
Speaker De-Identification using a
Factorized Hierarchical Variational

Autoencoder

Master Thesis

Mathias Bülow Kastbjerg
————————

————————-
Aalborg University

Mathematical Engineering



Aalborg University, June 7, 2018

Mathias Bülow Kastbjerg
<mkastb13@student.aau.dk>

Copyright c© Aalborg University 2018



Mathematical Engineering
Aalborg University

http://www.aau.dk

Title:
Speaker De-Identification using a Fac-
torized Hierarchical Variational Autoen-
coder

Project Period:
Spring Semester 2018

Project Group:

Participants:
Mathias Bülow Kastbjerg

Supervisors:
Zheng-Hua Tan

Copies: 1

Page Numbers: 34

Date of Completion:
June 7, 2018

Abstract:

In recent years the concept of Speaker
De-Identification (SDI) has emerged. SDI
handles the task of changing the speaker
identity of a speech signal from a source
speaker to a target speaker. Specifically
SDI focuses on masking the identity of the
source speaker. In (Hsu, Zhang, and Glass
2017) a Factorized Hierarchical Variational
Autoencoder (FHVAE) was introduced for
speech analysis. The FHVAE aims to fac-
torize the speech signal into a linguistic
part and a non-linguistic part. This fac-
torization motivates the use of the FHVAE
for SDI. The focus of this project is to in-
vestigate the performance of the FHVAE
model when used for SDI. The model is
compared to a baseline system based on
a GMM mapping and a Harmonic plus
Stochastic Model. The performance of
the models is evaluated on two criteria:
1) Intelligibility, measured by an Auto-
matic Speech Recognition system comput-
ing the Word Error Rate (WER). 2) How
well the systems mask the identity of the
source speaker, measured a speaker recog-
nition system computing the Equal Error
Rate (EER). Furthermore it is investigated
whether a simpler metric to measure the
intelligibility can be developed. The FH-
VAE model showed good results on in-
telligibility compared to the baseline, but
was found inferior on the de-identification
task. The search for a metric to replace the
WER as a measure of ineligibility was un-
successful.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk




Resumé

Voice Transformation (VT) omhandler metoder til behandling af talesignaler, hvor
det sproglige indhold af talesignalerne er uændret. VT kan have forskellige formål,
så som ændring af følelserne i talesignalet, forbedring af forståeligheden, eller
ændring af stemmen som den lyder som kom den fra en anden person. Det sidste
refereres ofte til som Voice Conversion (VC), hvor det ikke-sproglige indhold af
signalet behandles. Et andet formål af VT, der har vundet indpas i de seneste år er,
Speaker De-Identification (SDI). SDI omhandler ligesom VC ændring af identiteten
taleren, men hvor VC har fokus på den nye stemme, så har SDI fokus på at maskere
identiteten af den originale taler. I begge metoder er der dog fokus på at bevare
forståeligheden af talesignalerne.

Dette projekt undersøger hvorvidt en Factorized Hierarchical Variational Au-
toencoder (FHVAE) model kan bruges til SDI. FHVAE modellen er baseret på Vari-
ational Bayes (VB). VB opstår når sandsynligheds modellens marginale likelihood
eller posterior sandsynligheden ikke kan evalueres. FHVAE modellen opsplitter
talesignalet i to dele; en indeholdende det sproglige indhold og en indeholdende
det ikke sproglige indhold. Det er denne opsplitning der er motivationen bag
brugen af FHVAE modelen til SDI. FHVAE modelen sammenlignes med en ba-
sis model baseret på en Gaussisk Mixture Model og en harmonisk og stokastisk
model.

Modellerne vurderes på to parameter; forståeligheden af talesignalet, samt
hvorvidt det lykkes modellerne at maskere identiteten af taleren. Forståeligheden
måles af et automatisk tale genkendelses system (Automatic Speech Recognition -
ASR), der måler antallet af korrekte ord i det behandlede talesignal. Maskeringen
af talerens identitet er målt af et taler genkendelses system (speaker recognition),
der estimere identiteten af taleren i et talesignal. Projektet omhandler også en
søgen efter et simplere mål for forståeligheden af talesignalet.

FHVAE modellen viste sig bedre end basis modellen i forhold til forståelighed,
men den var ringere end basis modellen i forhold maskeringen af talerens identitet.
Hvor identitaten af taleren i basis modellen var tættere på den nye taler identitet,
var FHVAE modellen tættere på kilde taleren. Det lykkedes ej heller at finde et
mål der kunne erstatte ASR systemet.
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Chapter 1
Introduction

Voice Transformation (VT) covers various methods of modifying one or more as-
pects of speech signals, while maintaining the linguistic content of the signal,
(Mohammadi and Kain 2017). VT has many applications, such as changing the
emotions in the signal, improving intelligibility, or converting the speakers voice
into that of another speaker, (Mohammadi and Kain 2017). The latter application
is called Voice Conversion (VC), specifically VC is a subclass of VT that aims at
changing the speaker identity, by modifying the non- or paralinguistic informa-
tion in the signal, while preserving the linguistic information of the speech signal.
The transformation of the speaker identity from the source speaker to the target
speaker is done by estimating or training a conversion function to convert a given
utterance. There exists several different systems of VC, some are Gaussian Mixture
Models (GMM), Hidden Markov Models (HMM), Weighted Frequency Warping
(WFW) and Neural Networks (NN) (Machado and Queiroz 2010).

In recent years another application of VT has emerged, namely Speaker De-
Identification (SDI). SDI is closely related to VC. Where VC focuses primarily on
the target speaker, the focus of SDI is on masking the identity of the source speaker,
while preserving the intelligibility of the speech signal. Because of the close rela-
tion to VC, the same models used for VC can be used for SDI. In (Pobar and Ipsić
2014) they propose an online algorithm for SDI, based on a GMM mapping and
a Harmonic Stochastic Model. In (Abou-Zleikha et al. 2015) a speaker selection
scheme is introduced, that minimizes the confidence that the speaker of the con-
verted utterance is identified as the source.

VC- and SDI-systems can be grouped according to certain factors. One factor is
whether they use parallel or non-parallel training data. In parallel speech corpus’s,
all speakers speak the same utterances. Non-parallel speech corpus’s, on the other
hand, does not have that restriction, which introduces more variability in the data.
Another factor is whether the systems utilize the linguistic content or not, these
are referred to as text-dependent or text-independent systems. Text-dependent
systems often require a parallel speech corpus. Non-parallel training data and
text-independent systems increases the number of situations the systems need to
handle, and therefore require stronger and more complicated models.

1



2 Chapter 1. Introduction

In (Hsu et al. 2016) a Variational Autoencoder (VAE) is introduced trained on
a non-parallel speech corpus. The VAE is based on Variational Bayes (VB), that
arises when the marginal likelihood or the posterior of the probabilistic model is
intractable, (Kingma and Welling 2013). VB introduces an extension to the stchastic
gradient estimator, which enables it to handle the intractabilities. In (Hsu, Zhang,
and Glass 2017) a Factorized Hierarchical Variational Autoencoder (FHVAE) is in-
troduced for speech analysis. The FHVAE aims at factorize the speech signal into
a linguistic part and a non-linguistic part, the two parts can then be processed
independently. This factorization motivates the use of the FHVAE for SDI.

1.1 Problem Statement

It is the purpose of this project to investigate the performance of the FHVAE model
when used for SDI. The model is compared to a baseline system based on a GMM
mapping and a Harmonic plus Stochastic Model, using the UPC voice conver-
sion toolkit, (Eslava 2008). The performance of the models is evaluated according
to two criteria; intelligibility and how well the systems mask the identity of the
source speaker. The intelligibility is measured by developing an Automatic Speech
Recognition (ASR) system for computing the Word Error Rate (WER). The de-
identification is measured by developing a speaker recognition system to compute
the Equal Error Rate (EER) relative to the source and target speakers, respectively.
Furthermore constructing an ASR system to compute the WER is a comprehensive
task, it is therefore investigated if a simpler measure can be constructed to measure
the intelligibility of the converted speech.

1.2 Structure of the Report

In chapter 2 some basic models and concepts of machine learning are introduced.
Chapter 3 introduces the framework of variational Bayes. Chapter 4 introduces
the data set used, the SDI process of the baseline model and the FHVAE model,
the ASR system and the speaker recognition system. In chapter 5 the results are
presented. The report is concluded with a discussion in chapter 6 and a conclusion
and future work in chapter 7. Finally in appendix A the scripts used in this project
are presented.



Chapter 2
Basic Models

This chapter presents a short introduction of some of the different neural network
architectures used in this project.

2.1 Autoencoder

The autoencoder is a feed-forward neural network, that aims at replicating or copy-
ing its input to its output. The autoencoder has two parts; an encoder and a
decoder. The encoder is a function, f , that maps the input, x, into a hidden repre-
sentation, z. The decoder is a function, g, that maps the hidden representation into
a reconstruction of the input, x̂. In modern autoencoders the deterministic map-
pings of the encoder and decoder has been generalized to stochastic mappings
penc(z|x) and pdec(x̂|z). The concept of an autoencoder is shown in figure 2.1.
The aim of the autoencoder is to store only the most relevant information about

x Encoder

f (x)

penc(z|x)

z Decoder

g(z)

pdec(x̂|z)

x̂

Figure 2.1: The structure of the autoencoder.

the input in the hidden representation. To achieve this various restrictions can
be imposed on the autoencoder. These restrictions prevents the autoencoder from
achieving perfect reconstruction, that is where x = g( f (x)). If the dimension of
z is stricktly less than the dimension of x, then the autoencoder is called under-
complete. In this way the autoencoder is forced to learn only the most important
or discriminative features of the data. However if the functions f and g are both
non-linear and they have too great capacity, the autoencoder can then still learn
to do perfect reconstruction. Autoencoder are usually trained by gradient descent
computed by back-propagation. The learning objective is to minimize a loss func-
tion L(x, g( f (x))), that penalizes g( f (x)) when it is dissimilar from x. Examples
of loss functions are Mean Squarred Error (MSE) and binary crossentropy. If the
loss function is the MSE and the decoder is linear, then the autoencoder will learn
to span the same subspace as principal component analysis, (Goodfellow, Bengio,
and Courville 2016, chapter 14).
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4 Chapter 2. Basic Models

2.2 Generative and Discriminative Models

Let x and y be random variables, where x is the observable variable and y is the
target variable. Then different models can be distinguished as two different kinds
of models; generative and discriminative. A generative model is a model based
on the joint probability of the two variables, p(x, y), or the conditional probability
of the observed variable given the target variable, p(x|y). A discriminative model
is a model based on the conditional probability of the target variable given the
observed variable, p(y|x). The terminology arises since a generative model can
’generate’ synthetic data, either of pairs of the observed and target variables, or
of the observed variable given the target variable. The discriminative model, on
the other hand, can discriminate target values given observations. Discriminative
models can also be referred to as recognition or inference models, since the model
can be used to recognize or infer target values given the observations.

Consider again the autoencoder in figure 2.1. Often the variable of interest
is z, as it often is a compressed version of the most relevant information in the
data. The autoencoder can then be used to make features from the data for other
systems. The autoencoder can therefore be seen as being comprised of two models;
the encoder is a discriminative model and the decoder is a generative model.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNN) is a class of neural networks that has cyclic
connections between nodes. The cyclic connections feed information from previous
time-steps to the current time-step, this allows the network to capture temporal
behavior in time-sequences. A simple RNN is seen in figure 2.2. There exist several
different RNN architectures, one of which is Long Short Term Memory (LSTM).

. . .

x1

h1

c1

x2

h2

c2

x3

h3

. . .

Figure 2.2: A graphical model of a simple RNN, where x is the input to the network, h is the output
of the network and c is the intermediate varriable between the time-steps.

2.3.1 Long Short Term Memory

The LSTM unit was first proposed by (Hochreiter and Schmidhuber 1997), it has
three layers; input layer, hidden layer and output layer. The hidden layer contains
a memory cell, where the input and output are controlled through gates. Let xt

denote the input to the unit at time t and let ht denote the output of the unit. The
unit has two gates; the input gate it and the output gate ot. Furthermore the unit



2.3. Recurrent Neural Networks 5

has a state vector ct, that contains the current state of the unit. The unit is described
as follows

it = σg(W ixt + U iht + bi)

ot = σg(W oxt + Uoht + bo)

ct = it ◦ σc(W cxt + Ucht + bc)

ht = ot ◦ σh(ct).

where the W ’s and U’s are weight matrices, the b’s are bias vectors, σg is the sig-
moid function, σc and σh are the hyperbolic tangent and ◦ denotes the Hadamard
product. The unit is initialized with c0 = 0 and h0 = 0.

The model was improved in (Gers, Schmidhuber, and Cummins 1999), where
it was found that the internal state vector could grow uncontrollably under certain
conditions. In order to control the internal state vector, a forget gate, f t, was intro-
duced. Its purpose is to reset the internal state vector. The unit is then described
as

it = σg(W ixt + U iht + bi)

ot = σg(W oxt + Uoht + bo)

f t = σg(W f xt + U f ht + b f )

ct = f t ◦ ct−1 + it ◦ σc(W cxt + Ucht + bc)

ht = ot ◦ σh(ct).

The graphical structure of the unit is shown in figure 2.3.

xt

f t it σc ot

⊗

⊗

⊕ ct

Delay

σh ⊗ ht

Delay

Output

Figure 2.3: The structure of the LSTM unit.





Chapter 3
Variational Bayes

Let X = {x(i)}N
i=1 be a data set consisting of N i.i.d. samples of a discrete or con-

tinuous random variable x. It is assumed that the data is generated by a random
process involving an unobserved continuous random variable z. The unobserved
variable z is drawn from a prior distribution pθ(z), then x is drawn from a condi-
tional distribution pθ(x|z). It is assumed that pθ(z) and pθ(x|z) are differentiable
almost everywhere w.r.t. θ and z. Most of this process is hidden; both the true
parameters θ and the values of z are unknown.

Now consider cases where the integral of the marginal likelihood pθ(x) =∫
pθ(z)pθ(x|z)dz is intractable or where the true posterior pθ(z|x) = pθ(z)pθ(x|z)

pθ(x)
is intractable. In the first case it is not possible to evaluate or differentiate the
marginal likelihood, preventing approximate marginal inference of the variable x.
In the second case it is not possible to use the EM-algorithm to find the maximum
likelihood (ML) or maximum a posteriori (MAP) estimate of the parameters θ.
These intractabilities are common in moderately complicated likelihood functions
pθ(x|z), like neural networks with a nonlinear hidden layer (Kingma and Welling
2013).

3.1 Kullback-Leibler Divergence

Before proceeding, the Kullback-Leibler divergence is introduced:

Definition 3.1 (Kullback-Leibler Divergence)
Let f and g be two density functions. Then the Kullback-Leibler divergence from
f to g is defined as

D( f ||g) =
∫

f log
f
g

.

Note that D( f ||g) = E f

[
log f

g

]
, note also that D( f ||g) is not necessarily the

same as D(g|| f ). It can be proven that D( f ||g) ≥ 0, see for instance (Cover and
Thomas 2006).

7



8 Chapter 3. Variational Bayes

3.2 Stochastic Gradient Variational Bayes Estimator

To efficiently solve the problems of intractability, variational bayes is used. Let the
recognition model, given by qφ(z|x), be an estimate of the true posterior pθ(z|x).
The objective is then to jointly learn the parameters, φ, of the recognition model
and the parameters, θ, of the generative model. Since the data are i.i.d. the
marginal likelihood can be written as

log pθ(x(1), . . . , x(N)) =
N

∑
i=1

log pθ(x(i)). (3.1)

Now log pθ(x(i)) can be rewritten as

log pθ(x(i)) = Eqφ(z|x(i))

[
log pθ(x(i))

]
=
∫

qφ(z|x(i)) log
pθ(x(i), z)
pθ(z|x(i))

dz

=
∫

qφ(z|x(i))
[

log
qφ(z|x(i))
pθ(z|x(i))

− log qφ(z|x(i)) + log pθ(x(i), z)

]
dz

=
∫

qφ(z|x(i)) log
qφ(z|x(i))
pθ(z|x(i))

dz

+
∫

qφ(z|x(i))
[
− log qφ(z|x(i)) + log pθ(x(i), z)

]
dz

= D(qφ(z|x(i))||pθ(z|x(i))) + L(θ, φ; x(i)), (3.2)

where

L(θ, φ; x(i)) = Eqφ(z|x(i))

[
− log qφ(z|x(i)) + log pθ(x(i), z)

]
. (3.3)

Since the KL-divergence is non-negative then log pθ(x(i)) ≥ L(θ, φ; x(i)), therefore
L(θ, φ; x(i)) is called the variational lower bound on the marginal likelihood of data
point i. Rewriting (3.3) gives

L(θ, φ; x(i)) =
∫

qφ(z|x(i))
[
− log qφ(z|x(i)) + log pθ(x(i), z)

]
dz

=
∫

qφ(z|x(i))
[
− log qφ(z|x(i)) + log pθ(z) + log pθ(x(i)|z)

]
dz

=
∫

qφ(z|x(i))
[
− log

qφ(z|x(i))
pθ(z)

+ log pθ(x(i)|z)
]

dz

= −D(qφ(z|x(i))|pθ(z)) + Eqφ(z|x)

[
log pθ(x(i)|z)

]
. (3.4)

Using Monte Carlo Integration a gradient estimator of (3.3) is

∇φEqφ(z)[ f (z)] = Eqφ(z)[ f (z)∇φ log qφ(z)] '
1
L

L

∑
l=1

f (z(l))∇φ log qφ(z(l)), (3.5)



3.2. Stochastic Gradient Variational Bayes Estimator 9

where f (z) = − log qφ(z|x(i)) + log pθ(x(i), z) and z(l) ∼ qφ(z|x(i)). However this
gradient estimator exhibits very high variance and is impractical to use, (Kingma
and Welling 2013). In order to construct a better estimator the reparametirization
trick is used.

Theorem 3.1 (Reparameterization Trick)
Let z be a continuous random variable, let z ∼ qφ(z|x) be some conditional
distribution, and let f (z) be some differential function. If it is possible to express
z as a deterministic variable by z = gφ(ε, x), where ε is an auxiliary variable with
independent marginal p(ε) and gφ is some vector-valued function parameterized
by φ. Then

Eqφ(z|x)[ f (z)] ' 1
L

L

∑
l=1

f (gφ(ε
(l), x)), (3.6)

where ε(l) ∼ p(ε).

Proof Given the deterministic mapping z = gφ(ε, x), it is known that the proba-
bility contained in a differential area must be invariant under change of variable,
that is

qφ(z|x)dz = p(ε)dε. (3.7)

It follows that

Eqφ(z|x)[ f (z)] =
∫

qφ(z|x) f (z)dz

=
∫

p(ε) f (z)dε

=
∫

p(ε) f (gφ(ε, x))dε

= Ep(ε)[ f (gφ(ε, x))]. (3.8)

Using Monte Carlo Integration, a differential estimator of (3.8) can be formed;

Ep(ε)[ f (gφ(ε, x))] ' 1
L

L

∑
l=1

f (gφ(ε
(l), x)), (3.9)

where ε(l) ∼ p(ε). �
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Applying Theorem 3.1 on the variational lower bound in (3.3), with f (z) =

− log qφ(z|x(i)) + log pθ(x(i), z), gives the Stochastic Gradient Variational Bayes
(SGVB) estimator L̃A(θ, φ; x(i)) ' L(θ, φ; x(i)), given by

L̃A(θ, φ; x(i)) ' 1
L

L

∑
l=1

log pθ(x(i), z(i,l))− log qφ(z(i,l)|x(i)) (3.10)

where z(i,l) = gφ(ε(l), x(i)) and ε(l) ∼ p(ε).
If the KL-divergence in (3.4) can be evaluated analytically, then applying The-

orem 3.1 on the expectation in (3.4), with f (z) = log pθ(x(i)|z), gives the SGVB
estimator L̃B(θ, φ; x(i)) ' L(θ, φ; x(i)), given by

L̃B(θ, φ; x(i)) ' −D(qφ(z|x(i))|pθ(z)) +
1
L

L

∑
l=1

log pθ(x(i)|z(i,l)) (3.11)

where z(i,l) = gφ(ε(l), x(i)) and ε(l) ∼ p(ε). The derivatives can be taken of
L̃A(θ, φ; x(i)) and L̃B(θ, φ; x(i)) w.r.t. θ and φ, and they can be used with stochas-
tic optimization algorithms like Stochastic Gradient Descent or Adagrad, (Kingma
and Welling 2013).

3.3 Variational Autoencoder

Variational Bayes can also be used to construct an autoencoder, referred to as a
Variational Autoencoder (VAE). The recognition model qφ(z|x) can be seen as a
probabilistic encoder and the generative model pθ(x|z) can be seen as a proba-
bilistic decoder. Considering the estimator in (3.11), a sample of z is generated by
z(i,l) = gφ(ε(l), x(i)), which is then fed to the generative model. If log pθ(x|z) = 0,
then the reconstruction error is minimized, therefore the expectated value in (3.11)
is the expected negative reconstruction error and the KL-divergence acts as a reg-
ularizer.

3.3.1 Factorized Hierarchical Variational Autoencoder

In this subsection the Factorized Hierarchical Variational Autoencoder (FHVAE)
proposed in (Hsu, Zhang, and Glass 2017) is presented. Speech data is compli-
cated to model, since it is affected by multiple factors like fundamental frequency
( f0), volume, speaker id and phonetical content. Speaker id affects f0, dialect and
volume. Let a sequence refer to a sub-sequence of an utterance and let a seg-
ment refer to a variable of smaller temporal scale than a sequence. Then factors
like f0, dialect and volume would tend to have a larger variance across sequences
than within sequences, whereas phonetical content would tend to have a similar
variance across and within sequences. This motivates the division of the factors
or attributes into sequence-level attributes and segment-level attributes, that is at-
tributes affected by long-term- and short-term statistical content, respectively. This
motivates developing a FHVAE to model the speech data.
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Let D = {X(i)}M
i=1 be a data set of M i.i.d. sequences X(i) and let each se-

quence be X(i) = {x(i,n)}N(i)

n=1, where x(i,n) is a segment and N(i) is the number of
segments. Each sequence is assumed to be generated from three latent variables,
Z(i)

1 = {z(i,n)1 }N(i)

n=1, Z(i)
2 = {z(i,n)2 }N(i)

n=1 and µ
(i)
2 . The Z(i)

1 ’s are latent segment vari-
ables, the Z(i)

2 ’s are latent sequence variables and µ
(i)
2 is the mean vector of Z(i)

2 .
The generative process is divided into three steps;

1. µ
(i)
2 is drawn from a prior distribution pθ(µ2).

2. N(i) i.i.d. latent segment variables {z(i,n)1 }N(i)

n=1 and latent sequence variables
{z(i,n)2 }N(i)

n=1 are drawn from a sequence independent prior pθ(z1) and a se-
quence dependent prior pθ(z2|µ2).

3. N(i) i.i.d. segments {x(i,n)}N(i)

n=1 are drawn from a conditional distribution
pθ(x|z1, z2).

It is assumed that Z1 and Z2 are independent. The generative model is parametrized
by θ. The joint probability for each sequence can be factorized as follows

pθ(X(i), Z(i)
1 , Z(i)

2 , µ
(i)
2 ) = pθ(µ

(i)
2 )pθ(X(i), Z(i)

1 , Z(i)
2 |µ

(i)
2 )

= pθ(µ
(i)
2 )

N(i)

∏
n=1

pθ(x(i,n), z(i,n)1 , z(i,n)2 |µ(i)
2 )

= pθ(µ
(i)
2 )

N(i)

∏
n=1

pθ(x(i,n), z(i,n)1 |z(i,n)2 )pθ(z
(i,n)
2 |µ(i)

2 )

= pθ(µ
(i)
2 )

N(i)

∏
n=1

pθ(x(i,n)|z(i,n)1 , z(i,n)2 )pθ(z
(i,n)
1 )pθ(z

(i,n)
2 |µ(i)

2 ),

(3.12)

where the density functions are assumed to be

pθ(x|z1, z2) = N (x| fµx
(z1, z2), diag( fσ2

x
(z1, z2))),

pθ(z1) = N (z1|0, σ2
z1

I),

pθ(z2|µ2) = N (z2|µ2, σ2
z2

I),

pθ(µ2) = N (µ2|0, σ2
µ2

I).

The functions fµx
(z1, z2) and fσ2

x
(z1, z2) are neural networks modeling the mean

and diagonal co-variance, respectively. From the factorization of the generative
model, it is seen that the z2’s within a sequence are forced to be close to µ

(i)
2 as well

as each other, which encourages encoding of the sequence attributes. The z1’s on
the other hand have a global constraint, which encourages encoding of the segment
attributes.
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In this setup the true posterior pθ(Z(i)
1 , Z(i)

2 , µ
(i)
2 |X

(i)) is intractable, an estimate
qφ(Z(i)

1 , Z(i)
2 , µ

(i)
2 |X

(i)) is introduced as the inference model, which can be factorized
as follows

qφ(Z(i)
1 , Z(i)

2 , µ
(i)
2 |X

(i)) = qφ(µ
(i)
2 )qφ(Z(i)

1 , Z(i)
2 |X

(i))

= qφ(µ
(i)
2 )

N(i)

∏
n=1

qφ(z
(i,n)
1 , z(i,n)2 |x(i,n))

= qφ(µ
(i)
2 )

N(i)

∏
n=1

qφ(z
(i,n)
1 |x(i,n), z(i,n)2 )qφ(z

(i,n)
2 |x(i,n)), (3.13)

where the posteriors are assumed to be

qφ(µ
(i)
2 ) = N (µ

(i)
2 |gµ2

(i), σ2
µ2

I),

qφ(z2|x) = N (z2|gµz2
(x), diag(gσ2

z2
(x))),

qφ(z1|x, z2) = N (z1|gµz1
(x, z2), diag(gσ2

z1
(x, z2))).

For the posterior qφ(µ
(i)
2 ) the variance is fixed and the mean, gµ2

(i), is not directly
inferred from x, instead it is seen as a part of the model parameters with one for
each utterance. The mean function gµ2

(i) can be seen as a lookup table, with a
mean for each sequence and is optimized during training. The functions gµz2

(x),
gσ2

z2
(x), gµz1

(x, z2) and gσ2
z1
(x, z2) are neural networks for the means and diagonal

co-variances of z1 and z2, respectively. The inference model is parametrized by φ.
Using (3.3) the variational lower bound is

L(θ, φ; x(i)) = E
qφ(Z(i)

1 ,Z(i)
2 ,µ(i)

2 |X
(i))

[
− log qφ(Z(i)

1 , Z(i)
2 , µ

(i)
2 |X

(i))

+ log pθ(X(i), Z(i)
1 , Z(i)

2 , µ
(i)
2 )
]

. (3.14)

The variational lower bound in (3.14) can be rewritten to, (Hsu, Zhang, and Glass
2017, Appendix A)

L(θ, φ; X(i)) =
N(i)

∑
n=1
L(θ, φ; x(i,n)), (3.15)

where

L(θ, φ; x(i,n)) = E
qφ(z

(i,n)
1 ,z(i,n)2 |x(i,n))

[
log pθ(x(i,n)|z(i,n)1 , z(i,n)2 )

]
− E

qφ(z
(i,n)
2 |x(i,n))

[
D(qφ(z

(i,n)
1 |x(i,n), z(i,n)2 )|| log pθ(z

(i,n)
1 )

]
− D(qφ(z

(i,n)
2 |x(i,n))|| log pθ(z

(i,n)
2 |µ̃2)

+
1

N(i)
log pθ(µ̃2) + const,

and where µ̃2 = gµ2
(i).
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3.3.2 Discriminative Objective

In the generative model the prior for z2 is conditioned on µ2 to encourage the
encoding of segment- and sequence-level attributes into different latent variables.
However the prior probability for µ2 is maximized when µ2 = 0 for all sequences,
resulting in trivial mean vectors. Furthermore z2 is inferred from the KL-divergence
D(qφ(z

(i,n)
2 |x(i,n))|| log pθ(z

(i,n)
2 |µ̃2), measured to the same conditional prior for all

sequences. This would then result in z1 and z2 not being factorized into segment-
and sequence-level attributes, respectively. Therefore the following discriminative
objective is formulated

log p(i|z(i,n)) = log p(z(i,n)|i)− log

(
M

∑
j=1

p(z(i,n)|j)
)

:= log p(z(i,n)|µ̃(i)
2 )− log

(
M

∑
j=1

p(z(i,n)|µ̃(j)
2 )

)
,

where p(i) is assumed uniform. Combining the discriminative objective with the
variational lower bound gives

Ldis(θ, φ; x(i,n)) = L(θ, φ; x(i,n)) + α log p(i|z(i,n)), (3.16)

where α is a weighting parameter. This is referred to as the discriminative varia-
tional lower bound.

3.3.3 Model Architecture

Let the sub-sequence, x1:T, of X be a segment, that contains T time-steps, denoted
xt. To capture the temporal information in the segment, an RNN architecture
is adopted. The FHVAE-model is build using LSTM and Multilayer Perceptron
(MLP) networks. The recognition model is formulated as

(hz2,t, cz2,t) = LSTM(xt−1, hz2,t−1, cz2,t−1; φLSTM,z2
)

qφ(z2|x1:T) = N (z2|MLP(hz2,T; φMLPµ,z2
), diag(exp(MLP(hz2,T; φMLP

σ2 ,z2
))))

(hz1,t, cz1,t) = LSTM([xt−1; z2], hz1,t−1, cz1,t−1; φLSTM,z1
)

qφ(z1|x1:T, z2) = N (z1|MLP(hz1,T; φMLPµ,z1
), diag(exp(MLP(hz1,T; φMLP

σ2 ,z1
)))),

and is shown in figure 3.1. The generative model is formulated as

(hx,t, cx,t) = LSTM([z1; z1], hx,t−1, cx,t−1; θLSTM,x)

pθ(xt|z1, z2) = N (xt|MLP(hx,t; θMLPµ,x), diag(exp(MLP(hx,t; θMLP
σ2 ,x)))),

and is shown in figure 3.2. The optimization is done over a maximum of 500 epochs
using the Adam optimizer, (Kingma and Ba 2014), with a patience of 50 epochs.
The dimension of the hidden layers hz1 , hz2 and hx is set to 256.
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x1:T

LSTM hz1,T

MLP

MLP log(σ2
1 )

µ1

qφ(z1|x1:T, z2) z1

LSTM hz2,T

MLP

MLP log(σ2
2 )

µ2

qφ(z2|x1:T) z2

Figure 3.1: The structure of the recognition model of the FHVAE model.

z2

z1

LSTM hx,1:T

MLP

MLP log(σ2
x)

µx

pθ(x1:T|z1, z2) x̂1:T

Figure 3.2: The structure of the generative model of the FHVAE model.



Chapter 4
Speaker De-Identification

This chapter presents the data sets used, the speaker de-identification method of
the baseline and the FHVAE models and the methods for evaluation of the perfor-
mance of the models.

4.1 Data sets

The database used in this project is the TIMIT speech corpus, (Garofolo 1993).
The corpus consists of 630 speakers from 8 dialect regions in USA, each reading
ten phonetically rich sentences. The sentences are divided into three groups; di-
alect (SA), compact (SX) and diverse (SI). The SA group consists of two sentences
designed to reveal the dialect of the speakers. The SX group consists of 450 pho-
netically compact sentences, each speaker reads 5 sentences from this group and
each sentence is read by 7 speakers. The SI group consists of 1890 phonetically di-
verse sentences, each speaker reads 3 sentences from this group and each sentence
is only read by one speaker. In this study only the SI and SX sentences are used,
unless otherwise noted. The corpus has 70% male and 30% female speakers.

The TIMIT speech corpus is divided into four subsets; training set, develop-
ment set, core test set and test set. The training set consists of 462 speakers, which
totals to 3696 utterances. The development set consists of 50 speakers (400 ut-
terances). The core test set consists of 24 speakers (192 utterances). The test set
consists of 94 speakers (752 utterances). There is no overlap between the sets. Un-
less otherwise noted each model is trained on the training set and the development
set is used for validation during training. The models are then tested on the core
test set. The test set is used to evaluate the performance of the baseline model and
FHVAE model on the SDI task.

4.2 Baseline Model

The UPC voice conversion toolkit, (Eslava 2008), is used as the baseline model.
The toolkit is based on a harmonic plus stochastic model, that decomposes the
speech signal into a harmonic (deterministic) part and a stochastic part. The model
assumes that the speech signal is locally composed of a sum of sinusoids with time-
varying parameters. Furthermore the model assumes that the sinusoids are integer

15
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multiples of the local fundamental frequency, f0. The frequencies, amplitudes and
phases of the harmonic components are extracted from the signal on a frame-by-
frame level. By interpolating and regenerating the deterministic component, the
stochastic part is found by subtracting the deterministic from the original speech
signal. The stochastic part of the signal deals with the aperiodic components of the
signal, that are not well represented by sinusoids. The stochastic part of the signal
is analysed frame-by-frame using linear predictive coding.

The speaker de-identification is done, by training a Gaussian Mixture Model
(GMM) on the harmonic components. The GMM is then used as a transformation
function, to convert the harmonic components. The stochastic components are
then estimated from the converted harmonic components. The pitch is adapted
by linear transformations of the mean and variance of log f0. A GMM-model is
trained for each source- and target speaker pair. For further details, see (Eslava
2008).

The UPC voice conversion toolkit supports both parallel and non-parallel data
sets. Here a non-parallel implementation is used. In order to have sufficient data
the SA utterances are also used. For each source speaker pair in the test set, 9
utterances from both the source and target speaker are used to train the GMM,
the last utterance from each speaker is used for voice conversion. The utterances
used for conversion are all from the SX group. There are a total of 94 · 93 = 8742
source-target pairs, with one converted utterance for each source-target pair there
are 8742 utterances of the baseline model.

4.3 FHVAE Model

In the FHVAE Model the dimension of the latent variables z1 and z2 is set 32 and
the weighting parameter of the discriminative objective is α = 10. The input to
the FHVAE Model is a 200 dimensional log-magnitude spectrogram of the speech
signal, computed every 10ms. The SDI is done by modifying the latent sequence
variable. The latent sequence variable is modified according to the following for-
mula:

ẑ2,t = z2,s − µ2,s + µ2,t, (4.1)

where z2,s is the latent sequence variable of the source speaker, µ2,s and µ2,t are the
means of latent sequence variables of the source and target speaker, respectively,
and ẑ2,t is the estimated latent sequence variable of the target speaker. ẑ2,t is then
combined with the latent segment variable of the source speaker, z1,s, to obtain
the converted log-magnitude spectrogram. The phase is then estimated from the
converted log-magnitude spectrogram, and the output speech signal is computed.
For each source-target pair 8 utterances are converted, generating a total of
8742 · 8 = 69936 utterances.
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Examples of the converted speech from both the baseline model and the FHVAE
model are made available on dropbox1. The performance of the models on the SDI
task are evaluated using speech recognition and speaker verification, presented
next.

4.4 Speech Recognition

Speech Recognition, or Automatic Speech Recognition (ASR), is a term covering the
methods of recognizing and translating spoken language into text. There exist a
variety of methods, e.g. Hidden Markov Models (HMM’s), GMM’s or Deep Neural
Networks (DNN’s). The accuracy of the systems are evaluated by the Word Error
Rate (WER). Let N be the total number of words in the reference transcript and let
Q be the number of incorrect words in the generated transcript, then the WER is
defined as

WER =
Q
N

.

An incorrect word can occur in three different ways; substitution, deletion and
insertion. Substitutions are when a word in the reference transcript is substituted
by another word in the generated transcript, for instance if ’hello world’ becomes
’hollow world’. Deletions are when a word in the reference transcript is is not
present the generated transcript, for instance if ’I am old’ becomes ’I old’. Insertion
are when there is an extra word in the generated transcript, that was not present
in the reference transcript, for instance if ’I am old’ becomes ’I am too old’. The
WER can then be rewritten as

WER =
Q
N

=
S + D + I
S + D + C

, (4.2)

where C is the number of correct words.
The ASR system used in this project is a DNN developed for the TIMIT Speech

Corpus in the Kaldi toolkit, (Povey et al. 2011). The system is designed to be able to
recognize 39 different phonemes. The system is comprised of three types of mod-
els; a monophone model, a triphone model and a neural network. The monophone
and triphone models are both based on GMM’s. The monophone model is an
acoustic model that computes the acoustic parameters of each phoneme, wihtout
any contextual information. The triphone model uses the monophone model to
represents each phoneme in the context of the preceding and succeeding phoneme.
Both the monophone model and the triphone model takes 12 dimensional Mel-
Frequency Cepstral Coefficients (MFCC) of the data as input. The triphone model
is then used to extract the features for the neural network. The neural network has
two hidden layers, both with tanh as the activation function.

1The examples are available at https://www.dropbox.com/sh/nr94jcs6z3mi0vd/
AADYWBOu8OdyIsstogi49o7Ga?dl=0.

https://www.dropbox.com/sh/nr94jcs6z3mi0vd/AADYWBOu8OdyIsstogi49o7Ga?dl=0
https://www.dropbox.com/sh/nr94jcs6z3mi0vd/AADYWBOu8OdyIsstogi49o7Ga?dl=0
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4.5 Speaker Recognition

Speaker Recognition, is a term covering methods for identifying or verifying the
identity of the speaker of a speech signal. Like ASR common methods include
HMM’s, GMM’s or DNN’s. The speaker recognition system used in this project
is a supervised GMM initialized from the posteriors of the DNN used for ASR,
proposed in (Snyder, Garcia-Romero, and Povey 2015). The mixture weights wk,
means µk and co-variances Sk are initialized as follows

z(i)k = p(k|yi, θ),

wk =
N

∑
i=1

z(i)k ,

µk =
1

wk

N

∑
i=1

z(i)k xi,

Sk =
1

wk

N

∑
i=1

z(i)k (xi − µk)(xi − µk)
T,

where p(k|yi, θ) is the probability of the k’th triphone at frame i given DNN fea-
tures yi and DNN parameters θ and xi are the corresponding speaker recognition
features. The speaker recognition system takes 20 dimensional MFCC of the data
as input.

The supervised GMM is then used to make an i-vector extractor. i-vectors were
proposed by (Dehak et al. 2011), they assume a model where each utterance is
represented by a vector, M, given by

M = m + Tw,

where m are the means of the supervised GMM concatenated into one vector, T
is a rectangular matrix of low order and w ∼ N (0, I). The vector w is referred to
as the i-vector, see (Dehak et al. 2011) for the method to extract the i-vectors. The
i-vectors are then used for scoring using Probabilistic Linear Discriminant Analysis
(PLDA). PLDA was originally proposed by (Ioffe 2006). Let α be a latent variable
that determines the speaker identity of w. The model assumes that the conditional
probability of w given α is given by

p(w|α) = N (w|α, φw),

where φw is a common covariance matrix for all speakers. The model also assumes
a Gaussian prior for α

p(α) = N (α|β, φα).

The parameters β, φw and φα can be learned using maximum likelihood, see (Ioffe
2006) for the algorithm.
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The dimensionality of the i-vectors is set to 600. The PLDA model is trained
on the development set, the SI utterances of the test set are used to fine-tune the
parameters for each speaker in the test set, this is also referred to as enrollment.
To evaluate the accuracy of the speaker recognition system, each utterance is com-
pared to each speaker using the PLDA model. The PLDA model computes a score
of how similar the utterance is to each speaker. A threshold is then created to de-
termine the speakers who could have spoken the utterance. If the wrong speaker
is chosen, it is termed a false acceptance, and if the correct speaker is rejected, it is
termed a false rejection. By shifting the threshold the number of false acceptance
and false rejections will change. The Equal Error Rate (EER) is defined as the rate
where the false acceptance rate and false rejection rate are equal. A good speaker
recognition system would have a low EER.





Chapter 5
Experiments and Results

This chapter describes the experiments conducted and displays the results.

5.1 Intelligibility

The first experiment is designed to test the intelligibility of the converted speech
signals, this is done using the ASR system from section 4.4. The average WER is
computed for the core test set, the test set and the two converted test sets produced
by the baseline model and the FHVAE model, respectively. In order to better
compare the systems, a new measure is introduced called relative WER, WERR,
given by

WERR =
WERM −WERT

WERC
,

where WERM is the average WER of the given model, WERT is the average WER
of the test set and WERC is the average WER of the core test set. If the WER of the
model is high, then so is the relative WER. The results are shown in table 5.1. From

WER Correct Substitutions Deletions Insertions WERR

Core Test: 22.8 79.9 13.6 6.5 2.7 -
Test: 22.0 80.9 13.0 6.0 3.0 -
Baseline Model: 38.1 66.5 24.8 8.7 4.6 0.706
FHVAE Model: 34.6 69.5 21.7 8.8 4.1 0.553

Table 5.1: This table shows the average of the WER as well as the average number of correct words,
substitutions, deletions and insertions. This is shown for the core test set, the test set and
the converted test sets produced by the baseline model and the FHVAE model. Further-
more the relative WER of the baseline model and the FHVAE model are shown.

the table it is seen that the FHVAE model achieves a lower WER than the baseline
model.

21
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5.1.1 Replacement metrics to the WER

Developing an ASR system to compute the WER is a comprehensive task, it would
be prudent to see if it is possible to construct a simpler method. Let x and x′ be the
source utterance and the converted utterance of the FHVAE model, respectively,
and let X and X ′ be the corresponding MFCCs. Let S0 = |WERx −WERx′ |, where
WERx and WERx′ are the WER of the source utterance and converted utterance,
respectively. The first metric proposed, denoted S1, is the MSE between the MFCCs
of the source and the converted utterances. Let N be the number of frames and let
P be the number of mel-frequencies. S1 is then given by

S1 =
1

NP

N

∑
n=1

P

∑
p=1

(X[p, n]− X ′[p, n])2. (5.1)

It is the hope that S1 will show some correlation with S0. In figure 5.1 S0 is plotted
against S1. The figure does not show any correlation between the metrics, this
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Figure 5.1: The absolute difference in the WER is plotted against the MSE of the MFCCs.

might be due to the fact that the MFCC contain both linguistic and non-linguistic
information about the signal. S1 would not only capture the difference in WER but
also other differences, that may have a larger variance. To improve on the metric an
unsupervised GMM, with C = 40 components and a diagonal covariance matrix,
is trained on the MFCCs of the training set. The number of components is chosen
close to the number of phonemes in the hope that the GMM will cluster the data
in a manner that resembles the phonemes. Let Y be the matrix where Y [c, n] is the
probability that the frame Xn belongs to class c and let Y ′ be defined in a similar
manner. The second metric proposed, denoted S2, is the MSE between Y and Y ′,
given by

S2 =
1

NC

N

∑
n=1

C

∑
c=1

(Y [c, n]− Y ′[c, n])2. (5.2)

In figure 5.2 S0 is plotted against S2. The figure does not show any correlation
between the metrics. It might be that the frames of MFCCs are correctly labeled,
even though that the difference Y [c, n]− Y ′[c, n] might be large. The third and last
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Figure 5.2: The absolute difference in the WER is plotted against the MSE of the GMM posterior
probabilities.

metric focuses on the class labels instead of the probabilities. Let Ỹ be the matrix
where Ỹ [c, n] = 1 if the frame Xn is classified as belonging to class c and Ỹ [c, n] = 0
otherwise and let Ỹ ′ be defined in a similar manner. The metric is computed as

S3 =
1

NC

N

∑
n=1

C

∑
c=1

(Ỹ [c, n]− Ỹ ′[c, n])2. (5.3)

In figure 5.3 S0 is plotted against S3. The figure does not show any correlation
between the metrics.
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Figure 5.3: The absolute difference in the WER is plotted against the MSE of the predicted class
labels.
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5.2 De-Identification

To evaluate the performance of the systems on the SDI task, the speaker recognition
system introduced in section 4.5 is used. The experiment is devided into two parts,
labeled ’A’ and ’B’. In part A each of the converted utterances is compared to all
speakers except the target speaker, the PLDA model is then told that the source
speaker is the true speaker. This is done to test the similarity of the converted
speech signal to the source speaker. In part B each of the converted utterances
is compared to all speakers except the source speaker, and the PLDA model is
told that the target speaker is the true speaker. In this way the similarity of the
converted speech signal to the target speaker is measured. If the EER is lower in
part A than in part B, then the speaker identity of the converted utterances are
closer to the source speaker. If on the other hand the EER is lower in part B than
in part A, then the speaker identity of the converted utterances are closer to the
target speaker.

For the core test set and the test set, the average EER is computed for female,
male and all speakers, respectively, the last is termed pooled. The two converted
test sets produced by the baseline model and the FHVAE model, respectively, are
evaluated on both parts A and B. In each case three average EER’s are computed.
The first two are intra-gender conversions, that is, either male or female source-
target pairs. The last EER is for both inter- and intra-gender conversions, termed
pooled. The results are shown in table 5.2. In order to better compare the two

EER
Female Male Pooled

Core Test: 15 12.5 11.67
Test: 16.67 15.31 13.83
Baseline Part A: 42.76 42.46 43.3
Baseline Part B: 28.62 31.85 30.38
FHVAE Part A: 29.93 27.26 31.82
FHVAE Part B: 40.3 41.14 38.12

Table 5.2: The table shows the average EER for core test set, test set, converted test sets by the
baseline model and FHVAE model.

systems the metric relative EER, EERR, is introduced, given by

EERR =
EERB − EERA

EERC
,

where EERA is the average EER of part A, EERB is the average EER of part B and
EERC is the average EER of the core test set. If EERA > EERB the metric is negative
and if EERA < EERB then the metric is positive. The results are shown in table 5.3.
From the table it is seen that the baseline model achieves negative EERR for in all
categories, while the FHVAE model achieves positive EERR for in all categories.
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EERR

Female Male Pooled
Baseline: -0.943 -0.849 -1.107
FHVAE: 0.691 1.110 0.540

Table 5.3: The table shows the relative EER for the baseline model and FHVAE model.

In order to get an overall score of the models on both intelligibility and speaker
de-identification, the average of the WERR and the pooled EERR is computed. For
the baseline model it is

0.706− 1.107
2

= −0.201,

and for the FHVAE model it is

0.553 + 0.540
2

= 0.5465.

It is seen that the baseline model achieves a lower score than the FHVAE model.





Chapter 6
Discussion

In terms of intelligibility, both the proposed FHVAE model and the baseline model
achieves a higher WER than the unmodified test set, but the FHVAE model achieves
a lower relative WER. However the baseline model was far better than the FHVAE
model in masking the identity of the source speaker. In fact the converted utter-
ances of the FHVAE model was closer to the source speaker than the target speaker.
In the overall performance, calculated by the average of the relative WER and rel-
ative EER, the baseline model was also superior to the FHVAE model. The poor
performance of the FHVAE model, could suggest that the factorization in the FH-
VAE model is not complete; there might still be remnants of the speakers identity
in the segment variable z1. The phase of the converted utterances is estimated,
which will have a negative impact on the quality of the signals. This would influ-
ence the WER negatively, it would also affect the EER, but it should affect parts A
and B equally, it should therefore not have any influence on the relative EER.

There is one key difference between the baseline model and the FHVAE model.
The baseline model trains a transformation function for each source-target speaker
pair. The baseline model is therefore tuned for that specific source-target speaker
pair. The FHVAE model, on the other hand, is trained on a large repository of
different speakers. The FHVAE model is therefore equipped to handle unseen
source-target speaker pairs. On one side the FHVAE model has the advantage that
only one model is needed to handle the conversions, whereas the baseline model
needs a new model for each source-target speaker pair. On the other side, the
baseline model is fine-tuned to each source-target speaker pair, where the FHVAE
is not.

The first metric proposed to replace the WER was the MSE of the MFCCs. It did
not show any correlation with the WER. There is probably too much information in
the MFCCs, which is then reduced to one value. This might increase the variance
of the MSE. It could therefore be prudent to extract the relevant information from
the MFCCs, before calculating the MSE. This was the notion behind the other two
metrics, however they did not show any correlation with the WER.
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Chapter 7
Conclusion and Future Work

Speaker de-identification was performed using a FHVAE model. The FHVAE
model was found inferior to the baseline model, which was based on a GMM
mapping and a harmonic plus stochastic model. The FHVAE model did show bet-
ter results on intelligibility compared to the baseline, but the speaker identity of
the converted speech signals was closer to the source speaker than the target.

The search for a metric to replace the WER as a measure of ineligibility proved
unsuccessful. Three metrics were proposed. The first was the MSE of the difference
in the MFCCs of the converted and source utterances. The second and third metric
were based on an unsupervised GMM with 40 components trained on the MFCC
of the utterances. The second metric was the MSE of the difference in the posterior
probabilities, and the third metric was the MSE of the difference in the predicted
labels. None of the metrics showed any correlation with the WER.

7.1 Future Work

It could be interesting to investigate whether different configurations of the FHVAE
model could provide better results. The dimension of the latent variables z1 and
z2 could be varied as well as the discriminative weighting parameter α. Another
approach could be to train two FHVAE models, one trained on the log-magnitude
spectrograms, and the other on the corresponding phase spectrograms. This sys-
tem could potentially improve the performance of the FHVAE model, since it is
not necessary to estimate the phase.

For the search of a metric to replace the WER, it could be investigated if ini-
tializing the GMM means with the means of the phonemes. This might help the
GMM to capture the phones in the data. Another approach could be to use the
monophone models, to extract or label features for the GMM. It could also be
investigated whether other distance metrics than the MSE could provide better
results.
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Appendix A
Scripts and Files

A list of the scripts and files that are used. They are found at AAU project library,
projekter.aau.dk.

FHVAE model

- convert.sh: A modified version of FHVAE_Code/egs/timit/run_fhvae.sh.
The script dumbs the latent variables and generates the converted utterances.

- prep_eval.py: A modified version of FHVAE_Code/src/scripts/run_nips17_fhvae_exp.py.
The script is called by convert.sh to dumb the latent variables and generate
the converted utterances.

- datasets_loaders_modified.py: A modified version of FHVAE_Code/src/datasets/datasets_loaders.py.
The script contains general datasets loaders adapted for the purpose of this
project.

- modified_functions.py: This script contains modifed functions from the
FHVAE code, adapted for the purpose of the project.

Baseline model

- run_VC.sh: This script produces the converted utterances of the baseline sys-
tem.

- voice_conv.py: This script is called by run_VC.sh to produce the converted
utterances of the baseline system.

ASR System

- run_speech_rec.sh: A modified version of kaldi/egs/timit/s5/run.sh. The
script trains the ASR system and computes the WER of the converted speech
samples.

- eval_data_prep.sh: A modified version of kaldi/egs/timit/s5/local/timit_data_prep.sh.
The script prepares the converted speech data for the ASR system.

33



34 Appendix A. Scripts and Files

- eval_data_prep.py: Is called by eval_data_prep.sh to generate various files
from the converted data set.

- eval_format_data.sh: A modified version of kaldi/egs/timit/s5/local/timit_format_data.sh.
The script takes data prepared in a corpus-dependent way in data/local/,
and converts it into the "canonical" form, in various subdirectories of data/,
e.g. data/lang, data/train, etc.

- WER_experiments.sh: This script conducts the different experiments on the
metrics to replace the WER.

- WER_experiments.py: Is called by WER_experiments.sh to conduct the differ-
ent experiments on the metrics to replace the WER.

Speaker Recognition System

- run_speak_rec.sh: A modified version of kaldi/egs/sre10/v2/run.sh. The
script trains the speaker recognition system and computes the EER of the
converted speech samples.

- make_test_enroll_data.py: This script splits a data set into a test set and an
enrollment set. It also writes the trials file.

- make_trials_ab.py: This script writes the trials files for experiments A and
B, note they are called ’b’ and ’c’ in the scripts.

- scoring_common_modified.sh: A modified version of kaldi/egs/sre10/v2/local/scoring_common.sh.
The script generates a converted data set into female and male subsets.
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