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Abstract:

In this thesis we examine the effectiveness of
several machine learning algorithms for trad-
ing cryptocurrencies on Binance.

First we set up a trading framework, which
allows us to test several parametrizations of
the cryptocurrency trading data and exam-
ine which are best suited for the algorithms.
Within this framework we aggregate data at
several intervals, add multiple factors and in-
corporate technical analysis indicators to as-
sist the models. We then classify histori-
cal data into buys or stays, and finally dif-
ference, lag, and split it. This framework
enables us to set up a supervised classifica-
tion problem that we solve by optimizing the
data parametrizations and algorithm config-
urations.

We consider four algorithms: generalized lin-
ear models (logistic regression), neural net-
works, gradient boosting, and random forests,
and briefly describe the theory relevant to un-
derstand these algorithms before proceeding
to the task of applying them in the trading
framework.

Towards the end of the thesis we test the op-
timized models on six trading pairs trading
against Tether: Bitcoin, Ethereum, Binance
Coin, NEO, Litecoin, and Bitcoin Cash.

We end the thesis by providing some conclud-
ing remarks and our thoughts on further de-

velopments to improve the framework.




Preface

This master’s thesis is written in the spring of 2018, by group 5.219B from the
Department of Mathematical Sciences at Aalborg University. The group consists of two
10th semester mathematics-economics students. We recommend reading the chapters in
order, and the intended audience of this thesis are graduate students on a mathematical
degree or individuals of similar comprehension level. In-text references are of the format:
author’s last name (year of publication), or (author’s last name, year of publication,
page number(s)) when referencing specific pages. Whenever an equation is referenced,
we write () and this should be read as "equation x". When reading a plot we suggest
first reading the caption, then the legend (top-right corner if applicable), and finally
examine the plot itself.

All data used in the thesis is gathered from the cryptocurrency exchange Binance
using their API, specifically the ‘klines‘ endpoint. The paper is written in KTEX, com-
putations performed solely in R. A complete list of the R-packages used is found in
Appendix B.1.

William Bach Kasper Lindblad Nielsen
<wbachl12@student.aau.dk> <kaniell2@student.aau.dk>

Aalborg University, June 7th, 2018

ITI


mailto:wbach12@student.aau.dk
mailto:kaniel12@student.aau.dk

Resume (Danish)

I dette speciale er hovedfokus pa at opsasette en ramme for, hvordan man automatis-
eret kan handle kryptovalutaer pa kryptobgrsen Binance ved brug af maskinleerings
algoritmer. Herunder er en beskrivelse af indholdet i hvert kapitel i specialet.

I Kapitel 1 giver vi fgrst en kort introduction til, hvordan man handler kryptova-
luta og dernsest opseetter vi en ramme for, hvordan vi vil lave automeret handel af
kryptovalutaer, hvilket omfatter anskaffelsen og forberedelsen af data til maskinlaerings
algoritmerne. Vi henter data gennem Binances API og forbereder det ved at aggregere
det til stgrre intervaller, tilfgje forskellige faktorer, klassificere det sa vi har en respons
vektor til algoritmerne, og deler det op i treenings, validerings og test saet.

I Kapitel 2, 3 og 4 beskriver vi den ngdvendige teori for at forsta brugen af de fire
maskinlaerings algoritmer, anvendt i dette speciale. Kapitel 2 handler om generaliserede
linezere modeller, specifikt logistisk regression, Kapitel 3 om de to traebaserede modeller:
gradient boosting og random forest, og Kapitel 4 om neurale netveerk.

I Kapitel 5 bruger vi data fra IMDb filmanmeldelser for at vise eksempler pa imple-
menteringen af det neurale netveerk og de to tree-baserede modeller.

I Kapitel 6 bruger vi de fire maskinleerings algoritmer til at klassificere data som kgb
eller ej paA BTC-USDT parret. Vi tager udgangspunkt i en gradig-algoritme sggen for
at finde de bedst egnede data parameteriseringer.

I Kapitel 7 forsgger vi at yderligere forbedre de data parameteriseringer vi fandt
virkede bedst for modellerne pa BTC-USDT parret. Da gradient boosting og random
forest klarer sig betydeligt bedre end de to andre modeller fortsaetter vi analysen med
kun de to. Vi tester om en rullende praediktion forbedrer modellerne, dernzest under-
sgger vi betydningen af stgrrelsen pa treenings saettet.

I Kapitel 8 tester vi de forbedrede modeller péa uset data for BTC-USDT parret og
andre kryptovaluta par. Vi holder data parameteriseringen og model konfigurationen
ens for alle parrene og ser en profit pa fem af de seks par vi betragter.

I Kapitel 9 afrunder vi specialet med nogle konkluderende kommentarer pa resul-
taterne. Denzest deler vi vores tanker omkring videre udvikling af den opsatte ramme

til at basere handelsbeslutninger pa.

Sidst i specialet er vores appendikser og bibliografiliste.

v
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1 | Introduction

On January 1st, 2017 a total of 617 different cryptocurrencies were tracked on Coin-
MarketCap (2018) with an aggregated market cap of 17,700, 314,429 USD. A year later,
on January 7th, 2018 the number of cryptocurrencies increased to 1355 with a market
cap of 823,859, 466,471 USD, and by the time of starting this thesis there is 1483 cryp-
tocurrencies with a market cap of 442,894, 135,097 USD. A visualization of the market
cap in this period is shown in Figure 1.1, which illustrates growth and volatility of the
cryptocurrency space. Cryptocurrencies and the associated blockchain technology is
being widely adopted on a large scale with a multitude of large established companies
adopting cryptocurrencies and blockchain technology. The central subject of this thesis
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Figure 1.1: The aggregated cryptocurrency market cap in the period from January
1st, 2017 to February 4th, 2018, as reported by CoinMarketCap (2018).

is the trading of cryptocurrencies, specifically automated trading. Throughout this the-
sis we attempt to apply a selection of machine learning algorithms to cryptocurrency
trading data with the objective of predicting profitable trades. In Section 1.1 we pro-
vide a brief introduction to the trading of cryptocurrencies. Section 1.2 presents the
hypothesis that we are repeatedly testing throughout the thesis when trying to predict
profitable trades. Sections 1.3-1.5 presents how we obtain and process cryptocurrency
trading data in order to facilitate the prediction of trades.

1.1 | Cryptocurrency Trading

Compared to traditional financial markets, the cryptocurrency market is highly unreg-
ulated in that it is, for the most part, decentralized and open-source, meaning anyone
can create a cryptocurrency and anyone can trade them. Due to the financial regu-
lations around the world and the lack of laws in regards to cryptocurrencies, many
exchanges only trade cryptocurrencies against other cryptocurrencies, e.g., you can not
buy Ethereum (ETH) using U.S. dollars (USD) or your national currency, but you can
buy ETH using Bitcoin (BTC). This is a way for exchanges to circumvent regulation
laws and allow trading of cryptocurrencies. The few exchanges that do trade cryp-
tocurrencies against fiat currencies are often used as entrypoints to the cryptocurrency
market, an example would be buying some BTC on Coinbase (2018) using a fiat cur-
rency and then transferring those BTC to another exchange to trade cryptocurrencies.
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Another important aspect in which cryptocurrency trading separates itself from most
traditional markets is that the exchanges never close, the trading of cryptocurrencies
can be done any time of day, any day of the year.

1.1.1 | Binance Crypto Exchange

Binance (2018a) is among the worlds largest crypto-to-crypto exchanges, both in terms
of trading volume and users, with almost 8 million users at the time of writing. They
offer a total of 264 trading pairs: 109 trading against BT'C, 107 trading against ETH, 42
trading against their own cryptocurrency Binance Coin (BNB), and 6 trading against
Tether (USDT). While trading crypto-to-crypto can be highly profitable, it can also
be a risky endeavour partly due to volatility of the cryptocurrency market and partly
due to the lack of regulation. Trading crypto-to-crypto is essentially trading two asset
which both have highly volatile valuations in terms of fiat currency. To provide a more
stable cyptocurrency, in terms of fiat value, the Tether cryptocurrency was created. The
USDT creators claim to hold one USD for each UDST created, thus, the value of one
USDT is tethered to one U.S. dollar, hence the name. This way USDT serves as a proxy
for the U.S. dollar and allows for a more stable cryptocurrency to trade against. An
example of the advanced trading interface on Binance (2018b) is shown in Figure 1.2,
which contains the candlestick chart, volume chart, order book, market history, trade
history, and order window.

A ; ] )
“»'BINANCE 768052 7,533.98 21730202703 usoT  BTC/USDT = Login | Register @ English ~

s INDICATOR Candlesticks Depth Full groups
0.065201
0.039051

0.135000 1,084.20260000 1.739381

0.052075 398.91897525
0.019566 149.88319074
0.582713 4,463.50906139
1825112 13,980.35792000
0.188526 1,444.01866752
0.000019 0.14552936
0.698698 5,350.21006520
0.104370 799.20179430
0.545349 4,175.73729300
0.010000 76.56860000
0.020000 153.11480000
0.698698 5,349.04323954 0338319
5.089315 38,958.70632500 0145140

! 7,654.98 $7,654.98 0.019000

0.001320 10.10458680 0.148326
0207382
0584400
0249846

0.000017
0.882097
0.019000
0.040199
0.015287
0.043400
0.233807
0.001320
0.006597
0.001320
0.377105

9
0.092362 707.02926276
0.000017 0.13013449
0.412650 3,158.42310000
0.162713 1,245.08150313. 0.148326
1.008855 7,719.75846000 0.036429
0.070290 537.83307270 0.018000
0.008888 68.00750968 0.005768
1.000000 7,651.02000000 0.019000
9.356567 71,587.09411700 0.100908
0.001640 1254603280 2 0.695812
0525275 4,018.35375000 0121918
0007198 55.06333238 0010442
1.564348 11,964.94606496 0.031327

0.021276
Market Stop-Limit

Trade History Funds @ Hide Other Pairs  gyy grC -USDT  Sell BTC

7651.63 = 7651.63

0.00000000 USDT 0.00000000 USDT

Buy Sell

Figure 1.2: The advanced trading interface on Binance (2018b), consisting of the
candlestick and volume chart, order book, market and trade history, and order window.
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1.1.2 | Trading on Binance

On the top left window in Figure 1.2, we see what is commonly referred to as a can-
dlestick or open-high-low-close (OHLC) chart. Candlesticks (hereafter referred to as
candles) are a representation used for aggregating price information into discrete time
intervals. A candle consists of four measurements for an asset during a period: the
opening price at the start of the period, the highest and lowest price within the period,
and the closing price at the end of the period. The opening and closing part of a candle
is usually charted as a box and the highest and lowerst prices as the "wicks" above and
below. If the closing price of a candle is lower than the opening price the candle is
usually coloured red, and if the opening price is lower than the closing price the candle
is coloured green, as shown in Figure 1.3. Candles themselves trivially aggregate into
larger candles, a 1 hour candle is for example easily created by aggregating 60 candles
of 1 minute. For the remainder of the thesis we refer to candles prefaced with the
abbreviated aggregation interval, thus, 1 minute and 1 hour candles become 1m and
1h candles, respectively. Throughout this thesis we make use of three order types: the

Anatomy of a candlestick

10250 10250

High

10200 10200

10150 10150

10100 10100

Low

10050 10050

10000 Low 10000

19:00 20:00

Figure 1.3: The anatomy of a candle containing the opening, highest, lowest, and
closing price for the period it covers. The color of the candle shows if the closing price
of the candle is above (green) or below (red) the opening price.

limit, market, and stop-limit order. The Binance interface for placing these orders is
shown in Figures 1.4a-1.4c and described below.

e The limit order places an order on the order books such that when the market
price reaches the specified limit, the order, or part of it, is triggered. The limit
order can be used in both directions, to sell when a certain price increase has
occured, or to buy when a certain price decrease has occured.

e The market order fulfills the orders closest to the market price on the order
books until the full amount is traded, or the trading account runs out of funds.
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Limit Market Stop-Limit

Buy BTC — UsSDT Sell BTC

~
(v

0.00000000 USDT 0.00000000 USDT

Buy Sell

(a) The Binance limit order interface.
Limit Market Stop-Limit
Buy BTC _USDT  Sell BIC

market price market price

(b) The Binance market order interface.
Limit Market Stop-Limit

Buy BTC —UsSDT Sell BTC

e
~

~
w

0.00000000 USDT 0.00000000 USDT

Buy Sell

(c) The Binance stop-limit order interface.

When using market orders, caution should be applied when trading large amounts
in illiquid markets, as this order type will fulfill already placed orders on the order
books, meaning the price you end up paying can increase substantially from what
you thought it would be.

The stop-limit order is a combination of the market and limit orders in that it
uses a stop price and when reached triggers a market order to either buy or sell
the specified amount. A limit can then be supplied to ensure you don’t buy above
or sell below this.
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We make three assumptions in regards to the trading simulations in this thesis.

1. When we place a market order, the full amount of the order is traded at the same
price.

2. When a limit order is triggered, the full amount of the order is traded at the limit
price.

3. When a stop-limit order is triggered, the full amount of the order is traded at the
limit price, which is set to the same as the stop price.

1.2 | Deciding When to Trade

At the core of automated trading is some automated decision-making procedure, the
derivation of which, is as we mention, the main focus of this thesis. Decision making in
trading can be performed in many ways, we choose an approach where a target profit
percentage is defined and subsequently attempt to predict whether this profit will be
realized in the near future. This setup reduces the decision-making to a binomial classi-
fication problem, i.e., at any given time should we buy the asset under consideration or
stay at our current position? Consider the price of an asset at time ¢, py, and a desired
percent profit for each trade, P, we then buy at time ¢ if the expected price at time
t + h, pian, is greater than or equal to (1 4+ P)p; and stay if it is not, where h is some
positive number of time steps in the future. Formally the decision can be defined as
Action = Buy, i Elpia] = (14 Pp, (1.1)
Stay,  if Elprn] < (14 P)py,

thereby reducing the decision-making to the prediction of E[p;13] > (1 4+ P)ps, which
either evaluates to true of false. To facilitate the prediction of E[pi+s] > (1 + P)p: we
assume the existence of some local market dynamics that can be estimated, from which
we can predict the condition. We formalize this assumption in Hypothesis 1 below.

Hypothesis 1: Local Market Dynamics

Given a set of explanatory variables X;, we assume the existence of some time
dependent function f;, such that

Je(X4; Py hypy) = Elpeyn] > (14 P)py,

given a profit limit P and horizon h.

We make no assumptions concerning the functional form of f; other than it changes
over time. We do not make any assumptions regarding the exact content of X; we
only assume existence. To test Hypothesis 1 we need to define a set of explanatory
variables, X;, or a proxy hereof, we need to decide on a target profit, P, and we need
to decide the time horizon, h. Throughout this thesis we attempt to estimate f; using
supervised machine learning applied to trading data from Binance and variables derived
from trading data as a proxy for X;.
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In Section 1.3 we describe how to obtain trading data through the Binance API.
In Sections 1.4.1 and 1.4.2 we process the raw data in order to facilitate analysis and
perform feature engineering. In Section 1.4.3 we classify the processed trading data ob-
servations in accordance with the conditions in (1.1), in order to facilitate the estimation
of f:, and further discuss choices of h and P.

1.3 | The Binance API

We obtain trading data through the Binance API (2018), specifically through the klines
endpoint, which takes the parameters shown in Table 1.5. While the API documentation

Type Mandatory Description
symbol STRING YES
interval ENUM YES
limit INT NO Default 500; max 500.
startTime LONG NO
endTime  LONG NO

Figure 1.5: The parameter inputs for the Binance API klines endpoint, as found in
the Binance API (2018) documentation.

states that the maximum number of candles, for each API call is 500, we find that it
actually defaults to 1000. Each candle is uniquely defined by its opening time, so
for each API call we request 1000 unique 1 minute candles, a period of roughly 16.67
hours. To obtain candles in a specific interval we can supply startTime and endTime
parameters, which are UNIX timestamps, i.e., milliseconds that passed since 1970-01-01
00:00:00 UTC. We set up a function that repeatedly makes the API calls necessary to
obtain data for any given period. The candles returned from the API consist of the
following variables

[
L

"1499040000000", // Open time
"0.01634790", // Open

"0.80000000", // High

"0.01575800", // Low

"0.01577100", // Close
"148976.11427815", // Volume
"1499644799999", // Close time
"2434.19055334", // Quote asset volume
"308", // Number of trades

"1756.87402397",
"28.46694368",
"17928899.62484339" //
]
]

Taker buy base asset volume
Taker buy quote asset volume
Ignore

of which we use the open time, open, high, low, close, volume, and number of trades,
where the open time is a UNIX timestamp.
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We collectively refer to a single observation received from the Binance API as a
candle, even though volume and number of trades are not included in the definition of
a candle. An example of 1m candles obtained through the Binance API is shown in
Figure 1.6. The R-code used for obtaining trading data through the Binance API is
found in Appendix B.2.1.

BTC-USDT 1m candles

8150 l 8150
8140 l 4 | “ 8140
8130 'Iu 1 j Ihl ll‘ iﬁ " 8130
’ 11
B LT e Y
8110 l’ MI Jl lﬂ H\ 8110
1 - -
8100 ‘ “ ‘“ ITJiTx W I I'l H*\ 8100
8090 ‘II. .f “J-' !T“++ l 8090
gos0 |l ! | 8080
10:30 11:00 11:30 12:00 12:30
Volume
100 100
80 80
60 60
40 40
20 20
0
10:30 11:00 11:30 12:00 12:30
Trades
700 700
600 600
500 500
400 400
300 300
200 200
100 100
0
10:30 11:00 11:30 12:00 12:30

Figure 1.6: An example of the 1m candles obtained through the Binance API kline
endpoint for the BTC-USDT trading pair.

1.4 | Data Preparation

The following sections describe the data preparation that we use in order to facilitate
supervised learning. First we describe the candle aggregation and how we derive and
add additional explanatory variables. Then how to classify the candles as either buys
or stays, difference and lag the data, and split it into training, validation, and test sets.
We collectively refer to these steps as data parametrization. We initially consider a
multitude of ways in which the data parametrization can be performed subsequently
we limit ourselves to number of parametrizations we can feasibly test through a greedy
modelling approach. A top-level implementation of the data preparation is found in
Appendix B.2.2.



CHAPTER 1. INTRODUCTION

1.4.1 | Aggregation

The raw 1m candles could potentially be too noisy to use for training the models. Thus,
we consider aggregating the 1m candles into 11 larger intervals: 5m, 15m, 30m, 1h, 2h,
4h, 6h, 8h, 12h, and 24h.

Consider aggregating five 1m candles into a 5m candle. The opening time and price
of the 5m candle is then the opening time and price of the first of the five 1m candles.
The high and low price of the 5m candle is the highest and lowest price observed within
any of the five 1m candles. The closing price of the 5m candle is the closing price of
the last 1m candle. The volume and number of trades for the 5m candle are the sum
of the trading volume and number of trades performed in the five 1m candles.

Producing aggregated candles identical to those shown on the Binance exchange
for 5bm, 15m, 30m, and 1h intervals is straight forward, they should simply start at
times, such that the candles’ opening time is at every whole 1, 5, 15, 30, and 60 minute
interval. As an example, when aggregating into 30m candles, we simply start at either
XX:30:00 or XX:00:00. The aggregation of the intervals larger than 1 hour, however,
needs to start at specific hours in order to correctly represent the aggregation used on
Binance. Further investigation of the candles on Binance show that they start these
intervals at 01:00:00 CET. Aggregating the 1m candles might result in the first (last)
candle containing less 1m candles than the remaining aggregated candles, as such we
exclude aggregated candles if they are not "full". An example of candle aggregation is
shown in Figure 1.7, which depicts BTC-USDT data over the same period aggregated
into 15m, 30m, and 1h candles, respectively. The implementation of aggregating the
candles is found in Appendix B.2.3.

1.4.2 | Factor Addition

After performing different levels of aggregation, we consider adding multiple factors to
the data. The first factor we consider is simply the direction of each candle as a binary
variable, i.e., if the price moved up during the candle the factor assumes a value of 1,
and if it moved down, or stayed the same, the factor assumes a value of 0. The second
factor we consider is the hour at which the candle started, as we do not include the
opening time of the candles in the explanatory variables Xy, we examine the relevance
of the candle opening hour through this factor.

The remaining factors we add are based on three widely-used technical analysis (TA)
indicators: the Relative Strength Index (RSI), the Moving Average Convergence/Diver-
gence (MACD), and the Average Directional Index (ADX). An explanation of each of
these TA indicators, and how we apply them, are found in Appendix A. Since the TA
factors are all based on moving averages, any dataset we add these factors to loses a
number of observations at the beginning of the dataset. To ensure a fair comparison
between models trained on data with and without the TA factors, we remove the same
number of observations from the dataset not containing the TA factors. We base the TA
factors on the exponential moving average (EMA) to give more weight to more recent
observations than the simple moving average (SMA). TA factors on their own can be
used for decision making in trading, we make no claims as to the effectiveness of using
TA factors for trading. However, the motivation for the inclusion of TA factors is that
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BTC-USDT 15m candles
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Figure 1.7: BTC-USDT 1m candles in the period from March 31st, 2018 at 07:00:00
to April 2nd, 2018 at 08:59:59 aggregated into 15m, 30m, and 1h candles.

they provide ways of summarizing historical price movements into a single signal. These
five factors can be included or excluded in 32 different ways, and are summarized in
Table 1.8

Value Total
Factors None, Direction, Hour, RSI, MACD, ADX 32

Figure 1.8: The factors under consideration and the total number of combinations
they can be included or excluded in.

1.4.3 | Classification

For this framework we need a response vector to perform supervised learning. In order
to create a response vector we need a to set a desired profit limit, P, and time horizon,
h, denoting within how many candles the profit should be made. Furthermore in our
implementation we add a stop-limit which means that within a given horizon, h, if the
the price falls below some threshold before reaching an increase of P, we should have
stayed. Consider a limit of 2%, a stop-limit of 10%, and a time horizon of 24 candles,
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and assume we buy at the closing price of each candle. We then classify each candle
in one of two ways by checking if the price at closing time ¢, p;, increases atleast 2%
before time ¢ + 24, then check if the price decreases atleast 10% in the same period.
If the price movement triggered the limit order before the it triggered the stop-limit,
we consider this candle a buy. If, on the other hand, the stop-limit order is triggered
before, or on the same candle as the limit order we consider this candle a stay, and
likewise if none of the orders are triggered within the horizon. The candles towards the
end of the dataset, for which there is not enough future candles to classify them within
the time horizon, are classified as stays.

The inputs for classifying when to buy and when to stay are obviously subject to
change. To find the optimal combination of limit, stop-limit, and horizon we initially
consider the values for each parameter reported in Table 1.9. The R-code used for
aggregating candles is found in Appendix B.2.5.

Value Total
Limit 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 10
Stop 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 10
Horizon 12, 24, 36 3

Figure 1.9: The values under consideration for each parameter used for classifying the
candles into buys or stays and the total number of values considered for each parameter.

1.4.4 | Differencing, Lagging, and Splitting

We further consider differencing the data, i.e., we take the first difference of the open,
high, low, and close prices in the datasets. The differencing is motivated by the fact
that the raw values of the variables will be highly correlated whereas the first difference
of the variables wont be as correlated.

We consider lagging the datasets, such that each observation in the design matrices
contain all the lagged values between the current period and lagged value. We lag the
open, high, low, close, volume, number of trades, and direction variables, but not the
hour, RSI, MACD, and ADX factors. Consider lag 11 for example, each observation
of the design matrix constructed using this lag contains the open price of the current
period, as well as the open prices of the previous 11 periods, and likewise for the other
lagged variables. Adding the lagged variables is motivated by the hope that some models
perhaps being able to extract predictive features from the historical prices. We consider
four orders of lagging the data: 0, 11, 23, and 35, and to ensure a fair comparison
between models trained on raw data and lagged data we remove observations from the
datasets, which use an order of lag lower than the highest we consider.

Finally we split the data into training, validation, and test sets. We set the first 60%
of the observations aside as a training set, the following 20% are set aside as a validation
set, and the last 20% as a test set. Since our hypothesis is that we can estimate changing
local market dynamics, we also need to consider the length of the training set. For a
dataset of fixed length we might want to consider reducing the percentage of data used
for training to 40% or 20%, effectively dropping the first 20% or 40% of observations
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from the data, while maintaining validation and test sets the same size. An example of
how the BTC-USDT trading pair aggregated to 1h candles is split into a 60% training,
20% validation, and 20% test set is shown in Figure 1.10. The values we consider for

BTC-USDT 1h candles
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Figure 1.10: BTC-USDT aggregated to 1h candles in the period from February 11th,
2018 at 21:00 to May 1st, 2018 at 01:00 and split into a 60% training, 20% validation,

and 20% test set.

each parameter of differencing, lagging, and splitting the data are summarized in Table
1.11 and the implementation hereof is found in Appendix B.2.6.

Value Total
Difference 0, 1 2
Lag 0,11,23,35 4
Training 0.2,04,06 3
Validation 0.2 1
Test 0.2 1

Figure 1.11: The values for each parameter used for differencing and lagging the data,
and for splitting the data into training, validation, and test sets, and the total number

of values considered for each parameter.

1.5 | Limitations

Throughout the initial setup we include all values of the different parameters that we
find worth considering, which results in 264 trading pairs, 11 aggregation intervals,
5 factors which can be added to data in 32 different ways, 10 limit percentages, 10
stop-limit percentages, 3 horizons, 2 difference orders, 4 lagging orders, 3 training set
sizes, 1 validation set size, and 1 test set size. This leaves us with 669,081,600 total
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combinations, an infeasible number of ways to conduct the analysis. In the following
sections we discuss how to limit the data and parameters to consider for further analysis.
The values for each parameter considered in the initial setup are reported in Table 1.12.

Value Total

Pair 109 BTC, 107 ETH, 42 BNB, 6 USDT 264
Interval 1m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 24h 11
Factors None, Direction, Hour, RSI, MACD, ADX 32
Limit 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 10
Stop 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 10
Horizon 12, 24, 36 3
Difference 0, 1 2
Lag 0, 11, 23, 35 4
Training 0.2, 04, 0.6 3
Validation 0.2 1
Test 0.2 1

Figure 1.12: The values for each parameter used for the data parametrization of
aggregating, adding factors, classifying, differencing, lagging, and splitting the data in
the initial setup.

1.5.1 | Data Limitations

The first data limitation we face is obvious; not all trading pairs have been traded on
Binance for the same amount of time. To get the same time period for all trading pairs
we would then have to reduce the size of all datasets to that of the shortest. We restrict
the number of trading pairs to only consider the pairs that are traded against USDT.
These six pairs are BTC, ETH, BNB, NEO, Litecoin (LTC), and Bitcoin Cash (BCC).
While some of these trading pairs have been trading on Binance since its launch, some
began trading later. All of the six trading pairs have been trading since December 11th,
2017 at 01:00, so we consider this the starting date for the datasets and let them range
up until May 1st, 2018 at 00:59.

Further investigating the data in the considered period reveals some time irregu-
larities in the period between December 11th, 2017 and February 11th, 2018 creating
gaps in the data. It seems only few observations are affected, which might be due to
technical difficulties at Binance or problems with their API kline endpoint. An example
of the time irregularities is shown in Figure 1.13, which shows the seconds between each
consecutive observation for the BTC-USDT trading pair. As a result of these oberseva-
tions we cut off the datasets after the irregularities, letting them range from February
11th, 2018 at 21:00 to May 1st, 2018 at 01:00, and consist of 112501 1m observations
per trading pair.
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Figure 1.13: BTC-USDT time irregularities in the period December 11th, 2017 to May
1st, 2018, measured in seconds. We expect to see 60 seconds between each consecutive

1m candle.

1.5.2

| Parameter Limitations

In the bullet points below we describe the parameter limitations we perform and why.

Aggregation intervals - First we exclude the 1m and 5m intervals since we fear
that these might be too noisy to learn from. From here we choose only to consider
15m, 30m, and 1h candles since these aggregation levels provide a higher number
of observations compared to the larger intervals while hopefully not being too
noisy.

Factors - In Section 1.5 we discuss how many possible ways of adding factor are
available, but we decide on only two cases: include all factors or exclude all of
them.

Limits - While making high profits is desireable, due to the aggregation intervals
we select it makes less sense to consider the higher limit values and we restrict
the limits to five values: 0.01, 0.02, 0.03, 0.04, 0.05.

Stops - Stop-limits too close to the buying price will be triggered if we do not hit
the bottom of the price movement in a given period. We restrict the stop-limits
to six values: 0.05, 0.06, 0.07, 0.08, 0.09, 0.10.

Horizons - From inspecting data, paired with the profit and aggregation interval
choices, 24 candles seems to be a reasonable horizon. Thus, we use a 24 candle
horizon.

Differences - We consider both orders of difference we set out with: 0 and 1.
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e Lags - Higher orders of lag implies more historical information in each observation,
but going too high will result in a massive, perhaps noisy, design matrix, so we
restrict the orders of lag to three values: 0, 11, and 23.

e Training set sizes - We would like to test if the size of the training set plays a
significant role in the effectiveness of the algorithms, but for now simply use the
first 60% observations for training.

1.5.3 | The Restricted Setup

After restricting which trading pairs and parameter values to consider, we end up with
a total of 6480 possible combinations. For each of the six trading pairs we consider three
aggregation intervals, and for each of these we consider 360 different parametrizations.
It is still infeasible to perform an exhaustive search across all combinations, so we
perform a preliminary study of the BTC-UDST pair in Chapter 6 to further reduce the
number of parametrizations. The trading pairs and parameter values considered in the
restricted setup are reported in Table 1.14.

Value Total
Pair BTC, ETH, BNB, NEO, LTC, BCC 6
Interval 15m, 30m, 1h 3
Factors Included, Excluded 2
Limit 0.01, 0.02, 0.03, 0.04, 0.05 5
Stop 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 6
Horizon 24 1
Difference 0, 1 2
Lag 0, 11, 23 3
Training 0.6 1
Validation 0.2 1
Test 0.2 1
Total 6480

Figure 1.14: The values for each parameter used for preparing the data by aggregating,
adding factors, classifying, and differencing, lagging, and splitting in the restricted
setup.

1.5.4 | Binance Fee Structure

The Binance Fee (2018) structure is set up such that for every trade performed you
pay a 0.1% fee of the traded asset. Binance does provide ways of lowering the trading
fees, such as paying fees throung their own cryptocurrency, Binance Coin (BNB), which
lowers the fee by 50%. Further reduction can be obtained through their referral program:;
when trading on an account that was created through a referral link, the referrer gets
20% of all fees paid by the account. Combining these ways of reducing trading fees
could theoretically reduce it to 0.4% per trade. While the simple calculations above
lead to a trading fee of 0.4%, in reality, when using BNB to pay the trading fees you
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buy BNB at a given time at a given price and depending on the price changes in BNB
itself, the trading fees are subject to change as well.

As such, we simply assume the full trading fee of 0.1%. The trading fees for a full
trade then consists of the fee paid when buying the asset and the fee paid when selling
the asset again, F' = 0.001 - (p; + pr+n). For simplicity we assume that the trading fees
are paid on top of the amount bought per trade, i.e., if we buy $100 worth of some asset,
we actually have to pay $100.1 for the same quantity of the asset when accounting for
fees.

1.5.5 | Calculating Profits

To measure the performance of a classification algorithm on the data we set up a way
to measure the profit, or loss, given the classification. A given model will classify the
dataset into a number of buys and stays, for which we only need the buys to calculate
the profits. For each buy we impose a time restraint for how long the trade will remain
active, the time restraint used is simply the same horizon of 24 candles as used for
classification. We handle the different profit and loss cases as follows.

e [f the limit order is triggered before the stop-limit order within the time horizon,
the profit of that trade is equal to the specified limit order percentage and the fee
is 0.001 - (pt + (1 + P)p;). The total profit is given by

e If the stop-limit order is triggered before the limit order within the horizon, the
loss of that trade is equal to the specified stop-limit order percentage and the fee
is 0.001 - (p; + (1 — L)p;). The total loss is given by

—peL —0.001 - (pr + (1 — L)pe).

e [f the limit and stop-limit orders are both triggered on the same candle, we assume
the worst case scenario that the stop-limit order is triggered first and the loss of
that trade is equal to the specified stop-limit order percentage and the fee is
0.001 - (p¢ + (1 — L)p). Which yields the same loss as in the previous case.

e [f neither the limit or stop-limit orders are triggered within 24 candles, we sell at
the closing price and the profit, or loss, is equal to the difference in price between
the buying price and the selling price, minus the fee of 0.001 - (p; + pian). The
total profit or loss is given by

Pitn — Pt — 0.001 - (py + pran)-

Note that the calculated profits and losses we report throughout the thesis are based
on multiples of the amount of each trade, such that a profit of 1.29 is actually a 129%
profit of some fixed traded amount. As such we assume that every trade is performed
using a fixed amount. The R-code used for profit calculations is found in Appendix
B.2.7.
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2 | Generalized Linear Models

This chapter is based on parts of the following; Chapter 4 in Hastie et al. (2001),
Chapter 3 in Agresti (2007). The generalized linear model (GLM) covers a large class
of models, where the response variable, Y, is assumed to follow an exponential family
distribution. A GLM can be partitioned into three components:

Random Component: Identifies and assumes a probability distribution of the re-
sponse variable Y. In our framework Y assumes a binomial distribution with two
outcomes: buy or stay.

Systematic Component: Is the explanatory variables (x1, 22, ...,2,) used to con-
struct the linear predictor

n=Po+ Bix1+ ...+ Bpxp.

In our framework the explanatory variables are observations of candles aggregated
into different intervals.

Link Function: Denoted g(u), where p is the mean of the assumed distribution of
Y, specifies the link between the random and systematic components

g(p) =mn.

When Y assumes a binomial distribution the appropriate logit link function is
9(p) = log(u/(1 — p).

The GLM relies on the following assumptions:

The data Y7, Ys,..., Y, are iid.
The response variable, Y, assumes a distribution from an exponential family.

For each Y a vector of covariates, (x1, 22, ..., 2)), exists that influences Y through
a single linear predictor.

Since maximum likelihood estimates are used for variable estimation, GLM relies
on large-sample approximations.

Goodness-of-fit measures rely on sufficiently large samples.

Our framework violates the GLM assumptions in multiple ways. We are trying to pre-
dict classified candles that are all based on correlated trading data, thus, the response
variables are not independent. Furthermore, we assume that the market dynamics re-
lating trading data to the prediction of profits changes over time, thus, the responses are
not identically distributed either. Additionally GLM makes some assumptions regard-
ing the functional form of f; in Hypothesis 1, but since we do not make any assumptions
regarding the functional form this is strictly speaking not a violation. However, we do
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not expect the true f; to follow the functional form assumed by GLM, but perhaps
the form assumed by GLM is a reasonable enough approximation to produce tangible
results. We still include GLM in our analysis to study how it stacks up against the
other machine learning algorithms that rely on fewer statistical assumptions.

2.1 | Logistic Regression

When the response variable, Y, is categorical, and we use the logit link function, we
arrive at the logistic regression model discussed in this section, which is a special case
of the GLM. For convenience assume that the response variable is defined as Y € {0,1}
with a corresponding realization = (x1,22,...,2p). Let m(x) denote the posterior
probability that ¥ =1, and let 5 = (f1,...,0p), then we can model 7(x) as

ePot+BTz
and it follows that
1

This definition of the posterior probability ensures that 0 < 7(x) < 1. Applying the
logit link function to 7 (z) yields the logistic regression model for binomial classification

oc (2 507) = b o=y = o ' o)

From (2.1) we see that the probability, m(z), itself is not linear in the explanatory
variables but logit-transformed probability is. Furthermore, logit(7) can assume any
real value even though 0 < m(z) < 1. Cast in terms of the three components of a GLM
we can define a logistic regression as

e Random Component: Y is assumed to be Binom(1,7) and the total number of
successes over N trials is Binom (N, 7).

o Systematic Component: The explanatory variables and corresponding parameter
estimates B + B1x1 + ... + Bpxp.

e Link Function: The logit link funktion

g() = logit(r) = log <”) :

1—m
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2.1.1 | Fitting Logistic Regression Models

Define the set of parameters to be estimated 6 = {8y, 51,...,5p}, and denote the
posterior probability by 7(x;0) = P(Y = 1|X = x;0) to emphasize the dependency on
the parameter estimates. Then we can write the log likelihood over NV observations as

N
0(0) =) log(P(Y = 3| X = ;;0)),
i=1
which can be rewritten as

N
00) =Y yilog(m(w:;60)) + (1 — i) log(1 — m(x4;6))),
=1

N
00) =" il Bo + BTx;) — log(1 + ePot7 i), (2.2)
=1

We can then maximize the log-likelihood by taking the derivative and equating it to
zero

N
ol
OB _ ™ 4oy — m(as 0) = 0. (2.3)
aﬁ i=1
Equation (2.3) can be solved using the Newton-Raphson algorithm.

2.1.2 | Regularization

To deal with the high correlation of the variables contained in the trading data, and
the fact that we during the modelling procedure might sometimes include variables
of questionable significance, we utilize the elastic net penalization. The penalization
follows that of the glmnet R-package used for implementation (see Hastie and Qian
(2016) and Chapter 3 in Friedman et al. (2009)). The elastic net penalty is applied by
adding a combination of the L1-norm (lasso) and the L2-norm (ridge) penalties to the
log-likelihood in Equation 2.3. The penalized log-likelihood is given by

N
T T 1
x| [223 (4:(B0 + 2T B) ~ Tog (1 + o= ﬁ))] - [2@ — )11 + ol 81|
where A is the shrinkage parameter controlling the degree of penalization. The param-
eter o controls the combination of ridge and lasso penalization used in the elastic net.
Setting o = 0 corresponds to a pure ridge penalization and setting a = 1 corresponds
to a pure lasso regression. The ridge penalty shrinks coefficients of the correlated pre-
dictors, usually keeping all of them, at different levels of shrinkage, by using the squared
values of the coefficients. The lasso penalty usually picks one of the correlated predic-
tors by shrinking the rest to zero using the absolute value of the coefficients. The elastic
net uses a combination of the two for 0 < a0 < 1.
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3 | Neural Networks

This chapter is based on Chapter 11 in Hastie et al. (2001), Chapters 1-4 in Fran-
cois Chollet (2018), and Chapter 5 in Bishop (2006). The basic idea behind neural
networks is to model some objective by filtering input variables through a sequence of
linear transformations and non-linear activation functions. In this chapter we describe
a simple neural network but the theory generalizes trivially. Figure 3.1 shows a single
hidden layer neural network with the input layer on the left, the hidden layer in the
middle, and the output layer on the right. In this chapter we first describe the neural
network topography in a general K-class classification, then proceed to discuss the fit-
ting procedure in Section 3.1. The theory described in this chapter applies to regression
as well. We note that there are p input variables, H hidden layer nodes, and K outputs,

Input Hidden Output
layer layer layer

Figure 3.1: A simple K-class classification neural network with p input variables,
H nodes in the hidden layer, and K probabilities returned in the output layer. The
probabilities in the output layer all correspond to the probability of a given observation
belonging to the respective class.

which are the probabilities of a given observation belonging to the respective class. The
output variables are modelled as a functions of the derived features, zp, in the hidden
layer. A deeper neural network is obtained by adding additional hidden layers, which
would be represented by additional layers of 2’s in Figure 3.1.

We denote the vector of predicted probabilities by § = f(z), where z = (21,22, ..., 2p)
is the vector of input variables. Formally the neural network in Figure 3.1 is defined as

zh:gl(agh%—a;‘fﬂ:), h=1,...,H, (3.1)
f(@) = gnBox +BL.2), k=1,..., K. (3.2)
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The scalars, g, and By, are known as bias terms, which are also considered weights
of the network. The functions ¢g; and g¢or are non-linear activation functions. For
application we need to choose activation functions, for the hidden layer common choices
are the rectified linear unit (ReLU), and the sigmoid function. The ReLU is given by

g1(z) = max(z,0).

The sigmoid function is given by

1
r)=-—.
90) = [y o)
For the output layer, in the case of K-class classification with mutually exclusive classes,
we use the softmaz function which given some vector, v = (v1, v, ...,vr), is defined as
eV
goi(v) = ———, i=1,2,..., L.

Zlel e’

The softmax function returns a vector of probabilities for each class which sums to one,
the predicted class is thus the class with the highest corresponding probability. In the
binary classification case we use a final layer with a single node, K = 1, and use the
sigmod function for activation. Regression is done by running a binary classification
setup without the final activation function.

3.1 | Fitting Neural Networks

Fitting a neural network is done by estimating the weights in (3.1) and (3.2) that
minimize a given loss function. The total set of parameters to be estimated are given
by

{aon,an;h =1,2,...,H}, H(p+ 1) weights,
{Bok, Bk; k=1,2,..., K}, K(H + 1) weights.

For convenience we use 6 to denote the total set of parameters listed above, which then
comprises a total of H(p+ 1) + K(H + 1) weights. To estimate the model parameters
we need a loss function to minimize, for K-class classification we use the deviance

==> > yirlog(f (3.3)

=1 k=1

3.1.1 | Backpropagation

The generic approach used to minimize (3.3) is gradient descent, which is commonly
referred to as backpropagation in this setting. To apply backpropagation we need to
calculate the partial derivatives with respect to each of the weights involved. The fol-
lowing derivations show how the derivatives are calculated using arbitrary differentiable
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activation functions. Let us start by calculating the partial derivatives for a single
observation with respect to 8 in (3.2) given by

OR, 0 &
OB~ 0 2 e 0B (@)
0

1

0
yzkf(xz> e —— g2k (Bok + B zi),

—Yik f(l )g2k(B0k + /Bk Zz)zzh

For the bias term, Bgi, we get

OR; _ 1

5(Bok + BL 2i).

Now we need to calculate partials with respect to ay, in (3.1), which is more involved
since they are placed earlier in the neural network. Fortunately, due to the composite
form of the neural network we already did some of the work and can calculate the rest
as

K

1 0
:_Zyzkf( )gzk(50k+ﬁkzz) aheﬁkTZia

0
Z yzk g% (Bok: + ﬂk z)Bk dar, g1(con + a%xi),
9 r
Z Yk T ) g2k (Bow, + Bk i) Bi 91 (aon + i) 75— Do, h Tis
the

Z Yk ey g2k (Bok + B1 2:)Bi 91 (cvon + o i) wie.

For agp we get

K

=- Z yzkf(lm )g2k(60k + B zi)Bi 91 (aon + i),

Assume that r iterations of gradient descent is already performed, then we update
the current variable estimates using the partial derivatives. The gradient descent update

25



CHAPTER 3. NEURAL NETWORKS

at the (r + 1)’th iteration is given by

N
OR;
=B e Y aﬁ,f ,
i=1 kh

N
OR;
r+1 __ or )
ﬁOk —50k*77r285r
i=1 0k
N
r+1 _ r 8Rl
Ope = Cpe = Tir oar
i=1 ht
N
r+1 _ r 8RZ
Qop = Qop = M Dol
i=1 Oh

where 7, is the learning rate. Backpropagation works in two steps: the first step is
a forward sweep that keeps the weights fixed, while propagating the training observa-
tions through the network to produce predictions and calculate prediction errors. In
the second step the prediction errors are then propagated back through network and
used to update the parameter estimates. When applying backpropagation the data is
usually split into batches, each batch is then passed through the backpropagation algo-
rithm, a full data pass is then reached once all the batches have been passed through
the algorithm. Usually, multiple passes of the data are used to properly estimate the
parameters, the number of passes are referred to as epochs. The more epochs used the
closer the training data is fitted, however, to ensure proper generalization one ideally
monitors training and validation errors to decide the optimal number of epochs.

Considering that there are H (p+1)+K (H+1) weights to estimate, which can quickly
become a large number, gradient descent might at first seem infeasible due to the amount
of partial derivatives to be calculated. But as seen above the compositional model form
actually simplifies the calculation of the required gradients, allowing for gradient descent
to be applied to minimize the cross entropy. The ReLU is not differentiable in zero, but
the derivatives can still be calculated using sub-derivatives, which also makes for cheaper
gradient calculations compared to the sigmoid function. Another desirable property of
the ReLU activation function is the ability to zero out nodes, promoting sparsity in the
neural network.

The weights cannot start at zero and are initialized using small random values, the
backpropagation algorithm does not converge if the weights started at zero. Initializing
the weights at small values greatly increases the demand for standardized input during
implementation, as such, we scale data to have zero mean and unit variance when
needed.

3.1.2 | Regularization

As we mention, a neural network can have many parameters, so if one obtains a global
minimization of R(6) overfitting is an imminent danger. The easiest way to avoid
overfitting is to keep the amount of layers and nodes small, the amount of layers and
nodes in a neural network is often referred to as capacity. A model with a too high
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capacity might learn training-specific patterns which may lead to bad generalization.
Conversely, a model with too low a capacity might not capture all relevant signals in
the data, and might perform poorly in both training and generalization. We can control
overfitting by keeping the neural network simple and monitor the number of epochs, as
we mention in Section 3.1.1.

Additional regularization can be obtained through weight regularization, specifically
we can add a penalty term, J(#), to R(6), such that

R*(6,)) = R(6) + \J(6),

where A is a tuning parameter which can be estimated by cross validation, this method is
referred to as weight decay. The penalty term is added layer-wise during implementation.
For J(6) we have some options, namely the L1-norm regularization (lasso) and the L2-
norm regularization (ridge), or a combination of the two (elastic net).

The L1l-norm regularization in the simple neural network is given as

Jia(0) = lonel + Y |Benl,
ne kh

which is just the sum of absolute values of all of the weights, except the bias terms.
The L2-norm regularization is given by

Jr2(0) = Z \/047%5—1— Z \/57,3h
e kh

Finally we can combine the two to obtain the elastic net penalization

JLLLQ(@) = (1 — a)JLQ(Q) + OéJLl(Q),

where « is a tuning parameter that controls the balance between ridge and lasso penal-
ization.

Another popular and highly effective regularization scheme for neural networks is
adding dropout. Adding a dropout is done by zeroing out output features of a given layer
during training. At test time, the output features wont be zeroed out, thus, the output
of the layer is then scaled down by the dropout rate to accommodate the fact that more
nodes are activate. The intuition behind this scheme is inspired by the way tellers in
some banks are repeatedly moved around, thus, requiring cooperation between tellers
to successfully defraud the bank. In the neural network, randomly zeroing outputs in a
layer helps prevent the model from picking up on insignificant signals.
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4 | Tree Based Algorithms

In this chapter we describe the tree based machine learning algorithms used in
this thesis. Trees and how to grow them are described in Section 4.1, after which we
proceed to introduce the concept of boosting in Section 4.2. Finally we describe the tree
based algorithms used for application; the gradient boosting algorithm is introduced in
Section 4.3 and the random forest algorithm in Section 4.4. Throughout this chapter
assume data is given by (z;,v;), i = 1,2,..., N, where N is the number of observations,
y; € {1,2,..., K} is the class of the i'th observation, and x; = (xj1,®i2,...,Tip) is a
vector of p explanatory variables.

4.1 | Classification Trees

In this section we discuss how to construct a classification tree, which a subclass of
what is commonly known as classification and regression trees (CART). Classification
trees work by partitioning the feature space into a set of regions and assigning classes to
each region. To grow a tree we need a way to automatically partition the feature space
and assign constants to the resulting regions. Figure 4.1 depicts how the feature space
can be partitioned into four regions using three continuous variables and corresponding
split variables. Once the regions, also referred to as terminal nodes, have been defined a

Figure 4.1: A simple tree showing how a feature space is split into four regions using
three continuous variables and corresponding split points.

class is assigned to each region according to the majority class of the particular region.
The splits before the terminal regions are also referred to as nodes. Trees are generally
constructed by performing the following two steps.

1: Grow a large tree, which we denote Tp, stopping only when the number of obser-
vations in the terminal nodes are below a certain threshold.

2: To prevent overfitting the tree is pruned, which is generally done by collapsing
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nodes if their contribution to the overall model training classification accuracy is
minimal.

In Section 4.1.1 we cover the process of growing a tree and in Section 4.1.2 we describe
the pruning process.

4.1.1 | Growing

The challenging part of growing trees is deciding on how to partion the feature space,
which is done by selecting sets of variables and associated split points. To figure out
which variables to split, and how to split them, a greedy approach is taken. Starting
with all data, consider the splitting variable j and splitting point s, which defines the
two half-planes

Ri(j,s) = {X|X; <s} and Ra(j,s) = {X|X; > s}. (4.1)

We seek pairs (7, s) such that the resulting regions R and Ry are as pure as possible
in terms of classes. To formalize the concept of pure an impurity measure is needed.
Assume that the feature space is partitioned into M regions Ry, Ra, ..., Rys, then define

Nm = #{ZL‘z € Rm},
. 1
Pmk = N Z I(y; = k),

m T, €ERm

where the # operator counts the number of observations in a given region, 1 is the
indicator function. We have defined p,,; as the proportion of class k observations in
node m, a class is assigned to a given node as k(m) = arg max;, p,x. From here different
impurity measures can be defined, the following are common choices.

Misclassification error:
1 R
Ni Z (yi # k(m )_1_pmk(m)'
ERm

Gini index:
K
kc k=1

Cross-entropy (deviance):
K

= Dk 108 (Prat)-

k=1

Regardless of which impurity measure is chosen, denote it by @, (1) . We can now
formally define the optimal choices of split variable j and split point s as the solution
to

min [N1Q1(T5 R1(j, 5)) + NaQ2(T'5 Ra(3, 5))] - (4.2)
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Where N1 and Ny denote the number of observations in the child nodes of the split.
It is usually feasible to simply scan through all inputs to determine the pair (7, s) that
minimizes (4.2). The classification tree is then grown by repeatedly using (4.2) to
choose pairs (j,s) to partition the feature space, until the number of observations in
the terminal nodes drop below a certain threshold. We denote a fully grown tree by Tp,

which has the form
M

To(.%‘i) = Z k:i]l(:ni c Ri),
=1

where k; is the class assigned to region R; and M is the number regions.

4.1.2 | Pruning

Assume that we have grown a large tree, T, then define a subtree, T C Tp, as any
tree obtained by pruning 7Tp. Pruning is done by collapsing any number of non-terminal
nodes. To decide which non-terminal nodes to collapse cost complexity pruning can be
performed. Define the cost complexity criterion as

7]
CAT) =Y NonQu(T) + AT, (4.3)
m=1

where |T'| denotes the number of terminal nodes in 7. The tuning parameter, A > 0,
governs the trade-off between sparsity and goodness-of-fit. The idea is to compute the
tree that minimizes (4.3) for each A. For each X it can be show that is is possible to
find a unique subtree, Ty, that minimizes (4.3), see (Hastie et al., 2001, p. 308). For a
given A\ we identify T} using weakest link pruning. Weakest link pruning constructs a
sequence of trees through an iterative procedure, where the weakest contributing node
is collapsed at each step. The node with the weakest contribution is the node for which
a collapse would cause the smallest increase among all nodes in

|7

> NowQun(T).
m=1

The resulting sequence of subtrees contains a unique smallest subtree that minimizes
(4.3). Cross-validation can be applied to estimate A and we denote the final tree T5.

4.2 | Boosting

Boosting is based on the idea that a set of classifiers can be combined into a "commit-
tee" with a better classification performance than any of the individual classifiers. To
introduce the concept of boosting we start by discussing the AdaBoost.M1 algorithm in
Section 4.2.1 and then proceed to describe gradient boosting in Section 4.3. In Section
4.1 we use M to denote the number of tree regions, however, from here we use it to
denote boosting iterations.
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4.2.1 | AdaBoost

Given a binary response variable Y € {—1,1} and a set of explanatory variables X,
a classifier G(X) that predicts either —1 or 1 based on X can be constructed. The
training error rate is given by

N
Z (i # G(x)). (4.4)

Say the classifier G(X) is only slightly better than random guessing then we refer to
it as a weak classifier. The boosting procedure constitutes the application of a weak
learner to modified data in a sequential manner, producing a sequence of weak classifiers
Gm(x),m = 1,2,..., M, which is the committee. To obtain a final prediction, each
member of the committee gets to place a weighted vote on the prediction outcome,
where higher weights are assigned to more accurate predictors. Formally the final
prediction has the form

M
G(x) = sign (Z ame(x)> .
m=1

The aforementioned data modification is performed by applying weights, wy, wa, ..., wy,
to the training observations, (x;,y;), ¢ = 1,..., N. Initially the weights are all 1/N, and
as such, in the first the step the learner is applied to data in the usual manner. For each
subsequent iteration, m = 2,3,..., M, the weights for each observations are updated
and the learner is applied to the modified data. The weights are calculated such that
at iteration m the weights are higher for the observations misclassified by G,,—1(x). As
such, the final weights reflect the classification difficulty presented to the sequential set
of weak learners by the respective observation. The Adaboost.M1 algorithm is described
in Algorithm 1, as presented in (Hastie et al., 2001, p. 339).

4.2.2 | Boosting Trees

In Section 4.1 we show how to grow a tree, in this section we show how boosting is
applied to trees. Formally a tree can be defined as

J
2;0) =Y vl(z € Ry),
j=1

with parameters © = {v;, R; }3-]:1. In the classification setup, «; is the class assigned to
observations in region R;. The boosted tree model creates a sequence of trees that are
then summed

M
fu =) T(x;0.)
m=1
To estimate fa; we proceed in a forward stagewise manner. At each step the algorithm
must estimate the parameter set @m, conditional on the previous model, by solving

O = mmZL Wiy 1 () + T(2i5Om)), (4.5)
=1
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Algorithm 1: Adaboost.M1

1 - Initialize observation weights as w; = 1/N, i =1,2,..., N.
2-Form=1,2,...,.M:

(a) - Apply the weights, w;, to data and use the weighted data to train the
classifier G, ().

(b) - Compute the error at step m as

ity wil(y: # Gm(@i))

N
D i Wi

<1 — errm>
Qm =log | — | .
erTm

(d) - Use a, to update the data weights by setting

erry, =
(¢) - Compute

w; = w;e®mtWiFGm (@) =192 N,

3 - After M iterations we arrive at the classification model

M
G(x) = sign <Z anGm(as)) .
m=1

where L is some loss function. That is, at each step we have to estimate © = {v;, R; }3-]:1
conditional on the current model, f,,—1. Given the regions, I;, estimating the constant
in each region is typically done by solving

Fjm = argmin > " L(Yi, fm1(2i), Vjm)-

Jm
xiEij

Using the deviance as the loss function in (4.5) turns the minimization into a difficult
optimization problem, to solve (4.5) we need a fast approximative solution.

4.3 | Gradient Boosting

Solving (4.5) simplifies in some cases, see (Hastie et al., 2001, p. 357), however, if one
wishes to use a loss function such as the deviance, numerical optimization is needed. In
this section we cover the gradient boosting method for solving (4.5) using the deviance
loss function. First we cast the problem as a numerical optimization problem solvable by
steepest descent, then we argue that steepest descent might lead to poor generalization,
and proceed to describe the gradient boosting method.
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4.3.1 | Numerical Optimization

In this section we show how to solve (4.5) using any differentiable loss function. Consider
the loss function as a function of the induced trees

N

L(f) = ZL(yi,f(l‘i))- (4.6)

=1

The goal is to minimize (4.6), which if we ignore the fact that f is restricted to be trees,
can be considered a numerical optimization problem

f= argmfin L(f). (4.7)

The "vector of parameters", f € RV, consists of the values of the function at each data
point

f={f(x1), f(z2),..., f(xn)}- (4.8)

Numerical optimization procedures solve (4.7) as a sum of component vectors

M
fry =Y hp, hy RV, (4.9)
m=0

where fy = hg is an initial guess, and each successive f,, is induced based on the previous
model, f,,,_1. The chosen numerical optimization method for solving (4.7) dictates how
the components h,, are chosen.

Steepest descent can be used for minimizing (4.7), which implies h,, = —pngm
where p,,,, also referred to as the step length, is a scalar and g, € RY is the gradient
of L(f). The components of the gradient are given by

OL(yi, f(x;
Gm = [(&f(m() ))] , (4.10)
g f@i)=fm-1(zi)
and py, is
Pm = arg mpin L(fm-1 — pgm)- (4.11)

After calculating the step direction, (4.10), and the step length, (4.11), the current
model is updated

fn =1 — Pm8m-

Steepest descent can be considered a greedy approach since the negative is the local
direction in which the loss function decreases the most. If the ultimate goal is to
minimize training error then steepest descent would be a great strategy, however, since
the gradient is only defined at the data points in the training set we may end up with
poor generalization.
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4.3.2 | Gradient Boosting for Classification

Assume that gy, is encoded such that it assumes a value of 1 if the i’th observation be-
longs to class k and 0 otherwise. Gradient boosting for a K-class classification tree works
by inducing K coupled regression trees, Ti,(z; O,,), at each iteration with predictions
denoted tg,;,, which are as close as possible to the negative gradient. Close-as-possible
is measured using the squared error, which implies the minimization

N
e — 3 . _ . 2
Orm = arg Hgn ;( Gikm — T(x;;0))“. (4.12)

Each of the K coupled trees are fitted to its respective negative gradient given by
OL(yi, fim(xi), - - -, fim(2:))

~ Jikm = 8fkm($i) ’
= it — Pr(xi),

where the probability p(z;) is given by

_—. 4.1
Z{il efi(@i) (4.13)

pr(w;) =

Even though each of the induced regression trees are fitted separately, they are all cou-
pled through (4.13), i.e., O can be obtained by fitting a regression tree to the negative
gradient values. Algorithms for quick regression tree induction already exist, see (Hastie
et al., 2001, p. 359), so we can easily solve (4.12). Solving (4.12) provides the regions
of the induced tree, {ij}jgl, which is the hard part. The constant in those regions
are estimated to minimize (4.12), which is not the final goal so the constants are recal-
culated. The recalculated constant should minimize the total deviance across classes
and observations, this minimization does not have a closed form solution and we settle
for an approximation performed using a single Newton-Raphson step, for details see
(Friedman, 2001, p. 11). The approximative solution for updating the region constant
is given by

K 3 it Imikm| (1 = |Tikml)’

@jkm: :1727"'a<]m'

The regions, {ij};.’gl, that solve (4.12) will not be identical to the regions, {ij}}']:b
that solve (4.5) but generally the regions will be similar enough to serve the same
purpose.

Algorithm 2 describes the gradient boosting procedure for K-class classification, as
presented in (Hastie et al., 2001, p. 387). We start out by initializing a model with
all probabilities equal to zero before entering the boosting iterations. The boosting
procedure is performed M times in step 2 and comprises two steps. First step of each
boosting iteration is defining the probability calculation, done in step (a), and in step
(b) we then grow the K regression trees coupled by the probability calculations defined

in step (a). Each of the K regression trees are grown in steps i-iii, first the target rxm,
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is computed, this is the gradient using deviance loss, see (Hastie et al., 2001, p. 360).
Once 7k, is computed the terminal regions, Ry, are found by fitting a regression tree
to 7ikm. For each terminal node the associated constant is calculated and finally the
model is updated.

Algorithm 2: Gradient Boosting for K-Class Classification
1 - Initialize fro(z) =0, k=1,2,..., K.

2- Form={1,2,...,M}:
(a) - Set

pr(z) = L k=1,2... K.

S R )]
lelell’ fe=Fr,m-1

(b) - For k=1 to K:
i - Compute 7jkm = yir — Pr(x), 1=1,2,...,N.
ii - Obtain the terminal regions, Rk, j = 1,2,..., iy, by fitting a
regression tree to the targets, r;gm, ¢ =1,2,..., N.

iii - Compute the terminal node values

K -1 ZziERjkm Tikm
Yikm = )
m K 3 ik Tikm| (1 — |7igm])

i=1,2,..., Jm.

iv - Update fom () = frm-1(z) + 77 Yikm 1 (2 € Rjjm)-

4 - Output fk(az):ko(x), k=12,....K.

4.3.3 | Regularization

For practical application of Algorithm 2 we still need to decide the number of boosting
iterations and the number of terminal nodes for each tree, J,,. Typically a constant
number, J = J,, of terminal nodes for each tree grown during the boosting procedure is
chosen. The number J controls the number of variable interactions. It is generally only
worth considering the range 2 < J < 10, see (Hastie et al., 2001, p. 363). The number
of boosting iterations, M, controls how well the model fits the training data. However,
as the training error is reduced, the generalization of the model eventually deteriorates
as well. Thus, there exists some M™* that balances goodness-of-fit and generalization.
To estimate M™ one typically inspects the error on a validation set as the number of
boosting iterations is increased.

We can further impose regularization by scaling the contribution of each induced
tree by a factor of 0 < v < 1. The scaling is imposed in step iv of Algorithm 2 where
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scaled updates are performed as
JIm
from(®@) = frm—1(2) + 0D YjkmL(z € Rjm).
j=1

The scalar v is commonly referred to as the learning rate in this setting. Thus, we can
regulate the model using both M and v, however, the two do not operate independently.
Smaller v typically requires a larger number of boosting iterations. In (Hastie et al.,
2001, p. 363) they state that empirically the preferred strategy appears to be obtained
by setting a small v and then select M by inspecting the performance on a validation
set.

4.4 | Random Forests

Random forests is a modified bagging procedure, which works by reducing model vari-
ance by averaging a set of de-correlated trees. In this section we first provide a brief
recap of the bagging procedure and proceed to describe how this procedure is extended
to the random forest.

The bagging procedure constitutes averaging the output of a set of models fit-
ted to bootstrapped samples of the data. Assume the training data is given by Z =
{(z1,92), (2,2), ..., (Tn,Yn)}, denote by Z**, b = 1,2,..., B, a set of bootstrapped
samples from Z. Denote by f*b(ac) a model fitted to the b’th bootstrap sample, then
the bagging estimate is given by

The motivation is that the variance of some approximately unbiased model can be
reduced by creating a single model that averages a large set of models, fitted to different
boosting samples.

Trees, which if grown sufficiently deep, have relatively low bias while simultane-
ously having a large variance, greatly benefit from averaging. Since the trees generated
through bagging are identically distributed the expectation of an average of trees is
the same as the expectation of a single tree, thus, improvement is obtained through a
reduction of variance. An average of B identically distributed variables with pairwise
positive correlation, p, have a variance of

1 _
po? + Tpa?. (4.14)

As the number of bootstrapped samples, B, increases the last term disappears, leav-
ing only po?. The benefit of bagging is then limited by the variance and the model
correlation. We mention that random forests grow de-correlated trees which reduce p,
thereby increasing the potential benefits of bagging. When growing the trees random
forests reduce the inter-tree correlation by selecting m < p input variables before each
split, where p is the total number of input variables. In Algorithm 3 we describe the
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Algorithm 3: Random Forest for Classification
1- Forb=1{1,2,...,B}:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrap sample by recursively
applying the following steps to each terminal node until some mini-
mum node-size, Ny,ip, is reached.

i - Select m variables among the p input variables.

ii - Pick the best variable and split-point combination from the m
variables.

iii - Split the node into two child nodes.
2 - Output the ensemble of trees {T}}P.

3 - Let C’b(x) be the predicted class by the bth random forest tree. The random
forest prediction is then C’f}(:{:) = majority vote{Cy(x)}P.

random forest algorithm, as presented in (Hastie et al., 2001, p. 588). The first step
consists of two substeps, first data for growing is bootstrap-sampled in step (a) and
then trees are fitted to the bootstrap sample in step (b). The second step outputs the
ensemble of trees grown, and from the ensemble a majority vote decides the random
forest predictions in the third step.

The restriction on the number of input variables used at each split can introduce
some bias in the random forest trees. The amount of bias depends on the true under-
lying function, but generally as m decreases, the bias of the individual trees increases.
Any improvement obtained by random forests over traditional trees are therefore solely
obtained through variance reduction. A typical choice of m for classification is m = /p.

4.4.1 | Out of Bag Error

An important feature of the random forest algorithm is the ability to perform the
out of bag (OOB) error estimates. The OOB error estimate can be obtained for each
observation in the training data in the following manner:

1 - For the i’th training observation, (x;,y;), select all random forest trees from the
ensemble {73}, that never saw (z;,y;) during training.

2 - Use the subset of trees that never saw (z;,¥;) during training to perform a pre-
diction and calculate the error.

The above two steps estimate the prediction error on "unseen" data, which works as a
great proxy for the test error.
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5 | Model Fitting

In this chapter we cover the steps used to implement a neural network (NN), gradient
boosting (GB), and random forests (RF). We further comment on the application to
trading data for each model. In order to illustrate the modelling, we use the IMDb
dataset included in the Keras R-package. The dataset consists of a training and test
set each containing 25000. For NN and GB we set aside 10000 observations from the
training set for validation and initially train the model on the remaining 15000 training
set observations. The goal is to predict whether an IMDb movie review is positive or
negative. The explanatory variables are binary indicators of whether a specific word
is present in the review. To limit the number of binary indicators we only consider
the 10000 most popular words. Since all the variables are binary indicators no scaling
is needed. The NN fitting, which is the most involved of three, is presented first,
followed by GB and RF. The code required to reproduce the IMDb examples is found
in Appendix B.3. At the end of the chapter we discuss potential benefits of changing
the classification threshold for trading application.

5.1 | Fitting a Neural Network

The implementation is performed using the Keras framework in the Keras R-package.
Keras is a high-level library with the necessary building blocks for fitting any kind of NN;,
Keras further allows for seamless integration with different back-ends for differentiation
and tensor manipulation. For this project we use the Tensorflow back-end developed
by Google. In Chapter 3 we cover the theory of neural networks and in this section we
show how to apply them.

5.1.1 | Model Topography

First we need to define the layers of the model and since we only work with densely
connected layers, we only need to specify the number of layers and width of each. If
we were working with convolutional neural networks the topography can be much more
complex, for further reading see Chapter 5 in Francois Chollet (2018). The following
lines of code define a neural network named model, which consists of three layers: two
hidden layers and an output layer. The two hidden layers consist of 16 nodes each, and
use the ReLU activation function discussed in Chapter 3. Since the dataset is stored
in a matrix, which is also referred to as a 2D tensor, we further define the shape of the
input first hidden layer and only supply the number of columns as shape. The output
layer, a classification layer in this case, only has a single node and uses the sigmoid
activation function.

model <- keras_model_sequential () %>%
layer _dense (units = 16, activation = "relu",
input_shape = ncol(trainx_scaled)) %>%
layer _dense(units = 16, activation = "relu") %>%

layer _dense (units 1, activation = "sigmoid")
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This is also the step where we can add different types of regularization. The following
lines show how to add dropout regularization, with a dropout rate of 50%, to the weights
in the first hidden layer.

model <- keras_model_sequential () %>%
layer _dense (units = 16, activation = "relu",
input_shape = ncol(trainx_scaled)) %>%
layer_dropout (rate = 0.5) %>%
layer _dense (units 16, activation = "relu") %>%
layer _dense (units 1, activation = "sigmoid")

The other regularization options are obtained by adding either regularizer_11(1 =
0.01), regularizer_12(1 = 0.01), or regularizer_11_12(11 = 0.01, 12 = 0.01)
in place of layer_dropout.

5.1.2 | Compile Configuration

Currently the model consists of nothing but a definition of layers, which is not quite
enough to build a complete model. We now define the desired model learning process,
which is sometimes referred to as the compilation step. First we define the optimizer, we
use rmsprop, which is a backpropagration implementation that scales the learning rate
by a running average of the gradients calculated in previous iterations. The loss function
used is the binary cross-entropy (deviance). Finally we define the metrics to be measured
during training, in addition to measuring the loss. Note the slightly unorthodox syntax,
when it comes to R, in which the model previously defined is configured inplace.

model %>%
compile (optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy")

5.1.3 | Fitting

The model can now be trained on the training set and the validation set is then used to
monitor loss and accuracy on unseen data during fitting. The training data is supplied
in batches of size 512 and we run 20 epochs.

history <- model %>
fit(trainx,
trainy,
epochs = 20,
batch_size = 512,
validation_data = list(valx_scaled, valy)

The training results are stored in the object called history. In Figure 5.1 we see the
loss and accuracy in both the training and validation sets plotted against the number
of epochs. From Figure 5.1 we see that the training loss is steadily decreasing and
accuracy increasing, however, the validation accuracy and loss indicates that after 4-5
epochs we start overfitting.
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Figure 5.1: The training and validation loss and accuracy, plotted against the number
of epochs, in the IMDDb review classification example using neural networks.

5.1.4 | Testing

Since it seems the model starts overfitting at around 5 epochs we now train the model
using only 5 epochs on the combined training and validation data. To quickly eval-
uate the model we use the evaluate function that calculates the previously specified
statistics, in this case loss and accuracy, for the provided data.

1| results <- model %>% evaluate(x_test, y_test)

We obtain a loss score of 0.327 and accuracy of 0.875. Rerunning the code will result
in slight result deviation due to the stochastic nature of the neural network. To predict
on new observations we run the following line,

1| predictions <- model ¥%>% predict(x_test)

which provides a vector of probabilities for each observation, these are the probabilities
used to produce the receiver operating characteristic (ROC) curve shown in Figure 5.5.

Trading Data Application

When applying neural networks to trading data we monitor the evolution of the accuracy
and loss on both the training and validation data to get an idea of how many epochs
are needed, just as we did above. We further look at the shape of the ROC-curve
created from predictions on the validation set. Finally, we evaluate the profits we
would make by trading according to the model. When applied to trading data, neural
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networks, which are variable by design, become even more variable, thus, to evaluate
any model configuration we must run the code multiple times. We configure the model
topography in an ad hoc fashion where we try different layer combinations with and
without regularization while monitoring all the aforementioned performance statistics.

5.2 | Gradient Boosting

For gradient boosting we use the xgboost R-package, which we configure and train in
the lines of code below. First we group the explanatory variables and labels for both the
training and validation sets. We then train and configure the model. The max depth
decides the depth of the boosted trees, which in turn also controls the model complexity.
The eta argument is the learning rate which we can define anywhere in the interval (0, 1],
in this example we set it to 0.3. The number of threads, nthreads, is set to four and
simply allows for parallel computations. The number of boosting rounds, nrounds, is
200 and we inform the model that we are performing a binary logistic regression. The
lambda argument of zero stops the addition of ridge regularization, which we found to
be invoked by default, even though the package documentation states otherwise.

dtrain <- xgb.DMatrix(data = partial_x_train, label = partial_y_train)
dval <- xgb.DMatrix(data = x_val, label = y_val)

watchlist <- list(train = dtrain, test = dval)
model <- xgb.train(data = dtrain,
max_depth = 3,
eta = 0.3,
nthread = 4,
nrounds = 200,
watchlist = watchlist,
objective = "binary:logistic",
lambda = 0)

Since we supply both a training and a validation set we can extract the validation error
as a function of the number of boosting iterations to check if we are overfitting. The
following lines of code extract the training and validation errors shown in Figure 5.2.

val_err <- data.frame(err = bst$evaluation_log$test_error)
val_err$iter <- 1:length(val_err$err)
train_err <- data.frame(err = bst$evaluation_log$train_error)

train_err$iter <- 1:length(train_err$err)

Since gradient boosting is fitting to adaptively reduce bias we need to ensure that we do
not overfit, inspecting Figure 5.2 we see no evidence of overfitting. Since the training
and validation errors do not seem to raise any concerns we fit the same model on the
full dataset. The test error and accuracy from the model trained on the full dataset are
extracted in the following lines of code, which result in an error of 0.138 and accuracy
of 0.862.

validation_probabilties <- predict(model, x_test)
validation_prediction <- (validation_probabilties > 0.5)
sum(validation_prediction == y_test)/length(y_test)
model$evaluation_log$test_error [200]
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Figure 5.2: The training and validation errors, plotted against the number of boosting
iterations, in the IMDDb review classification example using gradient boosting.

Trading Data Application

When applying gradient boosting to trading data we monitor the evolution of the error
on both the training and validation sets to ensure we use an adequate number of boosting
iterations. As with neural networks we look at the shape of the ROC-curve, created
from predictions on the validation set, and evaluate the profits. We decide the tree
depth and learning rate in an ad hoc fashion where we try different combinations while
monitoring all the aforementioned performance statistics.

5.3 | Random Forests

Since the random forests algorithm grows large de-correlated trees to reduce variance
but not bias, as this should already be low, random forests can be trained without any
configuration. We do not perform any configuration, thus, we train the model on the
full dataset straight away. However, the default number of trees is 500, and with 10000
explanatory variables and a rather large number of observations this particular forest
takes some time to grow. To fit the tree within reasonable time we limit the number of
trees to 250 in this example, but for trading data we still use 500 trees.

model <- randomForest(x = x_train,
y = as.factor(y_train),
ytest = as.factor(y_test),
xtest = x_test,
do.trace = TRUE,
ntree = 250)

Random forests produce an OOB error estimate, which is plotted with the test error as
a function of the number of trees in Figure 5.3. In this example we see that the OOB
error estimate is consistently higher than the test error, which could be caused by the
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Figure 5.3: The OOB and test errors, plotted against the number of trees, in the
IMDb review classification example using random forests.

OOB estimates being estimated from weaker models than the test errors. We note that
the OOB and test errors seem to evolve in the same manner and furthermore seem to
be converging. The test error and accuracy is extracted in the following lines of code,
which result in a test error of 0.145 and accuracy of 0.854.

model$test$err.rate[250,1]

test_probabilities <- as.vector (model$test$votes[,2])
test _predictions <- test_probabilities > 0.5
sum(y_test == test_predictions)/length(y_test)

The application of random forests to trading data does not entail any additional
steps since we do not perform any configuration.

5.4 | Threshold Analysis

As all considered models output prediction probabilities and use 50% as the threshold
for classification, it might be worth considering how the classification changes subject
to this treshold. To analyze the role of a classification threshold let us consider the
four possible classification types that a binary classifier can produce, reported in Table
5.4. Our objective is to maximize the amount of true positives while minimizing the

True class
Positive Negative
Positive | True positive | False positive
Negative | False negative | True negative

Predicted class

Figure 5.4: The possible types of predictions a binary classifier can produce.
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amount of false positives, false positives are commonly referred to as type 1 errors. In
the trading framework we do not concern ourselves much with false negatives (type 2
errors) as those correspond to missed investment opportunities, which is not as bad as
type 1 errors that implies buying at undesirable times. To analyze the trade-off between
true positives and type 1 errors we can use the ROC-curve.

To define the ROC-curve we first need to define the true positive rate (TPR), or
sensitivity, and the false positive rate (FPR). Assume that data is given by (y;, z;), i =
1,2,...,N where y; € {0,1}, and x; = (21, Zi2,...,Tip) is the explanatory variables.
Further assume that we have N predicted probabilities given by

Define T' € [0, 1] as the classification threshold and construct the classifier
i = G(T;m(xi)) = Um(xi) = T), (5.1)

that is, the predicted class of the i’th observation is g; = 1 if the estimated probability
is larger than the threshold, T. As T varies from zero to one in (5.1) the number of
true positives will decrease and so will the number of false positives, the ROC-curve is
used to explore this dynamic. Let

> jiy=1 L = 195)
SN Ly =1)

which is the sum of all the predicted true positives, divided by the number of actual
positives in the data. The FPR is defined as

Zj:ya:o L(g =1)
Zi]il 1(y; = 0) 7

which is the sum of all false positives divided by the number of negatives in the dataset.
Both TPR and FPR are functions of the chosen threshold, thus, we can vary T between
one and zero, and for each value obtain a coordinate pair of TPR and FPR that when
plotted makes up the ROC-curve. In Figure 5.5 we illustrate the trade-off between TPR
and FPR as the classification threshold varies. On the curve itself the labelled points
are the classification thresholds at that particular point.

Inspecting Figure 5.5 we see that we can potentially significantly reduce the number
of false positives by increasing the threshold from 50% to 90%. In the trading framework
reducing the number of false positives is desirable, especially for the creation of a risk
averse trading strategy.

Note that the FPR can be defined as 1 — speci ficity, where specificity is another
term for the true negative rate (TNR) defined by

TPR =

FPR =

>y, —0 L5 = 15)
Zi]\il Il(yi = 0) '

Figure 5.5 also includes the area under the curve (AUC), which is a statistic that aids
the interpretation of the ROC-curve. The AUC can be interpreted as the probability

TNR =

45



CHAPTER 5. MODEL FITTING

ROC curve — AUC: 0.949 « Threshold
0

1.001
>

2 0.751
0
C
(O]
K2
9
©

 0.50-
>
D
o
o
g

2 0.5

1

0.00-

0.00 0.25 0.50 0.75 1.00
False positive rate (1 — specificity)

Figure 5.5: The ROC-curve generated from the IMDb review classification example
using a neural network.

that a model assigns a higher probability to a randomly chosen positive observation than
a randomly chosen negative one. The AUC can be used for model comparison, however,
we choose to simply report it in the plots since the AUC can be a noisy statistic, which
invalidates it as a consistent model comparison measure, see Hanczar et al. (2010) and
Lobo et al. (2007).
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6 | Preliminary Study of BTC-USDT

In this chapter we perform preliminary tests of GLM, NN, GB, and RF on BTC-
UDST trading data, using the data parameters described in the restricted setup in
Section 1.5.3. Due to the amount of models included we do not perform an exhaustive
search for the ideal data parametrization for each model, but follow the modelling
procedure described in Section 6.1. In Section 6.2 we take a closer look at the BTC-
USDT trading data. In Sections 6.3-6.5 we present the trading results of the GLM, NN;,
and tree based models, respectively. We finish the chapter by summarizing our findings
in Section 6.6. For ease of discussion we sometimes refer to a model trained on, say, 30
minute candles as "30m model name", i.e., a neural network trained on 30m candles
may be referred to as 30m NN.

6.1 | Modelling Procedure

Each of the models are trained on 15m, 30m, and 1h candles, where all numerical
variables are scaled to have zero mean and unit variance. For each of the aggregation
intervals we follow the greedy modelling procedure depicted in Figure 6.1. For each
given model we first try to fit the model to the scaled data, and then try to improve
the model by differencing, adding factors, and lagging. At each step we try to optimize
the NN and GB configurations. Whether a certain step results in any improvement is
measured by a combination of the shape of the ROC-curve, accuracy, and returns. When
presenting the results we do not cover each step of the greedy modelling procedure, we
only present the results from the final models for each aggregation interval.

6.2 | The BTC-USDT Trading Data

We consider BTC-USDT trading data aggregated into 15m, 30m, and 1h intervals in the
period from February 11th, 2018 at 21:00 to May 1st, 2018 at 00:59. We partition the
data into training, validation, and test sets, and report the the number of observations,
buys, and stays in each set in Table 6.1. Throughout this chapter we only consider an
initial guess for the limit and stop-limit percentages of 2% and 10%, respectively. The
data partitioning corresponds to 60% of the data for training, 20% for validation and
test each. The data partitioning is visualized in Figure 1.10. We note from Table 6.1
that as the aggregation interval increases the number of buys increases relative to the
number of stays, and also slight deviations in the distribution of buys and stays among
the sets. For the 15m candles the ratios of buys to stays are 0.74, 0.43, and 0.25 for the
training, validation, and test sets, respectively. This change in distribution of buys and
stays might be caused by some market sentiment changes that occur during the data
period and might pose a challenge for the models.

The raw trading data contains the open, high, low, close, volume, and trades (num-
ber of trades), in Figure 6.2 we show the correlation between these variable for each

49



CHAPTER 6. PRELIMINARY STUDY OF BTC-USDT

(Fit model to scaled data}
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Does differencing data
improve the model?
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L

Does adding factors
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Figure 6.1: The greedy modelling procedure used for model parametrization and
selection.

DA

15m 30m 1h
Total Buys Stays Total Buys Stays Total Buys Stays
Training 4475 1903 2572 2225 1266 959 1100 733 367
Validation 1494 450 1044 744 381 363 369 238 131
Test 1494 303 1191 744 299 445 369 222 147

Table 6.1: The number of observations, buys, and stays in the training, validation, and
test sets for the BTC-USDT trading data aggregated into 15m, 30m, and 1h candles.

aggregation interval. We see that open, high, low, and close are practically perfectly
correlated, which could imply that the explanatory power of the four might not be much
higher than that of a single one. The open, high, low, and close correlations in Figure
6.2 are not exactly 1 but are rounded up from around 0.99. The high correlation is
what motivates us to consider the first difference of these variables. We further note
a high correlation between volume and number of trades, which is to be extected in
some degree. Figure 6.3 shows the correlation on the same data but where the open,
high, low, and close are differenced, yielding a much lower correlation that can perhaps
aid the models. Figure 6.4 shows the correlation of the differenced variables and the
added set of factors for the three aggregation intervals. We note that in Figure 6.4 the
direction factor is highly correlated with the close.
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Figure 6.2: Correlation plot between the variables in the BTC-USDT trading data
aggregated into 15m, 30m, and 1h candles.
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Figure 6.3: Correlation plot between the differenced
trading data aggregated into 15m, 30m, and 1h candles.
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6.3 | GLM Results

In this section we present the GLM trading results. To fit GLM we need to select A\ and
« values for the regularization described in Section 2.1.2. The X value selected is the
one that minimizes missclassification through cross-validaiton on the training set, and
the « value selected is the one that maximizes returns on the validation set. Across all
aggregation intervals a pure ridge regularization, o = 0, seems to be the preferred choice
by GLM. We find that for each aggregation interval there is some difference between
the preferred data parametrizations. The preferred data parametrizations across the
intervals are reported in Table 6.2.

Table 6.2 exhibits an interesting data parametrization pattern. For 15m candles lag
23 and factors are used, for 30m candles lag 23 is used but no factors, and for 1h candles
lag 11 is used and no factors are preferred. It seems as the aggregation interval increases
the preferred model becomes less complex, which might be a result of the reduction of
observations. The validation and test results from trading based on GLM predictions

Alpha Difference Lag Factors

15m O 0 23 Included
30m O 0 23 Excluded
1h 0 0 11 Excluded

Table 6.2: The GLM configuration and data parametrization across models fitted on
15m, 30m, and 1h BTC-USDT candles.

are reported in Table 6.3. First thing we notice is that overall accuracy does not seem
to be connected to returns. The percentage of buys that are true buys is 47%, 61%, and
66% for the 15m, 30m, and 1h candles, respectively. Thus, the percentage of true buys
does not seem directly connected to returns either. The 15m GLM predicts 78 buys,
of which 37 (47.4%) are true buys and 20 (25.6%) are losses, and yields a 49% profit.
The 30m GLM predicts 173 buys, of which 106 (61.3%) are true buys and 49 (28.3%)
are losses, and yields a 93% profit. The 1h GLM predicts 76 buys, of which 50 (65.8%)
are true buys and 22 (28.9%) are losses, and yields a 51% profit.

The model using 30m candles performs best on the validation set, however, the
models using 15m and 30m candles result in losses on the test set. The model using 1h
candles is the only model able to produce profits on both the validation and test sets,
with a 51% and 18% profit, respectively.

6.4 | Neural Network Results

In this section we present the trading results obtained by trading based on NN predic-
tions. Generally neural networks seem to perform best when the open, high, low, and
close variables are differenced and factors are added. In Table 6.4 we report the NN
configurations and data parametrizations that produce the highest returns. Evaluat-
ing neural networks in this setup is very difficult since there is extremely high model
variability, meaning that the same specification will produce very different results each
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Validation Test
15m 30m 1h 15m 30m 1h
Buys 78 173 76 33 150 83

True buys 37 106 50 16 60 56
False buys 41 67 26 17 90 27
Stays 1416 571 293 1461 594 286
True stays 1003 296 105 1174 355 120
False stays 413 275 188 287 239 166

Losses 20 49 22 17 60 22

Accuracy 0.70 054 042 0.80 0.56 0.48
Fees 0.16 035 0.15 0.07 030 0.17
Return 049 093 051 -0.36 -0.39 0.18

Table 6.3: Trade summary on the validation and test sets using GLM for predicting
trades on 15m, 30m, and 1h BTC-USDT candles.

time it is run. To account for the variability, and ensure that the improvements we see
are not simply due to model variation, we have to run the model multiple times at each
iteration of the modelling procedure. For all the neural networks we use a batch size
of 512 as we are unable to obtain any discernible improvements by changing this. For
all of the neural networks we weigh the classes according to their prevalence; say we
have twice as many stays as buys, then the stays gets weighed 0.5 and buys 1. The
weighing is done to keep the model from simply classifying all observations according
to the majority class.

Layers Layer nodes Batch size Epochs Difference Lag Factors

15m 2 32, 32 512 10 1 0 Included
30m 2 16, 16 512 ) 1 0 Included
1h 2 16, 16 512 10 1 0 Included

Table 6.4: The neural network specifications we find perform the best on 15m, 30m,
and 1h candles using differenced data and including factors.

In Table 6.5 we report a summary of the trades generated by the neural networks on
the validation set. Since we are not able to obtain stable neural networks we evaluate
the models 200 times and report averages with confidence intervals. The values in Table
6.5 have been rounded to integers, except for accuracy, fees, and return. The 15m NN
predicts 374 buys, of which 137 (36.6%) are true buys and 145 (38.8%) are losses, and
yields a 23% profit. The 30m NN predicts 256 buys, of which 133 (51.9%) are true buys
and 86 (33.6%) are losses, and yields a 36% profit. The 1h NN predicts 134 buys, of
which 84 (62.6%) are true buys and 38 (28.4%) are losses, and yields a 4% profit.

We further note that the 15m NN has a higher overall accuracy but still produces
a smaller profit than the 30m NN. It seems that the 30m NN misses more potential
trade opportunities but is more accurate in the buys it ends up predicting. Even with a
higher accuracy, when it comes to true buys, the 1h NN only yields a very small profit,
however, we should keep in mind that as the aggregation interval increases, the potential
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15m 30m 1h

Buys 374 (366-382) 256 (242-270) 134 (127-141)
True buys 137 (134-139) 133 (125-140) 84 (80-89)
False buys 237 (232-243) 123 (116-130) 50 (48-53)
Stays 1120 (1112-1128) 488 (474-502) 235 (228-242)
True stays 807 (801-812) 240 (233-247) 81 (78-83)
False stays 313 (311-316) 248 (241-256) 154 (149-158)
Losses 145 (142-148) 86 (82-91) 38 (36-40)
Accuracy  0.63 (0.63-0.63) 0.5 (0.5-0.5)  0.45 (0.44-0.45)
Fees 0.75 (0.73-0.76)  0.51 (0.48-0.54) 0.27 (0.26-0.28)
Return  0.23 (0.2-0.26)  0.36 (0.32-0.4)  0.04 (0-0.07)

Table 6.5: Trade summary on the validation set using neural networks, the summary
is based on results from running the model 200 times and contains the mean value of
each variable along with a 95% confidence interval. The reported values are rounded to
integers, except for accuracy, fees, and return.

profit is limited since there are fewer trading opportunities. It seems the highest profit
is obtained by trading based on the 30m NN.

In Table 6.6 we report the test set results. We see that the 15m NN performs
much worse with lower overall accuracy and a 21% loss. The 30m NN does not change
much, neither in terms of accuracy or profit. The 1h NN starts performing better and
went from the lowest profit to the highest of 62%, which might be a result of simply
allowing the model to train on more observations. So perhaps for the neural network a
1h aggregation interval, or even higher with a sufficient number of observations, might
yield a better overall result. Even though it seems there are some profits to be made
the instability of the models is cause for concern.

15m 30m 1h
Buys 507 (500-514) 301 (291-312) 160 (155-165)
True buys 124 (122-126) 124 (120-129) 97 (94-100)
False buys 383 (378-388) 177 (171-183) 63 (61-65)
Stays 087 (980-994) 443 (432-453) 209 (204-214)
True stays 808 (803-813) 268 (262-274) 84 (82-86)
Fase stays 179 (177-181) 175 (170-179) 125 (122-128)
Losses 196 (193-199) 106 (102-109) 52 (51-54)
Accuracy  0.62 (0.62-0.63) 0.53 (0.52-0.53)  0.49 (0.49-0.49)
Fees 1.02 (1-1.03) 0.6 (0.58-0.62)  0.32 (0.31-0.33)
Return  -0.21 ((-0.24)-(-0.18))  0.34 (0.3-0.38)  0.62 (0.58-0.66)

Table 6.6: Trade summary on the test set using neural networks, the summary is
based on results from running the model 200 times and contains the mean value of
each variable along with a 95% confidence interval. The reported values are rounded to
integers, except for accuracy, fees, and return.
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6.5 | Tree Based Classifier Results

In this section we present the trading results from trading on the validation and test
sets based on GB and RF. The configuration and data parametrization for GB across
aggregation intervals are reported in Table 6.7.

Max depth Eta Iterations Difference Lag Factors

15m 4 0.1 10 0 0 Excluded
30m 4 0.3 40 0 0 Included
1h 4 0.3 10 0 0 Excluded

Table 6.7: The gradient boosting configurations and data parametrizations we find
perform the best in predicting trades on 15m , 30m, and 1h candles.

For the 15m GB we find that a maximum tree depth of 4, a learning rate of 0.1,
and 10 boosting iterations using candles without factors, differencing, or lagging seems
to be preferred. For the 30m GB we find that a maximum tree depth of 4, a learning
rate of 0.3, and 40 boosting iterations using candles with factors, and no differencing
or lagging seems to be preferred. For the 1h GB we find that a maximum tree depth
of 4, a learning rate of 0.3, and 10 boosting iterations and candles without factors,
differencing, or lagging seems to be preferred. For the 15m GB we find that a slightly
lower learning rate seems to be preferred, which might be caused by the 15m candles
being noisier compared to the other intervals. The 30m GB is the only model that
seems to benefit from the addition of factors, which might also be why we find that
more boosting iterations are preferred for this model. None of the models seem to
benefit from differencing or lagging.

The random forests are built without any configuration. In Table 6.8 we report
the default growing configurations from the randomForest R-package. Trees are the
number of trees grown, when growing a tree two predictive variables are chosen with
replacement, and the minimum required number of observations in the terminal nodes is
one. As for data parametrization, all of the random forests seem to prefer using candles
without factors, differencing, or lagging.

Trees Sampled variables Node size Difference Lag Factors
500 2 1 0 0 Excluded

Table 6.8: The default random forest configuration using raw trading data.

In Table 6.9 we report the trading results from trading based on the gradient boost-
ing predictions in the validation and test sets. First thing to notice is that we are now
seeing higher profits on the validation set compared to NN and GLM. The 15m GB
predicts 667 buys, of which 230 (34.5%) are true buys and 234 (35%) are losses, and
yields a 177% profit. The 30m GB predicts 506 buys, of which 282 (55.7%) are true
buys and 143 (28%) are losses, and yields a 273% profit. The 1h GB predicts 298 buys,
of which 204 (68.5%) are true buys and 60 (20%) are losses, and yields a 219% profit.

The ability to predict true buys seems to increase with the aggregation interval,
which is not surprising since higher aggregation intervals should filter out noise in the
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Validation Test

15m  30m 1h 15m 30m 1h
Buys 667 506 298 217 368 346
True buys 230 282 204 36 144 207
False buys 437 224 94 181 224 139
Stays 827 238 71 1277 376 23
True stays 607 139 37 1010 221 8
False stays 220 99 34 267 155 15
Losses 234 143 60 113 129 113
Accuracy 0.56 0.57 0.65 0.70 0.49 0.58
Fees 1.34 1.02 060 0.43 0.74  0.69
Return .77 273 219 -142 0.19 1.52

Table 6.9: Trade summary from trading based on the gradient boosting predictions in
the validation and test sets using 15m, 30m, and 1h candles.

data. As with the previous models, the performance, in terms of profits, of the 15m
and 30m GB drops when we start trading on the test set. The 1h GB has the best test
set profit of 152%. The 15m GB has the highest overall accuracy on the test set but
this accuracy mainly comes from the ability to predict stays, which is probably why we
experience a drop in profits.

Validation Test

15m 30m 1h 15m 30m 1h
Buys 754 493 304 495 396 233
True buys 256 274 204 82 148 148
False buys 498 219 100 413 248 85
Stays 740 251 65 999 348 136
True stays 546 144 31 778 197 62
False stays 194 107 34 221 151 74
Losses 267 139 67 203 139 71
Accuracy 0.54 056 0.64 0.58 0.46  0.57
Fees 1.51  0.99 0.61 0.99 0.79 047
Return 1.82 272 1.7 -092 032 1.05

Table 6.10: Trade summary from trading based on the random forest predictions in
the validation and test sets using 15m, 30m, and 1h candles.

In Table 6.10 we report the trading results from trading based on the random forest
predictions in the validation and test sets. The 15m RF predicts 754 buys, of which
256 (34%) are true buys and 267 (35.5%) are losses, and yields a 182% profit. The
30m RF predicts 493 buys, of which 274 (55.6%) are true buys and 139 (28.2%) are
losses, and yields a 272% profit. The 1h GB predicts 304 buys, of which 204 (67.1%)
are true buys and 67 (22%) are losses, and yields a 175% profit. Generally, the results
of trading based on random forests is similar to those obtained from trading based on
gradient boosting. The profits are large on the validation set and 30m seems to be the
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ideal interval. We note that once again profits are smaller on the test set and the 15m
RF results in a loss. Based on the test set the best aggregation interval is once again
1h with a profit of 105%, and overall accuracy does not seem related to the returns.

6.6 | Summary

Generally, the models agree that 30m candles are preferred on the validation set. How-
ever, models trained using 30m candles generally do not fare well on the test set. The
models do not seem to care much for the factors we add, all except 15m GLM and 30m
GB did not improve from the inclusion of factors. This might be a result of the naive
approach taken, where all factors are included simultaneously, and perhaps adding fac-
tors one by one might yield some improvements. For the tree based models, the 1h
candles result in high profits on both the validation and test sets. Furthermore, the
general consensus among the models is that as the aggregation interval increases the
rate of true buys increases as well, thus 1h candles might be the best choice. For the
tree based models, removing any of the open, high, low, and close variables results in
deterioration of model performance even though the models prefer these variables raw,
where they are highly correlated.

The models, while agreeing in some aspects, are not all performing equally well.
The NN models are actually not too far behind in terms of test set profits, but the low
validation set profits and the instability of the models seem to indicate that they are not
fit for trading, atleast in this setting. The GLM models have a reasonable performance
on the validation set but yield negative returns on both 15m and 30m candles on the
test set, with a small profit of 18% on the 1h candles. The GB and RF models seem to
be the best performing models on the validation set, but still yields a loss on the 15m
candles in the test set and a low profit on the 30m candles. However, the 1h GB and
RF models do yield high profits on both validation and test sets.

The experimental setup in this chapter, while giving us a feel for what works and
what does not, is not the ideal setup to use for trading. In the current setup we train
the models on a fixed period and proceed to predict trades in a future period. In
terms of Hypothesis 1, we assume that what we are actually estimating, is some time
dependent function f; subject to change during the prediction period. To test whether
this is the case we can perform a rolling training and prediction procedure summarized
by repeating the following steps.

1. Train the model on all available data up to the current point in time.

2. Once a new candle is available, predict whether it is a buy or stay and trade
accordingly.

3. Add the newly received candle to the training data, drop the oldest candle, and
retrain the model.

The magnitude of profits that we attempt to predict might also influence the results,
predicting 2% is simply a choice we make. Predicting other magnitudes of profits,
considering different aggregation intervals and profit horizons might also improve the
results.
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7 | Model Improvement

In Chapter 6 we perform a preliminary study of the performance of GLM, NN,
GB, and RF on the BTC-USDT trading data. In this chapter, guided by the results in
Chapter 6, we narrow down the field of candidate models and perform a more exhaustive
modelling procedure. So far we find evidence that the models perform better on 1h
candles overall, so we only consider improving models on this interval. Furthermore,
GB and RF seem to clearly outperform GLM and NN, while being stable as well, thus,
we only consider the tree based models.

7.1 | Profit Parametrization

As we mention in Section 6.2, trying to classify buys with a 2% limit and 10% stop-limit
is an initial guess and a parametrization of the dataset. The stop-limit of 10% effectively
corresponds to no stop-limit since it is unlikely to trigger during the 24 candle horizon
we use. In this section we investigate whether we can improve the profits by changing
the limit and stop-limit parametrizations of the data. To investigate different limits
and stop-limits we vary the limit and stop-limit, and calculate the potential profits for
each combination. Potential profits are calculated as the profits made if we correctly
classify every candle in the set. Potential profits are calculated on the combined training
and validation set, which is a long period, making the profits significantly higher than
anything we report in Chapter 6.

We search across a grid where limit = {0.01,0.02,0.03,0.04,0.05} and stop-limit =
{0.05,0.06,0.07,0.08,0.09,0.1}. For a 2% limit and a 10% stop-limit the potential profit
is 1745% over the combined training and validation set. The highest potential profit
is obtained by setting the limit to 4% and the stop-limit to either 9% or 10%, which
both yield a potential profit of 2255%. The stop-limits of 9% or 10% produces the same
profit because neither triggers, we proceed using the lowest stop-limit of 9%.

7.1.1 | Model Configurations

Initially we use the configurations of Section 6.5 and gradually try to improve by mon-
itoring changes in returns. Differencing the data does not seem to improve the tree
based models so we proceed only using undifferenced data. We add factors one by one
and test the different combinations before we add lags to the models. As described in
Section 7.1, we also change the limit to 4% and stop-limit to 9%, the potential best
combination. Model performance is still only evaluated on the validation set.

GB seems to benefit from the addition of class weights where the majority class is
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down-weighed. The weights are calculated as

21121 I(y; = 1)
- N
Zi\; ]1( i = 0)
- N

Weight buy =
Weight stay =

where N is the number of observations, buys are encoded y; = 1, and stays as y; = 0.
GB does not improve further from the addition of any of the factors or lags used. GB
does seem to prefer a higher number of boosting iterations in this setting, compared to
what we observe in Section 6.5. The configuration and data parametrization for GB are
reported in Table 7.1.

Max depth Eta Iterations Lag Factors Class weights
4 0.3 60 0 Excluded Included

Table 7.1: The gradient boosting configuration and data parametrization we find
performs best in predicting trades on 1h candles, using a limit of 4% and stop-limit of

9%.

For the RF we use the same configuration for training, as we do in Section 6.5, and
as for data parametrization we see improvements from the addition of hours as factor
and the RSI trading signal, described in Appendix A. The RF configuration and data
parametrization are reported i Table 7.2.

Trees Sampled variables Node size Lag Factors Class weights
500 2 1 0 Hours, RSI  Excluded

Table 7.2: The random forests configuration and data parametrization we find per-
forms best in predicting trades on 1h candles, using a limit of 4% and stop-limit of

9%.

7.1.2 | Returns

In Table 7.3 we report the trading results on the validation and test sets from trading
based on both GB and RF. On the validation set both models exhibit some profit
improvements. GB predicts 175 buys, of which 71 (40.6%) are true buys and 41 (23.4%)
are losses, and yields a 250% profit. RF predicts 183 buys, of which 70 (38.3%) are
true buys and 41 (22.4%) are losses, and yields a 264% profit. Interestingly, RF yields
a higher profit with a lower buy accuracy than GB, which is probably because the false
buys RF produces are not as bad as those of GB.

Unfortunately both buy accuracy and profit drop as we trade on the test set. GB
predicts 86 buys, of which 26 (30.2%) are true buys and 39 (45.3%) are losses, and yields
a 34% profit. RF predicts 71 buys, of which 23 (32.4%) are true buys and 31 (43.7%)
are losses, and yields an 18% profit. Even though we can improve the validation set
profits our findings do not generalize well on the test set. Recall that in Section 6.5 we
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obtain 152% and 105% profits for GB and RF, respectively. Since the model, despite
the higher validation profits, does not generalize well to the test set we conclude that
using a 4% limit and 9% stop-limit does not seem to improve over the initial guess, of
a 2% limit and 10% stop-limit.

Validation Test
GB RF GB RF
Buys 175 183 86 71

True buys 71 70 26 23
False buys 104 113 60 48
Stays 194 186 283 298
True stays 137 128 192 204
False stays 57 58 91 94

Losses 41 41 39 31

Accuracy 0.56 0.54 0.59 0.62
Fees 0.35 037 0.17 0.14
Return 2.50 264 034 0.18

Table 7.3: Trade summary from trading based on the GB and RF predictions in the
validation and test sets using 1h candles with a 4% limit and 9% stop-limit.

7.2 | Further Model Calibration

Since we are not able to improve the models by using different limits and stop-limits we
now recalibrate the 1h GB and RF presented in Chapter 6, i.e., the models trained on
data classified using a 2% limit and 10% stop-limit. The factors added in Chapter 6 are
all added at once, and if no improvement is evident they are excluded from the models.
In this section we try to add the factors one by one and test different combinations of
the factors. Furthermore, as we see benefits from adding weights to the GB in Section
7.1, we also test whether the same improvements are possible in this setup. Model
performance is still only evaluated on the validation set.

We are able to increase the validation set profits for GB by adding class weights,
as in Section 7.1, and find no evidence that it would be beneficial to change the model
configuration reported in Table 6.7. RF can be improved by the addition of the MACD
and ADX trading signals. The addition of class weights has no effect on RF and the
configuration is the same as reported in Table 6.8.

The trading results of the improved models on the validation and test sets are
reported in Table 7.4. GB now has a 234% profit on the validation set, which is a 15%
increase. RF now has a 195% profit on the validation set, which is a 20% increase.
Unfortunately, the improvements seen on the validation set for GB do not generalize
well to the test set where GB yields an 18% profit. However, RF does generalize well to
the test set and yields a 111% profit, which is a 6% increase. It seems we successfully
improve RF, but can not improve GB beyond the naive model presented in Section 6.5.
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Validation Test
GB RF GB RF
Buys 271 309 45 235

True buys 191 210 30 150
False buys 80 99 15 85
Stays 98 60 324 134
True stays 51 32 132 62
False stays 47 28 192 72

Losses 50 65 14 70

Accuracy 0.66 0.66 044 0.57
Fees 0.54 0.62 0.09 047
Return 234 195 018 1.11

Table 7.4: Trade summary from trading based on the further calibrated GB and RF
predictions in the validation and test sets using 1lh candles with a 2% limit and 10%
stop-limit.

7.3 | Rolling Classification

In Section 6.6 we mention that it might not be ideal to only train the model once and
use it to predict through the whole test set. The motivation being that we suspect
the models can pick up some local market dynamics, which is specific to the prediction
period under consideration. In Hypothesis 1 we assume the existence of some time
dependent function that has the ability to predict profits. This time dependent function
could change during the periods of the validation and test sets, causing a deterioration in
the predictive ability. In this section we train the model on the training and validation
sets, and perform the rolling classification described in Algorithm 4 on the test set.
In Algorithm 4, N is the total number of observations in the combined training and
validation set, henceforth referred to as the combined training set, and N is the number
of observations in the test set. The algorithm starts by training the model on the
combined training set, and then classifies the first observation in the test set. After
each classification the observation we classified is then added to the combined training
set and the oldest observation dropped. Algorithm 4, like the previous classification
method, produces a vector of buys and stays of length N. We then proceed to evaluate
this vector of classifications in the same manner as we do with the previous classification
method. We use the RF model presented in Section 7.2 and the GB model presented
in Section 6.5. Additionally, we create an ensemble (Ens) model that only trades when
both GB and RF agree on a buy. The trading results are presented in Table 7.5. GB and
RF yield profits of 202% and 160%, which is an increase of 50% and 49%, respectively.
The overall accuracy of both GB and RF also increases and the percentage of true
buys is much closer to the overall accuracy. Ens arrives at a slightly lower profit of
153%, naturally it performs fewer trades than GB and RF which could result in a lower
liquidity requirement.

To further examine whether the improvements seen are actually results of an in-
creased ability to pick up local market dynamics, we perform an expanding classifi-
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Algorithm 4: Rolling Classification

1 - Define a training set (y;,x;), i € {1,2,..., N} and test set
(yj,zj), j€e{N+1,N+2,...,.N+ N}

2- forle{0,1,...,N —1}

i- Train the model on (y,,x;), 7 € {1+1,2+1,...,n+1}.
ii - Classify observation (Yn4i+1, Tnti+1)-

i - Store classification.

cation, i.e., we do not drop old observations as new ones are included. In terms of
Algorithm 4, this corresponds to defining (y,, ), € {1,2,...,n+ [} as the combined
training set. We do not show trade summaries for this setup but profits decrease to
141%, 132%, and 112% for GB, RF, and Ens, respectively, which further supports the
importance of the local market dynamics.

GB RF Ens
Buys 297 240 222
True buys 199 166 156
False buys 98 74 66
Stays 72 129 147
True stays 49 73 81
False stays 23 56 66

Losses 76 62 54

Accuracy 0.67 0.65 0.64
Fees 0.60 0.48 0.45
Return 2.02 1.60 1.53

Table 7.5: Trade summary using GB, RF, and Ens to perform a rolling classification
of trades on 1h candles with a 2% limit and 10% stop-limit on the test set.

7.3.1 | Further Examination of the Local Market Dynamics Hypothesis

In Section 7.3 we show that when performing rolling classification, the inclusion of older
observations causes profits to deteriorate. Thus we see evidence that the function, f,
in Hypothesis 1 seems to change over the course of the 369 observations in the test
set. Now, if f; changes over 369 observations it likely changes even more over the 1469
observations in the combined training set. In this section we investigate how profits
change as we gradually reduce the size of the combined training set by excluding the
oldest observations. We exclude observations in weekly increments, train the model,
and calculate profits by rolling classification.

Figure 7.1 shows the evolution of profits as we reduce the combined training set. It
seems that in general, after an initial dip, the profits start to increase as the combined
training set is further reduced. The ensemble model seems to mainly follow the evolution

63



CHAPTER 7. MODEL IMPROVEMENT

Reducing the training set — GB — RF — Ens
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Observations removed from training set

Figure 7.1: The evolution of profits calculated by a rolling classification, as the size of
the training set is reduced by removing the oldest observations in weekly increments.

of RF. At the last observation in Figure 7.1 we are only training the models on a single
week of data, 168 observations.

We see clear evidence that RF benefits from the removal of training observations.
GB, however, does not show the same clear pattern, we see some of the same movements
but the final profits are lower than those obtained by using the full combined training
set. Perhaps further improvements can be obtained by further reducing the training
set, however, we do not pursue these.

In Table 7.6 we report the trade summary produced by performing a rolling classifi-
cation on the test set, where the models are trained on the 168 observations preceding
the observations they are predicting. We see that RF improves both in terms of ac-

GB RF Ens
Buys 216 218 192
True buys 155 161 147
False buys 61 57 45
Stays 153 151 177
True stays 86 90 102
False stays 67 61 75

Losses 50 47 39

Accuracy  0.65 0.68 0.67
Fees 043 044 0.39
Profit 1.65 1.88 1.76

Table 7.6: Trade summary using GB, RF, and Ens to perform a rolling classification
of trades on 1h candles with a 2% limit and 10% stop-limit on the test set. The models
are trained on a reduced combined training set containing only 168 observations.
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curacy and profits, while GB does seem to experience a rather large profit decrease.
Interestingly, the ensemble model improves in terms of accuracy and profit even though
the GB profit decreases. The GB profit decrease might be caused by the fact that we
still use the GB configuration derived in Chapter 6, which is a vastly different setup
compared to the current. Thus, GB might benefit from a reconfiguration in the new
setup, however, we do not pursue this. It is worth noting that GB actually increases in
terms of true buy accuracy, from 67% to 71.8%, which is probably why the ensemble
model improves as well.

Since RF improves overall by the reduction of the training set it seems clear that
using 168 observations for training is the ideal choice in this case. For GB the conclusion
is slightly more tricky since the profits decrease, however, GB benefits from the usage
of a rolling classification, supporting the hypothesis that f; changes over a short period
of time. Furthermore, GB improves in terms of true buy accuracy from the reduction
of the training set. Thus, we believe that reducing the training set to 168 observations
is also the optimal choice for GB.
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8 | Model Evaluation

In Chapter 7 we find that, for predicting trades on 1h candles using a 2% limit and
10% stop-limit, the best models are GB and RF using the configurations derived in
Sections 6.5 and 7.2, respectively. For convenience, the optimal configurations and data
parametrizations we find for GB and RF are restated in Tables 8.1 and 8.2, respectively.
In this chapter we train the derived models on the combined training set and further
evaluate their performance on the test set, where we also include the ensemble. Ad-
ditionally, since we have (ab)used the test set for inference during some of the model
selection steps we evaluate the models on a new BTC-USDT dataset. We further eval-
uate the models on data from the other cryptocurrency pairs discussed in Section 1.5.3:
ETH-USDT, BNB-USDT, NEO-USDT, LTC-USDT, and BCC-USDT.

Max depth Eta Iterations Factors Weights
4 0.3 10 Excluded Excluded

Table 8.1: The GB configuration and data parametrization we find performs the best
in predicting trades on 1h candles using a 2% limit and 10% stop-limit.

Trees Sampled variables Node size Factors Weights
500 2 1 MACD, ADX  Excluded

Table 8.2: The RF configuration and data parametrization we find performs the best
in predicting trades on 1h candles using a 2% limit and 10% stop-limit.

In Figure 8.1 we show the ROC-curves from the probabilities generated through
the rolling classification on the test set. The high variability in data and the difficulty
of the classification problem is clear by comparing these ROC-curves to the one from
the IMDb example in Figure 5.5. The ROC-curve for RF seems slightly smoother and
also has a higher AUC than that of GB. From Figure 5.5 we do not see any obvious
improvements to be made from changing the threshold. However, RF ROC-curve does
seem slightly interesting once the threshold exceeds 0.9.

Figure 8.2 shows the average relative importance plots for GB and RF obtained
through the rolling classification on the test set. The importance is measured as mean
Gini decrease, which is the average decrease of impurity obtained by using a certain
variable for splitting. We train the models 369 times during the rolling classification
where the importance of the variables changes each time, thus, the plots in Figure 8.2
are calculated as averages over the 369 models trained. Considering the importance
plot for GB, we see that the closing price is the most important variable. This is very
interesting due to the high correlation between open, high, low, and close, which could
cause GB to be indifferent between the four. On the RF importance plot we see a more
equally distributed importance, where close is still the most important variable. This
highlights the difference between the two models as GB can choose from all six included
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Figure 8.1: ROC-curves based on the GB and RF probabilities obtained through the
rolling classification on the test set in the period from April 15th, 2018 at 16:00 to May
1st, 2018 at 00:59, performed in Section 7.3.1.
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Figure 8.2: Average feature importance for the GB and RF obtained through the
rolling classification on the test set in the period from April 15th, 2018 at 16:00 to May
1st, 2018 at 00:59, performed in Section 7.3.1.

variables on each split when growing tress and repeatedly chooses open, whereas RF can
choose only between two randomly selected variables at each split. The RF importance
plot indicates that despite the high correlation, open, high, low, and close generally do
not have the same predictive power. The importance does seem to indicate that low and
high have somewhat similar predictive power. While inspecting the BTC-USDT data
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we also see a high correlation between trades and volume, these variables, as opposed
to open, high, low, and close, actually seem to have roughly the same predictive power.
RF also uses the ADX factor which seems to be somewhat important, atleast compared
to the MACD factor which could probably be dropped from the model without loosing
much predictive power.

Figure 8.3 shows the trade performance of GB, RF, and Ens on the test set. In
the top plot we see the 1h candles plotted over the test period with an upwards going
price trend, which intuitively should make it easier for the models to yield profits. The
middle plot depicts when each of the models chooses to buy, true buys yielding a 2%
profit are coloured blue, false buys yielding a profit are green, and false buys yielding
a loss are red. The bottom plot shows the cumulative returns of the models during the
test period. Generally we see a very similar performance across all models. Considering
the period at the start of the plot between April 15th and 18th, we note that the period
starts out with a dip where all models avoid trading, except a single trade by GB. Then
after the dip we see an upward price trend in which most of the total profits are made
for all three models. After the peak on April 25th the models make a few bad trades
but slowly make up for it throughout the remainder of the test period. As we mention,
the upward price trend might make trading easier for the models, thus, it would be
interesting to see how the models fare in a period with a decreasing price trend.
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Figure 8.3: Model performance on the BTC-USDT 1h candles in the period from April 15th, 2018 at 16:00 to May 1st, 2018
at 00:59. Top: The candles in the period. Middle: The models’ classifications of buys and stays. True (blue) are correctly
classified buys resulting in a 2% profit, Profit (green) are wrongly classified buys that resulted in a profit, and Loss (red) are
wrongly classified buys resulting in a loss. Bottom: The cumulative returns of the models through the period.
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8.1 | New Data

To asses the performance on a "true" test set we obtain a new test set containing 1h
BTC-USDT candles in the period from May 1st, 2018 at 01:00 to May 16th, 2018 at
09:59. From here, when we refer to "test set" we are referring to the new test set, and
when we compare to the test set in the previous section we refer to it as the old test.
We perform the same trading based on rolling classification as on the old test set, and
asses the results throughout this section.

In Table 8.3 we report the trade summary from trading on the test set. We note
that the accuracy of all models increase compared to what we see on the old test set.
The increased overall accuracy unfortunately does not translate to increased profits as
we see a steady decrease in profits across the models. Overall, the true buy accuracy
has decreased, thus, the increase in overall accuracy is obtained through an increased
ability to predict stays.

GB RF Ens
Buys 162 168 149
True buys 109 117 107
False buys 53 51 42
Stays 207 201 220
True stays 158 160 169
False stays 49 41 51

Losses 29 23 19

Accuracy  0.72 0.75 0.75
Fees 0.33 0.34 0.30
Return 1.00 1.42 1.28

Table 8.3: Trade summary using GB, RF, and Ens to perform a rolling classification
of trades on 1h candles with a 2% limit and 10% stop-limit on the test set in the period
from May 1st, 2018 at 01:00 to May 16th, 2018 at 09:59.

The increase in overall accuracy does, however, translate into some better looking
ROC-curves as shown in 8.4. The curves seem to be slightly smoother and the AUC
has increased for both curves. We still do not see any obvious improvements to be
had from changing the threshold, but note the same interesting behaviour from the RF
ROC-curve when the threshold exceeds 0.9.

The average relative importance is obtained in the same manner as in Figure 8.2
and shown in Figure 8.5. We see that close is still the variable with the highest predic-
tive power. For both models, the importance of high has increased, and from the RF
importance plot we see that the predictive power of high is now very similar to that
of close. For GB, trades and volume no longer have a similar importance, and volume
is now the least important variable. For RF we see that the MACD factor still does
not seem to add much to model performance, and furthermore, the importance of the
ADX factor has also decreased. Figure 8.6 shows the trade performance of GB, RF,
and Ens on the test set. First we note that now the price follows an overall downwards
trend, which is an explanation for the decrease in profits. The test set starts out with a
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GB ROC - AUC: 0.792 * Threshold RF ROC - AUC: 0.825 « Threshold
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Figure 8.4: ROC-curves based on the GB and RF probabilities obtained through the
rolling classification on the test set in the period from May 1st, 2018 at 01:00 to May
16th, 2018 at 09:59.

Gradient boosting Random forest
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Figure 8.5: Average feature importance for the GB and RF obtained through the
rolling classification on the test set in the period from May 1st, 2018 at 01:00 to May
16th, 2018 at 09:59.

slight decrease, which none of the models trade on, and then proceeds to increase until
a peak is reached at around May 6th, which is where the majority of profits are made.
However, even though the price shows a steady decrease from May 6th to the end of
the set, all models still manage to make more profits. GB is performing the worst and
RF the best. The models exhibit the same patterns overall.
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8.2 | Other Pairs

In this section we explore how GB, RF, and Ens perform on ETH-USDT, BNB-USDT,
NEO-USDT, LTC-USDT, and BCC-USDT compared to BTC-USDT. Since all pairs
trade against USDT we drop "-USDT" when discussing the pairs. We use the data
parametrization and model configurations derived for the BTC pair for the other trading
pairs. For completion we report the trade summaries for all six pairs in Table 8.10 and
the trading performance plots of the five other trading pairs are found in Appendix C.

The cumulative returns for the models on all six pairs are shown in Figure 8.7. All
models are able to make a profit on five of the six pairs, the only pair on which the
models are yielding losses is the BCC pair, with a 101%, 96%, and 87% loss for GB, RF,
and Ens, respectively. Interestingly, BCC is the pair that the models made the highest
profit on overall until around May 8th after which it goes down. Since we derive the
data parametrization and model configurations using BTC we would expect BTC to be
most profitable pair, this is however not the case. GB and Ens both make higher profits
on BNB, of 138% and 153%, which is 38% and 25% more than on BTC. RF performs
about the same on BTC and BNB, only making a 3% higher profit on BNB. Generally
it seems like Ens is the model with the best performance, RF seems to come in second,
and GB seems to have the lowest overall performance.

To figure out exactly which model performs the best across all six pairs we show the
cumulative returns aggregated over the six pairs in Figure 8.8. RF seems to be making
slightly higher profit on the first half of the test period, but after that Ens takes the lead
and ends up outperforming both GB and RF. The fact that Ens manages to outperform
GB and RF is an interesting result, it implies that the two models make different types
of mistakes but agree on the true buys.

In Figure 8.9 we show the final return for the six pairs. We see that for all pairs,
except for BTC, the Ens yields the highest return, thus, combining GB and RF has its
merit. The magnitude of improvement in Ens compared to GB and RF varies across
the pairs and is most pronounced in the NEO pair where Ens makes a profit of 73%, 9%
higher than the combined profit of GB and RF, which make 25% and 39%, respectively.
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Gradient boosting — BTC — ETH —BNB ~ NEO — LTC — BCC
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Figure 8.7: The cumulative returns from trading based on GB, RF, and Ens across
the BTC, ETH, BNB, NEO, LTC, and BCC pairs in the period from May 1st, 2018 at
01:00 to May 16th, 2018 at 09:59.
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Aggregated cumulative returns = GB == RF == Ens
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Figure 8.8: The cumulative returns from trading based on GB, RF, and Ens aggregated
over the BTC, ETH, BNB, NEO, LTC, and BCC pairs in the period from May 1st, 2018
at 01:00 to May 16th, 2018 at 09:59.
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Figure 8.9: Barplots depicting the returns from trading based on GB, RF, and Ens
across the BTC, ETH, BNB, NEO, LTC, and BCC pairs in the period from May 1st,
2018 at 01:00 to May 16th, 2018 at 09:59.
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GB RF Ens GB RF Ens
Buys 162 168 149 Buys 288 287 274
True buys 109 117 107 True buys 215 217 211
False buys 53 51 42 False buys 73 70 63
Stays 207 201 220 Stays 81 82 95
True stays 158 160 169 True stays 49 52 59
False stays 49 41 51 False stays 32 30 36
Losses 29 23 19 Losses 61 60 53
Accuracy  0.72 0.75 0.75 Accuracy  0.72 0.73 0.73
Fees 0.33 0.34 0.30 Fees 0.58 0.58 0.55
Return 1.00 142 1.28 Return 0.58 0.58 0.81
Table 8.4: BTC Table 8.5: ETH
GB RF Ens GB RF Ens
Buys 268 283 257 Buys 260 268 247
True buys 195 204 192 True buys 194 201 190
False buys 73 79 65 False buys 66 67 57
Stays 101 86 112 Stays 109 101 122
True stays 60 54 68 True stays 76 75 85
False stays 41 32 44 False stays 33 26 37
Losses 56 59 50 Losses 60 62 52
Accuracy  0.69 0.70 0.70 Accuracy  0.73 0.75 0.75
Fees 0.54 0.57 0.52 Fees 0.52 0.54 0.50
Return 1.38 1.45 1.53 Return 0.25 0.39 0.73
Table 8.6: BNB Table 8.7: NEO
GB RF Ens GB RF Ens
Buys 286 285 268 Buys 318 325 307
True buys 207 209 198 True buys 248 256 242
False buys 79 76 70 False buys 70 69 65
Stays 83 84 101 Stays 51 44 62
True stays 51 54 60 True stays 26 27 31
False stays 32 30 41 False stays 25 17 31
Losses 70 67 62 Losses 67 67 63
Accuracy  0.70 0.71 0.70 Accuracy  0.74 0.77 0.74
Fees 0.57 0.57 0.54 Fees 0.64 0.65 0.61
Return 0.33 0.57 0.63 Return -1.01 -0.96 -0.87
Table 8.8: LTC Table 8.9: BCC

Table 8.10: Trade summaries from trading based on GB, RF, and Ens across the BTC,
ETH, BNB, NEO, LTC, and BCC pairs in the period from May 1st, 2018 at 01:00 to
May 16th, 2018 at 09:59.
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9 | Concluding Remarks

In this thesis, what we have essentially done is set up a framework that allows
easy model development and backtesting for trading cryptocurrencies, and shown its
potential effectiveness on multiple trading pairs. At the heart of the framework is the
hypothesis that some time dependent function exists, that given the right information
can predict future profits on cryptocurrencies. We find evidence supporting the existence
of such a function by producing profits on five of six cryptocurrency pairs, with models
derived using the BTC-USDT pair. We show that 1 minute trading data aggregated
into 1 hour observations can serve as proxy for the information needed for the predictive
function. We further show that in this particular setup gradient boosting and random
forests outperform to GLM and neural networks.

Through the model derivation we show the local nature of the predictive function
by increasing profits through a reduction in the training set size. For gradient boosting
the evidence supporting a reduction of the training set was not unanimous since there
was a decrease in profits, however, we assumed this was a data related coincidence. To
further support this assumption we applied the gradient boosting model without the
reduction of training set size to the new data for all six pairs, which resulted in losses
across all of them.

Staying true to the spirit of both gradient boosting and random forests we created an
ensemble model by combining the two models, which overall outperforms both gradient
boosting and random forests individually.

In Section 9.1 we discuss the return on investment from actually implementing the
trading framework and in Section 9.2 we briefly touch on extending the framework.

9.1 | Estimating Cost and Return

The profits reported throughout the thesis are rather large percentages, however, for
actual implementation it is important to keep in mind that profits are calculated as a
percentage of the fixed amount of each trade. In the following two sections we calculate
the return on investment by first estimating the required liquidity for initializing, which
we subsequently use to estimate return on investment.

9.1.1 | Initialization Cost

Throughout the result presentations we do not touch on the subject of how much lig-
uidity is needed to actually make the reported profits, we simply assume the trading
account used already has enough liquidity to place the required orders. Here we esti-
mate the liquidity required to apply the framework, based on how many trading pairs
are included and the trade horizon. Each time a trade is performed there must be suf-
ficient funds to buy a specific amount of the asset, and at same time already have that
same amount of the asset to set the stop-limit order. Once a trade has been made, the
liquidity used for that trade can be locked down in a time period of which the upper
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limit is defined by the trade horizon chosen. The estimated initialization cost is then
pairs - amount - (horizon + 1) - 2 = initialization cost,

where we add one to the horizon to provide some wiggle room in case the first couple
of trades are losses. For the parameters used in this thesis, i.e., six trading pairs and a
24 period trade horizon, the initialization cost is

6 - amount - (24 4+ 1) - 2 = 300 - amount,

where the amount per trade could be fixed in terms of USDT value, or in terms of the
cryptocurrency used for trading.

9.1.2 | Return on Investment

Let us now assume that at each trade we buy an amount of the given asset corresponding
to 100 USDT. This assumption implies that we need to make an initial investment of

300 - 100 = 30000 USDT.

Assume that we use the ensemble model which yields a profit of 400% of the average
investment, a profit of 400 USDT, over the course of roughly two weeks. That is a
monthly return of approximately 2.6%, which is not a bad return and could most likely
be improved by deriving models specific to each trading pair. Since we are required to
have half the initial investment placed in the cryptocurrencies we trade, we are exposed
to movements in the USDT value of these cryptocurrencies. As such, we recommend
only using this framework on trading pairs you see increase in the long run (or at
least until you want to cash out). Alternatively, the downside protection provided by
stop-limits could be removed, which would half the initialization cost and remove the
exposure from holding the traded cryptocurrencies. In Section 9.2.3 we present a third
option that could potentially circumvent the additional initialization costs and risk
exposure from stop-limits while still providing some downside protection.

9.2 | Topics for Further Development

In this section we present some of the ideas we have for further developing the framework
and models.

9.2.1 | Local Data Parametrization

We find evidence to support the local market dynamics hypothesis, i.e., some local
explanatory variables are able to predict when to buy and stay. As such, it would be
wise to examine the data parametrization periodically to ensure the optimal combination
is used. This would consist of using the presented framework to further examine which
limit, stop-limit, horizon, etc. is best suited for a given period for a given trading
pair and then perform a finer search around these values. We consider five limits, for
example, and find that a 2% limit performs best, we could then examine a finer interval
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around 2% perhaps improving the true classification rate, and likewise for the other
parameters. We found that a 2% limit and 10% stop-limit seemed a decent combination
but our search was not exhaustive, thus, this combination is unlikely the ideal. The
ideal combination is also likely to change over time and across trading pairs.

Another way we think might increase the percentage of true buys is to trade using a
lower limit than is used for classification. An example would be to classify and predict
buys with a limit of 3% but then set the actual limit orders at 2%, the motivation being
that we are predicting a higher increase than we are aiming for, which could perhaps
lead to more limit orders being triggered.

We also imagine that combining multiple aggregation intervals could further improve
the true classification rate. This would consist of setting up separate models, customized
to each aggregation interval considered and only trade when the models agree on trading.
Consider the 1 hour aggregation interval, which would give a new prediction every hour,
and combine this with the 15 minute interval, which would give four predictions per
hour. One way to combine the two intervals would be to only allow the 15 minute model
to trade on candles which the 1 hour model classifies as buys.

9.2.2 | Local Model Configuration

Similar to the local data parametrization described in Section 9.2.1, a periodical model
recalibration to determine the optimal model calibration should be used. The frame-
work allows easy backtesting to reconfigure the models and examine which were more
profitable in a given period. Assuming the local market dynamics hypothesis is true it
seems likely that the model configuration is also subject to change over time.

The results presented in this thesis are all based on models derived using only the
BTC-USDT pair. It is likely that the results would improve had we used pair-specific
model configurations for each pair.

9.2.3 | Reversing the Framework

In the presented framework we only consider the prediction of price increases. We use
the implementation of stop-limit orders to reduce potential downside risk, which as
mentioned in Section 9.1 has the consequence that the trading account must have a
sufficient holding of a given asset to place these. While further exposing the trader to
changes in the USDT value of the cryptocurrencies that must be held.

A possible way to obtain downside protection, without the additional initialization
cost and exposure, is to flip the framework and instead of predicting when a price is
likely to increase, predict when it is likely to decrease. By predicting decreases we
could potentially avoid using stop-limit orders and instead simply liquidate the trades
whenever the model predicts eminent price decreases.

9.2.4 | Technical Analysis Models

For the TA factors added to the trading data we only considered parameters that were
typically used for the moving averages, and only one way to deduce the trading signals
from the factors. We do find some evidence that the trading factors can assist the
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models to further improve profits, and as such, it might be worth considering further
parametrization and trading rules for the TA factors. A TA model could even be
constructed by combining the different trading signals of the three TA indicators and
more could be added to further optimize this model.

9.2.5 | Crypto-to-Crypto Trading

While we do perform crypto-to-crypto trading in this thesis, we trade against USDT,
a rather stable cryptocurrency. Assume that we want to increase our holdings of BTC
and ETH. We could then initially split our holdings into half BTC and half ETH. Say
we also managed to construct a model to predict decreases in the USDT value of either
of the two. Then if the models predict that the USDT value of ETH would increase and
the USDT value of BTC decrease, we could move our holdings into ETH. Conversely,
when we expect the BTC to increase and ETH decrease we could move our holdings
back into BTC. Using this setup would half the fees that we would have to pay if we were
simply trading BTC-USDT and ETH-USDT simultaneously. Trading crypto-to-crypto
also opens up for the trading of other pairs that do not trade against USDT.
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A | Technical Analysis Factors

We base the TA factors on the exponential moving average (EMA) to give more
weight to more recent observations than the simple moving average (SMA). Throughout
this section we denote closing price by p; and the EMA is then defined as

t=1
EMAt(pt,n) = P,
K'pt-f-(l—K)'EMAt_l, t>1.
where
2
Cn+41

From the EMA definition it is clear that it can be estimated without dropping obser-
vations, however, in our implementation we initialize the EMA by inserting a 14 period
SMA instead of p; in the case where ¢t = 1. We cover the derivation of TA signals in the
following sections, all TA signal are calculated using closing prices. The implementa-
tion of deriving the TA factor and adding them to data are shown in Appendix B.2.4.
The parameters chosen when calculating any of the trade signals are all subjective, the
implementation below depicts what in our experience are generally popular choices.
The relevant theory for each indicator is based on the implentation used in the TTR
R-package by Ulrich (2017).

A.1 | Relative Strength Index

The RSI is a popular momemtum oscillator which moves within a range from 0 to
100 and has two noteworthy zones. When the RSI is above 70 the underlying asset
is considered overbought, and it is likely that the price will decline. When the RSI is
below 30 the underlying asset is considered oversold and it is likely that the price will
start increasing. It is trypically recommended to use a 14 period RSI, which is what we
consider here, however increasing this period will make the RSI less sensitive to changes,
and decreasing it, more sensitive.

The RSI is calculated by measuring the average gains and losses over the specified
period and creating a ratio from these that is then charted to provide the RSI plot in
Figure A.1. The RSI is calculated as

100

RSI, =100 — ——
t 1+ RS,’

where RS is the relative strength measured by an EMA of average gains (AG) over an
EMA of average losses (AL) given by

_ EMA(AGy,14)

RS"JMWAAALu1®'
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The AG and AL are defined as

AGy = max(0,pr — pr-1),
AL; = min(0, p; — pi—1).

Using the RSI, typical bullish signals are when the RSI crosses from below 30 to above,

BTC-USDT 15m candles
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Figure A.1: BTC-USDT 15m candles in the period from March 30th, 2018 at 22:00
to April 1st, 2018 at 23:45 and the RSI of the same period. The candles we buy on
according to the RSI are marked with a "+".

and when it crosses from below 50 to above. To derive the trading signals from the RSI
we construct two sets of conditions, which if true are considered buy signals. The first
case is when

RSI; > 30,
RSI;_1 < 30,

and the second case is when

RSI, > 50,
RSI,_, > 50,
RSI; 5 < 50.
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A.2 | Moving Average Convergence / Divergence

The MACD consists of two lines, the MACD and the signal line, both based on the
closing prices of each candle. The MACD line is calculated by subtracting a longer
EMA from a shorter EMA, typical periods used for these moving averages are 26 for
the longer and 12 for the shorter, thus, the MACD is calculated as

MACDt = EMAt(pt, 12) - EMAt(pt, 26)

The signal line is typically calculated as a 9-period EMA of the MACD and charted
ontop of the MACD line

Signal = EM A, (M ACD,,9).
Using the MACD, typical bullish signals are when the MACD line crosses above the

BTC-USDT 15m candles
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Figure A.2: BTC-USDT 15m candles in the period from March 30th, 2018 at 22:00
to April 1st, 2018 at 23:45 and the MACD of the same period. The candles we buy on
according to the MACD are marked with a "+".

signal line. Often investors wait for a few periods to confirm the cross is true before

entering a long position, as such we consider a 3-period filter, meaning we wait for
the MACD line to have been above the signal line for at least 3 periods after crossing.
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According to the MACD we buy when the following conditions are met

MACD; > Signaly,
MACD; 1 > Signal;_1,
MACD;_o > Signal;_o,
MACD,_3 > Signal;_s3,
MACD;_4 < Signal;_4.

Using these calculations, both the MACD and Signal line are charted to provide the
signal shown in Figure A.2.

A.3 | Average Directional Index

The ADX is used to determine the strength of the price movement trend and takes on
values between 0 and 100 indicating weak and strong trends, though it rarely exceeds
60. Values between 0 and 25 indicate an absent or weak trend, and values above 25
indicate an increasingly stronger trend. The ADX is a non-directional trend indicator,
and is often charted in conjunction with the two directional indexes (DIs) from which
the trade signal is derived. To calculate the ADX we start by calculating two directional
movement indexes (DMIs), DM I and DM~ which are based on the price changes
for each candle. The DMIs are calculated by considering the one-period changes to the
highest price, ht, and lowest price, I;, of the candles

AHighy = hy—1 — hy,
ALowt = lt — ltfl.

The directional movements are then calculated using the following three cases. If
AHigh; <0 and ALow; < 0, or AHigh; = ALow; then

DMI;} =0,
DMI; =0.

If AHigh; > ALow; then

DMIT = AHigh,,
DMI~ =0.

Finally if AHighy < ALow,; then

DMItT =0,
DMI™ = ALows.

A true range, TR, is then calculated as the true high, TH, minus the true low, T'L,
that is

TR, = TH, — TL,,
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where

THt = ma‘x(htaptfl)7
TL; = min(l, pi—1),

where p; still denoted closing price. A Wilder Welles EMA (WEMA) is then applied to
DMI*, DMI~, and TR, which is simply an EMA with weighting coefficient K = %
instead of the usual K = %H, and two directional indicators, DIT and DI, are

derived. Typically a 14-period WEMA is used, making the directional indicators
WEMA(DMI;",14)
WEMA(TR;,14)

WEMA,(DMI;,14)
W EMA(TRy, 14)

DIF =100 x

DI =100 x

The directional movement index (DX) is then calculated as

DI} — DI

DX; =t "t
""" DI + DI

and a 14-period EMA is applied to arrive at the ADX. Finally the ADX, DI', and
DI~ are charted to give the visual shown in Figure A.3. Using the ADX, typical
bullish signals are when the DIT crosses above the DI~, while the ADX is above
25, suggesting a strong trend. In order to try and eliminate buying when the trend is
strongly diminishing, we consider only the cases where the ADX has increased for in
one of three precious periods. According to the ADX we buy when the two conditions

DI} > DI,
ADX; > 25,

and one of the following are met

ADX; > ADX;_1,
ADX; 1 > ADXt_Q,
ADX; 9 > ADX;_3.
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BTC-USDT 15m candles
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Figure A.3: BTC-USDT candles in the period from March 30th, 2018 at 22:00 to
April 1st, 2018 at 23:45 and the ADX, DI", and DI~ of the same period. The candles
we buy on according to the ADX are marked with a ‘.
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B | Code

B.1 | R-Packages

Below we list all R-packages used in the thesis, split into areas of applicability.

# Wrangling and Computing
library (dplyr)
library (magrittr)
library (tidyr)
library (reshape?2)
library(tibble)
library (readr)
library (foreach)
library (doParallel)
library (compiler)
library (purrr)

# API and Database
library (httr)
library(digest)

# Modelling

library (glmnet)
library (randomForest)
library (xgboost)
library (keras)
library (TTR)

library (pROC)

# Plotting and tables
library (ggplot2)
library (grid)

library (gridExtra)
library(gtable)
library (corrplot)
library (xtable)

# Date and Time
library (anytime)
library (lubridate)

# Misc
library (Hmisc)

H* HOHFE H B B O H HHH

H*

H OH B B OB

H o OH O H R

**

Data Manipulation
Pipe-Operators

Data Tidying

Data Reshaping

Data Frame Format

Read Data

Iterative Computing

Parallel Backend for foreach
Byte Code Compiler
Functional Programming

HTTP Requests
Hash functions

GLM and Penalized Regression
Random Forest

Gradient Boosting

Neural Networks

Technical Analysis

ROC-Curve

Plotting Environment
Plot Grid

Grid Arranging

Grid Alignment
Correlation plot
Exporting LaTeX Tables

Date and Time Conversion
Date and Time Calculations

Capitalize String
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B.2 | Framework Implementation

In this appendix we present the implementation of the code neccessary for using the
data parametrization framework described in Chapter 1, as well as a short description
of the arguments used in each function.

B.2.1 | The Binance API

To obtain trading data from the Binance API kline endpoint, we first set up a func-
tion that makes a single GET request to the API. It takes the trading pair symbol,
aggregation interval, and startTime arguments.

# Binance candlesticks Timed
Binance_Candlesticks_Timed <- function(
symbol, interval, startTime){

# Set URL to API endpoint
api_url <- "https://api.binance.com"
req_url <- "api/vi/klines"

# Define the parameters for the API call
params <- list(symbol = symbol,
interval = interval,
startTime = startTime)

# Make the call

response <- content (GET(api_url, path = req_url, query = params))

# Restructure the response
response_df <- as.data.frame(
foreach(i = 1:length(response), .combine = rbind) %do’% {
foreach(j = 1:12, .combine = c) %do% {
response [[1]1]1[j]
s
}
, stringsAsFactors = FALSE, row.names = FALSE)

# Filter and name the response

response_df <- response_df[,—l?]
cols_numeric <- c¢(1,2,3,4,5,6, 7 ,8,9,10,11)
response_df [, cols_numeric] = apply(response_df[, cols_numeric], 2, function(x) as.numeric(x))
colnames (response_df) <- c("Open_time",
"Open",
"High",
"Low",
"Close",
"Volume",

"Close_time",
"Quote_asset_volume",
"Number _of _trades",

"Taker _buy_base_asset_volume",
"Taker_buy_quote_asset_volume")

# Return the response
return(response_df)

}

We then nest this GET reqeust function in another function, which makes as many
GET requests as needed to get all data available between the startTime and endTime.
This function takes the trading pairsymbol, aggregation interval, and startTime, and
endTime arguments.
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1| # Binance Candlesticks Historical

2| Binance_Candlesticks_Historical <- function(

3 symbol, interval, startTime, endTime){

4

5 # Check inputs

6 if (endTime - startTime <= 0) stop("startTime must be before endTime!")
7

8 # Initial data setup

9 data <- Binance_Candlesticks_Timed(symbol = symbol, interval = interval, startTime = startTime)
10

11 # Set start time for while loop

12 next_startTime <- startTime + 60000000

13

14 # Get all full api calls

15 while (next_startTime <= endTime){

16 next_data <- Binance_Candlesticks_Timed(symbol = symbol, interval = interval,
17 startTime = next_startTime)
18 data <- rbind(data, next_data)

19 next_startTime <- next_startTime + 60000000
20 }
21
22 # Cut data to start and end time
23 data <- data[which(data$0pen_time <= endTime),]
24
25 return(data)
26|}

Finally, we set up a top-level function that downloads all data for multiple trading pairs
using the GET reqeust function, and saves the data in a specified path. This function
takes a vector of trading pair symbols, aggregation interval, and startTime, endTime,
and path_save to save the data as inputs

1| # Get Candlesticks

2| Get_Candlesticks <- function(

3 pairs, interval, startTime, endTime, path_save = NULL){

1

5 # Download all trading pairs for the specified period

6 start_timer <- Sys.time ()

7 data <- foreach(i = pairs, .packages = c("httr", "foreach"),

8 .export = c("Binance_Candlesticks_Historical", "Binance_Candlesticks_Timed")) Y%dopar% {
9 response <- Binance_Candlesticks_Historical(symbol = i, interval = interval,
10 startTime = startTime, endTime = endTime)
11 if (nrow(response) == 0){
12 stop(paste0("Trading pair ", i, " has no data for this period!"))
13 3
14 cat (paste0("Trading pair ", i, " downloaded."))
15 return(response)
16 }
17 names (data) <- pairs
18 end_timer <- Sys.time()
19 time_taken <- end_timer - start_timer
20 cat (paste0("Downloaded ", length(pairs), " trading pairs in"), time_taken, "\n")
21
22 # If no path for saving is provided, download data to R object
23 if (is.null(path_save)){
24 cat (paste0("All ", length(pairs), " pairs downloaded as R object."), "\n")
25 return(data)
26

27 # If path for saving is provided, save data to path
28 else {

29 foreach(i = pairs) Y%dopary {

30 # Download data

31 temp_data <- datal[[i]]

32

33 # Save the candlesticks for current the trading pair
34 write.csv(

35 x = temp_data,

36 file = file.path(path_save, pasteO(i, ".csv")),

37 row.names = FALSE, quote = TRUE

38 )

39 cat(paste0("Trading pair ", i, " saved as .csv file."))
40

41 cat (paste0("A1l ", length(pairs), " pairs saved to ", path_save), "\n")
42 return(time_taken)

43 ¥

44|}
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B.2.2 | Data Preparation

To prepare the raw data downloaded using the code in Appendix B.2.1 we use the top-
level function presented below. It parametrizes the raw data in all possible combinations
of the inputs given, as described in Section 1.4, and uses the functions presented in
Appendices B.2.3-B.2.7. This function also handles the problem of making the datasets
the same size regardless of difference orders, lag orders, and whether or not factors are
added, as well as the profit scouting described in Section 7.1. It takes 18 arguments,
the first two of which are unique to the function, filter is the threshold for filtering
the datasets by potential profit and candlesticks is the raw data. The remaining
arguments correspond to the arguments used by functions in Appendices B.2.3-B.2.6.

Prepare_Candlesticks <- function(filter = 1.00, candlesticks,
pairs = NULL, interval = "im", only_full = FALSE, # Aggregate_Candlesticks
factors_based_on = "Close", factors = FALSE, time_factor = FALSE, exclude_na = TRUE, # AddTo_Candlesticks
classify_based_on = "Close", limit = 0.01, stop = 0.02, horizon = 0, # Classify_Candlesticks

diff_value = 0, max_diff = 0, lag = 0, n_test = 0.2, exclude = FALSE){ # Split_Candlesticks
# Check filter input
if (filter > 1.00) stop("Filter value must be between 0.00 and 1.00")

# Create multiple datasets for each trading pair
pairs <- names(candlesticks)

# Set all parameter combinations
max_lag = max(lag)
parameters <- expand.grid(
# Aggregate_Candlesticks
interval = interval,
# AddTo_Candlesticks
time_factor = time_factor,
diff_value = diff_value,
factors = factors,
# Classify_Candlesticks
limit = limit,
stop = stop,
# Split_candlesticks
lag = lag,
exclude = exclude,
stringsAsFactors = FALSE)

# Set ID for each parameter combinations and add ID column
n_parameters <- nrow(parameters)
parameters <- cbind(ID = c(l:n_parameters),
Buys = rep(NA, n_parameters),
Stays = rep(NA, n_parameters),
Profits = rep(NA, n_parameters),
parameters)

# Set amount of sets to return after filtering and check if filter would return any sets at all
n_filter <- round(n_parameters * filter, 0)
if (n_filter < 1){

n_filter <- 1

cat("Filter value of", filter, "would reuturn O sets. Returning the most profitable instead. \n")
}

cat(”Starting parametrization for", n_parameters, "different combinations for each trading paer\n”)

# Prepare candlesticks for each pair
results <- foreach(pair = pairs) %do% {
cat (pair, "start \n")
# Aggregate datasets only once
aggregated_dfs <- foreach(unqiue_interval = interval) %do% {
Aggregate_Candlesticks (
candlesticks = candlesticks,
pairs = pair,
interval = unqiue_interval,
only_full = only_full)
}
names (aggregated_dfs) <- interval
cat ("All aggregation levels complete \n")

# Prepare dataset for each parameter combination
parameter_sets <- foreach(
parameter _row = c(l:n_parameters),
.export = c("AddTo_Candlesticks", "Classify_Candlesticks", "Split_Candlesticks", "Calculate_Profit"),
.packages = c("foreach")) Y%dopar% {
# Set current parameters to be used
current_parameters <- parameters[parameter_row, ]
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68 # Check if factors are added, if they are also handle timestamp and direction
69 if (current_parameters$factors == FALSE){
70 current_exclude <- TRUE
71 current_time_factor <- FALSE
72 } else {
current_exclude <- FALSE
current_time_factor <- TRUE
}
if (current_exclude == FALSE) current_parameters$exclude <- current_exclude

current_parameters$time_factor <- current_time_factor

# Add factors to candlesticks
factors_df <- AddTo_Candlesticks (

candlesticks = aggregated_dfs[[current_parameters$intervalll,
based_on = factors_based_on,

factors = current_parameters$factors,

time_factor = current_parameters$time_factor,

exclude_na = exclude_na)

# Classify candlesticks
classified_df <- Classify_Candlesticks(

candlesticks = factors_df,
90 based_on = classify_based_on,
91 limit = current_parameters$limit,
92 stop = current_parameters$stop,
93 horizon = horizon)
94
95 # Account for factors
96 classified_df [[pair]] <-
97 classified_df [[pair]][ifelse(current_parameters$factors, 4, 37):nrow(classified_df [[pairll),]
98
99 # Split candlesticks
100 split_df <- Split_Candlesticks(
101 candlesticks = classified_df,
102 diff_value = current_parameters$diff_value,
103 max_diff = max_diff,
104 lag = current_parameters$lag,
105 n_test = n_test,
106 exclude = current_exclude,
107 factors = current_parameters$factors)
108
109 # Get prepared data to return
110 prepared_data <- split_df[[pair]]
111
112 # Calculate potential profits
113 calculated_profits <- Calculate_Profit(data = split_df [[pair]], set = "scouting",
114 parameters = current_parameters, horizon = horizon,
115 ignore_stops = FALSE, PL = FALSE, fee = 0.001)
116 current_parameters$Buys <- calculated_profits$n_buys
117 current_parameters$Stays <- calculated_profits$n_stays
118 current_parameters$Profits <- calculated_profits$profit
119
120 result <- list(prepared_data, current_parameters)
121 names (result) <- c("Data", "Parameters")
122 return(result)
123 }
124 names (parameter _sets) <- as.character (parameters$ID)
125 cat ("All computations complete \n")
126
127 # Collect parameters from each dataset and sort parameters by potential profit in training set
128 pair_parameters <- foreach(row_parameter = c(l:n_parameters), .combine = rbind) %do% {
129 parameter_sets[[row_parameter]]$Parameters
130 } %>% arrange(desc(Profits), stop)

# Filter the parametrized sets by profit

if (filter < 1.00){
# Set threshold for profits to ensure equally profitable pairs are not excluded
profit_threshold <- pair_parameters[n_filter, "Profits"]

# Filter parametrized sets by profit
pair_parameters <- pair_parameters[which(pair_parameters$Profits >= profit_threshold),]
parameter_sets <- parameter_sets[pair_parameters$ID]

if (filter == 0.0){
pair_parameters <- pair_parameters[which(pair_parameters$stop == min(pair_parameters$stop)),]
parameter _sets <- parameter_sets[pair_parameters$ID]
}
145 b
146 cat("All filtering complete \n")
147 data <- list(parameter_sets, pair_parameters)
148 names (data) <- c("Sets", "Parameters'")
149 cat (pair, "end \n")
150 return(data)
151 }
152 names (results) <- pairs
153 return(results)
154| }
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B.2.3 | Aggregation

To aggregate the 1m candles obtained using the code in Appendix B.2.1 we use the
function below. It takes four arguments, candlesticks is the raw 1m data, pairs can
be used to only aggregate select trading pairs, if pairs is NULL all trading pairs will be
aggregated, aggregation interval is the desired interval to aggregate, and only_full
controls whether or not to exclude candles with less than full information.

Aggregate_Candlesticks <- function(

candlesticks, pairs = NULL, interval = "im", only_full = FALSE){
# Set intervals, corresponding minutes, and globals
intervals <- c("im", "5m", "15m", "30m", "1h", "2h", "4h", "8h", "12h", "24h")

minutes <- c¢(1, 5, 15, 30, 60, 120, 240, 480, 720, 1440)
if (! (interval %in% intervals)){
stop("Interval not implemented - Try 1im, 5m, 15m, 30m, 1h, 2h, 4h, 8h, 12h, 24h.")
}
aggregate <- minutes[match(interval, intervals)]
if (is.null(pairs)) pairs <- names(candlesticks)

# Aggregate candlesticks

data <- foreach(i = pairs, .packages = c("foreach", "anytime")) %do?% {
# Get specific pair and check if aggregation is possible
raw_df <- candlesticks[[i]]

# Check the data and if aggregation interval is possible

check_row <- nrow(raw_df)

check_full_candle <- floor(check_row/aggregate)

if (check_full_candle == 0){
stop(paste0("Cannot aggregate ", interval,

candle with only , check_row,

minutes of data."))
if (check_row < 61) stop("Dataset must contain more than 60 minutes of data.")

# Get desired variables from raw data

temp_df <- raw_df[, c(1:6, 9)]

colnames <- c("Time", "Open", "High", "Low", "Close", "Volume", "Trades")
colnames (temp_df) <- colnames

temp_df$Time <- anytime (temp_df$Time/1000)

# Aggregate candles if needed

if (aggregate == 1){
aggregated_candles <- temp_df
} else {

# Determine how many candles to make and handle sparse first and last candles
min_prior <- ifelse(aggregate <= 60,
min(which(diff (lubridate::hour (temp_df$Time)) == 1)),
min(which(diff (lubridate::day(temp_df$Time + hours(1))) == 1)))
candle_first_size <- min_prior %% aggregate
candles_middle_from <- candle_first_size + 1
candles_middle_amount <- floor((check_row - candle_first_size)/aggregate)
candle_last_size <- (check_row - candle_first_size) %/ aggregate

# Aggregate candles

aggregated_candles <- foreach(j = 1:candles_middle_amount, .combine = rbind) %do’% {
# Set candles to be aggregated
candle_from <- candles_middle_from + (j * aggregate - aggregate)
candle_to <- candle_from + aggregate - 1

candle_data <- temp_df [candle_from:candle_to,]

# Aggregate candles to desired interval
candle_middle <- data.frame(
Time <- candle_data$Time[1],
Open <- candle_data$0Open([1],
High <- max(candle_data$High),
Low <- min(candle_data$Low),
Close <- candle_data$Close[aggregate],
Volume <- sum(candle_data$Volume),
Trades <- sum(candle_data$Trades),
stringsAsFactors = FALSE)
colnames (candle_middle) <- colnames

return(candle_middle)

}

if (tonly_full){
# If sparse first candle, calculate it
if (candle_first_size != 0){
# Set candles to be aggregated
candle_data <- temp_df[l:candle_first_size,]
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# Aggregate first sparse candle

candle_first <- data.frame(
Time <- candle_data$Time[candle_first_size] - 60 * (aggregate - 1),
Open <- candle_data$Open([1],
High <- max(candle_data$High),
Low <- min(candle_data$Low),
Close <- candle_data$Close[candle_first_sizel],
Volume <- sum(candle_data$Volume),
Trades <- sum(candle_data$Trades),
stringsAsFactors = FALSE)

colnames (candle_first) <- colnames

# Combine data
aggregated_candles <- rbind(candle_first, aggregated_candles)

}
# If sparse last candle, calculate it
if (candle_last_size != 0){

# Set candles to be agg

candle_data <- tail(temp_df, candle_last_size)

egated

#

candle_last <- data.frame(
Time <- candle_data$Time[1],
Open <- candle_data$Open([1],
High <- max(candle_data$High),
Low <- min(candle_data$Low),
Close <- candle_data$Close[candle_last_sizel,
Volume <- sum(candle_data$Volume),
Trades <- sum(candle_data$Trades),
stringsAsFactors = FALSE)
colnames (candle_last) <- colnames

regate last s

# Combine data
aggregated_candles <- rbind(aggregated_candles, candle_last)
}
}
}

# Make direction vector for plotting colors
aggregated_candles$Direction <- ifelse(aggregated_candles$Close > aggregated_candles$Open, 1, 0)

return (aggregated_candles)

}

names (data) <- pairs
return(data)

}

B.2.4 | Factor Additon

After aggregating the candlesticks we add different factors to the data. We add the
hour at which the candle starts, the direction of price movement in the candle, and
three TA factors: The RSI, MACD, and ADX, for which we derive an indicator vector
of whether we should buy or stay according to them. The function takes five arguments,
candlesticks is the aggregated data using the code in Appendix B.2.3, based_on is
the price data to base the TA factors on, time_factor is a boolean indicating whether
or not to include the hour as factor, and exclude_na a boolean indicating whether or
not to exclude the NA’s produced by calculating the TA factors.
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# Add factors to candlesticks
AddTo_Candlesticks <- function(
candlesticks, based_on = "Close'", factors = FALSE, time_factor = FALSE, exclude_na = TRUE){
# Set trading pairs to add factors to
pairs <- names(candlesticks)
# For each dataset
data <- foreach(i = pairs) %do% {
# Set temporary data frame
temp_df <- candlesticks[[i]]
if (factors == TRUE){
# Calculate RSI, MACD, and ADX
RSI <- TTR::RSI(temp_df[, based_on], n = 14, maType = "EMA", wilder = FALSE)
MACD <- TTR::MACD(temp_df[, based_on], maType = "EMA", nFast = 12, nSlow = 26, nSig = 9,
percent = TRUE, wilder = FALSE)
ADX <- TTR::ADX(temp_df[, c("High", "Low", "Close")], n = 14, maType = "EMA", wilder = FALSE)
# Collect TA factors for plotting later on
temp_factors <- as.data.frame(cbind(RSI, MACD, ADX))
colnames (temp_factors) <- c("RSI", "MACD", "MACD_signal", "DIp", "DIn", "DX", "ADX")
# Calculate trading signals based on TA factors
RSI_action <- c(rep(0, 2), foreach(index = c(3:length(RSI)), .combine = c) %do% {
action <- 0
if (!is.na(RSI[index - 2])){
if (RSI[index] >= 30 & RSI[index - 1] < 30) action <- 1
if (RSI[index] >= 50 & RSI[index - 1] >= 50 & RSI[index - 2] < 50) action <- 1
}
return(action)
b
MACD_action <- c(rep(0, 4), foreach(index = c(5:nrow(MACD)), .combine = c) %do% {
action <- 0
if ('is.na(MACD [index - 4, 21)){
check_0 <- MACD[index, 1] > MACD[index, 2]

check_1 <- MACD[index - 1, 1] > MACD[index - 1, 2]

check_2 <- MACD[index - 2, 1] > MACD[index - 2, 2]

check_3 <- MACD[index - 3, 1] >= MACD[index - 3, 2]

check_4 <- MACD[index - 4, 1] < MACD[index - 4, 2]

if (check_0 & check_1 & check_2 & check_3 & check_4) action <- 1
}
return(action)

b

ADX_action <- c(
action <- 0
if (Yis.na (ADX[

check_movement <-

rep(0, 3), foreach(index = c(4:nrow(ADX)), .combine = c) %do% {
index - 3, 41)){
ADX [index, 1] > ADX[index, 2]

check_strength_0 <- ADX[index, 4] > 25

check_strength_1 <- ADX[index, 4] > ADX[index - 1, 4]
check_strength_2 <- ADX[index - 1, 4] > ADX[index - 2, 4]
check_strength_3 <- ADX[index - 2, 4] > ADX[index - 3, 4]

if (check_movement & check_strength_0){

if (check_strength_1 |

}
}
return(action)

b

# Collect TA
temp_signals <-

}

# Add timestamp as
if (time_factor ==

to ¢

# Add factors
== TRUE

if (factors

# Filter out candl

check_strength_2 | check_strength_S) action <- 1

signals

as.data.frame(cbind (RSI_action, MACD_action, ADX_action))

factor

TRUE) temp_df$Hour <- format(temp_df$Time, "7%H")

andlesticks

) temp_df <- cbind(temp_df, temp_signals, temp_factors)

es with NA from MAs

if (exclude_na) temp_df <- temp_df [complete.cases(temp_df),]

return (temp_df)

# Return data
names (data) <-
return(data)

pairs
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B.2.5 | Classification

To classify the candlesticks into either buys or stays as described in Section 1.4.3, we
use the function presented below. It takes five arguments, candlesticks is the data
with added factors returned from the function in Appendix B.2.4, ‘based on‘ is the
price to base the classification on (either close at current candle or open at next), limit
is the desired percentage of profit, stop is the desired maximum percentage of loss, and
horizon is the period of candles to base the classification on.

Classify_Candlesticks <- function (
candlesticks, based_on = "Close", limit = 0.01, stop = 0.02, horizon = 0){

# Check inputs

if (horizon == 0) {
cat ("Returning candlesticks input data as horizon = 0.")
return(candlesticks)

if (limit < 0 | stop <= 0){
stop("Limit and stop should be percentage in decimal. Stop will be negated automatically.")

pairs <- names(candlesticks)
pairs_total <- length(pairs)

# Classify the candles for each pair
data <- foreach(i = pairs, .packages = c("foreach")) %do% {

# Set temporary data frame
temp_df <- candlesticks[[i]]
candles_total <- nrow(temp_df) - horizon
if (candles_total < 1){
stop(paste0("Cannot classify over ", horizonm,

" candles, when only ", nrow(temp_df), "is given."))

# Classify the candles in one pair
classes <- foreach(j = l:candles_total, .combine = c) %do% {
buy <- switch(based_on,
"Open" = temp_df$Open[j+1],
"Close" = temp_df$Closel[j])

# Set the desired leves for each observation and the highest and lowest value within the horizon
goal_limit <- buy * (1 + limit)

goal_stop <- buy * (1 - stop)

highs <- temp_df$High[(j+1):(j+1+horizon)]

lows <- temp_df$Low[(j+1):(j+i+horizon)]

# Check if the limit and stop-limit is triggered
tests_high <- highs >= goal_limit
tests_low <- lows <= goal_stop

# Check which limit is triggered first
first_limit <- ifelse(any(tests_high == TRUE), min(which(tests_high == TRUE)), NA)
first_stop <- ifelse(any(tests_low == TRUE), min(which(tests_low == TRUE)), NA)

# Make the classification
if (is.na(first_limit)){
class <- 0
} else {
if (is.na(first_stop)){
class <- 1
} else {
class <- ifelse(first_limit < first_stop, 1, 0)
}
}
return(class)

}

# Set the remaining candles as stays
Class <- c(classes, rep(0, horizon))
classified_df <- cbind(Class, temp_df)
return(classified_df)

}

names (data) <- pairs
return(data)

}
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B.2.6 | Differencing, Lagging, and Splitting

The final step of preparing the data is to difference, lag, and split it into training,
validation, and test sets as described in Section 1.4.4. The function used to do this
is presented below and takes seven arguments, candlesticks is the classified data
returned from the function in Appendix B.2.5, diff_value is the order of differencing,
max_diff is the maximum order of differecing used for all dataset, lag is the order of
lag, n_test is the size of the test (and validation) set, exclude is a boolean indicating
whether or not to exclude the direction factor, and factors is a boolean indicating

whether or not to factors were added to the dataset.

Split_Candlesticks <- function(
candlesticks, diff_value = 0, max_diff = 0, lag = 0, n_test = 0.

# Check lag
if (lag < 0) stop("Lag must be greater or equal to zero!")

# Set pair names
pairs <- names(candlesticks)

data <- foreach(pair = pairs) %do% {
temp_df <- candlesticks[[pair]]
if (factors == TRUE){
factors_df <- temp_df[, c("RSI", "MACD", "MACD_signal", "DIp
non_lag_df <- temp_df[, c("Hour", "RSI_action", "MACD_action
colnames (non_lag_df) <- c("Hour_0", "RSI_action_0", "MACD_ac
temp_df <-

temp_df[, c("Class", "Time", "Open", "High", "Low", "Close
}

# Set number of observations in test set
n_test <- round(nrow(temp_df) * n_test, 0)

# Save start values to undiff to check actual profit/loss late
start_values <- as.data.frame (rbind(

temp_df [ifelse(lag + max_diff == 0, 1, lag + max_diff), c("0
temp_df [(nrow(temp_df) - 2 * n_test - 2), c("Open", "High",
temp_df [(nrow(temp_df) - n_test - 1), c("Open", "High", "Low
))
rownames (start_values) <- c("Train", "Validation", "Test")

# Diff OHLC if diff_value > O
if (diff_value > 0){

diff_series <- sapply(temp_df[, c("Open", "High", "Low", "Cl
temp_df <- temp_df[-c(l:diff_value), ]

temp_df [, c("Open", "High", "Low", "Close")] <- diff_series
if (factors == TRUE){

factors_df <- factors_df[-c(1:diff_value), ]
non_lag_df <- non_lag_df[-c(1l:diff_value), ]
¥
}

# If other diff values are used, cut datasets to same size
if (diff_value < max_diff){
temp_df <- temp_df[-c(l:(max_diff - diff_value)), ]
if (factors == TRUE){
factors_df <- factors_df[-c(l:(max_diff - diff_value)), ]
non_lag_df <- non_lag_df[-c(1:(max_diff - diff_value)), ]

}

# Check if lagged values exist
if (lag >= nrow(temp_df)){

stop(paste0("Can not use lag ", lag, " when ", i, " only has
}
# Set response vector and initial design matrix
if (lag == 0){
y <- temp_df$Class
} else {
y <- temp_df$Class[-c(l:1lag)]
if (factors == TRUE){

factors_df <- factors_df[-c(il:lag),]
non_lag_df <- non_lag_df[-c(1l:lag),]

}

time <- temp_df$Time
X_old <- temp_df[, -c(which(colnames(temp_df) %in% c("Class",
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factors = FALSE){
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APPENDIX B. CODE

}

# Exclude columns from design matrix if specified
if (exclude == TRUE){

X_old <- X_old[, -c(which(colnames(X_old) %in% c("Direction")))]
}

# Create colnames for lagged design matrix
X_old_names <- colnames(X_old)
X_new_names <- foreach(j = X_old_names, .combine = c¢) %do¥% {
colnames <- foreach(k = O:lag, .combine = c) %do’% {
paste0(j, "_", k)

}
¥

# Create lagged design matrix
if (lag == 0){
X <- X_old
} else {
X <- foreach(j = 1:ncol(X_old), .combine = cbind) %do% {
lags <- as.data.frame(foreach(k = 0O:lag, .combine = cbind) %do¥% {
lagged_values <- lag(X_old[,jl, k)
cut_values <- lagged_values[c((lag + 1):length(lagged_values))]
return(cut_values)
b
}
}

colnames (X) <- X_new_names
if (factors == TRUE) X <- cbind(X, non_lag_df)

# Training set

time_train <- time[1:(length(y) - 2 * n_test - 2)]

y_train <- y[1:(length(y) - 2 * n_test - 2)]

X_train <- X[1:(length(y) - 2 * n_test - 2),]

if (factors == TRUE) factors_train <- factors_df[1:(length(y) - 2 * n_test - 2),]

# Validation set
time_validation <- time[(length(y) - 2 * n_test - 1):(length(y) - n_test - 1)]
y_validation <- y[(length(y) - 2 * n_test - 1):(length(y) - n_test - 1)]
X_validation <- X[(length(y) - 2 * n_test - 1):(length(y) - n_test - 1),]
if (factors == TRUE){

factors_validation <- factors_df[(length(y) - 2 * n_test - 1):(length(y) - n_test - 1),]
}

# Test set

time_test <- time[(length(y) - n_test):length(y)]

y_test <- y[(length(y) - n_test):length(y)]

X_test <- X[(length(y) - n_test):length(y),]

if (factors == TRUE) factors_test <- factors_df[(length(y) - n_test):length(y),]

# Add factors if true
if (factors == TRUE){
result <- list(time_train, y_train, X_train, factors_train,
time_validation, y_validation, X_validation, factors_validation,
time_test, y_test, X_test, factors_test, start_values)

names (result) <- c("time_train", "y_train", "X_train", "factors_train",
"time_validation", "y_validation", "X_validation", "factors_validation",
"time_test", "y_test", "X_test", "factors_test", "Start_values")
} else {

result <- list(time_train, y_train, X_train,
time_validation, y_validation, X_validation,
time_test, y_test, X_test, start_values)

names (result) <- c("time_train", "y_train", "X_train",
"time_validation", "y_validation", "X_validation",
"time_test", "y_test", "X_test", "Start_values")

}
return(result)

}

names (data) <- pairs
return(data)

101




APPENDIX B. CODE

B.2.7 | Calculating Profits

The function used to do this is presented below and takes eight arguments, data is the
dataset for which the predictions are made upon, predicted is a vector of predicted
classes, set is the name of the set the predictions are performed on, horizon is the
number of candles to calculate the profit on, ignore_stops is a boolean indicating
whether or not to ignore the stops used in the data, PL is a boolean indicating whether
to calculate the profits and losses or create a detailed summary, fee is the fee percentage
to use, and parameters is the parameters used for calculating the potential profits when

used for multiple datasets.

Calculate_Profit <- function(
data, predicted, set, horizon = 24, ignore_stops = FALSE, PL = FALSE, fee = 0.001, parameters){

# Set data to be used for calculating profit and loss
if (set == "scouting"){

X <- rbind(data$X_train, data$X_validation)

y <- c(data$y_train, data$y_validation)

predicted <- y

set <- "train"
start_values = data$Start_values
} else {
X <- data$Datal[[paste0("X_", set)]]
y <- data$Datal[[paste0("y_", set)]]
start_values = data$Data$Start_values
parameters = data$Parameters
}
# If data was differenced undiff it
if (parameters$diff_value > 0){
closes <- diffinv(X$Close_0, xi = start_values[capitalize(set), "Close"])[-1]
highs <- diffinv(X$High_ O, xi = start_values[capitalize(set), "High"])[-1]
lows <- diffinv(X$Low_0, xi = start_values[capitalize(set), "Low"])[-1]
closes <- diffinv(X$Close_0, xi = start_values[capitalize(set), "Close"])[-1]
} else {
opens <- X$0pen_O
highs <- X$High_O
lows <- X$Low_O
closes <- X$Close_0
}
# Figure out which buys were good and which were bad
true_buys <- intersect(which(predicted == 1), which(y == 1))
other_buys <- intersect(which(predicted == 1), which(y == 0))
true_stays <- intersect(which(predicted == 0), which(y == 0))
other_stays <- intersect(which(predicted == 0), which(y == 1))
# Calculate loss for each wrong buy
if (length (other_buys) == 0){
losses <- O
} else {
losses <- foreach(buy = other_buys, .combine = c) %do% {
buy_price <- closes[buy]
# If ignore stops, just sell at horizon

if (ignore_stops == TRUE){
if (length(closes [(buy + 1):length(closes)]) > horizon){
loss <- (closes[(buy + 1):length(closes)][horizon] - buy_price) / buy_price
} else {
loss <- (tail(closes, 1) - buy_price) / buy_price

# If not ignoring stops, sell at stop percentag
} else {
stop_price <- buy_price * (1 - parameters$stop)

triggered_at <- detect_index(lows[(buy + 1):length(lows)], function(x) x <= stop_price)

if(triggered_at > 0 & triggered_at <= horizon){
loss <- -parameters$stop
} else if(length(closes[(buy + 1):length(closes)]) > horizon){
loss <- (closes[(buy + 1):length(closes)][horizon] - buy_price) / buy_price
} else{
loss <- (tail(closes, 1) - buy_price) / buy_price
}
}
return(loss)

}
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}

# If PL == TRUE calculate cumulative profit and loss

if (PL == TRUE){
PL <- rep(0, length(predicted))
PL[true_buys] <- parameters$limit - fee - (1 + parameters$limit) * fee
PL[other _buys] <- losses - fee - (1 + losses) * fee

PL[true_stays] <- 0
PL[other_stays] <- 0

result <- PL
} else {

# Collect results for table
# Number of buy
n_buys <- length(true_buys) + length(other_buys)
n_true_buys <- length(true_buys)

n_false_buys <- length(other_buys)

n_losses <- length(which(losses < 0))

# Number of stays

n_stays <- length(true_stays) + length(other_stays)
n_true_stays <- length(true_stays)

n_false_stays <- length(other_stays)

# Fees and profits

fees <- (n_buys * fee) + (n_true_buys * (1 + parameters$limit) * fee) +
(n_false_buys * (1 + mean(losses)) * fee)

profit <- (length(true_buys) * parameters$limit) + sum(losses) - fees

result <- as.data.frame(
cbind(n_buys, n_true_buys, n_false_buys,
n_stays, n_true_stays, n_false_stays,
n_losses, fees, profit)
)
}

return(result)
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B.3 | IMDb Example

In this appendix we present the code needed to reproduce the IMDb example shown in
Chapter 5.

B.3.1 | Setup

The following code shows the data processing needed to reproduce the IMDb example.
First we import the dataset, which is contained in the Keras R-package, the num_words
argument determines the amount of words to use, in this case only the 10000 most pop-
ular. Subsequently we extract the training and test data. The raw data is contained
within lists and needs to be in a matrix format in order to use it for modelling. We
reformat the data into matrices in lines 14-27. To monitor the generalization perfor-
mance of the models during training we extract some obeservations for a validation set
and keep the rest for the training set.

library (keras)
library (xgboost)
library (randomForest)

imdb <- dataset_imdb(num_words = 10000)
train_data <- imdb$train$x

train_labels <- imdb$train$y

test_data <- imdb$test$x

test_labels <- imdb$test$y

vectorize_sequence <- function(sequences, dimension = 10000) {
results <- matrix (0, nrow = length(sequences), ncol = dimension)
for (i in 1:length(sequences))
results[i, sequences[[i]]] <- 1
return(results)

}

x_train <- vectorize_sequence(train_data)
x_test <- vectorize_sequence(test_data)
y_train <- as.numeric(train_labels)
y_test <- as.numeric(test_labels)
val_indices <- 1:10000

x_val <- x_train[val_indices,]
partial_x_train <- x_train[-val_indices,]

y_val <- y_train[val_indices]
partial_y_train <- y_train[-val_indices]

B.3.2 | Neural Networks

We start off by training a neural network on the processed IMDb data by first defining
the topography of network. Subsequently we define the compile options, which define
the optimization algorithm, loss function to be minimized, and metric to monitor during
training, in addition to the training error. In lines 17-24 we train the models, which au-
tomatically generates a plot showing the evolution of the different performance metrics
as the number of epochs range from 1 to 20. Based on the performance metrics shown
during training we decide to reduce the number of epochs to 5, then retrain the model
on the original training set, and use this model to perform predictions on the test set.
The performance on the test is evaluated in line 48.
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# Define the model
model <- keras_model

w>h

sequential ()

layer _dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
layer _dense(units = 16, activation = "relu") %>%
layer _dense(units = 1, activation = "sigmoid")
# We have defined the topography of the model now we compile it
# which means defining optimization, loss function, and metrics to watch during training
model %>%
compile (optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy")
)
# Now we are set and can train our model
# Thi call also plots validation and trainig accuracy, and loss as a function of epochs
history <- model %>%
fit(partial_x_train,
partial _y_train,
epochs = 20,
batch_size = 512,
validation_data = list(x_val, y_val),
plot = TRUE
)
# As evident from the plots 20 epochs is overfitting so we fit a new model using only 4 epochs
modell <- keras_model_sequential () %>%
layer _dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
layer _dense(units = 16, activation = "relu") %>%
layer _dense(units = 1, activation = "sigmoid")
modell %>%
compile (optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy")
)
# Now we use the full dataset
historyl <- modell %>%
fit(x_train,
y_train,
epochs = 5,
batch_size = 512,
validation_data = list(x_val, y_val)
)
# Now use the sexy Keras library to evaluate how well we did on the test data
results <- modell %>% evaluate(x_test, y_test)
results # This naive approach yielded accuracy of 87% might vary with randomness
# Let us generate predictions form some data yielding probabilities of reviews being positive

predictions <- modell %>% predict(x_test)

B.3.3 | Gradient Boosting

Here we apply gradient boosting to the IMDb example by first transforming the pro-
cessed training and validation data into xgb.DMatrix format and then fit the model. In
lines 17-21 we extract the training and validation error, which we use to asses whether
or not we are overfitting. In lines 24-26 we extract the predicted probabilities and cal-
culate accuracy. Since we do not see any signs of overfitting, we retrain the model on
the full dataset and subsequently calculate the accuracy.
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# Prepare the data for XGB

dtrain <- xgb.DMatrix(data = partial_x_train, label = partial_y_train)
dval <- xgb.DMatrix(data = x_val, label = y_val)

watchlist <- list(train = dtrain, test = dval)

# Run the model

model <- xgb.train(data = dtrain,

max_depth = 3,

eta = 0.3,

nthread = 4,

nrounds = 200,

watchlist = watchlist,

objective = "binary:logistic",

lambda = 0)
# Get training and validation errors
train_err <- data.frame(err = model$evaluation_log$train_error)
train_err$iter <- 1:length(train_err$err)
val_err <- data.frame(err = model$evaluation_log$test_error)
val_err$iter <- 1:length(val_err$err)

# Get true classification rate

validation_probabilties <- predict(bst, x_val)
validation_prediction <- (validation_probabilties > 0.5)
sum(validation_prediction == y_val)/length(y_val)

# Full data

dtrain <- xgb.DMatrix(data = x_train, label = y_train)
dval <- xgb.DMatrix(data = x_test, label = y_test)
watchlist <- list(train = dtrain, test = dval)

modell <- xgb.train(data=dtrain,
max_depth = 3,
eta = 0.3,
nthread = 4,
nrounds = 200,
watchlist = watchlist,
objective = "binary:logistic",
lambda = 0)

# Get true classification rate for full data set
validation_probabilties <- predict(modell, x_test)
validation_prediction <-(validation_probabilties > 0.5)
sum(validation_prediction == y_test)/length(y_test)
model$evaluation_log$test_error [200]

B.3.4 | Random Forest

Since we do not perform any model configuration using random forests we simply start
off by fitting the model on the full dataset. We have however reduced the default number
of trees, from 500 to 250, to reduce the training time, which is still very long. In lines
9-13 we extract the training and OOB error and subsequently calculate the classification
accuracy on the test set.

# Grow the forest
model <- randomForest(x = x_train,
y = as.factor(y_train),
ytest = as.factor(y_test),
xtest = x_test,
do.trace = TRUE,
ntree = 250)
# Get 00B and Test errors
test_error <- data.frame(err = model$test$err.ratel[,1])
oob_error <- data.frame(err = model$err.ratel[,1])
test_error$iter <- 1:250

oob_error$iter <- 1:250

# Get true classification rate
model$test$err.rate[250,1]

test_probabilities <- as.vector(model$test$votes[,2])
test _predictions <- (test_probabilities > 0.5)
sum(y_test == test_predictions)/length(y_test)
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Similar to the model performance plots for the BTC-USDT trading pair seen in
Figures 8.3 and 8.6, Figures C.1-C.5 in this appendix show the model performance on
the five other trading pairs: ETH-USDT, BNB-USDT, NEO-USDT, LTC-USDT, and
BCC-USDT. The model performance plot for each model covers the same period from
May 1st, 2018 at 01:00 to May 16th at 09:59 and consists of three plots.

e The top plot shows the price movement of the trading pair in the period, charted
as candles.

e The middle plot shows the models’ classificaitons of buys and stays, where
the ‘True‘ (blue) are the correctly classified buys resulting in a 2% profit, the
‘Profit‘(green) are the wrongly classified buys that resulted in a profit, and the
‘Loss* (red) are the wrongly classified buys that resulted in a loss.

e The bottom plot shows the cumulative returns of the models in the period.
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ETH-USDT 1h candles
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Figure C.1: Model performance on the ETH-USDT 1h candles in the period from May 1st, 2018 at 01:00 to May 16th, 2018
at 09:59. Top: The candles in the period. Middle: The models’ classifications of buys and stays. True (blue) are correctly

classified buys resulting in a 2% profit, Profit (green) are wrongly classified buys that resulted in a profit, and Loss (red) are

wrongly classified buys resulting in a loss. Bottom: The cumulative returns of the models through the period.
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NEO-USDT 1h candles
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Figure C.3: Model performance on the NEO-USDT 1h candles in the period from May 1st, 2018 at 01:00 to May 16th, 2018 at
09:59. Top: The candles in the period. Middle: The models’ classification of buys and stays. True (blue) are correctly classified
buys resulting in a 2% profit, Profit (green) are wrongly classified buys that resulted in a profit, and Loss (red) are wrongly
classified buys resulting in a loss. Bottom: The cumulative returns of the models through the period.
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BCC-USDT 1h candles

1800 1800
1700 1700
1600 1600
1500 1500
1400 1400
1300 ___I,_k__;rs,_ 1300
1200 1200
May 03 May 05 May 07 May 09 May 11 May 13 May 15
Trades | True | Profit | Loss

[l Ens

May 03 May 05 May 07 May 09 May 11 May 13 May 15
— GB — RF — Ens

Cumulative returns

2.00 2.00
1.50 1.50
1.00 1.00
0.50 0.50
0.00 0.00
-0.50 -0.50
-1.00 -1.00

May 03 May 05 May 07 May 09 May 11 May 13 May 15

Figure C.5: Model performance on the BCC-USDT 1h candles in the period from May 1st, 2018 at 01:00 to May 16th, 2018 at
09:59. Top: The candles in the period. Middle: The models’ classification of buys and stays. True (blue) are correctly classified
buys resulting in a 2% profit, Profit (green) are wrongly classified buys that resulted in a profit, and Loss (red) are wrongly

classified buys resulting in a loss. Bottom: The cumulative returns of the models through the period.
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