
Aalborg University Copenhagen

Copyright © 2006. This report and/or appended material may not be partly or completely published or copied without

prior written approval from the authors. Neither may the contents be used for commercial purposes without this written
approval.

Semester:

10

Title:

Experiments Building a Q-table Learner in a Continuous State

Space

Project Period:

Spring 2018

Semester Theme:

Supervisor(s):
Hendrik Purwins

Project group no.:

Members:

Jannik Vilhelm Reffstrup

Copies:

Pages:

Finished:

Abstract:

In this project methods for building a tabular q-learner
over a continuous state space is proposed and
investigated. Various problem areas are found and
methods to counteract these are also tested. It is
shown that it is possible to create a tabular learner
over a continuous state space with the use of “q-
points”, but optimal methods for managing and
updating these are still to be investigated.

Aalborg University Copenhagen

Frederikskaj 12,

DK-2450 Copenhagen SV

Semester Coordinator:

Secretary:

Experiments Building a Q-table Learner in a Continuous
State Space

Jannik Reffstrup
Aalborg University Copenhagen
31-05-2018

Abstract

In this project methods for building a tabular
q-learner over a continuous state space is proposed
and investigated. Various problem areas are found
and methods to counteract these are also tested. It is
shown that it is possible to create a tabular learner
over a continuous state space with the use of
“q-points”, but optimal methods for managing and
updating these are still to be investigated.

1 Intro

Artificial Intelligence (AI) used in games for controlling
of opponents or companions are usually predictable
and non-adaptive to the players actions. This can add
a certain level of puzzle solving, as the behaviour
must be figured out which is the case in games such
as Hitman or Dark Souls. But more often the AI is
constructed to simulate real human decision
processes and behaviours with the purpose of making
the player forget the systems behind the characters
and feel further immersed in the game. These days
there is a lot of focus on a third kind of AI controlled
by machine learning with the work of Google leading
the way. These neural network(NN) based AI are
trained over a long timespan to master games but
have rarely been used together with players as the
training is often compersome and does not adapt to
the player as fast as the player adapts to the AI.
These methods can adapt to any behaviour and are
constantly being developed upon to make them faster
adapting and more stable. In a previous project it was
made clear that simple reinforcement learning
algorithms can be effective at providing live
adaptation during gameplay, even while being far less
capable systems. It seems that the agent being a fast
learner out-prioritizes learning complexity. This project
evolves around developing an AI capable of both fast
learning and higher level complexity through using the
methods of q-tables on top of a continuous state
space.

2 Background

This next section will go through some of the methods
influencing this project.

2.1 Reinforcement Learning basics

Reinforcement learning is all about creating a flexible
algorithm which reinforces itself towards a more
optimal version by experiencing the environment
online. Reinforcement learning consists of some basic
elements. The data received from the environment
describing what the agent is sensing is called the
state S, and the set of actions which the agent can
choose from is denoted . The part of the program A
which samples the state, makes a decision and
performs an action is called the agent. In order for the
agent to optimise the algorithm towards an optimum,
it needs to know whether the last action in the last
state was good or bad. For this a reward R is given by
the reward function r: S x A → R. This can be any
number but most often between -1 and 1 . After
receiving a reward, the agent can be updated. This
can happen after each action or at the end of an
epoch or episode, such as reached goal or failure.
How much the agent should change the algorithm
estimating the future reward is called the value or
q-function, and can be controlled by a value called the
learning rate denoted as α. The higher the learning
rate, the faster the agent will learn, but the higher is
the risk of it not finding the average optimum as it
overshoots. A discounted sum of future rewards is

called the return: γ r .Rt = ∑
∞

i = t
 i−t

i

How far back the reward should affect previous
actions can usually be controlled with a discount
factor . A deterministic policy is a mapping 0,]γ ∈ [1
from states to actions: It is the agent's goal S .π : → A
to maximise the expected return. The q-function or
action-value function is defined as (Sutton & (s ,)Qπ

t at
Barto 2012) (Andrychowicz et al. 2017).

1

https://paperpile.com/c/3UrCkc/EPHO
https://paperpile.com/c/3UrCkc/EPHO
https://paperpile.com/c/3UrCkc/Jno7

2.2 Q-learning and SARSA

A standard machine learning agent could have a
structure as the following and can be a q-learner or
using SARSA, which is two methods influencing how
careful the agent is behaving.

Figure x: An example of a reinforcement agent update.

2.3 Q-table

A q-table is a representation of a finite state-space,
where there is stored a q-value for each possible
action in each state. This can quickly grow extremely
large, and is not good at generalising, as each
state-action-pair needs to be explored. q-tables can in
simple environments be extremely effective, as they
do not tend to suffer from catastrophic forgetting. The
most classic task for a q-table agent is the grid-world
environment, as this can clearly display the q-values
for each state-action and thereby the decision
process of the agent (Sutton & Barto 2012, p.79).

Figure x: An illustration of a grid-world environment, where
the purple square is representing the goal and black
squares represent a negative reward.

q-value retrieval:

q(s,a) = table(s,a)

The q-table can be updated via the temporal-
difference update:

q’(s,a) = q(s,a) + 𝛂*(r+ *max(q’(s’,a’)) - q(s,a))γ

2.4 Feature-based-Action

Another simple method using reinforcement learning
is the feature-based agent(FB agent). In contrast to
the q-table agent, the feature-based agent is adapting
few weights with information from a continuous state
space. The feature-based agent can not learn
connections between inputs, but through custom
feature-functions it can evolve a kind of
stomach-feeling about the state-action-pair. These
feature-functions inputs the state and action, and
works as models of the environment, returning
exampelvise a larger value if input action is getting
the agent closer to the goal and smaller if further
away. The agent calculates each q-value by adding
each feature-value multiplied with an respective
internal weight.

q-value retrieval:

q(st,at) ← w0 + w1 f1(s,a) + w2 f2(s,a) +...+wi fi(s,a)

Each weight can be updated via the
temporal-difference update:

wi ← wi + α(rt+1 + γq(st+1, at+1)- q(st,at)) fi

The feature based agent has a large potential in
games, as this can be learn extremely fast and
thereby make for an interesting game-AI. The
downside is, that the agent is not capable of learning
anything complicated without extensive pre-
pro-grammed features.
Such an agent was implemented in multiple environ-
ments in a previous project, and showed to learn a
simplified Pac-Man environment at near human level
with features helping navigating to nearest coin etc. It
also functioned successfully as opponents and
teammates in a top-down shooter.

2

https://paperpile.com/c/3UrCkc/EPHO/?locator=79

Figure x: A screenshot of the top-down shooter
environment, where each soldier is a feature based agent
and is containing a unique set of weights. The features
being based upon distance to cover, nearest enemy, team
mate and health.

2.5 Experience Replay

Experience replay is a method originally used for
optimising learning with a neural network. The method
can furthermore be used in combination with other
learners. After each action, the experience is saved in
tuples of <s,a,s’,c> where c is the expected sum of
future rewards. These tuples are then stored in a
database, which makes it possible to use the data
more than once. Experience replay is implemented in
order to aid in several ways. One benefit is efficiency
increase, as the sample efficiency is heightened by
making reuse possible. Experience replay can also
make use of mini-batch updates, which can make the
computation faster. Together with efficiency,
experience replay can also increase stability, which is
a big deal with neural network. This makes sure that
the agent is not only trained with data collected by
using the most recent policy, but also previous
experiences. This makes sure that the agent does not
forget a previous learned policy (de Bruin et al. n.d.).

An update using the experience replay, can look like
the following pseudo code.

Figure x: An example of training with experience replay.

In a previous project it was clear that saving the
experience in groups could make the agent more
stable, as the oldest experiences are thrown out when
reaching a limit.

Figure x: A variant of experience replay from a previous
project where positive and negative experience is saved
separately.

2.6 Eligibility traces

Eligibility traces is another way of making the update
more efficient. By using eligibility traces, the agent
stores a number of previous state-action pairs in order
of experiencing. When reaching a reward, all previous
state-action qvalues are updated with the the most
recent actions weighted higher. (Sutton & Barto 2012,
p.154’)
(Sutton & Barto 2012, p.165)

3

https://paperpile.com/c/3UrCkc/uPYf
https://paperpile.com/c/3UrCkc/EPHO/?locator=154%27
https://paperpile.com/c/3UrCkc/EPHO/?locator=154%27
https://paperpile.com/c/3UrCkc/EPHO/?locator=165

Gt = Rt+1 + γRt+2 + γ2Rt+3 +···+ γT−t−1RT

Figure x: A figure from (Sutton & Barto 2012, p.171)

3 Challenge of Catastrophic

forgetting

Previous projects pointed out the challenge of
catastrophic forgetting, which is highly relevant when
dealing with FB agents and NN agents. The tendency
happens when the agent starts to exploit the learned
policy. This results in only the states visited by the
learned policy is being visited, resulting in the
knowledge about the rest of the state space being
forgotten terminally confusing the agent (de Bruin et
al. n.d., p.3). Underneath is a figure showing q-values
from a NN-agent in a grid-world environment, where
the left image shows how the q-values should be. The
rightmost image shows how the values get washed
out when the agent starts exploiting the policy. This is
especially a problem when utilising in game AI as the
agent should learn while performing instead of
training and then performing without changing.
Q-tables and agents using experience replay tend to
be a lot more stable.

Figure x: A grid-world environment with displayed q-values.
The first figure showing the optimal policy and the 2. and 3.
showing how the agent forgets the previously learned as
exploiting the polity.

4 Flexible q-learning

The method proposed in this project is to lay out a
q-table over a continuous state space. This could be
done by simply dividing the state space into areas,
such that 2 features explaining x and y-position and
ranging from 0-1 could be divided into n-spaces.

Figure x: Screenshots from an environment where the agent
can navigate up, down, left and right through a continuous

4

https://paperpile.com/c/3UrCkc/EPHO/?locator=171
https://paperpile.com/c/3UrCkc/uPYf/?locator=3
https://paperpile.com/c/3UrCkc/uPYf/?locator=3

state space. The red dots being negative reward areas and
yellow positive. The blue grid shows how the state space
could be divided in larger or smaller areas.

In these spaces, the agent will perform the same
action until reaching a new space. With this method
normal q-table learning can be used, but problems
arise if the state space-division is not fine enough, as
the agent will get confused and when sometimes
missing the goal. A too fine division will cause a need
of an enormous q-table resulting in slow learning and
need of high computer power and memory.

What is proposed in this project is to find a way of
dividing the state space into areas without having a
specific size of the q-table. Where instead of using a
q-table in grid form, q-points are stored. These points
contains the standard q-table-data, <s, q(s,a)>. The
agent looks up the q-value for a given state by finding
the q-point containing state-values. A q-table utilising
q-points could look like the following.

Figure x: An environment based on a q-table using q-points.
The q-points are displayed as the blue circles.

In an optimal example, only the q-points needed are
stored, which can make learning extremely fast and
computation time even faster. The challenge with this
algorithm is to find out where the q-points should be
placed.

q-value-retrieval:

q(s,a) = FindNearestQpointInDatabase(s, a)

The q-point can be updated via the temporal-
difference update:

qPoints’(s,a) = qPoints(s,a) + learningrate*
(r+discount*max(qPoints’(s’,a’)) - qPoints(s,a))

5 SOTA

5.1 Hindsight Experience Replay

These days there has been a wide succes in
reinforcement learning with the use of neural
networks. An agent has learned to play Atari (Mnih et
al. 2015) and defeat the best human player in the
game of GO(Silver et al. 2016). For these feats the
policies has been feeded an enormous amount of
training data, but often this an unrealistic luxury. To
make more out of the collected data a method of
combining experience replay(Zhao et al. 2016) and
universal policies(Ioffe & Szegedy 2015) has been
created called Hindsight Experience Replay(HER)
(Andrychowicz et al. 2017).

HER uses binary rewards, which means that it is not
needed to create convoluted reward functions.
Traditionally this means that the agent receives a 1 on
task completion and otherwise 0. The focus on HER
is to make data use more efficient. This is done by
using experience replay which stores the collected
data for reusability and by using the philosophy of
universal policies where not only the current state is
given as input, but also a goal. The example is an
agent learning to play hockey and misses the goal to
the right. Usually the agent would receive a 0 for not
completing the task, but here the initial state and
outcome state is stored in the experience databank.
When training the agent using this datapoint, the state
is inputted and the outcome becomes the new goal,
which means that the agent receives a reward of 1, as
it would have scored if the goal had been to the right.
This way the agent can use all the data collected from
failing too and gets a stronger understanding of the
environment (Andrychowicz et al. 2017).

An overview of the HER update can be seen below

5

https://paperpile.com/c/3UrCkc/jgxq
https://paperpile.com/c/3UrCkc/jgxq
https://paperpile.com/c/3UrCkc/UELJ
https://paperpile.com/c/3UrCkc/toMJ
https://paperpile.com/c/3UrCkc/kWCS/?locator_label=note
https://paperpile.com/c/3UrCkc/Jno7
https://paperpile.com/c/3UrCkc/Jno7

Figure x: Illustration from (Andrychowicz et al. 2017).

6 Implementation

6.1 The test environment

The implementation of this novel method was not
without challenges. A test environment was created
which bares assembly to the gridworld environment
but with continuous states. In this environment the
agent has to navigate to the goals without hitting the
traps. The agent can navigate up, down, right or left
and the q-points are displayed at state-positions and
with an arrow pointing in the direction corresponding
to the action associated with the highest q-value. In
this environment it is clear whether the agent has
learned to navigate correctly, and whether the q-point
locations are positioned correctly.

6.2 The implementations

The first implementation was built upon a little
different concept. Here the q-point consisted of the
state-values, a single overall q-value and a list of
references to the q-notes led to by the respective
actions. The q-value was retrieved in the following
manner:

q(s,a) = FindNearestQpointInDatabase(s, qPoint(a))

This method was implemented was inspired by the
methods of experience replay, and the idea was that
each q-update could ripple backwards without
needing to store separate experiences, as each
q-point contained the next q-points.
This implementation was capable of mastering the
simple environment, but not more advanced

environments. Because of the lack of performance
and transparency, the princip was simplified towards
a standard q-table. This second implementation was
more stable and because of simplicity easier to
troubleshoot.

6.2.1 Q-update variations

The first update method was the simplest where the
agent found the q-values by finding the closest
q-point, which works, but when in between states,
should it not be influenced by all nearby states? The
thought was that the agent was part of a location
between 3 q-points creating a polygon in the same
way as with a Barycentric coordinate. The agent
would then collect q-values from all 3 q-points and
then scale the average according to distance, such
that the nearest q-points had a larger influence on the
decision. When receiving a reward, the credit would
then also be scaled and delivered to all 3 points. First
experiments were made where q-values were gained
from the 3-nearest points, but it was clear that this
was wrong, as the nearest 3 could be placed to one
side from the agent as shown below. Another problem
is to find the correct polygon, as multiple could be
possible as shown below. Furthermore it was not
clear whether the quad would need to be in more
dimensions, as the dimensions of the state-space
increases. The idea was therefore saved for further
testing in another project.

Figure x: 4 situations where the agent, illustrated by a solid
blue, dot can be associated with near q-positions in different
ways.

6

https://paperpile.com/c/3UrCkc/Jno7

6.3 Placement of q-points

The largest challenge of this project is to determine
where to place the q-points, as only the necessary
amount is wanted. If the algorithm responsible for
creating the points is too generous, the amount of
q-points will spiral into infinity handicapping both
learning speed and cpu. If too few points are placed,
the agent will miss the goal and thereby get confused.

In this project two methods were examined.

The first created a new q-point when:

- receiving a reward being non-0.
- when entering a new state resulting in a

q-value being too different than expected.
- when the reward is different than what was

lastly given in this state.

The second method included:

- chance of randomly creating a q-point with
the current state values.

- chance of randomly combining two points if
both highest q-value was at the same
position.

- chance of creating a q-point when receiving a
non-0 reward

It turned out that the second method was the most
effective, but needed to be used with care, as too high
chances of creating or combining q-points, could spoil
the learning.

7 Experiments

7.1 The test environments

Several environments were used in this project to test
different levels of learning.

7.1.1 Simpel navigation

The firs and simplest environment is a navigation
environment much like the gridworld, but since the
agent must learn to master a continuous state space
there are no grid and all state-values are continuous.
The state-values consists of x and y position of the
agent which can choose between the actions up,
down, left and right. In the test environment there can
be placed a number of reward-objects and

punishment-objects. If the agent gets within a certain
distance of an object a reward of 1 or -1 is returned
respectively.

Figure x:The two figures showing screenshots from the
navigation environment with the yellow circles being
reward-objects and red circles being punishment-objects.
The blue circle represents the agent. The arrows shows the
placed q-points.

The environment can also be expanded to 3
dimensions.

7

Figure x: Screenshot from the navigation environment
expanded to 3 dimensions

7.1.2 Coin pickup

The coin-pickup environment is also quite simple, as
this only consists of a 2 dimensional states-pace
being angle and distance to the nearest coin. Here
the agent is controlling a tank, which can use the 3
actions: turn right, turn left and move forward. The
environment is swarmed with coins which respawn at
a new random location upon pickup. The challenge
with this environment is, that there is a local optimum
where the agent can just continue forward and still
pickup coins.

Figure x:Screenshots from the coin-pickup environment

7.1.3 Pac-Man

Pac-Man is a classic machine learning environment,
which was used in a previous project together with
feature based learning agents. Today Pac-Man is
often used with neural network given raw pixel-input.
Pac-Man is a good test, as it contains different levels
of strategies and can be simplified:

level 1: pickup the coins and run away from a ghosts
level 2: include use of power pallets
level 3: avoid getting trapped by multiple ghosts
level 4: learn the different movement patterns of the
ghosts and time when to use the power-pallets. The
coins are also pickup in an efficient order.

8

In Pac-Man the agent has to navigate the maze
collecting coins and avoid being caught by the ghosts.
Additional elements can give points such as eating
risky bonus-fruits or consuming one of the 4
power-pallets, which are located in each corner. The
power-pallets turns the ghosts into a scared-state in
where they can be consumed for extra points
(gameinternals 2010).

In this project the pac-man-level is almost an exact
replica from the original, with the exception of the
ghost house and warping-tunnels.

Figure x:Screenshot from the Pac-Man environment.

Movement rules
The entire pacman maze is build on top of a grid
where there are strict rules to the movement of both
the ghosts and pacman. The most noteworthy are that
the ghosts can never turn around unless scared and
does only decide where to go next when entering the
center of a crossway. Pac-Man can always turn
around and change direction as long as not choosing
an action pointing towards a wall. Pac-Man can
furthermore put an action in queue, so that it is
performed as soon as possible. In this version of the
Pac-Man environment Pac-Man moves a little faster
than the ghosts. This would change in the original, as
the levels progressed.

The four ghosts hunting Pac-Man furthermore moves
in very specific patterns. In this environment only the
two first ghosts are utilised, which are the red and
pink. When a decision about which direction to turn is
necessary, the choice is made based on which tile
adjoining the intersection will put the ghost nearest to
its target tile, measured in a straight line. This means
that the ghost not always chooses the shortest route.
The different ghosts shows different behaviours as
they aim for different tiles. The red ghost aims directly
for the tile containing Pac-Man leading to a direct
chase. The pink aims 4 tiles ahead of the direction
Pac-Man is going leading to an ambushing effect
(gameinternals 2010).

The agent is rewarded by a small value on
coin-pickup, a larger on consumption of a ghost and a
negative reward on collision with a ghost.

The environment is reset on emptying the maze for
coins or hitting a ghost.

State values
For the general agent
The state values returned from the environment is
consisting minimum of 9 values with following
meaning:

s[0](s): angle to nearest coin
s[1](s): dist to nearest coin
s[2](s): angle to ghost[n]
s[3](s): dist to ghost[n]
s[4](s): state of ghost[n]
s[5](s): wall ahead in direction 0
s[6](s): wall ahead in direction 1
s[7](s): wall ahead in direction 2
s[8](s): wall ahead in direction 3

For the FB-agent
The number of state values are greatly reduced when
using a FB agent, as all the transitions are calculated
in the environment. Here the agent only asks to get
the state values for a specific action when in a
specific state. The features are as following:

f0(s,a): dist to nearest coin
f1(s,a): dist to hunting ghost[n]
f2(s,a): dist to scared ghost[n]
f3(s,a): wall ahead[n]

9

https://paperpile.com/c/3UrCkc/AKUq
https://paperpile.com/c/3UrCkc/AKUq

7.2 Different Experiments

7.2.1 Success of the q-point agent

The flexible q-table learner managed to find routes
through the navigation environment both in 2 and 3
dimensions, but the efficiency of the routes is hard to
measure.

Figure x:Screenshot from the navigation environment test.

In the coin-pickup environment with the q-points
pre-placed the agent performed almost as well as the
pre-programmed “optimal” agent as shown below, but
when responsible for managing the q-points itself it
only collects one third of the amount of coins
compared to the pre-programmed.

Figure x: Graphs showing difference between the
pre-programmed agent (Optimal), the q-point learner
provided q-points at start (NSS) and the random baseline in
the 1 ghost Pac-Man environment.

Figure x: Graphs showing difference between the
pre-programmed agent (Optimal), the q-point learner (SB)
and the random baseline in the 1 ghost Pac-Man
environment.

When the state space is this simple, the q-points can
also be viewed the same way as within the navigation
environment. Below is displayed the q-points of the
pre-programmed agent which shows to turn right
when the angle to the closest coin is negative, left
when it is positive and move forward when within 10
degrees of dead on.

Figure x: Figure displaying the q-points for an agent
who has mastered the coin pickup environment.

Below is the learned policy when the q-points are
created on beforehand.

Figure x: Figure displaying the q-points for an agent with
pre-created q-points with no step scaling policy 0.1 -
9298501 steps and average between 0.007 and 0.008.

10

In the Pac-Man environment, the q-point agent was
hold up against the FB-agent and a random agent,
which set the baseline. Here the agents just have to
face one ghost.

Figure x: Graphs showing difference in earned reward
between the q-point learner(SB), FB learner and the
random baseline.

When facing two ghosts

Figure x: Graphs showing the difference between the FB
learner facing 1 ghost(1G) and 2 ghosts(2G).

Here it is clear, why FB-agents can get into problems,
as it performs significantly worse when facing two
ghost contra just one. The problem being, that it is not
possible for the agent to recognize a trap unless given
very specific features. In this case the q-point agent
should have an advantage.

As seen on the figure below, the q-point agent
performs as well as the FB-agent when opposing two
ghosts, it even seems to be the case that the q-point
agent surpasses the FB-agent and continues to
increase the average reward though extremely
fluctuating and slowly.

Figure x: Graph showing the tendency lines for the FB
agent and q-point agent (SB)

7.2.2 Step Scale problem

Challenges of unevenly placed q-points
Another challenge was that the q-points are placed in
different densities. This meant that the q-points which
are further away from the goal gets the same credit as
the q-points close to the goal. This effect can be seen
on the figure below where the green arrows form a
circle with the low density placed q-points are
dragged out. If optimal, the circle would be perfectly
round no matter the density, and the goal would be at
center.

Figure x: Screenshot from the simple navigation
environment, where q-points have been instantiated with
variating proximity. The yellow dot is the goal and the
greener the arrow, the higher the q-value. Discount 5,
threshold 0.02

11

Figure x: Illustration showing how the q-values gets scaled
wrongly and the agent therefore will choose the path to the
left towards the yellow goal.

This means that the agent prioritises routes with
states spread out wider, as the reward has not been
discounted as many times. This is not good, as a less
dense route means a more insecure route, and can
result in unnecessary long routes.
One method of scaling the q-value to accommodate
for the density is to calculate the average number of
actions taken in each state for a given action. This
takes up extra memory, but seems to be a possible
method for addressing the problem.

Figure x: Here the q-value is scaled with the average
number of actions. To the right the scaling is quadratically

Another solution is to use eligibility traces where the
learningrate is scaled with the total number of steps
for that episode.

12

Figure x:Figure illustrating the step-scaling problem possible
solved by eligibility traces.

Effects in other environments
The effects of using step scaling (WSS) uppersite no
step scaling (NSS) seemed to greatly handicap the
agent in the coin-pickup environment as seen on
figure x and x, but did not seem to do much difference
in the Pac-Man environment as seen on the graphs
below.

Figure x: Graphs showing the average reward of the q-point
agent with (WSS) and without(NSS) the use of step scale.

Figure x: Figure displaying the q-points for an agent with
pre-created q-points with step scaling.

Adding the Eligibility traces also only seemed to
handicap the agent in the coin-pickup environment as
shown below both in shape of the average reward
graph and q-point visualisation. The q-point figure
shows that the agent using eligibility traces is
confused.

Figure x:Graphs showing the q-point agent without eligibility
traces (NSS), with normal eligibility traces(NSS WELI
NoSS) and eligibility traces which is step scales (NSS
WELI)

Figure x: Figure displaying the q-points for an agent
using eligibility traces

7.2.3 Catastrophic forgetting

The Q-point agent and Q-tables should be free of
catastrophic forgetting, but not the FB-agent if not paired
with experience replay as shown below. The graph
clearly shows how the agent learns a good policy and
then falling back over and over.

13

8 Discussion

The implementation of the Q-point agent was with
mixed success, as the agent was capable of placing
and managing q-points in the navigation environment
and to some degree in the coin-pickup environment. It
was clear that the learning was a lot more stable
when the q-points were placed on beforehand, which
leads to believe that the q-point management
algorithm is far from optimal. It also performed poorly
in the Pac-Man environment compared to the FB
agent using experience replay. It performed almost as
well as the FB agent when facing two ghosts, but both
agents should be capable of performing better.
A possible problem was discovered with the q-point
method, as the q-values were discounted further
when q-point density were lowered. Methods were
investigated to counteract the tendency as both a
step-scale and eligibility traces was implemented, but
with no positive results when facing the environments.
For future work a more successful method should be
found.
A better result could possible have been achieved
with the use of a periodic/epoch update where a
binary reward is given upon completion or the total
reward. Whether an episode/epoch update would still
be fitted for game AI could furthermore be
investigated. To encourage faster completion the
reward could be divided with number of actions taken.
The Q-point agent could also have benefitted from
being compared to an implementation of a Q-table
agent and a neural network -agent. Different
algorithms for managing the q-points should also be
investigated. An example could be to have an
algorithm analysing the different data points for then
to place the q-points at optimal positions.Future work
could also include experimentation with experience
replay together with the Q-point agent and even a
mergure with the HER agent.

9 Conclusion

The implementation and test of the novel q-point
agent was with varied success. A proof of concept
was shown, as the agent was capable of near
mastering a navigation environment and coin-pickup
environment. The agent was though held back by the
poor q-point management and possibly also update.
The q-point agent furthermore had problems
outperforming the FB agent in the Pac-Man
environment where it should have advantages. It
seems that the agent has some fundamental
challenges which needs to be overcome for the
project to be successful, which leads a lot of space for
further development and experimentation with other
update models and state management.

10 References

Andrychowicz, M. et al., 2017. Hindsight Experience
Replay. In I. Guyon et al., eds. Advances in Neural
Information Processing Systems 30. Curran
Associates, Inc., pp. 5048–5058.

de Bruin, T. et al., The importance of experience replay
database composition in deep reinforcement learning.

gameinternals, 2010. Understanding Pac-Man Ghost
Behavior. GameInternals. Available at:
http://gameinternals.com/post/2072558330/understandi
ng-pac-man-ghost-behavior [Accessed May 31, 2018].

Ioffe, S. & Szegedy, C., 2015. Proceedings of the 32nd
International Conference on Machine Learning.

Mnih, V. et al., 2015. Human-level control through deep
reinforcement learning. Nature, 518(7540),
pp.529–533.

Silver, D. et al., 2016. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587),
pp.484–489.

Sutton, R.S. & Barto, A.G., 2012. Reinforcement Learning:
An Introduction, Cambridge, Massachusetts London,
England: The MIT Press.

Zhao, D. et al., 2016. Deep reinforcement learning with
experience replay based on SARSA. In 2016 IEEE
Symposium Series on Computational Intelligence
(SSCI). Available at:
http://dx.doi.org/10.1109/ssci.2016.7849837.

14

http://paperpile.com/b/3UrCkc/Jno7
http://paperpile.com/b/3UrCkc/Jno7
http://paperpile.com/b/3UrCkc/Jno7
http://paperpile.com/b/3UrCkc/Jno7
http://paperpile.com/b/3UrCkc/Jno7
http://paperpile.com/b/3UrCkc/Jno7
http://paperpile.com/b/3UrCkc/uPYf
http://paperpile.com/b/3UrCkc/uPYf
http://paperpile.com/b/3UrCkc/AKUq
http://paperpile.com/b/3UrCkc/AKUq
http://paperpile.com/b/3UrCkc/AKUq
http://paperpile.com/b/3UrCkc/AKUq
http://gameinternals.com/post/2072558330/understanding-pac-man-ghost-behavior
http://gameinternals.com/post/2072558330/understanding-pac-man-ghost-behavior
http://paperpile.com/b/3UrCkc/AKUq
http://paperpile.com/b/3UrCkc/kWCS
http://paperpile.com/b/3UrCkc/kWCS
http://paperpile.com/b/3UrCkc/jgxq
http://paperpile.com/b/3UrCkc/jgxq
http://paperpile.com/b/3UrCkc/jgxq
http://paperpile.com/b/3UrCkc/jgxq
http://paperpile.com/b/3UrCkc/jgxq
http://paperpile.com/b/3UrCkc/UELJ
http://paperpile.com/b/3UrCkc/UELJ
http://paperpile.com/b/3UrCkc/UELJ
http://paperpile.com/b/3UrCkc/UELJ
http://paperpile.com/b/3UrCkc/UELJ
http://paperpile.com/b/3UrCkc/EPHO
http://paperpile.com/b/3UrCkc/EPHO
http://paperpile.com/b/3UrCkc/EPHO
http://paperpile.com/b/3UrCkc/EPHO
http://paperpile.com/b/3UrCkc/EPHO
http://paperpile.com/b/3UrCkc/toMJ
http://paperpile.com/b/3UrCkc/toMJ
http://paperpile.com/b/3UrCkc/toMJ
http://paperpile.com/b/3UrCkc/toMJ
http://paperpile.com/b/3UrCkc/toMJ
http://paperpile.com/b/3UrCkc/toMJ
http://dx.doi.org/10.1109/ssci.2016.7849837
http://paperpile.com/b/3UrCkc/toMJ

