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safe. In this project, a keystroke dynamics au-
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to solve the issues of classic one time log in
systems. The problem with these systems is
that, no matter how secure they are, once the
authentication step is performed, there is no
way for the system to authenticate the users
continuously. In this project, the concept of
keystroke dynamics is introduced, and a sys-
tem that can continuously authenticate users
based on freely-typed text is proposed. Differ-
ent feature extraction methods are described
that should capture the users’ typing behav-
ior.
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1| Introduction
Due to rapid digitization of the industry, data has became one of the most valuable and critical
assets of enterprises. Data leakage is a serious threat for companies, which can cause massive
financial and reputational loses. This is why, increasing security in order to prevent data loss
is one of the most pressing objectives for enterprises today. Furthermore, with new regulations
being enforced, for example GDPR, it is a prerequisite for companies to provide safeguards and
lawful ways of processing for personal data in order to be compliant.

There are several ways in which data can be leaked from inside a company. It is often said that
end users are the weakest link in a security chain. After all, even if all data is encrypted, if an
attacker manages to compromise devices belonging to internal employees they could get access
inside the enterprise. There could also be cases where an internal employee intentionally leaks
data for various reasons like sabotaging or revenge.

In order to minimize the risks, enterprises implement controls to make sure the users are who
they claim to be and they only have access to what they are supposed to. Most commonly, users
are asked to log in using either something they know, for example user names and passwords,
something they have, for example tokens or smart cards or something they are, for example
biometrics like fingerprint sensors or face detection. In order to strengthen security even more,
combinations of these methods can be used.

However, once the authenticity of the users is confirmed by any of these methods, under the
process called authentication, they are granted access to the systems. If the actual user changes
while the log in is still active, for example, another person physically or remotely takes control
of the computer, these authentication methods don’t provide a straightforward way to sense the
change.

This problem raises the need of an authentication system that can perform continuous authenti-
cation of the user. Such systems should be able to learn the behaviour of the users based on their
interaction with a system, for example their typing or mouse movement patterns, and be able
to differentiate legitimate users from intruders. Furthermore, as productivity in an enterprise
is very important, these systems should be transparent and non-intrusive with the user’s work
and should not require extra hardware added to the systems.

With the latest developments in the machine learning field, the possibility of developing such
systems that would provide good performance is possible. Called, behavioral biometrics, these
authentication technologies promise to offer continuous authentication of users based on their
computer usage patterns. In this paper, a concept of implementing such technologies, in order
to enhance security is presented. The system should be transparent in order to not affect
productivity while ensuring the privacy of the user.
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Figure 1.1: Illustration of the main objectives of Information Security, Confidentiality, Availability and
Integrity, forming the CIA triad.

1.1 Background
1.1.1 Information Security Concepts

Information is one important asset for individuals and enterprises [1]. In the previous section,
the term data was used. In principle, information is data that is processed or organized in a
way that is meaningful or useful. For example, a word or a character can be considered data,
however when put in a context, a combination of more characters or words becomes information
as it becomes useful to a person.

Since it is an asset, disclosure, modification or unavailability of information can cause expenses
or loses to a company or an individual. In order to prevent this kind of actions, security
protection mechanisms are being deployed. There are three main security objectives that need
to be fulfilled by these mechanisms [1]. These objectives are considered to be at the core of
information security and they are forming the so called CIA triad as illustrated in figure 1.1.

• Confidentiality - refers to protecting the information from being disclosed to unauthorized
entities.

• Integrity - refers to protecting information from accidental or intentional modification
which would affect the data validity.

• Availability - refers to the fact that information and services must be available when an
organization or individual needs them.

In an ideal case, all these objectives would be completely covered, with state of the art tech-
nologies. However, often in cybersecurity everyone knows what should be done, but most likely
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resources to do it are not sufficient [2]. Most of the times, companies would not put a great ef-
fort in protecting an asset that brings small direct benefits. Furthermore, sometimes even when
defenders get what they want, attackers are very effective in exploiting gaps in those defences[2].

As it is further described [2], cyberattacks have evolved greatly. Back in time, cyberthreats
were viruses, worms, and Trojan horses. These kind of threats were usually infecting random
computers on the internet while posing small threat to enterprises. Enterprises were mainly
protected by firewalls and anti viruses, which were more than enough to keep threats away.
However, today hackers are targeting enterprises more and more and with mobility on the rise,
employees are not only operating from a main network that can be easily protected. By infecting
machines that have access inside the network, hackers can take control of them. This would
allow them to connect to various systems, steal credentials, and even move laterally across the
network, infecting more and more machines.

One of the most effective way of infecting computers inside an organization is by using phishing
attacks [2]. This kind of attacks are usually carried by sending scam e-mails to employees, that
contain infected attachments or links. When they are opened, the hacker takes control of the
victim’s computer. Sometimes users also tend to reuse usernames and passwords in multiple
services. This way, if a hacker manages to steal credentials from one service, they can get access
to all the other services that the user is registered to. One way to mitigate these impacts is by
using strong identification, authentication and authorization controls, in order to determine and
validate the user’s identity and ensure that only authorized entities can access resources, while
compromised users can be immediately cut off.

1.2 Authentication

When a person is performing transactions online, they are using a digital identity. While a
subject has one identity in real life, they can have multiple digital identities, depending on the
context. For example, a user could have a digital identity for an online shopping store, while
having another digital identity for connecting to their company. Furthermore, these digital
identities do not necessarily directly point back to the real life subject. For this matter, in order
to make sure the subject is actually who they claim to be, identity proofing is required. As
introduced by NIST [3], digital authentication is the process that determines the validity of a
subject’s claim for a digital identity. It establishes that the physical subject that is trying to
access certain resources, is actually in control of the technologies that are used to authenticate.

In order to be authenticated, a user should provide some sort of evidence. This evidence is
called a credential [4]. These credentials can be of different types and can be presented under
the form of something they know, something they have or something they are. These types
of authentication together with examples are illustrated in figure 1.2. Using multiple types of
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Figure 1.2: Illustration of the types of authentication and examples of implementations for each type.

authentication is used to increase security under the process called multi-factor authentication.

Two important concepts should be described in this this context, identification and authentica-
tion. The process of identification refers to determining who the user is. Typically, the security
system searches through all the abstract objects, usually user IDs, that it controls and finds the
specific one for the privileges that the user is applying for [1]. On the other hand, authentication
is used to confirm the validity of a user. When a user claims that they are represented by an
abstract object, they must provide evidence to prove their identity. If this is successful, the user
is granted rights and permissions specific to the abstract user object (user ID) [1].

In order to avoid the scattering of a subject’s identities around systems, the concept of feder-
ated identities has been introduced. This concept and different uses cases are presented in the
Ping Identity whitepaper [5]. The main idea relies on the fact that the identity of subjects is
managed by one entity called IdP (Identity Provider). IdPs in one federation should be able
to communicate and have a complete picture of a subject’s identity. When a subject tries to
access a resource, the IdP is able to guarantee to the server holding that resource, that the user
is authenticated and they are who they claim to be.

While the federated identity concept is broad, one of the concepts it introduces is SSO (Single
Sign-On). Protocols like OpenID Connect [6] or SAML [7], have been introduced in order
to support SSO. This way, companies that are using multiple systems, inside or outside their
premises, can allow their employees to authenticate in one place and to use all the systems that
they have access to without having to authenticate again. After the authentication process is
performed, the authorization process ensures that a user should or should not have access to a
resource based on policies.
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Figure 1.3: Illustration of the types of biometric authentication and examples of implementations for each type.

1.2.1 Biometric Authentication

When compared to other traditional authentication methods, like user names and passwords,
biometric authentication has an advantage, as it is based on something you are which is harder
to copy or steal [8]. Furthermore, biometrics should offer an inextricable link between the
authenticator and its owner which can offer the property of nonrepudiation, something that can’t
be fully achieved through passwords and tokens since they can be lent or stolen [9]. This property
provides proof of a transaction, so that the involved parties cannot negate its authorization or
their involvement.

Biometric authentication can be classified under two different categories, “physical biometrics”
and “behavioral biometrics” [9]. The two types of biometric authentication, together with a
few examples of implementations, are illustrated in figure 1.3. Physical biometrics refer to
authentication of the user using stable body parts like fingerprints, face, iris and so on. Generally,
these methods are more known to the public, having a higher implementation rate as well as
being considered to be more reliable [10]. However, one drawback for this type of authentication
is that it requires extra pieces of hardware, which add an extra layer of complexity to the login
process, as well as additional costs [8].

Behavioral biometrics, on the other hand measure behavioral tendencies that identify a person,
like keyboard typing (dynamics), mouse movement, handwritten signature and so on. While
this kind of authentication does not require any extra hardware, it has a lower adoption rate
compared to physical biometrics mainly because of the variability of human body and mind
over time [8]. However, a big benefit of behavioral biometrics is that authentication can occur
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actively throughout a user’s session. This prevents cases when the user session is hijacked after
the initial logon [8].

One way presented in the literature for implementing behavioral biometrics is keystroke dy-
namics [11][12][13][14]. Other approaches like mouse dynamics, voice recognition, signature
verification and GUI (graphical user interface) interaction analysis are, also, presented in the
literature. These technologies can also be combined in fusion systems [15].

1.3 Problem Definition
This section introduces the main research question that this report is based on as well as sub-
questions which will be used to fully investigate the problem.

How to implement a machine learning system that uses keystroke dynamics to
continuously authenticate the users?

1. What are the cyber security improvements that such a solution would bring?

2. How to continuously track a person’s typing for finding patterns?

3. Which features should be measured in order to uniquely identify a person?

4. Which machine learning algorithms should be used in order to adapt to and detect the
person’s typing pattern?

5. How to calculate the performance of the system?

The objective of this project is to develop a concept for an authentication system based on
keystroke dynamics that uses machine learning to take decisions. The five subquestions provide
more granularity to the problem, by identifying more detailed steps that need to be fulfilled
towards solving the problem. The first subquestion suggests that it should be analyzed if such
a system would provide solutions to any of the cyber security issues that enterprises and users
are facing today, in order to understand if such a system is necessary.

The subquestions 2, 3 and 4 refer to the technical parts of developing such a solution. Since
keystroke dynamics involves authenticating a user based on the way they type, second question
indicates that a way of tracking the user’s typing continuously, in a way that can lead to finding
typing patterns, should be researched. Furthermore, question three aims at organizing the
tracked data in unique sets of features for users that would allow a machine learning algorithm
to make distinctions between them. The fourth question introduces the discussion about which
machine learning algorithms are appropriate in order to fulfill the objective of the project.
Finally, the last subquestion adds the idea that a way of calculating the performance of the
system, in order to understand its applicability in the real world, should be introduced.
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1.4 Structure of the Project
The next chapter, "Methodology" introduces the methods and approaches taken throughout the
project from a research and development point of view. Furthermore, the project continues with
the "State of The Art" chapter where previous work as well as current state of the topics and
technologies used for this project are introduced. Three main topics are discussed, Cyber Secu-
rity Concepts, Keystroke Dynamics as a persistent authentication option and Machine Learning
Algorithms. The Cyber Security section discusses the current issues that users and enterprises
are facing today and which controls are applied to tackle these issues.

When researching Keystroke Dynamics, different approaches for implementing authentication
as well as different choices on which features are used for differentiating users and how they
are organized will be are introduced. In the Machine Learning part, the different types of
algorithms are introduced, together with which algorithms are used in the current Keystroke
Dynamics algorithms.

The "Analysis" chapter discusses the elements introduced in the "State of the Art" chapter from a
business and technological point of view, in order to come up with functional and non-functional
requirements for the system. It is discussed which of the approaches introduced in the "State
of the Art" chapter are relevant to the problem introduced in section 1.3. Also, it is discussed
how the researched approaches are useful and how they can be adapted for reaching the project
goal.

The requirements resulted from the "Analysis" chapter are then used as input for the system
design, introduced in the "System Design" chapter. A short description of the system and it’s
functionality are presented. Furthermore, a high level architecture is introduced, followed by
detailed description of each entity and the interaction between them.

The "Implementation" chapter describes the implementation steps of the project, describing the
technical choices for implementing the system introduced in the "Design". A "System Testing"
chapter is also included where the implemented system is tested with different settings and
results are presented. The project ends with "Discussion" and "Conclusion" where the findings
in this project are summarized, the applicability of the system in real life is discussed and what
future work can be performed in order to improve the system.

1.5 Limitations
In order to limit the scope of the project, limitations are set for the project. They are presented
in the following list:

• Legislation and compliance aspects are briefly introduced but will not be analyzed in depth.
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• A limited proof of concept will be implemented, additional functionality being proposed
for future works.

• Samples for testing the system have been collected in an university environment, by stu-
dents, so the background of a participants is similar. Furthermore, since the software used
for collecting features worked only on Windows OS and could be manually started and
stopped by the participants due to privacy concerns, the samples sizes are limited.

• The proof of concept in this project is built for the Windows OS and it’s functionality is
only guaranteed for the English language, with a Latin alphabet.
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2| Methodology
This chapter introduces the approach taken and the methods used in order to gather data,
analyze it and ultimately design and develop a system that tackles the problem introduced in
section 1.3. The research techniques used for gathering data are detailed, together with the
techniques used to conduct the design and the implementation, as well as how they relate to the
research questions. The reasons behind the methodology choices are described. The research
strategy covers objectives, issues, limitations and data collection resources. This strategy is
described for every stage of the project in this chapter.

2.1 Project Phases
As described in the chapter introduction, the project is built over three phases: Research,
Analysis and Design and System Development. As the purpose of each phase is very different,
the methods used vary accordingly. In this section, each phase is described, together with the
methods used for each of them.

2.1.1 Research

The research stage of the project includes the initial investigation that is present in the intro-
duction and background knowledge. The findings at this stage result in defining the problem
formulation and sub-questions. The research is continued in the State of the Art chapter where
current contributions and developments in the scope of the project are introduced, in order gain
knowledge in the field, as well as, getting familiar with already existing technologies. The gained
knowledge is further analyzed and should be used to shape the final solution used to answer
the problem. The areas included in the research stage form the theoretical framework of this
project. The research framework is introduced in the upcoming section 2.2.

2.1.2 Analysis and Design

Following the State of the Art, the Analysis chapter aims at analyzing the theoretical findings
in report to the main problem and the attached sub-questions. Different approaches proposed in
the literature for implementing keystroke dynamics systems are described and their usefulness
in achieving the goal is discussed. The output of the Analysis chapter is to provide a list of
requirements that describe the functional and non-functional behaviour of the system. The
requirements are prioritized using the MoSCoW method and a rationale is provided. MoSCoW
method is further described later in this chapter in section 2.3.1.

Using the requirements, the system design is performed. A description of the system function-
ality is provided, together with a high level design followed by low level descriptions of the

9



Figure 2.1: Illustration of the chosen research methods. Inputs from literature, regulations, standards and best
practices are used in order to perform the research part of the project. This figure is based on the Methodology

chapter in project [16]
.

entities and modules interactions. In order to make it easier to visualize the functionality and
interactions in the system, UML (Unified Modelling Language) diagrams will be used. UML
will be further described later in this chapter in section 2.3.2.

2.1.3 Implementation

By the end of the project, it is expected that a functioning prototype can be demonstrated.
Low level implementation details are introduced in this chapter, for example coding language,
libraries, resources and so on. The development is built based on the outputs from the Anal-
ysis and Design phases. An agile approach is taken for the software development, with the
requirements being implemented in different sprints, following the SCRUM methodology. This
methodology is described in the upcoming section 2.3.3.

2.2 Research framework
The research framework used for this project is introduced in figure 2.1. The sources for the
project’s research are illustrated as the squares that are pointing towards the research process.

• Literature - The literature research refers to books, articles, research papers and other
publications. Since the purpose of the project is to propose a system to perform the
required functionality, papers running experiments on the matter will be also studied, in
order to understand which of the approaches are providing better results. The materials
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are gathered from online libraries, for example but not limited to, Aalborg University
online library or other universities libraries, IEEE Explore, ScienceDirect, ACM Digital
Library, also using tools like Google Scholar and Mendeley to help search for materials.

• Standards - Standards, as described by ISO [17], are documents or publications that are
built by a consensus of subject matter experts and are approved by a recognized body that
also provides guidance on the design, use or performance of materials, products, processes,
services, systems or persons. By using standards in the project, allows for compatibility,
interoperability and consistency across the system, as well as future expandability.

• Regulations - Beginning of May 2018, the General Data Protection Regulation comes into
force. It is meant to strengthen the individual’s right to privacy. Due to it’s legal nature,
some concepts introduced by GDPR are discussed throughout the project. However, an
in depth study regarding regulations will not be performed.

• Best practice - This part of research contains published materials from individuals and
organizations with relation to the best practices that should applied when tackling a prob-
lem in our area. This kind of data sources is considered highly biased due to their interest
in the area.

2.3 Methods and Tools
In this section the tools and methods that are used in this project are introduced. The MoSCoW
method is used for requirement prioritization. The Unified Modelling Language is used for
drawing diagrams for describing the system functionality. The SCRUM method is used for
splitting the implementation phase into multiple sprints based on requirements prioritization.

2.3.1 Moscow

In order to prioritize requirements, based on the importance of the business needs, the MoSCoW
method introduces a criteria of prioritization of requirements [18]. This method can be also used
to prioritize tasks, products, use cases, user stories, acceptance criteria and tests [19] but for
this project it will be applied just to requirements. As the MoSCoW is an acronym, excepting
the two Os that were added to make the word more readable, the letters stand for:

• Must Have - These requirements are vital for the delivery of a product. Not fulfilling
these requirements may bring functionality, safety or even legal issues to the product. In
order to meet the goals, all the requirements under this category must be implemented.

• Should Have - The requirements included in this category are important but not vital
for the project. The system is still able to run and perform it’s objective, but not including
these requirements may degrade performance or cause missing features.
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• Could Have - The requirements in this category have a much less impact on the project.
These features are usually niche features that are not essentials but may provide benefits.
If resources allow these features can be implemented, even at later stages but are not
mandatory.

• Won’t Have this time - These requirements are agreed to not be delivered in the agreed
time frame or with the current resources. These entities are listed to help clarify the scope
of the project. If the project progresses quicker than expected or the scope changes these
requirements might be implemented.

2.3.2 Unified Modeling Language

Unified Modelling Language helps in specifying, visualizing and documenting models of software
including their structure and design. It is used to provide system architects, software engineers
and software developers with the tools for analysis, design, and implementation of software based
systems [20]. The following UML diagrams will be used for the purpose this project:

• Activity diagram - A UML structure diagram describing the flow of information in the
system from start to finish. I will be used in the introduction to the system design in order
to give an overview of the system functionality.

• Sequence diagram - They are artifacts that model the flow of logic in the system in a
visual manner. The messages are ordered in a sequential manner.They are used for both
the design and analysis phases.

• Component diagram - A UML structure diagram that shows components, provided and
required interfaces, ports, and relationships between them.

• Class diagram - A UML structure diagram that describes the structure of a system
by showing the system’s classes, their attributes, methods and the relationships among
objects.

2.3.3 SCRUM

Compared to the step by step approach in the traditional waterfall method, where the product
is developed in clear steps, with verification running at the last step, this methodology takes a
more adaptive approach. SCRUM applies an incremental design, breaking down the system in
smaller parts. This way, the smaller parts are implemented, with the complexity of the product
gradually increasing [21].

As illustrated in figure 2.2, at the beginning of each sprint, a planning is performed where the
requirements with the highest priority are moved to a sprint backlog. The tasks are then divided
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Figure 2.2: Illustration of SCRUM, used as implementation method for this project. In the product log the
requirements are collected, which are then prioritized using MoSCoW and assigned to different backlogs based
on priority. The requirements are then implemented one by one in the sprints. This figure is based on the

Methodology chapter in project [16].

in smaller sections. The progress should be periodically discussed within the implementation
team and goals should be adapted. In order to manage the time effectively, daily and weekly
milestones are adopted [21].
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3| State of the Art
3.1 Cyber Security Concepts
This section introduces concepts about how cyber security is treated by enterprises and indi-
viduals and what measures are taken in order to improve the security of their systems. The
concept of persistent authentication is introduced, as well as, what kind of attacks are popular
when it comes to exploiting the authentication process.

3.1.1 Risk Management

As introduced in section 1.1.1, companies and individuals hold information that is bringing them
value. In order to protect this information, three main security objectives have to be fulfilled,
confidentiality, integrity and availability (CIA). However, ensuring that these objectives are fully
covered may require a lot of resources. For example, buying a fully featured antivirus may be
very expensive for one user, as well as an overkill, as the risks that they are exposed to may
not justify the investment. Same principle applies for enterprises, as they could buy expensive
protection equipment to protect information that may not have such big value to the company
or protecting against attacks that are unlikely to happen.

In order to understand what risks a company is exposed to, where compromises can be made,
what the effect of the compromises would be, the consequences of these compromises, and how
to reduce the impact or likelihood of of these consequences, the risk management process is
introduced [2]. As shown in figure 3.1, the risk management process goes through six main
steps.

The six risk management steps are presented as follows [2]. The first step involves identifying
the assets that need to be protected. For a company, such assets could be personnel, facilities,
processes and information. The next step, "vulnerabilities", introduces ways in which the assets
can be compromised from the CIA point of view. The "threats" step involves identifying ways
in which the vulnerabilities can be exploited in order to attack the asset. In the fourth step,
threats and vulnerabilities are combined in order to identify the risks. Naturally, a risk is higher
for threats and vulnerabilities that affect an area where the enterprise is less protected. After
the risks have been identified, the way they should be treated is studied in the next step. The
risks could be avoided, by eliminating the vulnerability or the threat. The risk could also be
mitigated, reducing the chance that this risk will occur. The third way of handling the risk is
to share it, which refers to outsourcing it to a third party, for example an insurance company.
Furthermore, a risk could be retained, which refers to accepting the risk and accepting the
consequences.
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Figure 3.1: Illustration of the six steps of the risk management process. Underneath the steps, the elements
that are involved at each step are described.

In the last step, in the case where companies decide to reduce a risk, security controls in order
to achieve this objective are introduced. There are four types of controls [2]:

• Preventive Controls - This kind of controls block the threat in order to prevent the risk to
occur.

• Detective Controls - This kind of controls should detect when a risk happens and generate
alerts which can be acted upon.

• Forensic Controls - This kind of controls monitor and collect records of activities related
to a risk and can be used to produce artifacts that support the operation of detective
controls, as well as investigating incidents and auditing controls to verify their operation
and effectiveness.

• Audit Controls - This kind of controls are used for investigating the presence of a risk and
incidents associated with that risk and the operation of the controls that are related to
that risk.

3.1.2 Persistent Authentication

As described in section 1.2, authentication refers to the process of ensuring that a subject is
who they claim they are. Multiple proofs may be required in a process called multi-factor
authentication, where the user should fulfill two or more criterion, based on something they
have, something they know or something they are. However, while it is possible to increase the
security level of the authentication process, it is a one time process. In this case, if the user
performs the authentication steps but leaves their computer unlocked, another person could
easily start using their computer, without the system noticing that the authenticated person is

15



not using the computer anymore. Same goes for the cases when someone may take control of
the computer remotely. As it will be presented in the next section 3.1.3, there are many types
of attacks that may make use of this vulnerability.

Several approaches have been taken in order to attempt to solve this issue. One approach is
presented in a patent, published by Google [22], where a watch that collects biometric infor-
mation about the wearer is introduced. The collected information is sent to an authentication
module where the biometric information is checked against a baseline information. If the user is
recognized, they are authenticated until the watch senses any changes, for example it is removed
from the hand. Similarly, in another patent [23], the author introduces a wearable that gets
activated by an action, for example putting it in the hand, and gets deactivated by another
action, for example removing it from the hand. Such device could communicate with a server
in order to authenticate a user.

A persistent authentication system is introduced for smart environments [24]. A system is
proposed that is able to authenticate and track users using 3D cameras. This way, the users
are authenticated once, and authentication then persists since the system can track the position
of the users at all times. A similar approach is taken in [25], where the user is authenticated
once, when entering an access controlled area, and then relies on sensors to track individuals
and keep then authenticated. Other papers introduce similar ideas as well, making persistent
authentication a popular concept for smart environments.

However, as it can be concluded from the paragraphs above, these kind of implementations
require extra hardware and are related to particular use cases. Another way, proposed in the
literature, for implementing persistent authentication is by using behavioral biometrics, as in-
troduced in 1.2.1. This concept proposes a system that understands the behavior of the user
based on the way they interact with their computer by following keystrokes, mouse movements,
GUI interactions and so on, without requiring any extra hardware or any modification in the
user’s normal daily behavior. This concept will be further analyzed in this project.

3.1.3 Types of Attacks

Since it is still in a research phase, not many studies have been made about security of keystroke
dynamics. As a resultt, there are no reports about cases when such systems have been breached
or attacked [26].

When it comes to vulnerabilities, a general idea is that the end users are the weakest link when
it comes to enterprise security. As introduced in section 1.1.1, an attacker can make use of end
user terminals to get access inside the networks.

Paper [26] introduces the traditional types of attacks when it comes authentication. Further-
more, in the book [2], common cyberattacks are described. Later in the project it will be analyzed
how keystroke dynamics could improve security when it comes to these types of attacks.
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Traditional types of attacks are categorized as [26]:

• Shoulder Surfing - Refers to the fact that a person can steal a user’s credentials by watching
them insert the information during authentication.

• Spyware - Refers to malicious software that is installed on the user’s computer, that collects
information about them without their knowledge.

• Social Engineering - Refers to the practice of obtaining confidential information about
users by manipulation, generally through e-mail or telephone. This kind of attack is not
an attack that takes advantage of vulnerabilities in the IT systems but rather exploits
people’s trust.

• Guessing - People tend to use easy passwords for their accounts, especially in the cases
where they have to remember a multitude of them. This makes it easy for an attacker to
guess the password or crack it with specialized software.

• Brute Force - This kind of attack refers to an attacker trying all the possible combinations
until they reach the user’s password. This is more of an extension from the "guessing"
type of attack, except that usually specialized software is used. On the other hand, same
as in the guessing case, more complex passwords would take a considerable longer time to
crack than very simple passwords.

• Dictionary Attack - This kind of attack is similar to the brute force attack, in the way
that it searches through different combinations. However, instead of looking through all
the possible combination like a brute force attack, it searches to a number of possibilities,
for example the most used passwords online.

An example of social engineering attack, which is one of the most effective ways of getting into an
enterprise network, is the phishing attack [2]. Attackers send mails with infected content that,
once accessed, gives them access to the victim’s computer. Keylogging, when used in malicious
ways, it is considered a spyware type of attack where an attacker can install software on a user’s
computer which logs all their inputs, stealing passwords or sensitive information [2].

Another attack can be credential harvesting, where attackers can compromise systems that users
use and steal their credentials [2]. This kind of attack is very effective in the case where users
tend to reuse their passwords. This way, a hacker can steal user’s credentials from systems with
weak security and use them to get access into systems with much stronger security.

3.2 Keystroke Dynamics
This section introduces notions about the concept of keystroke dynamics. The historical evolu-
tion of this concept as well as ways of implementation proposed in the literature are presented.
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Ways of testing the performance of such systems are also introduced.

3.2.1 Evolution of Keystroke Dynamics

The idea of using keystroke dynamics for authentication was introduced way before in 1980 [11].
The authors [11] carried an experiment to confirm if people are typing in timing patterns and
if they can be distinguished on the basis of typing "signatures". A group of people was asked to
type three predefined texts and then repeat the task four months later. The time between each
two successive letters, a combination which is referred to as digraph, was measured. The results
were that each person had similar typing behavior for both sessions and that it is reasonable to
consider authentication procedures based on keystroke timing. The method of interpreting the
data was purely statistical, with graphs and distances between two sets defining the similarity
between them. This statistical approach is taken, also, in more recent papers where a reference
set is trained in the system for each user. Each time that user is authenticated, a test set is
created is then compared to the reference set.

Another popular approach is using methods that are taking advantage of the neural networks
paradigm [13][26]. A neural network approach, uses automated machine learning techniques in
order to build a prediction model based on historical data. This prediction model is then used
to classify a new observation for a user that is being authenticated [26]. With the development
of machine learning algorithms, the gap between these two approaches becomes less clear, as
several algorithms are using different statistical methods in order to build a model and take
classification decisions automatically.

More recent papers, are also using trigraphs or quadgraphs which are combinations of three or
four successive letters in order to offer more context to keystrokes, increasing the accuracy of
the measurements.

While initial work focused on predefined text samples, more recent studies have been looking at
ways of analyzing long free text samples. When analyzing predefined text samples, keystroke
dynamics authentication works in a similar way to the dual-factor authentication techniques
that are widely available today. A system either asks the user to type a predefined text in a
text box or apply measurements when the user enters their user names or passwords.

3.2.2 Types of Authentication

There are two security methodologies to which keystroke dynamics can be applied, static and
dynamic authentication [13]. This categorization is illustrated in figure 3.2. In static authenti-
cation, keystroke analysis is performed by a system at the time of login. The timing patterns
are calculated based on the user’s entry of username and password and they are compared with
a profile that has been explicitly trained previously. Based on the degree of similarity a decision
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Figure 3.2: Categories of Keystroke Dynamics Authentication based on the input to the system. The specifics
of each category are illustrated.

is taken either to accept or reject the authentication. This kind of systems have been proposed
in literature in various publications [14][27] , and are considered to be the simpler of the two
types as the sampled data is fixed. It is also possible to incorporate impostors patterns in the
training of the algorithm in order to strengthen the classification model [22].

Furthermore, when using static context, the process of authentication will become more effective
over time through training. Also, people tend to form a habit after typing their user names and
passwords multiple times, developing a constant rhythm [13]. However, this also introduces
certain disadvantages, as the rhythm of the user’s typing changes over time, the algorithm has
to either have tolerance towards this issue or adapt to it. Moreover, when a user changes their
password, the algorithm will need to be retrained from scratch. Given these inconveniences,
it can be concluded that while static context keeps the algorithms simple and provide good
theoretical results, mainly because of the fixed-text nature, it is hardly suitable for practical
systems that are designed for long term use [13].

On the other hand, dynamic authentication is a security paradigm that tries to create a user
profile based on their typing patterns using an unknown stream of input data [28]. Such a
system would monitor a user’s keyboard and generate reports in real time or near real time
about the confidence of the users’ authenticity [13]. This is an advantage over traditional
authentication methods as they mostly provide confidence at the time of log in while they don’t
check continuously if the person using the computer is still the person that logged in. However,
because of the varying nature of the data, the system must be very carefully designed as there
may be a lot of noise. Also, since long strings of data are analyzed, there is a likelihood that
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Figure 3.3: Categories of Keystroke Dynamics Authentication based on the type of decisions the system takes.

there may be pauses in the typing, like interruptions or distractions, or users may go back and
make corrections in the cases of typing mistakes and so on.

These two ways of authentication are also summarized and the dynamic approach is further split
into two categories, periodic and continuous [26]. In a periodic fashion, data is logged throughout
the session and authentication is performed periodically at different time frames. In a continuous
approach, data is captured during the entire duration of the session and continuously checked.

Other approaches introduced in [26], are keyword-specific, which extends the continuous or
periodic monitoring to consider the metrics related to specific keywords. Another approach is
application specific which also extends the continuous or periodic monitoring to develop separate
keystroke patterns for different applications.

The functionality of the keystroke dynamics can be also be categorized as illustrated in figure
3.3, based on the way the system takes decisions, namely identity identification and verification
[26]. Identification mode, also known as multi-class or one-to-many matching, helps answer the
question "who is the user?". It occurs when the identity of the user is unknown. In this case,
the system compares the biometric data provided by the user with all the entries in a database
and returns the most likely one [29].

In identity verification mode, also known as binary or one-to-one matching, the question "is the
user who they claim to be?" answered. The identity of a user claiming to access a system is
known. This way, the system compares the biometric measurements provided by the user to the
records belonging to that user.
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3.2.3 Feature Selection and Performance Metrics

As introduced in [26], a variety of keystroke metrics are widely used in literature in order to
perform free text, dynamic authentication. The following metrics are introdcued:

• Digraph latency - Typically measures the delay between two letters being pressed. In
literature, some papers consider this metric as being the time between two key down
events while others consider it to be the delay between the key-up and the subsequent
key-down events.

• Trigraph latency - Extends the digraph latency to consider the timing for three consecutive
keystrokes

• Keyword latency - Considers the overall duration of complete words or of unique combi-
nations of digraphs and trigraphs.

Also, key hold timing is also one metric used in some implementations [13]. This kind of metric
measures the duration of each consecutive key being held down. However, rather than having
to choose between the inter key timing or key hold timing, it is rather preferable to fuse the
metrics together into a more robust algorithm as proposed in [12][13].

Additionally, in paper [12], the authors suggest that standard deviation of each digraph can
be used as features, when digraphs appear multiple times. They suggest calculating the mean
values and standard deviations for these digraphs.

The typical metrics in order to measure the quality of a system that implements behavioral
authentication are FAR (False Accept Rate), False Reject Rate (FRR) and Equal Error Rate
(EER) [30]. FAR refers to the percentage of times when an imposter is accepted, while the FRR
refers to the percentage of times when a legitimate user is denied. The EER is the error rate
achieved when the detection threshold of the system is set in order for the FAR and FRR to be
equal.

The results in the literature for keystroke dynamics authentication systems ranged from a FAR
of 5% [31], to 2.24% [8], or even 1.24% [15]. However, these papers, together with other papers
presented in the literature have obtained these results in a laboratory environment and they
agree that further testing and improvement is required before this authentication method can
be used in the real world.

3.3 Machine Learning
Artificial intelligence is a field that was started in 1956, at Dartmouth College, by John McCarthy
[32]. It was created to automate many functions of business. Initially it was used in factory line
automation, but with the development of computers and increase of processing power, human
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Figure 3.4: Example of supervised learning methods. On the left, a binary geometrical classification example
is illustrated, where a linear border is found between the two classes. On the right, a regression example is

shown where the algorithm tries to find a relationship between variables.

factors were added based on psychology, sociology, and neuroscience. It lead to the development
of human-like solutions, for example designing machines based on human brain patterns called
neural networks [32].

Machine learning is a subfield artificial intelligence. It refers to "the ability of machines to learn
and work on new problem dimensions without being explicitly programmed to do so" [33]. There
are three types in which a machine can learn, supervised learning, unsupervised learning and
reinforcement learning [32].

3.3.1 Supervised Learning

In supervised learning, the data that is used to train the system has a known label [34]. This
way, the inputs and the desired outputs are known for the training data. The system uses this
data to build a model, that is later used for taking decisions. Regression and classification are
types of outputs that a supervised learning algorithm can produce [34].

Classification refers to the operation of predicting classes based on observations [33]. The classes
are known beforehand and the algorithm is trained using supervised learning. The training
is done by providing multiple observations together with the classes that they belong to the
algorithm. The goal of the algorithm is to find to which class are new observations most likely
to belong. Classification algorithms are of different types, based on the way the decision model
is built. The types are probabilistic methods, geometric methods or entropy methods. In figure
3.4, a liniar binary classification is illustrated.

Regression is similar to classification because the target values are known. However, while
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Figure 3.5: Unsupervised Clustering example where different measurements are arranged in clusters based to
their distance from the closest mean.

in classification methods, the target values are nominal, in regression methods target values
are numerical. The algorithms are concerned of modeling a relationship between variables, for
example fitting a polynomial, as illustrated in figure 3.4. It is iteratively refined using a measure
of error in the predictions, and it is considered that the algorithm is trained when the smallest
error is reached [34].

3.3.2 Unsupervised and Reinforcement Learning

In the case of unsupervised learning, the input data used for the training is not labeled and a
desired result is not known. The machine will try to find patterns and structures in the input
data and prepares a model. This may be done through a mathematical process to systematically
reduce redundancy, or it may be to organize data by similarity. Clustering or dimensionality
reduction are approaches that make use of unsupervised learning [34].

Clustering algorithms’ goal is trying to group together similar instances. After the inputs are
grouped together, they are arranged in clusters by using methods like geometrical distances or
probabilities. This process is illustrated in figure 3.5.

The reinforcement learning model helps the machine learn from interactions with the environ-
ment. It is based on the concept on how the output should be changed based on how the input
changes. The machine receives positive or negative feedback for every action taken and will try
to maximize the rewards that it receives [33]. An example would be a machine trying to learn
chess where every good move will be rewarded, while bad moves would receive a punishment.
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3.3.3 Machine Learning Algorithms

The machine learning algorithms that are going to be used later in the this project are briefly
introduced in this section. Since features are being collected from known users, supervised
learning method is being applied.

Naive Bayes is a Bayesian algorithm that explicitly applies Bayes’ Theorem for problems such
as classification and regression [34]. However, it uses the "naive" assumption of independence
between every pair of features [35]. Naive Bayes learners require a small amount of training
data to estimate the necessary parameters. However, although naive Bayes is known as a decent
classifier, it is known to be a bad estimator [35].

K Nearest Neighbors is an algorithm functioning under the simple idea of "finding a predefined
number of training samples closest in distance to the new point, and predict the label from these"
[36]. The number of nearest neighbors can be configured by the user to fit their requirements.

Decision trees are using supervised learning method to create a model of decisions by using the
actual values of the attributes in the data [34]. Entropy may be used in order to build decision
trees.

Logistic regression, despite its name is a regression model and linear classifier, where the output
is categorical [37]. It is estimating probabilities using a logistic function that can take any input
and will always output a value between 0 and 1.

Similarly, SVM (Support vector machines) derives a linear decision boundary. It works based on
the requirement that the distance between instances and the boundary, which is a hyperplane
is as large as possible.

3.3.4 Algorithm Performance Testing Using K-Folds Cross Validation

Before using a machine learning in a production environment, its performance on the available
datasets should be tested. One approach could be to train an algorithm and then run the
tests on the same data. However, according to [38], this situation could lead to overfitting of
an algorithm where it could have very good results on the test data but it would have bad
performance on any new yet-unseen data.

K folds is a way of testing performance of machine learning algorithms that tries to avoid this
problem. It works by splitting the dataset, comprised of features and labels, into k parts (thus
the name K-Folds) and using a number of folds for training and a number of folds as validation
to test the performance of the training. Nonetheless, in this case, by partitioning the dataset,
the number of features available for training is lowered and the result may depend on the choice
of the training and validation dataset [38].

Cross-validation comes to solve this issue [38], by running a loop where k-1 folds are used for
training and the resulted model is validated against the remaining part of the data. The results
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from each loop are then averaged to obtain the final performance score.
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4| Analysis
This chapter aims to analyze the concepts and technologies introduced in the State of the Art
chapter 3, in order understand the benefits and clarify the requirements for building a solution
that addresses the problem introduced in the Problem formulation section 1.3. The chapter is
structured based on the project’s subquestions, each section corresponding to one subquestion.

4.1 Cyber Security
This section describes the security benefits that a keystroke dynamics authentication system
would bring to an enterprise or a user. Furthermore, the types of authentication that can be
performed with such a system are introduced and it is concluded which concepts are most likely
to answer the first sub-question ("What are the cyber security improvements that such a solution
would bring?"), introduced in section 1.3. Subsequently, architectural choices in order to enhance
security of the system are discussed.

4.1.1 Security Controls

Keystroke dynamics authentication is a concept that could provide a solution to multiple vulner-
abilities that exist today in enterprises’ or individuals’ cyber security. In the section 3.1, popular
types of attacks together with types of controls to mitigate these attacks have been introduced.
Keystroke dynamics can be used to provide controls in order to mitigate these threats.

However, as described in the State of the Art chapter 3, this kind of authentication systems are
more prone to errors than other traditional authentication systems so they should be carefully
tuned and be used in conjunction with a primary authentication method. Depending on various
factors like the application being used, or a user risk score, different actions can be taken when
an alert is triggered. For example, if a user is accessing a critical resource, they can get locked
out immediately when an intruder is detected, preventing the access, while for more non-critical
resources that are used often, a decision could be delayed until more samples are collected or
inputs from other systems are compared. However, in order to provide flexibility, as well as
a separation of functional duties, the keystroke dynamics authentication system should send
authentication results to a security center, where a decision can be taken based on additional
factors, in a process similar to the one illustrated in figure 4.1.

Furthermore, the need of a primary authentication system is accentuated by the fact that a
keystroke dynamics system requires an initial number of keystrokes in order to take the authen-
tication decision. Without having an initial authentication step, the user’s computer would be
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Figure 4.1: Keystroke dynamics authentications system used to provide detective and forensic controls to a
security center. By analyzing inputs from multiple systems, the security center can take action upon a user, if

necessary, or provide historical logs in case of breaches.

freely accessible until the first sample is analyzed. Furthermore, if an attacker is interacting
with the computer in a way that does not include typing, they could have uninterrupted access.

That being said, a keystroke dynamics authentication system could prove very useful at providing
detective controls and forensic controls, as described in section 3.1. This way, when the system
detects an intruder, it can notify a security center, where input from multiple systems can
be processed and a decision like locking the user out can be made. Furthermore, as a forensic
control, such a system could provide valuable logs about the activity of users from authentication
point of view. In the case where a breach or an attack happens, logs from the system could
be checked for suspicious activity, as they provide a continuous report about the certainty of a
user’s authenticity.

4.1.2 Attack Mitigation

Different possible attacks have been introduced in section 3.1.3. These kind of attacks focus
mainly on user authentication, finding vulnerabilities in this process. If an attacker manages to
take control of a user’s computer they may use this access for an even bigger scope, for example
getting access inside a company.

Applying keystroke dynamics authentication can be useful against some of the most popular
attacks performed today. As introduced in section 3.1.3, a shoulder surfing type of attack can
occur at any moment when a user introduces their user name and password. However, using
a keystroke dynamics authentication system, as second factor authentication, eliminates this
problem, as even if an attacker could steal the credentials that a user needs in order to access
their system, they would also need to match the exact typing pattern of a user.

In the case of spyware being installed by an attacker on the victim’s computer, keystroke dy-
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namics authentication may not prove very efficient in some cases, depending on how the spyware
is operating. While it may be able to identify an attacker that remotely controls the machine, a
spyware program could get access to the whole system of a user, closing the process or intercept-
ing the user’s typing patterns, allowing the attacker to reproduce this patterns with specialized
software in order to trick the system into believing a valid user is performing actions. On the
opposite side, there are social engineering attacks which don’t exploit vulnerabilities in the IT
systems, more getting information directly from the users by using manipulation techniques.
As described in section 3.1.3, phising is a very popular attack that goes under this category.
A keystroke dynamics authentication system may greatly help in this case, as in most of the
situations attackers steal credentials from the users. However, it might be possible for hackers to
ask users to write information while their keystroke pattern is registered. Nonetheless, it would
require users to write long lines of text in order to get a meaningful keystroke pattern that can
be used to replicate a user’s typing.

When it comes to guessing, brute force or dictionary attacks, the situation is similar to the
shoulder surfing case. Since dual factor authentication is used, even if the password of a user
is cracked, an attacker would have to replicate the user’s typing pattern in order to pose as a
legitimate user.

In conclusion, it is safe to say that a properly implemented keystroke dynamics system can
provide protection against popular types of attacks where an attacker can steal the user’s cre-
dentials. It could provide detective controls as well as valuable forensics information about users’
activity.

4.1.3 Authentication Type

As introduced in section 3.2.2, two main types of authentication can be performed using keystroke
dynamics, static and dynamic authentication. Static authentication is using a fixed, known string
as input. On the other hand, dynamic authentication happens during the user session, either
continuously or at certain points in time, and it is applied on free-text strings.

Static authentication, can be easily combined with username and password authentication, al-
lowing the system to perform keystroke analysis while the user types in their credentials. Using
fixed sized strings of text, it has a performance that is very close to the most commonly used
physical biometrics [15]. Applying this kind of authentication would be an improvement to
physical biometrics as it doesn’t require extra hardware and is transparent to the user. How-
ever, it does not solve the issue of continuous authentication. This is mainly because it only
monitors particular strings of text at certain steps of using a system, so once the user performs
the authentication, it is impossible for the system to monitor the free-text that the user types.

On the other hand, dynamic authentication using keystroke dynamics, is able to continuously
or periodically analyze the user’s typing activity and authenticate them, using any text that
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Figure 4.2: Static keystroke dynamics authentication
in a multi-factor authentication process. Keystroke

information is collected during username and password
entry. Figure 4.3: Dynamic keystroke dynamics

authentication in a multi-factor authentication process
where events are sent to a security center. Keystroke

information is collected from free-text typing of the user
during their session.

the user inputs. This kind of authentication is able to identify if the session is hijacked after
the user is initially authenticated. Furthermore, it doesn’t require any extra hardware and it
doesn’t need any user intervention.

An example of the functional steps of the two authentication types is illustrated in figures 4.2
and 4.3. As it can be observed in figure 4.2, the static process is a simple step by step two factor
authentication process. Firstly, the user introduces their username and password. While this
action is performed, the system also collects keystroke information. The system then checks the
username and password and, if they are correct, it checks the user’s keystrokes to see if they
match their pattern. If both steps are positive, the user is granted access to the system until
they choose to log out.

In the case of dynamic authentication, illustrated in figure 4.3, the user is granted access imme-
diately after their username and password are checked. The system starts collecting keystroke
information and performs authentication when enough keystrokes have been recorded. If the
authentication fails. a notification is sent to a security center. The keystroke authentication
process is repeated continuously while the user is active.

Furthermore, as all the keystrokes of the user are being monitored, privacy is a big factor to take
into consideration. If the keystrokes information is sent to a server where it is processed, it is
very important that sensitive data does not leave the local device. Processing of the keystrokes
information is required on the local device in order for the data to lose contextual information
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and be irreversible. This process is described in more details in the feature extraction section.
Nonetheless, using a centralized server could greatly increase security as the user’s data that is
stored for modeling and retraining the machine learning algorithm, could be better protected,
compared to storing it on the user’s computer, ensuring confidentiality. In this case it should
be noted that also the communication between the server and the client must be secure.

Using a client server approach could also improve security in the case of mallware taking control
of the user’s computer. The client could notify the server when a user becomes active. This
way, timers could be activated on the server and the client. The client should send a message at
every few minutes while the server should raise an alarm if a client stops transmitting. This way
if the process is forcefully stopped on the client, by mallware for example, the server will raise
an alarm, indicating that something is wrong with the client. The client should also inform the
server when the user becomes inactive, in order to cancel the timers.

In conclusion, in order to solve the objective of performing, transparent, continuous authentica-
tion, a dynamic authentication keystroke dynamics solution will be considered for development.
However, it is important to take into consideration the requirements that ensure user’s privacy.

4.2 Benefits and Drawbacks of Keystroke Dynamics
This section introduces a short discussion related to the benefits and drawbacks of using keystroke
dynamics authentication over other authentication methods, mainly physical biometric methods.

4.2.1 Drawbacks

As described earlier, in section 1.2.1, compared to physical biometrics, the behavioral biometrics
approach has to deal with features that may change over time, even between two consecutive
samples [39]. Furthermore, variability between two samples occurs even if the user strives to
maintain a uniform typing pattern[39].

Some attempts were made to collect other features other than time, like pressure [40]. A system
for smart cards is proposed, where smart cards and on card sensor can sense the pressure of
the user’s presses. However, most of the keyboards used today only send signals when a button
is pressed or released. This way, the only measurement that can be performed is differences
between events’ time stamps. This measurements have to be heavily filtered however since they
may be very noisy and, at parts, unreliable.

Some papers, like [12], introduce the idea of emotion recognition using keystroke dynamics. This
suggests that the users may have a different typing pattern based on their emotional status or
environment changes. For example, if a user is angry they might type differently. Also, if there
are a lot of distractions in the environment, the user may type differently compared to when they
are focused. Another example may depend on the application that the users are using. There
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may be different typing behavior between the case when one is typing a document compared to
when they are writing code.

Furthermore, it is fair to suggest that the keyboard may influence the typing patterns of a user.
If a user changes their keyboard, there may be some adaptation time. Also, as mobility is an
important factor in companies today, people might travel to different countries, having to use
different keyboard layouts. All these aspects bring noise into the measurements.

Moreover, while experiments ran in a laboratory environment might provide good results, it is
very important to test these aspects in real world scenarios. While these factors may have a
smaller impact when analyzing text in a static way, where the input is known in advance, when
continuously authenticating the user by monitoring real time typing, the presented issues may
greatly impact the performance, resulting in false accepts or false rejections of users.

4.2.2 Benefits

Despite the described drawbacks, there may be some use cases for keystroke dynamics authen-
tication in certain cases, where it can be used as a multi-factor authentication method. One
main advantage of it, however, is that it doesn’t require any extra hardware. This authentica-
tion method could run in the background with little to no intervention required from the user.
Furthermore, as it will be introduced in the research part of the project, tuning the algorithm
in order to adapt to certain situations may provide good authentication results.

One way of tuning the algorithm is to set thresholds at values that would never reject legitimate
users. Even though, this approach would reduce security, it would save the trouble of users
complaints. The actions taken when an intruder is detected can also influence user’s experience,
as the system could be used as an informative system, where in case an intruder is detected an
alert can be sent which is then analyzed further. On the other hand, for more sensitive systems,
where the accesses are infrequent, the system could automatically lock the user out.

Another benefit which is a consequence of the facts that no extra hardware is required and no user
intervention is needed, is that authentication can be performed continuously and transparently.
This brings a huge plus to the authentication procedure, as the user can be authenticated
even after the initial authentication step. This way, if the user session is hijacked after the
initial authentication, the intruder should still be detected. Using this continuous authentication
method, the system could report a confidence score for the user’s authenticity to a security center
regularly.

4.2.3 Conclusion

In conclusion, studies show that the typing pattern of a user may be influenced by external
factors or emotional factors, and generally, recording the typing of a user may provide mea-
surements with a lot of noise. However, with proper filtering and algorithm tuning, it has been
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demonstrated that useful results can be obtained (section 3.2.3). Furthermore, the fact that
this kind of authentication does not require any extra hardware or user interaction, makes it an
interesting candidate for future authentication methods.

4.3 User Tracking
This section compares ways through which a user’s behavior can be tracked in order to perform
persistent authentication, after the initial authentication step. Moreover, it is discussed what
data sources can be used in order to extract information about the physical interaction between
a user and their keyboard. This section aims to find the best approaches in order to tackle the
second subquestion as introduced in section 1.3 ("How to continuously track to a person’s typing
pattern"?).

4.3.1 User Tracking Methods

As it can be inferred from the different methods introduced in section 3.1.2, in order to implement
a persistent authentication system, a way of tracking the user is required. Usually, as a first step,
the user is authenticated by various methods, and then the system keeps tracking the user in
order to continuously confirm their identity. In order to perform this, some methods have been
proposed, that include following the user around an area by using cameras, or using physical
devices like smart cards or smart wearables that the user should carry and the system could
sense their presence.

Such systems could greatly increase security as users are being authenticated and monitored
constantly. However, since additional hardware is required, such systems may be expensive to
implement. Also, users must always carry their authentication devices which may cause in-
terruptions in their productivity in cases where the users forget their devices or the devices
malfunction. Furthermore, privacy concerns may be raised, as users are being constantly moni-
tored, and different biometric attributes may be measured.

On the other hand, keystroke dynamics authentication could provide a way to continuously
authenticate users, while eliminating the need of additional hardware or any intervention from
the users. Such a system tracks the keystrokes of a user, and uses them for extracting different
features that help it learn the user’s typing pattern. This system also provides flexibility, since it
is a software implementation, it can be integrated directly into operating systems or applications.

4.3.2 Data Sources

As described earlier in the project, in section 4.2, measuring time differences is the main approach
taken when collecting information about the interaction between the user and a keyboard. Even
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Figure 4.4: Different ways of capturing user keystrokes. An OS level keylogger intercepts all the keystrokes
before they reach the active application, while the application level keylogger records only keystrokes performed

inside the application.

though studies have been made for measuring pressure, modern day keyboards don’t have this
possibility. Mainly, the only events that can be registered by a keyboard are the pressing and
depressing of a key. However, as it will be discussed in section 4.4.2, measuring the time difference
between keystrokes may provide features that are sufficient enough to be able to identify a user.

In order to capture the keystrokes information, a way of intercepting the user’s keystrokes must
be implemented. This action is also refereed to as keylogging. For example, a text box on a
website, that collects keystroke information for the text that a user types inside it. This approach
could be very useful in the case of static authentication, as website administrators can implement
keystroke dynamics as a second means of authentication. They could collect keystroke statistics
when the user introduces the user name and password. Also, applications can be developed
that, whenever they receive a keystroke from the user, they can register it as an event. However,
while this approaches may be efficient, they are not satisfying the goal of having continuous
and transparent authentication. In this case, keystrokes should be continuously recorded, on OS
level, independent of the applications being used. This functionality is illustrated in figure 4.4,
where both cases of an application level and OS level keyloggers are shown.

A keylogger is a piece of software that can implement a hook into the operating system, transpar-
ently intercepting events that are sent by the computer’s I/O devices, the keyboard in this case.
It could provide useful to satisfy the objective of this project. When a number of keystrokes are
registered, the keylogger can send the collected data to the next step for analysis. Since it is
an operating system level keylogger, implementations may vary depending on the OS, so before
implementing such a software, it should be clarified on which operating systems it will run.
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Figure 4.5: Recording information about keystrokes from the moment a key is pressed until it is depressed.

In order to provide useful information regarding a user’s typing patter, such a keylogger should
be able to record when a key is pressed or depressed. Furthermore, it should register the name
of the key that is pressed and add a timestamp to the event. This information can be used later
to extract features. Figure 4.5 illustrates the temporal sequence of keystrokes being pressed by
a user. Two timestamps can be registered, the press and depress time, while the time between
them can be considered the dwell time. As in can be observed, it is also possible that one key
is pressed before the previous key is depressed, causing an overlap.

However, since it does record all the inputs of the user, privacy and security are important
factors, especially that keyloggers are usually seen as threats by several security systems, as
they can be used to steal passwords, bank details or other sensitive information. Users are
generally reluctant when it comes key logging software. It is because of these facts that a
keylogger should be carefully designed and the user properly informed of it’s functionality.

4.4 Features
After the human-keyboard interaction is converted from a physical action to data that can be
processed by a computer, features have to be extracted from this data that would uniquely
describe each user. Since the system should be able to recognize free text, meaning that there is
little chance that the user will type the same sequences twice, flexible features that are applicable
to any text should be used. One solution, as presented in most of the literature, summarized
in section 3.2.3, is to group multiple letters and calculate the time differences between them as
illustrated in figure 4.6. A group of two letters is referred to digraph while groups of three or
four letters are referred to as trigraphs or quadgraphs. In the following sections, ways of filtering
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Figure 4.6: Digraph Measurements

the data collected by the keylogger in order to eliminate noise, as well as how to organize it
in features are described. The temporal sequence of the tracked characters has to be removed
by processing, as well, for ensuring privacy. This section aims to provide answers for the third
subquestion introduced in section 1.3 ("Which features should be measured in order to uniquely
identify a person?").

4.4.1 Information Filtering

As described in section 4.2, behavioral biometrics measurements are subject to lots of noise. In
order to try to minimize the noise and it’s impact on the authentication decision, filtering has
to be applied to the dataset before features can be extracted.

It is normal that when typing long lines of text, users will take pauses at random points in time.
This will result in a long time difference between keystrokes that can affect the performance of
the classification algorithm. A ceiling should be introduced in order to eliminate long pauses.
Different papers propose filters for solving this issue. Digraph measurements are introduced in
figure 4.6. The values that are proposed are varying around 600 to 800 ms for digraph latency
(UD time) [31]. These values are used as a reference, however tests on the final product should
be run in order to find the ideal threshold. A minimal value of 10 ms is also proposed in [31], as
it eliminates the cases where users might press two buttons at the same time by mistake. From
real life testing, however, it was deducted that when measuring the digraph latency (UD time),
it happens several times that a key is released after the next key is pressed. This would result
in a negative digraph latency which would be eliminated if a low filter is applied. This filter can
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be applied after the information is received from the keylogger and pre processed. This may
result in samples being dropped and has to be taken into account when setting the number at
which the keylogger triggers an analysis.

Furthermore, when a key is pressed for a long time, the operating system will start sending
multiple repetitions of the corresponding key. This will result in digraphs containing the same
letters to be recorded for multiple times. According to English Oxford Dictionary, there are no
words in English that contain the same letter more than twice in a row. In this case, whenever
a letter appears for more than two times in a row, the corresponding digraphs will be ignored.

Moreover, as keys that don’t represent alphabetical characters, like delete, control, alt, backspace,
arrows, etc. may be used on a random basis, a filter should be applied in order to collect only
letters. It would make sense to implement this kind of filter directly into the keylogger, as it
would reduce the number of discarded samples in the pre processing phase as well as using the
memory in a more efficient way.

4.4.2 Feature Extraction

The data collected by the key logger is a stream of events which includes the action, the key
and the time stamp of each event. As described in the previous sections, the data needs to be
pre-processed in order to be useful for the classification algorithm as well as ensure the privacy of
the user. As introduced in the State of the Art chapter 3, several features, that can be extracted,
are introduced in the literature.

Some of the literature suggests collecting digraph data, together with trigraph data for better
results [31][13]. However, in paper [13], experiments showed that the user may type the same
digraph differently, depending on the context. It was proven that there is a considerable dif-
ference in the speed with which a user types a digraph, based on how familiar the phrase that
they are writing is. As a result, the author suggests extending the data capture to trigraphs
and quadgraphs in order to include contextual information.

When using trigraphs or quadgraphs, however, there is a risk that the processing of data will
affect the performance of the user’s computer, because of memory and cpu usage. The necessity
of performing additional measurements, as well as storing and transferring bigger amounts of
data might impact the system.

On the other hand, other than providing more context to the samples, using trigraphs and
quadgraphs increases the number of possible measurements to be performed, which may result
in multiple possible features to be extracted. Using the combinations formula

Ck
n = n!

k! ∗ (n − k)! (4.1)

36



it can be calculated how many measurements can be performed. The n in the formula repre-
sents double the number of keystrokes taken into consideration (as two events are recorded per
keystroke), while the k will always be 2 as the measurements are performed between a start
time and an end time. Applying the formula, it can be concluded that using digraphs, 6 mea-
surements can be performed, as illustrated in figure 4.6, while using trigraphs 15 measurements
are possible and in the case of quadgraphs 28 combinations are possible.

In the paper [31], the authors compare the precision of a keystroke dynamics authentication sys-
tem when using digraphs, trigraphs and words. Although the conclusion is that the effectiveness
of the techniques depends a lot on the user, the overall results showed that measuring digraphs
provided the smallest FAR, of around %5. However, the paper concludes that using digraph
data alone is not enough for a live system and multiple metrics from digraphs and trigraphs, as
well as other sources, should be combined together.

Such an idea is approached in [8], where the author uses the features described in the [31] paper
and combines with mouse dynamics and GUI interaction features in order to obtain FAR of
2.24% and FRR of 2.10%. Also, in the paper [15], a user adaptive approach is taken where the
features are given different weights for each user depending on the frequency that they appear
and the speed they are typed at obtaining results as good as 1.24%. Paper [13], proposed
features to be collected from trigraphs for inter-key times, as well as quadgraphs for hold times.

After measuring the data, it has to be processed in a form that can be useful to the classification
algorithm. A keyboard with 104 keys, results in 10816 possible digraph combinations, most of
which are never used [8]. One approach, applied in paper [12], is to use the most frequent
digraphs appearing for a language, 20 digraphs in Polish for this case as features. In paper [31],
all the digraphs and trigraphs are logged, and a limit variance is configured. The digraphs and
trigraphs with a big variance or that don’t have any values are removed.

The paper [15] takes a user adaptive approach to processing digraph data. The digraph data is
sorted based on the frequency of appearance, speed and variance. Then, the data is split into
eight features. The first 1/8 of the data going in the first feature, by calculating the mean value,
next 1/8 to the second feature and so on. Each feature is, then, assigned a weight.

In [13], multi-dimensional matrices are used for storing the statistics. For example, in the case
of trigraphs, a three dimensional matrix is used, with each axis corresponding to the letters.
The data for the trigraph is stored at the intersection of the three letters.

By using any these approaches, the possibility of recovering a chronological log of keystrokes is
lost, thereby improving privacy.
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Figure 4.7: Feature Extraction Process

4.4.3 Feature Extraction Considerations

By using an agile approach on the system development, incorporation of features can be done
in several stages. Measurements are performed after incorporating new features in order to
evaluate the impact on the performance and decide whether a feature should be kept in the
product for future tests or be removed. For this matter, the system should be built in such
a manner that it offers the flexibility to add and remove features without impacting the rest
of the functionality in the system, using the OOP approach. Moreover, since the keystrokes
of the users are logged continuously and features are extracted when enough keys are logged,
impact on system resources should also be considered. Depending on the method chosen, feature
extraction can be a resource demanding process so a balance between simplicity, resource usage
and machine learning algorithm performance should be considered. Furthermore, in order not to
lose samples, since the feature extraction process could be time consuming, these two processes
should run in parallel and not sequentially.

The process considered for this project is displayed in figure 4.7. in this example, the words
"hello lost" are written by the user. At the first step, information for each keystroke is captured
by the keylogger, indicating the action "Up" or "Down", the actual key that was pressed and the
timestamp. As discussed in section 4.4.1, only alphabetical characters are being recorder while
all other keystrokes are ignored. The timestamp in this example is simplified for illustration
purposes. In a normal case, the timestamp is returned by the operating system, usually in
Unix Epoch time. Unix time is a system that describes a point of time by the number of
seconds elapsed since 1 January 1970. For example, the actual timestamp for "Down", "h" is
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1527423987.1935947 seconds, which would translate to Sunday, May 27, 2018 12:26:27.193 PM
GMT.

As it is implied, such a timestamp may provide a lot of information, so in order to ensure privacy,
during the pre-processing step, the data is arranged in digraphs and only the time differences
between the characters are stored. This way, it is not possible to trace back the exact moment
of typing each letter. In the case where a digraph appears more than once, the average value
is calculated for the timing information and the number of occurrences is recorded. As this is
a very small example dataset, there is only one digraph that occurs twice ("l-o"), but in a real
case scenario, repeated occurrences are very probable. There may be cases where one digraph
appears a number of times but the timing data has a high dispersion, resulting in a mean
value that is not very representative. For this reason, together with the mean value for each
digraph, the standard deviation should also be calculated. This standard deviation can be used
for eliminating digraphs that have high sparsity, or use it as a feature for the machine learning
algorithm.

As it can be observed in figure 4.4.2, it is still possible to decode what the user was typing
since the digraphs are in order. However, ordering the digraphs by the occurrence times or
just randomly, during pre processing, would strengthen privacy of the user even more, as the
temporal order would be lost. Furthermore, as discussed in section, 4.4.1, values higher than
600 ms are considered as breaks in typing and are ignored. In this case, there is a break made
by the writer between the two words. Also, as it can be observed in the "o-s" digraph case, there
is also possible to have negative values in the UD case. This appears when the user presses a
key before releasing the previous one.

As a first step of implementation, four features are considered for the machine learning algorithm.
In this way, the mean values of the DD time, UU time, UD time and digraph time are calculated,
and the results are used as features. As it can be observed in the last step in figure 4.4.2, the
pre-processed data is used for feature extraction. Four features are extracted, corresponding
to UU, DD, UD, DU timings for each user. These features are then used to train the machine
learning algorithm and later to authenticate users.

4.5 Machine Learning
In this section the machine learning approaches, discussed in State of the Art chapter, section
3.3, are examined in accordance to the objective of the project. Different machine learning
approaches and ways to train algorithms are introduced, as well as which algorithms may fit the
keystroke dynamics authentication system. This sections aims to answer the fourth subquestion,
introduced in section 1.3 ("How to use machine learning algorithms in order to adapt to and
detect the person’s typing pattern?").
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4.5.1 Machine Learning Approach

While collecting the right features and organizing them in the right way impacts the performance
of the keystroke dynamics authentication system, choosing the right classification algorithm can
also provide better results. As described in the State of the Art chapter 3, two main approaches
have been used as a starting point in the literature. Some approaches rely on techniques based on
neural networks, while others are statistical in nature. However, further categories are introduced
like pattern recognition techniques or hybrid techniques [41].

Generally, statistical classifiers are described as comparing distances between two sets of data,
one reference set that is trained beforehand, and a new test set. If the distance falls within
a threshold, the user is recognized as legitimate. Initial works on this field, like in paper [11]
from the year 1980, had a purely statistical approach with calculating distances on plots and
manual inspection. Neural networks approach is using the historical data to build a model, that
is then used to predict the outcome of new samples. While there is no consensus in literature on
which method provides better results, plenty of experiments were performed using classification
algorithms that use machine learning techniques for automated learning. These techniques soften
the gap between the two categories as classification methods are using statistical models to some
degree.

Furthermore, depending on the way algorithms function, there are two main approaches pre-
sented in the literature [13]. One approach is to train a classifier in a one versus all fashion,
which discriminates between a valid user and all others. Such algorithms require samples from
both a valid user as well as negative samples and are also known as binary algorithms. Another
approach, is to use anomaly detection algorithms which require only samples from a particular
user and should detect changes that may appear. Since, in this project, the system should be
dealing with multiple users the first approach could be easily implemented where the active user
is considered valid while all the others can be considered negative samples.

These two approaches are very similar to the concepts of identification and authentication, as
presented in section 1.2. While it can be inferred that the first method, where classification us
performed on all users is more of an identification approach, compared with anomaly detection
algorithms which are only focused on the authenticated user, the ultimate goal of the system to
provide authentication can still be achieved with both methods. For the classification method,
the system can check if the predicted user matches with the active user and with what degree
of certainty.

Moreover, since an algorithm should handle data from multiple users, it makes sense to use a
centralized server. It would not only make the maintenance of the algorithm easier but it could
allow companies to properly protect the stored data, away from the user’s computers. A secured
server inside an enterprise would ensure proper confidentiality of the data. Furthermore, since
the machine learning algorithm may need to be retrained periodically and it may require high
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amounts of memory and processing power, having a dedicated machine for handling this kind
of tasks becomes a requirement.

4.5.2 Machine Learning Algorithms

As introduced in section 3.3, different types of algorithms are used for solving different kind of
problems. The first step into choosing the right machine learning algorithm is to understand
what the inputs and the outputs of the algorithm should be. In the case of keystroke dynamics
authentication, the input would be the features collected from a user that is known. This way,
the features used for training the algorithm are accompanied with the label of the user that they
belong to. The presence of a label, together with the samples, points to a supervised learning
problem.

The next step is to look at the output that the system should provide and decide whether the
problem is a regression problem or a classification one. In the case of the current project, the
output of the system should be the name of the user that is most probable the provided features
belong to. This way, the system is dealing with a number of known labels, in which case using
a classification algorithm makes sense.

As a next step, the available algorithms that fulfill these requirements should be identified. There
are multiple types of algorithms that could be used, as introduced in section 3.3.1. Probabilistic
methods like Logistic Regression or Naive Bayes, geometric methods like K Nearest Neighbor
or Support Vector Machines, or entropy methods like Decision Trees can be used for the case.

There doesn’t seem to be a standard accepted way of choosing one type of algorithm as per-
formance may greatly vary depending on the input data as well as the implementation of the
system. Best practice shows that multiple algorithms should be implemented and their per-
formance should be compared. Algorithms can be scored using a method like K-Folds cross
validation, by using a part of the training dataset as test dataset. The algorithm that provides
the best results can then be used in the system. Furthermore, depending on the algorithm, it
can be fine tuned in order to provide better results.

Furthermore, in order to improve the performance of the algorithm as well as adapt it to the
changing behavior of users, a way should be considered to periodically retrain the algorithm. A
sliding window can be used where only the newest features are kept. Still, since mean values
are used as features, the oldest values could be averaged from multiple feature vectors into one
feature vector. Since the algorithm has to be trained periodically for new users, new features
for already registered users can be used as well.

4.6 Performance of the System
In this section the testing approaches in order to calculate the performance of the system are
discussed. This section aims to answer the fifth subquestion, introduced in section 1.3 ("How to
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Figure 4.8: Keystroke Dynamics Process Steps

calculate the performance of the system?").

As introduced in section 3.3.4, K folds cross validation is a recommended approach for calculating
the performance of the machine learning algorithm. Since choosing the best machine learning
algorithm is a question of trial and error, as discussed in section 4.5, a test system should be
implemented that runs K-Folds cross validation on different machine learning algorithms using
the available user data. The algorithm with the best score, that satisfies the requirements of
the system should be implemented in a production scenario.

Moreover, as introduced in the State of the Art chapter 3, section 3.2.3, in order to measure
the quality of a keystroke dynamics authentication system, the FAR (False Acceptance Rate)
and FRR (False Rejection Rate) should be calculated on the final product. These tests should
be run in a real environment, where users are tracked while doing normal daily work in normal
conditions, in order to provide meaningful results.

4.7 Summary

It can be concluded from the analysis section that a keystroke dynamics authentication system
can bring security benefits to users and enterprises if tuned and designed appropriately. Five
major elements have been identified that build such a system. These elements are illustrated in
figure 4.8.

The first element is a keylogger that transforms the user’s physical interaction with their key-
board into electronic data that can be used by computers. This module collects information
about each keystroke and filters out the non-alphabetical keys. This information is then sent to
the second element, data filtering or pre-processing phase, which involves cleaning up the data
in order to minimize noise. This module should eliminate measurements resulted from long user
breaks in typing or repetitions of keys resulted from keeping a key pressed for too long.

In the third step, after the information is filtered, features are being extracted. The initial
proposal is to extract four features by calculating the mean values of UU, DD, UD and DU
times. If the results are not satisfactory, integration of other features can be considered. The
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features are then sent to the fourth module, which performs classification. This module is firstly
trained for each user, and should then provide probabilities for each sample, corresponding to
each user. In the last step, the prediction of the algorithm is presented to an entity that can take
a decision of regarding the user. All these modules should be lightly coupled in order to allow
changes to any of the modules without affecting the others. Based on the discussions presented
in this chapter, requirements are going to be built and are introduced in the next section.

4.8 Requirements
Based on the analysis performed in this chapter, a list of requirements is built and presented in
table 4.1. Each of the requirements is described and a rationale is provided. Additionally, the
requirements are prioritized using the MosCoW model. As requirements can be either functional
or non-functional, the name of each requirement will be prefixed with FR (functional require-
ment) or NFR (non-functional requirement). The section of the analysis where the discussion
leading to the requirement is performed is introduced in the last column.

Table 4.1: Requirements Table

Req Function Description Rationale Priority Section
FR_01 System

Architecture
In order to avoid process-
ing and memory inten-
sive tasks and have a cen-
tralized database of users,
the system should func-
tion in a server client
model, where the client
collects the required data
and sends it to a server for
machine learning process-
ing.

It should be im-
plemented in or-
der to provide full
functionality.

Could 4.1
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Table 4.1 continued from previous page
FR_02 Authentication The system should per-

form continuous authenti-
cation of the users by an-
alyzing keystroke samples
and predicting with a cer-
tainty score to which users
the keystrokes belong. the
authentication is consid-
ered successful if the pre-
diction corresponds to the
active user, with a score
above a set threshold.

It must be imple-
mented in order
to provide input
for the system.

Must 4.1

FR_03 Key Logging The system should be able
to continuously record the
keystrokes of the user, re-
gardless of the applica-
tion that they are us-
ing. Only alphabeti-
cal characters should be
recorded. The action "Up"
or "Down", letter pressed
and timestamp should be
recorded.

It must be imple-
mented in order
to provide input
for the system.

Must 4.3

FR_04 Digraph
Measure-
ment

The system should process
the recorded data to or-
ganize captured events in
digraphs and collect di-
graph statistics from the
recorded data under the
form of UU, DD, UD, DU
times as shown in figure
4.6. When a digraph ap-
pears multiple times, the
mean value and standard
deviation of the times
should be calculated.

It must be imple-
mented in order
to provide input
for the features to
be measured.

Must 4.4
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Table 4.1 continued from previous page
FR_05 Trigraph

Measure-
ment

The system should process
the recorded data to or-
ganize captured events in
trigraphs and collect tri-
graph statistics from the
recorded data.

It could be im-
plemented in or-
der to improve
the accuracy of
the classification
algorithm.

Could 4.4

FR_06 Quadgraph
Measure-
ment

The system should pro-
cess the recorded data to
organize captured events
in quadgraphs and collect
quadgraph statistics from
the recorded data.

It could be im-
plemented in or-
der to improve
the accuracy of
the classification
algorithm.

Won’t 4.4

FR_07 Data Filter-
ing

Digraphs that contain
time differences higher
than 600 ms should be fil-
tered out. Trigraphs and
quadgraphs corresponding
to the digraph should be
also filtered out.

It must be im-
plemented to
eliminate noise
and improve
the accuracy of
the classification
algorithm.

Must 4.4

FR_08 Feature Ex-
traction

The system should extract
features from the collected
statistics that can be used
by the classification al-
gorithm. Initially, aver-
age values for each UU,
DD, UD and DU measure-
ments are used to build
features but the system
should allow easy expan-
sion of features.

It must be im-
plemented in
order to provide
features for the
classification
algorithm.

Must 4.4

FR_09 User Cre-
ation

The system should check if
the active user is a new or
existing user and create a
new profile in the case of
new users.

It should be
implemented in
order to register
new users in the
system.

Should 4.4
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Table 4.1 continued from previous page
FR_10 Classifier

Training
The classification algo-
rithm should be trained
periodically at low traffic
times. When a new user
is detected, the machine
learning algorithm should
be trained for the new
user. The system should
save features for this user
until the next training ses-
sion.

It must be im-
plemented in or-
der to be able to
train the classifi-
cation algorithm.

Must 4.5

FR_11 Classification The system should be able
to classify users based on
the samples that it re-
ceives from the client and
return a confidence score
for the user. The num-
ber of keystrokes required
to build features should be
decided through testing.

It must be im-
plemented in or-
der to provide the
classifier with fea-
tures for authenti-
cation.

Must 4.5

FR_12 Alert Trigger The system should send
an alert to a security cen-
ter when an intruder is
detected. The actions to
be performed on the client
machine when an intruder
is detected are environ-
ment dependent so they
are out of scope.

It could be imple-
mented in order
to prove that the
system can raise
alerts when in-
truders are found.

Could 4.1

FR_13 Parallel Pro-
cessing

The keylogger should be
recording at all times.
Data pre processing and
feature extraction should
be done in parallel on the
client.

It could be im-
plemented in or-
der to avoid miss-
ing keystrokes.

Could 4.4
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Table 4.1 continued from previous page
FR_14 Server Lis-

tening
The server should be al-
ways listening for requests
for the client and act upon
them as soon as they are
received.

It cloud be im-
plemented in
order to embrace
the client-server
architecture.

Could 4.1

FR_15 Active
Timers

When a user comes online
the server should start an
active timer of 15 minutes
and reset it whenever it re-
ceives a valid feature vec-
tor. If the timer reaches 0
an alarm should be raised.

It won’t be im-
plemented as it
can be considered
an extra security
feature. The
main purpose of
the current stage
of the project is
to demonstrate
the functionality
and performance
of the proposed
system..

Won’t 4.1

FR_16 Send Timers A timer of 10 minutes
should be implemented
on the client. If not
enough keystrokes have
been collected, a feature
vector should be built us-
ing the available collected
keystrokes and this fact
should be signaled to the
server.

It won’t be im-
plemented as it
can be considered
an extra security
feature. The
main purpose of
the current stage
of the project is
to demonstrate
the functionality
and performance
of the proposed
system.

Won’t 4.1
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Table 4.1 continued from previous page
FR_17 User Logout The client should inform

the server when the user
finishes their activity and
log out from their oper-
ating system. The server
will remove any timers
and sessions related to the
client.

It could be im-
plemented if the
client server ap-
proach is imple-
mented.

Could 4.1

FR_18 Adaptive
Training

The system should save
the features of users in a
sliding window mode and
user them for training in
the upcoming training ses-
sion of the machine learn-
ing algorithm.

It could be im-
plemented in or-
der to be able
to adapt to the
changing behav-
ior of the users.

Could 4.5

NFR_01 Confidentiality The data flowing in the
system is considered sensi-
tive data so the confiden-
tiality of the data should
be ensured for through-
out the whole lifecycle.
Appropiate security mea-
sures should be applied on
client, server and commu-
nication between them.

It should be
implemented
to comply with
the regulations
enforced on the
market. It won’t
be implemented
in the begin-
ning stages of
the development
project.

Won’t 4.1

NFR_02 Privacy The system should ensure
the privacy of the user. All
personal data on the user’s
computer as well as data
sent to the server should
be sufficiently protected
and only the personal data
necessary for fulfilling the
authentication process is
collected.

It should be
implemented in
order to comply
with regulations.
Some privacy as-
pects are already
discussed in this
project.

Should 4.1
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Table 4.1 continued from previous page
NFR_03 Transparent

Process
The process should start
automatically when the
operating system boots
up. It should not require
any intervention from the
user.

It could be im-
plemented so the
whole functioning
of the system is
transparent to the
user.

Could 4.3

NFR_04 Data Pro-
cessing

The data should be pre-
processed on the client
side before being sent to
the server for classifica-
tion. The data resulted
from the pre-processing
phase should have context
removed so it would be im-
possible to trace back the
exact text written by the
user.

It could be im-
plemented to
provide a cen-
tralized server,
with enough
resources to run
classification
algorithms.

Could 4.4

NFR_05 OOP Ap-
proach

In order to allow for easy
upgrade of any each mod-
ule, the software should
be build using OOP ap-
proach.

It must be imple-
mented to allow
of upgradeability
in the future.

Must 4.4

NFR_06 OS and Lan-
guage

The system should be cre-
ated for Windows OS and
tested on English language
samples.

It must be imple-
mented to allow
functionality and
testing.

Must 4.3

NFR_07 Testing
Module

The system should contain
a testing module where
the performance of differ-
ent machine learning algo-
rithms can be tested. The
impact of using different
features can also be tested
with this module

It should be
implemented to
allow for system
testing.

Should 4.6
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5| System Design
In this chapter, the design of the system will be introduced based on the requirements gathered
in table 4.1. The overall functionality of the system will be presented, followed by a high level
design, a detailed description for each entity’s functionality and sequence diagrams that describe
the interactions between entities.

5.1 System Description
The main purpose of the system is to provide continuous authentication in a transparent man-
ner while protecting the user’s privacy. The system learns the typing pattern of the users by
gathering initial typing samples and builds a profile for each user. The profiles are used to
evaluate upcoming samples from typing activities and provide a certainty score on the user’s
claim validity.

The process automatically starts on boot and is running in the background of the operating
system. Its functionality is transparent to the user and it does not interfere with their work.
The user should, however, be aware that their typing activity is being logged and the purpose
for it be clearly stated in order to align with the privacy by design principles.

The data is collected and pre-processed locally on the user’s PC in a way that it loses context.
The data is then sent to a server for further processing. In the case the classification algorithm
detects an intruder, an event will be triggered. The event can be used to perform different
actions like locking the user out or sending an alert.

5.1.1 Preconditions

In order for the system to function correctly, certain preconditions need to be fulfilled. It is
mandatory that a primary authentication method is used in addition to the keystroke dynamics
authentication. The keystroke authentication system automatically starts running when the
user successfully authenticates in the operating system.

The users should not stop the process that is running in the background, in order for the
continuous authentication to work. Furthermore, for the initial version, the system is only
developed and tuned for the English language and running on Windows OS as per requirement
NFR_06.

When using a server client scenario, it is mandatory that the communication between the entities
is working. Furthermore, both of them should meet the minimal system requirements.
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Figure 5.1: Activities performed on the user’s client
from the moment the user comes online until they

logout. The activities ran when the user is active are
running in a loop.

Figure 5.2: Activities ran on the server when it
receives a user’s feature vector. Depending on the user
status, the server can run in two modes, training mode

or authentication mode.

5.1.2 Postconditions

The system has successfully finish its job when it checks whether the user predicted by the
machine learning algorithm is the right user and the probability for this prediction is over 80%.
The system can then be used to trigger an alarm. The action taken upon the user when an
alarm is raised is not implemented within the system and a target system that performs the
corresponding action should be able to use the keystroke authentication system’s output as a
trigger for actions.

5.2 System Activity Flow

Based on the analysis performed in chapter 4, the functionality of the system can be described.
Using UML activity diagrams, the series of actions that the client and the server must perform
are introduced. The diagrams are illustrated in figures 5.1 and 5.2. This section includes a high
level description of the system functionality. In the upcoming sections, each entity performing
these functional steps is described in detail.
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The system starts running as a background process when the user logs into the operating system,
according to NFR_03. According to requirement FR_01, the system is built in a client server
architecture. The user’s computer, acting as a client, initializes a communication with the server.
This action should inform the server that the user became active.

5.2.1 Activities on the Client

The main objective of the client is to collect information about the user’s keystrokes, and process
this information into feature vectors. The feature vectors should be then sent to a server for
processing.

In the first activity, the system uses a keylogger that provides a hook into Windows OS which
intercepts keyboard events. The number of events that should be tracked is 400, which corre-
sponds to 200 keystrokes as both up and down events are recorded. The data is recorded under
the following format: [<action (UP/DOWN)>, <key>, <timestamp>]. This way, for each key
that is pressed two events will be registered, one for pressing the key ("DOWN") and one for
depressing the key ("UP"), together with the name of the key and the timestamp of the event.
Furthermore, according to FR_03, only key presses corresponding to alphabetical keys will be
recorded.

The second activity is to pre process the data, according to requirement FR_04, where each
two consecutive letters are arranged in groups of digraphs. The UU (up-up), DD (down-down),
UD (up-down) and DU (down-up) times, illustrated in figure 4.6, are calculated. Data filtering
is also performed at this step, according to requirement FR_07, where digraphs that contain
times higher than 600 ms are excluded. In the case where the same digraph occurs multiple
times, the mean values are calculated for each measured time corresponding to the digraph, as
well as the standard deviations for each digraph. The output from this activity will have the
following format: [<digraph>, <mean value>, <standard deviation>, <occurences>], for each
digraph four outputs will be produced, one for each measured time.

In the "Extract Features" activity, using the output from the pre processing step, features are
extracted. According to requirement FR_08, initially the features will consist of the mean
values for the UU, DD, UD, DU times from all the digraphs. However, according to require-
ment NFR_05, this step will be implemented completely independent from the previous extract
features step, such that additional features can be added in the future without impacting the
functionality of the system. The output after this step is a feature vector and has the following
format: [<UU mean value>, <DD mean value>, <UD mean value>, <DU mean value>].

After the feature vector is built, it is sent to the server for further processing. The whole process
is repeated for as long as the user is active.
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5.2.2 Activities on the Server

The server is always listening for incoming feature vectors, as per requirement FR_14. The client
should also inform the server about the username of the active user. Using this information, the
server checks if a profile for the user exists. In the case it does not, a new user is created according
to requirement FR_09, and the status of the user is set to "User awaiting training". In the next
step, the server checks if the active user’s status is "User awaiting training". If this condition is
true, the server will run into training mode. Otherwise, it will run into authentication mode.

Training Mode

The purpose of the training mode is to train the machine learning algorithm for new users,
according to requirement FR_10.

The algorithm should run periodical training sessions at times when the traffic is low. For
example, the training sessions could be run every day at midnight. While the server is in
training mode, the keystroke dynamics authentication process is suspended.

Since the system is running in training mode, several features should be collected from a user.
While the status of the user is "Awaiting Training", the server saves all the feature vectors for
the user. When the next training session is performed, if enough features have been collected
for the user, they are included in the training session and the user status is set to "Trained".
Otherwise, more features will be collected until the next training phase.

Authentication mode

If the user for which the authentication is performed has "Trained" status„ the system will go
into authentication mode. This mode fulfills the requirements FR_11 and FR_18.

The server saves the received feature vector in the user’s profile for future training of the algo-
rithm, as per requirement FR_18, and runs the classification algorithm for the received feature.
The output of the algorithm is the probability for each user that the sample belongs to them. If
the user predicted with the highest probability is the same as the active user, with a probability
higher than 80%, the user is considered valid. Otherwise they will be considered as an intruder
and a trigger will be sent to a monitoring or a security system , as introduced in FR_12.

5.3 System Architecture

The architecture of the system is depicted in figure 5.3. The system is built in a client-server
approach, with a centralized server being connected to multiple clients, as per requirement
FR_01. This way customer data can be securely stored, as well as, processing and memory
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Figure 5.3: High level architecture of the system with the modules beloging to each entity illustrated
underneath.

intensive tasks, like machine learning algorithms, are performed away from the users’ computers.
This client - server approach also provides easy maintenance and expandability in the future.

As depicted in figure 5.3, a number of computers are connecting to a centralized authentication
server. For redundancy purposes, in order to avoid the single point of failure and increase the
availability of the authentication service, backup servers can also be deployed. Each entity is
described in detail below.

5.3.1 Client

As illustrated in figure 5.3, the client is represented by the user’s computers. The objective
of the client is to collect keystroke information about users and prepare features that can be
sent to the server for authentication. There are three different modules running on the client, a
keylogger, the pre processing module and the feature extraction module. Each module is built
as loosely coupled as possible from the other modules in order to allow for easy modification
and upgradeability, according to NFR_05.

Keylogger

As introduced in the requirement FR_03, the system should be able to record the user’s typing
activity. This function is implemented by using a keylogger. Since the implementation of a key
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Figure 5.4: Windows hook mechanism illustrating a hook procedure, that intercepts keystrokes, being installed
in a hook chain.

logger is dependant on the operating system, the system is mainly developed for Windows, given
its popularity among organizations and the amount of support available.

The keylogger records the keystrokes of the users, marking down the action, which can be
"UP" or "DOWN", the key that is pressed and the time stamp of the action. A down action is
equivalent to the user pressing a key, while an up action refers to the user releasing the key.

According to the Microsoft Developer Network[42], The Windows operating system provides
hooks in order to allow applications to intercept events such as messages, mouse actions,
keystrokes, etc. Each type of hook has it’s own hook chain which points to all the application
level hook procedures. A hook procedure allows applications to act upon the event, allowing
them to monitor, modify or even stop the advance of the event through the chain, preventing it
from running the following hook events or reaching the target window.

Windows provides a hook procedure to developers which allows them to install it inside a chain.
The procedure will take precedence over the other procedures in the chain so it will act first upon
the event. This process is illustrated in figure 5.4. Windows offers the WH_KEYBOARD
and WH_KEYBOARD_LL hooks which allow a developer or an application to monitor
keyboard events.

The keylogger saves the keystrokes in a list, which is buffered until the required number of
keystrokes is collected. When the number of keystrokes is collected, the system opens a new
thread for the pre processing, and the list goes into pre processing. The keylogger restarts
the recording, on an empty list, parallel to the pre processing and feature extraction process
according to requirement FR_13. As introduced in section 5.2, the format of each element in
the list is [<action (UP/DOWN)>, <button>, <time stamp>]. This process is illustrated in
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Figure 5.5: Illustration of the keylogger sequence, which intercepts a key press or depress and it’s timestamp,
and saves them in a list.

Figure 5.6: Illustration of the pre processing sequence which splits the events into a list of "UP" events and a
list of "DOWN" events, which are then used to calculate digraph times.

figure 5.5. The timestamp is recorded in Unix Epoch time as introduced in section 4.3.

Pre Processing

In accordance to requirements FR_04 and FR_07, before extracting features from the recorded
keystrokes, the data has to be filtered and pre processed. The keylogger module should continue
running in parallel to the pre processing according to requirement FR_13. This module performs
the actions introduced in requirements FR_04 and FR_07, as well as could perform FR_05
and FR_06.

The list of measurements is received from the keylogger module. Firstly, the keystrokes are
separated in two lists, one for the "UP" action and one for the "DOWN" actions. These two lists
will be used to calculate digraph times as illustrated in figure 4.6. Secondly, using the two lists,
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Figure 5.7: Illustration of the feature extraction sequence, where the average values of the digraph times are
calculated and saved into a feature vector.

the keys are arranged in digraphs and the UU, DD, UD and DU times are calculated for each
digraph. Additionally, digraphs with times higher than 600 ms are ignored. In the next step,
the mean time values for each digraph is calculated. Standard deviation for each digraph should
also be calculated according to requirement FR_04. The calculated values, together with the
number of occurrences are saved in four new lists, where each entry has the format [<digraph>,
<mean value>, <standard deviation>, <occurrences>], where each list corresponds to either
UU, DD, UD, DU times. These four lists are then used as input for the third module, the feature
extraction module. These steps are illustrated in figure 5.6.

Feature Extraction

This module is responsible of satisfying the FR_08, NFR_02 and NFR_04 requirements. Re-
garding FR_08, the system uses the output from the Pre Processing module, and further pro-
cesses the data in order to build feature vectors that can be understood used as input by the
machine learning algorithm. As introduced in the requirement, the UU, DD, UD and DU times,
from the digraphs calculated at the previous step, are averaged and the mean values are used to
build four features. The system could also calculate the standard deviations in order to provide
eight features which should improve the performance of the machine learning algorithms. The
output of the module is one list that contains the four features. The process is illustrated in
figure 5.7, by using the data from figure 4.7.

Furthermore, as the average values are calculated, the context of the data is removed, as it would
be impossible to reverse the process and understand what the user initially typed, satisfying
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NFR_02 and NFR_04.

5.3.2 Server

As illustrated in figure 5.3, the objective of the server is to perform user authentication, as
introduced in requirement FR_02. The server receives the feature vectors from the client and
saves it for training the machine learning algorithm and performs classification. The server also
provides a module for testing the performance of the machine learning algorithm according to
requirement NFR_07.

Furthermore, strong security should be implemented in order to protect the server resources, as
well as the communication between the client and the server, according to requirement NFR_01.
Also, the server will only store the necessary data for the keystroke dynamics authentication
system functionality according to requirement NFR_03.

When the client goes online, an initialization step is performed. In this step, the client should
authenticate with the server, and optionally, timers can be started for the user. The purpose
of this timers is to raise an alarm if a user that should be active stops transmitting, as per
requirement FR_15.

Testing Module

According to the requirement NFR_07, the server should allow testing of different machine
learning algorithms, in order to compare results. Since this module has access to the server
database, tests can be run on real user data in order to provide useful results. Furthermore,
given the modular nature of the system, as introduced in NFR_05, the running machine learning
algorithm can be modified without affecting the functionality of other parts of the system.

This module runs K-Folds cross validation, where the saved user features in the database are
collected in one dataset. The dataset is then split into two parts, the training set and the test
set. Using this method, different machine learning algorithms can be tested for the live dataset
and the one performing the best can be chosen to be implemented in the live authentication
process.

Machine Learning Algorithm

The purpose of this module is to fulfill requirements FR_02, FR_10, FR_11 and FR_12,
FR_15, FR_18. The machine learning algorithm that performs the best in the testing phase
should be implemented in the live system.

At the time of writing this project, with the UU, DD, UD and DU average values used as
features, the Linear Regression algorithm performed best. For this reason, Linear Regression
will be implemented. SVM will also be implemented for confirming the performance scores that
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Figure 5.8: The initialization sequence, illustrating the initial system login of the user and the automatic start
of the keystroke dynamics process in the background.

were tested. The output of the algorithm is the username and the probability for that user.
The username is then compared to the active user’s username and if they match the user is
considered legitimate. Otherwise, the user may be considered as an intruder.

5.4 Sequence Diagrams
This section introduces the interactions between the system entities in a temporal sequence.
The interactions are illustrated using UML sequence diagrams. Five cases are introduced in this
section, depending in which mode the system is running. The system can be in Mode Selection
mode, Training mode, Initialization Mode, Authentication mode or Logout mode. The complete
system sequence diagram is attached in Appendix A, while snipets of the diagram will be used
in this chapter.

5.4.1 Initialization

The purpose of the Initialization mode is to start the keystroke dynamics process automatically
after the user is logged into their client, according to requirement NFR_03. The process is
illustrated in figure 5.8. The first means of authentication is out of scope of this design. In
this case it is considered that normal username and password combination is used for logging in
the operating system. After the user credentials are checked, the keystroke dynamics process is
started in the background upon OS initialization.
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Figure 5.9: First part of the mode selection sequence. In this sequence, the feature vector of the user is
created and before being sent to the server, the client gets authenticated with the AuthServer by providing

appID and app secret or a refresh token in exchange for an access token.

5.4.2 Mode Selection

The main purpose of the Mode Selection sequence is to collect the data on the client and
depending on the user status, ask the server to perform authentication for the user or save their
features for later training. The process is illustrated in figures 5.9 and 5.10. This mode runs
in a loop for as long as the user is active. Requirements FR_03, FR_04, FR_07, FR_08 are
performed at this stage.

Initially, when the user starts typing, the system collects their keystrokes. When 200 keystrokes
are collected, corresponding to 400 events, the data is pre processed and filtered and features
are extracted. These functions are performed by modules on the client which are described in
detail in the previous section 5.3.

The next step is for the client to authenticate with the server, in order to be able to access
the protected server API. The client sends their APP ID and APP password to the server by
sending a GET request to the /auth API. The server verifies the provided credentials and if the
verification is successful, it sends an access token and a refresh token to the client. The access
token has a validity of 10 minutes, while the refresh token can be used to obtain a new access
token when it is expired. As this process is running in a loop, the client only has to provide
APP ID and APP password in the first iteration, while in the next iterations, it can use only
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Figure 5.10: The second part of the mode selection sequence, where the feature vector is sent to the server and
depending on the user status the server goes into training mode or Authentication mode. ???

the refresh token to obtain new access tokens. In case the API call is unsuccessful, the client
authentication process is restarted.

Subsequently, as illustrated in figure 5.10, the client saves the access token and then uses it in
order to build a POST request to the /userdata API in order to send the user’s feature vector.
The access token is included in the header of the POST message, while the user features, togheter
with the username are included in the body section.

Using this information, the server searches for the user details in the database. Depending
on the output of this action, the system will continue to function either in training mode or
authentication mode. If the status of the user is "User Awaiting Training" or the user does not
exist at all, the system goes into training mode. Else, if the user status is "Trained", the system
will go into authentication mode.

5.4.3 Training Mode

The sequence diagram for the case where the system is running in training mode is illustrated in
figure 5.11. This mode is run for new users or users that the algorithm has not been trained for
yet (with the status "Awaiting Training"). This mode collects user features for the next training
session of the algorithm as introduced in requirement FR_10.

Firstly, the server saves the received user features and awaits for confirmation that the features
are successfully saved. If it action is successful, it sends a response to the client for the POST
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Figure 5.11: Illustration of the training mode sequence where the server saves the user feature vectors until
the next algorithm training session is performed.

/userdata API request with a 200 HTTP code and a saving successful message, instructing the
client to proceed on sending the next feature vector when ready.

In the case an error occurs on the server or the API call returns an error, the corresponding
HTTP code is included in the response, as well as a message in the body instructing the client
to resend the feature vector and informing it of the error nature.

5.4.4 Authentication Mode

The sequence diagram for the case where the system is running in authentication mode is
illustrated in figure 5.12. This mode is run for returning users for which the status is set to
"Trained". This mode saves the user feature vectors in order to be used for the next algorithm
training session FR_10, and runs the classification algorithm for the received feature vector. The
server than compares if the predicted user is the same with the active user and the probability
is above the 80% threshold.

Both in the case where an intruded is detected or a legitimate user is detected, the system will
send a successful response to the client’s API call, with a 200 HTTP code and a successful
message, instructing the user to send the next feature vector when ready. However, in the case
when an intruder is detected, an alarm is also sent to a security or maintenance center. The
functioning of this entity is out of scope of this project, but this entity can take an action based
on the input from the AuthServer and send instructions to the client. In case the process fails
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Figure 5.12: Illustration of the authentication mode sequence where the user feature vector is saved and the
classification algorithm is saved. If an intruder is detected an alert is sent to an entity that is responsible with

ensuring security within the network.

on the server or the API call returns a timeout, the corresponding HTTP message is received
and the client is instructed to resend the feature vector.

5.4.5 Logout

The sequence diagram for the case where the system is running in logout mode is illustrated in
figure 5.13. In this case, when the user logs out their operating system, according to FR_17,
the client informs the server that the user is no longer active. The server should clear all the
timers related to the user, if timers are in use, and cancel the refresh token for the client.

When the user requests to logout of the OS, the OS will send a message to the keystroke dynamics
process to shut down. In this case, firstly the client informs the server that it is going offline by
sending a POST request to the /logout API. The access token is included in the header of the
POST message while the user name of the active user is included in the body. Based on this
information, the client cancels the tokens corresponding to the client and, in the case timers are
attached to the user as per requirement FR_16, it stops these timers as well. If these tasks are
performed successfully, the server sends a POST response message, with the 200 HTTP code
and tells the client that it can proceed with stopping the process. Otherwise, in case of errors
or timeout, the corresponding HTTP error code is sent and the client is informed to resend
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Figure 5.13: Illustration of the logout mode sequence. When the user logs out of their client, the client
informs the server about this action.

the POST request, together with information about the error nature. If the call fails for more
than three times, the process is automatically closed on the client and the logout sequence is
performed.
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6| Implementation
The aim of this chapter is to document the steps taken in the implementation of the solution
discussed in this paper, according to the design from the previous chapter 5. Explanations, code
snippets and illustrations are used in order to demonstrate the development steps. As introduced
in the Methodology chapter 2, the chosen development methodology is SCRUM. The full code
of the system is presented in Appendix B.

As introduced in 2, SCRUM methodology includes a product backlog, where all the tasks to
be completed are stored. These tasks are derived from the analysis and are presented in the
requirements table 4.1. The backlog could also include extra tasks like Software Installation,
Software Configuration and Testing. Due to time constraints not all sprints are completed, yet
given the prioritization of the requirements, the "Must" requirements are included in the first
sprints and should be implemented. The development language used is Python 3.7. According to
requirement NFR_05 the system is built in a modular approach, using the OOP programming
paradigm in order to allow for easy modification and upgrading to different functionality of the
system.

6.1 Sprint 1
The first sprint deals with implementing the basic functionality for the keylogger and pre pro-
cessing modules. The following requirements are approached in this sprint: FR_03, FR_04,
FR_07, FR_09.

The keylogger module is monitoring every keystroke of the user and records the keystrokes
corresponding only to alphabetical letters. Each recorded keystroke is appended to a list. When
the list size reaches 200 entries, the list is returned for further processing.

Using the list from the keylogger as input, the pre processing module arranges the data into
digraphs with their corresponding time difference. When a digraph occurs more than once, the
mean value and standard deviation are calculated. The pre processing module outputs a list of
digraphs and corresponding mean value for each time measurement performed on the digraph,
according to figure 4.6.

6.1.1 Keylogger Module

As described in section 5.3, this module is responsible with recording all the keystrokes all the
user and save them in a list that can be processed by the upcoming modules. It is also responsible
for filtering out the keystrokes that are not alphabetical letters. In order to implement this
module, two external libraries are used, namely Keyboard and Pythoncom.
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The Keyboard library, available on GitHub [43], is a Python library that allows an application
to take control of the keyboard. It offers the possibility to hook global events, which means
that the application is able to monitor keystrokes regardless which application is in focus of
the OS. It can also capture the keystrokes and record information about them like ASCII code
or timestamp and it can also simulate keystrokes. This library is used for recording the user’s
keystrokes and saving them in a list that can be further processed, as described in section 5.

The Pythoncom library encapsulates the OLE (Object Linking and Embedding) automation
APIs. Object Linking and Embedding enables developers to create objects and then link or
embed them in a second application. The methond PumpWaitingMessages() is used from this
library which pumps all waiting messages for the current thread into the application. This is
a non-blocking loop which will allow the program to collect all the keystroke events until a
condition is satisfied.

This module contains the KeyLogger class. The class consists of four methods, KeyDownEvent,
KeyUpEvent, mainLoop and storeEvent. The KeyDownEvent and KeyUpEvent methods are
invoked when the when a key is pressed or released and an event object is passed to them.
For this functionality, keyboard.on_press and keyboard.on_release methods, introduced by the
keyboard library, are used as they are invoking a callback whenever a key is pressed or released
passing the event information.

As it can be seen in the example code listing 6.1, when a keystroke is pressed, the KeyDownEvent
is called in order to take actions. In this case, the method will create the activity name "Down"
and call the storing method. In the storing method the .name and .time attributes of the event
object are extracted.

1 keyboard.on_press(self.KeyDownEvent)

2

3 def KeyDownEvent(self, event):

4 self.storeEvent("Down", event)

5

6 -- Section Omitted --

7

8 def storeEvent(self, activity, event):

9 keystrokeName = event.name

10 keystrokeTime = event.time

11

12 -- Section Omitted --

Listing 6.1: When a key is pressed a callback function is involved and an event object is passed. The event
information is then stored.

As part of the storeEvent method, event information is also appended to a list, in the format
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[<action (UP/DOWN)>, <key>, <timestamp>], as presented in section 5.2. In order to filter
out keystrokes that are not represented by alphabetical letters, a condition that the event.name is
alpha and that its length is equal to 1 is tested before appending the event. The implementation
of this action is presented in the code listing 6.2.

1 if event.name.isalpha() and len(event.name) == 1:

2 self.eventList.append((activity, keystrokeName, keystrokeTime))

Listing 6.2: Filtering of keystrokes that are not represented by alphabetical letters before being saved in a list.

In order to continuously listen to keyboard events, and return a value for the next module to
process it, the pythoncom.PumpWaitingMessages method is used. When 200 keystrokes are
registered, the list of event information is returned. The code listing performing this action is
presented in listing 6.3.

1 pythoncom.PumpWaitingMessages()

2 if len(self.eventList) == 400:

3 return self.eventList

Listing 6.3: Non-blocking loop pumping all the messages from the current thread to the application.

6.1.2 Pre Processing Module

As presented in section 5.3, the purpose of this module is to process the data received from
the keylogger and output four lists, each list corresponding of the timing information of each
digraph. It also filters out keystrokes with times higher than 600 ms. Three libraries are used
for this module, collections, ast and statistics.

The ast module "helps Python applications process trees of the Python abstract syntax grammar"
[44]. In this case, this library is used for reading lists of keylogger outputs from file. Even though
this functionality may not be required in a live scenario, it is implemented at this step for testing
purposes. Since the modules are only implemented on one machine at this stage, samples from
multiple users are required. For this reasons, several users ran a keylogger on their computers
and the output of the keylogger was saved in a file.

The collections library provides specialized container datatypes for Python [45]. In this case,
the functionality that is used is the defaultdict subclass which returns a dictionary like object.
Using this functionality, a sequence of key-value pairs is grouped into a dictionary of lists. This is
required in order to transform the list of digraphs and their corresponding times into a dictionary
that uses the digraph as the key and the time as the value.

The statistics library "provides functions for calculating mathematical statistics of numeric
(Real-valued) data" [46]. For this case, the average and standard deviation methods offered
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by this library are used when calculating the average and standard deviation time values for
digraphs that are occuring more than once.

This module contains the PreProcessing class. It provides methods for reading and process-
ing keylogger data received from a file (readFromFile, extractFromFile), process keylogger data
received directly from the keylogger (preProcessThis) and methods for calculating the digraph
statistics as illustrated in figure 4.6 (timeBetweenUPS, timeBetweenDOWNS, timeBetweenUP-
DOWN, digraphTime and calcMean). As already outlined, reading and processing the data
from files is implementing for testing purposes.

When receiving data from the keylogger, the preProcess. This method is called, passing the
eventlist received from the keylogger. Firstly, the elements of the list are split in two lists,
each corresponding to either the "UP" or "DOWN" actions. The code listing for implementing
this functionality is illustrated in listing 6.4. Since the format of the eventlist is [<action
(UP/DOWN)>, <key>, <timestamp>], list comprehension is used on order to filter based on
the first element of each list (etype). The two lists are saved in two variables, ups and downs
and then, the methods for calculating digraph measurements are called.

1 def preProcessThis(self, eventList):

2 self.downs = [(etype, ename, etime) for etype, ename, etime in eventList

3 if etype == "Down"]

Listing 6.4: Extracting the elements corresponding to depresses from the keylogger eventlist.

The functionality of these methods is similar so the digraphTime method will be used for ex-
planation. Digraph time method calculates the time spent between pressing the first key and
depressing the second key. The first element of the ups list is pop-ed because it does not have
a corresponding down value. Using a while loop, the elements of the ups and downs lists are
pop-ed one by one and their time difference is calculated, while the letters are saved together in
a list. Furthermore, as illustrated in listing 6.5, the two lists are combined, in order to obtain a
unified list where every digraph and the corresponding time are saved.

1

2 digraph_duration = list(map(lambda x, y: [x, y],

3 digraph_list_du, time_between_down_up))

Listing 6.5: Arranging the keystrokes into digraphs and appending the corresponding times.

Even though the digraphs and their corresponding times have been calculated, at this step, if
a digraph occurs multiple times, there will be multiple entries in the list corresponding to the
digraph. The average value and the standard deviation have to be calculated in order to obtain
a single entry for each digraph. Also, before calculating the average, the digraphs with times
higher than 600 ms should be filtered out. The implementation for this process is listed in 6.6.

68



1 def calcMean(self, digraphslist):

2

3 for key, value in digraphslist:

4 if abs(value) < 0.6:

5 c[key].append(value)

6

7 result = [(t, stat.mean(v), len(v)) for t, v in c.items()]

8 std = [(t, stat.stdev(v)) for t, v in c.items() if len(v) > 1]

9

10 return result

Listing 6.6: Calculating the average and the standard deviation for digraphs that appear more than once.

The calcMean method obtains the digraph list from any of the methods that are calculationg the
digraph times. As a first step, the program iterates through this list. The format of the list at
this stage is [<digraph>, time]. The digraph is considered as a key. While iterating through the
list, the times for the elements that have the same keys, corresponding to repeating digraphs,
are appended together. Using list comprehension, the average values and the standard deviation
for elements that occur more than once are calculated.

The result is then returned to the function that requested the mean (either of the timeBe-
tweenUPS, timeBetweenDOWNS, timeBetweenUPDOWN, digraphTime) which then returns
the answer to the preProcessThis function. This function returns the four lists that this mod-
ule must output, being the UU, DD, UD and DU times of each digraph, under the format:
[<digraph>, time, occurrences].

6.1.3 Summary

At the end of this sprint, two working modules have been created. The keylogger module is
recording the keystrokes of the user and when 200 keystrokes are collected (400 events), the
keylogger loop returns the eventlist. The preProcThis method of the pre processing module is
called with this list and it outputs four lists with the UU, DD, UD and DU average times for
each digraph. In order to test the functionality and communication between the two modules,
a main module has been implemented.

As printed in the listing 6.7, firstly two objects are instantiated for each class, one for KeyLogger
and one for Preprocessing. In the first case, the 200 keystrokes information is saved in the
eventList when it is returned by the keylogger object mainLoop method. The eventList is
then cleared so a new recording can start. The eventList is then pre processed by using the
preProcThis method of the preproc object and saved into preprocdata variable.
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Additionally, in the case where the data is read from a file, the readFromFile method of the
preproc object is called. This method reads the list of keystrokes from a file and saves only the
alphabetical keystrokes. In order to extract the preprocdata, the extractFromFile method of the
preproc object is called. In the end, in both cases the preprocdata should have exactly the same
format. The preprocdata is a list of lists which contains the four lists that the PreProcessing
module should output.

1 keylogger = KeyLogger()

2 preproc = PreProcessing()

3

4 #Extract times from Keylogger

5 eventList = keylogger.mainLoop()

6 keylogger.eventList = []

7 preprocdata = preproc.preProcessThis(eventList)

8

9 #Extract times from file

10 preproc.readFromFile(filename)

11 preprocdata = preproc.extractFromFile()

Listing 6.7: The KeyLogger and PreProcessing modules working together. In the first case the keystroke data
is received from the keylogger while in the second case the keystroke data is read from file.

6.2 Sprint 2
This sprint deals with the development of the feature extractor, the machine learning module
and the test machine learning module. The following requirements are implemented in this
sprint: FR_08, FR_10, FR_11, NFR_02, NFR_04, NFR_07.

The feature extractor module is using the four lists that are output by the PreProcessing modules
for extracting features that will be later used by the machine learning algorithm. The test
machine learning module, is using these features to test several machine learning algorithms
using the K-Folds cross-validation method. On the other hand, the actual machine learning
module is using the same features in order to train the algorithm and take classification decisions.

6.2.1 Feature Extraction Module

As introduced in section 5.3, the purpose of this module is to further process the data, with
the objective of building feature vectors that can be used as input by the machine learning
algorithms. The initial approach is to calculate the mean values and standard deviations for the
UU, DD, DU and UD times provided from the previous steps. However, due to the modular
design, the feature calculation method can easily the updated in the future if the classification
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results need to be improved. The numpy library is used in this module which allows the usage
of N-dimensional array objects and offers various functions that can be applied on these arrays
[47].

This module contains the FeatureExtractor class. This class contains the extractFeatures method
which receives the four lists from the Pre Processing module. In the listing 6.8, it is exemplified
how the uu_mean and uu_std features are extracted, using the UU digraph times calculated
by the previous module.

The first step zips the UU list in order to separate the digraphs name from the digraphs timing.
An example of the uu_zip format is as follows:[((’c’, ’d’), (’e’, ’f’), (’f’, ’a’)), (0.10929989814758301,
0.3404250144958496, 0.1856250762939453), (1, 4, 4)]. This way a list of tuples results, with the
middle tuple containing all the UU digraph times calculated before. This middle tuple is then
formatted into an numpy array and sorted. Using the .average and .std methods that can
be applied on numpy arrays, the average of the digraph times and the standard deviation are
calculated.

The same actions are repeated for the DD, UD and DU times. The feature vector is then build
by inserting these calculated values to a list. The list is then returned by the function to be
used by the machine learning modules.

1 def extractFeatures(self, UU, DD, UD, DU):

2

3 uu_zip = (list(zip(*UU)))

4 uu_times = np.array(uu_zip[1])

5 uu_times.sort()

6 uu_mean = np.average(uu_times)

7 uu_std = np.std(uu_times)

8

9 -- Section Omitted --

10

11 features = [uu_mean, uu_std, dd_mean, dd_std,

12 ud_mean, ud_std, du_mean, du_std]

13

14 return features

Listing 6.8: Implementation of the extractFeatures method with the UU feature calculation example.

6.2.2 Machine Learning Testing Module

The purpose of the machine learning testing module is to test several machine learning algo-
rithms and log their performance by using the same dataset that is used for the authentication.
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The algorithm implements K-Folds cross validation on SVM, KNN, Decision Trees, Logistic
Regression and Naive Bayes algorithms by using the features provided by the feature extraction
module, together with a label that should accompany the features since supervised learning is
performed. The sklearn library is used in this module which provides the algorithms as well as
the cross validation scoring option. Sklearn is a library that offers tools for data mining and
data analysis in Python [48].

1 def SVM_cross_validtaion(features, labels):

2 clf = svm.SVC()

3 scores = cross_val_score(clf, features, labels, cv=3)

4 print(scores.mean(), scores.std() * 2, "SVM")

5

6

7 def KNN_cross_validation(features, labels):

8 neigh = KNeighborsClassifier(n_neighbors=3)

9 scores = cross_val_score(neigh, features, labels, cv=3)

10 print(scores.mean(), scores.std() * 2, "KNN")

Listing 6.9: Implementation of the K-Folds cross validation for the SVM and KNN algorithms in the machine
learning testing module.

The implementation of cross-validation for SVM and KNN is illustrated in listing 6.9. When
performing SVM, an object is instantiated using SVC from sklearn. An object is then created
by using the method cross_val_score from the sklearn library, as well. The cv = 3 indicates
the number of cross validations to be performed, in this case 3. For the KNN the procedure is
similar, except the fact that it should be indicated how many neighbors to include when running
classifications in KNN. The testing for the other algorithms is very similar as well and has been
omitted. The full code can be found in Annex B. When running a test, the same features must
be used for all algorithms in order to ensure correct results. After collecting the features, each
method will be called and the scores and standard deviations will be printed for each algorithm.

6.2.3 Machine Learning

The Machine Learning module is the part of the system that receives the feature vectors of the
users and performs classification. Based on testing which is described in section 6.4, the SVM
and Logistic regression algorithms were chosen for implementation. In order to implement these
algorithms, the Sklearn library is used. It has been briefly introduced in the previous module.

This module contains the Classification class. Inside the class, two methods are introduced,
train and predict. As the names suggest, one method is used for training the algorithm while
the other one is used for predicting classification decisions. These methods are illustrated in the
listing 6.10.
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1 # SVM

2 def train(self, features, labels):

3

4 self.model = svm.SVC(probability=True)

5 self.model.fit(features, labels)

6 print("Algorithm trained")

7 def predict(self, sample):

8

9 predicted = self.model.predict(sample)

10 score2 = self.model.predict_proba(sample)

11 print(predicted, score)

12

13 #Logistic Regression

14 def train(self, features, labels):

15

16 self.model = linear_model.LogisticRegression(C=1e5)

17 self.model.fit(features, labels)

18 print("Algorithm trained")

19 def predict(self, sample):

20

21 predicted = self.model.predict(sample)

22 score2 = self.model.predict_proba(sample)

23 print(predicted, score)

Listing 6.10: Implementation of the training and prediction methods for the SVM classification algorithm.

As illustrated, the algorithm receives the features and labels from the previous modules and
fits a model using them. In order to perform classification, the algorithm receives samples from
previous modules and performs classification, as well as returning a probability for it. The
implementations for the two algorithms are very similar. The main difference is the way the
model is initialized.

6.2.4 Summary

At the end of this sprint, all modules of the system have basic functionality. FR_02 is also
fulfilled as authentication can be performed. In this sprint, the feature extraction module was
implemented. It receives the pre processed data and arranges it into a feature vector that
is then passed to the machine learning algorithm. Two machine learning modules have been
implemented, one for testing and one for performing classification.
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The main module has also been extended to support these new modules. The code for this mod-
ule is illustrated in listing 6.11. Firstly objects are being instantiated for the feature extractor
and classification classes. In training mode a for loop is performed, calculating the features for
one user. At this stage, keystrokes of the users are read from files. Depending on the size of the
for loop, the number of features used is set, in this case 10. The features are appended to a list
and for each feature, a label is also appended to a labels list. Both lists are converted to Numpy
arrays. This process is repeated for every user that will be trained in the model. When all the
features and labels for all users are processed, the data is sent to the classifier for training.

In classification mode, a similar process happens but the features used one by one. This way,
after each feature vector that is calculated, it is converted into an Numpy array and then the
classifier is calld for prediction.

1 featureext = FeatureExtractor()

2 classifier = Classification()

3

4 #Training part

5

6 for j in range(10):

7 preprocdata = preproc.extractFromFile()

8 singlefeatures = featureext.extractFeatures(preprocdata[0],

9 preprocdata[1],

10 preprocdata[2],

11 preprocdata[3])

12 features.append(singlefeatures)

13 labels.append(user)

14 features = np.array(features)

15 labels = np.array(labels)

16 classifier.train(features, labels)

17

18 #Predict part

19 singlefeatures = featureext.extractFeatures(preprocdata[0],

20 preprocdata[1],

21 preprocdata[2],

22 preprocdata[3])

23 singlefeatures = np.array([singlefeatures])

24 classifier.predict(singlefeatures)

Listing 6.11: Extension of the main module to accomodate the feature extraction and machine learning
modules.
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6.3 Sprint 3
By the start of this sprint, the requirements prioritized as "Must" have been implemented.
Now the system offers keystroke dynamics authentication basic functionality and tests can be
performed in order to decide what is the best way of extracting features and which algorithms
perform best.

In this sprint, FR_01, FR_09, FR_14 should be implemented. These requirements refer to the
client server architecture implementation. Given the OOP approach taken, classes can be easily
moved to the client and to the server. The client server communication has to be implemented.
The server should provide RESTful APIs as introduced in the Design chapter 5, while the client
should be able to call these APIs. OAuth2.0 will be used for exchanging authentication tokens.

6.4 Functionality and Performance Testing
This section introduces the results of the tests discussed in section 4.6. Due to time constraints,
by the time of writing this paper, tests are still being performed and more data is being collected.

The data was collected from different students of Aalborg University, which freely installed a
keylogger on their laptop and recorded their keystrokes. One factor limiting the amount of data
available was that the keylogger only worked on Windows OS. Also, since the keylogger had
to be manually started and could be stopped at any time, in some cases, people stopped the
keylogger and forgot to start it while some people did not use it at all due to tracking concerns.
The logs from the keylogger were saved in a text file, saved locally on the students’ computers.
They could then send the file in order to be used for testing. Only seven samples were received
from which only five had enough recorded keystrokes in order to be useful.

By using 200 keystrokes (400 events) to obtain features, K-Folds with a k=3 was run for SVM,
KNN, Decision Trees, Logistic Regression and Naive Bayes. The mean values of UU, DD, UD
and DU times were used for building the feature vectors of the users. 10 features per user have
been used, as that was the maximum number of features that could have been extracted from
the number of samples available in order to be able to use all the five users. There results are
show below in listing 6.12. In listing 6.13, the standard deviation of these means is also included.

1 0.7352941176470589 0.0415945165403851 SVM

2 0.7075163398692811 0.06808060998692701 KNN

3 0.7630718954248366 0.10569255966533483 Trees

4 0.7908496732026143 0.12016193667222376 LogisticRegression

5 0.7712418300653594 0.2221741585854056 NaiveBayes

Listing 6.12: Test Results for K-Folds cross validation using mean values of UU DD UD and DU times as
features. Score in percentage (left) and standard deviation (right) are printed.
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1 0.7352941176470589 0.0415945165403851 SVM

2 0.7156862745098039 0.09705387192756532 KNN

3 0.7826797385620915 0.07263434892448654 Trees

4 0.7908496732026143 0.12016193667222376 LogisticRegression

5 0.6960784313725491 0.15251322731474554 NaiveBayes

Listing 6.13: Test Results for K-Folds cross validation using mean values and standard deviation of UU DD
UD and DU times as features. Score in percentage (left) and standard deviation (right) are printed.

As it can be concluded from the above results, the Logistic Regression algorithm provided the
best results given the available datasets. The number on the left is the algorithm score in
percentage while the number on the right is the standard deviation of the results from the three
folds. The logistic regression algorithm was then implemented and it was set to run in the
background while writing parts of this project. SVM was also tested as it was implemented in
the beginning of the project for testing. The results snippets can be found in Appendix C. The
output probabilities, however, are not usable. A way of calculating the prediction accuracy has
to be implemented in order to set thresholds.

While running in the machine learning in the background for the author, during the writing
of this project, for SVM 20/122 predictions were wrong, giving a 16.39% FRR. For Logistic
Regression 17/78 resulting in a 20% FRR.

It is planned in future tests to rerun the previous tests with higher amounts of data. More
feature vectors will be used for training the algorithms. Furthermore, more persons should be
trained in the algorithm with different typing proficiency. The users that have provided samples
will be asked to test the system in order to calculate the FRR for them. One limiting factor
is also the choice of features so it should be tested how the system performance changes when
other features are considered. As it can be seen in figure 6.1, when calculating the mean value
of all the digraphs, the distributions for two users are very similar. Also, since different digraphs
will be typed with different speed, depending on their position on the keyboard, the distribution
does not follow a bell curve. Unregistered users will also be asked to test the system in order to
test FAR.
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Figure 6.1: Distribution of the UD digraph times for two users.
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7| Discussion
The goal of this project was to perform a study on the applicability of a keystroke dynamics
system in the real world, by considering what advantages it would bring in terms of security,
how such a system would function, as well as proposing an architecture that would make use
of today’s technologies to implement such a system in a company. However, due to time and
resources constraints, certain limitations were set for the project. This section introduces a short
discussion on other factors that should be taken into consideration when considering deploying
such a system in a real world scenario.

As it was briefly presented in the Introduction chapter 1, General Data Protection Regulation
(GDPR) is a regulation introduced by the European Union in order to protect and give users
control over their personal data. This regulation came into force on 25th of May and, among
others, introduces concepts like lawful processing of data, privacy by design and different rights
for users like right to be forgotten, right to information or right to data portability [49]. Since
the keystroke dynamics authentication system collects personal data about users, a study should
be done on how GDPR would impact the implementation of such a system. Privacy by design
principles introduce the idea that a system should be designed with privacy of the users in
mind from the beginning of the process. While certain requirements have been presented in this
project related to this matter, the main focus has been put on the functionality of the system.
Furthermore, in order for the processing of data to be performed in a lawful way, a consent
may be needed from the user before data can be collected. This consent should clearly state
what data is collected, for which purposes and how it is processed. According to the right to
be forgotten, the user should always have the option to delete their data on demand. These
concepts should certainly be taken in consideration when considering implementing a keystroke
dynamics system.

Furthermore, a market analysis should be performed in order to understand if such a solution
would be worth the investment of time and money. While at a first glance, such a product may
bring security benefits to users and companies, the willingness of them investing in such a system
is a matter of debate. A case could be made for companies that are handling systems which
contain very sensitive data where access has to be very strictly controlled. A risk assessment for
such a company may reveal that investing in such a system may provide benefits and lower the
number of steps required to take in order to be fully certain of a user’s identity.

Another fact worth mentioning is people’s reaction to such a system. Even if it is properly
explained to them what the purpose of such a system is, the fact that everything they are typing
is being logged may make some people uncomfortable. Furthermore, even though it should be
impossible for anyone to trace back what a user initially typed, it can still be deducted if a user
is typing and how much they are typing, which may raise the idea that people’s activity can
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be tracked. As it was presented in this project, some papers suggest tracking people’s emotions
using keystroke dynamics as well. As discussed in the previous paragraph, it could be considered
to use such a system just for controlling access to certain restricted, sensitive areas and only
track the users when they are using this system, while not tracking them when performing usual,
daily tasks.

Additionally, a keystroke dynamics system might not be enough on it’s own to perform contin-
uous authentication. As it only tracks keystrokes, a hacker taking control of a computer would
not be detected until they start typing. Even then, a number of keystrokes is always required
in order to be able to extract features. For this reason, tests should be performed on how this
kind of systems could collaborate with existing technologies in order to provide better results.
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8| Conclusion
The initial challenge for this project was finding new, innovative ways of performing authentica-
tion that would help with the cyber security issues that companies are facing today. One field
that has been developing, together with the developments in machine learning, is the field of
behavioral biometrics. After initial research in this field, the keystroke dynamics concept was
analyzed. This way, the main problem of the project was set.

How to implement a machine learning system that uses keystroke dynamics to
continuously authenticate the users?

The main problem of the project was further divided into five smaller sub questions in order
to provide more granularity to the question. In order to understand what are the benefits of
such a solution, the first question referred to identifying the cyber security improvements that it
would bring. It was soon realized that most of the popular attacks today, that try to steal user’s
credentials by either exploiting the user’s IT system or the user’s trust, would easily be mitigated
by such a solution. This relates to the fact that even if the user’s credentials are compromised,
a hacker would also have to imitate the user’s typing pattern in order to stay authenticated
in a system. Even though, the performance that keystroke dynamics authentication systems
reached today may not be as good as other traditional authentication methods, the fact that it
can be used to perform persistent authentication, without any additional hardware, makes it a
good candidate for a second factor authentication method which can be used as a detective and
forensic control.

The second question accentuates the fact that, in order to perform continuous authentication,
a way of tracking the user continuously should be found. This way of tracking should provide
inputs that translate the physical action of pressing a key on the keyboard into information that
a computer can use to take decisions. The concept of keylogger was introduced for this reason,
which is a piece of software that can intercept the information exchanged between the operating
systems and other applications in order to record inputs from I/O devices. This way, a developer
could build an application that constantly intercepts all the keystrokes of the users, even if the
application is running in the background. However, being able to freely track user’s activity
rises privacy concerns. The user should be informed about this action and the data should be
carefully secured, while all the stored data or data that leaves the user computer should have
temporal context removed so it would be impossible to recreate whatever the user was typing.

The third question introduced is the problem of transforming the keystroke information into
features that can be used to separate users. Since the timestamp of each keystroke and the
actual key that was pressed are the only information that can be recorded from a user’s inter-
action with their keyboard, measurements based on time are used for building features. It was
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also discussed at this step that transforming keystrokes information into features removes the
contextual information and temporal order of letters. However, a balance between performance,
resource usage and simplicity has to be found at this step, as using high dimensionality, for
example, may require complex dimensionality reduction algorithms that could greatly impact
the performance of the user’s computer.

In the fourth question, a discussion was brought upon the concept of machine learning. At this
step, based on the requirements of the system, given the features used as input and the required
output, a decision was made on using supervised learning algorithms. Features are collected from
users that are using the system, labeled and then used to train the machine learning algorithm.
In order to decide which algorithm is the most recommended for the current project, according
to best practice multiple algorithms satisfying the requirements have been tested and the ones
that provided good results are used for further testing

The last question referred at finding ways of calculating the performance of the system in
order to understand how it would work in a real life scenario. Some preliminary results have
been presented in this paper. However, not enough data has been collected in order to obtain
more precise results. As future works, more testing data will be gathered and more types of
features will be collected and tested in order to understand the impact on the performance of
the algorithm.

In conclusion, a keystroke dynamics authentication system has been designed and implemented
as a proof of concept in this project. Further testing and tuning has to be performed in order to
understand the real performance capabilities of such a system and test it in a real life scenario
as a cyber security control.
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Appendices
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A| Full System Diagram
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B| Source Code
The source code can be found on GitHub at https://github.com/SRNZ91/Keystroke-Dynamics-
Authentication. The repository is only public during examination period. Contact the author
or collaborators for access.
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C| Logistic Regression tests
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[1] [[0.55500487 0.42550654 0.005994   0.00662926 0.00686532]] 
[1] [[6.91498444e-01 3.04021027e-01 4.22812979e-04 3.97682023e-03 
  8.08957494e-05]] 
[1] [[6.87536517e-01 8.02819554e-03 3.86473102e-04 3.04002165e-01 
  4.66497185e-05]] 
[1] [[0.88415238 0.0020623  0.01899291 0.09334886 0.00144354]] 
[1] [[9.90892239e-01 2.05734559e-04 1.32935021e-03 6.64842654e-03 
  9.24249856e-04]] 
[1] [[7.70584978e-01 1.97578622e-01 1.95413834e-04 2.31347128e-02 
  8.50627377e-03]] 
[1] [[6.79003940e-01 3.13727672e-01 8.15943443e-05 6.80718607e-03 
  3.79607065e-04]] 
[1] [[5.45001489e-01 2.43935064e-06 3.16862599e-01 1.37794412e-01 
  3.39061067e-04]] 
[1] [[5.38371381e-01 4.61058486e-01 1.00082728e-06 4.62794325e-04 
  1.06337476e-04]] 
[1] [[9.92216916e-01 4.83419511e-03 1.87925970e-04 2.26127842e-03 
  4.99684974e-04]] 
[1] [[0.92158404 0.00290685 0.00443293 0.06831271 0.00276346]] 
[1] [[8.08438366e-01 1.02249115e-02 1.70770485e-05 1.81312866e-01 
  6.78019185e-06]] 
[1] [[5.57109501e-01 1.70155593e-04 2.89800346e-01 1.25934736e-01 
  2.69852620e-02]] 
[1] [[5.55291601e-01 4.25036442e-01 1.43671680e-08 1.96603798e-02 
  1.15628268e-05]] 
[1] [[9.38491120e-01 7.82879812e-03 1.10043913e-04 5.22461339e-02 
  1.32390432e-03]] 
[1] [[7.22523745e-01 2.58582763e-01 5.35234823e-05 1.87417926e-02 
  9.81755368e-05]] 
[1] [[4.99573726e-01 9.01462903e-55 4.99573726e-01 1.28402518e-07 
  8.52420279e-04]] 
[1] [[7.17093855e-01 8.68923552e-05 2.64743829e-01 1.69786313e-02 
  1.09679203e-03]] 
[2] [[4.66289636e-01 5.31176241e-01 3.15761515e-08 2.50196324e-03 
  3.21283767e-05]] 
[2] [[4.71723432e-01 4.82885089e-01 5.19774878e-06 4.53798457e-02 
  6.43603928e-06]] 
[1] [[8.71428260e-01 1.19470751e-01 7.92368624e-07 8.36713676e-03 
  7.33060258e-04]] 
[1] [[9.18762055e-01 2.02864377e-04 1.24387038e-02 6.65471630e-02 
 2.04921355e-03]] 
[1] [[9.42286322e-01 4.84880984e-02 3.36928107e-04 8.83751632e-03 
  5.11353285e-05]] 
[1] [[8.00335258e-01 9.90180985e-02 7.74865901e-04 9.98658941e-02 
  5.88399257e-06]] 
[1] [[8.96681336e-01 7.10832109e-03 3.24665297e-02 6.33149140e-02 
  4.28899172e-04]] 
[2] [[3.84065409e-01 5.99318698e-01 1.31993445e-03 1.51790611e-02 
  1.16897052e-04]] 
[1] [[8.00670604e-01 1.77913054e-01 1.50934801e-05 1.91429139e-02 
  2.25833413e-03]] 
[1] [[5.03625939e-01 4.88470486e-01 2.68144979e-07 7.13417364e-03 
  7.69133766e-04]] 
[1] [[4.99999369e-01 4.90716380e-51 4.99999369e-01 2.11488259e-07 
  1.05135494e-06]] 
[1] [[9.54070842e-01 4.27027787e-03 1.74339987e-04 1.68605220e-02 
  2.46240183e-02]] 
[2] [[4.92737061e-01 4.94616867e-01 4.54193340e-09 6.28363614e-04 
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1.20177046e-02]] 
[1] [[4.99836791e-01 1.47574672e-51 4.99836791e-01 3.70539706e-08 
  3.26380563e-04]] 
[1] [[0.91044364 0.0362326  0.00339417 0.04113842 0.00879117]] 
[1] [[4.99980080e-01 1.11987885e-49 4.99980080e-01 9.54033001e-09 
  3.98296239e-05]] 
[1] [[0.51425273 0.01625355 0.3405597  0.06737529 0.06155874]] 
[1] [[4.97247150e-01 2.52785361e-52 4.97247150e-01 2.19505572e-09 
  5.50569784e-03]] 
[1] [[0.88401447 0.01092903 0.00162552 0.10096859 0.00246239]] 
[1] [[4.99929126e-01 1.32899845e-55 4.99929126e-01 1.66606282e-09 
  1.41747247e-04]] 
[1] [[6.44181461e-01 2.98475415e-02 1.09633463e-01 2.16288602e-01 
  4.89318587e-05]] 
[1] [[4.99618627e-01 6.67438568e-47 4.99618627e-01 1.42274783e-08 
  7.62732004e-04]] 
 [1] [[4.99676373e-01 2.31265045e-49 4.99676373e-01 2.50292788e-08 
  6.47229042e-04]] 
[1] [[4.99998560e-01 6.63386716e-53 4.99998560e-01 2.94523199e-07 
  2.58640152e-06]] 
[1] [[7.99002531e-01 4.69855611e-03 4.78944800e-02 1.48362205e-01 
  4.22284451e-05]] 
[1] [[4.99687934e-01 9.58098262e-43 4.99687934e-01 8.76719292e-08 
  6.24044570e-04]] 
[2] [[4.55701351e-01 4.92990679e-01 3.14612806e-06 5.12661413e-02 
  3.86821488e-05]] 
[1] [[6.15718861e-01 3.77235044e-01 1.37547032e-06 4.96454829e-03 
  2.08017164e-03]] 
[1] [[4.99282051e-01 1.00528149e-47 4.99282051e-01 2.23174893e-09 
  1.43589613e-03]] 
[1] [[4.99941829e-01 5.70491789e-54 4.99941829e-01 1.34869907e-08 
  1.16328733e-04]] 
[4] [[0.01150804 0.00082022 0.27395424 0.62459653 0.08912097]] 
[1] [[4.99990308e-01 4.16757731e-46 4.99990308e-01 1.36519973e-07 
  1.92473115e-05]] 
[2] [[2.45664636e-01 7.37746128e-01 3.47194454e-06 1.61255021e-02 
  4.60262234e-04]] 
[1] [[5.96388607e-01 3.72498371e-01 1.58510715e-04 3.02822961e-02 
  6.72214771e-04]] 
[1] [[4.99526233e-01 1.39503408e-49 4.99526233e-01 5.99865694e-07 
  9.46933192e-04]] 
[2] [[4.45683656e-01 5.46645408e-01 7.31814057e-06 7.47147337e-03 
  1.92144190e-04]] 
[2] [[3.42360548e-01 5.98378628e-01 1.11100310e-03 5.78700003e-02 
  2.79820367e-04]] 
[3] [[7.57517676e-02 1.40205192e-07 7.25657895e-01 1.92105255e-01 
  6.48494245e-03]] 
[1] [[5.06207967e-01 4.93004955e-01 2.71163742e-08 7.53523533e-04 
  3.35279160e-05]] 
[1] [[7.23075406e-01 2.62933992e-01 1.46390830e-05 1.26451385e-02 
  1.33082512e-03]] 
[1] [[4.99155757e-01 9.13739264e-51 4.99155757e-01 5.30450823e-09  
  1.68848108e-03]] 
[1] [[6.47263770e-01 1.72486884e-01 7.19048954e-06 1.80133072e-01 
  1.09082864e-04]] 
[2] [[4.84848004e-01 4.97248902e-01 1.22931770e-04 1.77773943e-02 
  2.76737049e-06]] 
[1] [[4.99867709e-01 6.44747054e-48 4.99867709e-01 7.63539557e-08 
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2.76737049e-06]] 
[1] [[4.99867709e-01 6.44747054e-48 4.99867709e-01 7.63539557e-08 
  2.64505624e-04]] 
[1] [[0.60109359 0.2933519  0.03476367 0.06397713 0.00681371]] 
[1] [[8.56387127e-01 9.90413086e-02 1.59167456e-04 4.37488778e-02 
  6.63519484e-04]] 
[1] [[9.49354217e-01 2.34625931e-02 2.49292906e-04 4.04569638e-03 
  2.28882007e-02]] 
[1] [[9.13053581e-01 7.51833785e-03 2.37004675e-04 1.76786568e-03 
  7.74232112e-02]] 
[1] [[8.24141035e-01 1.65589181e-01 4.12424109e-04 9.54653209e-03 
  3.10827587e-04]] 
[1] [[5.41305656e-01 4.24157358e-01 1.17930902e-04 3.42386137e-02 
  1.80441873e-04]] 
[2] [[2.80947033e-01 5.52811525e-01 1.11565975e-04 3.52426766e-02 
  1.30887200e-01]] 
[2] [[2.83959509e-01 6.93134201e-01 4.23053023e-07 2.27721571e-02 
  1.33710540e-04]] 
[2] [[4.31427134e-01 4.49483052e-01 4.40255180e-08 7.39473895e-04 
  1.18350296e-01]] 
[2] [[4.72405106e-01 5.21235805e-01 1.39769180e-07 6.15914075e-03 
  1.99809061e-04]] 
[1] [[4.99995836e-01 2.76823654e-45 4.99995836e-01 2.39993985e-07 
  8.08791639e-06]] 
[2] [[3.44804596e-01 5.89175569e-01 4.56328116e-06 6.59764250e-02 
  3.88469381e-05]] 
[2] [[1.11637269e-01 5.79136662e-01 1.51699607e-04 3.09073702e-01 
  6.67265314e-07]] 
[1] [[4.99995808e-01 5.21035307e-54 4.99995808e-01 7.25026790e-09 
  8.37631334e-06]] 
[4] [[1.55814802e-01 1.50673925e-01 8.54930006e-05 6.92560778e-01 
  8.65001818e-04]] 
[2] [[4.07135286e-01 5.77199952e-01 5.42500609e-08 1.56217536e-02 
  4.29546552e-05]] 
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D| SVM Tests
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[1] [[0.26282921 0.22705271 0.19956397 0.2428116  0.06774252]] 
[1] [[0.22076823 0.18616209 0.17630506 0.19292159 0.22384304]] 
[3] [[0.26216716 0.22574777 0.19825365 0.24040145 0.07342997]] 
[1] [[0.26133223 0.22574965 0.1983419  0.24064229 0.07393392]] 
[1] [[0.22429303 0.19200881 0.17981167 0.19819254 0.20569396]] 
[1] [[0.22165815 0.18796506 0.17763494 0.19314791 0.21959395]] 
[3] [[0.26618395 0.22325674 0.19725574 0.2346512  0.07865237]] 
[1] [[0.2435823  0.2197947  0.19285286 0.23154922 0.11222092]] 
[1] [[0.24491739 0.22513557 0.19718775 0.23894136 0.09381793]] 
[1] [[0.24391077 0.21840537 0.19174994 0.23015714 0.11577678]] 
[1] [[0.24237913 0.21702225 0.19127291 0.22826543 0.12106028]] 
[1] [[0.24317698 0.21824279 0.19214648 0.22978145 0.1166523 ]] 
[1] [[0.24220826 0.2179465  0.19214643 0.22912963 0.11856917]] 
[1] [[0.24308226 0.21899699 0.19266133 0.23054441 0.11471501]] 
[1] [[0.24306199 0.21887874 0.19240542 0.23038531 0.11526855]] 
[1] [[0.24231503 0.21800662 0.19231845 0.22924518 0.11811473]] 
[1] [[0.24116077 0.2144703  0.18985507 0.22546172 0.12905214]] 
[1] [[0.24140595 0.21635998 0.19119563 0.22725245 0.12378599]] 
[1] [[0.24352752 0.22060596 0.19335968 0.2324297  0.11007714]] 
[1] [[0.24162933 0.21507917 0.1902807  0.22617887 0.12683194]] 
[1] [[0.25807026 0.22681364 0.19851946 0.24279152 0.07380512]] 
[3] [[0.25970996 0.22488383 0.19653807 0.23898285 0.07988529]] 
[1] [[0.22253459 0.18823562 0.17746488 0.19617328 0.21559162]] 
[1] [[0.2224372  0.18894529 0.17795845 0.19535391 0.21530515]] 
[1] [[0.26501404 0.22779746 0.20204672 0.24493003 0.06021175]] 
[1] [[0.22163338 0.18775784 0.17722014 0.19417048 0.21921816]] 
[1] [[0.26452683 0.22780156 0.20103252 0.24438945 0.06224964]] 
[3] [[0.26019359 0.22443607 0.19683008 0.23837383 0.08016643]] 
[1] [[0.26287627 0.22675546 0.20037597 0.24285635 0.06713595]] 
[1] [[0.26278191 0.22650551 0.1996436  0.24208093 0.06898805]] 
[1] [[0.2257225  0.19476696 0.18144864 0.20059565 0.19746625]] 
[1] [[0.26255438 0.22745595 0.20014352 0.24380394 0.06604221]] 
[1] [[0.22214427 0.18849194 0.17764014 0.19505583 0.21666782]] 
[1] [[0.26269846 0.22735025 0.19993557 0.24350593 0.06650978]] 
[1] [[0.26559902 0.22746233 0.20150219 0.24389526 0.06154121]] 
[1] [[0.26263689 0.22676854 0.19992429 0.2426597  0.06801058]] 
[3] [[0.26029944 0.22418893 0.19727061 0.23819371 0.08004731]] 
[3] [[0.26184298 0.22518899 0.19802875 0.23957347 0.07536581]] 
[2] [[0.2693855  0.22317096 0.20001237 0.23467082 0.07276035]] 
[1] [[0.24291372 0.21705651 0.19127053 0.22849087 0.12026837]] 
[1] [[0.24364731 0.22029795 0.19361179 0.23218808 0.11025487]] 
[1] [[0.245179   0.22405153 0.19561966 0.23723247 0.09791734]] 
[1] [[0.24379124 0.22099305 0.19394947 0.23302488 0.10824136]] 
[1] [[0.24240192 0.21802493 0.19217588 0.22928645 0.11811081]] 
[1] [[0.24346842 0.21882937 0.19274325 0.23052089 0.11443807]] 
[1] [[0.24363826 0.22143914 0.1945182  0.23354796 0.10685644]] 
[1] [[0.24216479 0.21453422 0.18968164 0.2259078  0.12771155]] 
[1] [[0.24382371 0.21852975 0.19195866 0.23026436 0.11542352]] 
[1] [[0.24538876 0.22560703 0.19709549 0.23961845 0.09229027]] 
[1] [[0.24351005 0.21800675 0.19192636 0.22965205 0.11690479]] 
[1] [[0.24381313 0.2215727  0.19428659 0.2337071  0.10662048]] 
[1] [[0.24395266 0.22406299 0.19653275 0.23711439 0.09833721]] 
[1] [[0.24426786 0.22010738 0.19274304 0.2320835  0.11079821]] 
[1] [[0.24320129 0.21975544 0.19356501 0.23146258 0.11201568]] 
[1] [[0.24231191 0.21726864 0.19165559 0.22849041 0.12027346]] 
[1] [[0.24400559 0.21985283 0.19324162 0.2317984  0.11110157]] 
[1] [[0.24213481 0.2149142  0.18985809 0.22623423 0.12685866]] 
[1] [[0.24301907 0.22004535 0.19320219 0.23164317 0.11209021]] 
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[1] [[0.24398114 0.22067252 0.19351627 0.23267431 0.10915575]] 
[1] [[0.24426587 0.22067601 0.19339553 0.23275747 0.10890512]] 
[1] [[0.24202912 0.21425563 0.18925386 0.22564305 0.12881833]] 
[1] [[0.24298275 0.21847793 0.1923368  0.22996084 0.11624168]] 
[1] [[0.25036407 0.22876198 0.19949873 0.24595873 0.07541649]] 
[1] [[0.26217876 0.22673394 0.19933121 0.24236563 0.06939046]] 
[1] [[0.22017195 0.18523302 0.17564746 0.19259624 0.22635133]] 
[1] [[0.21866057 0.18312039 0.17447762 0.18947804 0.23426338]] 
[1] [[0.26217055 0.22647559 0.19905166 0.24185322 0.07044898]] 
[1] [[0.262857   0.22728702 0.19968922 0.24321645 0.06695032]] 
[1] [[0.21577039 0.17908991 0.17183508 0.18641493 0.2468897 ]] 
[1] [[0.26193055 0.22634873 0.19987126 0.24217794 0.06967152]] 
[1] [[0.22232237 0.18828681 0.17740706 0.19599756 0.2159862 ]] 
[3] [[0.26056076 0.2241518  0.19668749 0.23782233 0.08077762]] 
[1] [[0.26208808 0.22583154 0.19851943 0.24067349 0.07288746]] 
[3] [[0.25760325 0.22168147 0.19434962 0.23431424 0.09205142]] 
[3] [[0.25867089 0.22364192 0.19634304 0.23743004 0.08391412]] 
[1] [[0.2629289  0.22705765 0.19973095 0.2428849  0.0673976 ]] 
[1] [[0.22075107 0.18621221 0.17652092 0.19205714 0.22445866]] 
[1] [[0.26299551 0.22626694 0.19927398 0.24147425 0.06998933]] 
[1] [[0.2643521  0.22790777 0.20150995 0.24489889 0.06133129]] 
[3] [[0.18388724 0.20577018 0.23061344 0.2932405  0.08648863]] 
[1] [[0.15014549 0.16238807 0.18733207 0.23291864 0.26721573]] 
[1] [[0.18377912 0.20727045 0.23609696 0.30730385 0.06554963]] 
[1] [[0.18346758 0.20674309 0.23420396 0.30319205 0.07239332]] 
[1] [[0.18374179 0.20571465 0.2322496  0.29570073 0.08259323]] 
[3] [[0.18438846 0.20587564 0.23195357 0.29373337 0.08404897]] 
[1] [[0.1843861  0.20644667 0.23355263 0.29804301 0.07757159]] 
[3] [[0.18480926 0.20669788 0.23330273 0.29715974 0.07803039]] 
[3] [[0.18435434 0.20597158 0.23177366 0.293926   0.08397442]] 
[3] [[0.18419368 0.20627974 0.23182494 0.29562804 0.0820736 ]] 
[1] [[0.15487834 0.17253083 0.19711856 0.25199279 0.22347949]] 
[1] [[0.15473815 0.17654837 0.20051567 0.2586116  0.20958621]] 
[1] [[0.15263915 0.16709415 0.19180237 0.24118014 0.24728419]] 
[3] [[0.18541495 0.20679571 0.23351109 0.29576517 0.07851308]] 
[1] [[0.15257441 0.16869579 0.19298082 0.24331544 0.24243354]] 
[1] [[0.15377858 0.17165718 0.195537   0.24853321 0.23049403]] 
[1] [[0.18404616 0.20697964 0.23561252 0.30441941 0.06894227]] 
[3] [[0.18412497 0.20593112 0.23099952 0.29350944 0.08543495]] 
[1] [[0.18443189 0.20674039 0.23355769 0.29895839 0.07631165]] 
[1] [[0.1832701  0.20672321 0.23343945 0.30257208 0.07399515]] 
[1] [[0.15063698 0.16330792 0.18820157 0.23452372 0.26332981]] 
[1] [[0.18514502 0.20692545 0.23404145 0.29794741 0.07594067]] 
[1] [[0.18463745 0.20675832 0.23488283 0.30037369 0.0733477 ]] 
[1] [[0.18562766 0.20730071 0.23571604 0.30030153 0.07105405]] 
[1] [[0.18473749 0.2070313  0.23507028 0.30135845 0.07180247]] 
[3] [[0.18496937 0.20733564 0.23369634 0.29950391 0.07449474]] 
[3] [[0.18476897 0.20622926 0.23253534 0.29452025 0.08194617]] 
[3] [[0.1835808  0.20556846 0.23063832 0.29355743 0.08665498]] 
[3] [[0.18343316 0.20548382 0.23068456 0.29380418 0.08659428]] 
[1] [[0.18397242 0.20731663 0.2357979  0.30624962 0.06666343]] 
[3] [[0.18427784 0.20575546 0.23098833 0.2923868  0.08659156]] 
[1] [[0.18456388 0.2072429  0.23610792 0.30447218 0.06761312]] 
[1] [[0.18591658 0.2075413  0.23667708 0.30180122 0.06806383]] 
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