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Abstract 

In this project methods for building a tabular        
q-learner over a continuous state space is proposed        
and investigated. Various problem areas are found       
and methods to counteract these are also tested. It is          
shown that it is possible to create a tabular learner          
over a continuous state space with the use of         
“q-points”, but optimal methods for managing and       
updating these are still to be investigated. 

1 Intro 

Artificial Intelligence (AI) used in games for controlling        
of opponents or companions are usually predictable       
and non-adaptive to the players actions. This can add         
a certain level of puzzle solving, as the behaviour         
must be figured out which is the case in games such           
as Hitman or Dark Souls. But more often the AI is           
constructed to simulate real human decision      
processes and behaviours with the purpose of making        
the player forget the systems behind the characters        
and feel further immersed in the game. These days         
there is a lot of focus on a third kind of AI controlled             
by machine learning with the work of Google leading         
the way. These neural network(NN) based AI are        
trained over a long timespan to master games but         
have rarely been used together with players as the         
training is often compersome and does not adapt to         
the player as fast as the player adapts to the AI.           
These methods can adapt to any behaviour and are         
constantly being developed upon to make them faster        
adapting and more stable. In a previous project it was          
made clear that simple reinforcement learning      
algorithms can be effective at providing live       
adaptation during gameplay, even while being far less        
capable systems. It seems that the agent being a fast          
learner out-prioritizes learning complexity. This project      
evolves around developing an AI capable of both fast         
learning and higher level complexity through using the        
methods of q-tables on top of a continuous state         
space. 
 

2 Background 

This next section will go through some of the methods          
influencing this project. 

2.1 Reinforcement Learning basics 

Reinforcement learning is all about creating a flexible        
algorithm which reinforces itself towards a more       
optimal version by experiencing the environment      
online. Reinforcement learning consists of some basic       
elements. The data received from the environment       
describing what the agent is sensing is called the         
state S, and the set of actions which the agent can           
choose from is denoted . The part of the program    A       
which samples the state, makes a decision and        
performs an action is called the agent. In order for the           
agent to optimise the algorithm towards an optimum,        
it needs to know whether the last action in the last           
state was good or bad. For this a reward R is given by             
the reward function r: S x A → R. This can be any             
number but most often between -1 and 1 . After          
receiving a reward, the agent can be updated. This         
can happen after each action or at the end of an           
epoch or episode, such as reached goal or failure.         
How much the agent should change the algorithm        
estimating the future reward is called the value or         
q-function, and can be controlled by a value called the          
learning rate denoted as α. The higher the learning         
rate, the faster the agent will learn, but the higher is           
the risk of it not finding the average optimum as it           
overshoots. A discounted sum of future rewards is        

called the return:  γ r .Rt = ∑
∞

i = t
 i−t

i  

How far back the reward should affect previous         
actions can usually be controlled with a discount        
factor . A deterministic policy is a mapping 0, ]γ ∈ [ 1        
from states to actions: It is the agent's goal    S .π :  → A      
to maximise the expected return. The q-function or        
action-value function is defined as (Sutton &     (s , )Qπ

t at    
Barto 2012) (Andrychowicz et al. 2017). 
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2.2 Q-learning and SARSA 

A standard machine learning agent could have a        
structure as the following and can be a q-learner or          
using SARSA, which is two methods influencing how        
careful the agent is behaving. 

 
Figure x: An example of a reinforcement agent update. 

2.3 Q-table  

A q-table is a representation of a finite state-space,         
where there is stored a q-value for each possible         
action in each state. This can quickly grow extremely         
large, and is not good at generalising, as each         
state-action-pair needs to be explored. q-tables can in        
simple environments be extremely effective, as they       
do not tend to suffer from catastrophic forgetting. The         
most classic task for a q-table agent is the grid-world          
environment, as this can clearly display the q-values        
for each state-action and thereby the decision       
process of the agent (Sutton & Barto 2012, p.79). 

 

Figure x: An illustration of a grid-world environment, where         
the purple square is representing the goal and black         
squares represent a negative reward. 
 
q-value retrieval: 

q(s,a) = table(s,a) 
 
The q-table can be updated via the temporal-        
difference update: 
 
q’(s,a) = q(s,a) + 𝛂*( r+ *max(q’(s’,a’))  -  q(s,a) )γ  

 
 

2.4 Feature-based-Action 

Another simple method using reinforcement learning      
is the feature-based agent(FB agent). In contrast to        
the q-table agent, the feature-based agent is adapting        
few weights with information from a continuous state        
space. The feature-based agent can not learn       
connections between inputs, but through custom      
feature-functions it can evolve a kind of       
stomach-feeling about the state-action-pair. These     
feature-functions inputs the state and action, and       
works as models of the environment, returning       
exampelvise a larger value if input action is getting         
the agent closer to the goal and smaller if further          
away. The agent calculates each q-value by adding        
each feature-value multiplied with an respective      
internal weight.  
 
q-value retrieval: 

q(st,at)  ← w0 + w1 f1(s,a) +  w2 f2(s,a) +...+wi fi(s,a) 
 

Each weight can be updated via the       
temporal-difference update: 

wi ← wi + α(rt+1 +  γq(st+1, at+1)- q(st,at) ) fi  
 

The feature based agent has a large potential in         
games, as this can be learn extremely fast and         
thereby make for an interesting game-AI. The       
downside is, that the agent is not capable of learning          
anything complicated without extensive pre-     
pro-grammed features.  
Such an agent was implemented in multiple environ-        
ments in a previous project, and showed to learn a          
simplified Pac-Man environment at near human level       
with features helping navigating to nearest coin etc. It         
also functioned successfully as opponents and      
teammates in a top-down shooter. 
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Figure x: A screenshot of the top-down shooter        
environment, where each soldier is a feature based agent         
and is containing a unique set of weights. The features          
being based upon distance to cover, nearest enemy, team         
mate and health. 

 
 

2.5 Experience Replay 

Experience replay is a method originally used for        
optimising learning with a neural network. The method        
can furthermore be used in combination with other        
learners. After each action, the experience is saved in         
tuples of <s,a,s’,c> where c is the expected sum of          
future rewards. These tuples are then stored in a         
database, which makes it possible to use the data         
more than once. Experience replay is implemented in        
order to aid in several ways. One benefit is efficiency          
increase, as the sample efficiency is heightened by        
making reuse possible. Experience replay can also       
make use of mini-batch updates, which can make the         
computation faster. Together with efficiency,     
experience replay can also increase stability, which is        
a big deal with neural network. This makes sure that          
the agent is not only trained with data collected by          
using the most recent policy, but also previous        
experiences. This makes sure that the agent does not         
forget a previous learned policy (de Bruin et al. n.d.).  
 
 
 
 
An update using the experience replay, can look like         
the following pseudo code. 
 

 
Figure x: An example of training with experience replay. 
 
In a previous project it was clear that saving the          
experience in groups could make the agent more        
stable, as the oldest experiences are thrown out when         
reaching a limit. 

 
Figure x: A variant of experience replay from a previous          
project where positive and negative experience is saved        
separately. 
 

2.6 Eligibility traces 

Eligibility traces is another way of making the update         
more efficient. By using eligibility traces, the agent        
stores a number of previous state-action pairs in order         
of experiencing. When reaching a reward, all previous        
state-action qvalues are updated with the the most        
recent actions weighted higher. (Sutton & Barto 2012,        
p.154’) 
(Sutton & Barto 2012, p.165) 
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Gt = Rt+1 + γRt+2 + γ2Rt+3 +···+ γT−t−1RT 

 

 
Figure x: A figure from (Sutton & Barto 2012, p.171) 
 

3 Challenge of Catastrophic 

forgetting 

Previous projects pointed out the challenge of       
catastrophic forgetting, which is highly relevant when       
dealing with FB agents and NN agents. The tendency         
happens when the agent starts to exploit the learned         
policy. This results in only the states visited by the          
learned policy is being visited, resulting in the        
knowledge about the rest of the state space being         
forgotten terminally confusing the agent (de Bruin et        
al. n.d., p.3). Underneath is a figure showing q-values         
from a NN-agent in a grid-world environment, where        
the left image shows how the q-values should be. The          
rightmost image shows how the values get washed        
out when the agent starts exploiting the policy. This is          
especially a problem when utilising in game AI as the          
agent should learn while performing instead of       
training and then performing without changing.      
Q-tables and agents using experience replay tend to        
be a lot more stable. 

 

 

 
Figure x: A grid-world environment with displayed q-values.        
The first figure showing the optimal policy and the 2. and 3.            
showing how the agent forgets the previously learned as         
exploiting the polity. 

4 Flexible q-learning 

The method proposed in this project is to lay out a           
q-table over a continuous state space. This could be         
done by simply dividing the state space into areas,         
such that 2 features explaining x and y-position and         
ranging from 0-1 could be divided into n-spaces. 

 
Figure x: Screenshots from an environment where the agent         
can navigate up, down, left and right through a continuous          
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state space. The red dots being negative reward areas and          
yellow positive. The blue grid shows how the state space          
could be divided in larger or smaller areas. 
 

In these spaces, the agent will perform the same          
action until reaching a new space. With this method         
normal q-table learning can be used, but problems        
arise if the state space-division is not fine enough, as          
the agent will get confused and when sometimes        
missing the goal. A too fine division will cause a need           
of an enormous q-table resulting in slow learning and         
need of high computer power and memory.  
 
What is proposed in this project is to find a way of            
dividing the state space into areas without having a         
specific size of the q-table. Where instead of using a          
q-table in grid form, q-points are stored. These points         
contains the standard q-table-data, <s, q(s,a)>. The       
agent looks up the q-value for a given state by finding           
the q-point containing state-values. A q-table utilising       
q-points could look like the following. 

 
Figure x: An environment based on a q-table using q-points.          
The q-points are displayed as the blue circles. 
 
In an optimal example, only the q-points needed are         
stored, which can make learning extremely fast and        
computation time even faster. The challenge with this        
algorithm is to find out where the q-points should be          
placed.  
 
q-value-retrieval: 

q(s,a) = FindNearestQpointInDatabase(s, a) 
 
The q-point can be updated via the temporal-        
difference update: 

qPoints’(s,a) = qPoints(s,a) + learningrate* 
( r+discount*max(qPoints’(s’,a’))  -  qPoints(s,a) ) 

 

 

5 SOTA 

5.1 Hindsight Experience Replay 

These days there has been a wide succes in         
reinforcement learning with the use of neural       
networks. An agent has learned to play Atari (Mnih et          
al. 2015) and defeat the best human player in the          
game of GO(Silver et al. 2016). For these feats the          
policies has been feeded an enormous amount of        
training data, but often this an unrealistic luxury. To         
make more out of the collected data a method of          
combining experience replay(Zhao et al. 2016) and       
universal policies(Ioffe & Szegedy 2015) has been       
created called Hindsight Experience Replay(HER)     
(Andrychowicz et al. 2017).  
 
HER uses binary rewards, which means that it is not          
needed to create convoluted reward functions.      
Traditionally this means that the agent receives a 1 on          
task completion and otherwise 0. The focus on HER         
is to make data use more efficient. This is done by           
using experience replay which stores the collected       
data for reusability and by using the philosophy of         
universal policies where not only the current state is         
given as input, but also a goal. The example is an           
agent learning to play hockey and misses the goal to          
the right. Usually the agent would receive a 0 for not           
completing the task, but here the initial state and         
outcome state is stored in the experience databank.        
When training the agent using this datapoint, the state         
is inputted and the outcome becomes the new goal,         
which means that the agent receives a reward of 1, as           
it would have scored if the goal had been to the right.            
This way the agent can use all the data collected from           
failing too and gets a stronger understanding of the         
environment (Andrychowicz et al. 2017).  
 
An overview of the HER update can be seen below 
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Figure x: Illustration from (Andrychowicz et al. 2017). 
 

6 Implementation 

6.1 The test environment 

The implementation of this novel method was not        
without challenges. A test environment was created       
which bares assembly to the gridworld environment       
but with continuous states. In this environment the        
agent has to navigate to the goals without hitting the          
traps. The agent can navigate up, down, right or left          
and the q-points are displayed at state-positions and        
with an arrow pointing in the direction corresponding        
to the action associated with the highest q-value. In         
this environment it is clear whether the agent has         
learned to navigate correctly, and whether the q-point        
locations are positioned correctly.  

6.2 The implementations 

The first implementation was built upon a little        
different concept. Here the q-point consisted of the        
state-values, a single overall q-value and a list of         
references to the q-notes led to by the respective         
actions. The q-value was retrieved in the following        
manner: 
 
q(s,a) = FindNearestQpointInDatabase(s, qPoint(a)) 

 
This method was implemented was inspired by the        
methods of experience replay, and the idea was that         
each q-update could ripple backwards without      
needing to store separate experiences, as each       
q-point contained the next q-points. 
This implementation was capable of mastering the       
simple environment, but not more advanced      

environments. Because of the lack of performance       
and transparency, the princip was simplified towards       
a standard q-table. This second implementation was       
more stable and because of simplicity easier to        
troubleshoot.  
 

6.2.1 Q-update variations 

The first update method was the simplest where the         
agent found the q-values by finding the closest        
q-point, which works, but when in between states,        
should it not be influenced by all nearby states? The          
thought was that the agent was part of a location          
between 3 q-points creating a polygon in the same         
way as with a Barycentric coordinate. The agent        
would then collect q-values from all 3 q-points and         
then scale the average according to distance, such        
that the nearest q-points had a larger influence on the          
decision. When receiving a reward, the credit would        
then also be scaled and delivered to all 3 points. First           
experiments were made where q-values were gained       
from the 3-nearest points, but it was clear that this          
was wrong, as the nearest 3 could be placed to one           
side from the agent as shown below. Another problem         
is to find the correct polygon, as multiple could be          
possible as shown below. Furthermore it was not        
clear whether the quad would need to be in more          
dimensions, as the dimensions of the state-space       
increases. The idea was therefore saved for further        
testing in another project. 

 
Figure x: 4 situations where the agent, illustrated by a solid           
blue, dot can be associated with near q-positions in different          
ways. 
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6.3 Placement of q-points 

The largest challenge of this project is to determine         
where to place the q-points, as only the necessary         
amount is wanted. If the algorithm responsible for        
creating the points is too generous, the amount of         
q-points will spiral into infinity handicapping both       
learning speed and cpu. If too few points are placed,          
the agent will miss the goal and thereby get confused.  
 
In this project two methods were examined.  
 
The first created a new q-point when: 

- receiving a reward being non-0. 
- when entering a new state resulting in a        

q-value being too different than expected.  
- when the reward is different than what was        

lastly given in this state. 
 
The second method included: 

- chance of randomly creating a q-point with       
the current state values. 

- chance of randomly combining two points if       
both highest q-value was at the same       
position. 

- chance of creating a q-point when receiving a        
non-0 reward 

 
It turned out that the second method was the most          
effective, but needed to be used with care, as too high           
chances of creating or combining q-points, could spoil        
the learning. 
 
 
 

7 Experiments 

7.1 The test environments 

Several environments were used in this project to test         
different levels of learning. 

7.1.1 Simpel navigation 

The firs and simplest environment is a navigation        
environment much like the gridworld, but since the        
agent must learn to master a continuous state space         
there are no grid and all state-values are continuous.         
The state-values consists of x and y position of the          
agent which can choose between the actions up,        
down, left and right. In the test environment there can          
be placed a number of reward-objects and       

punishment-objects. If the agent gets within a certain        
distance of an object a reward of 1 or -1 is returned            
respectively.  
 

 
Figure x:The two figures showing screenshots from the        
navigation environment with the yellow circles being       
reward-objects and red circles being punishment-objects.      
The blue circle represents the agent. The arrows shows the          
placed q-points. 
 
The environment can also be expanded to 3        
dimensions. 
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Figure x: Screenshot from the navigation environment       
expanded to 3 dimensions 

7.1.2 Coin pickup 

The coin-pickup environment is also quite simple, as        
this only consists of a 2 dimensional states-pace        
being angle and distance to the nearest coin. Here         
the agent is controlling a tank, which can use the 3           
actions: turn right, turn left and move forward. The         
environment is swarmed with coins which respawn at        
a new random location upon pickup. The challenge        
with this environment is, that there is a local optimum          
where the agent can just continue forward and still         
pickup coins.  

Figure x:Screenshots from the coin-pickup environment 
 

 

 

7.1.3 Pac-Man 

Pac-Man is a classic machine learning environment,       
which was used in a previous project together with         
feature based learning agents. Today Pac-Man is       
often used with neural network given raw pixel-input.        
Pac-Man is a good test, as it contains different levels          
of strategies and can be simplified: 
 
level 1: pickup the coins and run away from a ghosts 
level 2: include use of power pallets 
level 3: avoid getting trapped by multiple ghosts 
level 4: learn the different movement patterns of the         
ghosts and time when to use the power-pallets. The         
coins are also pickup in an efficient order. 
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In Pac-Man the agent has to navigate the maze         
collecting coins and avoid being caught by the ghosts.         
Additional elements can give points such as eating        
risky bonus-fruits or consuming one of the 4        
power-pallets, which are located in each corner. The        
power-pallets turns the ghosts into a scared-state in        
where they can be consumed for extra points        
(gameinternals 2010).  
 
In this project the pac-man-level is almost an exact         
replica from the original, with the exception of the         
ghost house and warping-tunnels.  
 

 
Figure x:Screenshot from the Pac-Man environment. 
 
Movement rules 
The entire pacman maze is build on top of a grid           
where there are strict rules to the movement of both          
the ghosts and pacman. The most noteworthy are that         
the ghosts can never turn around unless scared and         
does only decide where to go next when entering the          
center of a crossway. Pac-Man can always turn        
around and change direction as long as not choosing         
an action pointing towards a wall. Pac-Man can        
furthermore put an action in queue, so that it is          
performed as soon as possible. In this version of the          
Pac-Man environment Pac-Man moves a little faster       
than the ghosts. This would change in the original, as          
the levels progressed. 

The four ghosts hunting Pac-Man furthermore moves       
in very specific patterns. In this environment only the         
two first ghosts are utilised, which are the red and          
pink. When a decision about which direction to turn is          
necessary, the choice is made based on which tile         
adjoining the intersection will put the ghost nearest to         
its target tile, measured in a straight line. This means          
that the ghost not always chooses the shortest route.         
The different ghosts shows different behaviours as       
they aim for different tiles. The red ghost aims directly          
for the tile containing Pac-Man leading to a direct         
chase. The pink aims 4 tiles ahead of the direction          
Pac-Man is going leading to an ambushing effect        
(gameinternals 2010). 
 
The agent is rewarded by a small value on         
coin-pickup, a larger on consumption of a ghost and a          
negative reward on collision with a ghost.  
 
The environment is reset on emptying the maze for         
coins or hitting a ghost. 
 
State values 
For the general agent 
The state values returned from the environment is        
consisting minimum of 9 values with following       
meaning: 
 
s[0](s): angle to nearest coin 
s[1](s): dist to nearest coin 
s[2](s): angle to ghost[n] 
s[3](s): dist to ghost[n] 
s[4](s): state of ghost[n] 
s[5](s): wall ahead in direction 0 
s[6](s): wall ahead in direction 1 
s[7](s): wall ahead in direction 2 
s[8](s): wall ahead in direction 3 
 
For the FB-agent 
The number of state values are greatly reduced when         
using a FB agent, as all the transitions are calculated          
in the environment. Here the agent only asks to get          
the state values for a specific action when in a          
specific state. The features are as following: 
 
f0(s,a): dist to nearest coin 
f1(s,a): dist to hunting ghost[n] 
f2(s,a): dist to scared ghost[n] 
f3(s,a): wall ahead[n] 
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7.2 Different Experiments 

7.2.1 Success of the q-point agent 

The flexible q-table learner managed to find routes        
through the navigation environment both in 2 and 3         
dimensions, but the efficiency of the routes is hard to          
measure.  

 
Figure x:Screenshot from the navigation environment test. 
 
 
In the coin-pickup environment with the q-points       
pre-placed the agent performed almost as well as the         
pre-programmed “optimal” agent as shown below, but       
when responsible for managing the q-points itself it        
only collects one third of the amount of coins         
compared to the pre-programmed. 
 

 
Figure x: Graphs showing difference between the       
pre-programmed agent (Optimal), the q-point learner      
provided q-points at start (NSS) and the random baseline in          
the 1 ghost Pac-Man environment. 

 
Figure x: Graphs showing difference between the       
pre-programmed agent (Optimal), the q-point learner (SB)       
and the random baseline in the 1 ghost Pac-Man         
environment. 
 
When the state space is this simple, the q-points can          
also be viewed the same way as within the navigation          
environment. Below is displayed the q-points of the        
pre-programmed agent which shows to turn right       
when the angle to the closest coin is negative, left          
when it is positive and move forward when within 10          
degrees of dead on. 

 
Figure x: Figure displaying the q-points for an agent         
who has mastered the coin pickup environment. 
 
Below is the learned policy when the q-points are         
created on beforehand. 

 
Figure x: Figure displaying the q-points for an agent with          
pre-created q-points with no step scaling policy 0.1 -         
9298501 steps and average between 0.007 and 0.008. 
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In the Pac-Man environment, the q-point agent was        
hold up against the FB-agent and a random agent,         
which set the baseline. Here the agents just have to          
face one ghost. 
 

 
Figure x: Graphs showing difference in earned reward        
between the q-point learner(SB), FB learner and the        
random baseline. 
 
When facing two ghosts  

 
Figure x: Graphs showing the difference between the FB         
learner facing 1 ghost(1G) and 2 ghosts(2G). 
 
Here it is clear, why FB-agents can get into problems,          
as it performs significantly worse when facing two        
ghost contra just one. The problem being, that it is not           
possible for the agent to recognize a trap unless given          
very specific features. In this case the q-point agent         
should have an advantage. 
 
 
As seen on the figure below, the q-point agent         
performs as well as the FB-agent when opposing two         
ghosts, it even seems to be the case that the q-point           
agent surpasses the FB-agent and continues to       
increase the average reward though extremely      
fluctuating and slowly. 

 
Figure x: Graph showing the tendency lines for the FB          
agent and q-point agent (SB) 
 

7.2.2 Step Scale problem 

Challenges of unevenly placed q-points 
Another challenge was that the q-points are placed in         
different densities. This meant that the q-points which        
are further away from the goal gets the same credit as           
the q-points close to the goal. This effect can be seen           
on the figure below where the green arrows form a          
circle with the low density placed q-points are        
dragged out. If optimal, the circle would be perfectly         
round no matter the density, and the goal would be at           
center. 
 

 
Figure x: Screenshot from the simple navigation       
environment, where q-points have been instantiated with       
variating proximity. The yellow dot is the goal and the          
greener the arrow, the higher the q-value. Discount 5,         
threshold 0.02 
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Figure x: Illustration showing how the q-values gets scaled         
wrongly and the agent therefore will choose the path to the           
left towards the yellow goal. 
 
This means that the agent prioritises routes with        
states spread out wider, as the reward has not been          
discounted as many times. This is not good, as a less           
dense route means a more insecure route, and can         
result in unnecessary long routes. 
One method of scaling the q-value to accommodate        
for the density is to calculate the average number of          
actions taken in each state for a given action. This          
takes up extra memory, but seems to be a possible          
method for addressing the problem.  
 

 
Figure x: Here the q-value is scaled with the average          
number of actions. To the right the scaling is quadratically  
 
Another solution is to use eligibility traces where the         
learningrate is scaled with the total number of steps         
for that episode.  
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Figure x:Figure illustrating the step-scaling problem possible       
solved by eligibility traces.  
 
Effects in other environments 
The effects of using step scaling (WSS) uppersite no         
step scaling (NSS) seemed to greatly handicap the        
agent in the coin-pickup environment as seen on        
figure x and x, but did not seem to do much difference            
in the Pac-Man environment as seen on the graphs         
below.  

 
Figure x: Graphs showing the average reward of the q-point          
agent with (WSS) and without(NSS) the use of step scale. 

 

Figure x: Figure displaying the q-points for an agent with          
pre-created q-points with step scaling. 
 
 
 
 
Adding the Eligibility traces also only seemed to        
handicap the agent in the coin-pickup environment as        
shown below both in shape of the average reward         
graph and q-point visualisation. The q-point figure       
shows that the agent using eligibility traces is        
confused. 

 
Figure x:Graphs showing the q-point agent without eligibility        
traces (NSS), with normal eligibility traces(NSS WELI       
NoSS) and eligibility traces which is step scales (NSS         
WELI) 
 

 
Figure x: Figure displaying the q-points for an agent         
using eligibility traces 
 

7.2.3 Catastrophic forgetting 

The Q-point agent and Q-tables should be free of         
catastrophic forgetting, but not the FB-agent if not paired         
with experience replay as shown below. The graph        
clearly shows how the agent learns a good policy and          
then falling back over and over. 
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8 Discussion 

The implementation of the Q-point agent was with        
mixed success, as the agent was capable of placing         
and managing q-points in the navigation environment       
and to some degree in the coin-pickup environment. It         
was clear that the learning was a lot more stable          
when the q-points were placed on beforehand, which        
leads to believe that the q-point management       
algorithm is far from optimal. It also performed poorly         
in the Pac-Man environment compared to the FB        
agent using experience replay. It performed almost as        
well as the FB agent when facing two ghosts, but both           
agents should be capable of performing better.  
A possible problem was discovered with the q-point        
method, as the q-values were discounted further       
when q-point density were lowered. Methods were       
investigated to counteract the tendency as both a        
step-scale and eligibility traces was implemented, but       
with no positive results when facing the environments.        
For future work a more successful method should be         
found. 
A better result could possible have been achieved        
with the use of a periodic/epoch update where a         
binary reward is given upon completion or the total         
reward. Whether an episode/epoch update would still       
be fitted for game AI could furthermore be        
investigated. To encourage faster completion the      
reward could be divided with number of actions taken.         
The Q-point agent could also have benefitted from        
being compared to an implementation of a Q-table        
agent and a neural network -agent. Different       
algorithms for managing the q-points should also be        
investigated. An example could be to have an        
algorithm analysing the different data points for then        
to place the q-points at optimal positions.Future work        
could also include experimentation with experience      
replay together with the Q-point agent and even a         
mergure with the HER agent. 
 

9 Conclusion 

The implementation and test of the novel q-point 
agent was with varied success. A proof of concept 
was shown, as the agent was capable of near 
mastering a navigation environment and coin-pickup 
environment. The agent was though held back by the 
poor q-point management and possibly also update. 
The q-point agent furthermore had problems 
outperforming the FB agent in the Pac-Man 
environment where it should have advantages. It 
seems that the agent has some fundamental 
challenges which needs to be overcome for the 
project to be successful, which leads a lot of space for 
further development and experimentation with other 
update models and state management.  
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