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Abstract: 

 

The presence of air in pipe systems may 

lead to malfunction of pipes where 

transient flow analysis, not considering 

the air, might not predict such concern. 

Therefore, it is essential to understand 

the effects of air on transient flows. 

In this thesis, the basic concepts of 

transient flow, as well as the transient-

flow equations, are first introduced for a 

better understanding of the phenomenon. 

Then, some of the most common sources 

of air in pipelines, as well as of the effects 

of air in transient flows, are listed. 

The characteristics method, or Method of 

Characteristics (MOC), is applied for the 

computation of the main flow variables of 

pressure head and flow speed in 

transient flows. A number of computer 

programs, for the solution of transient-

flow problems under various initial and 

boundary conditions, both with and 

without the presence of air in them, are 

presented in MATLAB.  

The Volume of Fluid (VOF) model, is, as 

well, adopted in the computation of the 

main transient-flow variables. This time, 

STAR-CCM+, a CFD code, simulation 

platform, is used. 

The results of the MATLAB programs and 

STAR-CCM+ simulations, are then 

presented, discussed, and, if available, 

compared to experimental data. 
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Nomenclature 

 
A Cross-sectional area of pipe; Starting point in x-t plane 
Ao Orifice area 
a Wave speed 
B Pipeline characteristic impedance, a/gA; Starting point in x-t plane 
BM, BP Known constants in compatibility equations 
C+, C− Name of characteristics equations 
CM, CP Known constants in compatibility equations 
Cd Orifice discharge coefficient 
D Pipe diameter 
F Force 
f Darcy-Weisbach friction factor 
g Gravitational acceleration 
H Instantaneous pressure head, absolute or relative 
H̅ Barometric head 
HA Pressure head at starting point in x-t plane 
HP Pressure head at unknown computational point in x-t plane of characteristics grid 
HR Pressure head at reservoir 
Ha Absolute pressure head of the air pocket 
Hmax Maximum pressure head 
Hmin Minimum pressure head 
Hv Vapor pressure head 
Ha,0 Steady-state absolute pressure head of the air pocket 

H0 Steady-state pressure head 
i Denotes section number along a pipe 
K Bulk modulus of elasticity 
L Pipe length 
m Mass; polytropic exponent 
N Number of reaches in a pipe 
P Solution point in x-t plane 
p Pressure 
Q Instantaneous flow rate 
QP Unknown flow rate at P 
Q0 Steady-state flow rate 
R Pipeline resistance coefficient, fΔx/2gDA2 
s Pipe stretch in length 
S Pipeline slope parameter 
t Time; as a subscript denotes partial differentiation 
u Speed of the pipe, x direction 
V Instantaneous flow speed 
VA Flow speed at starting point in x-t plane 
VP Unknown flow speed at P 
V0 Steady-state flow speed 
Va Instantaneous volume of the air pocket 
Vc Cavity volume 
Va,0 Steady-state volume of the air pocket 

Vc,0 Steady-state cavity volume 

x Distance along the pipe, from upstream end; as a subscript denotes partial differentiation 
Y Expansion coefficient 
z Elevation of pipe above datum 
  
α Pipe slope; void fraction 
γ Unit weight of fluid 
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δx Control volume thickness 
ε Error 
λ Multiplier in characteristics method 
ρ Mass density 
τ0 Shear stress 
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1 INTRODUCTION 
 

The presence of trapped air in pipelines has a great influence on the behavior of the main 

flow variables in case of a transient, which can lead to malfunction of the system in situations 

where transient flow analysis, that does not consider the presence of air, may not foresee 

such concern. The presence of trapped air, when it accumulates in high points of the system, 

may, in turn, reduce the effective cross-section of the pipe, increase the friction, and, 

therefore, increase the head losses through the pipeline. This all leads to a reduced flow 

capacity, and an increase in energy consumption of the pump; considerable costs. 

 

The overall aim of this thesis is to analyze the above-mentioned effects of air in 

pipelines. To this end, the characteristics method (MOC) is applied for the computation of the 

main flow variables of pressure head and flow speed in transient flows. A number of 

computer programs, for the solution of transient-flow problems under various initial and 

boundary conditions, both with and without the presence of air in them, are presented in 

MATLAB.  The Volume of Fluid (VOF) model, is, as well, adopted in the computation of the 

main transient-flow variables. This time, STAR-CCM+, a CFD code, simulation platform, is 

used. In order to do so, it is first necessary to proper understand the concepts associated to 

transient flows, as well as the equations behind the characteristics method. 
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2 TRANSIENT FLOW: CONCEPTS 
 

2.1 Classification of Flow: Terminology 
 

If all flow conditions at any point remain constant with respect to time, the flow is called 

steady. However, if conditions at any point change with time, the flow is known as unsteady. 

The intermediate-stage, in which conditions change from one steady state to another, is called 

transient flow. A transient involving a sudden, great increase or movement, or both, of 

pressure, is known as pressure surge or surge. In the past, water hammer was used to refer to 

the term ‘pressure surge’, given that the fluid was water. Nonetheless, hydraulic transient has 

become popular since the 1960s (Chaudhry, 2014). 
 

2.2 Basic Equation of Water Hammer 
 

The momentum, and continuity equations, are applied to a control volume, Fig. 2.1; which 

pictures a section of a pipe. Analysis of the sudden closure of a downstream valve.  

 

The pipe is assumed frictionless, and the fluid, slightly compressible. The flow speed, 

V, is considered positive in the downstream direction. As for the pipe walls, these are 

considered as rigid walls; so, the pipe cross-sectional area, A, does not change due to pressure 

changes; during the transient. 

 

The fluid moves at V0, and the steady-state pressure head upstream of the reservoir 

is p (initial conditions). (At) t = 0; the valve is closed, and the fluid nearest to it, brought to 

rest; V0 changes to V0 + ΔV. This change in flow speed; of ΔV, results in an increase in pressure 

head at the face of the valve, Δp; the fluid is (slightly) compressed; initiates the transient. 
 

 
 

Figure 2.1 (a) Sudden closure of the valve; (b) control volume; (Wylie, E. B. and Streeter, V. 

L. 1993). 
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By applying the aforementioned equations (of momentum, and continuity,) to the 

control volume in Fig. 2.1, the increase in pressure head, Δp, may be determined 

 

 ∑ Δp = ±ρa ∑ ΔV (2.1) 

 

in which ρ is the density of the fluid, and a, the wave speed; Section 2.3. Since Δp = 

ρgΔH; in which g is the gravitational acceleration, and ΔH, the head change 

 

 ∑ ΔH = ±
𝑎

𝑔
∑ ΔV (2.2) 

 

which is the basic equation of water hammer; the plus sign is used for waves traveling 

upstream whereas the minus sign is used for waves traveling downstream. 

 

The complete derivation of the transient flow equation; basic equation of water 
hammer, can be found in Appendix A.1. 

 

2.3 Wave Speed 
 

Let us now consider the pipe walls to be, to some extent, elastic. Therefore, when the valve is 

closed; (at) t = 0, the pipe may stretch in length, Δs, Fig. 2.2, and its cross-sectional area 

increase, ΔA, (all) due to the increase in pressure head at the face of the valve, Δp, 

 

based on the foregoing; these assumptions, the wave speed equation is  

 

 
𝑎2 =

𝐾/𝜌

1 + (𝐾/𝐴)(∆𝐴/∆𝑝)
 

(2.3) 

 

in which K is the bulk modulus of elasticity of the fluid, defined by 

 

 
𝐾 =

∆𝑝

∆𝜌/𝜌
 

(2.4) 

 

In case of a very thick-walled pipe, ΔA/Δp is very small (rigid walls), and a ≈ √K/ρ is 

the wave speed of a small disturbance in an infinite fluid. Small amounts of entrained gas in 

the liquid, or gas that has come out of solution, greatly modify the acoustic speed in a pipe, 

(Wylie, E. B. and Streeter, V. L. 1993). 
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Figure 2.2 Continuity relations in the pipe; (Wylie, E. B. and Streeter, V. L. 1993). 
 

The complete derivation of the wave speed equation may be found in Appendix A.2. 
 

2.4 Wave propagation 
 

The same situation, as in Section 2.2, is considered. 

 

a) (At) t = 0; the valve is closed, the fluid nearest to it brought from V0 to rest, ΔV = -V0, 

and the pipe wall stretched, Δs, due to an increase in pressure at the face of the valve 

(compression of the fluid), ΔH = -(a/g)ΔV. Once the first layer is compressed, the 

process is repeated for the next layer of fluid. A high-pressure pulse wave is seen as 

traveling upstream at some wave speed, a, Section 2.2, bringing the fluid to rest, 

compressing it, and stretching the pipe, as it passes. At t = L/a (seconds), the wave 

arrives at the upstream (reservoir) end of the pipe, and through its entire length, the 

pipe is stretched, V = 0, and H = H0 + ΔH. 

 

b) t = L/a; the high-pressure pulse wave reaches the upstream (reservoir) end of the 

pipe, and the pressure drops from H0 + ΔH, in an adjacent (to the reservoir) layer of 

fluid in the pipe, to H0, in the reservoir (constant). The fluid begins flowing backwards, 

brought from rest to -V0, ΔV = -V0, and the pipe wall and pressure return to normal; 

due to the pressure drop. This process is visualized as traveling downstream at a 

speed a. At t = 2L/a, the wave reaches the valve, and, for the entire length of the pipe, 

V = -V0, and H = H.  

 

c) t = 2L/a; the wave reaches the valve, which is yet closed, the fluid adjacent to it is 

brought from -V0 to rest, ΔV = V0, and the pipe wall contracted, -Δs, because of a 

pressure drop at the face of the valve (compression of the fluid), ΔH = (a/g)ΔV. A low-

pressure pulse wave travels upstream at a speed a, and, by the time the wave reaches 

the upstream end of the pipe, at t = 3L/a, through its entire length, the pipe is 

contracted, V = 0, and H = H0 - ΔH. 

 

d) t = 3L/a; the low-pressure pulse wave reaches the upstream reservoir, and the 

pressure increases from H0 – ΔH, in an adjacent layer of fluid in the pipe, to H0, in the 

reservoir. The fluid is brought to V0 from rest, and the pipe wall and pressure return 
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to normal; due to the increase in pressure. A high-pressure pulse wave is visualized 

as traveling downstream at a speed a. At t = 4L/a, the wave arrives at the valve, and, 

for the entire length of the pipe, V = V0, and H = H0 (initial situation). 
 

 
 

Figure 2.3 Wave propagation; complete cycle after sudden closure of a valve; (Wylie, E. B. 

and Streeter, V. L. 1993). 
 

2.5 Causes of Transients 
 

As per definition, Section 2.1, a transient-state occurs as long as the steady-state, flow 

conditions, are being changed; from one steady state to another. The aforementioned 

changes, in turn, may be due to planned or accidental changes in the settings of the control 

equipment of a man-made system, or by changes in the inflow or outflow of a natural system. 

 

Some of the main causes of transients in engineering systems could be the opening, 

or closing of valves in a pipeline, as well as starting or stopping of pumps or compressors, 

cavitation or column separation, or a sudden increase in a river or sewer inflow; due to a 

heavy storm. The survey of transients quite often covers situations in which more than one 

of these causes are present. 
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3 TRANSIENT-FLOW EQUATIONS 
 

3.1 Equation of Motion 
 

The Newton’s second law of motion, ∑F = ma, is applied to a control volume (conical tube), 

Fig. 3.1; full of fluid, of mass density, ρ; average, cross-sectional flow speed, V, and pressure, 

p, equal to the centerline pressure, converted into hydraulic-grade-line head, H, when 

necessary, by p = ρg(H – z); cross-sectional area, A, thickness, δx, and inclined α(°) with 

respect to the horizontal. 
 

 
 

Figure 3.1 Control volume for equation of motion; (Wylie, E. B. and Streeter, V. L. 1993). 
 

τ0 being the shear stress, D the diameter of the control volume (tube), and γ the unit 

weight of fluid, thus 

 

 
𝑔𝐻𝑥 + 𝑉𝑡 +

𝑓𝑉|𝑉|

2𝐷
= 0 

(3.1) 

 

in which f is the Darcy-Weisbach friction factor, and which is the simplified, head form 

of the equation of motion; restricted to less compressible fluid, flowing at low velocities. The 

subscripts x and t denote partial differentiation, i.e., px = ∂p/∂x. 

 

The complete derivation of the equation of motion may be found in Appendix B.1. 
 

3.2 Continuity Equation 
 

The continuity equation, applied to a moving control volume, Fig. 3.2; stationary relative to 

the pipe, it moves or stretches only as the inside surface of the pipe moves and stretches, 

yields 
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 𝑎2𝑉𝑥

𝑔
+ 𝐻𝑡 = 0 

(3.2) 

 

which is the simplified, head form of the unsteady continuity equation; restricted to 

less compressible fluid, flowing at low velocities; a being the wave speed, Section 2.3. 
 

 
 

Figure 3.2 Control volume for continuity equation; (Wylie, E. B. and Streeter, V. L. 1993). 
  

u being the speed of the pipe at x. The complete derivation of the continuity equation 

may be found in Appendix B.2. 
 

3.3 Unsteady Friction 
 

The expression that relates shear stress, τ0, to average, cross-sectional flow speed, V, in 
steady, or quasi-steady-state flow; in terms of the Darcy-Weisbach friction factor, f,  

 
 

𝜏0 =
𝜌𝑓𝑉|𝑉|

8
 

(3.3) 

 
is considered to remain valid under unsteady conditions; applied in the derivation of 

the equation of motion, Section 3.1.  
 

Bergant, A., et al. (2001), tested the quasi-steady friction model, with experimental 
data; results, obtained by the quasi-steady friction model, give good agreement with the 
experimental data for the first and second pressure, head rise. Nevertheless, the imbalance 
between the results increased for later times; imbalance in attenuation of the pressure head; 
the quasi-steady friction model overestimates the heads, and phase shift; it does not predict 
the shape of the wave properly. This is not an issue when determining the maximum, or 
minimum heads. 
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Bergant, A., et al. (2001), tested, as well, the frequency-dependent friction models of 

Zielke, W. (1966), and Brunone, B., et al. (1991); same experimental data, substantial upgrade 

in estimating the attenuation and phase shift of the pressure head traces; to be considered in 

future studies. 
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4 AIR IN PIPELINES: EFFECTS ON TRANSIENT FLOW 
 

4.1 Air in Pipelines: Terminology 
 

According to Wisner, P. E., et al. (1975), air may be present in pipelines as bubbles, or pockets. 
Bubbles are defined as small droplets of air entrapped in water by a turbulent action; e.g. a 
hydraulic jump, while pockets may be defined as air cavities formed as a result of a 
coalescence of bubbles, or by entrapment of large quantities of air; e.g. during the filling of a 
pipeline. Vapor, bubble formation and growth in a fluid, due to a pressure drop to vapor 
pressure, is called cavitation. If these bubbles enlarge (merge), filling the entire cross section 
of the pipe, the phenomenon is referred to as column separation (Chaudhry, M. H. 2014). Air, 
partially bounded by the fluid, is called entrapped (or contiguous) air; e.g. an air pocket, while, 
air, in the form of individual bubbles, separated by relatively thick films of liquid, is referred 
to as entrained air (Zhou, F. 2000). 

 

4.2 Sources 
 

With a view to measure, monitor, and get rid of air that might be found in pipelines, the 
various means by which air can enter a pipe system are to be understood. 
 

Air coming out of solution; cavitation, or column separation. Water contains about 
2% dissolved air under normal conditions of pressure and temperature. The solubility of air 
in water increases with pressure; and decreases with temperature. Thus, pressurized water, 
as in pumping systems, is able to withhold more air; than in the case of a gravity-driven flow. 
The air can come out of the solution as result of a pressure drop to vapor pressure, or an 
increase in temperature. Once the air is released from the solution, it does not have the ability 
to return to the solution and will collect in pockets at high points along the pipe. 
 

In addition to air coming out of solution, there are several ways air can be found in 
pipelines; some of which are listed below (Lauchlan C. S., et al. 2005): 
 

Entrainment at the inflow, or outflow location. Turbulent action, e.g. hydraulic jump. 
Direct pumping of air into a system; in order to reduce cavitation. There may be insufficient 
submergence on the pump or vortices may form at the inlet causing air to be entrained into 
the system. Air transport during filling and emptying of pipelines. Gas formation through 
biological activity. At sections under negative pressure air can leak in at joints and fittings. 

 

4.3 Effects on Transient Flow 
 

Air tends to become trapped at high points along the system, due to buoyancy; air is lighter 
than water. The effects of entrapped or entrained air on hydraulic transients can be either 
beneficial or detrimental, the outcome being entirely dependent on the characteristics of the 
pipeline affected, and the nature and cause of the transient (also the fraction of air). Some of 
these effects are listed below (Lauchlan C. S., et al. 2005): 
 

The effective cross section of the pipe is reduced; increased friction, thus increased 
head losses, leading to a diminished pipe flow capacity, and an increase in energy 
consumption of the pump. The flow capacity is reduced when the air pocket cannot be 
transported and removed from the pipe; the flow could even stop completely. When air-
mixed water is fed into a turbine, a pressure drop in output occurs, and the efficiency is also 
reduced. Compression of the air pocket may cause abnormal pressure surges (Wylie, E. B. and 
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Streeter, V. L. 1993), while expansion of it may lead to sub-atmospheric pressures (Coronado-
Hernández, O. E., et al. 2017a); both cases may cause damage to the pipe. According to Wylie, 
E. B. and Streeter, V. L. (1993), the propagation velocity of a pressure wave in a pipeline 
containing a liquid can be greatly reduced if gas bubbles are dispersed throughout the liquid; 
cushioning effect of the air pocket (absorbs energy). The bulk properties of the fluid, such as 
density and elasticity, are changed; the fluid is now a combination of air and water. Air 
accumulation in a system may lead to disruption of the flow. This can lead to vibration and 
structural damage, and cause instabilities of the water surface. In ferrous pipelines the 
presence of air enhances corrosion by making more oxygen available for the process; 
hydrogen sulfide in wastewater systems. The presence of air can result in malfunction of 
measuring devices. 
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5 CHARACTERISTICS METHOD 
 

A numerical method, for the solution of the transient-flow equations, Section 3, is presented 
in this chapter. The characteristics method (MOC) transforms the partial, differential 
equations of motion, and continuity, into ordinary, differential equations. These are then 
integrated to obtain a finite-difference representation of their variables.  

 

5.1 Characteristic Equations 
 

The motion and continuity; Eqs. (3.1), and (3.2), are a pair of partial differential equations, 
function of flow speed, V. and pressure head, H, as two, dependent variables, and distance(; 
through the pipe), x, and time, t, as two, independent variables. The value of the dependent 
variables depends on the value of the independent variables. These are converted into four 
ordinary, differential equations by the characteristics method; specified time intervals. 
 

As noted in Sections 3.1, and 3.2, the simplified, pressure-head form of the motion and 
continuity equations 

 
 

𝑔𝐻𝑥 + 𝑉𝑡 +
𝑓

2𝐷
𝑉|𝑉| = 0 

(3.1) 

 
 

𝐻𝑡 +
𝑎2

𝑔
𝑉𝑥 = 0 

(3.2) 

 
which, once derived, yield 

 
 

𝐶+: {
 
𝑔

𝑎

𝑑𝐻

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑓𝑉|𝑉|

2𝐷
= 0

𝑑𝑥

𝑑𝑡
= +𝑎

 

(5.1) 

 (5.2) 

 
 

𝐶−: {
 −

𝑔

𝑎

𝑑𝐻

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑓𝑉|𝑉|

2𝐷
= 0

𝑑𝑥

𝑑𝑡
= −𝑎

 

(5.3) 

 (5.4) 

 
Eqs. (5.1) and (5.3) are known as compatibility equations. Eqs. (5.2) and (5.4) plot 

two straight lines on the x-t plane (if a is constant), Fig. 5.1. These are referred to as the 
“characteristic” lines; eliminate t, transform the partial differential, into ordinary, differential 
equations. Nevertheless, Eqs. (3.1) and (3.2) are valid everywhere in the x-t plane, while Eqs. 
(5.1) and (5.3) are valid only when their respective Eqs. (5.2) and (5.4) are valid. No 
mathematical approximation is made in this transformation. 
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Figure 5.1 Characteristic lines; x-t plane; (Wylie, E. B. and Streeter, V. L. 1993). 
 

The complete transformation of the partial differential, into ordinary, differential 

equations can be found in Appendix C.1. 
 

5.2 Finite-Difference Equations 
 

A pipeline is divided into an even number of reaches, N, each of Δx, in length, shown in Fig. 
5.2; thus, N+1 number of grid intersection points (nodes). A time step of Δt = Δx/a, is defined; 
even submultiple of the transit time, L/a. Eq. (5.1) is valid along dx/dt = +a, shown by the line 
AP; C+ line, positive slope. If the velocity, VA, and pressure head, HA; dependent variables, are 
known at A, then Eq. (5.1), may be integrated between A and P (limits), and therefore be 
written in terms of VP and HP; unknown, at point P. The same applies to Eq. (5.3) along C- 
line. A simultaneous solution (of the two) yields conditions at a particular time and position 
in the x-t plane; point P. 
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Figure 5.2 x-t grid for solving single-pipe problems; (Wylie, E. B. and Streeter, V. L. 1993). 
 

The study of a hydraulic transient often begins with steady-state conditions at t = 0; 
initial values of H, and V, are known at each grid intersection point (node), Fig. 5.2. The 
method consists on finding H, and V, for each grid point along the pipe at t = Δt, then, (same) 
for t = 2Δt, and so on, until the entire simulation time duration has been covered. By 
introducing the pipeline area, A, to write the equation in terms of discharge, Q, in place of 
velocity, V, the integration of Eqs. (5.1) and (5.3), along C+, and C-, respectively, yields 

 
 𝐶+: 𝐻𝑃 = 𝐶𝑃 − 𝐵𝑃𝑄𝑃 (5.5) 

 
 𝐶−: 𝐻𝑃 = 𝐶𝑀 + 𝐵𝑀𝑄𝑃 (5.6) 

 
At any node, e.g. point P at section i, Fig. 5.2, the two compatibility equations, Eqs. 

(5.5) and (5.6), are solved simultaneously for the unknowns QP and HP; coefficients CP, BP, 
CM and BM are known constants 
 

 𝐶𝑃 = 𝐻𝑖−1 + 𝐵𝑄𝑖−1 𝐵𝑃 = 𝐵 + 𝑅|𝑄𝑖−1| (5.7) 
 

 𝐶𝑀 = 𝐻𝑖+1 − 𝐵𝑄𝑖+1 𝐵𝑀 = 𝐵 + 𝑅|𝑄𝑖+1| (5.8) 
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in which B is a function of the physical properties of the fluid and the pipeline, often 
called the pipeline characteristic impedance 

 
 𝐵 =

𝑎

𝑔𝐴
 (5.9) 

 
and R is the pipeline resistance coefficient 
 

 
𝑅 =

𝑓𝛥𝑥

2𝑔𝐷𝐴2
 

(5.10) 

 
The complete transformation of the partial differential, into ordinary, differential 

equations can be found in Appendix C.2. 
 

5.3 Boundary Conditions 
 

As stated in Section 5.1, Eq. (5.1) is only valid along the C+ characteristic, AP, while Eq. (5.3), 

holds along the C− characteristic, BP. At any node, e.g. point P at section i, Fig. 5.2, the two 

compatibility equations are solved simultaneously for the unknowns QP and HP. 

Nevertheless, only one of Eqs. (5.1); downstream end, and Eq. (5.3); upstream, is available at 

the boundaries, Fig. 5.3; so special, boundary conditions are required. QP, and HP,  are 

determined by solving Eq. (5.1), or (5.3), together with these conditions, imposed at the 

boundaries. A boundary condition may be, e.g. the end condition of a pipeline; dead-end, 

presence of a valve, etc. 
 

 
 

Figure 5.3 Characteristic lines at the boundaries; (Wylie, E. B. and Streeter, V. L. 1993). 
 

5.4 Error-based Method 
 

The idea behind this approach is that the flow rate, at point P, QP, should be the same when 

determined by either Eq. (5.1) or (5.3). Thus, the pressure head, HP, for which QP would be 

the same when calculated by either Eq. (5.1) or (5.3), is to be iteratively solved at each 

internal node of the pipeline. 
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Two initial, maximum and minimum values of the pressure head, Hmax and Hmin, are 

assumed as limits of our calculation; the desired HP has to lie within these limits, so, a wide 

range is considered. HP is known, thus QP may be determined by only one of Eqs. (5.1) and 

(5.3); as if it was a boundary. QP is determined by both, Eqs. (5.1) and (5.3); it has to be the 

same, if it is not the same, the difference between the two is calculated. The error, ε, or 

disturbance, is defined as the deviation of this difference from a “true” value, set equal to 

10−10 m3/s. Two, maximum and minimum errors, ε-Hmax and ε-Hmin, one for each limit, are 

determined.  

 

A new HP is then estimated as the arithmetic mean of the initial, Hmax and Hmin. QP is 

determined by both Eqs. (5.1) and (5.3), and, again, the new error, ε-new, estimated. 

According to whether or not ε-new is below, or above the “true” value, the HP connected to 

this error is set as new, ε-Hmax or ε-Hmin, initial value of the next estimation (iteration). 

 

The process is repeated until the absolute value of ε-new is smaller than that of the 

“true” value. The desired HP is the one associated to that latter error. An example of this 

approach is shown below. 
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Figure 5.4 Pressure head calculation by means of the error-based method. 
 

The MATLAB code for this approach may take the following form 
 

H_high=H_max; 

      H_low=H_min; 

      H_M=[H_low H_high]; 

      nn=length(H_M); 

      Qp_L_M=zeros(1,nn); 

      Qp_R_M=zeros(1,nn); 

      e_M=zeros(1,nn); 

      Cp=H(i,j-1)+B*Q(i,j-1); 

      Bp=B+R*abs(Q(i,j-1)); 

      Cm=H(i,j+1)-B*Q(i,j+1); 

      Bm=B+R*abs(Q(i,j+1)); 

      for k=1:nn 

          Qp_L_M(1,k)=(Cp-H_M(1,k))/Bp; 

          Qp_R_M(1,k)=(H_M(1,k)-Cm)/Bm; 

          e_M(1,k)=Qp_L_M(1,k)-Qp_R_M(1,k); 

      end 

      e_low=e_M(1,1); 

      e_high=e_M(1,2); 

      e_new=1; 

      while abs(e_new)>=e_lim 

          H_new=0.5*(H_high+H_low); 

          Qp_L=(Cp-H_new)/Bp; 

          Qp_R=(H_new-Cm)/Bm; 

          e_new=Qp_L-Qp_R; 

          if e_new<-e_lim 

              H_high=H_new; 

          elseif e_new>e_lim 

              H_low=H_new; 

          else%if -e_lim<e_new<e_lim 

              H_high=H_new; 

              H_low=H_new; 

          end 

      end 

      Hp(i,j)=0.5*(H_high+H_low); 

      %Qp_L=(Cp-Hp(i,j))/Bp; 

      Qp_R=(Hp(i,j)-Cm)/Bm; 
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      Qp(i,j)=Qp_R; 

      Vp(i,j)=Qp(i,j)/A; 

 

in which e_lim is the “true” value of the error. 
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6 COMPUTER PROGRAMS 
 

MATLAB has been used in order to write four different, characteristics-method based, 

computer programs, for the solution of the transient-flow equations under various initial and 

boundary conditions; with, and without the presence of air in them. 

 

For all of them, the fluid is considered to be incompressible, and the pipe walls rigid, 

so that the pipe cross-sectional area, A, does not change due to pressure changes. 
 

6.1 Pump Stop at Power Failure 
 

The behavior of the main flow variables during a transient, due to pump stop at power failure, 

is studied by the present program. The results of the program are to be later compared to 

data collected on the pump station of Hjedsbækvej 198. 

 

The pump station of Hjedsbækvej 198 is located in the municipality of Rebild, in 

Region Nordjylland. Rebild is enclosed by neighboring municipalities of Aalborg, 

Vesthimmerlands and Mariagerfjord. Hjedsbækvej 198 collects wastewater from the small 

town of Suldrup, and the village of Sønderup, both sitting in central Himmerland, and pumps 

it to the following pump station of Bustedvej 28, on its way to Aalborg Wastewater Treatment 

Plant West. 
 

6.1.1 Program Setup and Initial Conditions 
 

The model consists of a pump at the upstream end of a pipe, and a 1025-m-long pipe(; 

L = 1025 m), with a 210-mm nominal diameter(; D = 0.21 m); the pipe profile is shown in Fig. 

6.2. 

 

The pump is initially running, at a flow rate, Q0, of 0.032 m3/s, i.e. the initial flow 

speed, V0, is 0.92 m/s for the entire length of the pipe. The initial pressure head at the pump, 

H0, is 56.02 m. The pipe roughness, ε, is 0.05 mm, thus, the Darcy-Weisbach friction factor, f, 

iteratively solved by means of the Colebrook-White equation, is equal to 0.017. The wave 

speed, a, is 288 m/s. The transit time, L/a, is (thus) 3.56 s. At t = 0, the power failure occurs, 

pump stop; the fluid nearest to the pump is gradually brought from V0 to rest, V0 + ΔV = 0; 

thus ΔV = -0.92 m/s. The pressure drop, ΔH, associated to the aforementioned ΔV, may be 

determined by Eq. (2.2); ΔH = -27 m. The transient is initiated; travels downstream. 

 

Minor losses are neglected along the pipe. The model allows for cavitation, or column 

separation. 
 

6.1.2 Results 
 

Results are shown at the upstream end of the pipe; at the pump. 
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Figure 6.1 Pressure head measurements at the pump. 
 

(i) t = 0; a power failure occurs, pump stop. (ii) 0 < t ≤ 2 s; gradual reduction of the 

flow speed, ΔV = -0.92 m/s. This ΔV causes pressure to gradually drop at the pump; up to ΔH 

= -27 m. The transient is initiated; travels downstream. (ii) 2 < t ≤ 7 s; a positive flow still 

continues away from the pump, due to pressure dropping to vapor pressure, Hv; so H = Hv 

(fixed), and a new ΔH(, < -27 m), leads to a ΔV < -0.92 m/s. The pressure, H, still decreases, 

but at a lower rate. In this time, the transient travels back and forth through the pipe. (iii) t = 

7 s; the transient is back to the pump, and, for the entire length of the pipe, negative flow; 

compresses the fluid, increase of H at the pump. (iv) 7 < t ≤ 14 s; the negative flow continues 

away from the pump; H still increases. The, rather small, fluctuations in H, are caused by 

cavitation, or column separation (along the pipe). Again, the transient travels back and forth 

through the pipe during this time. (v) t = 14 s; the transient reaches the pump (again); with a 

positive flow. H has reached its maximum, and starts decreasing. 
 

 
 

Figure 6.2 Maximum, and minimum pressure head measurements along the pipeline. 
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The maximum, and minimum values of pressure head, Hmax and Hmin, determined by 

the characteristics method; along the pipe, are compared to data collected on the pump 

station of Hjedsbækvej 198, in Fig. 6.2. 
 

6.1.3 Conclusions 
 

In spite of its apparent simplicity; constant friction factor assumed, does not consider 

minor losses, etc., the program is able of truly represent the behavior of the main flow 

variables during the transient; through the system. 

 

The MATLAB code for this program may be found in Appendix D.1. 
 

6.2 Single Leakage 
 

The influence of a single leakage on the behavior of the main flow variables during a transient, 

is to be studied by the present program; so that the leakage can be located from this analysis. 

Under normal, operating conditions, the transient travels along the pipe at some wave speed, 

and gets reflected at the boundaries. The presence of a leakage (partly,) extra-reflects the 

pressure signals. The leakage may be located by measuring the time the pressure signal needs 

to travel from the measuring point to the leakage and vice versa; non-destructive method. 

The location of leakages in pipelines is a major concern in water distribution systems; due to 

the economic and social cost associated to water losses. 
 

6.2.1 Program Setup and Initial Conditions 
 

The model consists of a pump at the upstream end of a pipe, a 1025-m-long(, L = 1025 

m), horizontal pipe; no leakage in it, with a 210-mm nominal diameter(; D = 0.21 m), and a 

constant-level reservoir at the downstream end of it. 

 

The pump is initially running, the pump flow rate, Q0, is 0.032 m3/s; thus, (flow speed) 

V0 ≈ 0.9 m/s. The initial pressure head, H0, of the constant-level reservoir is 23.42 m. The pipe 

roughness, ε, is (assumption) equal to 0.05 mm. The Darcy-Weisbach friction factor, f, is thus 

(iteratively) solved by means of the Colebrook-White equation; f ≈ 0.018. The wave speed, a, 

is considered equal to 288 m/s. The area of the orifice, Ao, is considered one-twentieth of the 

pipe cross-sectional area, A; Ao = A/20. 

 

The leakage rate is determined as the difference between the inflow and outflow at 

the reach containing the leakage. The relationship between the leakage rate, and the pressure 

head, H(, at the leakage), can be modeled by the orifice equation; for a horizontal pipe 
 

 

Q = 𝐶𝑑𝐴𝑜𝑌√
2𝑔𝛥𝐻

(1 − 𝛽4)
 

(6.1) 

 

in which 
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𝛽 =

𝐷0

𝐷1
 

(6.2) 

 

Cd being the discharge coefficient; equal to 0.61 (sharp edge), D0 the orifice diameter, 

and D1 the pipe diameter. The orifice diameter is considered to be significantly smaller than 

the pipe diameter; D0 << D1, then β4 ≈ 0. Y is the expansion coefficient, equal to 1 for 
incompressible flow, then 

 

 𝑄 = 𝐶𝑑𝐴𝑜√2𝑔𝛥𝐻 (6.3) 

 

The process may be divided into three steps: 
 

 
 

Figure 6.3 Complete process. 
 

(i) t = 0; an orifice is considered at a certain point along the pipe, with a view to 

generate the initial conditions of pressure head, H, along the pipe, before the stoppage of the 

pump; which is the starting point of our analysis. A flow is generated, coming out of the pipe 

through the orifice; equal to the leakage flow rate. This flow is associated to a drop in 

pressure, which yields a decrease in flow speed at the orifice. A first transient is generated; 

moving downstream of the orifice. This step is not considered as part of our analysis; does 

not compare to a real-life situation, e.g. the sudden appearance of an orifice in a pipe may lead 

to additional pressure fluctuations that cannot be represented by the model. 
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Figure 6.4 Steady-state conditions along the pipe before pump stoppage. 
 

(ii) As soon as the system is back to steady-state conditions, so that the first transient 

has disappeared completely, and does not affect the new, second transient; sudden stoppage 

of the pump, the fluid nearest to it is brought to rest, which yields a drop in pressure head at 

the pump. A new transient is generated; moves downstream of the pump, but, it does not 

reflect when it reaches the orifice, it continues its way towards the constant-level reservoir, 

at the downstream end of the pipe. No useful data may be extracted from this step either. 
 

 
 

Figure 6.5 Steady-state conditions before pump start. 
 

(iii) The minute the system is, again, back to steady-state conditions (same reasons); 

sudden start of the pump, increase in flow speed, which yields an increase in pressure (at the 

pump). A third transient is initiated; (again) moves downstream of the pump and, this time, 

when it reaches the orifice, reflects, in part, back to the pump, while the transient continues 

its way towards the constant-level reservoir, at the downstream end of the pipe. The data of 
this third step is used in the location of the leakage. 
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6.2.2 Results 
 

Results are shown at the upstream end of the pipe, at the pump. 
 

 
 

Figure 6.6 Pressure head measurements at the pump for different leakage locations. 
 

Figure 6.6 gives the pressure head, H, at the pump, when the leakage is considered at 

varying locations, x, along the pipe. The wave, transit time, L/a, is ≈ 3.5 s; thus, the wave needs 

≈ 7 s (; ≈ 0.12 min,) to travel back and forth through the pipe. As can be noted in Fig. 6.6, a 

number of pressure signals reach the pump before that time. As expected, the leakage causes 

partial reflections of the wave fronts that become small pressure discontinuities in the 

original pressure trace.  

 

Let us consider the pressure trace associated to the leakage located at x = 225 m. The 

time it takes for the first pressure signal to reach the pump is ≈ 1.56 s; less than the transit 

time, suggests the presence of a leakage. The location of the leakage may be determined as x 

= (at)/2; it is divided by 2 because the pressure signal travels back and forth through the pipe. 

Therefore, x = (288 m/s ∙ 1.56 s)/2 ≈ 225 m.  
 

6.2.3 Conclusions 
 

The location of the leakage in the pipe can be accurately determined by the analysis 

of the pressure signals, outcome of the present program. 

 

The MATLAB code for this condition may take the following form 
 
e_new=1; 

while abs(e_new)>=e_lim 

           H_new=0.5*(H_high+H_low); 

           Qp_L=(Cp-H_new)/Bp; 

           Qp_R=(H_new-Cm)/Bm; 

           if j==j_G && H(i,j)>=z_G 

               if H(i,j-1)>H(i,j+1) 
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                   Q_G=Cd*A_G*sqrt(2*g*(H(i,j-1)-z_G)); 

               else%if H(i,j-1)<H(i,j+1) 

                   Q_G=Cd*A_G*sqrt(2*g*(H(i,j+1)-z_G)); 

               end 

               e_new=Qp_L-Qp_R-Q_G; 

           else%if i<>iLeak 

               e_new=Qp_L-Qp_R; 

           end 

           if e_new<-e_lim 

               H_high=H_new; 

           elseif e_new>e_lim 

               H_low=H_new; 

           else%if -eLimit<eNew<eLimit 

               H_high=H_new; 

               H_low=H_new; 

           end 

end 

Hp(i,j)=0.5*(H_high+H_low); 

       Qp_L=(Cp-Hp(i,j))/Bp; 

   Qp_R=(Hp(i,j)-Cm)/Bm; 

if abs(Qp_L)>=abs(Qp_R) 

           Qp(i,j)=Qp_R; 

  else%if Cp-Cm<0 

           Qp(i,j)=Qp_L; 

      end 

Vp(i,j)=Qp(i,j)/A; 

 

in which j_G, and z_G, are the location; node number, and elevation of the leakage, 

respectively. The entire MATLAB code can be found in Appendix D.2. 
 

6.3 Isolated Vapor Cavity 
 

The influence of isolated cavitation, or column separation, on the behavior of the main flow 

variables in the event of a transient, is to be studied by the present program. 
 

6.3.1 Program Setup and Initial Conditions 
 

 
 

Figure 6.7 Program setup; (Wylie, E. B. and Streeter, V. L. 1993). 
 

The program is based on one of Wylie, E. B. and Streeter, V. L. (1993, p.192), Fig. 6.7, 

and consists of a pump at the upstream end of a pipe, a valve (next to it), a 981-m-long pipe(; 

L = 981 m), with a 210-mm internal diameter(; D = 0.21 m) and a certain negative slope, and 
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a constant-level reservoir at the downstream end of it. The steepness of the slope of the pipe 

does not affect the process described. 

 

Two cases are analyzed: (i) (initial flow speed) V0 = 0.75 m/s, and (ii) V0 = 0.80 m/s. 

The initial, steady-state pressure head, H0, for the entire length of the pipe, is 15 m; which is 

the pressure head, H, of the constant-level reservoir at the end of the pipe (downstream). 

There is no cavity present at t = 0; Vc0 = 0. The pipe is considered frictionless; f = 0. The wave 

speed, a, is 981 m/s. The transit time, L/a, is (thus) 1 s. At t = 0, sudden closure of the valve; 

H (of the fluid nearest to the valve,) decreases; the drop is limited to vapor pressure, Hv = H0 

+ ΔH. The vapor pressure, Hv, is set equal to -10 m; thus ΔH = -25 m. As long as H ≤ Hv, H = Hv 

(fixed pressure), and Vc is allowed to grow and collapse in it. The flow speed decrease, ΔV, 

associated to the aforementioned ΔH, may be determined by Eq. (2.2); ΔV = -0.25 m/s. 
 

6.3.2 Results 
 

Results are shown at the upstream end of the pipe; at the cavity. The results appear 

to be similar for both cases; both V0. The complete cycle, for V0 = 0.75 m/s, is detailed below. 

Any notable difference between the two cases will be commented further on. 
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Figure 6.8 Isolated vapor cavity in a single pipeline; V0 = 0.75 m/s. 
 

Water-column separation occurs only at the upstream end of the pipe due to its 

negative slope. (i) t = 0 s; the valve is closed, and the pressure drops to Hv = -10 m; ΔH = -25 

m. A vapor cavity forms, next to the valve. This ΔH yields a reduction of flow speed; ΔV = -

0.25 m/s. The transient is initiated. (ii) 0 < t ≤ 2 s; So long as the positive flow continues away 

from the closed, upstream end of the pipe, the volume of the vapor cavity, Vc, increases. While 

it is present, the vapor cavity behaves as a constant-pressure boundary; at H = -10 m. (iii) 2 < 

t ≤ 4 s; The fluid nearest to the valve has been brought to rest, the cavity ceases to grow, and 

remains at a constant volume. (iv) 4 < t ≤ 6 s; A negative flow, V = -0.5 m/s, returns to the 

valve; Vc decreases. (v) 6 < t ≤ 8 s; The instant the vapor cavity collapses, the flow is brought 

to rest, which generates a pressure increase as shown in Fig. 6.8. H rises well above the 

constant-pressure set as initial condition at the upstream end of the pipe; H0 = 15 m. 
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Figure 6.9 Isolated vapor cavity in a single pipeline; V0 = 0.80 m/s. 
 

(ii) 0 < t ≤ 2 s; The increase rate of the volume of the vapor cavity, Vc, is higher than 

that of V0 = 0.75 m/s; higher flow speed, V. (iii) 2 < t ≤ 4 s; Vc continues to increase; the flow 

is not at rest, positive flow. Largest Vc than that of V0 = 0.75 m/s. (iv) 4 < t ≤ 6 s; The rate of 

decrease of Vc is lower than that of V0 = 0.75 m/s; higher V. Thus, (v) 6 < t ≤ 8 s; the vapor 

cavity collapses a bit later than for V0 = 0.75. The maximum H reached is higher than for V0 = 

0.75. 
 

6.3.3 Conclusions 
 

The isolated vapor-cavity program mimics this type of problem with reasonable 

reliability, at least through the first cavity collapse. This is generally true for cases in which 

only a discrete cavity is present at a fixed location (Wylie, E. B. and Streeter, V. L. 1993).  

 

The MATLAB code for an internal reach; cavitation, or column separation, calculation, 

may take the following form 
 
     if v_C>0 

         Hp(i,j)=z_l(i,j)+H_V; 

         Qp_R=(Hp(i,j)-Cm)/Bm; 
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         Qp_L=Qp(i,j); 

         v_C_M(i,c)=v_C+(Qp_R-Qp_L)*dt; 

         Qp(i,j)=Qp_R; 

         Vp(i,j)=Qp(i,j)/A; 

         if v_C_M(i,c)<=0 

             while abs(e_new)>=e_lim 

                 H_new=0.5*(H_high+H_low); 

                 Qp_R=(H_new-Cm)/Bm; 

                 e_new=Qp_L-Qp_R; 

                 if e_new<-e_lim 

                     H_high=H_new; 

                 elseif e_new>e_lim 

                     H_low=H_new; 

                 else%if -e_lim<e_new<e_lim 

                     H_high=H_new; 

                     H_low=H_new; 

                 end 

             end 

             Hp(i,j)=0.5*(H_high+H_low); 

             if Hp(i,j)<z_l(i,j)+H_V 

                 Hp(i,j)=z_l(i,j)+H_V; 

             end 

             Qp_R=(Hp(i,j)-Cm)/Bm; 

             v_C_M(i,c)=v_C+(Qp_R-Qp_L)*dt; 

             Qp(i,j)=Qp_R; 

             Vp(i,j)=Qp(i,j)/A; 

         end 

     else%if v_C=0 

         while abs(e_new)>=e_lim 

             H_new=0.5*(H_high+H_low); 

             Qp_L=Qp(i,j); 

             Qp_R=(H_new-Cm)/Bm; 

             e_new=Qp_L-Qp_R; 

             if e_new<-e_lim 

                 H_high=H_new; 

             elseif e_new>e_lim 

                 H_low=H_new; 

             else%if -e_lim<e_new<e_lim 

                 H_high=H_new; 

                 H_low=H_new; 

             end 

         end 

         Hp(i,j)=0.5*(H_high+H_low); 

         if Hp(i,j)<z_l(i,j)+H_V 

             Hp(i,j)=z_l(i,j)+H_V; 

         end 

         Qp_R=(Hp(i,j)-Cm)/Bm; 

         v_C_M(i,c)=v_C+(Qp_R-Qp_L)*dt; 

         Qp(i,j)=Qp_R; 

         Vp(i,j)=Qp(i,j)/A; 

     end 

     v_C=v_C_M(i,c); 

 

The entire MATLAB code can be found in Appendix D.3. 
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6.4 Isolated Air Pocket 
 

The influence of isolated air entrapment on the behavior of the main flow variables in the 

event of a transient, is to be studied by the present program. 
 

6.4.1 Program Setup and Initial Conditions 
 

The program consists of a constant-level reservoir at the upstream end of a pipe, a 

valve (next to it), and a dead-end, 2000-m-long pipe(; L = 2000 m), with a 210-mm nominal 

diameter(; D = 0.21 m) and a given positive slope, s, of ≈ 0.005; so that the air is trapped at 
the downstream, dead end of it (the pipe). 

 

The valve is initially closed. Thus, for the entire length of the pipe, the fluid is at rest; 

(flow speed) V0 = 0, and the initial, steady-state pressure head, H0, is 9.95 m. The constant-

level(, pressure head) at the reservoir, HR, is 34.37 m. The initial, trapped air volume, Va0, is 

assumed half the volume of a computing reach; thus Va0 ≈ 0.35 m3. This means that, the same, 

single computing reach, consists of both fluid and air. The pipe roughness, ε, of PVC and 

organic glass pipes (assumption), is equal to 0.0015 mm. The Darcy-Weisbach friction factor, 

f, is then (iteratively) solved by means of the Colebrook-White equation; f ≈ 0.017. The wave 

speed, a, in a pipe of the (above) mentioned material, is 400 m/s (Zhou, L. 2011); empirical 

research. The transit time, L/a, is (thus) 5 s. At t = 0, sudden opening of the valve; the pressure 

head, H, (of the fluid nearest to it) increases from H0 to HR (= H0 + ΔH); thus ΔH = 24.42 m. 

The increase in flow speed, ΔV, associated to this ΔH may be determined by Eq. (2.2); ΔV ≈ 

0.6 m/s. 

 

The gas is considered to follow the reversible polytropic relation 

 

 𝐻𝑎𝑉𝑎
𝑚 = 𝐻𝑎0𝑉𝑎0

𝑚 = 𝐶𝐴 (6.4) 
 

in which Ha, is the absolute pressure head, Ha = HP – z + H̅, and Va, the volume, of the 

entrapped air at a time t; m, the polytropic exponent, and CA a constant. Fast transient 

phenomena are often assumed to be adiabatic processes with m = 1.4 (Zhou, L. 2011a). 

Therefore, for the relative small air pocket volume and the fast response of the system to the 

first pressure rise, a polytropic exponent of 1.4 is assumed. H̅ is the atmospheric(, or 

barometric,) pressure, equal to 10.33 m. 

 

By introducing the integrated continuity equation; the minus sign tells that the air 

volume decreases with positive inflow 

 

 𝑑𝑉𝑎

𝑑𝑡
= −𝑄 

(6.5) 

 

and, applying the mean value theorem of integrals and the method of the mean in Eq. 

6.5, it follows 

 

 
∫ 𝑑𝑉𝑎

𝑡+∆𝑡

𝑡

= − ∫ 𝑄(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡

 
(6.6) 
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𝑉𝑎,𝑃 = 𝑉𝑎 − ∆𝑡

(𝑄𝑃 + 𝑄)

2
 

(6.7) 

 

thus, Eq. 6.4 can be expressed as 

 

 
(𝐻𝑃 + �̅� − 𝑧) [𝑉𝑎 − ∆𝑡

(𝑄𝑃 + 𝑄)

2
]

𝑚

= 𝐶𝐴 
(6.8) 

 

which combined with Eq. 5.5, yields 

 

 
𝐹1 = (𝐶𝑃 − 𝐵𝑃𝑄𝑃 + �̅� − 𝑧) [𝑉𝑎 − ∆𝑡

(𝑄𝑃 + 𝑄)

2
]

𝑚

− 𝐶𝐴 = 0 
(6.9) 

 

which is a nonlinear equation in the variable QP. Newton’s method is used to 

(iteratively) solve Eq. 6.9; finds a correction to an estimated value of QP by using 

 

 
𝐹1 +

𝑑𝐹1

𝑑𝑄𝑃
∆𝑄 = 0 

(6.10) 

 

in which, after simplification 

 

 𝑑𝐹1

𝑑𝑄𝑃
= −𝐵𝑃 [𝑉𝑎 − ∆𝑡

(𝑄𝑃 + 𝑄)

2
]

𝑚

−
𝑚∆𝑡𝐶𝐴

𝑉𝑎 − ∆𝑡(𝑄𝑃 + 𝑄)/2
 

(6.11) 

 

ΔQ can, then, be found by isolation in Eq. 6.11. 
 

6.4.2 Results 
 

Results are shown at the downstream, dead end of the pipe; where the trapped air is 

located. 
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Figure 6.10 Isolated air pocket in a single pipeline. 
 

The air is trapped at the downstream, dead end of the pipe, due to the positive slope, 

s, of the latter. (i) t = 0 s; sudden opening of the (upstream) valve; increase in pressure head, 

ΔH, of the fluid nearest to it, which yields an increase of flow speed, ΔV. The transient is 

initiated; travels downstream. (Still) Initial conditions of pressure, and volume at the air 

pocket, Ha0 and Va0. (ii) 0 < t ≤ 5 s; the positive flow continues away from the valve. At t = 5 s, 

the transient reaches the trapped air; the pressure head, H, increases, and the volume of the 

air pocket, Va, decreases; increase of flow speed, V (compresses the air pocket). (iii) 5 < t ≤ 15 

s; the positive flow continues (compressing the air), but V decreases. H still increases, and Va 

continues to decrease (but at a lower rate). In that time, the transient has travelled back and 

forth through the pipe. At t = 15 s the transient reaches the trapped air (again); H increases, 

and Va decreases; increase of V (further compression of the pocket) (iv) 15 < t ≤ 20 s; V 

decreases; highest H, and minimum Va when V = 0. The negative flow returns to the valve; H 

drops, and Va increases (stretched). 
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Figure 6.11 Pressure head measurements at the downstream end of the pipe; with and without air 

pocket. 
 

A comparison of the transient behavior, with and without air pocket, is shown in Fig. 

6.11. The maximum H reached is considerable larger in the case where the air pocket is 

present. The phase shift of the wave is also affected by the presence of the air; longer period. 
 

6.4.3 Conclusions 
 

As mentioned in Section 4.3, a compression of the air pocket may cause abnormal 
pressure surges (Wylie, E. B. and Streeter, V. L. 1993); relates well to the program results. The 
presence of the entrapped air as well affects the phase shift of the wave; longer period.  

 

The MATLAB code for this condition may take the following form, beginning with an 

estimated value of QP at the new time step 
 
j=no; 

Cp=H(i,j-1)+B*Q(i,j-1); 

Bp=B+R*abs(Q(i,j-1)); 

Qp(i,j)=Q(i,j); 

u=0; 

while u<=KIT 

    v_Ap(i,c)=v_A-dt*(Qp(i,j)+Q(i,j))/2; 

    if v_Ap(i,c)<v_S 

        v_Ap(i,c)<v_S; 

    end 

    F1=(Cp-Bp*Qp(i,j)-z_l(i,j)+H_bar)*(v_Ap(i,c)^m)-C_A; 

    dF1dQp=-m*dt*C_A/v_Ap(i,c)-Bp*v_Ap(i,c)^m; 

    dQ=-F1/dF1dQp; 

    Qp(i,j)=Qp(i,j)+dQ; 

    u=u+1; 

end 

v_Ap(i,c)=v_A-dt*(Qp(i,j)+Q(i,j))/2; 

if v_Ap(i,c)<0 

    v_Ap(i,c)=0; 

end 
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v_A=v_Ap(i,c); 
Hp(i,j)=Cp-Bp*Qp(i,j); 

Vp(i,j)=Qp(i,j)/A; 

 

The constant Ca, C_A, may be defined by Eq. X.X, using Ha0, and Va0. KIT is the number 

of iterations in Newton’s method, and v_S is a minimum-size air volume, in order to avoid the 

division by zero. The entire MATLAB code can be found in Appendix D.4. 
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7 SIMULATIONS 
 

With a view to predict real-life behavior of hydraulic transients in pipes, minimizing the need 

for, at times costly, time-consuming testing, STAR-CCM+, a CFD code, simulation platform, is 

used. A simulation offers accurate, less-expensive predictions than experimental testing. 

Iterative simulation is used to improve the design; no need for repeated testing of physical 

prototypes (saves time). Besides, it offers a full range of operating, physic conditions; many 

flows cannot be easily tested in real life. 
 

7.1 (Zhou, L. 2011a) 
 

Zhou, F. (2000), Zhou, F., et al. (2002), and Lee, N. H. (2005) studied the effects of the initial 

void fraction of entrapped air, α, on the maximum pressure surge of a dead-end, filling 

horizontal pipe; (rather) large values of α; high inlet pressures. Zhou, F. (2000) and Zhou, F., 

et al. (2002); 20, 50 and 95.2% (void fractions), and Lee, N. H. (2005); fractions ranging from 

5.8 to 44.81%. They found out that the maximum entrapped air pressure increased as air 

volume decreased; cushioning effect of the entrapment. 

 

The following numerical model is based on an experiment conducted by Zhou, L. 

(2011a). As in Zhou, F. (2000), Zhou, F., et al. (2002), and Lee, N. H. (2005), the effects of the 

initial void fraction of entrapped air on the maximum pressure surge of a dead-end, filling 

(this time) undulated pipe are studied; (in this case) focus on (rather) small values of α, 

ranging from ≈ 0.1 to 8%, under a low inlet pressure. This is of importance because a 

compression of the entrapped air can result in abnormal pressure surges (Wylie, E. B. and 

Streeter, V. L. 1993); may cause damage to the pipe when operating unprotected against 

transient pressures. The numerical model is built in order to analyze the behavior of the main 

hydraulic variables during the process. 
 

7.1.1 Conceptual model 
 

The conceptual model, Fig. 7.1, consists of a constant-level reservoir at the upstream 

end of the pipe, a quarter-turn ball valve, BV, a water vent, WV, and a dead-end (closed valve), 

4.4445-m-long pipe with a 90-mm internal diameter. The pipe consists of five segments; a 

125-cm-long horizontal pipe, a 73-cm-long vertical pipe, a 121.45-cm-long horizontal pipe, a 

100-cm-long vertical pipe, and a 25-cm-long horizontal pipe. 20-cm-radius, 90° elbows are 

assumed as fittings. 
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Figure 7.1 Conceptual model; based on (Zhou, L. 2011a). 
 

The datum line, z = 0, is assumed at the centerline of the dead end of the pipe. The air 

is entrapped at the dead end of the pipe, Fig. 7.1 (in red). The valve located at the dead end of 

the pipe, and the water vent, are used to regulate the initial fraction of it. The initial elevation 

of the air-water interface ranges from -0.15 to +0.04 m; α ≈ 8 to 0.1%. The water is at room 

temperature (20°). Therefore, the water density, ρ, is equal to 998.20 kg/m3, and the dynamic 

viscosity, ν, to 1.002E-3 Pa-s. The acoustic speed, a, of PVC and organic glass pipes 

(assumption), filled with water, is 400 m/s (Zhou, L. 2011); empirical research. A Darcy-

Weisbach friction factor, f, equal to 0.05 is assumed (Zhou, L. 2011); empirical research. 

 

There are three measuring points (pressure) along the pipe, Fig. 7.2; one immediately 

upstream of the ball valve, PT1, and two near the dead end of the pipe, PT2 and PT3. 
 

7.1.2 Initial conditions 
 

 
 

Figure 7.2 Initial pressure distribution; based on (Zhou, L. 2011a). 
 

At t = 0, the ball valve, BV, and the water vent, WV, are closed, which results in two, 

separated water columns, one before, LW1, and one after, LW2, the ball valve. LW1 is at a 
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pressure, p, of 60801.22 Pa (6.2 m), while LW2 is at hydrostatic pressure, p = ρgh. The 

entrapped air is at atmospheric (absolute) pressure; 101325 Pa (10.33 m).  
 

7.1.3 Model boundaries 
 

The model consists of three boundaries. The constant-level (upstream) reservoir 

acts as a pressure-outlet boundary, while the surface, and dead end of the pipe are set as 

wall boundaries.  

 

A pressure-outlet boundary is a flow-outlet boundary at which the pressure is 

specified. The pressure-outlet boundary is set as constant-pressure, at a pressure of 

60801.22 Pa (6.2 m). The boundary is set so that only water (no air) is allowed to enter the 

solution domain through this boundary. 

 

The wall boundary represents an impermeable surface that confines fluid or solid 

regions. The boundary is set as no-slip, meaning that the fluid adheres to the wall, moving 

with its same velocity; e.g. for a stationary wall, as in our case, the fluid speed is equal to 0 

m/s at the wall. This is of importance because, in the case of turbulent flow, near-wall 

treatments to compute shear are employed. The Darcy-Weisbach friction factor, f, as has 

been said before, is set equal to 0.05. The pipe roughness, is thus (iteratively) solved by 

means of the Colebrook-White equation. 
 

7.1.4 Mesh models 
 

The mesh is the discretized representation of the computational domain, which the 

physics solvers use to provide a numerical solution. The following meshers are selected for 

generating the mesh: 

 

To improve the overall quality of the existing geometry surface and optimize it for the 

volume mesh model, the surface remesher is used; retriangulates the surface. 

 

The polyhedral mesher generates a volume mesh that is composed of arbitrary, 

polyhedral-shaped cells; suitable for turbulent flow. Long computation time. The polyhedral 

mesher can be used together with the generalized cylinder mesher, which generates extruded 

orthogonal cells along the length cylindrical sections. 

 

The generalized cylinder mesher is used to generate an extruded, volume mesh along 

the length of parts that are considered to be generalized cylinders (our case). It reduces the 

computation time and improves the rate of convergence. This mesher is best suited to cases 

where the direction of the fluid is parallel to the vessel wall; such cases can be solved more 

efficiently by using cells oriented to the direction of the fluid flow. 

 

The prism layer mesher is used with a core volume mesh to generate orthogonal 

prismatic cells next to the wall surfaces or boundaries. This layer of cells is necessary to 

improve the accuracy of the near-wall flow solution; e.g. resolving the velocity gradients, 

normal to the wall. 
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• Number of prism layers: The number of prism layers parameter controls the number 

of cell layers that are generated within the prism layer on a boundary. The number of 

prism layers is set equal to 5. 

• Prism layer stretching: Prism layer stretching sets the target growth rate of successive 

prism layers away from the wall. The prism layer stretching parameter is set equal to 

1.4. 

• Prism layer total thickness: The prism layer thickness controls the total overall 

thickness of all the prism layers; (i) relative to base: sets the prism layer total 

thickness relative to the base size. (ii) Absolute: sets the prism layer total thickness 

as absolute value with length units. The prism layer thickness is set as absolute, and 

equal to 0.015 m. 
 

 
 

Figure 7.3 Mesh (detail). 
 

The choice of meshers may be questionable. The flow is assumed turbulent, Section 

2.1, thus it does not necessarily follow the direction of the vessel wall; one could argue that 

the generalized cylinder mesher is not the most appropriate mesher to use. At the same time, 

the extruded volume mesh is generated from a polyhedral mesh; with a large number of cell 

faces, and suitable for turbulent flows. The size of the cells, and the number of layers are also 

to be considered. While a small size of the cells, and a large number of layers may lead to a 

more accurate result, it significantly increases the computation time; a balance between 

reliability of the results and computation time has been sought. 
 

7.1.5 Physic models 
 

The flow is three dimensional. The flow is turbulent (assumed); chaotic flow, often 

considered as the mean flow superposed by eddies causing velocity fluctuations of stochastic 

nature. The transition from laminar to turbulent flow takes place when the Reynold’s number 

(Re = VD/ν) exceeds a certain value. Experiments show that the transition to turbulent flow 

takes place at Re ≈ 2300 (Brorsen, M. 2008); it is possible to verify the assumption. All 
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turbulent flows are, per definition, unsteady (assumed); even though one can talk about 

steady turbulent flow, if the mean flow is steady. 

 

The flow is also multiphase; several phases flow in the domain of interest. In modeling 

terms, a phase is defined as a quantity of matter that has its own physical properties to 

distinguish it from other phases within a system. A multiphase mixture is a fluid that is 

composed of multiple phases. The volume of fluid (VOF) model is used; this model is suited for 

systems containing two or more immiscible fluid phases, where each phase constitutes a 

large structure within the system; on numerical grids capable of resolving the interface 

between the phases of the mixture. This approach captures movement of the interface 

between the fluid phases. Two phases are defined, one for the water, and one for the air.  
 

7.1.6 Calibration 
 

The model has to be capable of reproducing real-life situations. Thus, it has to be 

calibrated against real data (from the experiment). This has not been possible since the initial 

conditions of the experiment conducted by Zhou, L. (2011a) cannot be met; a valve opening 

time of 0.1 s cannot be modeled with the data provided in the article (instant opening of the 

valve assumed). 
 

7.1.8 Results 

 

 
 

0

5

10

15

20

25

30

0 0.2 0.4 0.6

ab
s.

 p
re

ss
u

re
 h

ea
d

; H
 [

m
]

time; t [s]

PT1

PT2

(i) 



Andrés Martínez Gómez                                                                                                                    Master’s Thesis 

 

39 
 

 
 

Figure 7.4 Absolute pressure; (i) α ≈ 6%, (ii) α ≈ 0.1%. 

 

(i) t = 0; sudden opening of the ball; increase in pressure, ΔH, of the layer of fluid 

nearest to it, in LW2, from p = ρgh to 60801.22 Pa (6.2 m). This ΔH yields an increase of flow 

speed, ΔV; positive flow. The transient is initiated; travels downstream. (Still) Initial 

conditions of pressure, and volume at the air pocket, Ha0 and Va0. (ii) The positive flow 

continues away of the ball valve. The transient reaches the trapped air; the pressure head at 

the air pocket, Ha, increases, and the volume of the air pocket, Va, decreases; it is compressed 

(cushioning effect). (iii) The fluid in contact with the entrapped air is brought to rest; the 

entrapped air ceases to decrease. The maximum H has been reached at the entrapped air. (iv) 

A negative flow returns to the constant-level reservoir; Va increases (expands), and H 

decreases. 

 

PT1 is located immediately upstream of the ball valve; higher pressure than 

downstream of it, that explains the rather small pressure drop in pressure at the very 

beginning of the process, when the ball valve is opened. 
 

The two measuring points near the dead end of the pipe, where the trapped air is at, 

yield roughly the same results; thus, only PT2 is shown in Fig. 7.4. The figure shows the 

absolute pressure head due to a sudden opening of the ball valve; at PT1, and PT2, for (i) α ≈ 

6 and (ii) 0.1%. For α ≈ 6%, the air cushioning effect is basically negligible and the water 

impact force is dominant. Significant difference between the heads at PT2, and at PT1. On the 

other hand, for α ≈ 0.1%, the maximum head, measured at PT2, decreases and is around the 

same as in PT1. This is because when α is small, both the air cushioning effect and the water 

impact force are also small. The wavelength and period is shorter for α ≈ 0.1% than it is for α 

≈ 6%, this is because the air cushioning; compressibility, is reduced with α; the pressure surge 

travels faster through the water; which is incompressible. 
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Figure 7.5 Effect of α on the pressure of the air pocket; (i) absolute pressure, recorder by P2, (ii) 

variation of the maximum pressure of the air pocket. 

 

The highest pressure of the entrapped air increases as α decreases, up to α ≈ 6%; 

decrease of the air cushioning effect. Thereafter, the highest pressure decreases as α 

decreases; smaller water impact force due to a lower space for water movement.  

 

7.1.9 Conclusions 

 

The results of our model relate to those of (Zhou, L. 2011a), and are not only coherent 

with the conclusion of (Zhou, F. 2000), (Zhou, F., et al. 2002), and (Lee, N. H. 2005), but also 

complimentary for the research in the effects of the initial void fraction of entrapped air on 

the maximum pressure surge of a dead-end, filling undulated pipe. 
 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

0 0.2 0.4 0.6

ab
s.

 p
re

ss
u

re
 h

ea
d

; H
 [

m
]

time; t [s]

α ≈ 8% α ≈ 6%

α ≈ 1% α ≈ 0.1%

23

24

25

26

27

0 2 4 6 8

ab
s.

 p
re

ss
u

re
 h

ea
d

; H
 [

m
]

α (%)



Andrés Martínez Gómez                                                                                                                    Master’s Thesis 

 

41 
 

7.2 (Coronado-Hernández, O. E., et al. 2017a) 
 

The following, numerical model, is based on an experiment conducted by Coronado-

Hernández, O. E., et al. (2017a). The emptying procedure of a water pipeline with an irregular 

profile and no air valves, (with an air pocket in it) is studied. There is a relative lack of 

research on the issue (Coronado-Hernández, O. E., et al. 2017a). 

 

This is of importance because: (i) a compression of the entrapped air may cause 

abnormal pressure surges, (Wylie, E. B. and Streeter, V. L. 1993), (ii) an expansion of the 

entrapped air may lead to sub-atmospheric pressures (Coronado-Hernández, O. E., et al. 

2017a), Section 4.3; both cases may cause damage to the pipe; when operating unprotected 

against transient pressures. The numerical model is built to analyze the behavior of the main 

hydraulic variables during the process. 
 

7.2.1 Conceptual model 
 

The conceptual model, Fig. 7.6, is composed of two free-discharge, drain valves, DV1 

and DV2, located at both ends of the pipe, a water vent, WV, and a 7.3-m-long, PVC pipe with 

a 51.4-mm internal diameter. The pipe consists of four segments; a 2.25-m-long horizontal 

pipe, a 1.5-m-long pipe; inclined (+)30°, a 1.5-m-long pipe; inclined (-)30°, and a 2.05-m-long 

horizontal pipe. No fittings (elbow) are considered.  

 

 
 

Figure 7.6 Conceptual model; based on (Coronado-Hernández, O. E., et al. 2017a). 
 

The datum line (z = 0 m) is assumed at the centerline of the horizontal pipes. The 

(only) entrapment, Fig. 7.6 (in red), is symmetrical about WV. DV1, DV2, and WV, are used to 

regulate the initial location (fraction) of it. The initial elevation of the air-water interface is 

equal to +0.61 m. The water is at room temperature (20°). Therefore, the water density, ρ, is 

equal to 998.20 kg/m3, and the dynamic viscosity, ν, to 1.002E-3 Pa-s. The acoustic speed, a, 

of PVC and organic glass pipes, filled with water, is 400 m/s (Zhou, L. 2011); empirical 

research. A Darcy-Weisbach friction factor, f, equal to 0.05 is assumed (Zhou, L. 2011); 

empirical research. 

2.25 m 2.05 m 

1.50 m 1.50 m 

30° 30° 
DV1 DV2 

WV 

LW1 LW2 
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There are four measuring points along the pipe, Fig. 7.7; three near the water vent (pressure), 

PT1, PT2, and PT3, and another one in the 2.05-m-long horizontal pipe, PT4 (flow speed). 
 

7.2.2 Initial conditions 
 

At first, DV1, DV2, and WV, are closed. There are two, separated water columns, one 

before, LW1, and one after, LW2, the entrapped air. Both, LW1 and LW2, are at hydrostatic 

pressure, p = ρgh. The entrapped air is at atmospheric (absolute) pressure; 101325 Pa (10.33 

m). 
 

 
 

Figure 7.7 Initial pressure distribution; (Coronado-Hernández, O. E., et al. 2017a). 
 

7.2.3 Model Boundaries 
 

The model is composed of three boundaries. DV1 and DV2 act both as pressure-outlet 

boundaries, while the surface of the pipe is set as a wall boundary. 

 

The two pressure-outlet boundaries are set as constant-pressure, at atmospheric 

(absolute) pressure; 101325 Pa (10.33 m). The boundary is set so that only water (no air) is 

allowed to enter the solution domain through this boundary. 

 

The boundary is set as no-slip. The Darcy-Weisbach friction factor, f, as has been said 

before, is set equal to 0.05. The pipe roughness, is thus (iteratively) solved by means of the 

Colebrook-White equation. 
 

7.2.4 Mesh Models 
 

The same meshers, as in the previous model, Section 7.1, are selected for generating the 

mesh. This time: 

 

PT1, 2 and 3 

Air-water interface 

PT4 

DV1 DV2 

WV 
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• The number of prism layers is set equal to 5. 

• The prism layer stretching parameter is set equal to 1.2. 

• The prism layer thickness is set as relative to the base; 30%. 
 

 
 

Figure 7.8 Mesh (detail). 
 

7.2.5 Physic models 
 

As in the previous model, Section 7.1, the flow is three dimensional. The flow is 

assumed turbulent; also unsteady. The flow is multiphase. The volume of fluid (VOF) model is 

thus again used. Two phases are defined, one for the water, and one for the air. 
 

7.2.6 Calibration 
 

The model has to be capable of reproducing real-life situations. Thus, it has to be 

calibrated against real data (from the experiment). This has not been possible since the initial 

conditions of the experiment conducted by Coronado-Hernández, O. E., et al. (2017a) cannot 

be met; a valve opening time of 0.7 s cannot be modeled with the data provided in the article 

(instant opening of the valve assumed).  The air backflow that takes place at the drain valves 
cannot be properly addressed either; as stated in Section 7.2.3, only water, and no air, is 

allowed to enter the solution domain through this boundary. 
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7.2.7 Results 
 

 
Figure 7.9 Absolute pressure head; at PT1, PT2 and PT3. 

 

The process is (almost) symmetrical; the half-part corresponding to DV2 is itemized 

here. (i) The drain valve, DV2, is opened, and the pressure head, H, at layer of fluid nearest to 

it (in LW2) decreases from p = ρgh to 0 Pa (10.33 m); ΔH. This ΔH yields an increase of flow 

speed at the drain valve, ΔV; positive flow. The transient is initiated; travels upstream. (Still) 

Initial conditions of pressure, and volume at the air pocket, Ha0 and Va0. (ii) While the positive 

flow continues, the volume of the entrapped air, Va, increases; it is stretched (expans), and H 

decreases, sub-atmospheric pressure at the entrapped air.  (iii) The fluid in contact with the 

entrapped air is brought to rest; Va ceases to increase. The minimum H has been reached at 

the entrapped air. (iv) As a negative flow travels now through the pipe; water is allowed to 

enter the solution domain through the boundary, Va decreases; it is compressed (cushioning 

effect). (v) The fluid in contact with the entrapped air is brought to rest; Va ceases to decrease. 

The maximum H has been reached at the entrapped air; for this cycle. A positive flow is, again, 

initiated, and the process repeated. 

 

The difference between the results at the various measuring points is due to some of 

them being located out of the active area of the air pocket. 
 

7.2.8 Conclusions 
 

Even though the model behaves as it was expected, and a sub-atmospheric pressure 
is reached at the air pocket, the pressure drop is minor and(, in this case,) might not lead to 
any system failure. The backflow of air through the drain valves and into the air pocket cannot 
be addressed in here, and may lead to a different behavior than the one displayed in Fig. 7.9. 
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8 CONCLUSIONS AND FUTURE RESEARCH 
 

A large number of the effects associated to the presence of air in pipelines has been addressed 
in this thesis. Abnormal pressure surges due to the compression of trapped air, or sub-
atmospheric pressures because of the expansion of it, the influence of air on the propagation 
speed of a pressure wave, or the effects of cavitation, or column separation, have been 
analyzed and measured. The characteristics-method based computer programs, written in 
MATLAB, have proven that, in spite of their simplicity, since they do not consider minor 
losses, the pipe walls are considered rigid, or a constant friction factor is assumed(, etc.), they 
are able of accurately represent the behavior of the main flow variables in the event of a 
transient. At the same time, transient-flow analysis has been applied, in one of the programs, 
for the detection of leakages in pipes, by analyzing the pressure signals in them. This is of 
importance since, if the location of a leakage along a pipe is known, costs would be reduced; 
it would only be necessary to dig once, where the leakage has been detected. Single, separate 
conclusions, can be found in the report for each of the different MATLAB programs. The VOF-
based, CFD models provide a good representation of the different situations as well, under 
various initial and boundary conditions. All this is relevant because both the MATLAB 
programs, and the CFD models, offer accurate, less-expensive predictions than experimental 
testing. 
  

Nevertheless, the influence of trapped air on flow capacity, and thus energy 
consumption, could not be addressed in this thesis. This issue is of major concern due to the 
considerable costs associated to air valves, chambers, and deepening of trenches in order to 
provide the minimum pipe slopes, necessary to enable air to leave the system. Ideally, the air 
would be removed of the system by the flow itself, which is achieved by ensuring a minimum, 
critical velocity, able to push the trapped along and out of the system. A CFD model of this 
situation was attempted, not delivering satisfactory results. Therefore, future research 
should focus on this issue. 
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APPENDIX A BASIC CONCEPTS 
 

A.1 Basic Equation of Water Hammer 
 

As stated in Section 2.2; frictionless pipe, and slightly compressible fluid; positive flow speed, 

V, in the downstream direction, and rigid pipe walls; the cross-sectional area of the control 

volume, A, does not change due to pressure changes; during the transient. 

 

The fluid moves at V0, and the steady-state pressure head upstream of the reservoir 

is p (initial conditions). (At) t = 0; the valve is closed, and the fluid nearest to it, brought to 

rest; V0 changes to V0 + ΔV. This change in flow speed; of ΔV, results in an increase in pressure 

head at the face of the valve, Δp; the fluid is (slightly) compressed, so the fluid density, ρ0, 

changes to ρ0 + Δρ. A high-pressure pulse wave, of magnitude Δp/γ, travels in the upstream 

direction, at an absolute speed of a – V0; being γ the specific weight of the fluid; γ = ρg, and a 

the wave speed, Section 2.3. The volume of fluid having its momentum changed is A(a - V0)Δt. 

 

The momentum equation states that the resultant force in the x-direction, on a given 

control volume, is equal to the time rate of increase, plus the net influx of momentum within 

the already mentioned control volume, both in the x-direction; thus, with the help of Fig. 2.1, 

the time rate of change of momentum in the positive x-direction is 
 

 𝐴(a − 𝑉0)𝛥𝑡

𝛥𝑡
[(ρ + Δρ)(𝑉0 + ΔV) − 𝜌𝑉0] 

(A.1) 

 

therefore (it follows from the momentum equation that) 

 

 
−𝛥𝑝𝐴 =

𝐴(a − 𝑉0)𝛥𝑡

𝛥𝑡
[(ρ + Δρ)(𝑉0 + ΔV) − 𝜌𝑉0] + (ρ + Δρ)𝐴(𝑉0 + ΔV)2 −  𝜌𝐴𝑉0

2 
(A.2) 

 

The continuity equation states that the time rate of increase of mass of a given control 

volume, is equal to the net mass influx within the aforementioned control volume. As in the 

previous case, the volume of fluid having its momentum changed is A(a - V0)Δt 

 

 (ρ + Δρ) − 𝜌

𝛥𝑡
𝐴(a − 𝑉0)𝛥𝑡 +  𝜌𝐴𝑉0 − (ρ + Δρ)𝐴(𝑉0 + ΔV) = 0 

(A.3) 

 

simplified and combined with Eq. A.2 (considered that the valve is closed by 

increments) 

 

 ∑ Δp = ±ρa ∑ ΔV (A.4) 

 

and, since Δp = ρgΔH; in which ΔH is the head change 

 

 ∑ ΔH = ±
𝑎

𝑔
∑ ΔV (A.5) 
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which is the basic equation of water hammer; the plus sign is used for waves traveling 

upstream whereas the minus sign is used for waves traveling downstream. 
 

A.2 Wave Speed 
 

Let us now consider the pipe walls to be, to some extent, elastic. (At) t = 0; the valve is closed, 

and the pipe may stretch in length, Δs, Fig. 2.2; it is assumed that the valve moves this distance 

in L/a (seconds; transit time) or, which is the same, has a speed of Δsa/L. In this time period 

(of L/a), the mass entering the pipe is ρAV0L/A. This is possible due to an increase in the 

cross-sectional area of the pipe, ΔA, the (above mentioned) stretching of the pipe, Δs, and a 

compression of the fluid, ρ.  

 

 
ρA𝑉0

𝐿

𝑎
= ρLΔA + ρAΔs + LAΔρ 

(A.6) 

 

The flow speed changes (in L/A) by ΔV= Δsa/L-V0; thus, Eq. A.6 simplifies to 

 

 
−

∆𝑉

𝑎
=

∆𝐴

𝐴
+

∆𝜌

𝜌
 

(A.7) 

 

which combined with Eq. A.4 

 

 
𝑎2 =

∆𝑝/𝜌

∆𝐴/𝐴 + ∆𝜌/𝜌
 

(A.8) 

 

The bulk modulus of elasticity of a fluid, K, is defined by 

 

 
𝐾 =

∆𝑝

∆𝜌/𝜌
 

(A.9) 

 

hence, it follows from Eqs. A.8 and A.9 

 

 
𝑎2 =

𝐾/𝜌

1 + (𝐾/𝐴)(∆𝐴/∆𝑝)
 

(A.10) 

 

which is the equation of the wave speed. 
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APPENDIX B BASIC DIFFERENTIAL EQUATIONS FOR TRANSIENT FLOW 

 

B.1 Equation of Motion 
 

The Newton’s second law of motion, ∑F = ma, is applied to the control volume in Fig. 3.1. The 

forces, acting on the control volume, in the x-direction, are the surface normal pressure on 

both cross-sectional faces, the pressure and shear on the periphery, and the x-component of 

the gravitational force; thus 

 

 
𝑝𝐴 − [𝑝𝐴 + (𝑝𝐴)𝑥𝛿𝑥] + (𝑝 + 𝑝𝑥

𝛿𝑥

2
) 𝐴𝑥𝛿𝑥 − 𝜏0𝜋𝐷𝛿𝑥 − 𝜌𝑔𝐴𝛿𝑥 sin 𝛼 = 𝜌𝐴𝛿𝑥�̇� 

(B.1) 

 

δx2 is too small; negligible, simplifying, Eq. (B.1) becomes 

 

 𝑝𝑥𝐴 + 𝜏0𝜋𝐷 + 𝜌𝑔𝐴 sin 𝛼 + 𝜌𝐴�̇� = 0 (B.2) 
 

in which τ0 is the shear stress; Section 3.3 

 

 
𝜏0 =

𝜌𝑓𝑉|𝑉|

8
 

(B.3) 

 

and the dot over the dependent variable V indicates the total derivative with respect 

to time, i.e., V̇ = VVx + Vt; thus Eq. (B.2) can be written as 
 

 𝑝𝑥

𝜌
+ 𝑉𝑉𝑥 + 𝑉𝑡 + 𝑔 sin 𝛼 +

𝑓𝑉|𝑉|

2𝐷
= 0 

(B.4) 

 

since VVx is not considered in steady state, it is only consistent to exclude the term in 

unsteady flow. This is a common simplification in Eq. (B.4) for low-Mach-number unsteady 

flows, reducing Eq. (B.4) to 

 

 𝑝𝑥

𝜌
+ 𝑉𝑡 + 𝑔 sin 𝛼 +

𝑓𝑉|𝑉|

2𝐷
= 0 

(B.5) 

 

and, since 

 

 𝑝𝑥 = 𝜌𝑔(𝐻𝑥 − 𝑧𝑥) = 𝜌𝑔(𝐻𝑥 − sin 𝛼) (B.6) 
 

Eq. (B.5) becomes 

 

 
𝑔𝐻𝑥 + 𝑉𝑡 +

𝑓𝑉|𝑉|

2𝐷
= 0 

(B.7) 

 

which is the simplified, head form of the equation of motion; restricted to less 

compressible fluid, flowing at low velocities. 
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B.2 Continuity Equation 
 

The continuity equation is applied to a moving control volume, Fig. 3.2; stationary relative to 

the pipe, it moves or stretches only as the inside surface of the pipe moves and stretches 

 

 
−[𝜌𝐴(𝑉 − 𝑢)]𝑥  𝛿𝑥 =

𝐷

𝐷𝑡
(𝜌𝐴𝛿𝑥) 

(B.8) 

 

in which u is the speed of the pipe at x, and D/Dt of, e.g. V, is the same as V̇ = VVx + Vt. 

The time rate of increase od length, δx, of the control volume, is given by 

 

 𝐷

𝐷𝑡
 𝛿𝑥 = 𝑢𝑥𝛿𝑥 

(B.9) 

 

  Eq. (B.8), thus becomes 

 
 

(𝜌𝐴𝑉)𝑥 − (𝜌𝐴𝑢)𝑥 +
𝐷′

𝐷𝑡
(𝜌𝐴) + 𝜌𝐴𝑢𝑥 = 0 

(B.10) 

 

which, after simplification, may be written as 

 

 𝜌𝐴𝑉𝑥 + 𝑉(𝜌𝐴)𝑥 + (𝜌𝐴)𝑡 = 0 (B.11) 
 

The last two terms represent the total derivative of ρA with respect to time, then 

 

 1

𝜌𝐴

𝐷

𝐷𝑡
(𝜌𝐴) + 𝑉𝑥 = 0 

(B.12) 

 

which can be as well represented; since D/Dt of, e.g. V, is the same as V̇, as 

 

 1

𝜌𝐴
(𝜌�̇� + �̇�𝐴) + 𝑉𝑥 = 0 

(B.13) 

 

or, which is the same 

 

 �̇�

𝐴
+

�̇�

𝜌
+ 𝑉𝑥 = 0 

(B.14) 

 

For prismatic tubes, area is a function of pressure only, so, in the first term of Eq. 

(B.14) 

 

 
�̇� =

𝑑𝐴

𝑑𝑝
�̇� 

(B.15) 

 

The second term in Eq. (B.14), considering Eq. (A.9); bulk modulus of elasticity of a 

fluid, may be written as 
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 �̇�

𝜌
=

�̇�

𝐾
 

(B.16) 

 

Eq. (B.14), therefore becomes 

 

 
𝑉𝑥 +

�̇�

𝐾
(1 +

𝐾

𝐴

𝑑𝐴

𝑑𝑝
) = 0 

(B.17) 

 

which, considering Eq. (A.10), may be written as 

 

 𝜌𝑎2𝑉𝑥 + �̇� = 0 (B.18) 
 

The transport term, Vpx, in ṗ is neglected as being small compared to other terms, Eq. 

(B18) thus becomes 

 𝜌𝑎2𝑉𝑥 + 𝑝𝑡 = 0 (B.19) 
 

and, since 

 

 𝑝𝑡 =  𝜌𝑔𝐻𝑡 (B.20) 
 

Eq. (B.19) may be written as 
 

 𝑎2𝑉𝑥

𝑔
+ 𝐻𝑡 = 0 

(B.21) 

 
which is the simplified, head form of the unsteady continuity equation; restricted to 

less compressible fluid, flowing at low velocities. 
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APPENDIX C METHOD OF CHARACTERISTICS 
 

C.1 Characteristic Equations 
 

As noted in Appendix B, the simplified, pressure-head form of the motion and continuity 
equations is 

 
 

𝑔𝐻𝑥 + 𝑉𝑡 +
𝑓

2𝐷
𝑉|𝑉| = 0 

(B.7) 

 
 

𝐻𝑡 +
𝑎2

𝑔
𝑉𝑥 = 0 

(B.21) 

 
by multiplying Eq. (B.21) by λ; unknown multiplier, adding to Eq. (B.7), and re-

arranging terms (linear combination) 
 

 
𝜆 (𝐻𝑥

𝑔

𝜆
+ 𝐻𝑡) + (𝑉𝑥𝜆

𝑎2

𝑔
+ 𝑉𝑡) +

𝑓

2𝐷
𝑉|𝑉| = 0 

(C.1) 

 
A suitable pair of values of λ allows for the simplification of Eq. (C.1); in which 

velocity, V, and pressure head, H, are functions of distance(; through the pipe), x, and time, t. 
If x(, independent variable,) is allowed to be a function of t, then 
 

 𝑑𝑉

𝑑𝑡
= 𝑉𝑥

𝑑𝑥

𝑑𝑡
+ 𝑉𝑡 

(C.2) 

 
 𝑑𝐻

𝑑𝑡
= 𝐻𝑥

𝑑𝑥

𝑑𝑡
+ 𝐻𝑡 

(C.3) 

 
which are the total derivatives of V, and H, respectively. Now, by examination of Eq. 

(C.1), with Eqs. (C.2) and (C.3) in mind, it can be noted that if 
 

 𝑑𝑥

𝑑𝑡
=

𝑔

𝜆
=

𝜆𝑎2

𝑔
 

(C.4) 

 
Eq. (C.1) becomes 

 
 

𝜆
𝑑𝐻

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑓

2𝐷
𝑉|𝑉| = 0 

(C.5) 

 
which is a finite-difference equation. Two particular values of λ may be found by 

means of Eq. (C.4) 
 

 𝜆 = ±
𝑔

𝑎
 (C.6) 

 
The relation between x and t is determined by substituting these values of λ back into 

Eq. (C.4) 
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 𝑑𝑥

𝑑𝑡
= ±𝑎 

(C.7) 

 
which represents the variation of position of a wave with respect to time, as a function 

of the wave speed. When the positive value of λ is used in Eq. (C.4), the positive value of λ 
must be used in Eq. (C.5); same for the negative λ. The substitution of these values of λ into 
Eq. (C.5) leads to two pairs of ordinary, differential equations which are grouped and 
identified as C+ and C-, characteristic equations. 

 
 

𝐶+: {
 
𝑔

𝑎

𝑑𝐻

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑓𝑉|𝑉|

2𝐷
= 0

𝑑𝑥

𝑑𝑡
= +𝑎

 

(C.8) 

 (C.9) 

 
 

𝐶−: {
 −

𝑔

𝑎

𝑑𝐻

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑓𝑉|𝑉|

2𝐷
= 0

𝑑𝑥

𝑑𝑡
= −𝑎

 

(C.10) 

 (C.11) 

 

C.2 Finite-Difference Equations 
 

Let us begin with the compatibility equation along the C+ line, Eq. (C.8) 
 

 𝑔

𝑎

𝑑𝐻

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑓𝑉|𝑉|

2𝐷
= 0 

(C.8) 

 
By multiplying Eq. (C.8) by a(dt/g) = dx/g, and by introducing the pipeline cross-

sectional area, A, to write the equation in terms of discharge, Q, in place of velocity, V, the 
equation may be placed in a form, suitable for integration along the C+ characteristic 

. 
 

∫ 𝑑𝐻
𝐻𝑃

𝐻𝐴

+
𝑎

𝑔𝐴
∫ 𝑑𝑄

𝑄𝑃

𝑄𝐴

+
𝑓

2𝑔𝐷𝐴2
∫ 𝑄|𝑄|𝑑𝑥

𝑋𝑃

𝑋𝐴

= 0 
C.12) 

 
The integration of Eq. (C.12), and a similar integration, this time along the C- 

characteristic line between B and P, yields 
 

 
𝐶+: 𝐻𝑃−𝐻𝐴 +

𝑎

𝑔𝐴
(𝑄𝑃 − 𝑄𝐴) +

𝑓∆𝑥

2𝑔𝐷𝐴2
𝑄𝑃|𝑄𝐴| = 0 

(C.13) 

 
 

𝐶−: 𝐻𝑃−𝐻𝐵 −
𝑎

𝑔𝐴
(𝑄𝑃 − 𝑄𝐵) −

𝑓∆𝑥

2𝑔𝐷𝐴2
𝑄𝑃|𝑄𝐵| = 0 

(C.14) 

 
and, solving for HP, these equations may be written as 

 
 𝐶+: 𝐻𝑃 = 𝐻𝐴 − 𝐵(𝑄𝑃 − 𝑄𝐴) − 𝑅𝑄𝑃|𝑄𝐴| (C.15) 

 
 𝐶−: 𝐻𝑃 = 𝐻𝐵 + 𝐵(𝑄𝑃 − 𝑄𝐵) + 𝑅𝑄𝑃|𝑄𝐵| (C.16) 
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in which B is a function of the physical properties of the fluid and the pipeline, often 
called the pipeline characteristic impedance 

 
 𝐵 =

𝑎

𝑔𝐴
 (C.17) 

 
and R is the pipeline resistance coefficient 
 

 
𝑅 =

𝑓𝛥𝑥

2𝑔𝐷𝐴2
 

(C.18) 

 
Eqs. (C.15) and (C.16), may be written in a simpler form 

 
 𝐶+: 𝐻𝑃 = 𝐶𝑃 − 𝐵𝑃𝑄𝑃 (C.19) 

 
 𝐶−: 𝐻𝑃 = 𝐶𝑀 + 𝐵𝑀𝑄𝑃 (C.20) 

 
coefficients CP, BP, CM and BM being known constants 

 
 𝐶𝑃 = 𝐻𝑖−1 + 𝐵𝑄𝑖−1 𝐵𝑃 = 𝐵 + 𝑅|𝑄𝑖−1| (C.21) 

 
 𝐶𝑀 = 𝐻𝑖+1 − 𝐵𝑄𝑖+1 𝐵𝑀 = 𝐵 + 𝑅|𝑄𝑖+1| (C.22) 
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APPENDIX D MATLAB CODE 
 

D.1 Pump Stop at Power Failure 
 

clear all; close all; clc; 

%% 

%pipe prof. & data 

g=9.8105;%local acceleration due to gravity [m/s^{2}] 

a=288;%wave speed [m/s] GIVEN 

L=1025;%pipe length [m] GIVEN 

dx=5;%length incr. [m] GIVEN 

no=(L/dx)+1;%no. of calc. points [-] 

cp=1:no;%vec.; calc. points 

nod=[0 50 160 230 270 420 550 600 775 825 1000 1025];%vec.; stations 

[m] GIVEN 

z_nod=[27.70 30.25 31.85 32.05 33 41.10 41.50 41.75 49.65 50.80 52 

52.12];%vec.; elevs. [m] GIVEN 

l=length(nod);%length; n 

i=1; 

for j=1:l-1%pipe profile 

    s=(z_nod(1,j+1)-z_nod(1,j))/(nod(1,j+1)-nod(1,j)); 

    c=0; 

    for i=i:((nod(1,j+1)/dx)+1) 

        c=c+1; 

        z_l(1,i)=z_nod(1,j)+(c-1)*dx*s; 

    end 

end 

% hold on 

% plot_l=plot(cp,z_l,'k'); 

D=0.21;%pipe diameter [m] GIVEN 

%Rh=D/4;%hydraulic radius [m] 

A=pi*((D/2).^2);%pipe cross-sec. area [m^{2}] 

dt=dx/a;%time incr. [s] 

%dt=0.2;%time incr. [s] GIVEN 

H_max=100;%max. pressure head; error calc. [m] GIVEN 

H_min=-20;%min. pressure head; error calc. [m] GIVEN 

%% 

%init. cond. 

Qi=0.032;%init. flow rate [m^{3}/s] GIVEN 

Hi=56.02;%init. pressure head [m] GIVEN 

Hf=52.12;%fin. pressure head [m] GIVEN 

dh_T=Hi-Hf;%total pressure head incr. [m] 

f=dh_T*D*2*g*(A.^2)/(L*(Qi.^2));%Darcy friction factor [-] 

%f=0.01741;%Darcy friction factor [-] EXCEL SHEET     

dh=f*dx*(Qi.^2)/(D*2*g*(A.^2));%pressure head incr. [m]; Darcy-Weisbach 

equation 

i=1; 

j=1; 

H(i,j)=Hi; 

for j=2:no 

    H(i,j)=H(i,j-1)-dh; 

end 

for j=1:no 

    Q(i,j)=Qi; 

    V(i,j)=Q(i,j)/A; 

end 
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Hp=zeros(1,no); 

Vp=zeros(1,no); 

fig=figure; 

ax1=subplot(2,1,1); 

hold on 

plot_l=plot(cp,z_l,'k'); 

plot_H=plot(cp,H,'c--'); 

plot_Hp=plot(cp,Hp,'b'); 

hold off 

set(ax1,'xLim',[1 no],'yLim',[H_min H_max]); 

box on 

grid on 

grid minor 

xlabel(ax1,'Calc. points [-]'); 

ylabel(ax1,'Pressure head [m]'); 

title(ax1,'Fluid transient'); 

ax2=subplot(2,1,2); 

hold on 

plot_l=plot(cp,z_l,'k'); 

plot_V=plot(cp,V,'c--'); 

plot_Vp=plot(cp,Vp,'m'); 

hold off 

set(ax2,'xLim',[1 no],'yLim',[-1 1]); 

box on 

grid on 

grid minor 

xlabel(ax2,'Calc. points [-]'); 

ylabel(ax2,'Velocity [m/s]'); 

%% 

%vid. 

movieObj = VideoWriter('Hjedsbaekvej_198_no_cavitation.avi');%create 

the movie object 

%MovieObj.Framerate = 60;%set the properties if desired (in this case 

the frame rate) 

open(movieObj);%get the movie object ready for writing 

%% 

%calc. 

t=20;%simulation time [s] 

dt_no=t/dt;%no. of time incr. [-] 

B=a/(g*A);%pipeline characteristic impedance [s/m^{2}] 

R=f*dx/(2*g*D*(A.^2));%pipeline resistance coefficient [s^{2}/m^{5}] 

H_V=-10;%vapor pressure head[m] 

e_lim=10^-10;%"true" value [m^{3}/s] 

H_max_M=H; 

H_min_M=H; 

  

i=1; 

for c=1:dt_no 

    j=1; 

    %Qp(i,j)=0; 

    Qp(i,j)=-0.0152*(c-1)*dt+0.0319; %EXCEL SHEET 

    if Qp(i,j)<0 

        Qp(i,j)=0; 

    end 

    Vp(i,j)=Qp(i,j)/A; 

    H_high=H_max; 

    H_low=H_min; 
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    h_M=[H_low H_high];%M as abbrev. for 'matrix' 

    nn=length(h_M); 

    Qp_L_M=zeros(1,nn);%L as abbrev. for 'left hand side' 

    Qp_R_M=zeros(1,nn);%R as abbrev. for 'right hand side' 

    e_M=zeros(1,nn); 

    Cm=H(i,j+1)-B*Q(i,j+1); 

    Bm=B+R*abs(Q(i,j+1)); 

    for k=1:nn 

        Qp_L_M(1,k)=Qp(i,j); 

        Qp_R_M(1,k)=(h_M(1,k)-Cm)/Bm; 

        e_M(1,k)=Qp_L_M(1,k)-Qp_R_M(1,k); 

    end 

    e_low=e_M(1,1); 

    e_high=e_M(1,2); 

    e_new=1; 

    while abs(e_new)>e_lim 

        H_new=0.5*(H_high+H_low); 

        Qp_L=Qp(i,j); 

        Qp_R=(H_new-Cm)/Bm; 

        e_new=Qp_L-Qp_R; 

        if e_new<-e_lim 

            H_high=H_new; 

        elseif e_new>e_lim 

            H_low=H_new; 

        else%if -eLimit<eNew<eLimit 

            H_high=H_new; 

            H_low=H_new; 

        end 

    end 

    Hp(i,j)=0.5*(H_high+H_low); 

    if Hp(i,j)<z_l(i,j)+H_V 

        Hp(i,j)=z_l(i,j)+H_V; 

    end 

    if Hp(i,j)<0 

        Hp(i,j)=0; 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        Qp(i,j)=(Hp(i,j)-Cm)/Bm; 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    if Hp(i,j)>H_max_M(i,j) 

        H_max_M(i,j)=Hp(i,j); 

    end 

    if Hp(i,j)<H_min_M(i,j) 

        H_min_M(i,j)=Hp(i,j); 

    end 

    G(i,c)=Hp(i,j);%pressure head at the pump [m] 

    for j=2:(no-1) 

        H_high=H_max; 

        H_low=H_min; 

        Cp=H(i,j-1)+B*Q(i,j-1); 

        Bp=B+R*abs(Q(i,j-1)); 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        e_new=1; 

        while abs(e_new)>e_lim 

            H_new=0.5*(H_high+H_low); 
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            Qp_L=(Cp-H_new)/Bp; 

            Qp_R=(H_new-Cm)/Bm; 

            e_new=Qp_L-Qp_R; 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -eLimit<eNew<eLimit 

                H_high=H_new; 

                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

        if Hp(i,j)<z_l(i,j)+H_V 

            Hp(i,j)=z_l(i,j)+H_V; 

        end 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        Qp(i,j)=Qp_R; 

        Vp(i,j)=Qp(i,j)/A; 

        if j==2 

            F(i,c)=Vp(i,j); 

        end 

        if Hp(i,j)>H_max_M(i,j) 

            H_max_M(i,j)=Hp(i,j); 

        end 

        if Hp(i,j)<H_min_M(i,j) 

            H_min_M(i,j)=Hp(i,j); 

        end 

    end 

    j=no; 

    Hp(i,j)=H(i,no); 

    Cp=H(i,j-1)+B*Q(i,j-1); 

    Bp=B+R*abs(Q(i,j-1)); 

    Qp(i,j)=(Cp-Hp(i,j))/Bp; 

    Vp(i,j)=Qp(i,j)/A; 

    if Hp(i,j)>H_max_M(i,j) 

        H_max_M(i,j)=Hp(i,j); 

    end 

    if Hp(i,j)<H_min_M(i,j) 

        H_min_M(i,j)=Hp(i,j); 

    end 

    for j=1:no 

        H(i,j)=Hp(i,j); 

        Q(i,j)=Qp(i,j); 

    end 

    set(plot_Hp,'Ydata',Hp);%updates H 

    set(plot_Vp,'Ydata',Vp);%updates V 

    drawnow; 

    pause(0.0001) 

    frame=getframe(fig);%grab the frame 

    writeVideo(movieObj,frame);%write the frame to the object 

end 

close(movieObj); 

fig_M=figure; 

hold on 

plot_Max=plot(cp,H_max_M); 

plot_Min=plot(cp,H_min_M); 
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hold off 

xlim([1 no]); 

ylim([H_min H_max]); 

box on 

grid on 

grid minor 

xlabel('Calc. points [-]'); 

fig_G=figure; 

t_G=1:dt_no; 

plot_G=plot(t_G,G); 

xlim([1 dt_no]); 

ylim([-20 110]); 

box on 

grid on 

grid minor 

xlabel('Time incr. [-]'); 

ylabel('Pressure head [m]'); 

ylabel('Pressure head [m]'); 

 

D.2 Leakage; x = 725 m. 
 
clear all; close all; clc; 

%% 

%pipe prof. & data 

L=1025;%pipe length [m] 

dx=25;%length incr. [m] 

no=(L/dx)+1;%no. of calc. points [-] 

cp=1:no;%vec.; calc. points [-] 

nod=[0 L];%vec.; nodes [m] 

z_nod=[0 0];%vec.; elevs. [m] 

l=length(nod);%length; n [-] 

i=1; 

for j=1:l-1%pipe profile 

    s=(z_nod(1,j+1)-z_nod(1,j))/(nod(1,j+1)-nod(1,j)); 

    c=0; 

    for i=i:((nod(1,j+1)/dx)+1) 

        c=c+1; 

        z_l(1,i)=z_nod(1,j)+(c-1)*dx*s; 

    end 

end 

% hold on 

% plot_l=plot(cp,z_l,'k'); 

D=0.21;%pipe diameter [m] 

A=pi*((D/2).^2);%pipe cross-sec. area [m^{2}] 

a=288;%wave speed [m/s] 

dt=dx/a;%time incr. [s] 

%% 

%leakage 

j_G=30;%orifice node [-] 

% z_G=z_l(1,j_G);%orifice elev. [m] 

z_G=0; 

Cd=0.61;%disch. coeff. [-]; sharp edge 

A_G=A/20;%orifice area [m^{2}] 

%% 

%init. cond. 

f=0.01741;%Darcy friction factor [-] EXCEL SHEET 
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Qi=0.032;%init. flow [m^{3}/s] 

g=9.8105;%local acceleration due to gravity [m/s^{2}] 

dh=f*dx*(Qi.^2)/(D*2*g*(A.^2));%pressure head incr. [m]; Darcy-Weisbach 

equation 

Hf=23.42;%fin. pressure head [m] 

i=1; 

for j=1:no 

    H(i,j)=Hf+(no-(j-1))*dh; 

    Q(i,j)=Qi; 

    V(i,j)=Q(i,j)/A; 

end 

%plot_H=plot(cp,H,'c--'); 

%% 

%fig. 

Hp=zeros(1,no); 

Vp=zeros(1,no); 

H_max=100;%max. pressure head; error calc. [m] 

H_min=-100;%min. pressure head; error calc. [m] 

fig=figure; 

ax1=subplot(2,1,1); 

hold on 

plot_l=plot(cp,z_l,'k'); 

plot_H=plot(cp,H,'c--'); 

plot_Hp=plot(cp,Hp,'b'); 

hold off 

set(ax1,'xLim',[1 no],'yLim',[H_min H_max]); 

box on 

grid on 

grid minor 

xlabel(ax1,'Calc. points [-]'); 

ylabel(ax1,'Pressure head [m]'); 

title(ax1,'Fluid transient'); 

ax2=subplot(2,1,2); 

hold on 

plot_l=plot(cp,z_l,'k'); 

plot_V=plot(cp,V,'c--'); 

plot_Vp=plot(cp,Vp,'m'); 

hold off 

set(ax2,'xLim',[1 no],'yLim',[-2 2]); 

box on 

grid on 

grid minor 

xlabel(ax2,'Calc. points [-]'); 

ylabel(ax2,'Velocity [m/s]'); 

%% 

%vid. 

movieObj = VideoWriter('leakage_transient_node_30.avi');%create the 

movie object 

%MovieObj.Framerate = 60;%set the properties if desired (in this case 

the frame rate) 

open(movieObj);%get the movie object ready for writing 

%% 

%calc. 

% t=60;%simulation time [s] 

% dt_no=t/dt;%no. of time incr. [-] 

dt_no=4000;%no. of time incr. [-] 

t=dt_no*dt;%simulation time [s] 



Andrés Martínez Gómez                                                                                                                    Master’s Thesis 

 

61 
 

B=a/(g*A);%pipeline characteristic impedance [s/m^{2}] 

R=f*dx/(2*g*D*(A.^2));%pipeline resistance coefficient [s^{2}/m^{5}] 

e_lim=10.^-10;%"true" value [m^{3}/s] 

  

i=1; 

for c=1:dt_no 

    j=1; 

    Qp(i,j)=Qi; 

    H_high=H_max; 

    H_low=H_min; 

    H_M=[H_low H_high];%M as abbrev. for 'matrix' 

    nn=length(H_M); 

    Qp_L_M=zeros(1,nn);%L as abbrev. for 'left hand side' 

    Qp_R_M=zeros(1,nn);%R as abbrev. for 'right hand side' 

    e_M=zeros(1,nn); 

    Cm=H(i,j+1)-B*Q(i,j+1); 

    Bm=B+R*abs(Q(i,j+1)); 

    for k=1:nn 

        Qp_L_M(1,k)=Qp(i,j); 

        Qp_R_M(1,k)=(H_M(1,k)-Cm)/Bm; 

        e_M(1,k)=Qp_L_M(1,k)-Qp_R_M(1,k); 

    end 

    e_low=e_M(1,1); 

    e_high=e_M(1,2); 

    e_new=1; 

    while abs(e_new)>=e_lim 

        H_new=0.5*(H_high+H_low); 

        Qp_L=Qp(i,j); 

        Qp_R=(H_new-Cm)/Bm; 

        e_new=Qp_L-Qp_R; 

        if e_new<-e_lim 

            H_high=H_new; 

        elseif e_new>e_lim 

            H_low=H_new; 

        else%if -eLimit<eNew<eLimit 

            H_high=H_new; 

            H_low=H_new; 

        end 

    end 

    Hp(i,j)=0.5*(H_high+H_low);  

    if Hp(i,j)<0 

        Hp(i,j)=0; 

        Qp(i,j)=(Hp(i,j)-Cm)/Bm; 

    end 

    Vp(i,j)=Qp(i,j)/A; 

    G(i,c)=Hp(i,j); 

    for j=2:(no-1) 

        H_high=H_max; 

        H_low=H_min; 

        Cp=H(i,j-1)+B*Q(i,j-1); 

        Bp=B+R*abs(Q(i,j-1)); 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        e_new=1; 

        while abs(e_new)>=e_lim 

            H_new=0.5*(H_high+H_low); 

            Qp_L=(Cp-H_new)/Bp; 
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            Qp_R=(H_new-Cm)/Bm; 

            if j==j_G && H(i,j)>=z_G 

                if H(i,j-1)>H(i,j+1) 

                    Q_G=Cd*A_G*sqrt(2*g*(H(i,j-1)-z_G)); 

                else%if H(i,j-1)<H(i,j+1) 

                    Q_G=Cd*A_G*sqrt(2*g*(H(i,j+1)-z_G)); 

                end 

                e_new=Qp_L-Qp_R-Q_G; 

            else%if i<>iLeak 

                e_new=Qp_L-Qp_R; 

            end 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -eLimit<eNew<eLimit 

                H_high=H_new; 

                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

        Qp_L=(Cp-Hp(i,j))/Bp; 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        if abs(Qp_L)>=abs(Qp_R) 

            Qp(i,j)=Qp_R; 

        else%if Cp-Cm<0 

            Qp(i,j)=Qp_L; 

        end 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    j=no; 

    Hp(i,j)=H(i,j); 

    Cp=H(i,j-1)+B*Q(i,j-1); 

    Bp=B+R*abs(Q(i,j-1)); 

    Qp(i,j)=(Cp-Hp(i,j))/Bp; 

    Vp(i,j)=Qp(i,j)/A; 

    for j=1:no 

        H(i,j)=Hp(i,j); 

        Q(i,j)=Qp(i,j);    

    end 

    set(plot_Hp,'Ydata',Hp);%updates H 

    set(plot_Vp,'Ydata',Vp);%updates V 

    drawnow; 

    pause(0.001) 

    frame=getframe(fig);%grab the frame 

    writeVideo(movieObj,frame);%write the frame to the object 

end 

for c=dt_no+1:3*dt_no 

    j=1; 

    Qp(i,j)=0; 

    H_high=H_max; 

    H_low=H_min; 

    Cm=H(i,j+1)-B*Q(i,j+1); 

    Bm=B+R*abs(Q(i,j+1)); 

    e_new=1; 

    while abs(e_new)>=e_lim 

        H_new=0.5*(H_high+H_low); 
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        Qp_L=Qp(i,j); 

        Qp_R=(H_new-Cm)/Bm; 

        e_new=Qp_L-Qp_R; 

        if e_new<-e_lim 

            H_high=H_new; 

        elseif e_new>e_lim 

            H_low=H_new; 

        else%if -eLimit<eNew<eLimit 

            H_high=H_new; 

            H_low=H_new; 

        end 

    end 

    Hp(i,j)=0.5*(H_high+H_low);  

    if Hp(i,j)<0 

        Hp(i,j)=0; 

        Qp(i,j)=(Hp(i,j)-Cm)/Bm; 

    end 

    Vp(i,j)=Qp(i,j)/A; 

    G(i,c)=Hp(i,j); 

    for j=2:(no-1) 

        H_high=H_max; 

        H_low=H_min; 

        Cp=H(i,j-1)+B*Q(i,j-1); 

        Bp=B+R*abs(Q(i,j-1)); 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        e_new=1; 

        while abs(e_new)>=e_lim 

            H_new=0.5*(H_high+H_low); 

            Qp_L=(Cp-H_new)/Bp; 

            Qp_R=(H_new-Cm)/Bm; 

            if j==j_G && H(i,j)>=z_G 

                if H(i,j-1)>H(i,j+1) 

                    Q_G=Cd*A_G*sqrt(2*g*(H(i,j-1)-z_G)); 

                else%if H(i,j-1)<H(i,j+1) 

                    Q_G=Cd*A_G*sqrt(2*g*(H(i,j+1)-z_G)); 

                end 

                e_new=Qp_L-Qp_R-Q_G; 

            else%if i<>iLeak 

                e_new=Qp_L-Qp_R; 

            end 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -eLimit<eNew<eLimit 

                H_high=H_new; 

                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

        Qp_L=(Cp-Hp(i,j))/Bp; 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        if abs(Qp_L)>=abs(Qp_R) 

            Qp(i,j)=Qp_R; 

        else%if Cp-Cm<0 

            Qp(i,j)=Qp_L; 
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        end 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    j=no; 

    Hp(i,j)=H(i,j); 

    Cp=H(i,j-1)+B*Q(i,j-1); 

    Bp=B+R*abs(Q(i,j-1)); 

    Qp(i,j)=(Cp-Hp(i,j))/Bp; 

    Vp(i,j)=Qp(i,j)/A; 

    for j=1:no 

        H(i,j)=Hp(i,j); 

        Q(i,j)=Qp(i,j);    

    end 

    set(plot_Hp,'Ydata',Hp);%updates H 

    set(plot_Vp,'Ydata',Vp);%updates V 

    drawnow; 

    pause(0.001) 

    frame=getframe(fig);%grab the frame 

    writeVideo(movieObj,frame);%write the frame to the object 

end 

for c=(3*dt_no)+1:4*dt_no 

    j=1; 

    Qp(i,j)=Qi; 

    H_high=H_max; 

    H_low=H_min; 

    Cm=H(i,j+1)-B*Q(i,j+1); 

    Bm=B+R*abs(Q(i,j+1)); 

    e_new=1; 

    while abs(e_new)>=e_lim 

        H_new=0.5*(H_high+H_low); 

        Qp_L=Qp(i,j); 

        Qp_R=(H_new-Cm)/Bm; 

        e_new=Qp_L-Qp_R; 

        if e_new<-e_lim 

            H_high=H_new; 

        elseif e_new>e_lim 

            H_low=H_new; 

        else%if -eLimit<eNew<eLimit 

            H_high=H_new; 

            H_low=H_new; 

        end 

    end 

    Hp(i,j)=0.5*(H_high+H_low);  

    if Hp(i,j)<0 

        Hp(i,j)=0; 

        Qp(i,j)=(Hp(i,j)-Cm)/Bm; 

    end 

    Vp(i,j)=Qp(i,j)/A; 

    G(i,c)=Hp(i,j); 

    for j=2:(no-1) 

        H_high=H_max; 

        H_low=H_min; 

        Cp=H(i,j-1)+B*Q(i,j-1); 

        Bp=B+R*abs(Q(i,j-1)); 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        e_new=1; 
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        while abs(e_new)>=e_lim 

            H_new=0.5*(H_high+H_low); 

            Qp_L=(Cp-H_new)/Bp; 

            Qp_R=(H_new-Cm)/Bm; 

            if j==j_G && H(i,j)>=z_G 

                if H(i,j-1)>H(i,j+1) 

                    Q_G=Cd*A_G*sqrt(2*g*(H(i,j-1)-z_G)); 

                else%if H(i,j-1)<H(i,j+1) 

                    Q_G=Cd*A_G*sqrt(2*g*(H(i,j+1)-z_G)); 

                end 

%                 Q_G=Cd*A_G*sqrt(2*g*(H(i,j)-z_G)); 

                e_new=Qp_L-Qp_R-Q_G; 

            else%if i<>iLeak 

                e_new=Qp_L-Qp_R; 

            end 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -eLimit<eNew<eLimit 

                H_high=H_new; 

                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

        Qp_L=(Cp-Hp(i,j))/Bp; 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        if abs(Qp_L)>=abs(Qp_R) 

            Qp(i,j)=Qp_R; 

        else%if Cp-Cm<0 

            Qp(i,j)=Qp_L; 

        end 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    j=no; 

    Hp(i,j)=H(i,j); 

    Cp=H(i,j-1)+B*Q(i,j-1); 

    Bp=B+R*abs(Q(i,j-1)); 

    Qp(i,j)=(Cp-Hp(i,j))/Bp; 

    Vp(i,j)=Qp(i,j)/A; 

    for j=1:no 

        H(i,j)=Hp(i,j); 

        Q(i,j)=Qp(i,j);    

    end 

    set(plot_Hp,'Ydata',Hp);%updates H 

    set(plot_Vp,'Ydata',Vp);%updates V 

    drawnow; 

    pause(0.001) 

    frame=getframe(fig);%grab the frame 

    writeVideo(movieObj,frame);%write the frame to the object 

end 

close(movieObj); 

fig_G=figure; 

t_G=1:4*dt_no; 

plot_G=plot(t_G,G); 
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D.3 Vapor Cavity; 𝐕𝟎 = 0.75 m/s. 
 
clear all; close all; clc; 

%% 

%pipe prof. & data 

g=9.8105;%local acc. due to gravity [m/s^{2}] 

a=100*g;%wave speed [m/s] 

L=a;%pipe length [m] 

no=100;%no. of calc. points [-] 

dx=L/(no-1);%length incr. [m] 

cp=1:no;%vec.; calc. points [-] 

nod=[0 L];%vec.; nodes [m] 

z_nod=[0 0];%vec.; elev. [m] 

l=length(nod);%length; n [-] 

i=1; 

for j=1:l-1%pipe profile 

    s=(z_nod(1,j+1)-z_nod(1,j))/(nod(1,j+1)-nod(1,j)); 

    c=0; 

    for i=i:((nod(1,j+1)/dx)+1) 

        c=c+1; 

        z_l(1,i)=z_nod(1,j)+(c-1)*dx*s; 

    end 

end 

% hold on 

% plot_l=plot(cp,z_l,'k'); 

D=0.21;%pipe diameter [m] 

A=pi*((D/2).^2);%pipe cross-sec. area [m^{2}] 

dt=dx/a;%time incr. [s] 

%% 

%init. cond. 

f=0;%Darcy friction factor [-] NO FRICTION; EXCEL SHEET  

Vi=0.75;%init. flow speed [m/s] GIVEN 

dh=f*dx*(Vi^2)/(D*2*g);%pressure head incr. [m]; Darcy-Weisbach 

equation 

Hf=15;%fin. pressure head [m] 

i=1; 

for j=1:no 

    H(i,j)=Hf+(no-(j-1))*dh; 

    V(i,j)=Vi; 

    Q(i,j)=V(i,j)*A; 

end 

%% 

%fig. 

Hp=zeros(1,no); 

Vp=zeros(1,no); 

fig=figure; 

ax1=subplot(2,1,1); 

hold on 

plot_l=plot(cp,z_l,'k'); 

plot_H=plot(cp,H,'c--'); 

plot_Hp=plot(cp,Hp,'b'); 

hold off 

set(ax1,'xLim',[1 no],'yLim',[-70 120]); 

box on 

grid on 

grid minor 
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xlabel(ax1,'Calc. points [-]'); 

ylabel(ax1,'Pressure head [m]'); 

title(ax1,'Fluid transient'); 

ax2=subplot(2,1,2); 

hold on 

plot_l=plot(cp,z_l,'k'); 

plot_V=plot(cp,V,'c--'); 

plot_Vp=plot(cp,Vp,'m'); 

hold off 

set(ax2,'xLim',[1 no],'yLim',[-1 1]); 

box on 

grid on 

grid minor 

xlabel(ax2,'Calc. points [-]'); 

ylabel(ax2,'Velocity [m/s]'); 

%% 

%vid. 

movieObj = VideoWriter('isolated_cavity_no_friction_0.75.avi');%create 

the movie object 

%MovieObj.Framerate = 60;%set the properties if desired (in this case 

the frame rate) 

open(movieObj);%get the movie object ready for writing 

%% 

%calc. 

% t=30;%simulation time [s] 

% dt_no=t/dt;%no. of time incr. [-] 

dt_no=1000;%no. of time incr. [-] 

t=dt_no*dt;%simulation time [s] 

B=a/(g*A);%pipeline characteristic impedance [s/m^{2}] 

R=f*dx/(2*g*D*(A^2));%pipeline resistance coefficient [s^{2}/m^{5}] 

H_max=1000;%max. pressure head; error calc. [m] 

H_min=-1000;%min. pressure head; error calc. [m] [m] 

H_V=-10;%vapor pressure head [m] 

v_C=0;%init. cavity volume [m^{3}] 

e_lim=10^-10;%"true" value [m^{3}/s] 

  

i=1; 

for c=1:dt_no 

    j=1; 

    Qp(i,j)=0; 

    H_high=H_max; 

    H_low=H_min; 

    H_M=[H_low H_high];%M as abbrev. for 'matrix' 

    nn=length(H_M); 

    Qp_L_M=zeros(1,nn);%L as abbrev. for 'left hand side' 

    Qp_R_M=zeros(1,nn);%R as abbrev. for 'right hand side' 

    e_M=zeros(1,nn); 

    Cm=H(i,j+1)-B*Q(i,j+1); 

    Bm=B+R*abs(Q(i,j+1)); 

    for k=1:nn 

        Qp_L_M(1,k)=Qp(i,j); 

        Qp_R_M(1,k)=(H_M(1,k)-Cm)/Bm; 

        e_M(1,k)=Qp_L_M(1,k)-Qp_R_M(1,k); 

    end 

    e_low=e_M(1,1); 

    e_high=e_M(1,2); 

    e_new=1; 
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    if v_C>0 

        Hp(i,j)=z_l(i,j)+H_V; 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        Qp_L=Qp(i,j); 

        v_C_M(i,c)=v_C+(Qp_R-Qp_L)*dt; 

        Qp(i,j)=Qp_R; 

        Vp(i,j)=Qp(i,j)/A; 

        if v_C_M(i,c)<=0 

            while abs(e_new)>=e_lim 

                H_new=0.5*(H_high+H_low); 

                Qp_R=(H_new-Cm)/Bm; 

                e_new=Qp_L-Qp_R; 

                if e_new<-e_lim 

                    H_high=H_new; 

                elseif e_new>e_lim 

                    H_low=H_new; 

                else%if -e_lim<e_new<e_lim 

                    H_high=H_new; 

                    H_low=H_new; 

                end 

            end 

            Hp(i,j)=0.5*(H_high+H_low); 

            if Hp(i,j)<z_l(i,j)+H_V 

                Hp(i,j)=z_l(i,j)+H_V; 

            end 

            Qp_R=(Hp(i,j)-Cm)/Bm; 

            v_C_M(i,c)=v_C+(Qp_R-Qp_L)*dt; 

            Qp(i,j)=Qp_R; 

            Vp(i,j)=Qp(i,j)/A; 

        end 

    else%if v_C=0 

        while abs(e_new)>=e_lim 

            H_new=0.5*(H_high+H_low); 

            Qp_L=Qp(i,j); 

            Qp_R=(H_new-Cm)/Bm; 

            e_new=Qp_L-Qp_R; 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -e_lim<e_new<e_lim 

                H_high=H_new; 

                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

        if Hp(i,j)<z_l(i,j)+H_V 

            Hp(i,j)=z_l(i,j)+H_V; 

        end 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        v_C_M(i,c)=v_C+(Qp_R-Qp_L)*dt; 

        Qp(i,j)=Qp_R; 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    v_C=v_C_M(i,c); 

    G(i,c)=Hp(i,j);%pressure head at the pump [m] 

    S(i,c)=Vp(i,j);%flow speed at the pump [m] 
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    T(i,c)=c*dt;%time [s] 

    for j=2:(no-1) 

        H_high=H_max; 

        H_low=H_min; 

        Cp=H(i,j-1)+B*Q(i,j-1); 

        Bp=B+R*abs(Q(i,j-1)); 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        e_new=1; 

        while abs(e_new)>=e_lim 

            H_new=0.5*(H_high+H_low); 

            Qp_L=(Cp-H_new)/Bp; 

            Qp_R=(H_new-Cm)/Bm; 

            e_new=Qp_L-Qp_R; 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -e_lim<e_new<e_lim 

                H_high=H_new; 

                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

        if Hp(i,j)<z_l(i,j)+H_V 

            Hp(i,j)=z_l(i,j)+H_V; 

        end 

        % Qp_L=(Cp-Hp(i,j))/Bp; 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        Qp(i,j)=Qp_R; 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    j=no; 

    Hp(i,j)=H(i,j); 

    Cp=H(i,j-1)+B*Q(i,j-1); 

    Bp=B+R*abs(Q(i,j-1)); 

    Qp(i,j)=(Cp-Hp(i,j))/Bp; 

    Vp(i,j)=Qp(i,j)/A; 

    for j=1:no 

        H(i,j)=Hp(i,j); 

        Q(i,j)=Qp(i,j); 

    end 

    set(plot_Hp,'Ydata',Hp);%updates H 

    set(plot_Vp,'Ydata',Vp);%updates V 

    drawnow; 

    pause(0.001) 

    frame=getframe(fig);%grab the frame 

    writeVideo(movieObj,frame);%write the frame to the object 

end 

close(movieObj); 

fig_G=figure; 

t_G=1:dt_no; 

plot_G=plot(t_G,G); 

xlim([1 dt_no]); 

ylim([-20 110]); 

box on 

grid on 
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grid minor 

xlabel('Time incr. [-]'); 

ylabel('Pressure head [m]'); 

 

D.4 Air Pocket 
 
clear all; close all; clc; 

%% 

%pipe prof. & data 

L=2000;%pipe length [m] 

dx=20;%length incr. [m] 

no=(L/dx)+1;%no. of calc. points [-] 

cp=1:no;%vec.; calc. points [-] 

nod=[0 L];%vec.; nodes [m] 

z_nod=[0 10];%vec.; elev. [m] 

l=length(nod);%length; n [-] 

i=1; 

for j=1:l-1%pipe profile 

    s=(z_nod(1,j+1)-z_nod(1,j))/(nod(1,j+1)-nod(1,j)); 

    c=0; 

    for i=i:((nod(1,j+1)/dx)+1) 

        c=c+1; 

        z_l(1,i)=z_nod(1,j)+(c-1)*dx*s; 

    end 

end 

% hold on 

% plot_l=plot(cp,z_l,'k'); 

D=0.21;%pipe diameter [m] 

A=pi*((D/2).^2);%pipe cross sec. area [m^{2}] 

a=400;%speed of pressure pulse [m/s] 

dt=dx/a;%time incr. [s] 

v_dx=dx*A; 

v_Ai=v_dx/2; 

%% 

%init. cond. 

f=0.0172;%Darcy friction factor [-]; can be modeled by the Colebrook-White 

equation 

Qi=0;%init. flow; before pump stop [m^{3}/s] GIVEN 

g=9.8105;%local acceleration due to gravity [m/s^{2}] 

dh=f*dx*(Qi^2)/(D*2*g*(A^2));%Darcy-Weisbach equation [m]; per dx 

Hi=9.95;%fin. elev.; fin. piez. level [m] 

i=1; 

for j=1:no 

    H(i,j)=Hi+(no-(j-1))*dh; 

    Q(i,j)=Qi; 

    V(i,j)=Q(i,j)/A; 

end 

%% 

%fig. 

Hp=H; 

Qp=Q; 

Vp=V; 

fig=figure; 

ax1=subplot(2,1,1); 

hold on 

plot_l=plot(cp,z_l,'k'); 
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plot_H=plot(cp,H,'c--'); 

plot_Hp=plot(cp,Hp,'b'); 

hold off 

set(ax1,'xLim',[1 no],'yLim',[-100 100]); 

box on 

grid on 

grid minor 

xlabel(ax1,'Calc. points [-]'); 

ylabel(ax1,'Pressure head [m]'); 

title(ax1,'Fluid transient'); 

ax2=subplot(2,1,2); 

hold on 

% plot_l=plot(cp,z_l,'k'); 

plot_V=plot(cp,V,'c--'); 

plot_Vp=plot(cp,Vp,'m'); 

hold off 

set(ax2,'xLim',[1 no],'yLim',[-2 2]); 

box on 

grid on 

grid minor 

xlabel(ax2,'Calc. points [-]'); 

ylabel(ax2,'Velocity [m/s]'); 

%% 

%vid. 

movieObj = VideoWriter('air_pocket.avi');%create the movie object 

%MovieObj.Framerate = 60;%set the properties if desired (in this case the 

frame rate) 

open(movieObj);%get the movie object ready for writing 

%% 

%air pocket 

H_bar=10.33;%barometric head [m] 

m=1.4;%polytropic exponent [-] 

j=no; 

C_A=(Hp(i,j)+H_bar-z_l(1,j))*(v_Ai-dt*(Qp(i,j)+Q(i,j))/2)^m; 

v_A=v_Ai; 

KIT=100; 

v_S=0.0001; 

%% 

%calc. 

% t=30;%simulation time [s] 

% dt_no=t/dt;%no. of time increments [-] 

dt_no=500;%no. of time increments [-] 

t=dt_no*dt;%simulation time [s] 

B=a/(g*A); 

R=f*dx/(2*g*D*(A^2)); 

H_max=1000;%max. head; error calc. [m] 

H_min=-1000;%min. head; error calc. [m] 

e_lim=10^-10; 

  

i=1; 

for c=1:dt_no 

    j=1; 

    Hp(i,j)=34.37; 

    Cm=H(i,j+1)-B*Q(i,j+1); 

    Bm=B+R*abs(Q(i,j+1)); 

    Qp(i,j)=(Hp(i,j)-Cm)/Bm; 

    Vp(i,j)=Qp(i,j)/A; 
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%     Qp(i,j)=0.032; 

%     H_high=H_max; 

%     H_low=H_min; 

%     H_M=[H_low H_high];%M as abbrev. for 'matrix' 

%     nn=length(H_M); 

%     Qp_L_M=zeros(1,nn);%L as abbrev. for 'left hand side' 

%     Qp_R_M=zeros(1,nn);%R as abbrev. for 'right hand side' 

%     e_M=zeros(1,nn); 

%     Cm=H(i,j+1)-B*Q(i,j+1); 

%     Bm=B+R*abs(Q(i,j+1)); 

%     for k=1:nn 

%         Qp_L_M(1,k)=Qp(i,j); 

%         Qp_R_M(1,k)=(H_M(1,k)-Cm)/Bm; 

%         e_M(1,k)=Qp_L_M(1,k)-Qp_R_M(1,k); 

%     end 

%     e_low=e_M(1,1); 

%     e_high=e_M(1,2); 

%     e_new=1; 

%     while abs(e_new)>=e_lim 

%         H_new=0.5*(H_high+H_low); 

%         Qp_L=Qp(i,j); 

%         Qp_R=(H_new-Cm)/Bm; 

%         e_new=Qp_L-Qp_R; 

%         if e_new<-e_lim 

%             H_high=H_new; 

%         elseif e_new>e_lim 

%             H_low=H_new; 

%         else%if -e_lim<e_new<e_lim 

%             H_high=H_new; 

%             H_low=H_new; 

%         end 

%     end 

%     Hp(i,j)=0.5*(H_high+H_low); 

%     if Hp(i,j)<0 

%         Hp(i,j)=0; 

%         Qp(i,j)=(Hp(i,j)-Cm)/Bm; 

%     end 

%     Vp(i,j)=Qp(i,j)/A; 

    for j=2:(no-1) 

        H_high=H_max; 

        H_low=H_min; 

        Cp=H(i,j-1)+B*Q(i,j-1); 

        Bp=B+R*abs(Q(i,j-1)); 

        Cm=H(i,j+1)-B*Q(i,j+1); 

        Bm=B+R*abs(Q(i,j+1)); 

        e_new=1; 

        while abs(e_new)>=e_lim 

            H_new=0.5*(H_high+H_low); 

            Qp_L=(Cp-H_new)/Bp; 

            Qp_R=(H_new-Cm)/Bm; 

            e_new=Qp_L-Qp_R; 

            if e_new<-e_lim 

                H_high=H_new; 

            elseif e_new>e_lim 

                H_low=H_new; 

            else%if -e_lim<e_new<e_lim 

                H_high=H_new; 
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                H_low=H_new; 

            end 

        end 

        Hp(i,j)=0.5*(H_high+H_low); 

%         Qp_L=(Cp-Hp(i,j))/Bp; 

        Qp_R=(Hp(i,j)-Cm)/Bm; 

        Qp(i,j)=Qp_R; 

        Vp(i,j)=Qp(i,j)/A; 

    end 

    j=no; 

    Cp=H(i,j-1)+B*Q(i,j-1); 

    Bp=B+R*abs(Q(i,j-1)); 

    Qp(i,j)=Q(i,j); 

    u=0; 

    while u<=KIT 

        v_Ap(i,c)=v_A-dt*(Qp(i,j)+Q(i,j))/2; 

        if v_Ap(i,c)<v_S 

            v_Ap(i,c)<v_S; 

        end 

        F1=(Cp-Bp*Qp(i,j)-z_l(i,j)+H_bar)*(v_Ap(i,c)^m)-C_A; 

        dF1dQp=-m*dt*C_A/v_Ap(i,c)-Bp*v_Ap(i,c)^m; 

        dQ=-F1/dF1dQp; 

        Qp(i,j)=Qp(i,j)+dQ; 

        u=u+1; 

    end 

    v_Ap(i,c)=v_A-dt*(Qp(i,j)+Q(i,j))/2; 

    if v_Ap(i,c)<0 

        v_Ap(i,c)=0; 

    end 

    Vp(i,j)=Qp(i,j)/A; 

    Hp(i,j)=Cp-Bp*Qp(i,j); 

    G(i,c)=Hp(i,j); 

    F(i,c)=Vp(i,j); 

    v_A=v_Ap(i,c); 

    for j=1:no 

        H(i,j)=Hp(i,j); 

        Q(i,j)=Qp(i,j); 

    end 

    set(plot_Hp,'Ydata',Hp); 

    set(plot_Vp,'Ydata',Vp);%updates the the water depths 

    drawnow; 

    pause(0.001) 

    frame=getframe(fig);%grab the frame 

    writeVideo(movieObj,frame);%write the frame to the object 

end 

close(movieObj); 

fig_G=figure; 

t_G=1:dt_no; 

plot_G=plot(t_G,G); 

fig_F=figure; 

plot_F=plot(t_G,F); 


