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Summary

This project is a master thesis for a semester project group at Aalborg University, spring 2018.
The project belongs to the specialization course Machine Learning, and the project topic is rein-
forcement learning.

The reinforcement learning framework SC2LE for StarCraft II was released autumn, 2017, and
provides an API (PySC2) to interact with StarCraft II which prompted this project. The problem
statement of the project is “Build agents for StarCraft II utilizing SC2LE by exploiting techniques
from options framework.”

StarCraft II is a complex environment where the player has to maneuver individual units tacti-
cally in coherence with a long-time strategic goal. The game features multitasking, a large state-
and action-space, in addition to the complexity of the game rules that require certain conditions
to be satisfied before the player can advance further.

Our approach is to use the options framework where a set of specialized options can interact
with the environment concurrently, selected by the policy over options. Because the StarCraft II
full game is deemed too complex for the scope of this project in order to achieve a meaningful
score, the project focuses on solving one crucial task of the game, building marines. The spe-
cialized options are agents trained on custom environments, each created to teach respective
purposes that are part of the task of building marines. In each of the environments, the agents
are restricted to a defined subset of actions from StarCraft II.

The specialized option agents did learn in the environments, but they did not perform signifi-
cantly better than random agents in the same environment, and one performed poorer than ran-
dom. However, when applying the controller with the specialized options to the more complex
environment, the controller scores significantly higher than the currently available reference
results.

An analysis of the average distribution of options selected throughout a single episode over
the last 500 episodes of the controllers with specialized options showed promising results. The
distributions showed that the controllers learn to prioritize and select the options in the correct
sequence necessary to achieve a relative good score.

The successful application of the options framework to StarCraft II indicates that the options
framework is a viable option for complex tasks that can be divided into subtasks. The options
framework can also be applied even if the options are not performing optimally on their respec-
tive subtasks.





Preface

This report is written by three master Software Engineering students from Aalborg University
and is the result of a Master Thesis project. The project began February 1st 2018, and was
completed June 8th 2018. The projects theme is Machine Intelligence with focus on Reinforce-
ment Learning and is based on the project from our pre-specialization semester, SC2AI [1]. The
purpose of this report is to explore the potential of the options framework in the StarCraft II
environment.

The Vancouver method is used for citations in the report, where sources are indicated with a
number in square brackets (i.e. [2]), and comma separation if using multiple sources. The title,
author(s) and other relevant information is stated in the bibliography.

Abbreviations and terms are described on first time use in the report, but for good practice the
most frequent ones are stated here as well.

Abbreviations:

• Reinforcement Learning (RL)
• Real-Time Strategy game (RTS)
• Markov Decision Process (MDP)

Terms:

Application Programming Interface (API): Programming interface for interaction and com-
munication between software.

Agent: Software that can observe and actuate on an environment.

Episode: One game instance until a player win, lose or the time elapsed.

(Time) Step: One discrete observation of the environment.

Mini-game: An environment that is a subset of the full StarCraft II game, with one or multiple
purposes based on the full game.

We would like to thank our supervisor Manfred Jaeger for his guidance throughout this project.
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Chapter 1: Introduction
In the last decades, artificial intelligence, that is agents that do not have humanly predefined
behaviour, has achieved or exceeded human-level performance in multiple board games, such
as chess. The next challenge is to surpass human-level performance in more advanced games,
and with the recent release of an API to interact with the game StarCraft II, this project will
attempt the challenge by applying reinforcement learning and option framework techniques to
the game, and examine whether the techniques can be a feasible trajectory towards superhuman
performance. The project is an extension of the previous semester project, which also applied
reinforcement learning to the StarCraft II environment.

1.1 Problem Domain

Reinforcement learning is a machine learning technique where the purpose is to learn by inter-
acting with the environment and evaluating the performance in the environment in terms of
rewards continuously. A reinforcement learning agent can by this technique increase its perfor-
mance by interacting with the environment over time, called training.

The options framework is one method of reusing acquired knowledge. The options framework
achieves this by using previously learned policies as options that can be applied to the environ-
ment for a time period. This can for instance be useful if an agent is challenged with more than
one problem to solve or a problem consisting of multiple sub-problems, where each option can
be a potential solution to these problems.

StarCraft II is a real-time strategy game (RTS) developed by Blizzard Entertainment Inc [2].
RTS games are strategy games where the players are performing actions in the environment
concurrently, in contrast to turn-based games. The players use actions to manoeuvre units,
gather resources, build attack forces, and win by overtaking or destroying the opponent’s assets.

PySC2 is an API that allows interaction with the StarCraft II environment, and enables the use of
reinforcement learning for the game. PySC2 is designed to let agents interact with and perceive
the StarCraft II environment similarly to human players, with the intention of restricting agents
from exceeding human-level performance by exceeding human-level information. Limiting
the agent to observations, actions and action-rate similar to human players can enable neutral
comparisons between human and agent.

1.2 Problem Statement

The problem statement for this project is prompted by the recent release of PySC2 and as the
continuation of the previous semester project, which applied a hierarchical agent architecture
onto the StarCraft II environment. In this project we want to ”Explore the application of the options
framework on the StarCraft II environment utilizing PySC2.”
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Chapter 2: Analysis
In order to design a reinforcement learning agent for StarCraft II that exploits option framework
techniques, relevant topics have to be analyzed. Thus, this chapter covers the subjects StarCraft
II, reinforcement learning and options framework.

2.1 StarCraft II

To understand the game domain in which to explore solutions, this section contains a short
analysis of StarCraft II. First, the general StarCraft II properties are described. Second, the game
environments are analyzed. Third, an indication of the game complexity is made. Finally, the
game reward system is described. This section is mainly based on the StarCraft II section in our
previous report from the 9th semester in the Fall 2017 [1].

2.1.1 StarCraft II Game Modes

StarCraft II is a RTS game and supports multiple game modes, such as single-player mode
against a scripted agent and multiplayer mode with one or more opponents. However, this
project will only consider the mini-games supplied by PySC2. The game modes are described
in the following paragraphs.

Full Game

The two-player game mode, called 1v1, is a two player game, where the opponents play against
each other in an environment, referred to as the map. The objective is to destroy all of the
opponent’s buildings. If neither of the players have gathered resources, researched an upgrade,
produced a unit, constructed a building, or destroyed an enemy building for three consecutive
minutes, the match is called a tie.

The environment size depends on the particular map and the players are limited to a maximum
of 200 units each. The environment is only partially observable, meaning that a player can only
see what is happening on the map within a range of the players own buildings and units.

Mini-Game

The mini-games supplied by PySC2 are relatively small environments with a limited area, set of
units and available actions. The mini-games are designed for specific objectives with the pur-
pose of training on that specific objective, e.g. gathering resources, moving units, and defeating
enemies.

Build Marines is a mini-game designed with the objective to acquire as many marine units within
a 15 minute time limit, and a frame from the gameplay can be seen in Figure 2.1 on the facing
page. The mini-game requires the player to gather resources, expand the limit of concurrent
marines and create buildings for producing marines.



2.1. StarCraft II 3

Figure 2.1: A crop of the game environment screen for the mini-game BuildMarines.

2.1.2 Complexity

This section will contain descriptions of StarCraft II in order to indicate the complexity of the
full game.

First, the 1v1 game environment is large. The map is large enough to contain several bases, each
consisting of multiple buildings, in addition to resources scattered throughout the environment.
The map is also large enough to separate the bases, such that the map must be explored in order
to find the opponent’s base(s).

Secondly, each player can have set of movable units of up to 200 individuals. Each unit belong
to one purpose category, for example eliminating enemies or gathering resources. The units
should be managed in a manner that optimizes resource usage with respect to resource income,
to build a sufficiently large army that finally can eliminate the opponent.

As the different units types have different purposes, they also possess different sets of actions.
That means that for instance a building cannot attack an enemy unit, and hence that the units
should be used for their intended purpose. Additionally, a subset of the actions require po-
sitioning. The coordinates of the actions are critical and influence whether the player attacks
friendly or enemy units, how space efficient the buildings are positioned in the base, etc. In the
mini-games, the map size is restricted to 64 by 64, which already surpasses 4000 coordinates.

To succeed, actions must be performed in a topological order, as the game rules require certain
conditions to be met before a subsequent action is available. The player must gather resources
in order to construct additional buildings. Some buildings must be built to increase the player
capacity for marines, and another building type must be built in order to enable production of
marines.

Additionally, there are many viable methods to defeat the opponent. The methods utilize tactics
and strategies concurrently, such that the low level control of the individual units correspond
with the high level abstract plan for succeeding. Strategies can be attacking as quickly as possi-
ble with a small army or to take time build a great army that can attack later. The strategy could
also change during the game if information is acquired that would indicate that the current
strategy would not lead to a win.
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The combination of executing a changeable strategy and managing the individual units in align-
ment with the strategy, in addition to adhering to the required order of events, indicates that
the game is complex.

2.1.3 Environment Interaction

The StarCraft II Learning Environment (SC2LE) was created by Blizzard and DeepMind, and
enables interaction with the game environment, designed for machine learning. SC2LE includes
PySC2 which is an API to access information and apply actions with the StarCraft II environ-
ment [3]. Examples of available information of the environment are the current spatial features,
non-spatial features, available actions.

The spatial features describe the positioning of properties on the map. The accessible infor-
mation on the screen is avaliable through the API but not the exact same as the screen that a
human player will see. However, it contains the same information, but whereas humans rela-
tively easily can recognize and identify units on the screen despite being partially blocked by for
instance a tree in the environment, machine agents will have to learn to recognize those cases
in addition to the actual objective and gameplay of the environment. The spatial information
accessible through the API is split into different feature layers, such that different properties of
the same unit are distributed over multiple layers, but are consistent in positioning in the map.
If the unit does not possess the feature of the feature layer, the unit will not be visible in that
feature layer. An example of a complete set of feature layers can be seen in Figure 2.2.

Figure 2.2: Feature layers as represented by the PySC2 API.

Non-spatial features is information regarding the general game status for the player. That can
be the amount of available resources, score or production queue for units.

PySC2 allows reading rewards from the environment. A "Blizzard Score" is provided for the 1v1
game and accounts for the number of units, resources and other properties. For the mini-games,
a score is provided for a game frame, if the measurement differs from the previous frame. In the
example of Build Marines, a reward is provided each time the number of marines increases. The
reward system was added to the environment to enable reinforcement learning with StarCraft
II.
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2.2 Reinforcement Learning

This section contains a theoretical analysis of the reinforcement domain.

2.2.1 Markov Decision Process

A reinforcement learning task that fulfills the Markov property is known as a Markov Decision
Process, hereafter named MDP. A learning task that fulfills the Markov property is a stochastic
process where it is possible to predict the next state and its reward given the current state and
an action. Any state can only depend on the preceding state. This is also known as the process
being memoryless. This means the process is to provide the best possible bias for choosing
actions in the current state which will maximize the value of the next state. [4]

If a MDP has a finite state and action space, it is known as an finite MPD. Throughout the rest
of the report, MDP implicitly references to finite MPDs.

A MDP is a tuple < S ,A,P ,R >, where S is a set of states, A is a set of actions, P is the
state-transition probability function,R is a reward function mapping each state-action pair to a
reward seen:

R : S ×A → R (2.1)

The transition probability can then be defined as:

P : S ×A× S → [0, 1] (2.2)

such that Equation (2.3) is satisfied.

∑
s′∈S
P(s′ | a, s) = 1, ∀a ∈ A, ∀s ∈ S (2.3)

The reward function R is the immediate reward for the next state based on the action a per-
formed in the current state s. The state-transition probability P is a probability matrix, where
P is the probability for action a ∈ A in state s ∈ S resulting in a transition to state s′ ∈ S [5]. In
order to transition from s to s′ we need a decision rule that selects an action in state s. This rule
set for transitioning is called a policy.

2.2.2 Policy

A policy is the set of rules that suggests the action to perform in a given state. A stochastic policy
specifies the probability of selecting action a in state s. Formally, a stochastic policy π is defined
as π : S ×A → [0, 1] where ∑ a∈A π(a|s) = 1. Applying a policy to a MDP is performed by the
following procedure:

1. In the current state s the policy provides a probability for all actions a, π(a|s).
2. An action is selected based on the probabilities and applied to the environment, yielding

s′.

MDP policies can only depend on the current state and are therefore referred to as stationary
policies [6], whereas non-stationary policies can be time-dependent or utilize other parameters,
such as a set of the previous states. A deterministic policy can be seen as a special case of a
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stochastic policy, where one and only one action has the value 1 and the rest has 0, such that the
probability still sums up to 1.

In order to optimize the reward generated by a policy a value for each state is needed to be
known. A value function is used to estimate the value for a state, where a higher value in-
crease the attractiveness of the state. A state-value function is defined as Vπ(s) in Equation (2.4)
which is the expected return for an MDP starting from state s and then selecting actions in the
subsequent states according to policy π [7]. The the estimated value function in Equation (2.4)
estimates the value that could be retrieved by Equation (2.5). To be able to reference to a spe-
cific state in the sequence of states, we use t as the notation for the current time step, such that
e.g. s = st and s′ = st+1. We denote rt as the reward for the state at time step t. γ ∈ [0, 1] is a
discount factor which determines the weight of the reward in a state compared to the preceding
state [4].

Vπ(st) = E
[ ∞

∑
k=0

γkrt+k+1

]
(2.4)

Vπ(st) = ∑
a

π(a | s)∑
s′
P(s′ | s, a)[R(s, a) + γVπ(s′)] (2.5)

An optimal value function measures the best possible attractiveness of a state under any policy.
The optimal value function is used to find the optimal policy for any given MDP. The optimal
state-value function V∗(s) is defined as seen in Equation (2.6)

V∗(s) = max
π

Vπ(s) (2.6)

If the expected return of a policy π is greater than or equal to π′ for all states, it is defined as
better. Formally, π ≥ π′ iff Vπ(s) ≥ Vπ′(s), ∀s ∈ S [4]. The policy that is better than or equal
to all other policies is called the optimal policy, π∗. Since more than one policy can satisfy the
requirement, all optimal policies are denoted π∗.

2.2.3 Semi-Markov Decision Process

Semi-Markov Decision Process (SMDP) are a special kind of MDP appropriate for modeling
continuous-time discrete-event systems [8]. SMDP is defined as a tuple < S ,A,R,Q >, where
S , A and R is the set of states, set of actions, and the reward function respectively as in MDP
seen in Section 2.2.1 on page 5. SMDP have in addition a joint distribution of the next state and
transit time, Q. Q is defined as Q(t, s′ | s, a). Which means, if the system take action a in state
s, then Q denoted the probability that the next decision occurs within time t, with the system
ending in state s′[9]. The addition of Q allows a MDP to consider and operate using time.

2.2.4 Q-Learning

Q-Learning [10] is a model-free reinforcement learning algorithm [7]. The algorithm learns an
action-value representation without learning a model, hence it is model free.

Q : S ×A → R (2.7)
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Q-Learning utilizes the Q-value, Equation (2.7) on page 6, retrieved by the Q-function, in Equa-
tion (2.8), that represents the maximum discounted future reward for performing action a in
state s, returning the subsequent state s′. Whereas the value function is representing the state-
value, the Q-function is the action-value function.

Q(s, a) = R(s, a) + γ ∑
s′
P(s′ | s, a)max

a′
Q(s′, a′) (2.8)

When an optimal action-value function is learned, so that it always selects the state-action se-
quence yielding the highest Q-value, this can be translated into an optimal policy.

A disadvantage of the Q-learning algorithm is that it relies on a matrix representing the Q-
values of each state-action pair. When the state- and action-spaces are large, the matrix be-
comes very large, and the algorithm requires a corresponding amount of time to explore every
combination in order to fill the matrix with actual values.

2.3 Options Framework

The term option is used to describe temporally extended courses of action, that is the option
can be initiated and it will perform actions sequentially until termination. This section contains
descriptions of options and the option framework, and is based on the paper by Sutton et al. [8]
and the dissertation by Precup [9].

The options framework has the potential to speed up learning and planning in complex envi-
ronments, as options can be used instead of actions as a higher level of planning, hence reducing
the action-space, the amount of actions to select from in a given state.[8]

Formally, an option ω is a triple < I , π, β >, where I ⊆ S is the set of initiating states, π :
S × A → [0, 1] is an intra-option policy, which is a probability distribution over the possible
actions. β : S → [0, 1] is the termination condition probability. When an option is initiated
it selects and performs actions until the option terminates by the probability β(s). The intra-
option policy π for the option ω determines how the option selects actions. The intra-option
policy is henceforth denoted πω, as to specify which option the policy is associated with.

Multiple options can be stored in a set Ω, such that Ω = {ω1, ω2, ..., ωn}. To select options
from the set Ω, a policy over option is necessary. The policy over option, denoted πΩ and called
”Controller” in Figure 2.3 on the following page, is analogous to the previously defined policy,
with the difference that it selects options instead of actions. πΩ selects an option ω based on a
probability distribution, πΩ : S× ω → [0, 1]. In Figure 2.3 on the next page, the selection of an
option ω is illustrated as a switch on the right hand side.

When an option ω is selected in state st ∈ I , an action at will be selected based on πω(at|st) and
the succeeding state st+1 is reached in the environment. In st+1 the option can either terminate
with probability β(st+1) or continue with action at+1 according to πω(at+1|st+1). When the
selected option continues to operate on the environment, the flow in Figure 2.3 on the following
page will be a circuit over the currently activated option and the environment. If the option
terminates, this will be equivalent of breaking the circuit, such that the controller must use the
policy over options and activate the switch for the subsequent option. This type of option is
a Markov option in the sense that the policy and termination condition only rely on the current
state, also called memoryless, similar to the definition in Section 2.2.1 on page 5.
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Figure 2.3: The flow of the option framework, inspired by [11]

To reduce the state space for πω(s), it is possible to remove the states where β(s) = 1, as they
are guaranteed to terminate the option. Additionally, states where the option might continue,
β(s) < 1, are also initiating states, as there is no difference from starting in or continuing from
a state. Hence the state set πω(s) needs to be defined over is only I ⊆ S .

When the policy over options, πΩ, selects an option based on its probability distribution, it
hands over the environment control to the selected option. The currently selected option is the
only component using the state and interacting with the environment. Only when the option
terminates, the environment becomes relevant to the policy over options, after which a subse-
quent option is selected. With this is mind, any MDP with use of options can be understood as
a Semi-Markov Decision Process (SMDP).

The options in the set Ω are SMDP actions and πΩ is the SMDP policy, such that πΩ selects
options ω. The selected option ω executes from state s until termination in state s′, enduring a
time span of time steps t, where the policy over option selects a new option. This relates to the
joint distribution of the next state and transit timeQ(t, s′|s, a) as seen in Section 2.2.3 on page 6.
The MDP is the underlying MDP that runs throughout the options, providing the reward and
transition probability together with the option’s policy and termination condition.

The state observation difference is illustrated in Figure 2.4 on the next page where the connec-
tion between SMDP and Options over MDP can be seen. In the options over MDP graph, the
white dots indicate options, which run for a period of time while the dark dots indicate the
MPD states.
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Figure 2.4: Options over MDP, based on [9].

In situations where the option does not terminate for a significant or inadequate amount of time,
for instance for a loop of states, a timeout technique can be applied to terminate the option. This
ability is not available for Markov-options as it is memoryless and only relies on the current
state. However, semi-Markov options have the ability to terminate after a certain amount of
time steps have passed, despite not reaching a termination state. This can be achieved by using
t as a time step counter for the option, such that t = 0 for the time step the option was initiated
and t← t + 1 for every time step until the option terminates.

The value function for options is similar to that of an MDP, described in Equation (2.4) on
page 6. The value function for policy over option Ω, described in Equation (2.9) is defined as
the expected return by following πΩ initiated in state st, where t represent timestep τ for Ω and
k is the duration of the option selected by Ω for state st.

VπΩ(st) = E
[
rt+1 + . . . + γk−1rt+k + γkVπΩ(st+k)

]
(2.9)

Q-learning for options, defined in Equation (2.10), is one of the learning methods for SMDP,
and is similar to the previously defined Q-learning algorithm, Equation (2.8) on page 7. The Ω
option-value function defined as the value of taking option ω in state s ∈ I under policy πΩ
and selecting actions according to πω until termination [12]. The time steps t thus refers to the
intra-option time steps.

QπΩ(s, ω) = E
[ ∞

∑
t=0

γtrt | πω, πΩ

]
(2.10)

The update function for the Q-values is defined in Equation (2.11), where α is the learning rate
which determines the weight of the update [12]. The (s, ω) pair is updated after the termination
of the option, where k is the number of time steps for which the option was active, and R is the
reward of the option, defined by Equation (2.12) on the next page.

Q(s, ω) = Q(s, ω) + α
(

R + γk max
ω′

Q(s′, ω′)−Q(s, ω)
)

(2.11)
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The reward of an option is the discounted cumulative reward achieved within the option run-
ning for k time steps [12].

R =
k

∑
i=0

γiri (2.12)

2.4 Policy Gradient Methods

To be able to achieve a good policy, the current policy must improve somehow. One way to see
this issue is to imagine a dot on a map, and it needs to be moved to a position with higher alti-
tude, representing better performance. By experimenting to push the dot in different directions
and evaluating the reward at the positions, the methods can estimate a direction in which to
adjust to gain a position that yields a higher altitude and hence better performance [4]. We are
interested in finding this gradient, and this section will examine techniques for achieving the
policy gradient.

2.4.1 Parameterized Policy

Until now, we have only considered policies that utilize the values of the actions and select an
action for the state based on these values. We now introduce a parameterized policy that is able
to select actions without the need for directly accessing a value function. We denote the policy
weight vector as θ, where θ ∈ Rn. The policy definition is then rewritten to

π(a | s; θ) (2.13)

such that the action a is selected according to the state s and the policy weight vector θ.

For use in neural networks, the vector θ represents the connection weights of the network. Thus
the neural network uses the weights θ as parameters for the nodes, the input s and the output
is a probability distribution over the actions. This way, the neural network is used as a policy
function.

2.4.2 Policy Gradient

The goal of the policy gradient methods is to learn policy weights based on a measure of perfor-
mance η(θ), with respect to the policy weights θ. The performance measure is equivalent to the
value of the initial state for the policy according to θ, and can be written as in Equation (2.14).
The value function is mainly the same as Equation (2.4) on page 6, with the differences that the
policy π is represented by the weights θ, and the value is not estimated.

η(θ) = Vπθ
(s0) (2.14)

Based on the performance measure, we can derive the gradient for the policy. The policy gra-
dient theorem is defined in Equation (2.15) on the facing page, where, by following policy π,
dπ(s) is the distribution representing the expected number of time steps t where St = s, and
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Qπ(s, a) is the value of taking action a in state s [4, Chapter 13]. Also note that the state-value
function can be written as the action-value function for all states s.

∇η(θ) = ∇Vπθ
(s0)

= ∇
[
∑
a

π(a | s)Qπ(s, a)
]
, ∀s ∈ S

= ∑
s

dπ(s)∑
a

Qπ(s, a)∇θπ(a | s, θ)

= ∑
s

dπ(s)∑
a
∇π(a | s)Qπ(s, a)

= Eπ

[
∑
a

Qπ(s, a)∇θπ(a | s; θ)
]

= Eπ

[
rt
∇θπ(At | st; θ)

π(At | st; θ)

]
(2.15)

When the gradient policy is found, the policy can be updated, such that the values of θ reflect
a better performing policy. The update function, denoted in Equation (2.16), approximates the
gradient ascent in η, where α is learning rate.

θt+1 = θt + αrt
∇θπ(At | st; θt)

π(At | st; θt)
(2.16)

Methods following the aforementioned template are called policy gradient methods [4]. Meth-
ods that learn approximations of both the policy and value functions are often called actor-critic
methods, and is elaborated in the following section.

2.4.3 Actor-Critic

Actor-Critic is a policy gradient method that consists of two parts, actor and critic. The actor
applies the policy π on the environment and is a reference to the learned policy. The critic
evaluates the actor, and implicitly the policy, and is a reference to the learned value function.
A visual representation of the relationship between the actor, critic and the environment can be
seen in Figure 2.5 on the following page.

The actor executes the policy π based on the state by selecting an action according to the policy.

The critic also observes the state, but additionally the reward. The critic is then able to generate
values according to the policy that was followed, and evaluate the quality of the current policy
by adapting the value function estimate.

The actor-critic learns two sets of weights; the policy vector θ and the state-value vector θv. The
policy function using θ is defined in Equation (2.13) on page 10. A similar transformation can
be made to the value function in Equation (2.4) on page 6, by introducing the weight vector
θv, where θv ∈ Rm, such that the value of the state s can be estimated using the weights θv, by
V(s; θv), formally defined in Equation (2.17).

V : S× θv → R (2.17)
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Figure 2.5: The Actor-Critic Architecture[13].

The pseudo code for actor-critic is written below. In the pseudo code in Algorithm 1, γ is the
discount factor already introduced in Section 2.2.2 on page 5.

Algorithm 1 Actor-Critic Pseudocode

1: Input: a differentiable policy parameterization π(a | s, θ)
2: Input: a differentiable state-value parameterization V(s, θv)
3: Parameters: step sizes x > 0, y > 0
4:
5: Initialize policy weights θ and state-value weights θv
6: for ever do
7: Initialize S, first state of episode
8: I ← 1
9: while S not terminal do

10: A ∼ π(· | S; θ)
11: Take action A, observe S′ and R
12: δ← R + γV(S′; θv)−V(S; θv)
13: θv ← θv + yδ∇wV(S; θv)
14: θ ← θ + xIδ∇θ logπ(A | S; θ)
15: I ← γI
16: S← S′

17: end while
18: end for

2.4.4 A3C Algorithm

The Asynchronous Advantage Actor-Critic (A3C) algorithm is a reinforcement learning algo-
rithm released by Google DeepMind in 2016 [14]. It uses the actor-critic concept described in
Section 2.4.3 on page 11.

For estimating the actor π(a|s; θ) and critic V(s; θv) a neural network is used with an out-
put layer each for the actor/policy and critic/value-function, where the non-output layers are
shared [14].

To calculate the gradients and update the weights θ and θv A3C utilizes n-step return, where
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the gradients are calculated after a fixed number of states tmax or at terminating state using
the current and preceding state action pairs which are saved in a buffer. With n-step return a
single reward r affects the n preceding states and hence helps propagate rewards faster. See
Equation (2.18) for definition of n-step return with value-function estimator [15, 4, Chapter 7].

G = rt + γrt+1 + · · ·+ γn−1rt+n + γnV(st+n; θv) (2.18)

To evaluate the actor/policy the A3C algorithm uses an advantage function estimate for the critic,
as similarly seen in line 12 in Algorithm 1 on page 12, which in A3C is given by:

A(s, a; θv) = G−V(st; θv), (2.19)

where A(s, a) is a scalar describing the advantage of taking action a in state s. This is a better
critic than just discounted returns, as the advantage determines how much better or worse the
action was than expected compared to simply how good it was.

To interact with the environment A3C uses asynchronous actor-learners, also called workers,
which are agents run on multiple threads with each a copy of the global neural network (with
local weights θ′ and θ′v) and separate environments. When a worker calculates its local gradi-
ents they are used to update the global network, see line 14-19 in Algorithm 2 on the next page,
where after the worker copies the global network to its local network and starts interaction with
the environment again, see line 2-12 in Algorithm 2 on the following page. This ensures that
each worker is updated with new learned traits from every other worker the next time they
copy the global network.

3. Worker
calculates
value and
policy loss

2. Worker
interacts
with envi-
ronment

4. Worker
gets gradi-
ents from
losses

5. Worker
updates
global net-
work with
gradients

1. Worker
reset to
global net-
work

Figure 2.6: Overview of the A3C’s worker loop. [1]

The process of a worker can both be seen in Figure 2.6 and Algorithm 2 on the following page.
Workers helps avoid overfitting the network, as each worker experience difference interactions
with the environment and have the possibility of having different exploration rates.
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Algorithm 2 Asynchronous advantage actor-critic - Pseudocode for each worker [14]

//Assume global shared parameters θ and θv and global shared counter T = 0
//Assume thread-specific parameter vectors θ′ and θ′v

1: Initialize thread step counter t← 1
2: repeat
3: Reset gradient: dθ ← 0 and dθv ← 0.
4: Synchronize thread-specific parameters θ′ = θ and θ′v = θv
5: tstart = t
6: Get state st
7: repeat
8: Perform at according to policy π(at | st; θ′)
9: Receive reward rt and new state st+1

10: t← t + 1
11: T ← T + 1
12: until terminal st or t− tstart == tmax

13: R =

{
0 for terminal st

V(st; θ′v) for non-terminal st // Bootstrap from last state
14: for i ∈ {t− 1, t− 2, . . . , tstart} do
15: R← ri + γR
16: Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(ai|si; θ′)(R−V(si; θ′v))

17: Accumulate gradients wrt θ′v: dθv ← dθv + ∂(R−V(si; θ′v))
2/∂θ′v

18: end for
19: Perform asynchronous update of θ using dθ and of θv using dθv
20: until T > Tmax
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Chapter 3: Design
Based on the analyzed domains in the previous chapter a solution will be designed. This chapter
covers the design of the solutions workflow, composition and structure.

3.1 Controller (Options Framework)

This section contains the design of the options controller for the agent, where the policy over
options, πΩ, controls which option to run at any given timestep τ. The controller follows the
options framework, described in the analysis, in Section 2.3 on page 7.

3.1.1 Neural Network

Neural network function as an approximator, mapping environment states to actions/options.
An overview of our neural network design for the controller can be seen in Figure 3.1, based on
the structure used in the previous project report [1]. The network takes two inputs, non-spatial
features, such as current economy information, and spatial features from the current state in the
game.

Figure 3.1: Neural network composition for the controller.

The spatial features in the map are represented as feature layers provided by the PySC2 API,
where each feature layer represents different information such as mineral location and location
of both friendly and enemy units. These layers can been seen in Figure 2.2 on page 4 where
each smaller window represents a layer, and the view on the left hand side is the view rendered
for human players. The spatial information is processed through two convolutional layers to
condense information after which it is concatenated with the non-spatial features.

The full state representation is converted to a dense layer where each input is connected to every
output with weights and biases. This is done so all observed information has the potential to
influence the outputs.

The network outputs a policy for either actions or options and a state-value estimate.
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3.1.2 Learning

Based on the work from last semester[1] we have chosen to continue to work with the A3C
learning algorithm. Small optimization and better hardware have enabled the A3C algorithm
to run with six parallel workers. This have significantly increased the speed of training and fur-
ther improved the benefits of A3C as it improves with the numbers of simultaneously training
workers.

The action/option policy and value output mentioned in the previous neural network section
is the actor and critic of the A3C algorithm

3.1.3 Policy Over Options

πΩ is the action policy of the neural network of the controller, see Figure 3.1 on page 15, which
selects between the options based on the current state of the observed environment as seen in
Figure 2.3 on page 8 and Algorithm 3.

Algorithm 3 Option Framework Structure Pseudocode

1: τ ← 0
2: sτ ← observe environment state
3: repeat
4: t← 0
5: st ← sτ

6: ωi ← πΩ(sτ)
7: repeat
8: ωi observe environment state st
9: Select action a based on πωi (st)

10: t← t + 1
11: st ← observe environment state
12: until ωi termination
13: τ ← τ + 1
14: sτ ← st
15: until

As seen in Algorithm 3, the controller and πΩ do not directly interact with the environment, but
do so indirectly through the selected option, which is seen on line 6 in Algorithm 3. When an
option ω is selected it observes and interacts with the environment until the option terminates
and the control is passed back to the controller and πΩ.

How each option observes and interacts with the environment will be covered in the next sec-
tion.

3.2 Custom Options

This section contains the design of the options and how they interact with the environment.
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The neural network used for the options is similar to the one used for the controller. However,
in order to enable generate coordinates, some additional features were added.

Since the preferred coordinates differ depending on the selected action, for instance a select
action on an empty location would yield no effect, the solution was designed to enable the
neural network to consider the selected action when generating coordinates. The changes can
be seen in Figure 3.2 where information from the second convolutional layer gets concatenated
with the selected action followed by a dense layer with the spatial policy as output.

Figure 3.2: Neural network composition with coordinates based on the selected action.

The options are trained with the A3C algorithm, exactly the same way as with the controller, as
mentioned in Section 3.1.2 on page 16. The difference is the mentioned neural network changes
and that the options’ policy is an action policy and not an option policy.

When trained, the neural networks, θω and θω
v , for the individual options are saved. Every

option has their own internal policy πω, as seen in Algorithm 3 on page 16.

The foundation for applying, training and saving the options is designed, however environ-
ments to train on are still missing.

The mini-game BuildMarines was considered the most complex of the mini-games by the PySC2
developer team [3]. It was also the mini-game that was the main focus last semester, as it
contains several elements of the full game which makes it quite complex and hard to achieve a
human level score in.

BuildMarines is a mini-game which have sub-task that need to be completed before the overall
goal of producing marines can be achieved.

In order to produce a marine, other buildings and units have to be produced first. Workers
are required in order to gather resources and create buildings. The resources are used when
a worker, a marine or a building is created. In addition, to resources are supply also needed
to produce workers and marines which can be build by workers. Workers are created in the
Command Center and marines are created in barracks. In order to build barracks at least one
supply is required to be build beforehand.

The tasks described can be distributed into five unique sub-tasks which are essential for the
BuildMarines mini-game and are defined below:
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• A: Assign workers to gather resources.
• B: Build workers in the Command Center to increase resource flow.
• C: Build supply required by workers and marines.
• D: Build barracks to enable the creation of marines.
• E: Create marines in barracks.

Each of the sub-tasks are displayed in Figure 3.3 where the letter in each box correspond to a
sub-task in the previous list.

Figure 3.3: BuildMarines mini-game where the yellow boxes covers the different sub-tasks.

To try and achieve a good score in BuildMarines five options are created to each capture and
solve one the five sub-tasks, as seen in the previous list, such that the options together capture
the entire set of tasks required to solve BuildMarines. To be able to train each of the options, a
custom mini-game is created for each of them. The option mini-games are created with unique
reward triggers to support the options to solve their respective sub-tasks. As each option is
trained on a unique mini-game where the states differ from the states in BuildMarines, the
initiating states I for all the options are set to S as to ensure each option is available in all
states.

The five options can be seen in Table 3.1 on the next page with name, corresponding letter to
those in Figure 3.3 and their summarized purpose.
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Option Purpose

A - AssignSCV Maximize the numbers of workers currently gathering resources. Should termi-
nate when all idle workers are gathering resources.

B - BuildSCV Create more workers and terminate when one or more have been created or when
idle workers are available for Option A.

C - BuildSupply Create supply to enable more workers and marines to be created.

D - BuildBarracks
Create barracks such that more marines can be created in parallel. As a barrack
can only create one marine at a time. Should terminate when one or more bar-
racks have been build.

E - ExpandArmy
Create marines at the barracks. Highest priority option, as it is the only option
able to generate reward in BuildMarines. Should terminate when all barracks are
creating marines or by insufficient minerals or supply for creating more marines.

Table 3.1: Summary of option tasks and termination conditions.

The action space for each option have been reduced due to the time-limit of this project. This
means that each option only have the necessary actions enabled to chose from, for it to solve its
task, making learning take less time but also making the options more focused/narrow.

Each of the mini-games are made such that all units and buildings it need are spawned in
random locations to try and generalize the option as much as possible.

3.3 Termination Condition

The following sections will explore different ways to design termination within options, and
two different termination designs will be designed.

3.3.1 Probability Termination

The objective of β is to map a state to a probability of terminating the option. β should return a
value closer to 1 if the option is ineffective and closer to 0 if the option is effective. Due to limited
time, the options had to be trained before the project group was able to design and incorporate
a termination probability into the networks. However, the issue can be compensated for by
utilizing the neural networks already possessed by the options.

The termination probability function β would be run at the termination condition on line 12
in Algorithm 3 on page 16. The termination probability is calculated after the option performs
an action on the environment, such that the option decides whether to terminate after each
performed action. Thus, the network of the option can output its state-value estimation, that
can be used to determine termination. The value V(s) is an estimate of the future reward from
the state, following the current policy, and hence can be interpreted as an estimation of the
future effectiveness of the option.

Because the estimated future reward of the state can vary, being either small or big, and positive
or negative, the function should compensate for those properties. As a single coefficient would
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not be sufficient to compensate for the possible values, our idea to reduce the impact of the
single state-value estimate is to find the linear gradient of the value estimate, such that the
state-value trend will affect the probability. The gradient should be incorporated such that a
negative trend will increase the probability of termination, and a positive trend will decrease
the probability. The gradient can be calculated using the value of the initial state of the option,
v0, and the value of the current state vt by the standard function ∆v/∆t. We thus redefine the
function β to:

β(v0, vt, t)→ [0, 1] (3.1)

To ensure that the option will terminate, the probability will be increased over time. That can
be achieved by using the current time step of the option, already passed into the function. The
termination probability can then be defined as Equation (3.2), where Ψ and φ are coefficients to
balance the influence of the option run time and the state-value estimate gradient.

β(v0, vt, t) = Ψt− φ
vt − v0

t
(3.2)

Because the result of the function can exceed 1 and be negative, we restrict the results to the
limitations previously set for β, such that

β(v0, vt, t) =


0 if Ψt− φ vt−v0

t < 0
Ψt− φ vt−v0

t if 0 ≤ Ψt− φ vt−v0
t ≤ 1

1 if Ψt− φ vt−v0
t > 1

(3.3)

For comparison and if for instance the designed probability function would not be sufficient,
an alternative termination function is designed.

3.3.2 Timeout Termination

This section contains the design of an option agent with a timeout termination instead of termi-
nation probability β. This design is based on the assumption that the options framework and
its benefits still could be utilized even if the options are run for a static predetermined number
of time steps. The benefits might not be as great as using a probability termination β for each
option, since an option that can reach its sub-goal in less than the predetermined number of
time steps is forced to run for the remaining time steps until it reaches the timeout value and
terminates. This can translate to sub-optimal actions being performed in the states after the
sub-goal is reached, which could lead to a sub-optimal final score.

The policy over options controls which option to run at any given time step τ, but instead each
selected option is ran for a predetermined number of time steps before it terminates, hence
timeout termination.

The difference is that instead of calculating the probability at each interaction with the environ-
ment, a counter can be incremented by one for each time step t and the option terminates when
the counter value equals the timeout value, that is the predefined number of time steps. The
check replaces the termination probability function, and the remaining design remains.
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Even with the probability of options running more or fewer time steps than necessary with this
design, it is assumed to still be able to show whether or not an options framework agent can
learn the use of options.
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Chapter 4: Implementation
The implementation closely resembles the design, and hence the focus of this chapter is to de-
scribe the tools and libraries that is used for the implementation, in addition to the pseudo code
that highlights implementation differences or tweaks to the design.

4.1 Tools and Libraries

The main tools and libraries used in the implementation are described in this section.

4.1.1 Environment Interaction

PySC2 is an API that provides the necessary endpoints to interact with the StarCraft II environ-
ment. The API provides access to the information and actions already described in Section 2.1.3
on page 4, and will therefore not be elaborated on in further details.

4.1.2 Machine Learning

To avoid spending time implementing and optimizing neural networks and associated code, we
use the machine learning tool Tensorflow. Tensorflow is an open source, free machine learning
framework, originally developed by Google[16].

The Tensorflow API allows for instantiating neural network layers and connecting them into a
neural network. Additionally, output values of the network can be requested, and Tensorflow
will ensure that the correct set of input values are provided in order to produce the requested
values. Updating of the network, by backpropagation, is also handled by Tensorflow.

Tensorflow has different parameters for the sessions, such that, for example, specialized hard-
ware can be utilized. Especially the ability to use a graphics processing units speed up the
processing of matrix management, and thus can calculate values for the neural networks faster.

4.2 Standard A3C Implementation

This section describes the implementation of the standard A3C. The A3C implementation fol-
lows the procedures already presented in Algorithm 2 on page 14, but the actual line-by-line
code will not be presented.

One environment is instantiated per thread before the algorithm is run. On line 6 in Algorithm 2
on page 14, the initial state st is obtained using the PySC2 API by SC2Env.reset(), and the
succeeding states and rewards on line 9 obtained by SC2Env.step(action). The action is the
selected action by following the policy probabilities on the action set filtered by the intersection
of the actions available in the environment and the predefined action set for the mini-game.
Finally, on line 12 the current state can be checked of whether or not it is terminal by calling the
last() function on the state observation.
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4.3 Option Controller Implementation

The controller utilizes the A3C learning method, and therefore shares most of the structure and
code already described in the previous section.

As previously mentioned, from the controller’s perspective options can be seen as actions per-
formed on the environment. Hence, the main difference will be to add a loop in which the
option repeatedly can select and perform actions. The option must also accumulate the reward
until termination, and finally return the last state and the accumulated reward to the controller.

In order to achieve the options framework, an option needs to be selected in a state sτ by the
controller, and terminate by some probability β of the option state st. This can be achieved by a
loop until β terminates the option, replacing line 9 in Algorithm 2 on page 14.

Algorithm 4 on the next page presents how the option first will be selected by the controller
policy of state sτ , and then execute actions upon the environment until the option terminates by
the probability β, returning the terminal state st and the reward to the controller. The controller
uses the returned state as sτ+1, and continues to select options until the episode terminates. If
the termination probability should not suffice as a termination condition, an option step limit
will terminate the option after a predefined number of steps, such that more than one option is
able to be selected throughout the episode.

In the case that the termination probability would not be effective as a method of terminat-
ing the option, another termination probability was implemented. The additional termination
condition is achieved by editing β to always return 0, such that there is no probability of ter-
mination, but only a static termination condition. Accordingly, the option terminates when the
option step t exceeds the timeout option step limit tmax.
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Algorithm 4 Pseudocode for the options controller

//Assume global shared parameters θ and θv and global shared counter T = 0
//Assume thread-specific parameter vectors θ′ and θ′v
//Assume thread-specific parameter θω and θω

v , the network weights for each individual option ω
1: Initialize thread step counter τ ← 1
2: repeat
3: Reset gradient: dθ ← 0 and dθv ← 0
4: Synchronize thread-specific parameters θ′ ← θ and θ′v ← θv
5: τstart ← τ
6: Get state sτ

7: repeat
8: Select ωτ according to policy π(ω | sτ ; θ′)
9: rτ ← 0

10: t← 0
11: vτ ← V(sτ ; θωτ

v )
12: repeat
13: Select at according to policy π(at | st; θωτ )
14: Receive reward rt and new state st+1
15: rτ ← rτ + rt ∗ γt

16: st ← st+1
17: t← t + 1
18: vt ← V(st; θωτ

v )
19: until terminal st or random < β(vτ , vt, t) or t = tmax
20: sτ+1 ← st
21: τ ← τ + 1
22: until terminal sτ or τ − τstart == τmax

23: R =

{
0 for terminal sτ

V(sτ , θ′v) for non-terminal sτ // Bootstrap from last state
24: for i ∈ {τ − 1, τ − 2, . . . , τstart} do
25: R← ri + γR
26: Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(si, ai; θ′)(R−V(si; θ′v))

27: Accumulate gradients wrt θ′v: dθv ← dθv + ∂(R−V(si; θ′v))
2/∂θ′v

28: end for
29: Perform asynchronous update of θ using dθ and of θv using dθv
30: T ← T + 1
31: until T > Tmax
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Chapter 5: Results
This chapter covers the results achieved by the implemented solutions and serve to indicate
the performance of the solutions. The solution performance will be compared to other relevant
results.

5.1 Testing Environment

This section covers the physical and virtual training environments utilized in the project.

Machine learning is a compute intensive task, and requires processing time to execute the ac-
tions in the environment in addition to updating the network weights and biases. The project
group used the fastest computer available, with an 7th generation Intel i7, 32 GB RAM and a
Nvidia GTX 1070. Despite relatively high-end hardware at the time, executing several thousand
episodes has a duration of 10 to 100 hours of constant calculation, depending on the network to
be trained and the episode length. To be able to produce all the results within the project time
limit, some compromises were made with respect to run time, and the project group was not
able to test multiple hyperparameter configurations for the individual runs.

The mini-games had respective sets of actions that were allowed. The action sets were reduced
from StarCraft II action space of 524 to less than ten, and was an optimization to decrease train-
ing time and speed up the learning process. We acknowledge that the action restriction has
implications that disables the agents to find potential other methods of achieve results, but the
action sets were made by project members with significant StarCraft II experience, and was
made with the intention of eliminating actions that are irrelevant to the purpose of the mini-
game.

To keep the results comparable the agents which have been training using the same hyper-
parameters, independt of the mini-games. A subset of the hyperparameters are listed below
where gamma is the discount factor as mentioned in Section 2.2.4 on page 6, learning rate as
mentioned in Section 2.3 on page 7 and buffer size is the A3C buffer described in Section 2.4.4
on page 12, which is tmax for options/A3C as seen in Algorithm 2 on page 14. The buffer size
for the controller is τmax as seen in Algorithm 4 on page 24 where the option timeout also can be
seen as tmax. The step multiplier enables control over how many actions per in-game second an
agent can perform, where a step multiplier of 8 yield a total of 3 environment actions per second.
The step multiplier was selected according to the hyperparameters used by the PySC2 team [3].
The full list of hyperparameters used is available in Appendix A on page 51.

• Gamma: 0.99
• Learning rate: 1.0× 10−6

• Step multiplier: 8
• Option timeout (tmax): 100
• Buffer size (tmax/τmax): 80

Additionally the following coefficients were used for the probability termination function β:

• φ: 20
• Ψ: 0.01



26 Chapter 5. Results

5.2 Options

This section contains descriptions and figures of the performance of the different agents and
training of the options on the individual mini-games.

To identify or indicate any long-term learning, each option was initially trained for 10,000
episodes with the A3C learning algorithm, succeeded by a shorter trained option also with
the A3C learning algorithm to support the achieved results, indicating reproducibility. Because
of time constraints for the project each option was only trained twice for a longer period of time.
A random agent was also run to serve as a comparison result for the respective mini-game. As
specified in Section 5.1 on page 25, each random agent had the same available actions as the
trained option for each mini-game. An option trained with the A3C algorithm is referenced to
as a option agent.

The main objective in the mini-games is to achieve the highest possible reward within the
episode time limit. A description of the purposes of the mini-games can be see in Section 3.2 on
page 16.

5.2.1 AssignSCV

The mini-game AssignSCV is a game where each episode runs for 45 seconds and the maximum
possible reward for an episode is 9. AssignSCV was first trained for a total of 10,000 episodes
as seen in Figure 5.1, which correspond to 1,350,000 game steps. This graph shows an aver-
age episode reward of 2 throughout the entire run. Another agent was trained on AssignSCV
together with a non-training random agent, see Figure 5.2 on the next page.

Figure 5.1: Training the AssignSCV option agent for a total of 10,000 episodes



5.2. Options 27

Figure 5.2: Option agent training and random agent run for around 2,400 episodes on the
AssignSCV mini-game.

These runs were stopped after around 2,400 episodes, because we observed that the option
agent reached the same reward as the first, and seemed to stagnate at the same average reward.
The random agent was run to observe if the option agent was learning. The results in Figure 5.2
indicates that the option agent had learned, as the random agent yielded an average episode
reward of 1.

5.2.2 BuildSCV

The BuildSCV mini-game episode runs for 30 seconds and the maximum possible reward for
an episode is 30.

Figure 5.3: Training the BuildSCV option agent for a total of 10,000 episodes

The BuildSCV agent was first trained for a total of 10,000 episodes as seen in Figure 5.3, equal to
900,000 game steps. The graph does not clearly indicate any learning for the option agent. The
performance had an initial average reward around 5 and managed to get a smoothed average
of just below 10 up until 5,000 episode. After 5,000 episodes, the performance seem to fall off
and return towards an episode average of 6.
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Figure 5.4: BuildSCV option agent and random agent run for around 2,400 episodes.

The results for the second option agent and random agent can be seen in Figure 5.4. The graph
indicates that the option agent was not able to perform better than the random agent. The
average reward for the option agent is again around 5, which seems to be the same for the
random agent. Longer training might be yield better results, but the project group did not
prioritize this task.

5.2.3 ExpandArmy

The mini-game ExpandArmy is a game where each episode has a 5 minute duration and a
maximum reward possible for an episode is 80.

Figure 5.5: Training the ExpandArmy option agent for a total of 10,000 episodes

The first option agent on ExpandArmy for 10,000 episodes, that correspond to 9,000,000 game
steps, can be seen in Figure 5.5. The option performs with an average episode reward of 65
throughout the 10,000 episodes, and the curve does not clearly increase over the episodes, and
we cannot conclude that learning took place.
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Figure 5.6: Training option agent and running random agent for around 2,400 episodes on the
mini-game ExpandArmy.

The second run was made together with a random agent for around 2,400 episodes. The results
from the second run can be seen in Figure 5.6, which indicate that the option learned until
around episode 400. After episode 400, the option remains at an average episode reward of 70,
which is higher than both the previous option run and the random agent, that performed an
average episode reward of 65 and 60, respectively.

5.2.4 BuildSupply

The mini-game BuildSupply is a game where each episode runs for 2 minutes and 30 seconds
and the maximum possible reward for an episode is 100.

Figure 5.7: Training the BuildSupply option agent for a total of 10,000 episodes.

The 10,000 episode option agent on BuildSupply can be seen in Figure 5.7, and had a training
time of 4,500,000 game steps. In this first run we can see that the average reward of the option
seem to decline throughout the run, and end on an average reward around 35 at the 10,000
episode count. The initial decline was something we also saw on ExpandArmy, but in that
mini-game the option was able to recover.
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Figure 5.8: Training the option agent and running random agent for around 2,400 episodes on
the BuildSupply mini-game.

The second run to train an option on BuildSupply can be seen in Figure 5.8 together with an
random agent. It can also be observed here that the option does not seem to learn anything,
and keep the decline in average reward as seen in the previous run. Compared to the random
agent, the option agent performs worse, as the average reward for the random option is 52.

Another observation is the oscillating pattern which is visible in both the option agent and the
random agent in Figure 5.8. For around 100 episodes the agents will run with a somewhat
flat average reward, after which a steep decline is observed for a few episodes followed by a
steep incline back to the same reward level as before the decline. This 100 episode oscillation
continues throughout the run, for both the training agent and the random agent.

This is especially interesting for the random agent, since there is no correlation between its
action selection and the state or episode, as the actions are selected at random. This oscillation
pattern will be covered in a later section.

5.2.5 BuildBarracks

The mini-game BuildBarracks is a game where each episode runs for 2 minutes and 30 seconds
and 60 is the maximum possible episode reward.

Figure 5.9: Training the BuildBarracks option agent for a total of 10,000 episodes.

The 10,000 episode option agent on BuildBarracks can be seen in Figure 5.9 which correspond
to 4,500,000 game steps. An initial decline in average episode reward can be seen, which was
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also the case with the previous mini-game BuildSupply. However, BuildBarracks seems to be
able to mitigate the decline and start learning from around 5,000 episodes where it increases
from an average of 20 to an average reward around 30 at the 10,000 episodes mark.

Figure 5.10: Option agent and random agent on BuildBarracks.

For the second training of an option and run of an random agent on BuildBarracks, seen in
Figure 5.10, the same oscillation pattern tendency is visible in both the option and random
agent in the BuildSupply environment. This time there is no long-term decline in the reward
and the option keep an average around 25 to 30 the entire run, when excluding the low rewards
occurring every 100th episode.

The oscillation pattern visible in the two mini-games need further investigation, and will be
covered in the next section.

5.2.6 Oscillations

During the training period a pattern occurred in some of the mini-games. This pattern is es-
pecially visible in Figures 5.8 and 5.10 on page 30 and on the current page where the curves
oscillate with a certain drop in performance around every 100th or so episode.

The reason for these oscillations were not obvious and the project group spent a significant
amount of time to analyzing the issue to find the potential origin.

Episode Pattern

As the oscillations in the graphs seemed to be at fixed intervals, our initial thought was that
the starting distribution of units and buildings in the mini-games followed some predefined
sequence. A certain sub-sequence of this could lead to the sudden decline if some distribution
in the environment could be unsolvable for the agent. As described in Section 3.2 on page 16
each episode is initialized with randomly placed buildings and units, and should not produce
any fixed order.

A test was made in order to examine the hypothesis, and a screenshot was taken to document
the initial state for each episode for 200 episodes, exceeding the wavelength of the oscillation
pattern. This was done a few times, restarting the whole environment for each run, to see if there
were any patterns in the states of the runs. Manual analysis of the screenshots did not indicate
any particular order to the states, and it seemed that the environment did indeed use random
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placements each time. With this observation the analysis continued and led to an observation
about the way the environment is reset automatically in intervals.

Environment Reset

The environment used to run the agent on is resetting and restarting after some amount of
episodes to prevent memory overflow or other faulty measures to occur. This reset is imple-
mented in the PySC2 source code.

The observation of the resets led to the hypothesis that the environment potentially had data
that persisted through episodes and could lead to these oscillations. Examining the files of
the environment when it is running showed that there are several temporary files which are
created with each instance of the environment. However, these files seemed to be deleted when
the environment resets.

In order to prevent persisting data between the episodes, the implementation was edited to
perform the PySC2 game restart and delete temporary files, a process we call a complete envi-
ronment reset, between each episode.

The following graphs in Figures 5.11 and 5.12 were made with complete environment resets
after each episode on the two mini-games BuildSupply and BuildBarracks which were the mini-
games that clearly displayed the oscillation pattern in their run curves.

(a) Option agent. (b) Random agent.

Figure 5.11: BuildSupply runs with environment reset after each episode.

(a) Option agent. (b) Random agent.

Figure 5.12: BuildBarracks runs with environment reset after each episode.

After running the agents using the complete environment reset, the oscillations were no longer
visible in the graphs across both mini-games for both option agents and random agents. The
BuildSupply option run in Figure 5.11a with only 200 episodes approaches the average reward
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achieved by the previous runs in Figures 5.7 and 5.8 on page 29 and on page 30. The Build-
Supply random agent in Figure 5.11b on page 32 also show results more like an actual random
agent, without the oscillating pattern.

The BuildBarracks option run with reset in Figure 5.12a on page 32 achieved an average reward
of around 20 which is what the option run in Figure 5.9 on page 30 also achieved until some
learning at around the 5,000 episode mark. The option with reset seem to achieve a lower
average reward than what is seen in Figure 5.10 on page 31 where it is around 25-30. We cannot
argue if the lower average reward is also a side-effect of the environment reset or if it is a
difference in the starting states and learning. If it is a side-effect of the environment reset it is an
unexpected effect, and would have to be considered by the PySC2 developer team. The random
agent in Figure 5.12b on page 32 again seem to behave randomly, similarly to the previous reset
random agent.

A3C Random
Normal env. Yes Yes
Complete reset env. No No

Table 5.1: Visible oscillation pattern in the reward curves.

These results, summarized in Table 5.1, indicate that there may be an issue with the way the
environment is implemented and handles temporary files, cache or similar, that affect certain
maps. This problem will need further investigations to fully comprehend the issue and its root
cause. Further discussions of this challenge will be covered in Section 6.3 on page 44.

5.3 Controller

This section covers the results generated by the controller agents applied to the mini-game
BuildMarines.

The main objective in the BuildMarines mini-game is to achieve highest possible reward in an
episode, where the reward is equal to the number of marines built within the time limit of the
episode. One episode in the BuildMarines mini-game endures for 15 minutes real gameplay,
and the selected action set for BuildMarines is the union of the action sets for the mini-games.

5.3.1 Reference Results

To gather comparison baseline results, an agent was trained using A3C on the BuildMarines
mini-game. Additionally, a random agent was applied to the mini-game.
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Figure 5.13: Random agent and A3C agent on the BuildMarines mini-game for 4000 episodes.

In Figure 5.13, the two curves represent the episode score for the two agents. Both agents
were run for 2,000 episodes, an equivalent of 5,400,000 environment actions. The orange curve
represents the random agent which performed an average episode reward of 8. The blue curve
represents the A3C agent, and it is visible that it increases performance the first 400 episodes,
but regresses toward random performance the following 1,000 episodes. However, the agent
recovers and has a final average reward of 18 over the last 150 episodes.

One observation is that the oscillation pattern also is present in these BuildMarines runs. An-
other A3C agent was applied to BuildMarines with the complete environment reset method
between the episodes to see if this could reduce the oscillation pattern. In figure Figure 5.14
the curve is smoother than the A3C agent curve in Figure 5.13, and ends out with an average
reward of 19.

Figure 5.14: A3C agent run on BuildMarines with environment reset between episodes.

5.3.2 Trained Options

The following figures display the controller being trained with the options from the previous
section. Each of the following controller solutions have been trained using the same setup as
seen in Section 5.1 on page 25.

In Figure 5.15 on the facing page the controller agents can be observed with the static timeout
implementation as ”10-step” and ”20-step”. The controller choose an option that will run for
static period of time. The ”10-step” curve shows a static timeout of 10 environment actions,
which display learning and improvement across the entire run. It can also be observed that the
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curve has a downward tendency at the end of the graph. The 10-step static reached an average
of 53 near the end of training.

The 20-step static timeout ”20-step” as seen in Figure 5.15 had a more volatile curve, where
learning took a longer time with fluctuations. The agent ends with an average result of 52 at the
end of training.

Figure 5.15: Controllers with 10 and 20 step option timeout and a controller with termination
probability options trained on BuildMarines.

In Figure 5.15 the ”Beta” curve is a controller with options where the options have a termination
probability based on run time versus reward gained within the option, called β as described in
Section 3.3.1 on page 19. This controller agent had a harder time learning initially as seen in the
curve, where it fluctuates more than the ”20-step” controller in the same graph. It does manage
to succeed the ”20-step” controller at around 4,250 episodes. ”Beta” ends up with an average
reward around 56.

5.3.3 Episode Option Distribution

In order to evaluate the quality of the controllers, the episode option distribution was examined.
The following figures are based on the average distribution of the active option per time step
over the last 500 episodes of the training period.

Figure 5.16 on the following page represents the episode option distribution for the 10-step
static termination agent. The ExpandArmy option is clearly the preferred option throughout
the episode, with the lowest percentage of approximately 50 around 300 time steps, and in-
creases to 90 % within 100 time steps and continue increasing until the episode terminates. The
BuildBarracks and BuildSupply mainly follow the same curve, increasing from 20 % the first
300 time steps and then decreasing to 10 % in time step 600, and continue declining until the
episode end. Both BuildSCV and AssignSCV are not prioritized in the episode and lies between
0 % and 1 % for all time steps.
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Figure 5.16: The average option distribution for the time steps in a single episode for the last
500 episodes of the 10-step option timeout.

The episode option distribution for the 20-step static termination agent can be seen in Fig-
ure 5.17. The distribution coarsely follow the same tendencies as the distribution for the 10-step
static termination. Here, however, the ExpandArmy option distribution resembles a sigmoid
function, starting at around 10 % and increasing until the 300th time step, after which the curve
decelerates and stabilize at about 90 %. The options filling the initial distribution are BuildBar-
racks and BuildSupply, at 60 % and 30 % respectively, where BuildBarracks increases slightly
before both distributions decline to less than 10 % at 600 time steps. Similarly to the 10-step
static termination agent, this agent produces a distribution of approximately 0 % for the options
BuildSCV and AssignSCV.

Figure 5.17: The average option distribution for the time steps in a single episode for the last
500 episodes of the 20-step option timeout.

The beta termination agent produced an episodic option distribution as depicted in Figure 5.18
on the facing page. Again, the ExpandArmy option share start low and increase throughout the
episode. However, the initial percentage starts at 30 % and increase to 70 %, which is a lower
ending distribution by 20 to 30 percentage points. The initial BuildBarracks option distribu-
tion share is roughly 50 % and end the episode around 25 %, significantly higher than the two
preceding agents. The BuildSupply starts lower and has a smooth decline from 20 % to 10 %
through the episode. The beta termination agent also disregards the BuildSCV option, but, in
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contrast to the two preceding agents, the AssignSCV has a relatively stable distribution share
of around 4 %.

Figure 5.18: The average option distribution for the time steps in a single episode for the last
500 episodes of the beta termination probability controller.

5.3.4 Random Agent Configurations

Two random configurations were tested with the controller and options combination. The tests
were performed to see if either a random controller or random options would have an impact
on the learning curve as well as reward. The tests were run using a 10-step static termination
agent.

First a trained controller was tested with random option agents which can be seen in Figure 5.19.
The random option agents used are options with the same action sets as the regular options, but
where actions are selected at random. This test was based on the results from Figure 5.15 on
page 35 where a high reward was achieved compared to the A3C agent seen in Figure 5.13
on page 34 which yielded a lower reward. This test displayed a correlation between the two
primary elements in the options-framework, being the controller and options.

In the figure a dip in reward can be seen at the start where after the agent start to learn, and after
3,200 episodes the average reward fluctuates and stays around 51. The reward of 51 is similar
to the static solutions but higher than the A3C agent.

Figure 5.19: Trained controller with random option agents.
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In Figure 5.20 is a controller which chooses randomly between trained options. This test should
show that a random controller perform significant worse than a trained controller, even with
trained options. As seen in the graph, the curve for reward is very volatile and never reaches
an average above 21.

Figure 5.20: Random controller with trained options.

5.4 Result Summary

In order to tell how good the results of the agents are, each of the mini-games’ maximum pos-
sible score were obtained by either testing them manually or calculating based on time. The
maximum possible scores for each mini-game can be seen in Table 5.2. The maximum possible
score for BuildMarines is based on the highest score obtained by PySC2 in [3], achieved by a
DeepMind human player. The actual maximum possible score was too complex to calculate,
however, human-level performance is the immediate challenge and thus the most relevant.

Mini-game Max score

Assign SCV 20

Build Barracks 60

Build SCV 30

Build Supply 100

Expand Army (v2) 80

Build Marines +142

Table 5.2: Maximum possible score in each of the mini-games.

Besides obtaining the maximum possible score one member of the project group attempted the
mini-games. The member is regarded as an intermediate level StarCraft II player, as he has
experience, but not on a competition level.

Table 5.3 on the facing page contains the results achieved in the individual mini-games. The
human results were retrieved by the player performing five consecutive episodes of each mini-
game and selecting the highest achieved reward in the episodes.
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A3C Random Human

AssignSCV Avg. 2 1
Max 7 6 20

BuildSCV Avg. 6 6
Max 25 22 29

ExpandArmy Avg. 70 60
Max 80 80 72

BuildSupply Avg. 44 50
Max 80 80 100

BuildBarracks Avg. 28 38
Max 45 45 50

BuildMarines Avg. 13 7 120
Max 58 74 123

Table 5.3: The scores achieved by different agents on the different mini-games.

Table 5.4 contains the results achieved by the different trained controller agents on BuildMarines.

Max Avg.

10-Step 88 53

20-Step 88 52

Beta 96 56

Random Options 83 51

Random Controller 64 6

Table 5.4: The scores achieved by different controller agents on BuildMarines.

The random options and random controller entry in Table 5.4 are the different controller con-
figurations shows in Figure 5.19 on page 37 with a trained controller with random option agent
and Figure 5.20 on page 38 with a random controller with trained options agent.

Further discussions about the results will be covered in the next chapter.
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Chapter 6: Discussion
In this chapter, we will discuss the observed results achieved by the different solutions and
configurations. First, the results of the individual options are discussed, followed by the results
for the complete option framework, the controller. The chapter will conclude by discussing
some of the challenges of the project.

6.1 Individual Option Results

The results for the individual options reveal some interesting considerations about both the
environment and the learning.

6.1.1 Random Agent

It is imminent that the random agent performs well in the mini-games, except in AssignSCV
and BuildSCV. However, the relatively high scores for the random agent were anticipated, due
to the nature of the mini-games. The mini-games prohibit the agent to regress to a lower state,
in terms of buildings cannot be demolished and units cannot be removed. Hence, performing
actions can only lead to the same or higher valued state. Additionally, for instance in Build-
Marines, performing actions such as constructing buildings increase the probability of selecting
a building, which in turn increases the chance of performing an action yielding a reward.

6.1.2 Trained Agent Performance

In contrast to the random agents, the trained options did not perform as well as expected. The
average scores did not prove significantly better than random, as seen in Table 5.3 on page 39,
and in the mini-game BuildSupply, the trained option performs worse than random.

The performance curves through the training period of the options are differing across the
mini-games. The ExpandArmy option increases performance over the episodes, but we also
observed that the options for BuildSupply and BuildBarracks mini-games have negative learn-
ing, where the reward decreases over episodes. The BuildBarracks option agent did recover to
its initial performance, but the declining curve indicates that negative learning was happening.

The two options training on BuildBarracks and BuildSupply are the only options where the
mini-game has the possibility to give a negative reward. If structures are being built in the
left side of the map negative reward is given. The agent may not properly learn this penalty
zone, even though a negative reward is issued the agent is still performing these actions. If
these unwise traits are learned by each of the options, it will later impact the controller as these
penalty zones are made to encourage making resource gathering possible.

Options achieving negative learning is an inheriting problem as the controller later will be using
options that cannot fulfill their respective task, and therefore prevent the controller as each
option is needed to reach the overall goal.
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The options training on AssignSCV reached a low score, both for the random agent and the
trained agent. The trained agent reaches a score of 2 at the end of training where the max score in
the mini-game is 9. The reason for this options struggling is the lack of memory, as the agent sees
every state as a single instance, where it is impossible to see movement. The mini-game requires
the workers to be moving, harvesting resources in order to generate reward. Without memory,
it is impossible for the agent to determine whether a worker is already moving since there
are no feature layers providing information regarding movement, and the agent can therefore
interrupt already moving workers.

ExpandArmy increases its performance the first 300 steps, from the random reward at around
60 and stagnates at a reward of around 70, an increase of 16 %. An increase in reward shows
that positive traits are being learned, which result in a option better than the random agent. The
reason for the flat-lining early in the episodes can be reasoned by the very simple mini-games
where all unnecessary actions have been stripped. Each of the options could be performing
much worse if given all 500+ actions, but would then show a slower learning curve. The initial
score would also be lower as the agent would explore random actions where many would be
unusable or hinder progress.

The options are performing sub-optimally as the results are relatively imprecise and one option
performing worse than the random agents. We deemed that each of the options were good
enough to use for the controller as none of them were performing so poorly that they did not
generate any reward.

6.2 Controller Results

The results of the controller will be discussed in this section.

6.2.1 Timeout Controller

Both controller agents using static timeout values performed relatively well, and had an in-
creasing learning curve that stagnated within the end of the training run.

From Figure 5.15 on page 35 ”10-step” and ”20-step”, we can observe that the 10-step time-
out agent is performing slightly better than the 20-step timeout agent, as the learning curve is
both steeper and smoother, however both agents reach a similar average reward of 53 and 52
respectively by the end of the training period.

Despite the option timeout being twice as long in one of the agents, the results still are relatively
similar. That indicates that the options are able to some degree achieve their respective purposes
in the BuildMarines environment. However, the fluctuating curve in the 20-step timeout agent
could suggest that the options run for too long to be efficient, terminating later than necessary
and using time steps that could be used for other tasks. In contrast, the 10-step timeout agent
could select the same option sequentially until the state changes sufficiently for the controller
to select or prioritize other options.

Further training of the agents might reveal additional learning, but that could not be performed
within the time limits of this project. Prolonged training of the agents could also lead to a more
stable average score, as the policy could become better at selecting options in the different states.
Despite more training, the project group anticipates that the score would probably not become
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fully stable, as the controller and policy depends on the independent option agents that already
have been assessed sub-optimal and do not produce fully stable results. Hence, selecting the
same option in the same state would not necessarily result in the same subsequent state or
reward, because of the stochastic nature of the option agents, selecting actions for a number of
time steps.

6.2.2 Termination Probability Controller

The termination probability controller is the agent that most closely resemble the option frame-
work, where the individual options have a probability of terminating for every step, based on
the state. The agent uses the value function from the currently selected option to determine
whether it should terminate.

As seen in Figure 5.15 on page 35 the agent ”Beta” performs the similar compared to the other
results achieved on the BuildMarines mini-game, although marginally less precise.

All the controller alternatives rely on the options to achieve their respective purposes and us-
ing the termination probability, the options may terminate before the purpose is achieved. If
the option produces a termination probability that is too high, the controller will not be able to
predict what the option will return, as the option does not perform or complete its task. Simi-
larly to the controller of the timeout options, the controller must learn to select the same option
sequentially until the necessary result is achieved.

Initially, the controller with termination probability does not seem to be learning which options
to choose, indicated by the fluctuating episode results. This may be caused by the possibility of
options terminating too early for the controller to learn the correct sequence of options to obtain
rewards. As the training continues after the 2,000 episode mark, the fluctuations seems to be
reduced and the curve inclines similarly to the ”20-step” curve.

The termination probability is based on the difference in the selected option’s value estimate
of the initial state and the current state. The way the function that calculates the probability,
Equation (3.2) on page 20, is designed affects the time step length of the option. Because β is
based on the current time step and the linear gradient of the value estimate, the coefficients
to those values affect how quickly the probability increases. Changing the coefficients could
potentially increase the efficiency of the option, with regards to achievement per time step.
The time limitations of the project restrained the exploration of coefficients for the termination
probability function, and further testing is required to determine the performance effect of the
coefficients.

6.2.3 Random Results

Random option agents yield random actions according to the trained option agent they replace,
and hence the controller selects from five different action sets. The controller over random
option agents is able to learn that some action sets are better than others in certain states.

This is quite clear in Figure 5.19 on page 37 where the graph looks similar to what the controller
with both 10 and 20 step timeout achieved in Figure 5.15 on page 35 as ”10-step” and ”20-
step”, and the average reward around 50 at the end is also the same as seen with the timeout
controllers.
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The big difference seen between the controller with random options and especially the con-
troller with 10 step timeout is the variance through the run. The controller with 10 step timeout
shows fairly small variance when it starts to stagnate after 1,500 episodes. The controller with
random options have a quite high variance through its run, even though it gets smaller towards
the end, its still quite higher than the controller with 10 step timeout. This difference in variance
is likely because of the random options against the trained options, as it would be assumed that
the random options more often will select the non-optimal action and the options more often
will be able to use their network to select more optimal actions.

The controller with random options also takes a bit longer to learn and has a few declines
throughout the run. It takes more than 2,500 episodes for this controller to hit an average of 40
which takes around 1,000 episodes for the 10 step timeout and close to 1,500 episodes for the
20 step timeout controller. This makes sense, as the controller will likely need more episodes to
learn which random option agent contain the correct action set for that state.

These results shows that the options play a role in how good the controller does, but that the
controller also is quite good at learning what options to select even when they are random. It
would be interesting to see how these results would change if the options had a bigger action
set, as it would properly be harder for the controller with random options to learn which option
to pick, and the 10 and 20 step timeout controller would properly need more time to train, to
achieve the same results.

6.2.4 Episode Option Distribution

The results regarding option distribution throughout the episode enabled some interesting ob-
servations.

In Figures 5.16 to 5.18 on page 36 and on page 37 the distribution of the selected options develop
according to our expectations throughout the episode. With background knowledge about the
requirements in the environment, we can assess that the agents find a good sequence for acti-
vating the individual options. In order to build marines, players first need to build supplies
followed by barracks. Hence, the initial high distribution of BuildSupply and BuildBarracks
is actually necessary for the agent to be able to build marines, which the agents sharply shift
distribution towards around 1/3 of the episode time steps.

For all of the controllers the distribution of the option BuildSCV was close to 0% throughout the
episodes. BuildSCV is the option trained to build workers. As BuildMarines starts with several
workers it is not necessary to build more to get a decent score, its likely that the controller
do not see any gain in reward using this option. Even if the controller learned that the option
BuildSCV could increase its production with more workers, the distribution should still be quite
low, because as mentioned the agent starts with several workers and only a few more workers
is needed in the mini-game to obtain maximum resource gathering and at the same time have
workers to build.

In both of the timeout controllers, the option for AssignSCV was selected close to 0% of the
time throughout the episode. However, the termination probability selected the option approx-
imately 4% of the time through the entire episode. The AssignSCV option is trained to assign
worker units to gather resources, which is used to build supplies and barracks. Initially in the
episode, the workers are automatically assigned to gather resources, and there is no immediate
need to assign worker units to gather resources. However, worker units are also necessary to
build the supplies and barracks, and when the workers are assigned to another task than gath-
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ering resources, they are not automatically assigned to gather resources when the other task is
completed. Because the resources are used, it is imperative that new resources are gathered.

Thus, when workers are finished performing other tasks it is necessary to assign them to gather
resources, which is performed by the AssignSCV option. Reassigning the workers is necessary
throughout the episode, and hence, logically, the termination probability controller agent is
performing better than the timeout controllers.

In general, the controllers are able to achieve relatively good results, although still not on par
with human level. The best average was achieved by the controller with probability termina-
tion at a reward of 56. While 56 is significantly lower than the average of 120 that the group
member achieved, compared to the PySC2 results, the agent is able to perform better than their
FullyConv agent with all actions that achieved an average of 3.

Comparing the results of the controllers with options to the A3C agents on BuildMarines, the
options framework improve the reward by more than 4 times, despite with the poor results from
the individual options. The average episode distribution of options for the last 500 episodes
also display that the controller learns to prioritize the options correctly throughout the episode,
where correct means according to the environment requirements. In BuildMarines some op-
tions need to be selected before others in order to achieve its goal and get rewards, and the
controllers perform well in that regard.

The results for the 10- and 20-step timeout controller using trained option agents show more
stable results, that is with less variance, than the equivalent controllers using random option
agents. This indicates that the controllers could be improved by improving the performance of
the options.

The mini-game BuildMarines might also play a role in why the controller are not able to achieve
a better average reward as its reward structure only favors one action, training marines. This
could simply be a question of training for more episodes or testing several more hyper-parameters
configurations, as the current graphs shows learning with the controllers.

6.3 Challenges

There were a number of challenges in developing a solution for this environment, and a set of
them are elaborated here.

The nature of StarCraft II is dependent on performing tasks that will benefit the player in the fu-
ture and this is also reflected in the mini-game BuildMarines. BuildMarines first yield a reward
a period of time after the action of training a marine is done. This is because the mini-game
gives the reward when the marine is done being produced which takes time. This makes it
difficult to assign the received reward to the correct action. Memory would help alleviate this
problem, as the actions could be linked with the retrieved reward.

Since StartCraft II is a sequential game, where previous states might have an effect on the cur-
rent state, memory could also help with remembering actions that have been executed and
previous relevant states, such as a marine being trained.

Another challenge we encountered was that that most of the actions performed by the options
requires coordinates. In the mini-games there are 4096 different coordinate locations and the
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correct coordinates depend on the action. The agent cannot choose the correct coordinate with-
out knowing the action, unless the state to action mapping implicit convert directly the correct
state to coordinate. This issue is not yet explored in depth and would require additional testing.

The reinforcement machine learning is computationally heavy and require powerful hardware
to train agents in a reasonable time frame. Better hardware could extend numbers of episodes
for training significant which would help learning more in the same amount of time.

During the testing and training of the options applied to the mini-games, we found that there
were some correlation between episode number and score, as there were some regular interval
of approximately 100 episodes where a consecutive set of 5-10 episodes yielding a significantly
lower reward than the average for the curves. The pattern was visible in both the training
agent and random agent, and the curves would overlap in accordance with the episode number.
The pattern was eliminated by using a complete reset of the game environment between every
episode.

Table 5.1 on page 33 presents our findings of the oscillation pattern issue, and indicates that
there might be an issue in the StarCraft II environment or the PySC2 interaction with the envi-
ronment regarding the reset functionality between the episodes.
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This chapter concludes upon the project. First, a reflection of the project will be made. Secondly,
the conclusion, and finally, after thoughts and ideas for future work.

7.1 Reflection

In this section we will reflect upon the various parts of the project to evaluate what was done
and determine what was good and bad, and what could have been done differently. Following
is a discussion of issues and insights with respect to the project.

The project group had some experience with the subjects of this project, as the project was
an extension of the previous semester project that also examined reinforcement learning with
StarCraft II. The purpose of this project was to gain knowledge and overview of an state of the
art concepts within reinforcement learning. Based on that background we chose to analyze the
options framework concept and to design and implement a solution for it and generate a set of
results to see how the concept could perform in StarCraft II.

7.1.1 Design

We designed a solution that utilized parts of the options framework. The timeout sub-solution
was designed to verify that we could create option agents that could be loaded and applied
to the environment concurrently, where the second sub-solution was designed to resemble the
options framework. We did not design the termination probability to be a separate output from
the option agent network, because it already provides an action policy and a value estimation
and we prioritized training the option agents as good as possible in the existing environments
than to try to train the network to approximate a termination probability where a reference
value would have to be designed. This does not fully comply with the option framework,
and we encourage potential further development of the current solution and design to explore
possibilities of training the options to be self-reliant regarding termination.

7.1.2 Implementation

The solution was developed in Python as both the machine learning tool, Tensorflow, and
PySC2 had a Python API. Another reason for Python was that the code-base from last semester
were developed in Python, and continuing using that made sense. Using Tensorflow made the
implementation efficient regarding the neural networks and gave us a larger margin of time for
implementing the option framework. The code-base from last semester had poor structuring
and little modularity and thus we decided to spend time to restructure the solution to be object
oriented and take arguments such as hyperparameters. In retrospect, the time put into code
restructuring was probably regained during the project, as the different components and pa-
rameters could be changed efficiently, without spending time ensuring the changes were made
in all the necessary places.
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7.1.3 Result

When we were to generate results we should have decided what we wanted to achieve earlier.
Planning of the result generation could have been done better, as we during the limited project
period performed some tests that later were not considered useful and then discarded. Late
in the project when we started training the agents, we also realized that we had issues with
some of the agents, as they would have an initial negative learning curve and some mini-games
yielded the oscillating pattern as previously described. These results were not as expected and
we used a significant amount of time trying to find the source of the issues. The time spent
on regenerating the results in order to achieve higher quality results and potentially better per-
forming agents was at the expense of training time for the controller. We would have liked to
train more versions of the controller, and especially testing other coefficients to the termina-
tion probability. However, the currently achieved results are of high quality and indicate that
applying the option framework to the StarCraft II environment can be effective.

7.1.4 Oscillation

The oscillating pattern, as seen in the BuildBarracks mini-game Figure 5.10 on page 31, was the
biggest issue in the project and it took several days to try to find the source. By exploring the
source code of PySC2, we found API endpoints to both reset and restart the game environment.
As discussed earlier, executing the game restart between the episodes seemed to eliminate the
issue, but we did not find the source of the problem. The game restart between every episode
significantly increases the training time compared to using the environment according to the
description, and should be examined by the developers of PySC2 and potentially StarCraft II.
It should also be noted that the issue occurred in both a custom mini-game and one of the
mini-games provided by PySC2.

7.2 Conclusion

In this section we will conclude upon the project and how it approached the problem statement
”Explore the application of the options framework on the StarCraft II environment utilizing PySC2.”.

In this project we have explored the application of the option framework upon the real-time
strategy game StarCraft II environment. The option framework enables one controller policy
to select specialized policies to be followed for a time period, hence utilizing the skills of the
specialized policies to improve upon the environment, and is assumed to be an effective ap-
proach for machine learning in complex environments. StarCraft II is a complex environment,
that requires the player to consider both individual unit control and high-level strategies.

The individual option agents were trained on custom environments that enabled them to learn
their respective purposes. The options were trained to select from a action set that was cus-
tomized to the specific environment in order to reduce learning time. The specialized option
agents were then composed into a set as selectable actions for the controller, that is the policy
over options, to apply to the environment. By utilizing the skills of the trained option agents,
the controller was able to select between categories of improvement to the environment.

When applying the option framework with the trained option agents to the environment, we
experimented with different termination conditions for the options. Two static time termination
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intervals of 10 and 20 steps and a termination probability, based on the improvement of the
estimated state-values, yielded similar results when applied to the environment. However,
the episode option distribution results indicate that if the episode time span was longer, the
termination probability should perform better than the static timeout value agents.

The results indicate that training option agents in subsets of a complex environment and uti-
lizing their skills in the complex environment can be an effective method of achieving an agent
that can perform well. Our results greatly improve upon the state of the art in our metric, and
can suggest that the options framework is a viable strategy for achieving human-level perfor-
mance in StarCraft II.

7.3 Future Work

This section will cover suggested future work based on the findings of this project.

Oscillation in the results was an issue of which we were not able to identify the source. A
temporary solution of restarting the environment after each episode seemed to remove the os-
cillations, but was a solution that also increased training time significantly. The oscillation issue
should be attempted solved before training on the environment, as it has the potential to halt
all learning, resulting in sub-optimal options.

PySC2 achieved improved results implementing memory in form of Long short-term memory
(LSTM) in their A3C agent [3]. This is also something that could be added to our solution,
enabling the agent to take certain important elements from the previous state into account.
Memory techniques were not implemented in this project because the focus was on whether
the option framework could be successfully applied to the StarCraft II environment. Additional
features, such as memory, were not prioritized.

Future work could also look into handling of delayed reward. In the current state of the solution
delayed rewards are not managed in any particular way. Many actions in the environment first
trigger a reward after an amount of time steps. An example of delayed reward could be the
agent would trigger an action which start to produce a unit which takes 15 seconds to complete.
From the initiating action until completion can the state have changed quite significant, and it
difficult to reward the correct action. Better handling of delayed rewards could enable better
performing agents.
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Chapter A: Hyperparameters
Listed below is the full set of hyperparameters used in the solution.

• gamma: 0.99
• exploration: 0
• worker count: 6
• learning rate: 0.000001
• value factor: 2
• entropy: 0
• buffer size: 80
• step multiplier: 8
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