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Research and development of devices with high level of 

automation and flexibility are becoming more widespread. 

Especially self-driving vehicles have gained huge 

momentum in recent years and as a part of this trend, the 

research into vehicular communication has gained 

momentum. Some modules require that the communication 

must be reliable with certain delivery threshold. This report 

investigates the possibility of using transport layer multi-

connectivity with LTE as an access technology in a mixed 

traffic scenario, to facilitate such communication. During 

the investigation it is deemed that state of the art protocols 

such as MPTCP and the newly developed MPQUIC is not 

suitable for such a scenario, as its standard scheduling 

mechanisms cannot facilitate reliable transmissions in a 

mixed traffic application. However, MPQUIC offers a 

good basis for a protocol that can handle such scenarios.  

We extend the functionality of MPQUIC with a novel 

Selective Redundant Scheduler (SRE) that can schedule an 

application data source redundantly if needed.  The initial 

testing in environments with packet loss or varying delay 

behavior, based on real LTE measurements, shows that the 

novel SRE scheme offers much better reliability than the 

standard schedulers in MPQUIC and much better 

bandwidth efficiency than a fully redundant scheduler. An 

IPR has been spawned based on this novel solution. 
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Glossary 

3GPP 3rd Generation Partnership Program 

Ascii American Standard Code for Information 
Interchange  

FIN Finish 

HOLB Head of line blocking 

IEEE The institute of Electrical and Eletronics 
Engineers 

Kb / s Kilobit per second 

KPI Key Performance Indicator 

LTE Long Term Evolution 

Mb/s Megabit per second 

MPQUIC Multipath quick user datagram protocol 
internet connection 

MPTCP Multipath transmission control protocol 

ms millisecond 

NAT Network Address Translation 

OLIA Opportunistic Linked-Increases Congestion 
Control Algorithm 

OWD One way delay 

PD priority data 

QoS Quality of Service 

QUIC Quick user datagram protocol internet 
connection 

RR round-robin 

RTT Round Trip Time 

SACK  Selective Acknowledgement 

SCTP Stream Control Transport Protocol 

SOTA State Of The Art 

TCP Transmission control protocol 
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 Introduction 

Self-driving cars, including cars with driver assisting technologies, have gained a huge momentum in 

recent years. This is due to the added safety and convenience of such functionalities [1]. As a part of this 

trend, the research into vehicular communication has gained momentum as well. Especially in cases 

with high automation, as it provides expanded possibilities to everything from active safety applications 

to platooning and traffic management [2]. 

Today’s self-driving cars mostly rely on multiple radar/lidar sensors to navigate safely through the 

landscape or assist a driver in doing so. These sensors enable safer driving [1], due to the faster reaction 

time, but the cars still have some limitations. These sensors, as well as humans, are all limited to the 

information that is within the line-of-sight of the car. This limitation can lead to bad or unnecessary 

behavior, an illustration of this limitation can be seen in Figure 1.  

 

Figure 1. Illustration of line-of-site limitation for the red car. 

In this scenario, the red car must stop at the intersection as it is unaware of the behavior of the yellow 

and blue car. However, if the cars or the transport related infrastructure, such as intersections, could 

share information, via wireless communication, the physical area for which information can be obtained 
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becomes larger. An illustration of this can be seen in Figure 2. In this illustration the cars have a 

collective field of view that is much greater than the one in the previous illustration. In this case the red 

car might not need to stop if it knew information about the yellow car such as its position, heading, 

speed etc. as it could, based on this information, determine that it would not intersect with the yellow 

car. In general, this extended field of view will potentially increase the flow of traffic through a city. 

 

Figure 2. Illustration of extended field of view.  

The orange area is the collective line-of-site of the cars. 

This scenario is only one example of how shared information will benefit the decision making of both 

humans and self-driving cars and increase in safety in the traffic. As an example, emergency vehicles 

would be able to reserve certain roads in the city as well as announcing its presence to other cars much 

earlier to get to the destination faster.  

In cases where the information can be used to prevent potential accidents, such as alerts about 

emergency breaking, critical failures/wrong decision making can lead to severe injuries or casualties. 

Therefore, the overall system reliability of the self-driving cars needs to be very high. Because of this it 

is of great importance that the information provided by the onboard sensors and other cars is reliable and 

interpreted correctly. This not only imposes strict requirements on the system design of the cars 
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themselves, but also on the wireless communication between them, the infrastructure and other network 

attached entities, as the validity of the shared information greatly affects the usefulness, especially in 

cases with great mobility. This report limits its scope to only investigate the communication aspect of 

the system reliability. 

 Facilitating the communication 

Common for the shared information is that the physical area and the number of devices, for which it is 

relevant, is often large and diverse. An illustration of the type of communication that can occur can be 

seen in Figure 3. 

 

Figure 3. Illustration of the different car related communication types. 

Vehicle-to-Vehicle (V2V) is communication between cars. This communication can be either directly 

between the cars or through some access point (AP). This could be an emergency break warning. 

Vehicle-to-Infrastructure (V2I) is communication between a car and the transport infrastructure. As an 

example, this could be the traffic light system in an intersection. This type of communication could be 

direct, through an AP or through the network via the AP. This could be commands whether to slowdown 

or speedup to regulate traffic flow in an intersection.  

Vehicle-to-Network (V2N) is communication between a car and some network attached entity through 
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the AP. This could be diagnostic information of the car, sensor data live mapping or city level traffic 

routing. 

The proposed technologies to facilitate this type communication the type of communication are existing 

technologies such as 802.11p or Long Term Evolution (LTE) and future technologies such as 5G. In 

Table 1 the pros and cons for different technologies are presented, however technologies such as 5G is 

not investigated as it is not available yet, however it is estimated to be available by 2020 [3]. 

Access technology Pros Cons 

802.11p - Developed specifically for direct 

V2V and V2I communication. 

- Does not need existing 

infrastructure. 

- Standard available. 

- Offers low latency in low loaded 

conditions. 

- The need for installation of 

802.11p APs for advanced 

V2I and V2N type 

communication as it is 

mainly focused on direct 

V2V. 

- Potential scalability problems 

in scenarios with large device 

density. 

- Technology not widely 

available. 

LTE - Larger coverage area. 

- Existing cellular can be used for 

communication with network 

attached devices i.e. it can 

enable V2V, V2I and V2N.  

- Technology is widely available. 

- Better scalability. 

- Is not designed specifically 

for this type of application 

therefore, no direct 

communication is available 

yet. This means coverage of 

cellular infrastructure is 

needed for all the presented 

communication types. 

 

Table 1. Pros and cons of the different technologies suggested for vehicle related communication [4] [5] [6] [7]. 



   

 

  11 

 

 

As LTE is already deployed worldwide and there is plenty of off the shelf-device that utilizes this 

communication technology it is possible to test any solutions that this report may yield in an actual 

network as opposed to 802.11p. Therefore, it is it chosen to investigate LTE as a facilitator for the 

information sharing.  

To better understand whether the existing LTE network is suitable for this kind of communication, it is 

necessary to investigate what kind of performance requirement different application may impose on the 

connection.  

1.1.1 Vehicular communication requirements 

Critical applications, such as collision avoidance, require communication with high reliability i.e. 

information gets delivered with a certain probability and latency to maintain stability or functionality. 

The requirements of the communication are highly tied to the context of where it is being used. As an 

example, a map update due to traffic routing is not as important as being alerted about the position and 

behavior of other cars or emergency vehicles. In this report we denote the two classes of information: 

priority data for mission critical information with a delay deadline and background data for all data 

not within this category.  

As a basis for the priority data this report uses the Vehicle-to-everything (V2X) terminology and 

requirements proposed by the 3rd Generation Partnership Program (3GPP) in “TS 22.185”. These 

requirements will be used as a basis for testing and evaluating LTE as an access technology to facilitate 

V2X applications. Below are some of the requirement relevant for LTE V2X communication presented 

in Figure 3. 

• Max 100 ms latency between two cars via the network (V2V) 

• Max 100 ms latency between car and infrastructure, such as an intersection (V2I) 

• Max 1000 ms latency between car and network entity, such as a remote server (V2N) 

• Max 20 ms latency between two cars for crash related information (V2V) 

• Messages of up to 1200 bytes at up to 10 Hz transmit rate and event triggered messages (V2X) 

The reliability of the above is defined as the probability of a message being received within the deadline 

e.g. received no later than 100 ms after it has been transmitted. 
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Since LTE, as previously stated, do not currently possess the possibility of direct communication 

between end points, all communication must go through the base station. This wireless link will have a 

major impact on the overall performance and thereby the reliability of the communication. Therefore, 

we investigate what kind conditions this link can be subjected to as a car moves through the landscape. 

1.1.2 Challenges in LTE 

As a car moves through the landscape its LTE connection will be subject to different propagation 

dynamics, that affect the reliability and performance of the link directly. These dynamics depend on 

different factors such as: distance between sender and receiver, shadowing by other object, multipath 

propagation in the environment as well as interference from other radio sources. 

The scenario depicted in Figure 4 illustrate some of the network conditions, imposed by the connection 

properties of LTE, that a car may experience when moving through the landscape. 

 

Figure 4. Illustration of coverage problem. Cars are only covered in color associated circles. 

In Figure 4, Car 1 has a connection to the operator providing the red coverage area circles, as such it will 

experience a handover when moving from the coverage area of one cell to another. Since LTE uses a 

break-before-make handover scheme [8] no information can be send during the switch between cells. 

Therefore, the car can experience an additional delay due to the handover procedure between base 

stations. Some applications cannot tolerate these outages (e.g. V2V, V2I), as outages may cause service 

deadlines to be exceeded, thereby, decreasing the connection reliability. In [9] an empirical analysis of 

handover events in LTE along a part of the Danish freeway presented. It is used evaluate the handover 
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impact on reliability to determine whether the current LTE network infrastructure is suitable for use in 

critical applications involving autonomous vehicles (AV). The findings of this article suggest that 

handover events are often between 40 ms to 60 ms, but can be even longer. When comparing the 

findings with the tolerated delays of V2X communication these are close to some requirements and are 

exceeding others, which could impact the reliability of such applications significantly, especially if the 

target reliability is high. 

Car 2 illustrates a case, where the car has good coverage from the blue service provider, and if it were to 

have the red provider, it would have been in less good coverage. This case would illustrate when a car is 

in good coverage from a provider and will have a good chance of meeting the deadline from the 

application. 

Car 3 illustrates a case, where a car is outside coverage of its own provider (blue). In this case Car 3 will 

experience a lot of packet losses or even a connection failure causing a longer break in service, which 

might cause a time critical application to miss its deadline. 

Even though the scenarios in Figure 4 are hypothetical examples of LTE conditions, the cases presented 

are present in the real world deployments as well. An example of this seen in work that we have done 

previously [10]. In Figure 5,  is a real-world example of the issues Car 3 has in Figure 4. 

 

Figure 5. Real world example of coverage problems for a Danish provider between Aalborg and Frederikshavn. The 

red dot indicates areas with coverage whereas the gap corresponds to no coverage [10]. 
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1.1.3 Possible solutions 

One could argue that the best solution is to build a network that is specifically designed to facilitate the 

types of applications described above, however, this report will investigate whether current networks 

can facilitate some of the use case described previously. Using the existing network infrastructure will 

not only quicken the deployment of such application, but also contribute to the research and 

development of new applications and reduce deployment costs. 

A known and possible way to mitigate the issues presented, in the previous section, is to leverage a 

multi-connectivity scheme. Multi-connectivity is a way to utilize multiple connections to achieve better 

reliability and throughput. Depending on where the scheme is deployed in the network stack, there are 

different advantages and disadvantages. In Table 2 is a comparison of multi-connectivity on different 

network layers stating the pros and cons for each. 

Layer in protocol stack Pro Con 

Transport layer - Agnostic of the lower 

layers 

- Provider agnostic 

- Can provide multi-

connectivity end-to-end 

- Large control at 

endpoints 

- Client control 

- Not necessarily 

optimized for the lower 

layers 

 

Network layer - Agnostic of upper and 

lower layers 

- Can provide multi-

connectivity between 

gateways  

- Provider controlled 

- Requires Gateway at 

ingress and egress point 

- Not provider agnostic 

- No client control 

Datalink layer and lower - Can be tailored to 

technology for 

performance gain. 

- Agnostic of upper layers 

- Provider controlled 

- Requires specialized 

equipment 

- Requires that all points 

of access implements 

scheme 

- Not provider agnostic 

Table 2. Pros and cons for multi-connectivity in different layer of the protocol stack [10] [11] . 

When comparing the different techniques as seen in Table 2 and imposing them upon the scenario in 

Figure 4, multi-connectivity at the datalink layer and below is not suitable for this scenario as Car 3 will 

still experience no connectivity due to the coverage gap. This is also not possible with the network layer 



   

 

  15 

 

 

approach as this is not provider agnostic. If the transport layer multi-connectivity is applied, Car 3 could 

have access through both the red and blue service provider as this agnostic to the provider. 

When applying multi-connectivity to the scenario the cars will now experience the following connection 

behavior. 

 Car 3 has no coverage by the blue service provider, but since it also has access to the red service 

provider, it will still have connectivity to serve application data without compromising service deadlines 

on the application layer. 

Car 1 is still in on the edge of the coverage area even with both providers, however by using a redundant 

transmitting scheme the application might be able to reach the deadline, since the probability of packet 

loss on both links is lower compared to using only one of the links. 

Car 2 might, from a reliability point of view, not gain so much as Car 1, but it can still achieve higher 

reliability for the application since it also is within coverage of the red provider. 

 Key Performance Indicators 

Based on the finding in Section 1.1 the following Key Performance Indicators (KPI) are defined for the 

priority data communication and background communication. These KPIs will be used from this point 

onwards when characterizing the communication and its performance. The following KPIs are defined: 

reliability, goodput, throughput and bandwidth efficiency.  

Reliability: 

- The reliability is defined according to the 3GGP in Section 1.1.1, which is the probability of some 

message being sent to be received within a certain deadline. 

- This itself is highly tied to what this report denotes as one-way-delay (OWD). 

o This sub KPI is measured by setting a timestamp in the packet on the sender application side, 

and when the receiver receives the packet, it will log the time for receiving the packet at 

application level and subtract it with the timestamp from the sender. Only the priority 

communication will be characterized using this definition: 

𝑂𝑊𝐷[𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠] = 𝑡𝑖𝑚𝑒𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑡𝑖𝑚𝑒𝑆𝑒𝑛𝑡 

      To which the reliability is defined as. 
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𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = Pr(𝑂𝑊𝐷 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

Where the thresholds indicated the latency requirement such as 100 ms OWD. 

Goodput: 

- The goodput KPI will be used to characterize how much useful information is transmitted via the 

connection. Useful information is defined as all application data. The goodput is calculated with the 

following formula: 

𝑔𝑜𝑜𝑑𝑝𝑢𝑡[𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑𝑠] =
𝑡𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎[𝑏𝑖𝑡𝑠]

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]
 

Throughput: 

- The throughput KPI gives an indication of the total amount of data being transmitted this includes all 

protocol overhead. Throughput is defined as: 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑𝑠] =
𝑡𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝐷𝑎𝑡𝑎[𝑏𝑖𝑡𝑠]

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]
 

Bandwidth efficiency 

- Bandwidth efficiency is defined as the ratio between goodput and through i.e. how much of the 

transmitted data contains unique application information. It is defined as: 

𝐵𝑊𝑒𝑓𝑓 =
𝑔𝑜𝑜𝑑𝑝𝑢𝑡

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
∗ 100 

The higher the percentage of BWeff the better the bandwidth efficiency. The maximum efficiency is 

100% and the lowest is 0%. 
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 Initial problem statement 

Based the considerations in Section 1.1.3 as well as the findings in  [9] it is deemed the transport layer 

approach to multi-connectivity would provide the most value. This offer not ease of deployment and 

flexibility using multi connectivity it will also function with off-the-shelf equipment without the need to 

change the existing LTE network. Furthermore, this also provides the possibility of both operator and 

connection diversity, which would mitigate the LTE problems illustrated in Figure 4. Therefore, the 

initial problem statement is the following. 

How can the transport layer with multi-connectivity, using LTE as access technology, achieve high 

reliability for priority data and facilitate background data with high bandwidth efficiency? 

It should also be noted that such a solution would be applicable in other scenarios than cars. Cars could 

be exchanged for any device is experiencing changing conditions in a network as described in this 

section. The network access technology is not limit to LTE either, this is merely an example of a widely 

deployed network access technology. 
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 Requirements 

This section presents the requirements, that we think, an ideal transport layer protocol should fulfill to 

deliver a satisfactory performance and be a possible solution to the initial problem statement. This will 

be used in conjunction with an analysis of the state of the art to determine whether and which previous 

work can be leveraged in a solution that fulfills the presented requirements for the application presented 

in Chapter 1. 

For a transport protocol to be viable it must be able to provide different Quality of Service (QoS) to 

different data sources, depending on the individual requirements of the sources. As stated in Section 

1.1.1, priority data have a very strict set of requirements to insure a certain level of reliability for the 

application. On the other hand, background data, such as video streaming, software updates, navigation 

information, may not require the same level of reliability, but instead a certain goodput to deliver a 

satisfactory performance. Therefore, the transport protocol must shape the output data according to these 

QoS parameters and the priority of the data sources. 

Based on these considerations the following requirements, for the ideal transport protocol, are defined. 

These demands are split up according to the MoSCoW [12] requirement model, where “musts” are 

requirement for the implementation to function, “should” is something that should be there but is not 

critical for the implementation to function, “could” is an application specific feature, and “wont” is 

functionalities that cannot exist in the solution. Furthermore, the requirements are split up into functional 

requirements and technical requirements. 
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 Functional requirements 

Musts: 

- M1: Be able provide connectivity diversity to priority data such that the challenges in LTE networks 

are mitigated. For this to be achieved it must be able to duplicate data across multiple links. 

- M2: Be able to ensure data delivery if required. This means that if losses occur the lost data should 

still be delivered at some point in time. 

Should: 

- S1: Be able to work on the general internet and should not be limited to a proprietary network. This 

expands the applicability of the protocol as packets might get rejected by middleboxes if they do not 

recognize the protocol used [13]. 

- S2: Be able to priorities data from a priority data source. 

- S3: Be able to redirect protocol control information (such as acknowledgements) and retransmission 

to other links if necessary. This is beneficial in the case where the original link is experiencing bad 

network conditions. 

- S4: Be able to offer good bandwidth efficiency for background data. Bandwidth efficiency in this 

case is defined according to Section 1.2. 

Could: 

- C1: Be able to skip the retransmission of old priority data and not wait for reception of old data. Old 

data is in this case data that does not provide any contribution to the application. 

- C2: Should not retransmit information that has already received on other paths. 
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 Technical requirements 

Must: 

- M1: It must provide a packet delay of at most 100 ms for priority messages 

• There are currently no specific number for reliability in terms of the 100 ms delay. We aim for 

99.9 %, if the underlying access technology allows it. 

 

While the V2X communication requirements are used as a basis for benchmarking, the delay 

requirement cannot be fulfilled if the underlying access technology is not able to provide delay lower 

than this target. Therefore, the aim of this ideal protocol is not necessarily just to fulfill the 100 ms target 

at 99.9 % but rather deliver the best possible performance given the limitations of the underlying access 

technology, as it may still prove useful other applications.  
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 State of  the Art 

This chapter presents State of the art (SOTA) transport protocols that can leverage multi-connectivity 

and be used as basis for the ideal transport protocol presented in Chapter 2. The investigated protocols 

are: Stream Control Transport Protocol (SCTP), Multipath Transport Control Protocol (MPTCP) and 

Multipath Quick User Datagram Protocol Internet Connection (MPQUIC). These are, to the best of the 

authors knowledge, the best candidates to a multi-connectivity protocol in the transport layer.  

SCTP [14] is a transport protocol like UDP and TCP, but it uses multiple independent streams to send its 

data instead of using a single stream, which both UDP and TCP does. However, there are problems 

deploying this protocol on the Internet as addressed in [15]. The main problem is, that SCTP is not fully 

supported by NATs and other middleboxes on the Internet and SCTP packets are therefore dropped. 

Therefore, it requires an update of all incompatible the middleboxes to support SCTP. The fact that this 

must be addressed by all parties, including providers, means that cannot be done by the end user alone. 

Because of this SCTP will not be further investigated in this report. MPTCP and MPQUIC, however, are 

based upon TCP and UDP respectively and do not suffer from problem to the same extend. 

In our earlier work [16] we investigated the possibilities of using MPTCP as a hybrid access protocol to 

gain better reliability as opposed to TCP. We showed that MPTCP could achieve higher reliability with 

the redundant scheduler [17] and proposed a theoretical method for switching between schedulers based 

on the estimated Round-Trip Time (RTT) of the available links. However, this work was limited to a 

single stream of application data. As MPTCP is a single stream protocol, a mixture of high priority data 

and low priority data can suffer from head-of-line blocking (HOLB) [18], therefore, may not be 

appropriate for a scenario with a as this can block data to the application, however as it already have 

shown to provide reliability via a redundant scheduler, it will still be investigated in detail. 

Multipath QUIC (MPQUIC) [18] is based on the QUIC (Quick UDP Internet Connection) [19] protocol. 

QUIC can be used on the Internet and is also capable of passing middleboxes, which is one of the many 

challenges when designing a new protocol. QUIC is widely deployed on Googles’ servers, and is 

estimated to be around 7% of all internet traffic in 2017  [19]. The motivation for adding multipath 

functionalities to QUIC is to pool resources together on different paths to create one connection, like 

MPTCP. The work of [18] compared MPQUIC and MPTCP under different network conditions, and 

they showed that MPQUIC is better at coping with packet losses than MPTCP, since MPQUIC is better 
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at estimating the latency and has better loss signaling. Furthermore, as MPQUIC is a multiplexed 

protocol it can handle multiple application data sources with suffering from HOLB to the same extend as 

MPTCP. 

Based on the SOTA MPTCP and MPQUIC are compared along with their single path equivalent TCP 

and QUIC. Even though the single path protocols are not a valid solution for multi-connectivity, some 

features and functionalities from the single path protocol are directly transferrable to its multipath 

equivalent. For this reason, TCP and QUIC will also be examined. 

The reliability aspect of mixed traffic (priority- and background data) in the transport layer is not widely 

investigated, the prior art [20] [10] [17] mostly focus on one type of traffic per connection and the 

performance thereof. Therefore, this report will contribute to SOTA in the sense that both reliability and 

bandwidth efficiency is considered for a mixed traffic scenario. 

 Multipath transport layer protocols 

To give an overview of the pros and cons of the discussed protocols found in SOTA, this section will 

briefly cover the protocols MPQUIC and MPTCP with their respective single path protocol QUIC and 

TCP and state the core basics to make a comparison of them. The overview will only cover topics 

relevant to the ideal protocol, See Section 2, and the scenario described in Section 1.  

3.1.1 TCP 

TCP is a protocol that insures data delivery via receiver acknowledgements.  It uses an initial 3-way-

handshake when establishing a connection, thereby introducing extra overhead until data can be 

transmitted. After setting up the connection the TCP uses three windows to keep flow- and congestion 

control (sender, receiver and congestion window). 

TCP was made for wired networks [21] which makes the standard implementation view packet losses as 

if a network is congested and therefore reduce the congestion window. This might not always be the 

case, since nowadays a lot networks and devices depend on wireless access technologies [21] (e.g. LTE, 

Wi-Fi). Wireless network often has more packet losses than wired without the network being congested 

in this case standard TCP will misinterpret a packet loss as a congestion and therefore reduce the 

capability of the link. 
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If out-of-band data (data that is an independent from the main stream of data) needs to be sent, e.g. 

priority data, along with main data (e.g. background data), there is no way of prioritizing this data 

without disturbing the in-band data flow. TCP only has the urgent pointer in the TCP header to prioritize 

packets up to a certain sequence number, however as described in [22] this mechanism is not meant for 

out-of-band data, as this is both not supported by many implementations and the fact preceding data also 

gets treated like urgent data. Therefore, it is not recommended to be used for prioritizing single 

messages within the same application. 

3.1.2 MPTCP  [13] 

MPTCP is a multipath extension to TCP it can utilize multiple network interfaces simultaneously for a 

single connection. MPTCP offers the same functionality to applications as regular TCP, but utilizes 

multiple TCP flows for the same data stream. A very important topic in the design of MPTCP is the 

backwards compatibility to regular TCP, so that MPTCP can be enabled and fall back to TCP if a host 

does not support MPTCP (TCP fallback). The protocol also must follow all the standards of TCP to pass 

the middleboxes on the Internet, such as NATs, firewalls and proxies, so a packet does not get dropped 

because of a non-supported protocol. The protocol stack of MPTCP is seen in Figure 6.  

 

Figure 6. Simplified MPTCP stack. 

The concept of how to setup a connection the same concept as TCP but with slight modifications to 

enable the multipath functionality. This means that each additional sub flow has its own TCP flow, 

meaning that middleboxes will see each sub flow as a regular TCP flow, and that each sub flow must 

make its own 3-way-handshake.  
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MPTCP has an extra 64-bit header to keep track of the sequence numbers for all sub flows i.e. a 

connection sequence number. This also means that lost packets can be retransmitted on another sub flow 

(it is mapped using the sub flow sequence number in the “Data Sequence Signal” field). 

MPTCP decides which sub flow gets which packets using a “scheduler”, and in its current form (v0.92) 

it has three different schedulers [23]: redundant, round-robin (RR), and shortest round-trip time first 

(SRTTF). 

Redundant 

- The scheduler sends the same packets on all sub flows in a redundant way. The acknowledgement 

from the server can only acknowledge one sub flow at a time, meaning one received packet on a sub 

flow results in one acknowledgement to the respective sub flow. 

Round Robin 

- This scheduler schedules packets in a round robin fashion, meaning each sub flow get a “slice” of 

the segments, where the size of a slice can be tuned. One can also specify if a sub flow should be left 

unused until the other sub flows’ congestion windows fills up. 

Shortest round-trip time first (default) 

- The scheduler sends data to the scheduler with the lowest RTT, and when the window is full it will 

continue with the next-highest RTT and so on. 

 

MPTCP also introduces a term called “pathmanager” [23], which decides how a host should set up sub 

flows. There are four current path managers in its current form (v0.92) which are ndiffports, default, 

ndiffports and binder. 

Default 

- The default path manager does not do anything to create sub flows from the host and the host 

will not announce either IPs or create sub flows. However, it will accept the passive creation of 

sub flows from the sender. 
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Full Mesh 

- Full Mesh path manager will create sub flow in a full mesh fashion among all the available sub 

flows. It is also possible to create multiple sub flows for each pair of IP addresses. If a sub flow 

closes down after a timeout it is possible to re-create that sub flow. 

Ndiffports 

- Ndiffports path manager will create N sub flows across the same pairs of IP-addresses, and 

modify the source port on the sub flows, thereby differentiating them by the port used. 

Binder [24]: 

- Binder is a pathmanager that has a proxy based approach as it allows the application to take 

advantage of gateway aggregation without requiring any modifications. Binder also supports 

flexible gateway aggregation without negative effect on the reordering of packets. 

3.1.3 QUIC [25] 

QUIC (Quick UDP Internet Connection) is a UDP based protocol, which provides a multiplexed and 

secure transport protocol for application. QUICs development is inspired on multiple protocols such as 

TCP and SCTP. QUIC also takes middleboxes and operating systems into account by using UDP 

encapsulation thereby making it more deployable. QUIC authenticates all its headers and it also encrypts 

all its data including its signaling. This allows for QUIC to evolve without having to worry about 

middleboxes, as these will not be able to read the changes in the signaling, and just a UDP packet with 

an encrypted payload.  

QUIC has the advantage, that it is not bound by the UDP 4-tuble (Source port, Source IP, Destination 

Port, Destination IP) but a QUIC connection ID, which makes it more resilient to IP changes or NAT 

rebinding – this is called connection migration. 

QUIC sets up its connection by the crypto handshake, and can send data after one RTT (1-RTT) or 

immediately (0-RTT) depending on the level of security necessary to communicate. Each QUIC 

connection is identified by a unique connection ID which is established during the handshake. 

QUIC connection operates in frames for each type of data, meaning that data, acknowledgement and 

various signaling has its own frame which can be packed into a QUIC packet. Each of these frames can 

belong to different QUIC streams, but these streams will still belong to the same connection and behave 
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independently of each other. This means that if a stream is experiencing packet loss, the other streams 

will not necessarily be affected by this. These streams can be mixed in the QUIC packets sent, meaning 

that a single QUIC connection can have more than one stream from an application sending different 

information. These streams can also be prioritized if necessary, making the stream with the higher 

priority fill up the QUIC packet before the other streams. 

3.1.4 MPQUIC [20] 

MPQUIC is a multipath extension to QUIC and can, just as MPTCP, utilize multiple links for the same 

connection. The buildup of MPQUIC can be seen in Figure 7, which also shows that it can be compared 

with the buildup of MPTCP. 

 

Figure 7. Simplified MPQUIC stack. 

Figure 7 shows how each sub flow is a QUIC connection, meaning that each path will have its own 

packet numbering and path specific information to transmit. 

Before an MPQUIC connection can be set up, the initial connection must be completed on “stream 0”, 

just like single path QUIC. When the connection is set up, MPQUIC can use as many paths as 

negotiated in the initial connection startup. Each path is in MPQUIC is identified with the UDP 4-tuble 

and a Path ID just like a QUIC connection. Each packet after the connection setup contains the explicit 

Path ID of the path it belongs to in the public header.  

MPQUIC utilizes the frame structure from QUIC to send data, so if a packet is lost on a link, it does not 

necessarily mean it will be transmitted on the same link. This also means that MPQUIC does not need 

sequence numbering other than the packet numbering on the individual paths, since it is all frame based 
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on the streams. This is beneficial since MPQUIC might experience reordering of packets when it faces 

links which has different latency, so to avoid acknowledgement block on the different links, each path 

keeps its own monotonically increasing packet number. 

The packet schedulers currently implemented [20] are SRTTF and RR scheduling and function as 

MPTCP schedulers described in Section 3.1.2, however, redundant scheduling scheme does not exist. 

 Comparison of protocols 

Various transport protocols with multi-connectivity capabilities have been researched and examined.  

The viable candidates for the ideal protocol, presented in Section 2, MPQUIC and MPTCP can both 

solve the single path issue, since they can utilize the concepts of multi-connectivity to potentially gain 

reliability by utilizing the multiple links simultaneously. A comparison of the two protocols can be seen 

in Table 3, where possibilities and further development has been prioritized. 

 

 Redundant 

Scheduling 

across paths 

Prioritize 

traffic from 

application 

Resilient to 

changes 

Reliable 

protocol 

Head of line 

blocking 

level 

MPTCP Yes No No Yes Connection 

MPQUIC No Yes Yes Yes Stream 

Table 3. Comparison of MPTCP and MPQUIC 

As seen in Table 3, the possibilities and limitations of an application is depending on the underlying 

transport protocol. The table is explained by each of its possibilities: 

- Redundant scheduling across paths 

• This is an important feature to achieve high reliability for data which e.g. has a deadline. In their 

current form MPTCP is the only one supporting redundant scheduling of packets, making it the 

more reliable than MPQUIC since it can utilize all available paths to transmit the same data, 

whereas MPQUIC cannot. 

- Prioritize traffic from same application 

• MPTCP cannot prioritize the traffic within the same application, meaning if a priority data is 

scheduled, it would have to wait for every other packet to depart before it can be sent due to the 

FIFO principal in TCP. The packet queue can be large depending on the amount of background 
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traffic, meaning that the deadline might be exceeded before the packet is sent. MPQUIC can 

handle this, since MPQUIC can have a separate stream for priority data, which can be prioritized 

to be sent before any other data. 

- Resilient to changes  

• MPTCP is a kernel implemented protocol, which means that customizing it would require 

changing the kernel protocol every time changes are made, which is very time consuming. 

Furthermore, middleboxes in the Internet can see the changes to a TCP packet, and might drop it 

if the changes made are not compatible with the legacy TCP implementation, making it harder to 

make changes.  

MPQUIC is implemented in various languages, making it more accessible to change and 

recompile. Furthermore, QUIC is based on UDP and is encrypted, meaning that changes made in 

the encrypted QUIC header cannot be seen by middleboxes. Also, since middleboxes will see it 

as a UDP connection, and the rest as an encrypted application, they will not have any reason to 

drop the packets. 

- Reliable data transfer 

• Both MPQUIC and MPTCP are reliable in the sense that they both guarantee that data will be 

delivered to the application in order and that the full amount of data is delivered, given that the 

connection is not interrupted. 

- Head of Line blocking 

• Head of line blocking (HOLB) is a phenomenon that can have major impact on the perceived 

latency of an application. It occurs when intermediate packets are lost during transmission or 

packet arrive out of order. When this is the case, a transport protocol such as MPTCP will hold 

back received packets on a link until it has received the missing one, which can result in extra 

latency for packets with more important information.  

This is phenomenon can also occur in MPQUIC, however, instead of blocking the whole 

connection, as with MPTCP, only the stream with missing intermediate data will experience a 

block. Therefore, MPQUIC is not as sensitive to HOLB when multiple streams are present, 

which is beneficial in a mixed traffic scenario such as the one presented in the report. 

  



   

 

  29 

 

 

 Problem formulation 

After the state of the art has been investigated, a revised problem statement is needed to narrow down 

the scope of this work. The initial problem formulation is based on multi-connectivity on the transport 

layer, and is as follows. 

How can the transport layer with multi-connectivity, using LTE as access technology, achieve high 

reliability for priority data and facilitate background data with high bandwidth efficiency? 

Based on the investigation of the SOTA there are two protocols that can be used as a basis for the ideal 

protocol presented in Chapter 2 . Both MPTCP and MPQUIC has their own shortcomings when it comes 

to reliability and further development as written in section 3.2. MPTCP has the redundancy scheduling 

which can assure higher reliability, however when background data is present, priority data might still 

miss the deadline due to MPTCPs FIFO packet scheduling, as prioritization is not functioning as 

intended in TCP. Furthermore, MPTCP can suffer a lot from HOLB on the whole connection, which can 

severely impact the reliability. From a practical standpoint, enhancement(s) of MPTCP is also difficult 

as this is a kernel implementation, as well as dealing with middle boxes, both of which we have no 

experience with. 

While MPQUIC has its own shortcomings, such as no redundant scheduler, MPQUIC is customizable 

because it is a layer above UDP and middleboxes cannot see changes to the frame headers, since it is all 

encrypted. Furthermore, it possesses a build-in functionality of dividing multiple application layer data 

sources via different streams, with different priorities. These do also not exhibit HOLB in the same way 

as MPTCP, as the HOLB would happen on a stream level and not connection level. Also, existing 

implementation such as the one presented in [20], resides in user space which makes development less 

complicated.  

For these reasons, MPQUIC is chosen as the transport protocol and the revised problem formulation is 

therefore: 

How can MPQUIC be improved to accommodate an application in an LTE environment, which requires 

high reliability for the priority data and high bandwidth efficiency for the background data? 
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 QUIC and MPQUIC protocol overview 

This chapter contains an overview of MPQUIC and the functionalities and features that are going to be 

relevant for our proposed enhancement. MPQUIC is resilient to changes as described in Section 3.2, and 

multiple versions exists [18] [26]. This description will use the latest drafts on the IETF website, namely 

QUIC update 09 [19] and MPQUIC draft 00 [20]. Update 09 of QUIC differs from the current draft, at 

the hand-in of this report, as the QUIC protocol is continuously being revised as of the writing of this 

report, though the basic functionalities from QUIC should persist. 

As most of the functionalities are directly translated to MPQUIC the following description of QUIC is 

also applicable to the MPQUIC protocol. For this reason, an overview of QUIC will be given first, and 

after that a description of how MPQUIC makes QUIC a multipath protocol and what changes needed to 

be made.  

 QUIC 

The following sections will go over the buildup of QUIC which Section 3.1.3 did not cover. It will 

describe how the packet is built on top of UDP and how it transmits data. A QUIC session is the term 

used for the overall connection, and it is “in charge” of keeping track of the submodules of QUIC. For 

QUIC protocol connection setup see Appendix 12.1. 

5.1.1 QUIC Packet 

The QUIC packet is the core of the QUIC transport protocol, and is used for every type of 

communication, hence all basic packets are build up the same way (with some exceptions since some 

fields are optional, see Figure 8). The build-up of a basic QUIC packet is shown on Figure 8. 
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Figure 8. QUIC packet 

As seen in Figure 8 there are multiple headers of the QUIC packet, but to a middlebox on the Internet, it 

looks like an ordinary UDP packet, with a normal UDP header and a payload. The UDP header is called 

“unprotected” seen from QUIC’s perspective, since QUIC does not use the UDP 4-tuple to define its 

connection and therefore does not verify it. QUIC uses the connectionID, as seen in the QUIC header, to 

define its connection, which also means that the UDP header can change without having to interrupt the 

QUIC connection. 

In the authenticated header, QUIC has all its mechanisms to make it a reliable protocol. First there is the 

public header, which is illustrated in Figure 8 as the red box called “QUIC header”, where QUIC has the 

following: Public flags, ConnectionID, QUIC version (optional) and the packet number. The details 

of the public flags, QUIC version will not be described in this report, but for the interested reader, it can 

be found in [25]. 

After the public header, QUIC consists of various frames, that contains data or signaling, which is all 

encrypted. There can be multiple frames and the frames shown in Figure 8 is just an example of a 

payload of frames that QUIC can have. These concepts are explained in more detail in the following 

sections. 
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QUIC connection ID: 

When a connection has been setup between a client and a server, that connection gets a unique 

connection ID. This connection ID is used to identify the connection and will remain the same until the 

connection is closed. The advantage of the ID is, that it makes the protocol more resilient to a change of 

path, if e.g. a NAT changes or the server changes IP. Instead of having to setup a new connection, one 

simply needs to identify the connection with the connection ID, and the exchange of data can continue.  

Packet number: 

In QUIC the packet number is monotonically increasing, meaning that a packet number is never sent 

twice during a QUIC session. This also means that if a QUIC packet is lost, the retransmission of that 

packets data will have a higher packet number than the original packet. This functionality is e.g. used by 

the congestion algorithm and loss detection. Further details of how these are used is described in Section 

5.1.4. 

Frames: 

A QUIC connection utilizes what are called frames. Each QUIC packet scheduled for transmission will 

consist of multiple frames, each having their own purpose. The packet in Figure 8 has two frames which 

contains different information which in this case is a stream frame (application data) and an 

acknowledgement frame. Depending on the necessity of new signaling information, various other 

frames, such as “connection close” or “PING” frame, can be added to the payload of QUIC. The details 

of the various QUIC frames will not be described in this report, and for the interested reader, the details 

of the frames can be found in [25]. However, it worth mentioning that all signaling has its own type of 

frame. 

If a frame is lost (in e.g. a packet loss) it is not necessarily retransmitted. The reason for this is that not 

all QUIC packets are important to recover e.g. acknowledgement frames, as the acknowledgement 

information can be sent in a new frame, which can cover the acknowledgement information from the 

lost packet along with new information. QUIC also has packets that are important to recover, such as 

stream frames, since this is data which QUIC guarantees delivery of. How QUIC recovers from losses is 

described in Section 5.1.4. 
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5.1.2 QUIC Streams 

A QUIC connection can be split up one or more streams. These streams are each individually in charge 

of sending a part of the data, that comes from the application, and can be setup as the connection is 

established with their own unique stream ID for that QUIC session, by sending a stream frame with that 

a new stream ID in it. An illustration of how this look like from an application can be seen on Figure 9. 

 

Figure 9. QUIC stream and frame management 

As seen in Figure 9, the application can have multiple data streams to the QUIC layer, which will then 

be managed by the “QUIC stream/frame management” The application may open several streams to 

transmit data within the same connection ID.  

The QUIC stream/frame management will create all the frames for each of the QUIC packets from the 

streams and combine the data from the streams into a single packet, which will then be handled by the 

“send” functionality in QUIC. When QUIC receives a packet, it will unpack that packet in the “QUIC 

stream/frame management” also and split up the received packet into individual stream(s) frames, so 

that the application can read the stream(s) independently from one another. 

QUIC Streams has the possibility of having two kinds of byte streams – unidirectional byte stream or 

bidirectional byte stream. Streams are separated by the initiator, client or server initiated, and data 

delivered within a stream is guaranteed to be in order. When a packet is created in QUIC, it will look at 

the open streams and take data from streams, which has new data to send. This implies that not too many 

streams should be present in the same QUIC packet, as this will lead to more overhead. 

The different streams can have priority from the application layer, which will determine which stream 

data will be taken from first. This implies that QUIC can facilitate “out-of-band” data, which TCP 

cannot, as described in Section 3.1.1. 
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If a stream hits a byte offset of 262 (meaning it has transmitted a total of 262 bytes), it must terminate and 

close the stream, as this is the maximum transmitted bytes per stream. The stream can open again once it 

has closed to continue. QUIC also enables flow control on the streams and the overall connection has a 

flow controller to achieve both fairness for across streams but also to enable connection flow control. 

This is described further in Section 5.1.3.  

When a sender wants to signal that there is no more new data, it sends a FIN flags, which will lock the 

offset of bytes being transmitted. This means that the connection will keep on going until the amount of 

received data has reached the final offset called “size known”. 

5.1.3 QUIC flow control 

The QUIC flow control is present to ensure that the receiver is not overwhelmed with data. QUIC has 

flow control on two layers: a connection level flow control and a stream level flow control. The connection 

level flow control prevents the sender from exceeding a receiver’s buffer capacity for the connection and 

hence has the overall view of all the streams and their flow control. 

This is also done at a stream level by controlling how much data is being send by the stream based on the 

consumption rate at the receiver. A sending stream will only be blocked if the consumption rate and send 

rate differs. This mechanism relies on explicit signaling and at the start of a stream, the receiver will 

announce a maximum amount of data that it is willing to receive on each stream. As the information gets 

processed, a window update frame is transmitted to the sender along with the other QUIC frames. 

5.1.4 QUIC Loss Recovery [27] 

As mentioned QUIC is a reliable transport protocol, which means that when a packet is lost, some 

mechanisms must be able to recover the lost information. This section will describe how QUIC recovers 

from a loss in different situations to ensure data delivery. 

QUICs congestion algorithms and recovery mechanisms are highly based on TCPs congestion 

algorithms and recovery mechanisms. As mentioned before, QUIC does not have to retransmit every 

packet, as it is only on a frame level, also not every frame is retransmitted (details about re-transmittable 

frames can be found in [25]). QUIC enforces a strict increasing sequence number in the packet, where 

each packet number only occurs once. When packet losses occur, a retransmission of the necessary 

frames will happen, but the sequence number will increase – meaning the higher the sequence number, 

the newer the packet. This makes QUIC accurate in its RTT measurements and spurious retransmissions 
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are detected fast due to this mechanism. A mechanism such as Fast Retransmit from TCP  [28] can be 

applied universally based only on the QUIC packet number. QUIC supports many acknowledgement 

ranges, even more than TCPs Selective Acknowledgement (SACK), which makes it quick to recover in 

a lossy environment. This means that QUIC is better at handling gaps in the received packets than TCPs 

SACK algorithm, as the sender has increase knowledge of missing packets. 

QUIC has a “delay” field in the acknowledgement packet, which makes it possible for the sender to see 

the delay from it was received until it was acknowledged. This enables the sender to better RTT 

estimation and thereby a better estimate of the congestion window. The congestion window that QUIC is 

using is the CUBIC algorithm [29] from TCP, however a description of this algorithm out of the scope 

of this report. 

5.1.4.1 Loss detection 

There are many acknowledgements based detection mechanisms for packet loss that QUIC has 

implemented from TCP, which are: 

Fast Retransmit 

- A packet it deemed lost when the receiver has received an acknowledgement that acknowledges 

a packet with a packet number higher than the last in order packet, within some threshold (the 

threshold is can be tuned). 

Early Retransmit 

- During the end of a transmission, the threshold to trigger Fast Retransmit might not be met. 

Therefore, QUIC enables an alarm for a timer which marks a packet as lost after a given time. 

After this timer is exceeded a retransmission will occur from the sender. 

 

QUIC also implements timer-based loss detection for packet loss, also inspired by the TCP loss 

detections. These mechanisms include the following: 

Retransmission Timeout (RTO) 

- Last resort if all other loss detection schemes fails to recognize the loss. A timer is set for every 

packet, and if the packet is not acknowledged within that time, the packet is deemed lost. 
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Tail Loss Probe (TLP) 

- A packet loss at the end of a transmission can be slower to detect with acknowledgement based 

mechanisms. To overcome this, an alarm is scheduled at the sender, which triggers a TLP packet 

to be sent to evoke an acknowledgement from receiver. If a RTO occurs before two TLP has 

been triggered, the TLP will be sent instead of an RTO. 

Handshake Timeout 

- Handshake packets in a QUIC connection are very critical to setup a connection between two 

hosts, so a separate alarm is used on this control stream. If no prior connection has happened a 

static value of 100 ms (as of February 2018) is used as RTT, otherwise the smoothed RTT from 

the previous connection is used. 

- When the first packet is sent, the sender starts timer. If the timer runs out it must retransmit all its 

unacknowledged handshake data. If this step fails one should close the connection as the path is 

unsafe (not encrypted) 

The loss detection mechanisms are important to the performance of QUIC. When a packet loss occurs, 

that packet needs to be recovered as fast as possible. It can be very costly with an environment where a 

there is a lot of packet loss, as this will be expensive for the QUIC session to recover, since the 

congestion algorithm QUIC is using (CUBIC) will see a lot of packet loss as a network congestion, and 

thereby decrease the congestion window unnecessarily [21]. 

 MPQUIC 

In order to make QUIC a multipath protocol some changes and extensions have been necessary. The 

work of [20] has implemented changes to QUIC to make it a multi path protocol called MPQUIC. This 

section will go over some of the important changes to the QUIC protocol to make the MPQUIC 

implementation. 

5.2.1 MPQUIC Session 

MPQUIC has updated the session build up to support the use of multiple paths for the same session. 

Figure 10 shows what other functionalities are needed to have MPQUIC working in the session with 

multiple paths, and Figure 11 is the QUIC protocol without the multipath. The MPQUIC protocol in 

Figure 10 introduces some extra functionalities to achieve utilization of multiple paths. As described in 

5.1 and seen on Figure 11, a QUIC session has stream and frame management before sending and 
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receiving messages. MPQUIC however needs to do some extra management of the paths, but for the 

creation of packets. In Figure 10 and Figure 11 are the protocols stacks of MPQUIC and QUIC where 

the same colors resemble the same functionality. 

 

 

Figure 10. MPQUIC session 

 

 

Figure 11. QUIC Session 

 

As seen in Figure 10, when using MPQUIC, the application will send data to the MPQUIC session, just 

like the QUIC session, as the MPQUIC protocol is “invisible” to the application. Therefore, no 

application changes are needed (except maybe setting the “MPQUIC” flag to enable the protocol). 

In the transport layer, MPQUIC must introduce some extra functionalities to support the use of multiple 

paths, which can be seen on Figure 11. The new functionalities are the yellow and gray box called “path 

manager” and “scheduler” respectively. 
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Path manager: 

The path managers function is to keep track of all paths in the session, since every path is perceived an 

individual QUIC connection. This includes keeping RTT and the loss statistics for the individual path, as 

these are used to the overall condition of the connection and how each path should be adjusted to 

achieve the best performance. These inputs are used in the congestion algorithm for the connection 

which will be explained later in Section 5.2.4. 

Scheduler: 

Another functionality introduced in MPQUIC is the scheduling of packets, which is also shown on 

Figure 11. MPQUIC has in its current implementation (draft 00 from [20]) only has round-robin 

scheduling and SRTTF scheduling as described Section 3.1.4. 

MPQUIC stream/frame handler: 

After a path has been selected by the scheduler, the individual path will function as a normal QUIC 

connection would, except the stream/frame management now works across paths, this means that some 

frames have changed its layout to keep track of the originating path. The session flow controller is also 

coupled for all paths as the rules for flow control from QUIC still applies for both stream and connection 

level flow control. The changes made to the QUIC header are described in the following sections, where 

additional information is needed. 

5.2.2 MPQUIC Frames changes 

MPQUIC must make some changes to the frames to keep track of the extra information that is needed 

for MPQUIC to function. This mainly results in all the headers, that are path specific, to have an extra 

path ID field added to the header. Examples for such frames could be the acknowledgement frame or 

path information frame, since these are path specific. The change of the acknowledgement frame also 

results in, that a QUIC packet can be sent on one link and acknowledged on another link. 

If a stream frame is sent on one path and lost, the lost frames can be retransmitted on another path 

without making any changes to frame or stream structure, since the stream frames are not path specific.  

In conclusion to the frame changes of MPQUIC, the only extra information needed in the existing QUIC 

frames is the path ID for path specific frames, which is always the ID of the path from which the packet 

originates from. Other than the additional path information, extra frames has been added to add/remove 
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paths and other additional frames to cope with the multi path. The details of these frames are out of the 

scope of this report, but can be found in [20]. 

5.2.3 MPQUIC Connection setup 

MPQUIC sets up the connection as QUIC does which is described in Appendix 12.1, and as soon as the 

connection has been established on one path, MPQUIC does not need to use the connection setup 

routine anymore. MPQUIC does not require a per-path handshake after the initial handshake is done, as 

the Connection ID is enough to send data to the receiver. Both sender and receiver can utilize this to 

their advantage as MPQUIC is fully symmetrical, meaning they can both start sending on an available 

path without setting it up first on a current connection. Adding a new path is simply put in to a frame 

with the path information and after that, the path can start transmitting data. 

5.2.4 MPQUIC Congestion Algorithm 

MPQUIC must have its own congestion control algorithm to maintain fairness. If the normal QUIC 

congestion algorithm is used, MPQUIC would be able to increase its window way faster, due to its 

multiple connections and this violates the fairness principal that each overall connection should have the 

same bandwidth. Therefore, the congestion algorithm must be coupled across multiple paths. Figure 12 

illustrates how the impact of a coupled congestion algorithm with affect the performance of the 

MPQUIC protocol. 

 

Figure 12 [30]. Two connections within a bottleneck. Connection 1 has a multipath transport protocol and connection 

2 has a single path transport protocol 

As seen in Figure 12 the presence of a coupled congestion algorithm is important. If Connection 1 had a 

single path congestion algorithm, it could get up to 2/3 of the connection, whereas Connection 2 would 
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only have 1/3. When designing transport layer congestion algorithms, one must take fairness into 

account, which is why the coupled congestion window is present in MPQUIC. The basic idea is to make 

the multipath connection less aggressive, such that the congestion algorithm in both Connection 1 and 

Connection 2 will converge towards the same, hence they split the connection fairly. 

MPQUIC uses a coupled congestion control algorithm from MPTCP called Opportunistic Linked-

Increases Congestion Control Algorithm (OLIA) [31] to adjust the overall congestion window, which 

creates fairness. OLIA is based on NewReno but will create fairness across multiple links that are 

coupled together. Even though each path will maintain its own congestion window, the OLIA algorithm 

will make sure it is not too aggressive towards single path algorithms and split the congestion window 

fairly across paths. According to the work of [32] OLIA satisfies the design goals of MPTCP, which is 

the transport protocol it was designed for. OLIA increases its window based on two factors: optimal 

resource use by utilizing Kelly and Voice’s algorithm  [33](an algorithm for load balancing) and 

responsiveness by measuring the number of transmitted bits since the last packet loss. 

The drawback of this congestion algorithm is the response to a packet loss, as a packet loss is seen as a 

congested network. Since the algorithm is based on NewReno, the behavior of OLIA has a similar 

behavior to packet loss, it handles by reducing the congestion window. Therefore, it may not perform 

well in a wireless or heterogeneous network such as LTE [21]. 

 Conclusion on MPQUIC 

MPQUIC has a lot of the functionalities needed facilitate the ideal transport protocol presented in 

Section 2. It offers reliable data delivery in the sense, that all data is guaranteed delivery if the 

connection remains and offers a multiplexed framework to priorities and mix different traffic types. 

Seen from a priority data point of view, the protocol has some shortcomings, since the current 

implementation of MPQUIC does have a scheduler aimed at reliability. To overcome this issue and 

increase the reliability for priority data, we propose two different solutions “MPQUIC Redundant 

Scheduling” and “MPQUIC Selective Redundant Scheduling” which will be described in Chapter 6. 
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 MPQUIC with Selective Redundant Scheduling 

Our vision is to use MPQUIC as a basis for the ideal protocol presented in Chapter 2 that can facilitate 

the mixed priority and background data in applications, such as the one presented in Chapter 1. 

Therefore, we propose and implement two novel scheduling schemes, inspired by the MPTCP redundant 

scheduler and MPQUICs multiplexing capabilities. We name these “MPQUIC Redundant Scheduling” 

and “MPQUIC Selective Redundant Scheduling”. They both address the reliability shortcomings of the 

current MPQUIC implementation and MPTCPs inability to properly support prioritized application data 

streams. 

The scheduling schemes and their functionalities will be explained in detail in the next sections as well 

as the changes needed in the standard MPQUIC implementation, to facilitate the new scheduling 

schemes. We will also elaborate on the pros and cons of our proposed schedulers with regards to the 

requirements presented in Chapter 2. 

 Redundant scheduling 

The MPQUIC Redundant Scheduling scheme are in many ways be inspired by the redundant scheduler 

in MPTCP [23]. The MPQUIC Redundant Scheduling will take outgoing application/stream data and 

schedule it on all the available paths, such that all stream data will be sent redundantly. Control data, 

such as window updates and path information, will not be duplicated, since a loss of a path specific 

frames is deemed unnecessary to send redundantly, as these messages are not assured deliverance and 

the fact that this not supported by default MPQUIC. An illustration of the proposed redundancy scheme 

with two paths can be seen in Figure 13.  

 

Figure 13 MPQUIC redundant packetization algorithm for two streams  
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Figure 13 shows the basic functionality of the proposed redundant scheduling scheme with two paths 

and two streams, where one stream is the priority data and the other stream has background data. The 

priority stream will generate the priority messages from the application and send it the MPQUIC 

Packetization block, where it will be put into a stream buffer with priority. The background stream has 

its data generated from the application also, and when background data is present, it will be sent to the 

MPQUIC Packetization block, which will create the packets with the data from both the priority stream 

and the background stream. A more detailed description of the MPQUIC Packetization will be explained 

later in this Section 6.4. 

The results of the MPQUIC Packetization for the redundant scheme, can be seen on Figure 13, where all 

application data is duplicated across all available paths. The order of the data in the MPQUIC packets, 

after MPQUIC Packetization, is also in the order in which they would be packet in practice. The control 

messages for the path is generated first, and after that, the priority stream is checked for data and packed 

in to the packet if space is available and lastly, background data will fill out the rest of the packet given 

background data is available. 

The “C” in the packet is the control frames that MPQUIC must have to signal the other part of the 

connection, and during packet creation, these are generated first. These control frames are different from 

path to path and it is the only messages that are not sent redundantly. It is also important to note that the 

“C” changes for every packet on each path, meaning that every new packet generated on all paths has a 

different information in the “C” part of a packet. The “C” packet might not be present, if there is no new 

path information either. 

Pn is the priority data, which will be filled in first if the packet has space and the send window is 

available and this data will be sent redundantly on all available paths. Same goes for Bm, which will be 

filled in after the priority data and this will also be sent redundantly across all links. In all cases, if the 

packet does not have space for the whole message, the message will be split up into partial messages and 

sent along with the following packets. 

6.1.1 MPQUIC requirements for redundant scheduling 

This section will describe if the functional requirements from Chapter 2 are fulfilled or not for our 

MPQUIC Redundant Scheduling proposal. Each functional requirement will be compared with the 

proposed solution and how the scheduler can help achieve those requirements: 
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Must: 

- M1: The redundant scheduler can provide connection diversity so the M1 requirement is 

fulfilled. This is done, since every path is utilized with redundant data from all streams in QUIC, 

thereby providing priority data with connection diversity. This requirement is fulfilled  

- M2: Since MPQUIC will assure data deliverance and the redundant scheduler still provides this 

functionality, this requirement is fulfilled. 

Should: 

- S1: The MPQUIC protocol works on the internet as previously described, and a change of 

scheduler does not change that, so this requirement is fulfilled  

- S2: The MPQUIC redundant scheduler can prioritize streams, meaning that if the application 

sends priority data on a separate stream from background data, the MPQUIC packetization 

algorithm is able to prioritize the traffic. This requirement is fulfilled 

- S3: Currently MPQUIC supports this feature, as each path has its own unique ID sent along with 

each packet. This ID means that a packet received on a path can be acknowledged on any path. 

This requirement is fulfilled 

- S4: The redundant will send at least twice the amount of data from the application, and that 

excluding the overhead for each packet, to send the whole message. This is not considered 

efficient; hence this is not fulfilled. 

Could: 

- C1: The redundant scheduler currently does not provide a solution for C1, since there is 

currently not a functionality to determine whether data is considered “old information”. This 

requirement is not fulfilled 

- C2: Currently, once data is committed to a path, it has to be sent on this path even though it 

might be received on another path. This requirement is not fulfilled. 

6.1.2 Conclusion on MPQUIC redundant scheduler 

The MPQUIC redundant scheduler will benefit the priority data and can in theory provide better 

reliability for priority data than the original implementation of MPQUIC. It fulfills the “must” 

requirements, which makes it a feasible solution to test, as the scheduler should be able to provide 

reliability for priority data. 
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For the “should” demands, not all the requirements are fulfilled for the redundant scheduler. The 

redundant scheduler is very data inefficient which is the drawback from this scheduling scheme. Even 

though the requirements demand reliability, this only applies for priority data, which is why the 

redundancy for background data is deemed unnecessary. Therefore, this scheduler is deemed acceptable 

for the bare minimum for the requirements, however it is bandwidth inefficient in scenarios when the 

background data is much higher than the priority data. 

The “could” demands are not fulfilled for this MPQUIC Redundant Scheduler; however, these 

requirements are not crucial for the system and are requirements to optimize the performance. This does 

not change outlook for the future test of the MPQUIC Redundant Scheduler. 

 Selective redundant scheduler 

As described the previous section, the MPQUIC Redundant Scheduler has some shortcomings for 

bandwidth efficient requirement for background data. For this reason, we suggest a selective redundant 

scheme, where only the priority data will be duplicated. The MPQUIC selective redundant scheduler 

will take outgoing application data and schedule it differently depending on the priority set from the 

application. If the data demands high reliability it will be sent redundantly exactly as described in 

Section 6.1 and the rest of the data will be sent with the SRTTF principal as described in Section 3.1.4. 

Control data, e.g. window updates and acknowledgements, will not be duplicated, since a loss of a non-

important frame is deemed unnecessary to send redundantly, as these frames are not assured deliverance 

from MPQUIC by default. An illustration of the proposed selective redundancy scheme with two paths 

can be seen in Figure 14. 

 

 

Figure 14 Selective redundant scheduling  
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Figure 14 shows the basic functionality of the proposed MPQUIC Selective Redundant Scheduling with 

two paths and two streams, where one stream is the priority data and the other streams has background 

data. The concept of MPQUIC Selective Redundant Scheduler is very similar to the MPQUIC 

Redundant Scheduling as described in Section 6.1, except the MPQUIC Selective Redundant Scheduling 

only applies redundancy for the stream, which has priority data. The background data will send its data 

with the default scheduling, which in this case is the SRTTF scheduler as described in Section 3.1.4. The 

data in each of the packets and messages (C, Pn, Bm) is also the same as the redundant scheduler from 

Section 6.1, hence only the scheduling of Bm packets are changed in the MPQUIC Selective Redundant 

Scheduler compared with the MPQUIC Redundant Scheduler.  

6.2.1 MPQUIC requirements for selective redundant scheduling 

This section will describe if the functional requirements from Chapter 2 are fulfilled or not for our 

MPQUIC Redundant Scheduling proposal. Each functional requirement will be compared with the 

proposed solution and how the scheduler can help achieve those requirements: 

Must: 

- M1: The MPQUIC Selective Redundant scheduler is able to provide connection diversity. This 

is done, since the priority data is sent redundantly across paths, and the background data uses 

every path in a SRTTF fashion. Every path is utilized with data from all streams in QUIC, 

thereby providing priority- and background data with connection diversity. This requirement is 

fulfilled 

- M2: Since MPQUIC will assure data deliverance and the redundant scheduler still provides this 

functionality. This requirement is also fulfilled. 

Should: 

- S1: The MPQUIC protocol works on the internet as previously described, and a change of 

scheduler does not change that. This requirement is fulfilled.  

- S2: The MPQUIC Selective Redundant Scheduler is able to prioritize streams, meaning that if 

the application sends priority data on a separate stream from background data, the MPQUIC 

packetization algorithm is able to prioritize the traffic. This requirement is fulfilled. 
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- S3: Currently MPQUIC supports this feature, as each path has its own unique ID sent along with 

each packet. This ID means that a packet received on a path can be acknowledged on any path. 

This requirement is fulfilled. 

- S4: The MPQUIC Selective Redundant Scheduler only sends the priority data redundantly, 

which is a must requirement, and the rest is sent with the SRTTF scheduler making the MPQUIC 

Selective Redundant Scheduler a more efficient scheduler than the fully redundant. This 

requirement is fulfilled. 

Could: 

- C1: The selective redundant scheduler currently does not provide a solution for S2, since there is 

currently not a functionality to determine whether data is considered “old information”. 

- C2: Currently, once data is committed to a path, it must be sent on this path even though it might 

be received on another path. 

6.2.2 Conclusion on MPQUIC redundant scheduler 

The MPQUIC selective redundant scheduler will benefit the priority data and can in theory provide 

better reliability for priority data than the original implementation of MPQUIC. It fulfills the “must” 

requirements, which makes it a feasible solution to test, as the scheduler should be able to provide 

reliability for priority data. 

For the “should” demands, all the requirements are fulfilled for the selective redundant scheduler. The 

scheduler is more data efficient since the background data is sent with the SRTTF scheduler, making the 

overhead for background data transmission way less than the redundant scheduler. In conclusion the 

selective redundant scheduler is the best fit for the application described in Chapter 1 in theory as it 

fulfills all “musts” and “should” most of the requirements set to the transport protocol. 

The “could” demands are not fulfilled for this MPQUIC Selective Redundant Scheduler; however these 

requirements are not crucial for the system and are requirements to optimize the performance. This does 

not change outlook for the future test of the MPQUIC Selective Redundant Scheduler. 
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 Changes and considerations to original MPQUIC 

To support the changes of a redundant scheduling of a stream, several changes must be made to 

MPQUIC, but some functionalities can still support the use of redundant scheduling. The changes and 

considerations made to the functionality are listed below: 

Flow control 

- The flow controller does not need changing as the redundant data will look like a retransmission 

of the original stream data, if both packets arrive. The redundant scheduling mechanism does not 

count duplicated frames more than once in the flow controller as the flow controller only use the 

number of unique bytes. The original MPQUIC can handle the redundant scheduling and hence 

the flow controller remains unchanged, however it is import only to register a duplicated frame 

once at the sender side. 

Packet packer 

- The mechanism which puts a payload in to the MPQUIC packets from various streams needs an 

update to facilitate the redundant stream scheduling. The original packet packer checks each 

stream for available payload, and if some data is available it will put the data in a packet on one 

of the paths, which is decided by the scheduler. When the data has been put into the buffer, it 

would move it from the stream buffer and into the send buffer. 

For the redundant case, the data is not deleted from the stream buffer until all interfaces has 

transmitted the data. The changes needed to be made is that it does not move the data to the send 

buffer until all interfaces has transmitted the same data.  

Priority stream:  

- Even though having prioritization of streams is documented in [25], it is not properly 

implemented in the current version of MPQUIC as described in Section 5.1.2. Therefore, it is 

implemented according to the documentation in the way, that the priority streams are checked 

first for data and after that, the other streams are checked in a round-robin fashion to ensure that 

there is no prioritization with the remaining streams. Priority streams are identified with a new 

priority attribute. 
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Scheduling: 

- The scheduling needs to be changed as this is in its current form a loop that first chooses a path 

based on the RTT, congestion window etc. and then run the above-mentioned modules with that 

path as an input. Therefore, this needs to be changed to iterate over all paths when priority data is 

scheduled. This is done by making a method that specifies which stream needs to send redundant 

information across paths. This is to make sure that only the information that is desired to be sent 

redundant is done so.  
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 Code design and implementation 

The two proposed scheduling schemes are implemented using the same basic functionality, i.e. a stream 

specific selective redundancy redundant scheduling mechanism. A flowchart of this mechanism can be 

seen in Figure 15. 

 

Figure 15  Proposed MPQUIC packetization algorithm 
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From Figure 15 it can be seen how the overall MPQUIC Packetization algorithm for the two schedulers.  

- First it initializes the connection by setting up the streams. After setting up the connection, the 

scheduler will check if the connection has been closed in a loop, and this loop will run 

throughout the whole connection. 

- It runs into the MPQUIC Packetization loop, where all available paths are looped through one by 

one to check if anything is available for transmission. First it will check for control messages for 

the specific path, which there will always be space for in the packet, as these control messages 

do not take up any send window, and hence does not take up flow control, and they are always 

put into the packet first.  

- After the generation of control messages, it will check for priority data and background (bg) data 

respectively and fill in the stream data if there is space available. The size of the control 

messages for each path might be different.  

- It checks if the redundant flag has been set for the stream, and if it has, it will schedule the frame 

on all paths and if the redundant flag has not been set, it inserts the data normally. 

 

By using this approach, the only thing separating the MPQUIC Selective Redundant Scheduler and the 

MPQUIC Redundant Scheduler is how many streams, that sends information redundantly. If one wants 

to use the MPQUIC Selective Redundant Scheduler, only the priority stream(s) has the redundant flag, 

whereas for fully redundant scheduling, the flag must be set on all streams. No matter the scheduling 

scheme the priority stream frame is always prioritized, i.e. placed first in a packet. 

There is one important note about this implementation of redundancy. As previously mentioned the 

available space left for stream frames in a packet might defer from path to path, since the amount path 

specific information can be different. There is currently no way of predicting this as the MPQUIC 

implementation iterate over paths in a loop.  For this reason, a stream frame may not be fully redundant, 

as seen in Figure 16. However, the packet with the least stream frame data, will always be fully 

redundant to the path with more stream frame data in it. This still makes it a reliable and redundant 

scheduling scheme, as it is still redundant to the extent of the packet with the least amount of stream data 

in it. The remaining difference from the two packets still will need to be retransmitted if it is lost hence 

is still more reliable than a non-redundant scheduling scheme and comes with a better latency for the 

data that arrived, as seen by the “safe” data in Figure 16. This effect, is mitigated for the priority data 
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frame as it will always be placed first in a packet and because the frame 1200 bytes (see Section 1.1.1) is 

smaller than the maximum transmittable units and the potential path overhead will not cause it to exceed 

the limit.  

 

Figure 16. Duplicated frame on two paths with unequal size. Frame bytes beyond the red line are unsafe, and save 

below. 

Based on implementations MPQUIC implementation in GO (available on GitHub  [34] , which is based 

on the implementation of the GO implementation of QUIC which can be found on GitHub [35]), we will 

implement our stream specific redundant scheduler as an extension to the existing implementation of the 

MPQUIC protocol. In Table 4. a very brief explanation of the functionality of the files, the changes we 

have made to implement the stream specific redundant scheduling shown in Figure 15. It should be 

noted that to successfully implement the scheduling scheme, it has been necessary to obtain an in depth 

understanding of many of the modules of MPQUIC to maintain compatibility, debug and log 

performance information. 
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Filename  Purpose Changes for our schedulers 

Stream.go Defines a stream and associated 

methods for handling reading, 

writing etc. 

Added duplication flag. “Book 

keeping” for transmission of 

duplicated data such that stream 

pointer is moved only when all 

duplication have been made.  

Scheduler.go Defines the scheduling 

algorithms and manages path. 

Sort of “main loop” for 

MPQUIC transmission. 

Added mechanism for 

scheduling multiple sending 

paths if an open stream has its 

duplication flag set and data is 

ready. 

Stream_framer.go Defines methods for creating 

stream frames from different 

streams etc. 

Added book-keeping for 

number of duplications made as 

the flow controller only looks at 

the amount of unique data 

transmitted and received 

therefore only the last 

duplication affects the flow 

control. 

Stream_map.go Defines a collection of streams 

and method for managing these. 

A round robin scheme selecting 

streams to get data from. 

Added prioritization 

functionality such that streams 

in a prioritized list always 

selected before the “regular” 

round robin scheme is active 

Table 4 MPQUIC code changes 

A functionality verification of the implemented scheduler further explained in Section 6.5. 
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 Functionality verification 

This section describes the results of the functionality test, i.e. if the implemented solution functions as 

intended. As described in rest of Chapter 6 we have been made several contributions to the MPQUIC 

implementation. The major contributions are stream prioritization, MPQUIC Redundant Scheduling and 

MPQUIC Selective Redundant Scheduling. To verify that our schedulers are working as expected, a 

setup of two virtual machines are setup as illustrated in Figure 17. 

 

Figure 17. Verification setup 

As illustrated in Figure 17 the verification setup has two virtual machines that will act as a “client” and a 

“server”. The client will have two interfaces, which it will use to send a random message using 

MPQUIC. The scheduler used on the client for the MPQUIC connection will be either MPQUIC 

Selective Redundant Scheduler or MPQUIC Redundant Scheduler in two independent tests, to test the 

behavior of the scheduler. To show the behavior of the client and the schedulers, the data from the client 

will be logged on the server side, where a print in the terminal will print out the raw packet received 

from the client. This print out is verifying the functionality in the way that the raw ASCII packet is 

showing which part of the packet is sent redundantly on the different paths. 

MPQUIC redundant scheduler verification test: 

Figure 18 illustrates that our MPQUIC redundant scheduler works as expected. The red box, which is 

the priority stream sent on Stream 3, shows the exact same data for both paths and hence is sent 

redundantly across paths. The green box, which is the “background data” on stream 5, shows the exact 

same data from both paths on stream 5 and hence is sent redundantly across paths. Figure 18 shows an 

example output sent during the verification test, however all the packets in the test was sent with 

redundant streams across paths, so the MPQUIC redundant scheduler is verified. The stream numbering 

of 3 and 5 is an implementation choice from the work of  [35], where opened streams from the client are 
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uneven and the initial stream ID is “3” and increments by 2 every time a new stream is opened. Note 

that the actual payload has no meaning, and should not be interpreted. 

 

Figure 18. Debug output from stream data received on server, with MPQUIC Redundant Scheduling. 

MPQUIC redundant scheduler verification test: 

Figure 19 illustrates that our MPQUIC Selective Redundant Scheduler works as expected. The red box, 

which is the priority stream sent on Stream 3, shows the exact same data for both paths and hence is sent 

redundantly across paths. The green box, which is the “background data” on stream 5, is only present on 

one of the paths and hence it is sent with the SRTTF scheduling. Figure 19 shows an example output 

sent during the verification test, however throughout the connection only the priority stream (stream 3) 

was sent redundantly and the background stream (stream 5) was sent with SRTTF scheduling. The 

streams are not always mixed as shown in Figure 19, as the data on both streams might not available for 

transmission at the same time. This means that some packet might only have background data and some 

might only have priority data. However, the purpose of the MPQUIC Selective Redundant Scheduler is 

still fulfilled, as the priority data is always sent with redundancy and background with SRTTF, so the 

scheduler is deemed verified. Note that the actual payload has no meaning, and should not be 

interpreted. 

 

Figure 19. Debug output from stream data received on server, with MPQUIC selective redundant scheduling. 
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 Test framework 

This chapter contains an overview of the framework used to evaluate our novel solutions presented in 

Chapter 6. The main goal is to create a testing environment where our novel solutions will be subjected 

to different network conditions as well as the condition of an LTE network, as previously presented in 

Section 1.1.2. To understand how this is achieved an overview of the test methodology, the test setup 

and the test implementation are presented. This includes a description of the connection emulation along 

with associated traffic models that is used to emulate priority and background data. 

 Test methodology  

There are multiple ways to evaluate and compare the proposed solution to the SOTA which includes 

analytical, simulation, emulation and real-world testing. Each of these methods, however, have different 

strengths and weaknesses for testing purpose. The different methodologies are compared in this section, 

where the scope of the project is taken into consideration along, with the use of the MPQUIC 

implementation, when choosing an evaluation method. Based on these considerations the pros and cons 

of the different evaluation methods are presented below. 

Analytical: 

- The MPQUIC has a lot of components that has an impact on the performance, e.g. link quality, 

congestion windows, path information etc. This is very complex to model analytically, so even 

though the analytical model is fast to evaluate, the effort that will have to be put in to this method is 

simply too time consuming and inaccurate due to the complexity of MPQUIC.  This analytical 

model is therefore deemed to not be a good candidate for the evaluation of the schedulers. 

Simulation: 

- Simulation has a lot of advantages to evaluate the schedulers of evaluating MPQUIC, however the 

efforts of making an implementation of MPQUIC in a network simulator (e.g. NS3, Omnet) has yet 

to be made, which makes it a time-consuming process. Even though a good simulation for MPQUIC 

could give good results for the behavior of the schedulers, the time which must be invested into 

implementing MPQUIC from scratch into a simulator is deemed to be too time consuming for the 

scope of this project. The simulation is therefore deemed to not be a good candidate for the 

evaluation of the schedulers.   
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Emulation: 

- Emulation has a lot of advantages to evaluate the schedulers of MPQUIC, as the MPQUIC protocol 

is already implemented for a real network, hence emulation does not require changes to the protocol. 

The cons using emulation comes down to the accuracy of the link models used, but when using good 

models, the emulation can give an estimate of how the MPQUIC protocol would behave in a real 

network. Therefore, emulation will be deemed a good candidate to test the schedulers, as it requires 

minimum implementation to test. 

Real world testing: 

- Real world testing would be the best way of testing the MPQUIC schedulers, since the other 

evaluation methods are trying to come as close to the real world as possible. However, real world 

testing is very time consuming for small functionality tests and it can be difficult to single out issues 

in the network, as the network will be a “black-box”. To cover all scenarios would demand very 

extensive tests, which would demand a great amount of resources. Therefore, making an actual real-

world test is deemed to be too time consuming given the scope of this project. 

 

We choose an emulated evaluation platform evaluate our novel scheduling mechanism as this is the 

easiest environment to deploy our already implemented schedulers described in Section 6.4. An 

emulation will be able to give a good overview of the MPQUIC behavior using various schedulers, and 

we will be able to pinpoint any issues that may arise during testing. We based our emulation around the 

conceptual drawing seen in Figure 20. 
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Figure 20. Illustration of the entities in the testbed. 

The transport protocol configurations will be interchangeable to compare the newly implemented 

scheduling configurations introduced in Chapter 6 SOTA MPQUIC scheduling (the SRTTF scheduler) 

in different settings. No change will be done to the lower layer and both the client and server will have 

one or more network interface(s). Between the server and a client, there is a box that emulates the end-

to-end network conditions (delay, packet loss, etc.) for each of the interfaces, where the uplink and 

downlink is two separate emulations as this is asymmetric in LTE [8]. In the following sections is a 

description of the test scenarios along with each of the entities of the conceptual testbed. 

 Testbed implementation 

This section contains an overview of how the testbed presented in Section 7.1 is implemented along with 

the various considerations made during the implementation as well as a description of the equipment and 

software that has been used or developed. This includes the MPQUIC API, end-to-end network emulator 

called Kaunetem and a traffic model used to generate the background and priority data streams. The 

“measurement application” itself leverage the framework presented in Appendix 12.2.1 
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Figure 21. Test network. Arrows indicate the direction of the traffic flow. 

Below is a list of equipment used to construct the testbed. 

• Client, Ubuntu 18.04, kernel 4.5-rc3 with with Kaunetem 

o 12 GiB RAM, i5 2500k, Samsung Evo 850 SSD 250 GiB 

o 2x Intel 1000 pro gt NIC 

• Server, Ubuntu 18.04, kernel 4.5-rc3 with Kaunetem 

o 8 GiB RAM, i7 4702mq, Toshiba THNSNF12 128 GiB 

o Apple A1277 USB to Ethernet 

• Switch, Cisco Catalyst 2490 configured for 100 Mb/s 

• Router, LinkSYS WRT54GL 

• NTP service for time synchronization, sub 1 ms accuracy. 

The client will have two interfaces to be able to use MPQUIC across two links. The client will be 

connected to a switch, which has one connection to the server. The server will only have one path to 
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serve the MPQUIC protocol, since the MPQUIC implementation used in this report, only allows for a 

single interface to be used.  

As seen in Figure 21, there are modules not yet introduced that are present in the test network. The next 

sections are going over the concepts of “MPQUIC API”, which is the API from the measurement 

software to the MPQUIC protocol, and “Kaunetem” which is the chosen network emulator. MPQUIC 

API will be explained in Section 7.2.1, and Kaunetem will be explained in Section 7.2.2 and lastly the 

traffic model used in the “Measurement application” will be explained in Section 0. 

7.2.1 MPQUIC API 

As previously mentioned, the measurement application presented in Section 7.3.1.1 is used as a basis for 

the evaluation and the reason for this is that it is actively being developed and used for field 

measurements of protocols such UDP, TCP and MPTCP. Therefore, it is within our interest to maintain 

compatibility with this application, as this is will benefit future work beyond the scope of this report as 

well as increase the exposure of the novel solutions presented in this report, which is why effort has 

been used on designing an MPQUIC API. The measurement software is written in C++11, whereas the 

MPQUIC protocol is written in GO, so the API is an interface from C++11 to GO, which is fully 

supported in GO. 

The goal of the MPQUIC API is not only to maintain compatibility with the measurement program, but 

also to ease the usage of MPQUIC in an actual application. The basis of the designed API draws 

inspiration from the widely used Berkley socket API [36] and the way that a connection is created and 

destroyed in a server-client connection flow.  

The overview of the MPQUIC API flow can be found in Figure 22 for the server and Figure 23 for the 

client. In server connection flow, MPQUIC is first initialized and next it is bound to an IP address 

similarly to the TCP API, but instead of listening for an incoming socket connection like TCP, it listens 

for incoming sessions, since the socket connection is handled by the UDP protocol. Where it differs 

from the TCP API, is that instead of acceptation a single connection with a single stream from the client, 

it will also accept multiple streams which will expose the stream(s) as individual connections that can be 

perceived as a TCP socket from the application point of view. 
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Figure 22. MPQUIC server API 

Figure 22 shows the flow of the MPQUIC connection on the server using our MPQUIC API. The steps 

are: 

- Initialize MPQUIC 

o This step makes sure that the multipath flag is set and that all the settings are valid for the 

MPQUIC connection. 

- Bind to address 

o The server binds an IP and a UDP port, which it will use for the next step. 

- Listen for incoming Session connection 

o The server will listen on the port and IP, which was specified in the previous step. The 

maximum amount of sessions a server can handle is not specified, and hence it can accept 

multiple sessions on the same port. 

- Accept Stream/Configure scheduler 

o When a session has been accepted, the server needs to wait for the client to open a 

stream. When a stream is opened a flag is set, indicating if the stream should be sent 

redundantly or with the default scheduler.  

- Write/read on Stream 

o Communication with the streams that are open, exchanging data. 

- Close session/close MPQUIC 

o This step can either terminate a specific session, or it can close MPQUIC all together, 

meaning that it does not listen for anymore sessions and releases the port previously 

bound. 
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Using this mimicked TCP approach similar read/write methods are created which instead of a socket 

takes a stream ID. The close phase is also very similar, however if the server is closed, the underlying 

MPQUIC instance is also closed.  

The client side is similar to the server API, however an extra step is necessary as streams each have a 

unique socket and that the scheduler needs to configure as well. 

 

Figure 23. MPQUIC client API 

Figure 23 shows the flow of the MPQUIC connection on the server client our MPQUIC API. The steps 

are: 

- Initialize MPQUIC 

o This step makes sure that the multipath flag is set and that all the settings are valid for the 

MPQUIC connection. 

- Connect to server via session 

o This step tries to connect to a server with an IP and a port, to open up a session with the 

server. 

- Create stream/configure scheduler 

o The client initiates the opening of streams, so in this step, the client will open as many 

streams as it wants (within the maximum stream limit defined in [25]). For every stream 

opening, a flag needs to be set indicating whether or not the stream should be sent 

redundantly across paths. 

- Write/Read on Stream 

o Communication with the streams that are open, exchanging data. 

- Close Stream/Close session 

o Close stream 
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▪ Will close a specific data stream, such that data can no longer be sent until it is 

opened again. 

o Close session 

▪ This will close all streams for the specific session and afterwards close the 

session. 

7.2.2 End-to-end network emulation (Kaunetem) 

This section presents the measurement campaign that will be used as a basis for the variable delay test as 

presented in Section 7.3. 

The scenarios we want to test our MPQUIC schedulers with are based a multi connectivity solution in 

LTE, we conduct a measurement campaign along the Danish freeway, as seen in Figure 24. The test is 

conducted using one link from each of the three main providers that exist in Denmark and one extra 

using use the same operator to characterize both operator diversity and same-operator diversity. A 

further elaboration of the measurement setup can be found in Appendix 12.2.1. 

 

Figure 24. Drive test route, Aalborg → Frederikshavn 

The test is conducted using a traffic model that emulate that of periodic V2X messages (100 ms inter-

arrival and 1200-byte payload) presented in section 1.1.1, with no background traffic and using UDP as 

the transport protocol. The conditions that these messages experiences will be used to extrapolate the 

delay behavior of the network, which is then used as inputs to the emulation environment. 
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Based on the measurements, OWDs are extracted for the individual operators. The different lines 

represent different connection where A1 and A2 are using the same operator and will be used for the 

variable delay test. 

 

Figure 25. OWD empirical CCDF for uplink with 100 ms packet interval and 1200-byte payload.  

By examining the Complementary Cumulative Density Functions (CCDF), there is a difference between 

the operators, even when using multiple links from the same operator (A1, A2). This indicates that there 

is a potential gain by using the different links in a multi-connectivity scheme both with and without 

operator diversity, however this is under the condition that not all links experiences the same conditions 

at the same point in time, hence we want uncorrelated behavior across the links.  

To investigate the potential gain of using multi connectivity, a pseudo redundant scheduling scheme is 

emulated in Figure 25, by taking the lowest OWD for each of the received packet IDs across all the 

links, which is the ‘Combined’ line result of that OWD. Based on the ‘Combined’ line, it is clear that a 

combination of connections provides a theoretical significant improvement in terms of OWD seen from 

an application point of view.  
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The goal of measured LTE statistics is to use them as a basis for the emulated network conditions. 

Therefore, difference tools that can be used to recreate these network delays are investigated in 

Appendix 12.2.3.  Based on this investigation, Kaunetem will be used as a basis of the network 

emulation in the testbed, as it offers all the functionalities necessary to facilitate the test scenarios 

presented in 7.3.  However, due to the restriction of only having a single downlink interface from the 

server, the type of network emulation that can be achieved with Kaunetem is limited, since Kaunetem 

only supports the use of one network trace at a time, and hence the server cannot be emulated as having 

multiple operators. It can only apply conditions (packetloss, delay etc.) on outbound traffic. Therefore, 

unless otherwise stated, all results will be obtained by applying probabilistic conditions to the client 

interfaces (uplink) and deterministic conditions to the server interface (downlink). However, this will 

still achieve a variable RTT on the client, which is the desired behavior. 

For the packet loss, Kaunetem will be imposed on all links on both server and client, however these 

packet losses are not based on real-world measurements but a random packet drop, as described in 

Section 7.3. 

7.2.3 Traffic Model 

This section contains a presentation of the traffic models that will be used for the background and 

priority data.  

Priority data traffic model. The traffic model that will be used for the priority data will be created 

according to the periodic V2X messages, i.e. 100 ms interarrival time and a message size of 1200 bytes, 

see Section 1.1.1. The traffic model of these messages is shown in Figure 26. 
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Figure 26. Traffic generated in a period of one second for priority data 

This kind of traffic generator will produce an average 96 Kb/s worth of priority data excluding the 

overhead for each message. This traffic model will be the base of the priority data sent in the test 

Background data traffic model. The traffic model of the background data is not determined or defined 

by any standard as such and the exact behavior depends heavily of which type of application that 

generates the traffic. As an example, FTP traffic would probably deliver a sporadic traffic load that 

which duration would depend on the file being downloaded. On the other hand, a video stream would 

provide a regular, but not necessarily constant flow of data. Since the goal is to evaluate the protocol in a 

network that is changing over time, as well as compare it against other protocols, a predictable and 

regular dataflow is preferable. To do this, a traffic generator is created that can deliver an average bitrate 

of a specified amount, in a predictable manner. This generator creates chunks of data 12500 bytes (100 

Kb) at a certain rate that in turn corresponds to the desired average bitrate. The packet generation 

interval is therefore defined as based on packet size: 

𝑝𝑎𝑐𝑘𝑒𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
100𝐾𝑏

𝑏𝑖𝑡𝑟𝑎𝑡𝑒
 

This kind of traffic generator will have a pattern as depicted in with an average of bandwidth of 1 Mb/s 

and a departure rate shown in Figure 27. 
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Figure 27 Departure of background data for 1 second 

 

Mixed priority data and background data: 

If the traffic from the two generators are combined the resulting traffic will have the following pattern. 

A pattern of traffic can be seen in Figures Figure 28 and Figure 29, where they have a different 

departure time: 
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Figure 28 Mixed traffic same departure interval, desired 

behavior 

 

Figure 29 Mixed traffic different departure interval, 

undesired behavior 

 

As seen on Figure 28 and Figure 29 it is important that the background data and the priority data has a 

departure time that are non-divisible from one another. On Figure 29 the interval time for departure for 

the two streams are the same, which can result in a situation where the traffic is never mixed. If the 

bandwidth is high enough to facilitate the background data before the departure of a priority packet, the 

wanted behavior of mixed traffic might never occur. For this reason, it is beneficial to change the 

departure time for the background data (hence change the amount of background data sent), to minimize 

this behavior and get more packets with mixed traffic from both streams. 

 Test scenarios 

This section contains a description of the test scenarios in which the implemented novel schedulers will 

be evaluated and compared against the SOTA SRTTF scheduler. The schedulers that will be tested is 

therefore the SRTTF, MPQUIC Selective Redundant Scheduler and MPQUIC Redundant Scheduler. 

The scenarios are split up into two parts, where the impact of two key factors are tested: various packet 

loss probabilities with fixed packet network delay and a varying network delay with no packet loss. 

- Packet loss scenario 

The packet loss setup will be conducted to evaluate the performance of the schedulers in network 

scenarios with packet loss. The packet loss scenario will be conducted with a fixed delay to rule 

out any impact a delay may have, such that all schedulers will experience the same conditions. 

The packet loss test is expected to give information about the loss recovery and behavior of the 

congestion for the MPQUIC and how this affects the streams. At the end , this is compared to the 
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requirements in Chapter 2, in order to make an estimate of how the scheduler can mitigate the 

effect of the packet losses. 

The packet loss percentages will be tested with the following percentages: 0%, 1%, 2% and 5%. 

The reason for choosing these percentages is to see how these are impacted by a gradually 

increasing packet loss and how well the schedulers will perform in different packet loss 

environments. 

- Varying OWD scenario 

The OWD test will be conducted to evaluate the performance of the schedulers in a network with 

varying uplink OWD and a deterministic downlink delay, due to implementation limitation 

explained in Section 7.2.2. Each path uplink has a varying OWD over time. The OWD test will 

be conducted without packet losses to rule out the impact of packet losses to the varying OWD. 

The OWD test is expected to give information about how varying delay will impact the streams 

and how efficient the schedulers are able to handle paths that will experience varying latency. 

The varying OWDs will be based on real world measurements made on the LTE network in 

Northern Denmark to emulate a real LTE network. See Section 7.2.2. 

 

The scenarios described in this section will give an overview of the performance of the different 

schedulers and how the individual parameter will affect the performance of streams. These tests can be 

used to estimate the overall performance according to the requirements set in Chapter 2 and to give an 

idea of how to further enhance the performance of the implemented scheduling mechanisms. 
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 Results 

This chapter presents the results obtained for the test scenarios described in Section 7.3. i.e. packet loss 

test, and variable OWD test. This section will present various plots to explain the results and interesting 

findings along the way. The results are divided into two iterations as some interesting problems were 

discovered during the first one and the corrected in the second iteration. 

 First iteration 

This section contains the results for the first iteration, where both packet loss and delay will be tested. 

Not all test results are presented as we already in an early stage of the testing discovered that the 

MPQUIC congestion interfered with the functionality of the novel scheduling solutions presented in 

Chapter 6. 

8.1.1 Impact of packet loss 

This section presents the results of the first part of the test i.e. the impact of packet losses in a 

deterministic latency scenario. This includes an examination of the KPIs; OWD, throughput and 

goodput. The scenario is run with a deterministic delay of 50 ms applied to all outbound traffic (a 

perceived RTT of 100 ms), a probabilistic packet loss of 0%, 1%, 2% and 5 % and the background data 

rate of 2 Mb/s and priority data rate of 23 Kb/s. 

0% Packet loss: 

Figure 30 shows the results of the 0% packet loss in terms of OWD and Figure 31 shows the 

goodput/throughput of the test. In this test the only factor that affects the packets is the deterministic 

delay of 50 ms, hence the losses should be minimal. 

All the schedulers have a similar behavior in terms of OWD has a similar behavior until around the 99% 

mark as seen in Figure 30. After the 99% mark the schedulers behave differently, however this could be 

because of congestion, flow control, emulation error or triggering of loss recovery, as described in 

Chapter 5. Also, during the startup of the connection, the congestion window still develops, as described 

in Section 5.2.4, so this might also stall some of the priority data. 
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Figure 30. OWD for 50 ms deterministic delay and 0% packet loss 

All the schedulers behave as expected in terms of goodput/throughput as seen in Figure 31. The total 

goodput is very close to be the same for all schedulers, as minimal losses occur for the overall 

connection. The only noticeable observation for this test is the inefficiency of the RE scheduler as it uses 

approximately twice the throughput to send the same goodput as the other schedulers. This is however 

expected as the redundant scheduler is not throughput efficient, as explained in Section 6.1. 

 

Figure 31. Throughput and goodput for 0% packet loss and 50 ms delay. 

Scheduler SRE SRTTF RE 

Bandwidth efficiency 96 % 97 % 47 % 
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1% Packet loss: 

When the packet loss is increased to 1%, a drastic and unexpected change in behaviors are observed, as 

seen in Figure 32. RE performs better than SRTTF which is expected as the connection level loss is 

lower, due to redundant transmissions, but the fact that SRE performance significantly worse than the 

others in terms of OWD is unexpected. This should not be the case, as RE and SRE both use the same 

scheduling scheme for the priority data and should therefore exhibit similar performance.  

 

Figure 32. Different scheduler performance in terms of OWD; 50 ms delay, 1 % loss. 

One potential problem that results in this could be the congestion algorithm. When examining the 

goodput and throughput in  Figure 33 we see that SRE, SRTTF and especially RE are limited by the 

congestion window, since they all are confined to the same throughput. Since we observed the same 

misbehavior for 2% and 5% as well, these are not shown. 

As the SRE scheduler performs significantly worse in terms of delay, compared to RE and SRTTF for 

the priority data, it could be an indication that the priority data does not get transmitted. Therefore, this 

phenomenon will be investigated in detail in the next section. 
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Figure 33. Goodput and throughput of different schedulers first iteration. 

Scheduler SRE SRTTF RE 

Bandwidth efficiency 96 % 97 % 48 % 

 

8.1.2 Congestion window investigation 

To show the problems discovered in this iteration, more data has been collected in terms of the 

congestion window development throughout the connection. A plot of the congestion window 

development for all the schedulers can be found in Figure 34, window size is plotted over time. 
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Figure 34. Sampled congestion window size during test. 

As seen on Figure 34, the congestion windows behave somewhat similarly in terms of size throughout 

their respective sessions. This confirms that the throughput is the same for all schedulers, as seen with 

the 1% packet loss test. To further investigate the impact the congestion window has on the priority 

stream, a plot of the departure time of priority data has been made and can be seen in Figure 35.  

 

Figure 35a. for 0% loss for SRE 

 

Figure 35b. for 1% loss for SRE 

Figure 35. Departure interval for priority data 
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In Figure 35a, the departure time for the 0% packet loss for the SRE scheduler can be seen, and the 

departure time mainly revolves around 50 ms mark, with some outliers both bigger and smaller than the 

desired departure time of 50 ms. The behavior seen in Figure 35a also indicates that when a frame is 

delayed from its original departure time of 50 ms, the forthcoming frame will have a lower departure 

time, since it has already been queued by the application.  

In Figure 35b the same scheduler is tested, but with a 1% packet loss instead. The 1% has a very 

sporadic behavior with a lot of very high spikes, which corresponds to the bad OWD behavior of SRE. 

This indicates that frames are not being transmitted according to the intended and verified behavior, 

since packets with priority data are not being created according to the interval of 50ms as specified in 

the test. This is because of the low window, which means that the priority data has to wait for the 

congestion window to open up. 

Before investigating a solution to this problem, we perform the variable delay test to see whether this 

unintended scheduler behavior persist or if other unexpected behaviors occur. 

8.1.3 Impact of variable delay 

This section contains the results of the test where the OWD traces obtained from the measurement 

campaign presented in Section 7.2.2 has been applied to the network interfaces in the testbed. For these  
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tests only, the uplink part of the traces has been applied due to the technical difficulties described in 

Section 7.2.2, however they should still provide a useful insight into the performance both the SRTTF, 

SRE and RE scheduling techniques. This test is conducted using 2.5 Mb/s background data and 1200 

byte priority data messages at 10 Hz as per technical requirement, see Section -. This also conforms with 

the traffic model considerations in Section 0. 

The first scenario is using the same operator A1 and A2 to show the behavior of same-operator diversity. 

The traces can be seen in Figure 36, where the ideal curve is the combination of the two, always taking 

the best OWD. 

When applying the traces presented in Figure 36 in the test scenario, the aim is to achieve the ideal curve 

for the different schedulers. By applying the traces, we obtain the results shown in Figure 37 for the 

different schedulers.  

Figure 36. Traces used for variable delay test, ideal is minimum latency that can be achieved 
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Figure 37. Variable delay results for the same operator in first test iteration. 

The behavior seen in Figure 37 of the schedulers is again not what is expected, as we would expect the 

SRE and RE to be very close to the ideal curve. We would expect that SRE and RE performs like the 

‘ideal’ curve as we are transmitting on both paths simultaneously. This is however, not the case as seen 

in Figure 37, as all the schedulers is not close the ideal curve. The suspected reason for this can be found 

in the big delays which are going to be interpreted as packet losses, because it is triggering the MPQUIC 

loss mechanisms as described in Section 5.1.4. This will reduce the congestion window and causing 

momentary congestion, hence we see the same issues with the variable delay test as with the packet loss 

test, when inspecting the departure interval of the priority data. 

The congestion algorithm has proven to be an issue for the performance of the schedulers in both test 

cases. We will now investigate why the standard MPQUIC congestion window handling interferes with 

the scheduling mechanisms and greatly affect the performance of our novel schedulers. 

8.1.4 Discussion of first iteration 

During the first test iteration we observed that both the SRE and RE schedulers performed 

worse/differently from what is expected according to the functionality verification in Section 6.5. 

Furthermore, it is pinpointed to be an issue with the priority frame transmission, as the departure interval 
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were very inconsistent as presented in Section 8.1.2, therefore this section discusses the behavior and 

how it can be solved.  

One criteria that both the RE and SRE share when scheduling a new duplicated transmission, is that at 

least two paths must be available for transmission before transmitting a single priority stream frame. If 

this is not the case the transmission is not performed. This implementation choice is due to original loop 

implementation of MPQUIC instead of a parallelized structure for handling paths and creating packets.  

If a path is not usable it can be for many different reasons: if a retransmission is scheduled for the next 

packet, if the path is not available anymore, if the path is congested (see Section 5.2.4), or if the number 

of packets exceed the capabilities book keeping mechanism (send and receive buffers). When debugging 

these cases in a packet-loss scenario such as the one in Section 8.1.1, it is observed that one or more 

paths are often congested when priority data is ready, due to the congestion window being used by the 

high data rate background data. This creates a block in the reliable stream resulting in the sporadic 

departure times, see Figure , as no frame will be scheduled redundantly or otherwise if this is the case, 

this will in turn increase the perceived latency of the priority data by the application. 

To mitigate this effect, we propose a way of separating the effects of the congestion window on the 

priority stream and background stream while the overall connection still conforms to the congestion 

window. To do this we propose a scheme that always have a congestion window size corresponding to 

the actual amount of data that needs to be transmitted for the priority stream, i.e. it will not be affected 

by a fluctuating window size. This means that the when scheduling priority data paths will never be 

viewed as congested. This data will still contribute to the in-flight data, which means that the 

background data will adjust its transmission rate if a congestion occurs as illustrated in Figure 38. The 

figure show how only the background data stream (BG) gets penalized when the congestion window 

fluctuates between t1 and t2, while the priority (PD) is unaffected. This also means that the total 

throughput (Tot) still conforms with the limit set by the congestion window (CW). 
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Figure 38. Adjustment of background data due to fluctuations in congestion window. 

The second case that can happened is that the scheduling of priority data momentarily violates the 

limitations set by the congestion algorithm as seen in Figure 39. 

 

Figure 39. Priority stream violates congestion algorithm. 

In this case the red boxes symbolize packets containing BG and the green PD and the stippled line is the 

congestion window. Up until t3 only BG is being send and this will be limited by the congestion 

window, however, at t3 a PD is also scheduled for transmission regardless of the limit of the congestion 
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window. Therefore, in time instance t3 the congestion algorithm is violated, however, because the PD is 

still registered as bytes in flight, the amount of data send in t4 will therefore decrease corresponding to 

the previous violation. This means that the accumulated data violation over time is converging to 0. 

However, in cases where the congestion window is continuously smaller than the priority data rate other 

solutions should be investigated, however we leave this for future work. Figure 40 is a simplified flow 

diagram of the new and old algorithm used to choose transmission paths based on the congestion 

window. Keep in mind that for the SRTTF scheduler, RTT statistics is also used and for our redundant 

scheduling mechanism we check whether at least two paths are within the generated list. 

 

Figure 40. New and old path selection based on congestion. 

Using this novel way of prioritizing packets that contain priority data, we will conduct a second iteration 

of the test where we showcase the performance benefits and show that the total throughput is still 

bounded by the congestion algorithm. 
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 Second Iteration 

The second iteration of the test will utilize new congestion scheme as discussed from the first test 

iteration and apply it for the same scenarios described in Section 7.3. 

8.2.1 Impact of packet loss. 

The 0 % case is not significantly different from the one in Figure 30. However, if we examine the 1% 

case where we previously observed an unexpected behavior from the SRE scheduler we now see a 

behavior that is corresponding to the expected functionality of the scheduling mechanism, presented in 

Chapter 6. See Figure 41 for the 1% packet loss test as presented in the first iteration. 

 

Figure 41. OWD for 50 ms deterministic delay and 1% packet loss. 

We see that SRE and RE performs similar which is what was expected, since these both use the same 

scheduling mechanism for the priority stream. The congestion limitation from the previous iteration has 

been reduced significantly and the OWD for SRE and RE now outperforms the SRTTF scheduler. 

SRTTF has also gain a significant improvement, since the congestion is also applied to the priority data 

for this scheduler. However, it is still performing worse than our novel schedulers, as it still has a higher 

sensitivity to packet loss and therefore have a higher chance of experiencing re-transmissions and HOLB 

(seen from the application perspective). Based on these results, both RE and SRE offers better 
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performance in terms of latency compared to SRTTF given the network conditions of the tests. For 2 

and 5 % results we observe a similar behavior but decrease in performance due to increase in packet 

loss. See Figure 42a for 2% packet loss and Figure 42b for 5 % packet loss. 

 

Figure 42a. Packet loss rate 2% 

 

Figure 42b. Packet loss rate 5% 

Figure 42 Packet loss test for 2% and 5% 

As seen from both subfigures in Figure 42, our proposed schedulers have similar performance in terms 

of OWD, and they outperform SRTTF in all test cases. 

If we examine the throughput and goodput characteristics, as seen in Figure 43 after applying the new 

congestion scheme, we still observe the same behavior as in the first iterations see Figure 33. This is also 

the desired behavior, since we do not want to violate the congestion algorithm with the proposed 

scheme, only make sure that the priority stream will get to transmit when it has new information. This 

also proves that the congestion window is not changed throughout the connection, and that the 

background stream will adjust accordingly, when the priority stream overshoots the congestion 

algorithm. 
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Figure 43 Goodput and throughput of different schedulers second iteration. 

Scheduler SRE SRTTF RE 

Bandwidth efficiency 96 % 97 % 48 % 

8.2.2 Impact of variable delay 

This section presents the results of the variable delay test, when the new congestion scheme is applied, 

the trace seen in Figure 37 is again used for this purpose. When imposing the same traces with the new 

configuration we see, in Figure 44, that the schedulers performance as expected now. Both RE and SRE 

delivers close to the ideal performance i.e. the lowest delay of the two paths. SRTTF does not exhibit the 

same difference in performance, as it still suffers from loss due to its lack of redundancy. This indicates 

that the congestion problem may not have as great as an effect, which make sense considering that the 

path presented the lowest RTT, may not be the best for the new transmission and hence the scheduler 

might choose the wrong path. Therefore, it will, in some cases, not choose the best path or not switch 

path before it is too late, which will result in an inconsistent performance.  
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Figure 44. OWD for same operator using new congestion algorithm. 

The results in Figure 45 is the same test as with Figure 44, however instead of illustrating connection 

diversity for the same operator these illustrates the gain of using our schedulers with different operators, 

i.e. the gain from operator diversity. As seen with the connection diversity our schedulers do also 

perform close to the ideal in a scenario with operator diversity. 

  

Figure 45a Operator Diversity A1 and C Figure 45b Operator Diversity A1 and B 
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Figure 45c Results for operator diversity A1 and C 

 

Figure 45d Results for operator diversity A1 and B 

Figure 45. Variable delay test, different operator combination. Figures a and c uses the same operators, and figure b 

and d uses the same operators 

Figure 45 shows the same results as with connection diversity using the same operator, as our novel 

schedulers lays close the ideal gain for all cases. This shows that our schedulers can perform well in 

connection diversity with operator diversity, but also connection diversity with the same operator, the 

miss alignment can be caused by either retransmission or added latency due to the test network and 

emulation accuracy. When examining the throughput/goodput behavior it is seen that these are 

consistent with those previously shown and will therefore not be shown. 

8.2.3 Congestion window investigation 

The problems with congestion algorithm addressed from the first test iteration was fixed to show the 

improvement of the congestion algorithm. The graph showing the development of congestion algorithms 

for the various schedulers is not presented in this section, as they do not change because if the new 

congestion scheme. 
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Figure 46a. 1% packet loss after congestion fix with SRE 

 

Figure 46b. 1% packet loss before congestion fix with SRE 

Figure 46. Departure time comparison for priority data before and after congestion fix using the SRE scheduler 

Figure 46 shows the improvement before and after the fix of the congestion algorithm. As seen on 

Figure 46a, our novel congestion algorithm has major improvement in terms of departure time, as the 

majority is now departing at the desired interval of 50 ms. When comparing Figure 46a with Figure 46b 

it is also very clear, that the novel congestion algorithm has improved the departure time of priority data 

significantly, as Figure 46b shows the results from the first iteration. This also underlines why the 

performance is much better in terms of OWD, when comparing the two iterations. 

8.2.4 Conclusion on second iteration 

Based on the results in the second iteration, we can conclude that the new congestion scheme does 

improve the performance of the RE, SRE and SRTTF scheduler. It also shows that the functionality that 

was verified in Section 6.5 does exist, if the resources allows it. Furthermore, the benefit of using 

multiple paths are also quite clear when considering the reliability of the priority data, as it improves the 

performance significantly in both scenarios with pure packet loss and pure delay. It is also observed the 

that our novel selective redundant scheduling scheme can deliver a reliability corresponding to the full 

redundant scheme while still maintaining a bandwidth efficiency close to that of SRTTF, and therefore 

functions as intended. Though it should be noted, that this is only the case when the background data is 

significantly larger than the priority data, as it is still as bandwidth efficient as the redundant scheme 

priority data. 
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Even though we cannot conclude anything definitive about the reliability at the 100 ms threshold due to 

our scenario not being fully realistic compared to LTE we can still comment on the reliability for the 

different schedulers within the constraints of the testing environment. In Table 5 is the reliability 

statistics for the different operator configurations. 

              Operator config. 

 

Scheduler 

A1 & A2 A1 & B A1 & C 

SRE 100 % 100 % 100 % 

RE 100 % 100 % 100 % 

SRTTF 99.7 % 99 % 99.8 % 

Table 5. Reliability at 100 ms OWD for variable OWD test. 

We see that in all our test cases our novel schedulers are able to provide 100 % reliability at the 100 ms 

threshold and that the SRTTF is close to this as well for two cases (A1 & A2 and A1 & C) but lack 

significantly behind in the A1 & B case. This however does necessarily translate into real world 

performance as these traces are a very limited data set (10000 sample), for a limited measured area.  

              Operator config. 

 

Scheduler 

A1 & A2 A1 & B A1 & C 

SRE 50 ms 70 ms 60 ms 

RE 60 ms 80 ms 60 ms 

SRTTF 1200 ms 930 ms 130 ms 

Table 6. Achievable OWD at 99.9 %. 

However, this can still be used as an indication of the relative gain and the potential improvements of 

our schedulers can offer in terms of reliability. If we examine the achievable OWDs at the 99.9 % level 

in Table 7, we see the SRTTF in the best case is ~130 ms whereas our schedulers are at ~60 ms. This 

still over 50 % improvement in the best case and far greater in the other cases.  
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 Conclusion on results 

The results presented in this chapter has proved that our novel scheduler MPQUIC Selective Redundant 

can achieve similar reliability as our MPQUIC Redundant Scheduler, while still providing almost the 

same goodput as the standard scheduler SRTTF. These results however, are obtained under certain 

conditions with resource allocation, as the results from the first test iteration showed, that the schedulers 

perform bad in bad environments in terms of OWD. However, fixing the limitations that the congetion 

algorithm showed to cause, our novel scheduling schemes are able to provide better reliability than the 

SOTA scheduler (SRTTF).  

The tests show that there is a gain when using our proposed schedulers compared with the existing 

solution in terms of OWD, within the confinements of our tests. We can conclude from our results, that 

our proposed scheduler MPQUIC Selective Redundant can provide both bandwidth efficiency for 

background while and high reliability for priority data, as the scheduler performs very similar to the 

redundant scheduler in terms of OWD (100% under 100ms) and have a similar bandwidth efficiency to 

SRTTF (96% for our MPQUIC Selective Redundant Scheduler and 97% for SRTTF).  

In terms of the technical requirements presented in Chapter 2, we cannot, based on the results, conclude 

anything too specific in terms of 100 ms delay in the real world, as more tests is required for this, due to 

the limitation of our test cases. The packet loss test has a deterministic delay, meaning it will not give 

any meaningful results in terms of the technical requirement. As for the delay test, there is no actual 

packet loss, which is unrealistic in an LTE network, so this test cannot make any hard conclusions in 

terms of the technical requirements in Chapter 2. However, the potential gain is still apparent and future 

work should include making more extensive testing to prove the fulfillments of the technical 

requirement. 
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 Discussion and future work 

The results presented in Chapter 8 showed that our implemented SRE scheduler OWDs close to that of 

the ideal situation i.e. the minimum latency of the two test traces. However, to achieve these results, 

some modifications had to be made to the congestion control mechanism to keep serving the priority 

stream. Though a new scheme was applied to the priority data, the background data still suffers a lot 

from this limitation set by the OLIA congestion algorithm. This section will try to cover what is needed 

for future work and discuss results in terms of getting a better performance for the background data as 

well, as well as discussing the further improvement the schedulers need. 

 Enhancing MPQUIC congestion algorithm 

The problems with a packet loss based algorithm in a wireless or heterogenous network is a well-known 

issue as addressed in ([20] [37]). OLIA, which is currently the only implemented congestion algorithm 

for MPQUIC, is a loss based congestion algorithm, which makes it a bad congestion algorithm for the 

application presented in Chapter 1. Therefore, more work should be put in to a congestion algorithm that 

is more suited for wireless links, and this section will come with examples of how to solve this issue. 

A few examples of delay based congestion algorithms are the Westwood+  [21] and wVegas [38] 

algorithms which takes a different approach to the congestion detection than the loss based congestion 

detection algorithms. These algorithms do not see loss as a congestion, but rather base it on RTT. 

wVegas as an example of an algorithm, that is already available in MPTCP, but not implemented for 

MPQUIC. Implementing wVegas could be interesting to test its impact for lossy links using our 

MPQUIC schedulers. 

Westwood+ is also a RTT based algorithm made for wireless links, that tries to set the congestion 

window based on estimated bandwidth. However, this algorithm is currently only known for single path 

connections. The work of [37] has coupled the Westwood+ for multipath TCP, where they succeeded in 

making a fair Westwood+ algorithm for fairness, however they needed more testing in terms of the 

convergence time for MPTCP. This congestion algorithm might also be able to benefit MPQUIC, as the 

single path version Westwood+ has proved to increase performance for the congestion window 

estimation in LTE environments [37]. 
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  Real world testing 

The testing with our schedulers, in this report, is purely based on emulation. Since the intention for these 

MPQUIC additions to function in a real-world network environment, further testing in the real world is 

needed. A real-world network, such as LTE, can have a lot of non-predictable elements that affects the 

performance of the connection in addition to the variable delay and packet losses observed in Appendix 

12.2.2. The connection would most likely also experience bandwidth that varies over time conditions, 

which will severely impact the goodput of background data for the RE scheduler, while the SRE and 

SRTTF may not be affected as much due to their significantly better bandwidth efficiency. Therefore, 

the perceived latency of the background data may also become better, which can be useful for live data 

streaming. 

 Therefore, to get the best conclusion on these factors and its potential impact on the MPQUIC protocol 

and our proposed schedulers, further testing is needed in the real world. 

An addition to the real-world testing is, that the OLIA congestion algorithm might behave better in this 

environment with correlated packet loss, as opposed to the test conducted in this report with 

uncorrelated packet loss. The reason for this is that correlated packet loss has a bigger chance of being 

within the same sending window, which means that less packet loss events will affect the congestion 

algorithm. The reason for this behavior is, that multiple packet losses in the same send window will be 

interpreted as a single packet loss, which implies, that if the packet losses are highly correlated, it will 

have a lower packet loss percentage than uncorrelated packet loss, seen from the congestion algorithm’s 

perspective.  

 Retransmission of “old priority data” 

As stated in the requirements in Chapter 2, the “could” requirement C1 can also be implemented to 

reduce the amount of unnecessary transmission sent. “Old data” in this case would be data that has no 

new information to say, since new information has made it obsolete. However, the current 

implementation does not support discarding such messages, since they have already been transmitted as 

a stream frame, and therefore must be delivered as per the QUIC standard. To solve this issue, we 

suggest making a new non-retransmittable stream frame type/flag for MPQUIC, that contains 

application information, but does not require retransmission – like a UDP packet concept, but 

encapsulated within a frame in MPQUIC framework, as would enable a mixture of data from different 
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streams and maintain compatibility with MPQUIC. This type of solution does also not interfere with the 

loss mechanics of QUIC as this is based purely on packet numbering and not packet content. 

 Parallelize the path checks for redundancy 

The current version of MPQUIC uses a serialized execution which make transmission of redundant data, 

and book keeping thereof, difficult. There have also been some implementation difficulties/choices that 

may affect the performance e.g. the decision of not using a path, when it has a retransmission, which 

will result in a higher delay. The reason for this is, that at the point of preparing frames for a packet on 

one path, we do not know the state of the other path i.e. if the same amount of space available in the 

packet on both paths or is it is different. This can result in a transmission of unequal size on different 

paths, which will lead to extra delay.  

One way to mitigate this, is to restructure MPQUICs scheduling loop to a parallel execution thereby 

making it possible to synchronize the conditions on all paths in terms of available packet space. This 

way the paths can send information to one another, which can be utilized to avoid situations with 

different information across paths. 

 Mixed test with both packet loss and delay 

As mentioned in Section 8.3, no test has been conducted in a scenario where both variable delay and 

packet loss are applied as network condition. This means that it is not possible to conclude whether the 

reliability of 99.9 % at 100 ms is fulfilled since a pure delay scenario are not realistic, as packet loss will 

occur in LTE, see Appendix 12.2.2. Same goes for the packet loss test, as packet loss scenarios with 

deterministic delay is not realistic for LTE.  

Therefore, a mixture of the two tests presented in Section 7.3 would yield valuable results regarding 

reliability gain within the limitations of emulation. 
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 Conclusion 

The goal of this report was to investigate whether LTE could be a potential facilitator of vehicular 

communication in a mixed traffic scenario with priority data and background data. Based on the findings 

in the initial investigation, it was concluded, that a single LTE connection would not be able to facilitate 

most types of vehicular communication due to latency issues. Therefore, possible solutions were 

investigated, which led to the use of multi-connectivity via the transport layer which led to the problem 

statement: 

How can the transport layer with multi-connectivity, using LTE as access technology, achieve high 

reliability priority data and facilitate background data with high bandwidth efficiency? 

Based on this formulation, functional and technical requirements have been created for what we 

perceive to be the ideal protocol for the mixed traffic scenario. Using these requirements, the state of the 

art hybrid access transport protocols, MPTCP and MPQUIC, were investigated as a potential basis for 

an ideal protocol. MPQUIC was chosen, due to its capabilities of handling multiple independent streams 

of data from the same application and its ability to treat these in a prioritized manner, which lead to the 

revised problem formulation. 

How can MPQUIC be improved to accommodate an application in an LTE environment, which requires 

high reliability for the priority data and high bandwidth efficiency for the background data? 

As the standard scheduler in MPQUIC is not geared toward reliability, we introduced two new 

scheduling concepts to MPQUIC; a redundant one similar to MPTCP redundant scheduling called 

MPQUIC Redundant Scheduler, and a novel one, that is able to selectively schedule priority data 

redundantly, while using SRTTF for the background data, called MPQUIC Selective Redundant 

Scheduling. These two scheduling concepts have been implemented in a GO based MPQUIC 

implementation, as a selective mechanism using two new stream attributes, priority and duplication. For 

testing, these new and novel additions to MPQUIC, we implemented a testbed that can emulate the delay 

conditions of a real LTE network based on measurements collected along the Danish freeway. During 

the first iteration of the testing phase, it was discovered that the implemented schedulers did not behave 

as expected, even though the functionality was verified in the development phase.  

The cause of this problem was found to be the congestion algorithm, as it impaired the functionality of 

the schedulers due to lack of resource available to the packets containing priority data. To mitigate this 
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problem, we have created a new congestion algorithm scheme that always ensure transmission of 

priority data at a cost of background data transmission.  

Using this new congestion scheme, we see that packets containing priority data gets prioritized and that 

our novel MPQUIC Selective Redundant scheduler works as intended in both a packet loss and variable 

delay scenarios. This scheme, however can be improved, but such improvement is a subject of future 

work. 

Given these test scenarios, our novel MPQUIC Selective Redundant Scheduler has proven to deliver the 

same reliability as our MPQUIC Redundant Scheduler, while still maintaining a bandwidth efficiency 

similar to the SRTTF scheduler offered by the standard MPQUIC. Our MPQUIC Selective Redundant 

Scheduler was able to achieve a bandwidth efficiency of 96%, similar to the SRTTF scheduler which 

had a 97% bandwidth efficiency and better than MPQUIC Redundant Scheduling which had a 

bandwidth efficiency of ~47%. 

Our MPQUIC Selective Redundant Scheduler also performed better than the MPQUIC SRTTF 

Scheduler in terms of the reliability with one-way delays, as MPQUIC Selective Redundant can obtain 

~60ms at 99.9% level, whereas SRTTF is able to obtain 130ms at best at the 99.9% level in the LTE 

delay test. This is a huge performance gain. 

Future work should investigate the bandwidth limitation, to provide a better user experience for the 

background data in real networks as bandwidth limited scenarios are not uncommon. However extensive 

and real-world testing is still needed to fully characterize its performance and that the results of this 

report should be considered a proof of concept. 

The MPQUIC Selective Redundant Scheduling described above has also spawned a patent application, 

which indicates the contribution to the state of the art and novelty of our solution and work presented in 

this report. 

  



   

 

  93 

 

 

 Bibliography 
 

[1]  Insurance Institute for Highway Safety, "http://www.iihs.org/iihs/topics/t/automation-and-crash-

avoidance/topicoverview," May 2018. [Online]. [Accessed 29 May 2018]. 

[2]  G. A. P. Gerardino, M. Lauridsen, B. S. Alvarez, K. I. Pedersen and P. E. Mogensen, "Automation 

for On-road Vehicles," in Proceedings of Vehicular Technology Conference, 2015.  

[3]  Cisco, "https://www.cisco.com/c/en/us/solutions/service-provider/mobile-internet/5g-

infographic.html," Cisco, Feburary 2017. [Online]. [Accessed 29 May 2018]. 

[4]  S. Lucero, "C-V2X offers a cellular alternative to IEEE 802.11p/DSRC," C-V2X: Cellular Vehicle-

to-Everything Connectivity, no. Issue 3, 2016.  

[5]  C. Campolo and A. Molinaro, "On vehicle-to-roadside communications in 802.11p/WAVE 

VANETs," Wireless Communications and Networking Conference (WCNC), 2011 IEEE, 2011.  

[6]  A. Filippi, K. Moerman, G. Daalderop, P. D. Alexander, F. Schober and W. Pfliegl, 

"http://www.eenewsautomotive.com/design-center/why-80211p-beats-lte-and-5g-v2x/page/0/11," 

21 April 2016. [Online]. [Accessed 29 May 2018]. 

[7]  Qualcomm, "www.qualcomm.com/C-V2X," June 2016. [Online]. Available: 

https://www.qualcomm.com/media/documents/files/cellular-vehicle-to-everything-c-v2x-

technologies.pdf. [Accessed 29 May 2018]. 

[8]  H. Holma and A. Toskala, LTE for UMTS - Evolution to LTE Advanced 2e, Wiley, 2011.  

[9]  M. Lauridsen, T. Kolding, G. Pocovi and P. Mogensen, "Reducing Handover Outage for 

Autonomous Vehicles with LTE Hybrid Access," IEEE, p. 6, 2018.  

[10]  C. Markmøller, R. S. Mogensen, H. H. Rasmussen and K. W. Mortensen, "Ultra Reliable LTE 

with Multiple Internet Interfaces," 2017. 

[11]  T. B. Forum, "TR-348, Hybrid Access Broadband Network Architecture," Broadband Forum, 

Issue Date: July 2016, 2016. 



   

 

  94 

 

 

[12]  "wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/MoSCoW_method. [Accessed 06 

05 2018]. 

[13]  A. Ford, C. Raiciu, M. Handley, S. Barre and J. Iyengar, Architectural Guidelines for Multipath 

TCP Development, IETF, 2011.  

[14]  R. R. Stewart, "Stream Control Transmission Protocol," September 2007. [Online]. Available: 

https://rfc-editor.org/rfc/rfc4960.txt. [Accessed April 2018]. 

[15]  A. Joseph, T. Li, Z. He, Y. Cui and L. Zhang, "A Comparison between SCTP and QUIC," 08 

March 2018. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-joseph-quic-

comparison-quic-sctp-00. [Accessed 17 April 2018]. 

[16]  SUBMITTED, G. Pocovi, T. Kolding, M. Lauridsen, R. Mogensen, C. Markmøller and R. Jess-

Williams, "Reliable Real-time Measurement and Characterization of Wireless Communication 

Systems," IEEE Communications Magazine, p. 12, 2018.  

[17]  A. Frommgen, T. Erbshaußer, A. Buchmann, T. Zimmermann and K. Wehrle, "ReMP TCP: Low 

Latency Multipath TCP," IEEE ICC- Communication QoS, Reliability and Modeling Symposium, 

2016.  

[18]  Q. D. Coninck and O. Bonaventure, "Multipath QUIC: Design and Evaluation," in Proceedings of 

the 13th International Conference on Emerging Networking EXperiments and Technologies, 2017.  

[19]  A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. '. Krasic, C. Shi, D. Zhang, F. Yang, F. 

Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C. Dorfman, J. Roskind, J. Kulik, P. Göran, R. Tenneti, 

R. Shade, R. Hamilton, V. Vasiliev and W.-T. Chang, "The QUIC Transport Protocol: Design and 

Internet-Scale Deployment," in SIGCOMM 2017, 2017.  

[20]  Q. D. Coninck and O. Bonaventure, "Multipath Extension for QUIC," 30 October 2017. [Online]. 

Available: https://datatracker.ietf.org/doc/html/draft-deconinck-multipath-quic-00. [Accessed 5 

March 2018]. 



   

 

  95 

 

 

[21]  Z. Chen, Y. Liu, a. Duan, H. Liu, G. Li, Y. Chen, J. Sun and X. Zhang, "A novel bandwidth 

estimation algorithm of TCP westwood in typical LTE scenarios," in Communications in China 

(ICCC), 2015 IEEE/CIC International Conference on, Shenzhen, China, 2015.  

[22]  F. Gont and A. Yourtchenko, On the Implementation of the TCP Urgent Mechanism, RFC Editor, 

2011.  

[23]  C. Paasch and S. Barre, "Multipath TCP in the Linux Kernel (v.0.92)," [Online]. Available: 

https://www.multipath-tcp.org. [Accessed 20 02 2018]. 

[24]  L. Boccassi, M. M. Fayed and M. K. Marina, "Binder: A System to Aggregate Multiple Internet 

Gateways in Community Networks," in Proceedings of the 2013 ACM MobiCom Workshop on 

Lowest Cost Denominator Networking for Universal Access, Miami, LCDNet '13, 2013, pp. 3--8. 

[25]  J. Iyengar and M. Thomson, "QUIC: A UDP-Based Multiplexed and Secure Transport," 28 Jan 

2018. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-09. 

[Accessed 21 02 2018]. 

[26]  T. Viernickel, A. Frommgen, A. Rizk, B. Koldehofe and R. Steinmetz, "Multipath QUIC: A 

Deployable Multipath Transport Protocol," ICC, 2018.  

[27]  J. Iyengar and I. Swett, "QUIC Loss Detection and Congestion Control," 28 January 2018. 

[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09. [Accessed 27 

02 2018]. 

[28]  M. Allman, V. Blanton and P. E, September 2009. [Online]. Available: 

https://tools.ietf.org/pdf/rfc5681.pdf. [Accessed 29 May 2018]. 

[29]  I. Rhee, L. Xu and S. Ha, "CUBIC: A New TCP-Friendly High-Speed TCP Variant," ACM 

SIGOPS Operating Systems Review - Research and developments in the Linux kernel, vol. 42, no. 

5, pp. 64-74, 2008.  

[30]  D. Wischik, C. Raiciu, A. Greenhalgh and M. Handley, "Design, implementation and evaluation of 

congestion control for multipath TCP," in 8th USENIX conference on Networked systems design 

and implementation (NSDI'11), Boston, 2011.  



   

 

  96 

 

 

[31]  R. Khalili, N. Gast, M. Popovic and J.-Y. L. Boudec, "MPTCP Is Not Pareto-Optimal: 

Performance Issues and a Possible Solution," IEEE/ACM Transactions on Networking, vol. 21, no. 

5, pp. 1651-1665, 2013.  

[32]  R. Khalili, N. Gast, M. Popovic and J.-Y. L. Boudec, "MPTCP Is Not Pareto-Optimal: 

Performance Issues and a Possible Solution," IEEE/ACM Transactions on Networking, vol. 21, no. 

5, pp. 1651-1665, 2013.  

[33]  R. Khalili, "ietf.org," [Online]. Available: https://datatracker.ietf.org/meeting/87/materials/slides-

87-iccrg-7. [Accessed 29 May 2018]. 

[34]  Q. D. Coninck and O. Bonaventure, MPQUIC Golang implemenation, 

https://github.com/qdeconinck/mp-quic.  

[35]  M. Seemann and L. Clemente, "A QUIC implementation in pure go," [Online]. Available: 

https://github.com/lucas-clemente/quic-go/. [Accessed 2 3 2018]. 

[36]  B. Hall and B. Jorgensen, Beej's Guide to Network Programming, Using Internet Sockets, 

Jorgensen Publishing, 2016.  

[37]  H. H. Nuha, Hendrawan and F. A. Yulianto, "Wireless Multi-path TCP Westwood+ Modification 

to Achieve Fairness in HSDPA," in 2010 Fourth UKSim European Symposium on Computer 

Modeling and Simulation, Pisa, Italy, 2010.  

[38]  Y. Cao, M. Xu and X. Fu, "Delay-based congestion control for multipath TCP," in 2012 20th IEEE 

International Conference on Network Protocols (ICNP), Austin, TX, USA, 2012.  

[39]  M. Thomson and S. Turner, "Using Transport Layer Security (TLS) to Secure QUIC," 28 Jan 

2018. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09. [Accessed 21 

Feb 2018]. 

[40]  E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3," 15 Feb 2018. [Online]. 

Available: https://tools.ietf.org/html/draft-ietf-tls-tls13-24. [Accessed 21 Feb 2018]. 

[41]  M. Carbone and L. Rizzo, "Dummynet Revisited," [Online]. Available: 

http://info.iet.unipi.it/~luigi/papers/20100304-ccr.pdf. [Accessed 29 May 2018]. 



   

 

  97 

 

 

[42]  A. Jurgelionis, J.-P. Laulajainen and M. Hirvonen, "An Empirical Study of NetEm Network 

Emulation Functionalities," Computer Communications and Networks (ICCCN), 2011 

Proceedings of 20th International Conference on, 2011.  

[43]  J. Garcia and P. Hurtig, "KauNetEm: Deterministic Network Emulation in Linux," Proceedings of 

netdev 1.1, 2016.  

[44]  C. Paasch, G. Detal, F. Duchene, C. Raiciu and O. Bonaventure, "Exploring Mobile/WiFi 

Handover with Multipath TCP," in ACM SIGCOMM workshop on Cellular Networks (Cellnet'12), 

2012.  

[45]  A. Ford, C. Raiciu, M. J. Handley and O. Bonaventure, "TCP Extensions for Multipath Operation 

with Multiple Addresses," RFC Editor, 2013. 

[46]  M. Pope and A. Sultan, "Service requirements for V2X services," 3GPP, TS 22.185 version 14.3.0 

Release 14. 

 

 

  



   

 

  98 

 

 

 Appendix 

The Following sections are appendixes elaborating report content. These should be viewed as individual 

pieces of content and are not necessarily tied together. 

 QUIC connection setup 

When QUIC sets up a connection, it uses a combined cryptographic and handshake to setup the secure 

connection. QUIC commonly uses a 0-RTT handshake, meaning that QUIC can send data immediately 

after sending the initial packet, meaning it does not require a response from the server before sending 

data. QUIC provides another stream for such messages as performing the cryptographic handshake and 

QUIC options negotiations. The cryptographic handshake is made by using QUIC-TLS, which is 

described in [39]. A quick overview of how the TLS initial connection is established is showed in Figure 

47 QUIC TLS. when a connection has been established before, where [40]: 

- “[]” indicates messages protected using key derived from ”sender application traffic secret N”   

- ”{}” indicates messages protected using keys derived from a “sender handshake traffic secret”  

- “()” indicates what kind of message is send from the client 

In case the reader is unfamiliar with TLS, information can be found in [39] [40].  

 

Figure 47 QUIC TLS. 

https://tools.ietf.org/html/draft-ietf-tls-tls13-24
https://tools.ietf.org/html/draft-ietf-tls-tls13-24
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As seen in the Figure 48, the client initiates the “ClientHello” to a server it has already communicated 

with before, meaning data transfer with 0-RTT is possible. The server then creates its own 

“ServerHello”, where it will use the key initiated the client to send the “EncrypedExtensions” and 

“Finshed”, and thereafter it will use the new secret for the clients’ application to send the data. The 

client will then send the “Finished” to indicate the end of the “0-RTT” messages and start using the new 

“1-RTT” key to send the data. 

QUIC and TLS are codependent in a sense that TLS uses the reliability and ordered delivery QUIC can 

provide, whereas QUIC uses the handshake and encryption of TLS for communication. The initial state 

of QUIC has no packet protection, and it therefore uses “Stream ID 0” or “Stream 0” to use the initial 

TLS cryptographic handshake. This stream is also used by QUIC to send options negotiations.  

By using this technique, a QUIC connection can be established in 1-RTT time,, and in 0-RTT time if the 

server and client know each other beforehand. At the start of the unencrypted QUIC connection, QUIC 

will send initial application data, and as soon encryption is available, it will start using the encryption.  
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 Network emulation 

This appendix contains results and finding for the LTE measurements presented in Section 7.2.2. It also 

describes the measurement framework used to obtain the results. 

12.2.1  Measurement setup 

To correctly measure the performance of the of LTE in terms of latency and loss, a measurement setup 

with the ability to sample multiple links from multiple operators in both uplink and downlink is needed, 

as these are asymmetric in LTE. 

To separate these, the measurement setup must be able to measure the one-way-delay (OWD) in the 

network. Furthermore, the packet transmission/sample across the different links must be synchronized as 

the result is dependent in time and the physical location, where the measurement took place due to the 

mobility and network load. Also, the measurement setup should be able to characterize the packet loss 

behavior of the link as well.  

To accomplice this task, a setup depicted in Figure 49 is designed. The specific hardware and software 

used is described in  [16] along with and evaluation of the precision and accuracy. An overview of the 

custom measurement setup is given below. 
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Figure 49. An illustration of the measurement setup. Number of interfaces (N) can be large than or equal to the 

number of operators (M). 

 

 

GPS timer is an entity that use an external GPS module for time synchronization with an UTC 

timestamp and a Pulse Per Second signal (PPS). The UTC timestamp is used for a rough time stamp 

whereas the PPS signal provide a sub-millisecond accurate time stamp. Furthermore, the GPS timer 

provides GPS position for further analysis and location correlation. 

An NTP server is used for practical reason the server side of the measurement setup uses a local GPS 

synchronized NTP server for time synchronization. This can provide sub-millisecond synchronization 

accuracy. 

Scheduler is an entity that schedules a packet transmission according to the configuration of the test. It 

signals the interface handlers that they should perform a packet transmission. The packet scheduling can 

happen according to a fixed rate or modulated periodically according to the test configuration. It is 
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configured in such a way that the client and server will by default schedule packet transmission with an 

offset half the fixed rate. 

Interface handler is an entity that manages the interface it contains two sub-entities a send and receive 

handler. The send handler creates a connection using the physical interface (In this specific case 4x 

Samsung Galaxy S5 using USB tethering) and transport protocol specified in the test configuration. For 

characterizing the delay and packet loss UDP is used as this is transparent protocol which performance 

does not depend on specific setting of the protocol as with TCP and QUIC.  

Once it receives a signal from the Scheduler it will generate a packet with the size specified in the 

configuration with and increasing id number and the current time in microseconds. The padding is 

adjusted according to protocol overhead to fit the specified size. The packet is illustrated in Figure 50. 

 

Figure 51. Measurement payload. 

When the interface receiver handler receives a packet, it will log the idNumber the currentTime and the 

received time. This information can be used to extract OWD as well as packet loss statistics. 

For the measurements each of the interface handler manages a separate physical interface however the 

server is a single physical interface with logical connections corresponding to the number of physical 

interfaces on the client. During connection setup the server will receive the client configuration. 

12.2.2  Measurement results. 

Based on the measurement campaign described in Section 7.2.2, loss patterns and OWD are extracted 

for both uplink and downlink. The OWD delay results can be found in Figure 52 and Figure 54 . The 

different lines represent different connection where A1 and A2 are using the same operator. 
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Figure 53. OWD empirical CCDF for uplink with 100 ms packet interval and 1250-byte payload.  

 

Figure 54. OWD empirical CCDF for downlink with 100 ms packet interval and 1250-byte payload 

By examining the Complementary Cumulative Density Functions (CCDF), there is a difference between 

the operators and even when using multiple connections from the same operators. This indicates that 
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there is a potential gain by using the different links in a multi-connectivity scheme both with and 

without operator diversity, however this is under the condition that not all links experiences the same 

conditions at the same point in time. To investigate this, a pseudo redundant scheduling scheme is 

emulated, by taking the lowest OWD for each of the received packet IDs across all the links. The result 

is seen in Figure 55 and Figure 54 as the ‘combined’ line. Based on orange line is clear that combination 

of connection provides a significant improvement in terms of OWD as seen from an application point of 

view.  

Interestingly two of the operators show similar bad performance for uplink in both directions of the trip 

which could indicate coverage problems. If the samples are plotted in time it becomes more apparent 

that this is the case, especially for Operator C, as seen in Figure 56. 

  

Figure 56. Locational correlation for Operators, uplink (left) and downlink (right). 

Based on this Figure 57 there is a correlation between the significantly high OWDs for Operator C and 

the physical location where the packet was scheduled. The sample area where the large spike is 

(between 15000 and 20000) corresponds to the yellow area in Figure 58. However, the impact of this is 

completely remove when it is combined with other operators as they provide coverage in the area. 

When examining the packet loss statistics, seen in Table 8, it is seen that there is quite a difference 

between the operators as well as the connections to the same operator. The course of this difference is 

not easy to determine however, as there are many possibilities since the measurement is end-to-end. To 

achieve a better understanding would require ‘probing’ the network in more places, to extract handover 

statics, drops in core network etc. The packet losses are highly correlated meaning that when a packet 

loss occurs there is a high probability that another loss occurs after. Even though the packet losses are 
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correlated and therefore resulting in longer periods with continues packet loss, the perceived packet loss 

when combining all the links becomes 0. 

Operator Uplink loss [%] Downlink loss [%] 

A1 4.48 2.86 

A2 5.10 0.68 

B 0.19 0.12 

C 0.03 0.62 

Combined 0 0 

Table 8. Total packet loss statistics. 

12.2.3  Network Emulators 

The goal of measured LTE statistics is to use them as a basis for the emulated network conditions in the 

testbed, therefore, difference tools that can be used to recreate these network conditions (delay, packet 

loss, etc.) are investigated. Furthermore, the considered network emulators must have the source code 

available and still be actively supported. 

• Dummynet [41] is a widely used network emulator that possess most the abilities to apply 

probabilistic delays and packet loss to a connection in both upload and download. However, it is not 

possible to create correlated delay distributions and therefore Dummynet will to create the timely 

correlations measured in the LTE network. Therefore, this is not deemed a suitable network 

emulator. 

• NETwork EMulator [42]is a network emulator that is built into Linux and it can do probabilistic 

modeling of delay, packet losses etc. It also possesses the ability to use a delay model based on 

empirical data. This feature however is not functioning properly; it is able to mimic the sample 

distribution but it does not capture the temporal correlation between the samples as seen in Figure 

59. Therefore, this is not deemed suitable for evaluation. 
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Figure 59. Comparison of real data and empirical distribution using NETEM. The red line is the NETEM generated 

data and the blue is the real trace. 

• Kaunetem [43] is an extension of NETEM, it adds the possibility of doing trace-based emulation i.e. 

emulating a predefined pattern. The conditions imposed by the pattern can be either packet specific 

or based on time since first packet. The time-based conditions have a resolution of 1 ms meaning 

that all packets within this time slot will experience the same conditions. In Figure 60 it is seen that 

Kaunetem is significantly better at capturing the behavior of the measurements since the emulated 

delay is based on the actual values of the trace. 

 

Figure 61. Kaunetem compared to real measurements. Red line is KauNetem, blue is real trace. 

Based on this analysis of available network emulators Kaunetem will be used as a basis of the 

network emulation in the testbed as it will facilitate a payback of not only the OWDs measured but 



   

 

  107 

 

 

also the probabilistic packet loss. Therefore, it offers all the functionalities necessary to facilitate the 

test scenarios. Furthermore, it allows for reproducible as all the permutations of the test setup e.g. 

comparing different protocols, will be tested under the exact same conditions. Also reusing the data 

from the measurement campaign significantly decrease the complexity of the channel emulation at a 

cost of limited traces to test on. However, the implemented solutions presented in Chapter 6 is not 

designed specifically for these network condition, but rather the scenario where multiple links are 

available and the network conditions on each link are not completely correlated. Therefore, this is 

deemed a sufficient way of benchmarking the proposed solution. 
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