authors
own semantic consideration of the similarity between said tasks.

3.2 Discriminative Finetuning

In the very recent paper on “Discriminative Fine-tuning” written by Howard
& Ruder (2018) a set of renewed methods, that can be applied when per-
forming fine-tuning for language or image classification tasks, are intro-
duced. Sequentially, they state that fine-tuning the target learner is one of
the most crucial parts when transferring knowledge, and should be carefully
executed. If one is too overly aggressive when fine-tuning, it can result in
fatal forgetting and eradicate the useful information gained from training
on the source task. Vice versa, if one is too cautious when performing fine-
tuning the convergence speed will be extremely low, possible resulting in
overfitting on the target task.

Neither of these two scenarios are desired, and earlier solutions have dealt
with this problem by not fine-tuning on all layers at once, but rather one
layer at a time. This method is known as Chain-Thawing (Felbo et al.,
2017; Howard & Ruder, 2018). The chain-thaw approach is implemented
by sequentially unfreezing and fine-tuning a single layer at a time. Once
each layer of the network have been unfrozen and fine-tuned all layers are
fine-tuned collectively an additional time. This method increases the accu-
racy on the target task, however, with the expense of more computational
power needed for fine-tuning (Felbo et al., 2017). Howard & Ruder (2018)
have experimented with a similar technique to that of Felbo et al (2017) re-
ferred to as Gradual Unfreezing. Instead of unfreezing one layer, fine-tune
it, freeze it again, and then repeat the process for each layer at a time,
gradual unfreezing is carried out by unfreezing the last hidden layer and
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then fine-tune. Subsequently a new layer is unfrozen and the two unfrozen
layers are then fine-tuned collectively, etc. This process is then iterated
until the entire network has been fine-tuned.

Even though chain-thawing or gradually unfreezing are viable methods for
transfer learning they introduce a sequential requirement that may result
in overfitting, as the target dataset is elapsed each time a layer is unfrozen
and fine-tuned (Howard & Ruder, 2018). This pose a substantial drawback
as datasets used for transfer learning are often small due to limited avail-
ability or scarcity, thus being even more prone to overfitting. To overcome
this limitation Howard & Ruder (2018) suggest to perform ‘discriminative
fine-tuning’, a technique proposed in their paper. The main concept of dis-
criminative fine-tuning is that different layers of a network attain different
features, thus it makes sense that layers should be fine-tuned to different
extents. By fine-tuning earlier layers of a network (those that are gen-
eral) to a lesser extent than later layers (the specific ones), the previous
knowledge can be maintained and used to improve the performance while
training towards the target task (Howard & Ruder, 2018). Discriminative
fine-tuning is a method that allows one to change the learning rate for each
layer individually instead of using a single learning rate for all layers. For
clarification Howard & Ruder (2018) use stochastic gradient descent (SGD)
to explain how one can split and update the learning rate parameters in
order to implement discriminative fine-tuning. For SGD the model’s pa-
rameters θ, are updated at a timestep t (Ruder, 2016; Howard & Ruder,
2018), as follows:

θt = θt−1 − η · OθJ(θ) (1)

Here η is the learning rate while OθJ(θ) is the gradient in regard to the
models predictive function. The model’s parameter θ can be split into
{θl, ..., θL} where θ contains all the model parameters at the l -th layer
while L is the total number of layers in the model. Similarly, the learning
rate is obtained for {ηl, ..., ηL} where ηl is equal to the learning rate at the
-th layer (Howard et al, 2018).

In regard to discriminative fine-tuning, the SGD update will be as follows:

θlt = θlt − ηl · OθtJ(θ) (2)

Howard & Ruder (2018) empirically found it to work well to choose a
specific learning rate for the last layer, and during fine-tuning use ηl =
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ηl+1 ·0.3 for earlier layers, thus reducing the learning rate by 70% per layer.
However, a shortcoming of the experiment is that the empirical learning
rate decrease seems specific for the task at hand, and is displayed in regard
to a natural language processing (NLP) problem. Thus it raises a set of
question in regards to its use; (1) is the effect of using layer-wise fine-
tuning useful for other transfer learning tasks than NLP, such as in image
classification, and (2) whether the reported decrease of 70% per layer is a
notion that works for tasks in general or is it specific to the task presented
in the paper.

3.2.1 Cosine annealing and warm restarts

In addition to discriminative fine-tuning, Howard & Ruder (2018) mentions
another trick that they found useful for their experiments. This trick is
based on a method known as cyclical learning rate, where the idea is to
allow the learning rate to vary within a range of two values, a minimum
and maximum boundary, instead of having the more traditional fixed or
stepwise decreasing learning rate (Smith, 2017). An example of a cyclical
learning rate schedule can be seen on figure 3.

Figure 3: An example of a cyclical learning rate

The intuition of using a cyclical learning rates comes from the devious tasks
of minimizing the loss during training and getting stuck in either a poor
local minima or a flat saddle point. As the gradient is very small for saddle
points the learning rate decreases, ultimately slowing down the convergence
process. However, by boosting the learning rate every now and then, one is
able to move beyond the saddle point as well as a poor minima, resulting
in faster convergence and optimally ending in good minima (Smith, 2017).
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As cyclical learning rates have shown useful and the results thereof increases
performance and convergence speed, practitioners have been experimenting
with different types of cyclical learning rates. One method that has been re-
ported to be well functioning is the aggressive cosine annealing (Loshchilov
and Hutter, 2016; Howard & Ruder, 2018). By using half a cosine as the
annealing schedule one gets a schedule that has a high learning rate to be-
gin with and then smoothly slows down over the iterations. Thus the same
use of an upper and lower bound is used, removing the need to manually
selecting the decrease of the learning rate. Please refer to figure 4 to see an
example of the cosine annealing learning rate schedule.

Figure 4: An example of a cyclical learning rate using cosine annealing

Furthermore, by applying a reversed cosine annealing schedule for one
epoch on the dataset, have empirically shown a performance boost (Smith
and Topin, 2017). This method is also known as a warm-up. This means
that for one iteration over the dataset, instead of lowering the learning rate,
it is gradually increasing. The result thereof removes some of the noise that
can be experience due to batch sizes and help with generalization (Smith
and Topin, 2017).

3.3 The Modified Hausdorff Distance

When looking for a distance measure to find the similarity between data
points, a well established and accepted approach in computer vision and
image processing shows up, known as the Hausdorff Distance. This dis-
tance is a comparison measure between two point sets. It measures the
extent to which each point from one set lies near some point of the other
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set. As such, the Hausdorff distance can be used to determine to which
degree two points are similar to each other. A more formal definition of
the Hausdorff distance are as follows;

Given two finite point sets A = {a1, ..., ai} and B = {b1, ..., bj} (e.g. data
points from a source and a target dataset), the Hausdorff distance is defined
as:

H(A,B) = max(h(A,B), h(B,A)) (3)

where

h(A,B) =
maxmin

aεAbεB
||ai − bj|| (4)

The function ||ai− bj|| is the Euclidean norm of the points ai and bj (Hut-
tenlocher et al., 1993). The function h(A,B) in equation 4 is also referred
to as the ‘directed’ Hausdorff distance from A to B. First it identifies the
point of aiεA that is the furthest away from any point of B. It then mea-
sures the distance from ai to its nearest neighbor in B, using the Euclidean
norm (Huttenlocher et al., 1993). As given by equation 3 the operation is
also performed with h(B,A), and whichever of the two distances are greater
will be selected, thus enabling it to find the discrepancy between the two
sets.

However, a limitation to this measure is introduced. As the measure takes
into account the farthest away points, it is extremely sensitive to just a
few, or even a single outlying point of either A or B. This can skew the
distances between points immensely resulting in the points being allegedly
dissimilar, even though the points might be fairly similar.

A solution to this problem was given by Dubuisson and Jain (1994) who
did an investigation of 24 different versions of the Hausdorff distance. They
found several candidates that performed equally well or better than the
traditional Hausdorff and finally concluded upon a single well functioning
version, which they named the ’Modified Hausdorff Distance’ or HMD for
short (Dubuisson & Jain, 1994). The HMD measure is defined as:

hmod =
1

|A|
∑
aiεA

min

bεB
||ai − bj|| (5)
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Here |A| is the number of points in A. It decreases the impact of outliers
by taking the average of the single point distances, making it more robust
than the traditional Hausdorff distance.

Based on the state of the art methods presented in the article by Howard
& Ruder (2018), further investigation on these method will be conducted
throughout this paper. Experiments regarding gradual learning rate for
each layer will be carried out to see how well this approach increases per-
formance in an image classification setting and whether it is possible to
find a good estimate of said hyperparameter. Additionally, the Modified
Hausdorff distance measure will be used to describe the similarity between
datasets, and help quantify the distance between two datasets. In the fol-
lowing chapters additional analysis will be conducted to help understand
the problems that may occur when working with machine learning.
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4 Dimensionality Reduction
Machine learning problems often contains thousands or even millions of
features for each data point. Achieving a good fit with a model on such
high-dimensional data are difficult and can take an extremely long time.
This implication is often referred to as the curse of dimensionality. Géron
(2017) presents a theoretical example that explains this implication very
well. Consider a random point in a unit square (1x1 square), it will have
about 0.4% chance of being located less than 0.001 from the border. In
other words, the probability that this random point is “extreme” along any
of the two axis, are very small. Whereas for a random point in a 10,000-
dimensional unit hypercube (1 x 1 x ,. . . , x 1 cube), this probability is
greater than 99.999999% as most points in the high-dimensional hyper-
cube are close to any border. Furthermore, Géron (2017) also explains how
dimensions affect the distance between points in space. Given the example
of a unit square, the distance between two random points will on average
be around 0.52. If the dimensions are incremented and we take two ran-
dom points in a unit cube (1x1x1 cube) the average distance is increased to
around 0.66. This implies that there is a risk of high-dimensional datasets
being sparse, making training instance likely to be far from each other.
Subsequently, new instances are thus more likely to be far away from any
training instances, making predictions less reliable as it is more prone to
overfitting.

Géron (2017) suggest that a theoretically simple solution to the curse of
dimensionality could be to increase the amount of instances in the training
dataset to reach a sufficient training density. Yet, in practice this approach
is not viable, as the number of training instances required increases expo-
nentially with the number of dimensions, to reach a given density. With
just 100 dimensions (much less than the 784 dimensions in the MNIST
dataset), the amount of training instances needed is more than all atoms in
the observable universe, for training instances to be within 0.1 of each other
on average - assuming they were spread out uniformly across all dimensions.

Fortunately, real data is often confined into a region of the space having
much lower effective dimensionality. Thus, the directions over which impor-
tant variations in the data points occur are therefore confined within this
space. In addition, real data will typically also exhibit some smoothness
properties (at least locally) so that in most cases, small adjustments on the
input data point, will only affect the true output slightly (Bishop, 2006,
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37). When again examining the real dataset, MNIST, these two properties
can been seen. Pixels near edges of the 28 by 28 images represent very
little to none of the dataset’s variance. Further, slightly changing some
pixel values in an image will most likely not ruin its semantic meaning.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is considered to be the most popu-
lar dimensionality reduction algorithm, as it is deterministic and allows for
data exploration and visualization by transforming the data onto a lower
dimensionality space (Géron, 2017). The general idea behind PCA is to
identify a hyperplane that is located closest to all data-points in a dataset,
and then project the data onto that plane. Before being able to project the
data onto the lower dimensional hyperplane, one must first select the right
plane to do so. This choice is guided by the variance of the dataset, as the
axis that preserves the largest amount of variance will most likely result
in the least information loss when projected, and is therefore the optimal
candidate (Géron, 2017). By applying PCA on a dataset it identifies the
axis that account for the largest amount of variance. Then it finds a new
axis, orthogonal to the first one, that describes the second largest amount
of the variance, i.e. the remaining variance. It will repeat this process for as
many axes as the number of dimensions that are to be found in the dataset
(e.g. 784 in the MNIST dataset). The unit vector that defines these axes
are known as principal components, hence the name of the method (refer
to figure 5 for an example of principal components).

Once the principal components are identified, one can then reduce the di-
mensionality down to n number of dimensions, by projecting it onto the
hyperplane defined by the n number of principal components. Thus it pre-
serves as much variance as given by those dimensions (Géron, 2017). The
number of dimensions one decides to reduce down to is arbitrary, and is
often chosen in regard to the task at hand. If one desires to visualize or
explore the data, then two or three dimensions are useful as they can be
represented on a graph. However, if it is not for visualization, then a com-
mon rule of thumb is to use enough dimensions to account for roughly 95%
of the variance (Géron, 2017).

A useful outcome of PCA is that it merely scales the space in which the
data points are located. This means that the in-between distances of the
data points still remains true to the origin. Additionally, as mentioned
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Figure 5: Left: The principal components (c1, c2) of a dataset. Right: The amount of
variance the principal components account for if chosen as the projection axis. The solid
line, c1, accounting for most of the variance, while the dotted line, c2, accounts for the
least variance (Géron, 2017, pp. 210-220).

by Géron (2017) the distance between points changes coherently with the
number of dimensions chosen and should therefore be kept consistent to
have true measures.

4.2 t-distributed stochastic neighbor embedding (t-SNE)

Another method that is widely used to explore and visualize high dimen-
sional data is the t-SNE method (Maaten & Hinton, 2008). This method
allows one to reduce a high dimensional dataset down to two-, or three-
dimensions to create compelling plots. The t-SNE algorithm models the
probability distribution of the closest neighboring points for each point in
the dataset. In the original high dimensional space this is modeled as a
gaussian distribution, whereas in the lower two- or three-dimensional out-
put space it is modeled as a t-distribution (Maaten & Hinton, 2008). The
end goal of this procedure is to find a mapping onto the lower dimensional
space that minimizes the difference between these two distributions over all
data points in the dataset. Using the t-distribution compared to a gaussian
in the output space helps spread the data points more evenly. An additional
feature of t-SNE which is a tunable parameter that controls the fitting of
the data is called perplexity (Maaten & Hinton, 2008). Roughly speaking,
the perplexity is equivalent to the number of nearest neighbours that the
algorithm considers when reducing the data points from the original space
to the output space. Maaten & Hinton (2008) argues that the performance
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of t-SNE is rather robust to change in perplexity, but having values ranging
between 5 and 50 seems to give the best results.

Even though t-SNE is popular due to its ability to find and visualize struc-
tures in high dimensional data, one may be prone to misinterpreted these
visualizations. This is an issue that has been presented by Wattenberg et
al. (2016) on their online and interactive page ‘How to Use t-SNE Effec-
tively’. The following paragraph will discuss the possible misinterpretations
of t-SNE and use some of the well illustrated examples provided by Wat-
tenberg et al. (2016). One of the first noticeable things about t-SNE is
the perplexity parameter. As stated by Maaten & Hinton (2008) then the
values between 5-50 should provide usable and reliable results. As can be
seen on figure 6, then data points do indeed cluster well in this perplexity
range, whereas a perplexity of 2 or 100 shows very different behaviour. A
very low perplexity will often cause the local variations to dominate while
a high perplexity will have the opposite effect being more global. Watten-
berg et al. (2016) mentions that reason for the two clusters to merge, as
seen on the most right handed image in figure 6, are that the perplexity
value should be smaller than the number of points - a pitfall that should
be avoided when implementing t-SNE.

Figure 6: Displays the original data containing two color coded clusters as well as their
behaviour using 5 different perplexity values (Wattenberg et al., 2016, retrieved from
https://distill.pub/2016/misread-tsne/.)

It is obvious that the perplexity value has a tremendous impact on the way
the data clusters and setting the value can be a bit devious.

Another part of t-SNE that can be misleading is the cluster sizes. Naturally
if a cluster size is dense the data points will appear closer to one another
and the standard deviation of that cluster will be low compared to a more
sparse cluster. In figure 7, the blue cluster is 10 times more dispersed than
the yellow in the original data.
When subjected to t-SNE the two clusters seems about the same size. This
indicates that the relative size of clusters are lost during the procedure, as
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Figure 7: Relative cluster size for different perplexities (Wattenberg et al., 2016, re-
trieved from https://distill.pub/2016/misread-tsne/).

the nature of the t-SNE algorithms expands dense clusters, while contract-
ing sparse ones, ultimately equalizing the size (Wattenberg et al., 2016).
Thus the size of clusters in a t-SNE plot has no meaning and should not
influence any decision making.

Similar to their size, the distance between clusters may not have any sub-
stance after running t-SNE. In figure 8 its seen that the original data have
three clusters, with the green cluster being much more distant than the
blue and yellow.

Figure 8: Cluster distances for different perplexity values (Wattenberg et al., 2016, re-
trieved from https://distill.pub/2016/misread-tsne/).

At perplexity 50 one can see that the global structure is similar to that
of the original data, whereas the other perplexity values show somewhat
equal distances between all three clusters. However, if more data points are
added, then using a perplexity of 50 does not result in the same structure,
meaning that one has to fine-tune the perplexity value in regard to the
number of points to recreate the original structure.

There are additional valid and interesting subjects that practitioners should
be aware of to not misinterpret the plots provided by t-SNE, however
they are out of scope for this project. Please refer to Wattenberg et al.’s
(2016) webpage https://distill.pub/2016/misread-tsne/ for further reading
and testing with a simple and intuitive interface. It is apparent from the
discussion on t-SNE that some substantial pitfalls exists with this method
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and using it for other than visualization may not yield the results one would
assume.
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5 Hyperparameters
When working with machine learning algorithms and the construction of
neural networks, it is essential to be able to control the behaviour of the
learning algorithm for it to achieve a good performance. Such a controllable
setting is known as a hyperparameter. For context let us first mention the
difference between parameters and hyperparameters. When training a net-
work towards a given task using a training dataset, we iteratively update the
parameters (weights and biases) of our learning algorithm, through the use
of back propagation, until convergence is achieved. Thus the values of the
parameters are adapted by the learning algorithm itself. Hyperparameters
on the other hand are not adapted by the learning algorithm, but are rather
defined beforehand and used to ultimately determine how the parameters
evolve or behave during training (Goodfellow et al., 2016). Examples of
hyperparameters could be the learning rate α , number of hidden layers L,
number of neurons in a layer n, batch size, drop-out amount, or even the ac-
tivation function (e.g. ReLU). The reason for these settings to be chosen as
hyperparameters, that a learning algorithm does not need to learn, is that
they are difficult to optimize. Additionally, the hyperparameter oftentimes
refers to settings that control the model capacity or architecture, e.g. size,
width and activations (Goodfellow et al., 2016). If these settings are not
being used as hyperparameters but rather as parameters that learns on the
training dataset, it would most likely choose the maximum possible model
capacity for the specific task, every time, ultimately resulting in overfitting.

In their article “Collaborative hyperparameter tuning” Bardenet et al. (2013)
describe that previous it has been a devious task to set good hyperparam-
eters. Additionally one needs to manually change the hyperparameter if
and when the network does not seem to operate well. To find good hy-
perparameters however, is more easily achieved by practitioners who have
prior knowledge and a better heuristic understanding of the task at hand.
Bardenet et al. (2013) further mentions that heuristic experts are better
at finding connections between similar tasks and can thus choose a more
generalized value for the hyperparameter that may benefit across multiple
tasks. However, more recent advanced to hyperparameter tuning makes it
possible to apply a nested learning method in which one learning algorithm
can be used to find the best possible hyperparameters for another learning
algorithm (Goodfellow et al., 2016). There exists various method to achieve
optimized hyperparameters and the following subsections will elaborate on
a pair of the most popular methods.
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5.1 Frequency based optimization

As mentioned above, it has traditionally been costum to manually change
the hyperparameters. To supplement this way of finding hyperparameters,
a method known as Grid Search have earlier been used in parallel to help
automate the process (Bergstra and Bengio, 2012). The algorithm is very
straightforward and easily implemented, as one simply have to predefine a
set of different hyperparameter values, train a model for each possible com-
binations hereof, and finally selecting the hyperparameter values that leads
to the best performing model. This is a considerable exhaustive method to
find the right hyperparameters, brute forcing all possible combinations of
values, which seemingly will take quite a substantial amount of time. For
context, let us imagine that we want to optimize just 4 hyperparameters,
using 10 different values for each parameter. Thus the number of evalu-
ations one have to carry out would be 10 to the power of 4 (104), which
equals to 10.000 evaluations. Based on the time it takes to train a net-
work, which often is time consuming in its own, one would essentially have
to wait weeks, months or even years before it would have found the opti-
mal hyperparameters. And the optimal hyperparameters using grid search
would still be limited to those predefined values, meaning that the truly
optimal value may not be represented in the search space, a consequential
shortcoming to note.

5.1.1 Random search

Another method that can be applied to find optimal hyperparameters,
which is an extension to the grid search, is the Random Search method.
Rather than hard coding or predifining the values one wants to investigate
and then exhaustively try all possible combinations, with random search
one can specify a range of values for each hyperparameter. Within these
various ranges a random value will be selected and the the combinations
thereof will then be evaluated. This process is then iterated for as many
trials as specified by the practitioner. In their article ‘Random Search
for Hyperparameter Optimization’ Bergstra and Bengio (2012) experiment
with random search and finds it to be equally comparable to grid search on
performance. However, the amount of trials needed to find hyperparame-
ters that results in good performance are significantly lower than those of
a normal grid search making it the more prominent method to use. The
authors argue that if the close-to-optimal region are indeed present in the
search space, then a random search with around 40-60 trials and/or iter-
ations, have a significant high probability (∼ 95% confidence) of finding
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that region.

Grid search as well as random search are both objective frequency based
optimizers, that needs a predefined search space in order to find the most
optimal hyperparameters. This pose a limitation for practitioners that do
not have much experience or knowledge in the field as the space may not be
intuitive. The methods only takes into consideration the best possibilities
that it came across and does not allow for much exploration of good or
near-optimal regions of the search space. The next method that will be
presented is more subjective in the matter of exploring the search space
where a potential good region is found. This method is known as Bayesian
optimization and will be elaborated upon in the following section.

5.2 Probabilistic based optimization

In bayesian optimization the goal is to find the minimum loss of a func-
tion f(x) on a given dataset X, as is the goal with any other optimization
algorithm. However, what makes bayesian optimization different from the
previously mentioned optimizers, is that it constructs a probabilistic model
of the function f(x) and then explore this model in order to give a qualified
assumption about where in X it should evaluate the function next (Snoek
et al., 2012). Thus, the idea behind the bayesian optimization is to use all
of the prior observations available of the function f(x), to help determine
the next and optimal point to sample in X, without having to rely solely
on the local gradient. The trade-off is between exploring the search space
(in this case X), making sure to investigate the most relevant points, and
exploiting the settings for this space to find the most promising parameters
within it. The result thereof is much fewer iterations but at the cost of
more computational power needed, compared to Random and Grid search
(Snoek et al., 2012). Thus, a procedure of finding the minimum loss of a
difficult non-convex function f(x) is feasible.

To implement bayesian optimization, there are two overall choices that a
practitioner’s must take. The first one is to select a prior over functions
that is able to make assumptions about the function being optimized. The
common choice is the Gaussian Process Prior, as its structure and shape of
the underlying function is rather flexible and tractable (Snoek et al., 2012).
A Gaussian Process (GP) is the generalization of a gaussian distribution
to a distribution over functions instead of random variables. Similar to
a gaussian distribution being specified by its mean and variance, a GP is
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specified by its mean function and covariance function. As an example;
for a set of data points xn = {x1, ..., xn} we assume that the values of the
loss function fn = {f(x1), ..., f(xn)} can be described by a multivariate
gaussian distribution, thus we have:

fn ∼ N (m(xn), K) (6)

where m(xn) = {m(x1), ...,m(xn)} is the mean function and K = k(x, x′)
is the covariance function. Therefore, instead of returning a scalar f(x), a
GP returns the mean and variance of a normal distribution over the possi-
ble values of the loss function f at x.

The second choice one has to make is to select an acquisition function to
find the best point to evaluate next. This is a function of the posterior
distribution over the loss function f , that describes the utility for all values
of the hyperparameters. The values that are determined to have the high-
est utility will be selected as the point for which the loss function will be
computed next (Snoek et al, 2012). There exists different kinds of acquisi-
tion functions and Snoek et al (2012) mentions that the function known as
Expected Improvement, also denoted as EI, have shown to be popular and
reliable. It can be defined as follows:

EI(x) = E[max(0, f(x)− f(x̂))] (7)

Where x̂ is the current optimal set of hyperparameters. The reason for using
the maximum argument is that it will provide the point that it expects to
improve the loss function f , the most. Furthermore, the expectation of
EI can be computed under the Gaussian Process Prior, to give insights to
what sort of values that will result in higher improvements (Snoek et al.,
2012). This is achieved by its predictive mean function µ and predictive
variance function σ and can be written as:

EI(x) =

{
(µ(x)− f(x̂)µ(x)−f(x̂

σ(x)
) + σ(x)µ(x)−f(x̂

σ(x)
, if σ(x) > 1

0, if σ(x) = 0
(8)

What can be derived from equation 8 is that either the EI will be high when
the posterior value of the loss µ(x) is higher than the current best value of
f(x), or EI will be high when the uncertainty σ(x) around the point x is
high. This is seemingly intuitive as if one maximizes the EI, then it will
either sample from points where it expects a higher value of the function f,
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or else it will sample points in a region of the function f that has not been
explored yet.

The use of Bayesian optimization to find well functioning hyperparameters
for a model is seemingly an efficient and favourable method that practi-
tioners can apply. However, an ironic dilemma occurs, as one needs to
decide upon hyperparameters for the Bayesian optimization both in regard
to which covariance function to use as well as the settings of the gaus-
sian process. This results in an endless loop, that magnifies how empirical
frameworks, tests and results can be of great use, to find both a common
ground or baseline for different methods and approaches, as well as provide
an indication of what values to initialize the hyperparameters with.
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6 Optimizers
In the previous section, parameters of a network was briefly introduced
as the weights and biases, which are updated during training through the
use of backpropagation. Backpropagation by gradient descent is one of
the most common algorithms used to optimize neural networks, and many
variants of gradient descent has been implemented to further improve the
method (Ruder, 2016). Throughout this chapter an overview of current
and popular gradient descent optimizers will be introduced and elaborated
upon.

6.1 Traditional Gradient descent

The idea behind gradient descent in machine learning is to minimize a loss
function in regards to the models parameters. Assume that the coefficients
of the parameters have some value θ, then the objective function can be
denoted as f(θ). The derivative of the objective function should then be
calculated to find the slope of the function. This allows one to update the
parameters in the opposite direction of the gradient, following the slope
down-hill towards its minima. Additionally, a learning rate should be spec-
ified to determine how big a step is taken in the downhill direction in order
to reach said minima. Thus the algorithm for gradient descent are as fol-
lows:

θ = θ − (η · Oθf(θ)) (9)

6.1.1 Batch gradient descent

There are three variations of gradient descent that differ from one another
based on how much data is used to compute the gradient. Depending on
the amount of data used, a trade off between how much time it takes to
perform an update and how accurate the parameter update will be, is in-
troduced (Ruder, 2016).

The traditional gradient descent algorithm, also referred to as batch gra-
dient descent, was presented above in equation 9. However, a shortcoming
of this algorithm is that one has to compute the gradients for the entire
training dataset to perform a single update. Thus, it can be an extremely
slow operation if the dataset is considerable large, as well as being close to
unmanageable if the dataset is is not able to fit in memory (Ruder, 2016).
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6.1.2 Stochastic gradient descent (SGD)

To resolve the intractability of batch gradient descent, the stochastic gra-
dient descent (SGD) can be applied. Rather than making a parameter
update at the end of each batch, the update is performed for each training
instance with regard to their respective label. As SGD performs much more
frequent updates with higher variance it causes the objective function f(θ)
to fluctuate more. This fluctuation introduces both pros and cons to the
method. The pros of SGD is that learning can be performed much faster
compared to batch gradient descent, and it enables the possibility to jump
to new and potentially better local minimas. The downside to this func-
tionality on the other hand, is that SGD may impede convergence to the
exact minimum as it can overshoot the goal repeatedly (Ruder, 2016).

6.1.3 Mini-batch gradient descent

The last variation of traditional gradient descent, combines the most useful
parts from batch and stochastic gradient descent, and is known as mini-
batch gradient descent. This works by performing an update for every
subset of training instances. Thus the variance of the parameters updates
are reduced, resulting in a less fluctuating convergence, and furthermore,
allows the practitioner to choose the size of the mini-batch. This makes
mini-batch gradient descent a common choice for training neural networks
in practice (Ruder, 2016).

However, mini-batch gradient descent still has some challenges, which re-
lates to choosing the right settings, or hyperparameters, which earlier dis-
cussed, can be a a devious task. One recurring difficulty is choosing the
right learning rate, as a too low learning rate will increase the time it takes
to convergence, while a too high learning rate may hinder convergence or
even result in divergence (Ruder, 2016). Additionally the learning rate
schedule, e.g. to use annealing (as presented in section 3.2.1, p. 12), to
help overcome both flat saddle points and bad local minimas, has to be
defined beforehand. To overcome these shortcomings, various optimization
algorithms have been developed to adapt the learning rate in certain situa-
tions. The articles written by Singh et al (2015) and Ruder (2016) encloses
a great overview of the different optimizers, and the upcoming section will
follow and impart their work.
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6.2 Gradient Descent Optimizers

One of the earlier methods to adapt the learning rate is known as momen-
tum (Qian, 1999). This method works by increasing the learning rate for
parameters which gradients constantly points in the same direction, while
decreasing the learning rate for parameters which gradients rapidly change
(Singh et al, 2015). Thus, faster convergence can be achieved. However,
another problem may occur when using momentum. As momentum ac-
cumulates when going down hill it will often be rather high close to the
goal point, i.e. the minima, and do not know that it should slow down,
potentially causing it to miss the minima entirely.

To counter this problem the Nesterov accelerated gradient, aka NAG (Nes-
terov, 1983), was invented to give momentum this functionality of knowing
when to slow down before going uphill again (Ruder, 2016). By predicting
the gradient for the next step it will change the learning rate for the current
step, based on that prediction. Therefore, if the gradient is predicted to be
higher for the upcoming step, it will increase the learning rate, whereas if
the prediction shows a lower gradient the learning rate will decrease (Singh
et al, 2015). With NAG it is possible to adapt the updates based on the
slope of the gradient, however, it is in regard to all the function parameters.

Further development have sought to adapt the updates to each individ-
ual parameter, instead of collectively, to make bigger or smaller updates,
depending on their importance (Ruder, 2016). This has been achieved
with the algorithm known as Adagrad (Duchi et al., 2011), which adapts
the learning rate to individual parameters based on its frequency. Bigger
updates are performed to infrequent parameters while lesser updates are
performed to frequent parameters. It does so by using a different learning
rate for every parameter, at a given time step, based on the past gradients
that were computed for that parameter (Singh et al, 2015). Thus it be-
comes obsolete to manually tune the learning rate. The main disadvantage
of Adagrad however, is that the learning rate is always decreasing. This is
due to the the accumulation of the gradients over all iterations, a sum in
the denominator that continues to grow throughout training. Eventually
the learning will become so small that it will be unable to acquire further
knowledge, hindering the numbers of iterations that is useful for training
(Ruder et al, 2016).

To accommodate for the constant decreasing learning rate an extension to
Adagrad, called Adadelta (Zeiler, 2012), has been developed that seeks to
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resolve just that. Rather than accumulating all the past gradients, the win-
dow in which the gradients are summed is restricted to a fixed size (Singh et
al., 2015). Furthermore, the sum of gradients in this fixed size, are defined
as a decaying average of all the past squared gradients, meaning that the
running average at a given time step, depends on the previous average as
well as the current gradient (Ruder, 2016). This counteracts the denomi-
nator from becoming extremely small, and allows for further updates of the
parameters, without the diminishing return of reaching too many iterations.

The improvements from traditional gradient descent and up until Adadelta
have involved calculating the momentum for faster convergence, compute
adapting learning rates for individual parameter as well as preventing van-
ishing learning rates. To further this work a method known as Adam
(Kingma & Ba, 2014) have been developed that in addition to computing
the adaptive learning rates for each parameter also store the momentum
changes for each of them separately. By calculating the first moment, the
mean, and the second moment, the uncentered variance, of the gradients
respectively it is possible to update the parameters individually, similar to
the approach in Adadelta. This method empirically shows to outperform
Adagrad and Adadelta in practice (Ruder, 2016).

What can be seen from literature and the history of gradient descent is that
the improvements over the years have resulted in clever and efficient ways
of optimizing the learning rate as presented above. It is apparent that the
parameters of a network behave differently and some needs to be updated
more than others, due to their importance and/or frequency. This notion is
quite similar to how different layers of a network capture different features
and should thus be trained to different extents (as presented in section 3.1,
p. 7). However, to our knowledge, only one implementation of an optimizer
able to update the learning rate layer-wise has been introduced, namely, the
discriminative fine-tuning method proposed by Howard & Ruder (2018). In
regard to transfer learning the goal is to train a well performing network on
a target task, with only little available data, by utilising prior information
captured from a pretrained network trained towards a different task. To
which extent the network should be trained depends very much on the
relatedness of the source and target tasks, which in turn could be objectively
quantified by utilizing the Modified Hausdorff Distance. In the following
chapter we will present the experimental setup of our test including the
procedure of the experiments.
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7 Experimental Setup
The main objective for our empirical experiment is twofold; (1) to investi-
gate the effectiveness of the promising state-of-the-art approach presented
by Howard & Ruder (2018) with Learning Rate Finder, Warm Restarts,
Gradual Learning Rates and Cosine Annealing, in a image classification
context, (2) examine the potency of using the Modified Hausdorff distance
measure to predict the knowledge transferability of one task to another.

7.1 Specifying datasets and domain adaptation

The two datasets used in the experiments is a subset of the balanced EM-
NIST dataset (Cohen, 2017) and the Cifar10 dataset (Krizhevsky, 2009).
The balanced EMNIST dataset is an extended version of the original MNIST
dataset, containing images of both handwritten digits and alphabetic char-
acters. The images are grayscale with a pixel size of 28x28 resulting in 784
pixels per image (i.e number of dimensions). It has a total of 47 classes
with 3000 images per class. The Cifar10 dataset consists of 60000 color
images with a pixel size of 32x32x3, resulting in 3072 pixels per image. It
has a total of 10 classes with 6000 image per class representing airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

To generate the source and target datasets for the experiment, we extracted
four random samples, two from the EMNIST dataset and two from the
Cifar10 dataset. These samples will from here on out be referred to as Em-
nist01, Emnist02, Cifar01 and Cifar02 respectively. Each sample consist
of 4 classes with either 3000 or 1200 images in each class, dependant on
whether it is used as the source or target task. The reasoning behind using
a reduce number of training points for the target tasks, is to simulate a real
world transfer learning scenario of having less training data available. In
table 7.1 an overview of each random sample and its corresponding classes
can be seen.

In order to accommodate for the inconsistent image sizes (Emnist being
28x28x1 and Cifar10 32x32x3) two different domain adaptations has been
performed, to transform all instances into a shared dimensional space.
First, an asymmetric transformation is done in the form of changing the
EMNIST dataset by adding 2 extra color channels with identical pixel val-
ues, going from a grayscale 1 dimensional to a RGB 3 dimensional color
space. Second, a symmetric transformation of both image datasets are
performed by rescaling all instance into a 224x224x3 image size.
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Sample
names

Emnist01
(Source)

Emnist02
(Target)

Cifar01
(Source)

Cifar02
(Target)

Class labels E, M m, U
u, n

0, F, N, V
v

Plane, Cat,
Horse, Ship

Car, Bird,
Dog, Frog

Training
sample size
per class

2400 images 600 images 2400 images 600 images

Validation
sample size
per class

600 images 600 images 600 images 600 images

Table 1: The EMNIST and Cifar10 samples with their corresponding classes and sizes.
Sample *01 and *02 are always used as source and target tasks, respectively. For the
source task 80% of the sample (9600 images) is used as training and the remaining
20% of the sample (2400 images) is used for validation. For the target task 50% of the
sample (2400 images) is used as training and the remaining 50 % of the sample (2400
images) is used for validation. Having an equal amount of images for validation ensures
consistency between the performance of source and target tasks.

7.2 Distance Measure of Datasets

The modified hausdorff distance is calculated for each of the four dataset
comparisons, and saved for later examination when all networks has been
trained. The measure is performed on the source and target training sets,
generating a scalar value for each class comparison. Before doing the mea-
sure, both datasets are scaled to equal size by randomly excluding points
from the largest classes, down to the smallest. Further, incremental prin-
cipal component analysis is performed on the source and target dataset
collectively. This is done to decrease every instance in both datasets down
to a fixed reduced dimensional space consisting of the 148 principal com-
ponents. This is implemented with the intent of counteracting the curse
of dimensionality, and in practice still keeps about 95.0% of variance from
the original data (See appendix E).

7.3 Source and Target Networks

Figure 9 shows an overview of the experimental setup for testing gradual
learning rate. The network chosen for this setup is small (considering the
standard depth of the currently used conv-networks) with a fairly simple
architecture, called Resnet34 (He et al., 2016). The first figure shows the
Resnet34 being trained towards the source dataset, in this case the Em-
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nist01 sample. This network will serve as our pretrained network. In the
second figure, we see the pretrained network being trained towards the
new target task, i.e. the Cifar02 sample. The colors are used to indicate
how prominent the learning rate is and to visually display how it gradu-
ally decreases for each layer during backpropagation. Here purple indicates
knowledge gained from the source task, while green indicates knowledge
from target. These two figures are merely used as an example of the process
(Emnist01 as source, Cifar02 as target), while three additional combina-
tions are tested, namely; Emnist01 (source) → Emnist02 (target), Cifar01
(source) → Emnist02 (target), and Cifar01 (source) → Cifar02 (target).

Figure 9: TOP: An example of the source network trained towards the Emnist01 sample.
BOT: An example of the source network being fine-tuned towards a target task (the
Cifar02 sample) using gradual learning rate. Here the amount of green represent the
learning rate and how it decrease during backpropagation.
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7.4 Choosing the initial learning rate

Choosing the initial learning rate is done utilizing the learning rate finder
proposed by Smith (2017). For our experiment it is solely used to estimate
a range in which different initial learning rates can be evaluated. It trains
the specific model with different learning rates in a broad range starting
from a low rate, and outputs the loss value. The model then reverts back to
its initial weights before training, and the loss output can be plotted with
the purpose of choosing a proper initial learning rate. Figure 10 shows an
example of such visualization for the Emnist01 → Cifar02 experiment.

Figure 10: Showing the learning rate finder output for the Emnist01 → Cifar02 experi-
ment.
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8 Results

Figure 11: Results of the network trained on Emnist01 as source and towards Emnist02

Em01\Em02 0 F N V v
E 110.44 96.49 118.89 116.78
M m 124.33 117.92 102.82 115.36
U u 100.81 124.53 101.65 87.78
n 104.25 113.73 102.93 114.29

Table 2: Distance between sample 1 and sample 2 from the Emnist dataset. Highlighted
cells shows the shortest distance.
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Figure 12: Results of the network trained on Emnist01 as source and towards Cifar02

Em01\Ci02 Car Bird Dog Frog
E 171.38 167.66 161.50 156.07
M m 170.80 168.19 164.21 156.77
U u 174.81 168.82 163.30 157.96
n 172.35 168.11 162.75 157.13

Table 3: Distance between sample 1 from the Emnist dataset and sample 2 from the
Cifar10 dataset. Highlighted cells shows the shortest distance.
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Figure 13: Results of the network trained on Cifar01 as source and towards Emnist02

Ci01\Em02 0 F N V v
Plane 192.33 193.78 194.79 199.53
Cat 167.59 168.93 167.82 170.25
Horse 171.94 172.77 173.14 176.15
Ship 183.07 181.14 184.23 187.63

Table 4: Distance between sample 1 from the Cifar10 dataset and sample 2 from the
Emnist dataset. Highlighted cells shows the shortest distance.
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Figure 14: Results of the network trained on Cifar01 as source and towards Cifar02

Ci01\Ci02 Car Bird Dog Frog
Plane 74.16 62.86 73.30 69.46
Cat 76.63 68.39 68.85 68.18
Horse 76.72 68.53 72.34 69.42
Ship 73.60 68.38 74.30 71.55

Table 5: Distance between sample 1 and sample 2 from the Cifar10 dataset. Highlighted
cells shows the shortest distance.
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9 Discussion

9.1 Evaluating the distance measure

The between distances of samples stemming from the same original dataset
versus distances arised from different datasets, produces some intuitively
anticipated results. Classes from Cifar10 target dataset (Ci02) are all mea-
sured to be more similar to the source Cifar10 dataset (Ci01) than to the
source Emnist dataset (Em01), and vice versa. In addition, this occur-
rence can even be extended to classes coming from the same dataset; see
the distance of ‘U’ (Em01) and ‘V’ (Em02), which instinctively share sim-
ilar features versus ‘E’ and ‘V’ (Em02). An example of the same phemo-
nenon on cifar10 is ‘cat’(Ci01) and ‘dog’(Ci02), are measured closer than
‘ship’ (Ci01) and ‘dog’(Ci02). Our proposed method of combining princi-
pal component analysis and the modified hausdorff distance mearse, seem
to capture the marginal distributions of each dataset quite well. Whether
this measure is indeed useful for predicting the knowledge transferability
between two task, is discussed in conjugation with the experimental results.

9.2 Insight into CIFAR10 and combined class variance

One notable aspect when comparing the results of the Emnist01→Emnist02
and the Cifar01→Emnist02 experiment, is the end performance difference
of the two. The target network trained on cifar01 first, shows a slightly
lower validation loss than the one pre-trained on Emnist01. This is sim-
ilarly the case when comparing Cifar01→Cifar02 and Emnist01→Cifar02.
This might indicate that pre-training on Cifar01 produces richer transfer-
able feature weights, even when Emnist01 are considered closer both in a
intuitive sense and empirically (by the MHD measure), to the Emnist02
dataset.

The reason for this might be visible when inspecting the scatter plot of both
Emnist01→Emnist02 and Cifar01→Emnist02 on the two most dominant
principal components (See Appendix E). It shows that the cifar datasets
consist of a far greater amount of variance than the Emnist dataset, which
might indicate that the overall feature variance is also greater. This may
have forced the network to acquire weights that detect a more general sets
of low and high level features for the source task. Which, in the end indi-
cates that Cifar10 might share more features with other datasets in general,
than the ‘invariant’ Emnist dataset.
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It could be interesting to inspect how much the combined class variance
of a dataset influences the effectiveness of the knowledge transferability
between tasks. This might turn out to be a better predictor than the
marginal distribution difference measured in this study. The motivation
for this is that the combined class variance of a given dataset, might reveal
a substantial insight into the location on which the true features and label
domain (condition 1 and 3) are located in the high dimensional space.

9.3 Confidence of the results

When comparing the different initial learning rates for each experiment, it
is seem that it significantly influences how well each learning rate weight
performs. Additionally, it is rarely the case that no decrease in the learning
rate per layer (100%) or major decrease (25%), produces the highest per-
forming target model. This discovery contradicts Howard & Ruder’s (2018)
rule of thumb to some extend, as they advice always to use a learning rate
decrease 30% per layer when fine-tuning.

One must take into consideration the fairly sparse amount of times each
experiment is performed in this study, which is mainly due to the time con-
straints of this project. However, the confidence interval of all re-training
sessions might not be as large as one might initially think, since the tar-
get networks are not trained from random weights and biases. This leaves
only two random factors when fitting which is the data batch selection and
dropouts. It is unknown how much the randomness of those two factors
can influence the final performance outcome of the fine-tuned model.
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10 Conclusion
The main objective of this report was to investigate the effectiveness of
the state-of-the-art transfer learning approaches presented by Howard &
Ruder (2018), in a image classification context. This was achieved through
empirical experiments conducted on the CIFAR10 and balanced EMNIST
datasets. The amount of relevant knowledge transferred from one dataset to
the other, was expressed through how well the model performance increased
on the target task. One method in particular called the discriminative fine-
tuning, that utilizes different learning rates for each layer, shows promising
results when applied on all four of the different experiments conducted in
this project.

In addition to these transfer learning methods, the potency of a dissimi-
larity measure, called the Modified Hausdorff Distance, was evaluated as
a suitable estimator for how well knowledge of one task transfers to an-
other. This transferability measure was implemented with the motivation
of finding a fast, reliable and convenient preprocessing method for deciding
the learning rate weight, when fine-tuning a pre-trained network towards
a new task. The measure showed no significant correlation between the
performance increase of the target task and the distance of the two spec-
ified datasets. However, it should be considered as merely measuring one
aspect out of the four presented conditions within transfer learning (see
section 2, p 4), namely the marginal distribution difference of two given
datasets. Further analysis of the experimental results, indicated that the
combined class variance might be a promising feature to investigate as a
possible measure for knowledge transferability between two tasks.
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Appendix A
The model accuracy of Cifar01 to Cifar02 with a learning rate of 0.00005
and 0.00002, respectively.
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Appendix B
The model accuracy of Cifar01 to Emnist02 with a learning rate of 0.001
and 0.0001, respectively.
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Appendix C
The model accuracy of Emnist01 to Cifar02 with a learning rate of 0.01
and 0.005, respectively.
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Appendix D
The model accuracy of Emnist01 to Emnist02 with a learning rate of 0.005
and 0.001, respectively.
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Appendix E 
Appendix E1 - cifar01 to cifar02 

 

Four Most Dominant Principal Components: 

 



Appendix E2 - Emnist01 to cifar02 

 

Four Most Dominant Principal Components: 

 



Appendix E3 - Emnist01 to Emnist02 

 

Four Most Dominant Principal Components:

 

 



Appendix E3 - Emnist01 to Emnist02 

Scatter plot of the two most dominant principal components (red(1) = Em02, purple(0) = Em01): 

 

Scatter plot of the two most dominant principal components ( 4 to 7 = Em02,  0 to 3 = Em01): 

 

 

 



Appendix E4 - Cifar01 to Emnist02 

 

 

 



Appendix E4 - Cifar01 to Emnist02: 

Scatter plot of the two most dominant principal components (red(1) = Em02, purple(0) = Ci01): 

 

Scatter plot of the two most dominant principal components ( 4 to 7 = Em02,  0 to 3 = Ci01): 

 


