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Danish abstract
Dette projekt omhandler convolution framelets, som er en klasse af tight frames præsen-
teret for nylig af [Yin et al., 2017]. I denne forbindelse, er anvendelsen af convolution
framelets til lydkomprimering blevet undersøgt.

Vi foreslår metoder til at kontrollere niveauet af redundans for at tilpasse convolution
framelets til komprimering. Ideen er at substituere den enkle convolution framelet, der
har et højt niveau af redundans, med en sammenkædning af mindre redundante convolu-
tion framelets. Dette giver mulighed for at anvende patches med forskellige længder med
den konsekvens at der bliver færre patches af hver længde. Komprimeringsmetodikken i
dette projekt er inspireret af en lydkomprimeringsmetode forslået af [Ravelli et al., 2008].
Komprimeringsmetoden består i at finde en tyndt besat mængde af frame koefficienter
og kode disse koefficienter. For at finde tyndt besatte koefficienter, anvendes ortogonal
matching pursuit algoritmen i takt med [Foucart and Rauhut, 2013]. Kodningsalgorit-
men er inspireret af algoritmen fra [Ravelli et al., 2008], som er baseret på run length
kodning og en interleaving metodik.

Komprimeringsmetodikken er testet på forskellige udklip af musik. Kvaliteten af
komprimering er evalueret ved hjælp af et perceptuelt mål af lydkvalitet, kaldet for Per-
ceptual Evaluation of Audio Quality (PEAQ). Vores komprimeringsmetodik sammen-
lignes med metodikken fra [Ravelli et al., 2008] og en MP3 koder ved at bruge PEAQ
værdier. Sammenligning viser at vores komprimeringsmetodik ikke præsterer lige så godt
for lavere bitrater. På trods af resultaterne, har sammenkædede convolution framelets
potentialet som signalrepræsentation givet deres fleksibilitet med hensyn til domæne og
redundansniveau.
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1 | Introduction

Sound can be described as propagating oscillations in air pressure. When recording sound
digitally, the air pressure is measured and stored as a time series. In this representation,
sound can be thought of as a function of time, hence it is called the time domain
representation. The time domain is practical for recording and playback, but it makes
little sense to humans, and it turns out to be inefficient for digital storage [Bosi and
Goldberg, 2002, ch. 1.1], [You, 2010, ch. 10.1]. The human inner ear decomposes sound
into its frequency components, which allows us to hear sound as a spectrum of tones.
The way the human ear interprets sound can be thought of as a function of frequency,
at least over short spans of time [Bosi and Goldberg, 2002, ch. 6.9]. This is the time-
frequency domain representation of sound. It turns out that real sound is often efficiently
represented in the time-frequency domain [You, 2010, ch. 5.4]. This observation forms
the basis of many audio compression techniques.

To introduce audio compression consider source coding. In source coding, the prob-
lem lies in determining the distribution of the source, so that an appropriate entropy
coder can be designed. Real audio is not well described as a stationary source, since real
sound changes characteristics over time, which means that the source would change dis-
tribution over time [You, 2010, ch. 5.4]. In practice a widely used approach is transform
coding, in which the sound is transformed into a different domain for coding. Transform
coding usually takes advantage of the efficient representation of sound that comes with
frequency transforms, such as the Discrete Cosine Transform [DCT]. First of all the ad-
vantage is that the transform compacts most of the sounds energy into a few coefficients.
Using an appropriate bit allocation strategy, sound can thus be effectively compressed
in this domain. Secondly, the transform is typically chosen to be similar to the way the
ear decomposes sound, i.e. a time-frequency transform. This means that coefficients,
which are imperceptible to the human ear can be neglected in the coding. In particular,
the psychoacoustic effect known as auditory masking is used to identify imperceptible
coefficients [Bosi and Goldberg, 2002, ch. 6.6].

Transform coding is mainly concerned with orthogonal transforms, since these are
energy preserving and easily invertible. Research has also been done on redundant
transforms, e.g. [Ravelli et al., 2008], where a union of modified discrete cosine transforms
are used. The advantage of using redundant transforms is that the representation of a
sound is no longer unique, which allows one to search for representations with better
energy compaction, or sparsity. There exist methods for finding sparse representations in
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redundant transforms. Algorithms from compressive sensing are useful for this purpose,
e.g. matching pursuit, [Mallat and Zhang, 1993], [Foucart and Rauhut, 2013, ch. 3].
These methods are computationally costly, which slows down the coding in comparison
to orthogonal transforms.

Convolution framelets, introduced by [Yin et al., 2017], are a recent class of redundant
tight frames. Frames are redundant generalizations of bases. Tight frames scale all
vectors equally [Christensen, 2008, ch. 1.1]. The framelets are constructed by element-
wise convolution between two existing tight frames (or orthonormal bases), Φ and V .
The canonical coefficients of a given signal in a framelet can be found efficiently. Building
a Hankel matrix F , the so-called patch matrix, from the time domain signal, the two
frames Φ and V can be applied as transforms to the left and right, respectively, of this
patch matrix. This results in a matrix, which contains exactly the canonical coefficients
of the convolution framelet.

This project explores the use of convolution framelets for audio compression. The
basic idea is to let convolution framelets take the place of orthonormal transforms in a
transform coding scheme. Some adaptations are made to the convolutional framelets, to
better suit the audio compression context. The structure of the patch matrix causes a
high degree of redundancy. The patch matrix is therefore generalized to a subset of rows
from the full patch matrix, which allows the redundancy to be reduced. It turns out that
since convolution framelets correspond to tight frames, they can be concatenated and
preserve tightness, which allows for a unification of differently structured patch matrices
for the same signal. As a point of reference, this is comparable to analyzing a signal
using multiple window lengths simultaneously.

Once a convolution framelet has been constructed, it is desired to find an efficient
representation of a given audio signal in this framelet. Here, ’efficient’ should be un-
derstood as efficient for coding; practically sparse representations will be sought. The
canonical frame coefficients will not do for compression, as they are typically not sparse
in concatenated convolution framelets. The approach taken is to choose certain frame
elements that describe as much of the signal as possible, resulting essentially in a signal
adaptive representation. This is where compressive sensing is of interest, as this field is
focused on finding sparse signal representations in redundant systems.

Once sparse coefficients have been found, these have to be encoded into a compressed
bit stream. This involves quantization and is thus described as a lossy coding scheme.
The convolution framelets in this project will be chosen such that the frame is comparable
to a union of bases used by [Ravelli et al., 2008], wherein a redundant system is also
used for audio coding. The coding is based on run length coding, since zero-bits are
much more common than one-bits in the sparse coefficients. This essentially allows the
coder to compress long runs of consecutive zero-bits very effectively, while spending a
few extra bits on every one-bit. This coding strategy is implemented in a bit plane
coder, which separates the raw coefficient bits into two categories, where the so-called
significance bits are the most compressible and the so-called refinement bits are typically
not compressible at all.

Finally the method is tested using varying bit rates on a number of music segments
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and compared to both MP3 compressed versions of the same music segments and the
non-psychoacoustic results from [Ravelli et al., 2008].
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2 | Framelet Theory

This chapter is dedicated to the theory for the understanding and usage of framelets
necessary for this project. Section 2.1 contains the definitions and propositions required
for the expansion of framelet theory presented by this project. In Section 2.2 we gener-
alize the convolution framelet to patches with less redundancy along with proof that a
reduced (less redundant) framelet can still be tight. In Section 2.3 we present a method
for constructing convolution framelets by concatenating multiple orthonormal bases and
using the resulting frames for the construction, along with proof of when this method
produces tight frames.

2.1 Frames and convolution framelets
In order to define and describe the new methods presented in this report some definitions
are required. First circular convolution,

Definition 2.1
The circular convolution between two vectors v,w ∈ RN is defined as

(v ~w)[n] =
N−1∑
m=0

v[n−m]w[m], (2.1)

where periodic boundary conditions are assumed, i.e. v[N + k] = v[k], ∀k ∈ Z.
[Yin et al., 2017, p. 5]

This is expanded to include vectors of differing sizes using zero-padding,

Definition 2.2 (Circular convolution)
The circular convolution in RN of any two vectors v ∈ RN1 and w ∈ RN2 with
N1, N2 ≤ N is defined as

v ~w = v0 ~w0, (2.2)

where v0 =
[
v> 0>N−N1

]>
and w0 =

[
w> 0>N−N2

]>
denote the length-N zero-

padded versions of v and w. 0N−N1 is the zero vector in RN−N1 and 0N−N2 is the
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zero vector in RN−N2 .
[Yin et al., 2017, p. 5]

Another important vector operation is the flip of a vector,

Definition 2.3 (Vector flip)
For any v ∈ RN1 with N1 ≤ N , define the flip of v as

←−v [n] = v0[−n]. (2.3)

[Yin et al., 2017, p. 6]

Next, frames and tight frames are defined,

Definition 2.4 (Frame)
A countable family of elements {ψi}M−1

i=0 in an inner product space V is a frame for
V , if there exist constants l, k > 0 such that

k‖f‖2 ≤
M−1∑
i=0
|〈f ,ψi〉|2 ≤ l‖f‖2, f ∈ V. (2.4)

[Christensen, 2008, p. 3]

Definition 2.5 (Tight frame)
A frame {ψi}M−1

i=0 of an inner product space V , is defined as tight if the following
holds,

M−1∑
i=0
|〈f ,ψi〉|2 = k‖f‖2, (2.5)

for all f ∈ V , where k, known as the frame bound, is a constant.
[Christensen, 2008, p. 5]

The following proposition regarding tight frames is useful for showing that a given
frame is tight.
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Proposition 2.1
{ψi}mi=1 is a tight frame for an inner product space V with frame bound k if and only
if

f = 1
k

m∑
i=1
〈f ,ψi〉ψi, ∀f ∈ V. (2.6)

[Christensen, 2008, p. 5]

Now that all the necessary definitions and propositions have now been introduced,
the convolution framelet can be defined.

Definition 2.6
A convolution framelet Ψ is defined as the set of vectors

ψij = 1√
l
φi ~ vj , i = 1, ..., N, j = 1, ..., l, (2.7)

where φi and vj are orthonormal bases for RN and Rl respectively.
[Yin et al., 2017, p. 6]

To describe convolution framelets using matrix multiplication as in [Yin et al., 2017,
p. 6], the concept of the patch matrix is required. Consider a one-dimensional signal-
vector f =

[
f [0] f [1] ... f [N − 1]

]>
∈ RN and assume periodic boundary conditions

for f . The patch size l is a fixed integer between 1 and N , and for any integer m ∈
[0, ..., N − 1], the vector Fm =

[
f [m] ... f [m+ l − 1]

]>
∈ Rl is called the patch of

f at m with length l. The patch matrix of f is constructed by vertically stacking the
patches according to their order of appearance in the original signal f and is denoted
F ∈ RN×l:

F =
[
F 0 ... FN−1

]>
. (2.8)

The matrix-vector product of F with any vector v ∈ Rl can be written as a convolution:

Fv = f ~←−v . (2.9)

From [Yin et al., 2017, p. 9] the coefficient matrix can be constructed using the patch
matrix F and two orthonormal matrices Φ and V :

C = Φ>FV , (2.10)

where F ∈ RN×l, Φ ∈ RN×N and V ∈ Rl×l. This (2.10) is the practical method of
calculating C used in this report. This is because it requires no convolutions and does
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not explicitly require the potentially large amount of frame elements to be calculated
and stored.

Finally, down and up sampling are defined in order to control the level of redundancy
in (2.10).

Definition 2.7 (down and up sampling)
Let f ∈ RN , and let h < N be a positive integer. Define the down sampling of f by
h as,

(f ↓h)[n] = f [nh], n = 0, . . . ,
⌊
N − 1
h

⌋
. (2.11)

Define the up sampling of f by h as,

(f ↑h)[n] =
{
f [nh ] for n

h ∈ Z
0 o.w.

, n = 0, . . . , Nh− 1. (2.12)

2.2 Reduced patch matrix

The goal in this section is to generalize the convolution framelet, [Yin et al., 2017],
to patches with less overlap, and thus less redundancy. The patch matrix is originally
constructed from patches that are shifted one sample relative to their neighbour. We
will show that for suitable choices of hop, patch and block size, one will obtain a tight
frame when applying orthonormal transforms to the left and right of a reduced patch
matrix. To see that this is a generalization of convolution framelets as defined in 2.6, we
will show that each frame coefficient corresponds to a convolution between an element
from each of the orthonormal bases, where the left element has been up sampled.

Let f ∈ RN and let l be a positive integer denoting patch size. Consider the patch
matrix, F ∈ RN×l, see (2.8), defined by [Yin et al., 2017, p. 5]. Denote the rows of this
matrix as the full ordered set of patches of f . Let h be a positive integer, and select
an ordered subset of the patches, starting with the first, followed by every h’th patch
in order. h then denotes the hop size of the reduced patch matrix, F ↓h, constructed by
vertically stacking the selected subset of patches. Say for example that h = 2, then every
second patch is selected for the reduced patch matrix. h = 1 corresponds to the full
patch matrix. We use the ↓h notation, because F ↓h can be considered a down sampled
version of F in terms of patches.

Let Φ and V be orthonormal matrices. The question is, for which values of h, does
the following equation (2.13) yield a tight frame for f?

C↓h := ΦTF ↓hV . (2.13)

The reduced patch matrix is constructed exclusively from entries of f . If the reduced
patch matrix contains each entry of f exactly k times, where k is some positive integer,
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the reduced patch matrix will be called balanced. For a balanced reduced patch matrix
it follows that the squared Frobinius norm of the reduced patch matrix will be equal to
the squared 2-norm of f scaled by k, that is

k‖f‖22 = ‖F ↓h‖2F , (2.14)

for all f ∈ RN . Since the Frobinius norm is invariant under orthonormal transforms,
(2.14) extends to

k‖f‖22 = ‖F ↓h‖2F = ‖C↓h‖2F . (2.15)

This expression corresponds to taking the inner product between (2.6) and f in Propo-
sition 2.1. A given entry of f appears in F ↓h as many times as it is covered by a patch.
The following lemma places conditions on N and l, given h, which result in a balanced
F ↓h.

Lemma 2.1
Let f ∈ RN , and h ∈ {1, 2, 3, . . .}, then the reduced patch matrix F ↓h is balanced,
containing each entry of f exactly k times, if and only if N > l are both integer
multiples of h, with k := l

h .

Proof. First it will be shown that each entry of f is contained in the same number of
patches, under the assumptions of the lemma.

• Assume that l and N are integer multiples of h. Denote the shift between the first
entries of two patches, in terms of f with circularity, as the relative shift between
those patches. Note, that the relative shifts between patches in the reduced patch
matrix must be the integer multiples of h, because neighbouring patches have a
relative shift of h. The fact that N is divisble by h, ensures that this holds even
when the shift passes the boundary of f .
Consider the last entry, f [i], of any patch, then the first entry of this patch is
f [i + 1 − l]. The patch with f [i + 1] as the first entry, must be included in the
reduced patch matrix, because these two patches have a relative shift of l, which
was assumed to be an integer multiple of h. Thus a new patch always begins where
another ends, meaning that the total number of patches containing any entry of
f is constant. Figure 2.1 provides an illustration to help visualize the patches in
relation to f .

Now it will be shown that under the assumptions of the lemma, the number of patches
covering any entry of f is exactly k. As an illustrative aid, see Figure 2.1 (A)

• Consider again the last entry, f [i], of any patch, then it follows that this is the
first patch to contain f [i]. Since f [i] is the last entry of the patch, all following
patches with relative shift less than a full patch size, l, must contain f [i] as well.



10 2.2. Reduced patch matrix

Because each patch is shifted by h relative to its neighbour, there are l
h = k patches

following this patch, including itself, with relative shift less than l. Finally, by the
construction of the reduced patch matrix, no further patches contain f [i]. Thus,
since all entries were already shown to be contained in the same number of patches,
all entries must be contained in exactly k patches.

The implication has been shown to hold in one direction and the converse will now be
shown. First, it will be shown that there must exist two entries of f contained in a
different number of patches, when l is not an integer multiple of h. For an illustration
of these cases, see Figures 2.1 (B) and (D).

• Assume that l is not an integer multiple of h and consider the first entry f [i] of
the last patch. f [i − 1] can not be the last entry of any non boundary wrapping
patch. This is because a relative shift, not passing the boundary, w.r.t. the last
patch of l would be required. This is not possible, since relative shifts, not passing
the boundary, must be an integer multiple of h and l was assumed not to be an
integer multiple of h. For f [i− 1] to be the last entry of any boundary wrapping
patch, it would be required that l ≥ N , which is also against the assumptions. As
such, f [i] and f [i− 1] must be contained in a different number of patches.

Finally it remains to be shown that there must exist two entries of f contained in a
different number of patches, when l is an integer multiple of h while N is not. This final
case is illustrated in Figure 2.1 (C).

• Assume that l is an integer multiple of h and that N is not. Consider the last
entry f [i] of the last boundary wrapping patch. Since l is an integer multiple of h
and N is not, the number of entries after wrapping around the boundary in this
patch must not be an integer multiple of h. This is because the number of samples
before wrapping around the boundary can not be an integer multiple of h, since
this would require N to be an integer multiple of h. This means that f [i+ 1] can
not be the first entry of any patch. Thus f [i] and f [i+ 1] must be contained in a
different number of patches.

Since the patch matrix is made by stacking the patches, this proves the lemma.
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(A) N = 12 l = 4 h = 2
2 2 2 2 2 2 2 2 2 2 2 2

(B) N = 12 l = 5 h = 2
3 2 3 2 3 2 3 2 3 2 3 2

(C) N = 13 l = 4 h = 2
3 2 3 2 2 2 2 2 2 2 2 2 2

(D) N = 13 l = 5 h = 2
3 3 3 3 3 2 3 2 3 2 3 2 3

Figure 2.1: Four case illustrations of how many patches contain each entry of f . The lines at the top
in the four figures represent f , and the numbers above each entry of f show how many patches cover
that entry. The patches are represented by the shorter lines below, ordered from top to bottom, and
aligned horizontally with the corresponding entries of f . The parameters are shown above each figure.
Note in (A) how each entry of f is covered by exactly l

h
= 2 patches. In (B) how there are discrepancies

wherever a patch ends. In (C) how the boundary wrapping patches are misaligned with the first. Finally
in (D) how the boundary wrapping patches are only able to fix the issue seen in (B) for the first few
patches.

So F ↓h is balanced if and only if N and l are integer multiples of h. Now it will be
shown that applying orthonormal transforms to the left and right of a balanced reduced
patch matrix, as in (2.13), yields the coefficients of f in a tight frame.

Proposition 2.2
Choose positive integers N , l and h, such that N and l are integer multiples of h and
N > l. Let f ∈ RN and let F ↓h ∈ R

N
h
×l be the reduced patch matrix of f . Let

Φ ∈ R
N
h
×N
h and V ∈ Rl×l be orthonormal matrices, then

Ψ↓h = {(φi ↑h) ~ vj} , i = 0, . . . , N
h
− 1, j = 0, . . . , l − 1. (2.16)

is a tight frame for RN with frame bound l
h , where f has the canonical frame coeffi-

cients,
C↓h[i, j] = φiF ↓hvj = f> [(φi ↑h) ~ vj ] . (2.17)
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Proof. By Lemma 2.1 and the choice of N , l and h, F ↓h is balanced. Vector multiplica-
tion with F ↓h can be described as a convolution down sampled by h as follows,

(F ↓hv) [n] =
N−1∑
m=0

f [nh+m]v[m] n = 0, . . . , N
h
− 1 (2.18)

=
((
f ~←−v

)
↓h
)

[n].

Using this observation, the following identity is derived,

φ>
[(
f ~←−v

)
↓h
]

=
N
h
−1∑

n=0
φ[n]

N−1∑
m=0

f [nh+m]v[m]

=
N
h
−1∑

n=0
φ[n]

N−1∑
m=0

f [m]v[m− nh]

=
N−1∑
m=0

f [m]
N
h
−1∑

n=0
φ[n]v[m− nh]

= f> [(φ ↑h) ~ v] . (2.19)

From (2.18) and (2.19), it can be seen that

φ>F ↓hv = f> [(φ ↑h) ~ v] , (2.20)

which means thatC↓h[i, j] = f> [(φi ↑h) ~ vj ] . Finally, by (2.15), the frame, [(φi ↑h) ~ vj ],
is tight, with a frame bound k = l

h .

This result means that the level of redundancy in convolution framelets can be controlled.
This does come with a cost. The dimensions of Φ depend on h, which means that for
lower redundancy, this dimension is also lower. Thus, whichever basis is chosen as Φ will
have lower resolution, i.e. fewer coefficients to describe non local characteristics of f . It
is also worthwhile to note that Proposition 2.2 with h = 1 reduces to the case of using
orthonormal bases in [Yin et al., 2017, Proposition 1]. The proof here is an alternate
approach, which provides additional insight into why the convolutional framelet is tight.

2.3 Framelet concatenation
It is possible to concatenate multiple orthonormal bases, and use the resulting frames
to construct convolution framelets.

Concatenating two or more orthonormal bases of an N -dimensional inner product
space, V , results in a tight frame for that space. To verify this result, consider any
vector, f ∈ V , and let A and B be orthonormal bases of V , then f can be expressed in
terms of A or B as follows,

f =
N−1∑
i=0
〈f ,ai〉ai =

N−1∑
j=0
〈f , bj〉bj , (2.21)
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where ai and bj denote the columns of A and B. Now denote the concatenation of A
and B by Ψ =

[
A>B>

]>
, then from (2.21), it follows that

2f =
N−1∑
i=0
〈f ,ai〉ai +

N−1∑
j=0
〈f , bj〉bj

=
2N−1∑
k=0
〈f ,ψk〉ψk, (2.22)

where ψk is the k’th element of Ψ. By Proposition 2.1, (2.22) shows that Ψ is a tight
frame for V with the frame bound 2.

Of course this result extends to concatenating more than two bases. Consider a
series of M orthonormal bases, {Φm}M−1

m=0 , of V , then once again the concatenation,
Ψ =

[
Φ>0 . . . Φ>M−1

]>
, of these bases can be seen to be a tight frame for V .

Mf =
M−1∑
m=0

N−1∑
i=0
〈f ,φmi〉φmi

=
MN−1∑
k=0
〈f ,ψk〉ψk. (2.23)

The frame bound of this frame is M . Proposition 2.2 will now be generalized from using
orthonormal bases to tight frames in transforming the patch matrix.

Proposition 2.3
Choose positive integers N , l and h, such that N and l are integer multiples of h and
N > l. Let f ∈ RN and let F ↓h ∈ R

N
h
×l be the reduced patch matrix of f . Let

Φ ∈ R
N
h
×N ′ and V ∈ Rl×l′ be tight frames such that ΦΦ> = I N

h
and V V > = I l, I

being the identity, then

Ψ↓h = {(φi ↑h) ~ vj} , i = 0, . . . , N ′ − 1, j = 0, . . . , l′ − 1 (2.24)

is a tight frame for RN with frame bound l
h , where f has the canonical frame coeffi-

cients,
C↓h[i, j] = φiF ↓hvj = f> [(φi ↑h) ~ vj ] . (2.25)

Proof. It only needs to be shown that (2.15) still holds, when Φ and V are tight frames.
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That is,

‖C↓h‖2F = trace
(
V >F>↓hΦΦ>F ↓hV

)
= trace

(
V V >F>↓hΦΦ>F ↓h

)
= trace

(
F>↓hF ↓h

)
= ‖F ↓h‖2F . (2.26)

The proof of Proposition 2.2 can then be applied to Proposition 2.3.

Now if either Φ or V are constructed by concatenating M orthonormal bases, they can
be made to fulfil the condition ΦΦ> = I N

h
or V V > = I l, by scaling with 1

M .
Convolution framelets can be further combined by constructing multiple framelets,

with the same f and therefore N , with different combinations of l and h. Concatenating
multiple tight frames results in a new tight frame, with the sum of individual frame
bounds as the new frame bound. In this way, one can construct a single tight frame
using any number of orthonormal bases from several spaces with different dimension.

2.3.1 Sparse coefficients

Having constructed these redundant frames, they can now be considered as systems of
the form,

Ψ>c = f . (2.27)

Provided that Ψ is redundant, this system is underdetermined, and there exist infinitely
many c, solving it. For compression purposes it makes sense to look for a sparse solution.
Naively that is a c with as many zero entries as possible. Sparsity of c is desired, because
it means that optimal bit allocation will be more effective, as is discussed in Section 3.2.
Formally, the ideal problem can be stated as such

min
c
‖c‖0 s.t. Ψ>c = f , (2.28)

where ‖ · ‖0 denotes the l0-”norm”, which counts the number of non zero entries in a
vector. This has been studied in the field of compressive sensing, which is concerned
with finding the solution, c?, to problems as stated in (2.28). The sparsity of the desired
c? means that it can be possible to recover c? from (2.27) despite the underdetermined
nature of the system. One of the main questions is, for which c? and Φ the problem
can be solved. The problem in (2.28), is shown by [Foucart and Rauhut, 2013] to be NP
complete, and the l0 definition of sparsity is sensitive to noise in practice. In general,
one practical approach, which has been shown to work well with high probability, is to
generate random Ψ matrices, called libraries. Using these libraries, c? is sought after
using e.g. l1-optimization or matching pursuit, [Foucart and Rauhut, 2013, Ch. 3 and 9].
To understand what properties a library should have in order to work well in compressive
sensing, coherence and restricted isometry properties will be considered. Starting with
the coherence of a library, defined as such.
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Definition 2.8 (coherence)
Let Φ ∈ CN×l be a matrix with l2-normalized columns, φ0, . . . ,φN−1. The coherence,
µ (Φ), of Φ is defined as

µ (Φ) = max
0≤i 6=j≤N−1

|〈φi,φj〉|. (2.29)

[Foucart and Rauhut, 2013, p. 111].

Coherence can be useful to get an idea of whether a library will be useful or not.
Libraries with low coherence, or informally incoherent libraries, will generally be more
successful in recovering sparse solutions from (2.27), which is stated by [Foucart and
Rauhut, 2013, p. 111]. Unfortunately coherence does not explain everything. There
are examples of libraries that work well, despite not having low coherence. It can be
intuited, that high coherence can arise locally in a library, from a few coherent elements,
while the library might globally be incoherent. This description fits e.g. the random
matrices, described in [Foucart and Rauhut, 2013].

To better explain the properties that make good libraries, the restricted isometry
constant is defined.

Definition 2.9 (restricted isometry constant)
The restricted isometry constant δs(A) of order s for a matrix A ∈ Cm×N is defined
as the smallest δ > 0 satisfying the inequality

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, (2.30)

for all s-sparse vectors, x ∈ CN . [Foucart and Rauhut, 2013, p. 133]

The constant, δs, gives a better idea of whether a library will work well for c? with
sparsity up to s. Unfortunately the definition does not give an easy method of computing
δs. [Foucart and Rauhut, 2013, ch. 9] shows that random libraries have low restricted
isometry constants with high probability, but for any given library this is not easy to
check. This is one of the major open problems in compressive sensing.

In the practical Chapter 4 of this project, concatenated convolution framelets will
be used as libraries, Ψ, along with audio signals f . Orthogonal matching pursuit will
be used to search for sparse sets of coefficients c?. Since audio is typically sparse in well
known frequency transforms, [You, 2010, Ch. 5], the convolution framelets will mainly
be constructed using frequency transforms.
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3 | Data Compression

Data compression is a process used to obtain a compact representation of a signal,
meaning a representation that requires fewer bits than the original representation of
the signal, also called the source signal. The compact representation can then be used
for different purposes such as processing, storage or transmission. In general, the data
compression consists of two parts; the encoding giving the compact representation and
the decoding scheme, which is the inverse of encoding, giving a reconstructed version
of the source signal [Pu, 2005, p. 3]. In digital audio coding, the source signal is a
digital sound signal, which goes through an encoder, giving a compact representation
with fewer bits. The new representation is then delivered through a communication or
storage channel to a decoder, producing a reconstruction of the source sound signal from
the received compact representation [You, 2010, p. 5]. If the compact representation
is obtained such that the decoder can perfectly reconstruct the source signal, then the
compression is classified as lossless compression. However if some information is lost
under encoding, giving an approximate reconstruction of the source signal, then it is
called lossy compression. The compact representation is referred to as a code defined
as a rule or mapping that specifies how source symbols or groups of such symbols are
transformed into or represented by a new set of symbols [Gersho and Gray, 1993, p. 3].

Lossless compression

Lossless compression is based on only removing the elements in the source signal that are
statistically redundant through encoding and thus obtaining a perfectly reconstructed
signal by the decoder.

Lossy compression

Lossy compression also removes the statistically redundant elements of the source signal,
but also removes the elements that are perceptually irrelevant or insignificant. Thus
it causes distortion in the reconstructed signal from the decoder, although with the
advantage that this removal can be done such that the distortion is imperceptible. The
removal of the perceptually irrelevant elements is done by a quantizer [You, 2010, pp.
6-7]. There exist different set-ups of lossy compression. In this project, before applying
the compression to the source signal, a transform is applied to the signal in order to
obtain a representation of the source signal suitable for compression and then applying
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a lossy compression. This is referred to as transform coding [You, 2010, ch. 5]. The
overall scheme of the lossy compression used can be summarized in Figure 3.1.

QuantizerTransformfk Encoder

DecoderChannel / Storage Inverse transform f̃k

Figure 3.1: This figure shows the different steps in lossy compression of a signal fk

After the source signal, fk, has been transformed, the quantization of the trans-
formed source signal is done through a quantizer. The quantized values are then coded
in the encoder using a lossless coding scheme. A compact representation is then obtained
from the encoder and can then be stored or transmitted through a channel, which is as-
sumed in this project to be noiseless. The compact representation is then decoded by
the decoder, thus giving back the quantized values. Since some information has been ir-
reversibly lost from the quantization process, the inverse transform gives a reconstructed
signal f̃k, which is an approximation of the original source signal.

In this chapter, the basics of quantization will firstly be introduced followed by
bit allocation, which is a generalized version of quantization. Further the theory of
lossless source coding will be presented. The compression of audio signals will be briefly
introduced via audio coding. Lastly a type of binary data representation, called bitplane
will be presented.

3.1 Quantization
The quantization is mainly used in the case of the conversion of analogue signals to digital
signals. However in this project, the processed signals are digital and so have already
been quantized. Thus, the quantization process here is a re-quantization in order to
reduce the number of bits used to describe the digital source signal even more. The
following description of the quantization process is inspired by [You, 2010] and [Gersho
and Gray, 1993], with a focus on discrete time signals. This section covers essential
definitions and notation related to quantization and quantization error. Furthermore
quantization is presented as a rate-distortion optimization problem, where it is possible
to fix a given rate, and optimize the distortion or vice versa.

Definition 3.1 (Scalar quantizer)
A scalar quantizer Q of size N is defined to be a mapping from an input set X , into
a finite set C called the codebook, with size M corresponding to the resolution of the
quantizer. Thus,

Q : X 7→ C,
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where C = {x̂q}Mq=1 and x̂q ∈ R, for q = 1, . . . ,M , are called output values or repre-
sentative values. [Gersho and Gray, 1993, p. 133]

The scalar quantization is applied as follows. Consider a digital source signal, mod-
elled as a discrete random variable X, since the source signal is already a quantized
signal. Let p(X) denote its probability mass function (pmf). In order to quantize this
source signal, choose M decision intervals defined by the following M + 1 endpoints

{bq}Mq=0 , (3.1)

called decision boundaries.
A source sample value x is quantized to the quantization index q if and and only if

x falls into the qth decision interval

δq = [bq−1; bq). (3.2)

This operation is called forward quantization and is expressed as follows.

Definition 3.2 (Forward quantization)
Forward quantization is defined as the mapping E : X 7→ I, where I = {1, 2, 3, . . . ,M}.
This is,

E(x) = q, if and only if bq−1 ≤ x < bq. (3.3)

[You, 2010, p. 21]

Thus, after obtaining the quantization index, the next step is to obtain a quantized
value from the quantization index. This operation is called backward quantization and
can be defined mathematically as the following.

Definition 3.3 (Backward quantization)
Backward quantization is defined as the mapping D : I 7→ C, where C = {x̂q}Mq=1.
This is

D(E(x)) = D(q) = x̂q. (3.4)

[Gersho and Gray, 1993, p. 137]

The quantized value x̂q and the source sample value x are different to each other
and induce a loss of information in the quantized source signal. This distortion is called
quantization noise or quantization error and is defined as

d(x, x̂q) = x− x̂q. (3.5)
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In order to analyse the loss of information caused by the quantization process, the
mean squared quantization error (MSQE) is usually used [You, 2010, p. 22]. Consider
the discrete random source signal X, with range x1, . . . , xN and pmf p(X) and the
quantizer Q(X) from Definition 3.1. Using (3.5), the MSQE, denoted D, can be written
as

D = E
[
(X −Q(X))2

]
=

N∑
k=1

(xk −Q(x))2p(xk). (3.6)

For each quantized value x̂q obtained by quantizing xk according toM decision intervals
defined as in (3.2), the MSQE in (3.6) is rewritten as

D =
∑
xk∈δq

M∑
q=1

(xk − x̂q)2p(xk), k = 1, 2, . . . (3.7)

Analysing (3.7) shows that the smaller the quantization error in (3.5) is, the smaller
MSQE will be. If the decision intervals are chosen to be small, the quantized value x̂q
will be closer to x, which will also reduces the MSQE. The problem of choosing the
optimal quantizer in terms of MSQE can be stated in different ways. The goal is to
obtain a shorter representation of the digital source signal, thus reducing the number of
bits used to describe the digital source signal. Consider the number of bits needed to
describe the quantized value as the resolution or code rate R [Gersho and Gray, 1993,
p. 134]. If the quantized values are described by binary codewords of fixed size, then
the code rate R is

R = dlog2Me, (3.8)

where M is the size of the codebook or the number of the quantized values [Sayood,
2005, p. 231]. However if the binary codewords are variable-length, then the code rate
will depend on the probability of occurrence of the quantized values [Sayood, 2005, p.
232]. The code rate will thus be the expected length of the codeword needed to describe
the quantized value

R =
M∑
q=1

lqp(x̂q), (3.9)

where M is the number of quantized values, lq, the length of the codeword correspond-
ing to the quantized value x̂q and p(x̂q), the probability of occurrence of x̂q. Since the
quantized values are chosen according to the decision boundaries in (3.1), the probabil-
ities {p(x̂q)} will depend on the decision boundaries [Sayood, 2005, p. 232]. Thus the
probability of occurrence of x̂q is

p(x̂q) =
∑
x̂k∈δq

p(xk). (3.10)

Using (3.10), the code rate in (3.9) is rewritten as

R =
∑
x̂k∈δq

M∑
q=1

lqp(xk). (3.11)
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The code rate of the quantizer is thus dependent on the chosen intervals and the quan-
tized values. As described in [Sayood, 2005, p. 233] and [You, 2010, p. 23] the quanti-
zation process can be stated as one of the following optimization problems.

Find the decision boundaries and quantized values, such that the code rate is mini-
mized, given a constraint on the MSQE, this is

minimize
bi,x̂q

R =
∑
x̂k∈δq

M∑
q=1

lqp(xk), k = 1, 2, . . . and i = 0, 1, . . . ,M.

subject to D ≤ D∗.

(3.12)

In this minimization problem, the code rate used is for variable-length codewords. For
the code rate of quantized value described by codewords of same length as in (3.8), one
can see that whenM decreases, the code rate R will decrease. The optimization problem
will thus be equivalent to finding the decision boundaries and quantized values such that
M is minimized given a constraint on the MSQE

minimize
bi,x̂q

M

subject to D ≤ D∗.
(3.13)

The other optimization problem is stated as finding the decision boundaries and
quantized values, such that the MSQE is minimized, given a constraint on the code rate
R. This is,

minimize
bi,x̂q

D =
∑
xk∈δq

M∑
q=1

(xk − x̂q)2p(xk), k = 1, 2, . . . and i = 0, 1, . . . ,M.

subject to R ≤ R∗.

(3.14)

Equivalently for the code rate defined in (3.8), this optimization problem can be stated
as finding the decision boundaries and quantized values that minimize the MSQE given
a fixed number of quantized values M

minimize
bi,x̂q

D

subject to M = c,
(3.15)

where c is some constant.
The problem of minimizing distortion with a fixed code rate will be of most practical

use here. While the problem in (3.14) will not be solved directly, the notion of restricting
the code rate and seeking to minimize distortion will be seen in the practical approach
of this project.

3.1.1 Optimal quantizer

In order to have an optimal quantizer, some necessary conditions have to be fulfilled.
Since the quantization process is divided into two parts, forward quantization, i.e. choos-
ing the decision intervals or cells, and backward quantization, i.e. obtaining the code-
book. Optimal quantizers will be important in deriving optimal bit allocation in Section
3.2.
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The first necessary condition for optimality is to find the best partition cells for a
given codebook [Gersho and Gray, 1993, p. 175]. This condition corresponds to the
nearest neighbour condition presented in the following proposition.

Proposition 3.1 (Nearest neighbour condition)
Let X be an input set. For a given codebook, C = {x̂q}Mq=1, the partition cells satisfy

δj = {x ∈ X : |x− x̂j | ≤ |x− x̂i| for all j 6= i} . (3.16)

[Gersho and Gray, 1993, pp. 175-193]

The nearest neighbour condition says that the j’th cell of the partition should consist
of all input values closer to x̂j than to any other output value [Gersho and Gray, 1993,
p. 175]. Thus the output value is chosen such that for a given input value, the absolute
distortion between the input value and the output value is minimized.

The second necessary condition for optimality is to find the optimal codebook given a
cell partition. This condition corresponds to the centroid condition. Since the distortion
measure used is the MSQE, the centroid condition w.r.t. MSQE is presented in the
following proposition.

Proposition 3.2 (Centroid condition)
Given a nondegenerate partition {δq}, i.e. δi 6= δj for i 6= j, the unique optimal
codebook for a random variable X w.r.t. MSQE is given by

x̂q = E [X|X ∈ δq] . (3.17)

[Gersho and Gray, 1993, pp. 177-193]

The centroid condition says that the optimal output value x̂q for a given q’th cell of
the partition is the one corresponding to the mean of all the points belonging to the q’th
cell partition, i.e. the center of mass of the given partition.

The third condition, which is only necessary when the input values are discrete
random variables, is mentioned in [Gersho and Gray, 1993, p. 193]. It states that the
input random variable must have zero probability of occurring at a boundary between
nearest neighbor cells.

If a quantizer satisfies those 3 necessary conditions, it will be qualified to be an
optimal quantizer. The centroid condition in Proposition 3.2 implies some results on the
quantizer that are summarized in the following lemma.
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Lemma 3.1
Given a discrete random variableX. Let Q(X) be a quantizer whose codebook satisfies
the centroid condition. Then

E [Q(X)−X] = 0 (3.18)
E [Q(X)(Q(X)−X] = 0 (3.19)

E
[
(X −Q(X))2

]
= E

[
X2
]
− E

[
Q(X)2

]
= σ2

X − σ2
Q(x), (3.20)

where σ2
X and σ2

Q(x) are the variances of X and Q(x) respectively.
[Gersho and Gray, 1993, pp. 180-181]

Lemma 3.1 states that the mean of a quantizer that satisfies the centroid condition is
the same as the mean of the input signal. The output value, i.e. the quantizer output is
uncorrelated with the distortion and the MSQE is the difference between the variances
of the input signal and quantized output [Gersho and Gray, 1993, pp. 180-181].

3.2 Bit allocation
Compression of time domain signals, is often done in a different domain related by a
transform, further details in Section 3.4.1. It is often the case in practice that each
coefficient in this transform domain has its own distribution. When quantizing the new
signal representation, one will use different quantizers for different coefficients. Since
coefficients have different quantizers, a bit allocation strategy is necessary, which corre-
sponds to assigning a number of bits to each of quantizers, such that the distortion of
the quantization scheme is optimized [Gersho and Gray, 1993, p. 225].

3.2.1 The bit allocation problem

Let x =
[
x1, x2, . . . , xNf

]
be some transform coefficients. Recall from Section 3.1,

that the quantization process gives a quantization error. Let mi, be the number of bits
available to the quantization of xi. Using (3.7), the MSQE resulting by quantizing xi
with mi bits of resolution is given by

di = E
[
(xi −Qi(xi,mi))2

]
. (3.21)

Since the number of coefficients is Nf , the average distortion of the quantization process
is defined from (3.21) as

D = 1
Nf

Nf∑
i=1

di. (3.22)

As presented in [Gersho and Gray, 1993, p. 227] and [Spanias et al., 2006, p. 70],
the bit allocation problem corresponds to finding the optimal way to allocate mi bits
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across the different transform coefficients given a fixed number of available bits M , such
that the average distortion in (3.22) is minimized. This is,

minimize
mi

D = 1
Nf

Nf∑
i=1

di, i = 1, 2, . . . , Nf .

subject to
Nf∑
i=1

mi ≤M,

and mi ≥ 0, i = 1, 2, . . . , Nf .

(3.23)

One possible solution to the minimization problem in (3.23) can be obtained as shown
in [Gersho and Gray, 1993, pp. 227-231]. In this approach, the following assumptions
are made:

• The transform coefficients are a set of Nf random variables, with known variances
σ2
i , for i = 1, 2, . . . , Nf .

• Each quantizer, Qi, satisfies the necessary conditions mentioned in Section 3.1.1
for it to be an optimal quantizer [Gersho and Gray, 1993, pp. 175-193].

Furthermore, the solution to the optimization problem will be developed in the case of
high resolution quantization, that is many decision intervals with a small width [Gersho
and Gray, 1993, p. 161]. The high resolution quantization case permits one to treat the
minimization problem as a continuous optimization problem allowing the use of calculus
to solve the problem, without having to take into consideration the constraint of having
only integers bits. Combining the high resolution case with the two assumptions men-
tioned above, the MSQE for each optimal quantizer is given by the distortion variance
for the i’th quantizer as

di ≈ hiσ2
i 2−2mi , (3.24)

where the constant hi depends on the probability distribution of the normalized random
variable xi/σi. Using (3.24), the bit allocation problem in (3.23) is explicitly written as

minimize
mi

D = 1
Nf

Nf∑
i=1

hiσ
2
i 2−2mi , i = 1, 2, . . . , Nf .

subject to − (
Nf∑
i=1

mi −M) ≥ 0,

and mi ≥ 0, i = 1, 2, . . . , Nf .

(3.25)

The bit allocation problem is a constrained minimization problem. For now the con-
straint on the positivity of the bits is ignored. Thus the problem can be solved using
the Lagrange multipliers theorem, which states that a set {mi} solving the minimization
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problem must satisfy that

∂L ({mi}, µ)
∂mk

= 0, k = 1, . . . , Nf

∂L ({mi}, µ)
∂µ

= 0,

µ ≥ 0,

−µ

Nf∑
i=1

mi −M

 ≥ 0,

where µ is the Lagrange multiplier associated with the inequality constraint and L ({mi}, µ)
is the Lagrangian given by

L ({mi}, µ) = 1
Nf

Nf∑
n=1

hnσ
2
n2−2mn + µ

Nf∑
j=1

mj −M

 . (3.26)

The partial derivatives of the Lagrangian in (3.26), are given by

∂L ({mi}, µ)
∂mk

= ∂

∂mk

 1
Nf

Nf∑
n=1

hnσ
2
n2−2mn + µ

Nf∑
j=1

mj −M


= 1
Nf

Nf∑
n=1

∂

∂mk

(
hnσ

2
n2−2mn

)
+ µ

Nf∑
j=1

∂mj

∂mk
− ∂M

∂mk


= − 2

Nf
ln(2)hkσ2

k2−2mk + µ.

(3.27)

Next, (3.27) is now equated to zero and solved for mi, this is

− 2
Nf

ln(2)hkσ2
k2−2mk + µ = 0

2−2mk = µNf

2 ln(2)hkσ2
k

−2mk = log2

(
Nf

2 ln(2)hkσ2
k

)
+ log2(µ)

mk = 1
2 log2

(
2 ln(2)hkσ2

k

Nf

)
− 1

2 log2(µ).

(3.28)

The expression of µ is needed in order to have a final expression of mk. The partial
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derivative w.r.t to µ is found and equated to zero by solving the following equation

∂

∂µ

 1
Nf

Nf∑
n=1

hnσ
2
n2−2mn + µ

Nf∑
j=1

mj −M

 = 0

Nf∑
j=1

mj −M = 0

Nf∑
j=1

mj = M.

(3.29)

Inserting (3.28) in (3.29) gives

Nf∑
i=1

(
1
2 log2

(
2 ln(2)hiσ2

i

Nf

)
− 1

2 log2(µ)
)

= M

Nf

2 log2(µ) =
Nf∑
i=1

1
2 log2

(
2 ln(2)hiσ2

i

Nf

)
−M

log2(µ) = 1
Nf

Nf∑
i=1

log2

(
2 ln(2)hiσ2

i

Nf

)
− 2M
Nf

log2(µ) = log2


Nf∏
i=1

2 ln(2)hiσ2
i

Nf

 1
Nf

− 2M
Nf

µ =

Nf∏
i=1

2 ln(2)hiσ2
i

Nf

 1
Nf

· 2
− 2M
Nf .

(3.30)

The obtained expression of µ in (3.30) is inserted in (3.28) giving

mi = 1
2 log2

(
2 ln(2)hiσ2

i

Nf

)
− 1

2 log2


Nf∏
i=1

2 ln(2)hiσ2
i

Nf

 1
Nf

· 2
− 2M
Nf

 . (3.31)

The two logarithm terms in the above equation can be decomposed in a sum of loga-
rithms. Firstly the logarithm to the left is equal to,

log2

(
2 ln(2)
Nf

)
+ log2 (hi) + log2

(
σ2
i

)
, (3.32)

and secondly the logarithm to the right, is equal to

log2

(
2 ln(2)
Nf

)
+ log2


Nf∏
i=1

hi

 1
Nf

+ log2


Nf∏
i=1

σ2
i

 1
Nf

− 2M
Nf

. (3.33)



Chapter 3. Data Compression 27

The logarithm terms in (3.32) and (3.33) are thus used in (3.31) to obtain the final
expression of mi

mk = M

Nf
+ 1

2 log2

 σ2
k(∏Nf

i=1 σ
2
i

) 1
Nf

+ 1
2 log2

 hk(∏Nf
i=1 hi

) 1
Nf

 , (3.34)

where M
Nf

corresponds to the average rate or average number of bits per coefficient
[Gersho and Gray, 1993, pp. 226-234], [Sayood, 2005, pp. 407 - 408] and [Bosi and
Goldberg, 2002, pp. 205-210]. The optimal bit allocation, in the case of high resolution
quantization, is thus given by (3.34) for nonidentically distributed random variables. If
the normalized coefficients are identically distributed random variables, the term hi will
be identical for all random variables, since it depends on the normalized distribution,
and the optimal bit allocation in (3.34) will be reduced to

mk = M

Nf
+ 1

2 log2

 σ2
k(∏Nf

i=1 σ
2
i

) 1
Nf

+ 1
2 log2

 h(∏Nf
i=1 h

) 1
Nf



= M

Nf
+ 1

2 log2

 σ2
k(∏Nf

i=1 σ
2
i

) 1
Nf

 .
(3.35)

The values of the optimal bit allocation obtained by (3.34) and (3.35) could be negative
and non integers, since the restriction, in the minimization problem in (3.25), on the non
negativity of the value of mk was ignored. There exist different methods to ensure that
all optimal allocated bits are positive. One approach mentioned in [Bosi and Goldberg,
2002, p. 213] and [You, 2010, p. 81] is the water-filling method. The idea is to set
the negative bits to zero and then to iteratively enforce that the total number of bits
allocated does not exceed M . Rewriting (3.35) gives

mk = −1
2 log2

(
2
− M
Nf

)
+ 1

2 log2

 σ2
k(∏Nf

i=1 σ
2
i

) 1
Nf



= 1
2 log2

 σ2
k(∏Nf

i=1 σ
2
i

) 1
Nf 2

− M
Nf

 . (3.36)

From (3.36), it can be seen that

mk ≤ 0 if σ2
k ≤

Nf∏
i=1

σ2
i

 1
Nf

2
− M
Nf . (3.37)
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A positive threshold parameter λ, is now chosen such that it is less than the average
MSQE, i.e. 0 ≤ λ ≤ D. The bits are allocated such that the coefficients with variances
greater than λ are described, while the others are set to zero. That is

mi =


1
2 log2

(
σ2
i
λ

)
, λ < σ2

i

0 , λ ≥ σ2
i .

(3.38)

The next step is to ensure that the total number of bits allocated is not higher than
M . This is done by iteratively reoptimizing the sum of bits allocated for the remaining
coefficients. It has been shown in [Cover and Thomas, 2006, p. 314] that the bit
allocation obtained in (3.38) is optimal if the MSQE di for each coefficient is define such
that

di =
{
λ , λ < σ2

i

σ2
i , λ ≥ σ2

i .
(3.39)

The optimal bit allocation by water-filling method is given by (3.38) and (3.39) as a
function of the threshold λ, i.e.

mi(λ) = max
{

1
2 log2

(
σ2
i

λ

)
, 0
}
, (3.40)

with the individual MSQE given by di(λ) = min
{
λ, σ2

i

}
, in the case where the coefficients

are normally distributed random variables.

3.2.2 Coding gain and measure of spectrum flatness

The purpose of this section is to look at the gain of quantization, while using an optimal
bit allocation scheme compared to quantizing with a uniform distribution of bits. This
gain is referred to as coding gain and corresponds to the ratio between the distortion
measures derived under uniform bit allocation and optimal bit allocation. Furthermore
the measure of the spectral flatness is introduced, since it is related to the coding gain
as it has been shown in [Gersho and Gray, 1993], [Bosi and Goldberg, 2002] and [You,
2010].

Recall the case of high resolution optimization and assume for now that the normal-
ized transform coefficients are identically distributed random variables. If the bits are
allocated uniformly to the transform coefficients, then each coefficient will be allocated
mi bits, for i = 1, . . . , Nf , corresponding to the average number of bits per coefficient
M
Nf

. Using (3.24) , the average MSQE will be

Duniform
bit allocation = 1

Nf

Nf∑
i=1

hσ2
i 2
−2 M

Nf . (3.41)
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Alternatively, using the optimal bit allocation strategy given by (3.35), the average
MSQE will correspond to

Doptimal
bit allocation = 1

Nf

Nf∑
i=1

hσ2
i 2
−2 M

Nf

(∏Nf
j=1 σ

2
j

) 1
Nf

σ2
i

= 1
Nf

Nf∑
i=1

h2
−2 M

Nf

Nf∏
j=1

σ2
j

 1
Nf

.

(3.42)

The coding gain of using the optimal bit allocation strategy over the uniform bit
allocation is thus defined as the ratio of the distortions defined in (3.41) and (3.42),

G =
1
Nf

∑Nf
i=1 hσ

2
i 2
−2 M

Nf

1
Nf

∑Nf
i=1 h2

−2 M
Nf

(∏Nf
j=1 σ

2
j

) 1
Nf

=
h2
−2 M

Nf

Nf

∑Nf
i=1 σ

2
i

h2
−2 M

Nf

Nf
Nf

(∏Nf
j=1 σ

2
j

) 1
Nf

=
1
Nf

∑Nf
i=1 σ

2
i(∏Nf

j=1 σ
2
j

) 1
Nf

,

(3.43)

where 1
Nf

∑Nf
i=1 σ

2
i and

(∏Nf
j=1 σ

2
j

) 1
Nf are respectively the arithmetic and geometric mean

of the transform coefficients variances. The arithmetic mean-geometric mean inequality
[You, 2010, p. 77] states that

1
Nf

Nf∑
i=1

σ2
i ≥

Nf∏
i=1

σ2
i

 1
Nf

, (3.44)

with equality if and only if
σ2

1 = σ2
2 = · · · = σ2

Nf
.

Thus the coding gain in (3.43) is such that

G ≥ 1. (3.45)

This leads to the definition of the spectrum flatness measure.

Definition 3.4 (Spectrum flatness measure)
Given a random process X = x1, . . . , xNf . The spectrum flatness measure denoted
γx is defined as the ratio between the arithmetic and geometric mean of the power
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spectral density of the random process

γx =

(∏Nf
i=1 SX(i)

) 1
Nf

1
Nf

∑Nf
i=1 SX(i)

, (3.46)

where SX is the power spectral density of X. [Bosi and Goldberg, 2002, p. 211]

The spectrum flatness measure takes values between 0 and 1, where the values close
to 1 indicate that the spectrum of the signal is very flat and the values near 0 indicate
that the spectrum is less flat. A relation between the coding gain in (3.43) and the
spectral flatness measure is given by [You, 2010, p. 85] as

lim
Nf→∞

G = 1
γx
. (3.47)

The coding gain defined in (3.43) is thus asymptotically equivalent to the inverse of the
spectrum flatness measure. As the spectrum flatness measure decreases, the coding gain
increases for using an optimal bit allocation strategy relative to uniform bit allocation.
Applying the optimal bit allocation strategy to a signal representation which is less flat,
i.e. with strong peaks [Bosi and Goldberg, 2002, p. 216], will increase the coding gain.
Hence it is advantageous to choose a transform that concentrates most of the signal
energy in a few coefficients. The optimal bit allocation strategy derived above will
permit reducing the number of bits necessary to describe the coefficients, when applied
to a sparse signal representation, i.e. a signal having many coefficients close to zero.
Fewer or zero bits will be allocated to the coefficients close to zero because of their low
variances. This will reduce the total number of bits used to describe the coefficients in
comparison to a uniform distribution of the bits through coefficients. In practice this
strategy inspires the coding algorithm presented in Algorithm 3.

3.3 Lossless source coding
The information in a digital random source signal may be represented by a source code,
usually a binary code with a given length in bits. In an attempt to compress the signal,
one may use a code that has a smaller code length than the original in order to reduce
the number of bits. The overall process involves two parts that have to be taken into
consideration: The encoding part, where a code is used to describe the information in
the signal, and the decoding part, where the information in the signal is recovered from
the codes, without loss. The compression scheme will thus involve finding the optimal
encoding scheme, meaning the one giving the shortest code length on average, while
fulfilling the conditions for decodability.
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Definition 3.5 (Source code)
Given a random variable X, with range A. A source code C for X is defined as the
mapping

A → D∗, (3.48)

where A denote the input or source alphabet and D∗ is the set of finite-length strings
of symbols from a D-ary alphabet. [Cover and Thomas, 2006, p. 103]

An important characteristic of a source code is the average or expected code length,
which is presented in the following.

Definition 3.6 (Expected length)
Let X be a random variable with input alphabet A and pmf p(X = a) = p(a). The
expected length L(C) of a source code C(a) for X is defined as

L(C) =
∑
a∈A

p(a)l(a), (3.49)

where l(a) is the length of the codeword C(a) associated with a. [Cover and Thomas,
2006, p. 104]

When assigning a code to an element, it is important to ensure that two different
source-elements have different corresponding codes. This property is referred to as the
nonsingularity of the code.

Definition 3.7 (Nonsingular code)
A code is said to be nonsingular if every element of A, the range of X, maps into a
different string in D∗; that is

a 6= a′ ⇒ C(a) 6= C(a′). (3.50)

[Cover and Thomas, 2006, p. 105]

In Definition 3.5, the codeword associated with a single realisation of the random
variable has been introduced. When a finite sequence of realisations is coded, then the
resulting codeword is a concatenation of the singles codewords. This concatenation is
called code extension.
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Definition 3.8 (Code extension)
The extension CM of a code C is the mapping from length M strings of A to finite-
length strings of D∗, defined by

CM (a0a1 . . . aM−1) = C(a0)C(x1) . . . C(aM−1), (3.51)

where C(a0)C(a1) . . . C(aM−1) denotes the concatenation of the corresponding code-
words. [Cover and Thomas, 2006, p. 105]

As mentioned above, one major desired property of source coding, is the ability to
decode the source code without loss. The code fulfilling this condition is called uniquely
decodable.

Definition 3.9 (Uniquely decodable code)
A code C is said to be uniquely decodable if its extension C∗ is nonsingular. [Cover
and Thomas, 2006, p. 105]

An often used uniquely decodable code is the prefix code [Gersho and Gray, 1993,
p. 269] and [Cover and Thomas, 2006, pp. 105-106]. When the starting point of the
prefix code is known, a codeword will be decodable as soon as the end of the codeword
is reached. Thus the prefix code permits one to decode a codeword independently from
the future codewords.

Definition 3.10 (Prefix code)
A code is called a prefix code or an instantaneous code if no codeword is a prefix of
any other codeword. [Cover and Thomas, 2006, p. 106]

The main goal so far is to construct codes having the shortest expected length, while
being able to decode them. The uniquely decodable codes ensure the decodability of the
code; however the lengths of the codewords are restricted by the Kraft inequality. In
this project, the codewords are chosen from a binary alphabet, thus the Kraft inequality
will be restricted to binary codewords.

Theorem 3.1 (Kraft-McMillan inequality)
Given any uniquely decodable code with source alphabet A = {a0, . . . , aM−1} and
codeword lengths li = l(ai), i = 0, 1, . . . ,M−1. The set of codeword lengths li = l(ai),
i = 0, 1, . . . ,M − 1 must satisfy the Kraft inequality

M−1∑
i=0

2−li ≤ 1. (3.52)
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Conversely if the set of codeword lengths satisfies the Kraft inequality, then there
exists a uniquely decodable code for a source alphabet A = {a0, . . . , aM−1}, having
these codeword lengths. [Cover and Thomas, 2006, p. 116]

Proof. Given a uniquely decodable code C with source alphabet A = {a0, . . . , aM−1}
and codeword lengths li = l(ai), i = 0, 1, . . . ,M − 1. Let Ck be the k’th extension of the
code C. Thus the length of Ck is given by

l(b) =
k−1∑
i=0

l(bi), (3.53)

where b = [b0, b1, . . . , bk−1] is any length k input string. Consider the sum in (3.52) and
apply the k’th power to it. That is,(

M−1∑
i=0

2−li
)k

=
(∑
a∈A

2−l(a)
)k

=
∑
b0∈A

∑
b1∈A

· · ·
∑

bk−1∈A
2−l(b0)2−l(b1) · · · 2−l(bk−1) (3.54)

=
∑

b0,b1,...,bk−1∈Ak
2−(l(b0)+l(b1)+···+l(bk−1)

=
∑
b∈Ak

2−l(b), (3.55)

where Ak = {(a0, a1, . . . , ak−1)|ai ∈ A for i = 0, 1, . . . , k − 1}. The terms in (3.54) are
obtained by using a summation identity and (3.55) results from (3.53). Let lmax =
max {li; i = 0, 1, . . . ,M − 1} be the maximum codeword length and denote by N(m) the
total number of source sequences b mapping into codewords of length l(b) = m given by
(3.53). For a total of k codewords per sequence, m ≤ klmax. Thus (3.55) can be written
as

∑
b∈Ak

2−l(b) =
klmax∑
m=1

N(m)2−m ≤
klmax∑
m=1

2m2−m = klmax. (3.56)

The inequality is provided by the property of uniquely decodable codes in Definition 3.9.
Precisely, all N(m) source sequences are mapped into a different code of overall length
m. Thus N(m) ≤ 2m, since there are at most 2m binary codes of length m. It follows
from (3.54) and (3.56) that(

M−1∑
i=0

2−li
)k
≤ klmax

M−1∑
i=0

2−li ≤ (klmax)
1
k = 2

1
k

log(k)+ 1
k

log(lmax), for all k ∈ Z. (3.57)
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Taking the limit as k →∞, results in 2
1
k

log(k)+ 1
k

log(lmax) → 1, thus
M−1∑
i=0

2−li ≤ 1, (3.58)

which is the Kraft inequality. The second part of the proof can be found in [Cover and
Thomas, 2006, p. 117] and [Gersho and Gray, 1993, pp. 265-266].

The overall process of the source coding scheme can now be established as an opti-
mization problem, i.e. it is desired to find the set of codeword lengths that satisfy the
Kraft inequality, while minimizing the expected codeword length (3.49).

minimize
li

L =
M−1∑
i=0

pili for all l0, l1, . . . , lM−1 ∈ Z

subject to
M−1∑
i=0

2−li ≤ 1.
(3.59)

This optimization problem is a constrained minimization problem, and the Lagrange
multipliers theorem is used to solve it. The integer constraint on li is ignored for now.
The set of {li} that solve the minimization problem satisfy that

∂J ({li}, µ)
∂lk

= 0, k = 0, . . . ,M − 1 (3.60)

∂J ({li}, µ)
∂µ

= 0, (3.61)

µ ≥ 0, (3.62)

−µ

M−1∑
j=0

2−lj − 1

 ≥ 0,

where µ is the Lagrange multiplier associated with the inequality constraint and J ({li}, µ)
is the Lagrangian given by

J ({li}, µ) =
M−1∑
h=0

phlh + µ

M−1∑
j=0

2−lj − 1

 . (3.63)

Using this Lagrangian, (3.60) is solved firstly by

∂J ({li}, µ)
∂lk

= ∂

∂lk

M−1∑
h=0

phlh + µ

M−1∑
j=0

2−lj − 1

 (3.64)

=
M−1∑
h=0

∂

∂lk
(phlh) + µ

M−1∑
j=0

∂

∂lk

(
2−lj − 1

)
= pk − µ2−lk ln(2),



Chapter 3. Data Compression 35

and secondly by equating (3.64) to zero and solving for lk,

pk − µ2−lk = 0 (3.65)

2−lk = pk
µ ln(2) .

Identically (3.61) is solved by finding firstly the partial derivative associated with µ,

∂J ({li}, µ)
∂µ

= ∂

∂µ

M−1∑
h=0

phlh + µ

M−1∑
j=0

2−lj − 1

 (3.66)

=
M−1∑
j=0

2−lj − 1.

Next, (3.65) is substituted in (3.66) and equated to zero,

M−1∑
i=0

pi
µ ln(2) − 1 = 0 (3.67)

µ = 1
ln(2) .

Substituting (3.67) in (3.65) gives
2−li = pi. (3.68)

Thus the optimal codeword length under the condition that li is not necessarily an
integer, is

l∗i = − log2(pi). (3.69)

The expected code length given by (3.69) is,

L∗ =
M−1∑
i=0

pil
∗
i = −

M−1∑
i=0

pi log2(pi) = H(X), (3.70)

where H(X) is called the entropy of the random variable X described by the pmf pi =
p(X = ai) [Cover and Thomas, 2006, pp. 110-111] and [Gersho and Gray, 1993, pp. 267
- 268].

Definition 3.11 (Entropy)
The entropy H(X) of a discrete random variable X with range A and pmf p(X =
a) = p(a), is defined by

Hb(X) = −
∑
a∈A

p(a) logb(p(a)) = E
[
logb

( 1
p(X)

)]
. (3.71)

[Cover and Thomas, 2006, p. 14]
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The entropy H(X) of a random variable X is seen as a measure of the uncertainty
of the random variable X. Thus the entropy is considered as the amount of informa-
tion necessary in order to describe the random variable on the average. Furthermore,
there is the relative entropy which corresponds to the distance between two probability
distributions [Cover and Thomas, 2006, p. 19].

Definition 3.12 (Relative entropy)
Let X be a discrete random variable with range A. The relative entropy between two
probability mass functions p(a) and q(a) is defined as

D(p||q) = −
∑
a∈A

p(a) logb
(
p(a)
q(a)

)
= E

[
logb

(
p(X)
q(X)

)]
. (3.72)

[Cover and Thomas, 2006, p. 19]

The relative entropy is seen as a measure of the inefficiency of assuming that the
probability distribution is q, when the true probability distribution is p [Cover and
Thomas, 2006, p. 19]. An important property about relative entropy is stated in the
following lemma.

Lemma 3.2 (Information inequality)
Let p(a), q(a), a ∈ A be two probability mass functions. Then

D(p||q) ≥ 0, (3.73)

with equality if and only if p(a) = q(a) for all a ∈ A. [Cover and Thomas, 2006, p. 28]

The fact that the codewords length must be an integer in the minimization problem
means that (3.69) cannot always be used as the optimal codeword length. However it
has been shown that the expected length of the shortest description of the source signal
cannot be smaller than the entropy [Cover and Thomas, 2006, p. 10]. This is stated in
the following theorem.

Theorem 3.2
The expected length of a uniquely decodable binary code for a random variable X
with input alphabet A = {a0, . . . , aM−1} and marginal pmf pi = p(X = ai), cannot
be smaller than the entropy H(X); that is,

L ≥ H(X), (3.74)
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with equality if and only if

2−li = pi, for all a ∈ A.

[Gersho and Gray, 1993, p. 268]

Proof. From (3.49) and (3.71), the difference between the expected length and the en-
tropy is given by

L−H(X) =
M−1∑
i=0

pili +
∑
a∈A

pi log2(pi)

= −
M−1∑
i=0

pi log2(2−li) +
M−1∑
i=0

pi log2(pi)

=
M−1∑
i=0

pi log2(pi)− pi log2(2−li)

=
M−1∑
i=0

pi
(
log2(pi)− log2(2−li) + log2(s)− log2(s)

)
(3.75)

=
M−1∑
i=0

pi

(
log2

(
pi
qi

)
− log2(s)

)

=
M−1∑
i=0

pi log2

(
pi
qi

)
+ pi log2

(1
s

)
= D(p||q) + pi log2

(1
s

)
, (3.76)

where

s =
M−1∑
j=0

2−lj and qi = 2−li∑M−1
j=0 2−lj

.

From Lemma 3.2, D(p||q) ≥ 0 with equality if and only if pi = qi and from Kraft
inequality in (3.52), s ≤ 1 with equality if pi = 2−li . Thus using (3.76), the following
result holds

L−H(X) ≥ 0, (3.77)

with equality if and only if pi = 2−li .

The entropy is the global minimum for the expected length and thus the codes that
have an expected length near the entropy can be qualified as good codes [Gersho and
Gray, 1993, p. 268].

The following theorem shows that there exist uniquely decodable codes that have an
expected length very close to the entropy.
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Theorem 3.3 (Noiseless coding theorem)
Let l∗0, l∗1, . . . , l∗M−1 be optimal codeword lengths for a source distribution p(X) with
input alphabetA = {a0, . . . , aM−1} and a binary alphabet, and let L∗ be the associated
expected length of an optimal code. Then

H(X) ≤ L∗ < H(X) + 1. (3.78)

[Cover and Thomas, 2006, p. 113]

Proof. Recall the minimization problem in (3.59) leading to the optimal choice of code-
word length given by (3.69) as

l∗i = log2

( 1
pi

)
. (3.79)

Since the l∗i satisfying (3.79) are not necessarily integers, the codewords length li are
chosen such that

li =
⌈
log2

( 1
pi

)⌉
. (3.80)

Furthermore
M−1∑
i=0

2
−
⌈

log2

(
1
pi

)⌉
≤

M−1∑
i=0

2
− log2

(
1
pi

)
=

M−1∑
i=0

pi = 1. (3.81)

Thus the codeword length li satisfies the Kraft inequality. However since l∗i is smaller
than li,

log2

( 1
pi

)
≤ li < log2

( 1
pi

)
+ 1

M−1∑
i=0

pi log2

( 1
pi

)
≤

M−1∑
i=0

pili <
M−1∑
i=0

pi log2

( 1
pi

)
+
M−1∑
i=0

pi (3.82)

H(X) ≤ L < H(X) + 1. (3.83)

Since L∗ is the optimal expected code length,

L∗ < L,

and applying Theorem 3.2,

H(X) ≤ L∗ < H(X) + 1.

The minimum expected length necessary for a uniquely decodable code to describe
a random variable X is within 1 bit of the entropy of the random variable.

In Chapter 4 lossless coding will be combined with quantization and bit allocation in
a lossy audio coder. The lossless part of this coder will be based on the Golomb coder,
which is an entropy coder for exponentially decaying distributions on positive integers
[Spanias et al., 2006, p. 82]. In this case the fact that zero occurs with a much higher
probability than one is used.
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3.4 Audio coding
The purpose of audio coding is to obtain a more compact digital representation of an
audio signal, which uses fewer bits to describe the signal. There exist various methods to
compress an audio signal; one method is transform coding, introduced in Section 3.4.1,
which consists of firstly representing the original or source audio signal in another domain
using a transform. Secondly quantization and a lossless coding scheme are applied
to the transformed audio signal to obtain a compressed bitstream representation. An
important characteristic of the compressed audio signal is that the audio signal should
be perceptually close to the original audio. A perceptual model is thus often included
in audio coding [You, 2010, p. 73]. In this section, the application of transform coding
to audio signals will be presented, based on the properties mentioned in Chapter 2 and
Section 3.2. Finally the concept of perceptual models for audio signals will be briefly
touched upon.

3.4.1 Transform coding

In transform coding, an audio signal x =
[
x[0] x[1] ... x[N − 1]

]>
∈ RN is first

divided into blocks each having a fixed number of samples Nf , also called block size.
Applying an orthogonal transform T ∈ RNf×Nf to each block, gives a new audio signal
representation y ∈ RN with each block corresponding to a signal-vector given by

yk = Txk, (3.84)

where xk is the signal vector corresponding to the original block. Since, it is desired
to obtain a more compact representation of x, the choice of the transform should be in
accordance with the optimal bit allocation presented in Section 3.2. This means that
the optimal choice of a transform is the one giving the best coding gain, when using
an optimal bit allocation strategy. As shown in Section 3.2.2, the desired transformed
signal should have most coefficients equal to or near zero, i.e. the optimal transform is
the one having the best energy compaction.

Recall the coding gain of using the optimal bit allocation strategy relative to the
uniform bit allocation in (3.43) was given by

G =
1
Nf

∑Nf
i=1 σ

2
i(∏Nf

i=1 σ
2
i

) 1
Nf

. (3.85)

Since T is an orthogonal transform, it has the energy conservation property [You, 2010, p.
75]. This means that the arithmetic mean of the variances of the transform coefficients,
given by the numerator of (3.85), is constant for a given signal [You, 2010, pp. 79-82].
In Section 3.2.2, it is shown that a better coding gain was achieved by a transform that
concentrates most of the signal energy in a few coefficients. In that case the product
of the variances of the transform coefficients will be smaller, since a lot of transform
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coefficients will have variances near zero. The best coding gain is thus obtained when
the denominator of (3.85), i.e. the geometric mean of the variances of the transform
coefficients, is as small as possible. In other words, the maximal coding gain is obtained
by solving the following minimization problem:

minimize
σ2
i

Nf∏
i=1

σ2
i

 1
Nf

. (3.86)

Using (3.84), it follows that
yky

>
k = Txkx

>
k T
>. (3.87)

The covariance matrix of the transform coefficients Ryy is obtained by applying the
expected value operator on (3.87). That is

Ryy = TRxxT
>, (3.88)

whereRyy = E
[
yky

>
k

]
andRxx = E

[
xkx

>
k

]
is the covariance matrix of the audio signal.

The covariance matrix of the transformed audio signal is a symmetric matrix having the
diagonal entries corresponding to variances of the different transform coefficients [You,
2010, p. 83], thus the variance of the ith transform coefficient is given by

σ2
i = E [yk[i]yk[i]] = [Ryy]ii, i = 1, . . . Nf , (3.89)

where yk[i] is the i’th component of the transformed block yk and [Ryy]ii is the i’th
diagonal element of the transform covariance matrix. Using (3.89), the problem in
(3.86) can be written as

minimize
T

Nf∏
i=1

[Ryy]ii

 1
Nf

. (3.90)

Assume for now that the covariance matrix of the audio signal, Rxx is positive definite.
It has been shown in [You, 2010, p. 83] that

Nf∏
i=1

[Ryy]ii ≥ det(Rxx), (3.91)

with equality if and only if Ryy is a diagonal matrix. In order to minimize the geometric
mean of the variances, one might find a transform T that makes Ryy a diagonal matrix.
From [You, 2010, p. 84], it is shown that the transform having those properties is
the Karhunen-Loeve Transform (KLT), which has an orthonormal matrix with rows
corresponding to the eigenvectors of the covariance matrix of the audio signal Rxx.
When applying the KLT to the audio signal, the obtained transform coefficients will be
equal to the eigenvalues of Rxx. Thus the KLT maximizes the coding gain G in (3.85).

The KLT is optimal in terms of the optimal bit allocation strategy. However, in
practice the KLT is not usually used in transform coding. The KLT is signal dependent.
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The statistics of audio signals are for the most part time-dependent, and will thus require
a real-time computation of the covariance matrix, eigenvectors and eigenvalues when
using the KLT. In general because of this signal dependency of the KLT, it will be
necessary to send information on the original signal to the decoder in order to reconstruct
the signal, which will require additional bits. This is not suitable in practice when
dealing with audio coding [You, 2010, p. 85]. Instead of using the KLT, one may use
other orthogonal transforms that achieve a coding gain near the maximal coding gain
achieved by the KLT. The class of orthogonal sinusoidal transforms is known to achieve
a coding gain close to the maximum [You, 2010, p. 86]. One state of the art used
transform is the discrete cosine transform (DCT), see Section 4.1, which is not data
dependent and which can achieve a coding gain close to the maximum, when the block
size goes to the infinity [You, 2010, p. 86].

3.4.2 Perceptual model

A lossy compression applied to an audio signal is based on reducing the number of bits
used to describe the audio signal by using quantization and lossless source coding. The
quantization process consists of reducing the number of bits used to describe the audio
signal by removing the information in the signal, which is perceptually irrelevant [You,
2010, p. 173]. It is thus needed to apply a perceptual model to the audio signal in
order to find which components of the audio signal are perceptually irrelevant, i.e. the
components of the audio signal which are inaudible for the human ear. A perceptual
model is based on the response of the human auditory system to sounds. This falls under
the theory of psychoacoustics [Bosi and Goldberg, 2002, p. 149]. In this section only
some aspects of psychoacoustics will be presented.

Since the quantization process produces quantization noise, the idea is to shape
quantization in a way that makes this noise inaudible. The perceptually irrelevant parts
of the audio signal with quantization noise. The quantization noise is not perceived by
the human ear if its power is less than the hearing threshold [You, 2010, p. 173]. The
power of the sound can be described by the sound pressure level, which is defined as
follows.

Definition 3.13 (Sound pressure level)
The sound pressure level (SPL) is the ratio between the sound pressure of a sound
relative to a reference sound pressure.

SPL = 20 log10

(
p

p0

)
dB, (3.92)

where p is the variation of the atmosphere pressure in time called sound pressure and
p0 is a reference sound pressure of 2 × 10−5 Pa corresponding to the best hearing
sensitivity of an average listener for tone frequencies around 1kHz. [You, 2010, p. 174]
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The hearing threshold is thus defined as follows.

Definition 3.14 (Hearing threshold)
The hearing threshold is defined as the lowest SPL of a pure tone that can be heard, by
an average listener with normal hearing capability, in an absolutely quiet environment.
[You, 2010, p. 175]

The part of the audio signal having an SPL below the hearing threshold may be
assumed to be perceptually irrelevant. The hearing threshold varies with the frequency
of the used tone. In [Bosi and Goldberg, 2002, pp. 152-156] and [You, 2010, pp. 174-175],
the analysis of frequencies against hearing threshold shows the frequency levels for which
the human ear is more and less sensitive. The idea of using hearing threshold in coding
an audio signal, is to identify the frequency components of the audio signal, which are
inaudible for the human ear. Those will be quantized by allocating them few bits with
the advantage that the quantization noise will not be heard in the coded audio signal.
However it has been shown in [You, 2010] that this method has some disadvantages.
Instead of directly using the hearing threshold, one may use the fact that the hearing
threshold of a pure tone increases significantly in the presence of louder sounds in the
environment because of the phenomenon of auditory masking [Bosi and Goldberg, 2002,
p. 179] and [You, 2010, p. 173]. Masking is defined formally in the following.

Definition 3.15 (Masking)
Masking is a phenomenon where loud sounds can cause a weak sound to be less audible
or totally inaudible, when the power of the weak sound is under a certain frequency
dependent threshold jointly determined by the characteristics of both sounds. [You,
2010, p.173]

There exist different types of masking which can be used in audio coding, [Bosi and
Goldberg, 2002, pp. 156-164] and [You, 2010, pp. 186-198]. One type of masking used in
state of the art audio coding is simultaneous masking, where large sound pressure levels
of the quantization noise localized in frequencies of the signal become inaudible, because
the quantization noise is masked by frequency components of the signal that occur at the
same time as the quantized frequency components [You, 2010, p. 173]. The general idea
with building a perceptual model of an audio signal, is to combine the hearing threshold
and masking, e.g. simultaneous masking, in order to find an estimate of a so-called
masking threshold. The audio signal components having a power below the masking
threshold will according to the model be inaudible. In audio coding, the quantization
process will thus be designed such that all the quantization noises have powers that
are below the masking threshold [You, 2010, p. 173]. The masking threshold can for
example be included in the bit allocation problem presented in Section 3.2 to obtain a
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perceptual bit allocation, [Bosi and Goldberg, 2002, pp. 216-218] and [You, 2010, pp.
194-195].

Building a perceptual model is based on combining the properties of the used audio
signal representation with a psychoacoustic approach. Psychoacoustic models are usually
empirically determined. Applying a psychoacoustic model with the convolution framelet
introduced in Chapter 2 is not explored further in this project due to time restrictions.

3.5 Bitplane
When encoding a signal, a practical way of showing the bit representation is with bit-
planes. The basic idea is to construct a vector for each coefficient containing the specific
binary expansion representing the coefficient. This means that a coefficient matrix C is
represented with a 3D bitarray. An example slice of a bitarray can be seen on Figure 3.2.
The slice contains several bitplanes as well as a plane containing information concerning
the sign of the coefficient.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Sign1 0 0 0 1 0 0 1 0 1

Bitplane 11 0 0 1 0 0 0 1 0 0

Bitplane 20 1 0 0 0 0 0 1 1 0

Bitplane 30 0 1 0 1 1 0 1 0 1

Bitplane 41 1 0 0 1 1 0 0 1 1

Bitplane 51 0 0 1 0 0 1 1 0 0

Bitplane 60 0 1 0 1 0 0 1 0 0

Figure 3.2: Example of bitplanes for 10 coefficients from C.

An important aspect of the bitplanes is the order of significance. The most significant
bitplane is the first, i.e. Bitplane 1, and as the order of bitplanes increase the significance
decreases. This means that it is possible to compress the signal by truncating the
bitplanes starting with the highest order bitplane. This of course introduces distortion
as the signal loses refinement.

Based on [Ravelli et al., 2008, p. 6], the j’th most significant bit of the coefficient
ci is given by bi,j = mod(floor(abs(ci)×2j

A )), where A = max(abs(ci)). The vector of bits
of same significance j is the j’th bitplane Bj = {bi,j}. A coefficient ci is said to be
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significant at level j if abs(ci)/A ≥ 2−j .
When encoding bitplanes the process is divided in two passes, firstly a significance

pass and secondly a refinement pass. The significance pass will as the name implies
encode the most significant part of the bitplanes. It notes the bitplane, where the first
1 is encountered for each coefficient, when searching from the most significant bitplane
down to the least significant. This generally results in a higher occurrence of zeros in
the significance pass than ones. The refinement pass includes the remaining bits, which
were not included in the significance pass. This results in a more even distribution of
zeroes and ones in the refinement pass. Generally, if the spectrum flatness measure,
Definition 3.4, is close to zero, the occurrence of zeros in the significance pass is high,
which is ideal. Figure 3.2 is modified to include a line, which separates the bits in the
significance pass and the bits in the refinement pass, this results in Figure 3.3.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Sign1 0 0 0 1 0 0 1 0 1

Bitplane 1Significance 1 0 0 1 0 0 0 1 0 0

Bitplane 20 1 0 0 0 0 0 1 1 0

Bitplane 30 0 1 0 1 1 0 1 0 1

Bitplane 41 1 0 0 1 1 0 0 1 1

Bitplane 51 0 0 1 0 0 1 1 0 0

Bitplane 6Refinement 0 0 1 0 1 0 0 1 0 0

Figure 3.3: Example of bitplanes with the thick line representing the divide between the significance
pass (above the line) and the refinement pass (below the line).

The passes are then coded separately starting with the significance pass. An example
of a bitplane coder, which exploits the differences between the significance pass and
refinement pass, is given in Section 4.3. It is possible during the encoding to truncated
the refinement pass due to for example a constraint on the bit rate, this is equivalent to
a further quantization of the signal.
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4 | Practical Methods

This chapter details the algorithms used in the project, and how they are applied. The
first part of this chapter introduces some of the methods used in the simulations, includ-
ing the discrete cosine transform, orthogonal matching pursuit and a bitplane coding
algorithm. Beginning from Section 4.5 simulation descriptions are provided. Simulation
results and observations will be collected at the end of the chapter in Section 4.6.

4.1 Discrete cosine transform

The Discrete Cosine Transform [DCT] will be the primarily used orthonormal transform
for constructing the convolutional framelets in the simulations. The DCT-II, read as
type two DCT, is defined here.

Definition 4.1 (DCT-II)
Let x be a vector in RN . The DCT-II of x is defined as

Xct[k] = C[k]
N−1∑
n=0

x[n] cos
[
π

2N (2n+ 1) k
]
, k = 0, 1, . . . , N − 1, (4.1)

where

C[k] =


√

1
N for k = 0√
2
N for k = 1, 2, . . . , N − 1.

(4.2)

[Sundararajan, 2001, p. 305]

The DCT-II is the most commonly used type of DCT. It is distinguished by its
boundary condition, which is symmetric. This property means that it does not give rise
to discontinuities at its boundaries, resulting in better energy compaction [You, 2010, p.
88.]. The DCT-III, which is the inverse of the DCT-II is stated here.
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Proposition 4.1 (Inverse DCT-II)
Given a vector x in RN , the inverse DCT-II is

x[n] =
N−1∑
k=0

C[k]Xct[k] cos
[
π

2N (2n+ 1) k
]
, n = 0, 1, . . . , N − 1, (4.3)

where C[k] is as defined in (4.2). [Sundararajan, 2001, p. 305]

It is shown in [Sundararajan, 2001, pp. 305-309.] that the DCT-II has an efficient
implementation based on the fast Fourier transform. The DCT-II from Definition 4.1,
can be rewritten to the expression,

Xct[k] = C[k]
N−1∑
n=0

y[n] cos
[2π
N

(
n+ 1

4

)
k

]
, (4.4)

where y[n] is defined as follows,

y[n] =
{
x[2n] if n = 0, 1, . . . , N2 − 1
x[2N − 2n− 1] if n = N

2 ,
N
2 + 1, . . . , N − 1.

(4.5)

Using Eulers formula, exp(ix) = cos(x) + i sin(x), and the fact that y is real-valued, the
cosine in (4.4) can be rewritten as the real part of a complex exponential,

Xct[k] = C[k]Re
{
N−1∑
n=0

y[n]e−i
2π
N (n+ 1

4 )k
}

= C[k]Re
{
e−i

2πk
4N

N−1∑
n=0

y[n]e−i
2π
N
nk

}
.

(4.6)

In (4.6), the discrete Fourier transform of y is recognized, and can be computed via the
FFT, to efficiently compute the DCT.

4.2 Matching pursuit
Recall the tight frame, Ψ, constructed as a concatenation of convolution framelets dis-
cussed in Section 2.3. The canonical coefficients of this frame,

c = Ψ>f , (4.7)

are very redundant. Every subset of c corresponding to one of the convolution framelets
from the concatenation, is sufficient to recover f , and even the individual framelets may
be redundant. Thus, with the desire of a sparse set of coefficients in mind, non-canonical
sets of frame coefficients are of interest. Ideally f should be described completely by as
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few non-zero coefficients as possible. This is, however, a difficult problem to solve. As
explained in [Foucart and Rauhut, 2013, pp. 53-56], the problem is NP-hard.

Matching pursuit is an algorithm, which can find a sub-optimal sparse solution.
Matching pursuit has been demonstrated to work well, despite its sub-optimality, see for
instance [Mallat and Zhang, 1993] and [Ravelli et al., 2008, p. 3]. The matching pursuit
algorithm, detailed in Algorithm 1 below, works by iteratively selecting the coefficient,
which accounts for the most residual energy, and then updating the residual.

Algorithm 1 Matching pursuit
input: f , Ψ, εdB
r = f
copt = 0
repeat

iopt = argmax
i
|〈r,ψi〉|

c = 〈r,ψiopt〉
r = r − cψiopt
copt[iopt] = copt[iopt] + c

until 10 log10

(
P (r)
P (f)

)
≤ εdB

output: copt

Here, P (f) denotes the average power of f . Since matching pursuit only updates
one coefficient each iteration, any distortion introduced by a given coefficient, can only
be corrected by future coefficients.

4.2.1 Orthogonal matching pursuit

A more advanced version of matching pursuit, known as orthogonal matching pursuit
[Foucart and Rauhut, 2013, p. 65], is available. Orthogonal matching pursuit differs
from matching pursuit in the residual update step. Where matching pursuit updates
the residual with respect to a single element of Ψ each iteration, orthogonal matching
pursuit updates with respect to all elements selected so far. This is accomplished by
the orthogonal projection of f onto the orthogonal complement of the span of selected
elements. Let Ψ[S] denote the restriction of Ψ to the columns indexed by the set S.
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Algorithm 2 Orthogonal matching pursuit
input: f , Ψ, εdB
r = f
S = ∅
copt = 0
repeat

iopt = argmax
i
|〈r,ψi〉|

S = S ∪ iopt
P = Ψ[S]

(
Ψ>[S]Ψ[S]

)−1
Ψ>[S]

r = f − Pf
until 10 log10

(
P (r)
P (f)

)
≤ εdB

copt[S] =
(
Ψ>[S]Ψ[S]

)−1
Ψ>[S]f

output: copt

The iterative expansion of the span of Ψ[S], means that much of the computational
effort implied by Algorithm 2, i.e. computing the orthogonal projection matrix P and
subsequently the residual r, can be saved. First of all, using the Gram-Schmidt procedure
to orthonormalize each new element of Ψ[S], one can iteratively construct and update
an orthonormal basis, QS , for the span of Ψ[S], reducing the problem of computing P
to

P = QSQ
>
S . (4.8)

The Gram-Schmidt procedure is detailed in [Trefethen and Bau III, 1997, pp. 56-58].
Furthermore, as a result of the orthogonality of QS , it is only necessary to project
f onto the newest element of QS and add the result to the previous projection. The
Gram-Schmidt orthogonalization step required in each iteration can be stated as follows,

qiopt = ψiopt −
i−1∑
j=0

〈qj ,ψiopt〉
〈qj , qj〉

qj . (4.9)

This orthogonalization step makes the orthogonal matching pursuit more computation-
ally demanding than matching pursuit, since the orthogonalization requires an increas-
ing number of computations each iteration. Orthogonal matching pursuit will however
be demonstrated to give more sparse solutions. This should be clear, since orthogo-
nal matching pursuit reoptimizes all coefficients each iteration, they can correct more
distortion per iteration.

Matching and orthogonal matching pursuit will be used to find sparse frame coeffi-
cients for audio signals in the practical simulations.

4.3 Bitplane coder

The coder used in this project is based on the bitplane coder in [Ravelli et al., 2008, Algo.
3], which is a run-length coder called a Golomb-coder. Remembering the introduction
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to bitplane coding in Section 3.5, the encoding is separated into a significance pass, and
a refinement pass. The significance pass of this coder uses an adaptive run length, to
efficiently code long runs of zeros; remember that a sparse set of coefficients is found using
OMP, which is why long runs of zeros are expected. The refinement bits are expected to
be close to a uniform distribution between ones and zeros, so they are simply appended
to the end of each significance pass.

Algorithm 3 Bitplane coder
input: c, q
code maximum amplitude A = maxi(abs(ci))
zi = 0 for all i
j = 0
repeat

bi = mod(babs(ci)2j/Ac) for all i
S = S ∪ {bi|zi = 0}
R = R ∪ {bi|zi = 1}
zi = 1 for all i such that bi ∈ S and bi = 1
j = j + 1

until j = q
k = 2
repeat

if sequence of 2k zeros in S then
write a zero to the bit stream
k = k + 1

else
write a one to the bit stream
write k bits describing the number of zeros before the one
write the sign bit of the corresponding coefficient
k = k − 1

move to the next bits in S
until the end of S
write R to the bit stream
output: the bit stream

The input q in Algorithm 3 is the quantization level, i.e. how many bitplanes should
be coded. The vector z keeps track of which coefficients are in significance and which
are in refinement. The variable k ensures that the coder looks for runs of zeros of
incrementing powers of 2; decrementing if a one appears. The coder is thus adaptive,
and spends fewer and fewer bits to code zeros if no ones appear, at the cost of making
ones more expensive to code once they do appear.

Consider the optimal bit allocation presented in Section 3.2. This coder does not use
that exact bit allocation, since the variances of coefficients are not considered. However,
it does draw on some of the ideas behind optimal bit allocation. Remember that optimal
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bit allocation is dependent on the spectrum flatness of the coefficients, achieving a better
coding gain when most bits can be allocated to a few large coefficients. This coder takes
a sparse set of coefficients as input, which supports that there is a coding gain to be
had. This coder only compresses significance bits, and large coefficients will have a
larger ratio of refinement bits to significance bits, than small coefficients. This means
that large coefficients will be represented by more bits in the coded bit stream than
small coefficients. This is in line with the optimal bit allocation, which allocates more
bits to coefficients with larger variance.

4.3.1 Coefficient interleaving

The concatenated convolution framelets used in simulations, will be constructed from
DCT and identity bases with varying patch sizes. This effectively means that the coeffi-
cients will consist of concatenated time-frequency spectra, with variable time-frequency
resolution. This is comparable to [Ravelli et al., 2008], in which a union of modified dis-
crete cosine transforms, with variable window lengths are used. In [Ravelli et al., 2008,
Section III.] an interleaving scheme is introduced, which groups coefficients by their rel-
ative closeness in the time-frequency domain. Effectively this combines the individual
spectra into one. The interleaving scheme assumes that each time-frequency spectrum
has 2 times the window length of the previous, and can be described as follows.

Let M denote the number of framelets concatenated, Pm denote the number of
patches in the m’th framelet and lm denote the patch size of the m’th framelet. Define
the recursive function,

r(p,m) =


p, if m = M − 1.
r
(p

2 ,m+ 1
)
, if m < M − 1 and p is even.

r
(
p−1

2 ,m+ 1
)

+ Pm+1, if m < M − 1 and p is odd.
(4.10)

Using r, the coefficients c are mapped to a vector v as such,

vi = cm,r(p,m),k, for m = {0, . . . ,M − 1}, p = {0, . . . , Pm− 1}, k = {0, . . . , lm}, (4.11)

where
i = M(kPm + p) +m. (4.12)

The benefit of using this scheme, is that it groups coefficients from active time-frequency
areas together, leaving longer runs of zeros in v, than in c, which makes the bitplane
coder more efficient.

Example 4.1
The first coefficient matrix: 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 (4.13)
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The second coefficient matrix:[
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32

]
(4.14)

Interleaving these two matrices results in the following vector:

[1, 17, 9, 25, 5, 18, 13, 26, 2, 19, 10, 27, 6, 20, 14, 28, ...
...3, 21, 11, 29, 7, 22, 15, 30, 4, 23, 12, 31, 8, 24, 16, 32]

(4.15)

Note the line break is only done for readability.

4.4 Evaluation
The simulation results are evaluated differently depending on the simulation. The first
measure of evaluation is the speed of OMP convergence, i.e. how many iterations it
takes before the residual power becomes sufficiently small. This also corresponds to the
achieved sparsity of coefficients, and can thus be useful in gauging how well the signal
is represented in the framelet domain.

Secondly, results are evaluated by compression factor. That is the ratio of uncom-
pressed number of bits to average compressed code length,

16×N
average code length = compression factor. (4.16)

Note that the compression factor will be calculated for a quantization level of q = 16
bitplanes in the coder, whereas the compression factor is also set as a criterion for the
coding algorithm in certain simulations. This requires that the stop criterion of the coder
be changed to consider the bit rate of the coded bit stream rather than coding a fixed
number of bit planes. This is done by coding bit planes until the bit stream becomes
too long for the desired bit rate R, at which point the coder stops. The bit stream in
this case should be shorter than

N
R

fs
, (4.17)

where fs is the sampling frequency.
Likely the most important result is the perceptual quality of the quantized signals.

To evaluate the quality, the Objective Difference Grade [ODG] scale is used. This scale
goes from 1 to 5, with 5 being the best quality. The ODG is estimated using the
Perceptual Evaluation of Audio Quality [PEAQ] standard; Matlab implementation by
[Kabal, 2003]. PEAQ requires the raw uncompressed audio signal as reference.
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4.5 Simulations
Several simulations are performed to verify and evaluate the performance of the com-
pression algorithm, Algorithm 3. The simulations are detailed in this section and the
results will be presented in each subsection and summarized in Section 4.6.

The following is a small example of concatenated framelets to quickly recap the
established parameters for their construction.

Example 4.2
Figure 4.1 is an example of a concatenation of two framelets, both constructed from a
single block of N = 24 = 16 samples. The blue framelet has a patch size of 4 and hop
size of 2, meaning the resulting patch matrix has dimensions 8× 4. The red framelet
has a patch size of 8 and hop size of 4, resulting in a patch matrix with dimensions
4× 8.

N = 16 l = 4 h = 2
l = 8 h = 4

Figure 4.1: An example of concatenated framelets, with block size N , patch size l and hop size h.
The colors for l and h correspond to the colors of the lines illustrating the differing patches.

The simulations are based on the concatenated convolution framelet decomposition
described in Section 2.3, which will be referred to as c = Ψf in this section. The
procedure is to decompose an N sample block, fk, of an audio signal. The framelets are
constructed from DCT bases, identity bases and patch matrices with variable patch size.
The frame coefficients are found using OMP. These coefficients are rearranged according
to the interleaving scheme in Section 4.3.1, and passed to the bitplane coder, which
outputs a quantized and compressed bitstream. Finally the performance is evaluated as
described in Section 4.4. This procedure is summarized in Figure 4.2.
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OMPc = Ψfkfk Interleaving

DecodingBitplane coder
Quantization

Performance
evaluation

Figure 4.2: The simulation procedure is summarized by this flow chart.

The standard simulation parameters are listed here, and any deviation from these
will be specified under the appropriate simulation description.

• N : 212 samples.

• Audio : Jazz.wav [Reid, 2016], 44.1 kHz, samples [20 ·N ; 40 ·N ].

• Framelet bases : I & DCT.

• Patch size :
{
27, 28, . . . , 212} samples.

• Hop size : half of patch size.

• OMP stop criterion : residual −50 dB.

• Coder stop criterion : 16 bitplanes.

A spectrogram of the Jazz.wav segment can be found in Figure 4.3,
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Figure 4.3: Log magnitude spectrogram of the relevant segment of Jazz.wav.
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4.5.1 Matching pursuit vs. orthogonal matching pursuit

The matching pursuit, Algorithm 1, and orthogonal matching pursuit, Algorithm 2, are
tested. The algorithms are set to run N iterations, where N is the length of the audio
block. The residual power after each iteration is stored and averaged over the audio
blocks at the end. This allows comparison of convergence between the two algorithms.
The results can be found in Figure 4.4. MP is seen to converge considerably slower than
OMP. Just before N iterations, the residual power plummets for OMP, indicating that
it has reached a near perfect reconstruction.

This simulation uses the standard parameters, with the following exceptions.

• Patch size :
{
27, 28, 29, 210} samples.

• MP and OMP stop criterion : N iterations.
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Figure 4.4: Average residual power as the MP and OMP algorithms run iterations.

In Appendix A, spectrograms of 4 partially reconstructed blocks, at eight points
during the OMP and MP algorithms, are included. Figure A.2 shows spectrograms for
the OMP algorithm, and Figure A.3 for MP. These spectrograms are included to give
the reader an idea of the order in which the time-frequency components of a signal are
chosen by OMP and MP.

4.5.2 Patch size combinations

There are many choices in constructing concatenated convolution framelets. The simu-
lations in this project are restricted to convolution framelets using the DCT and identity
bases. One interesting feature, which is explored in this simulation, is the redundancy
level of Ψ. This simulation will test the performance of concatenations of a variable
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number of framelets, with different patch sizes. Combinations of patch sizes from 27

samples to 212 are tested. Starting with 27 to 210 adding one additional patch size at
a time up until 212. The framelets are evaluated by the convergence of OMP, seen in
Figure 4.5, and compression factor in Figure 4.6.

The non-standard parameters in this simulation are,

• Patch size :
{
27, 28, . . . , 210}, {27, 28, . . . , 211}, {27, 28, . . . , 212} samples.
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Figure 4.5: Number of iterations before OMP convergence by block. Average OMP iterations, 2301,
1947 and 1854 for 4, 5 and 6 framelets respectively.
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Figure 4.6: Compression factor by block. Average compression factors, 2.04, 2.32 and 2.42 for 4, 5 and
6 framelets respectively.

From the average values, an improvement in both OMP convergence and compression
factor is observed for larger sets of framelets. It can also be seen that a larger compression
factor is achieved, when the OMP converges faster, which makes sense, as fewer iterations
of OMP means fewer non-zero coefficients to be coded. Finally in Appendix A, The
coefficients of a single block from each of the 6 component framelets are plotted, to give
an idea of what OMP selects from each of them, see Figure A.4.

4.5.3 Number of Bases

This simulation is constructed to study the effect the number of bases has on the com-
pression factor and the rate of OMP convergence. This simulation uses the standard
parameters, with the following exceptions.

• Framelet bases : I & DCT and (I, DCT) & DCT

Figures 4.7a and 4.7b show the results from the simulation.



Chapter 4. Practical Methods 57

0 5 10 15
Block

2.5

3.0

3.5

4.0

4.5

5.0

Co
m

pr
es

sio
n 

fa
ct

or
Compression factors

I & DCT
(I, DCT) & DCT

(a) Compression factor for each block.

0 5 10 15
Block

1200

1400

1600

1800

2000

2200

2400

2600

OM
P 

ite
ra

tio
ns

OMP convergence

I & DCT
(I, DCT) & DCT

(b) Number of OMP iterations for each block.

Figure 4.7: Bases simulation results.

The average compression factor is calculated for both setups according to (4.16).

• I & DCT : 3.546.

• (I, DCT) & DCT : 3.199.

The additional DCT basis does not seem to be helpful in terms of OMP convergence
and thus it has a negative impact on the compression factor, since the coefficient matrix
is larger.

4.5.4 Interleaving

This experiment is constructed in order to determine the effectiveness of the interleaving
method described in section 4.3.1 compared to simply vectorizing the coefficient matrix
C along either the rows or the columns, when used in conjunction with the bitplane
coder. The simulation uses the default parameters, with the exception of various vector
reshaping during encoding.

Table 4.1: Minimum, maximum and mean code lengths in bits over 20 blocks.

Reshaping Type Minimum Maximum Mean
Interleaving 12329 25263 18481.6
Reshape - along rows 12810 25736 19038.0
Reshape - along columns 12904 25874 19202.5

It is clear from the results of the experiment shown on table 4.1 that interleaving the
coefficients improves the effectiveness of the coding scheme.
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4.5.5 Compressed audio quality

In this simulation, the compression scheme is used on a larger set of musical audio.
The performance is evaluated by rate of compression and quality in Objective Difference
Grade [ODG]. The music used in this simulation is CD quality, i.e. 16 bit pulse code
modulation with a sampling frequency of 44.1 kHz.

The non-standard parameters in this simulation are,

• Audio : various music track excerpts by various artists, 44.1 kHz, 100 ·N samples,
see Appendix B.

The average OMP convergence over blocks varies between tracks, as seen in Figure
4.8.
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Figure 4.8: Average number of iterations before OMP convergence by track; find the list of keys in
Table B.1. Average OMP iterations, 2543, across all tracks.

In the same way, the average compression factor also varies between tracks; see Figure
4.9. This is to be expected since the more sparse tracks can be more efficiently coded.
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Figure 4.9: Average compression factor using 16 bitplane quantization by track; find the list of keys in
Table B.1. Average compression factor, 1.625, across all tracks.

Finally the ODG as measured by PEAQ, for different degrees of quantization can be
seen in Figure 4.10. The 128 and 64 kbps bit rate ODG’s are compared to the ODG’s
after mp3 compression at the same bit rate.
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Figure 4.10: ODG for multiple quantization levels; find the list of keys in Table B.1. Average ODG’s,
4.107, 1.881, 1.597, for 16 bitplanes, 128 and 64 kbps across all tracks. Coloured markers indicate our
compression scheme, and white markers indicate mp3. Note, 16 bitplanes roughly corresponds to 434
kbps given the average compression factor and uncompressed CD quality corresponds to 706 kbps.
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4.6 Results
This section is a summation of the results from the simulations in Section 4.5.

• Orthogonal matching pursuit converges considerably faster compared to matching
pursuit. When the number of iterations nears the block length, the residual power
shows that OMP reaches a near perfect reconstruction.

• There is an improvement on average in both OMP convergence and compression
factor as the number of framelets increases.

• The bases I & DCT are similar to (I, DCT) & DCT, when comparing OMP con-
vergence. I & DCT does however perform better regarding compression factor.

• Interleaving the coefficients prior to coding is shown to improve the overall com-
pression factor.

• When applying the method on 15 music excerpts, the results show an average
compression factor of 1.625 and an average ODG of 4.107. If the coefficients are
quantized during coding the ODG’s drop to an average of 1.881 for 128 kbps and
1.597 for 64 kbps, indicating that artefacts are introduced to the signal. It is also
observed that MP3 performs much better in terms of ODG at 128 kbps, while the
ODG’s are more comparable at 64 kbps.
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5 | Discussion

The simulations in this project have been set up to be comparable to those in [Ravelli
et al., 2008], which are also based on finding and coding a sparse set of coefficients in a
redundant frame.

The observations in Section 4.6, Results, indicate that the compression scheme in
this project degrade the audio quality more than the scheme described in [Ravelli et al.,
2008]. Our algorithm introduce rather heavy quantization noise for bit rates of 128
and 64 kbps, with a large impact on audio quality. Comparing our algorithm with a
standard MP3 coder, [Spanias et al., 2006, ch. 10.4], shows that the degradation of the
audio quality is significantly higher than for MP3, especially for 128 kbps. There are a
number of differences between this project and [Ravelli et al., 2008], which can factor in to
explaining why this is. Firstly, this project uses convolution framelets based on the DCT
rather than modified discrete cosine transforms, which is deliberate, as the concatenated
convolution framelet is the novel part of the compression scheme. Secondly, [Ravelli
et al., 2008] works on whole signals as a single block, which is computationally feasible,
when using MP rather than OMP. Working on a signal in several blocks can break up
long runs of zeros in the coding algorithm, thereby wasting bits, resulting in further need
for quantization. The block size also limits the patch size, leading to the next difference.
This project uses six framelets, while [Ravelli et al., 2008] uses eight bases. Using bases
or framelets with wider time windows or patch sizes can result in faster convergence of
MP and OMP, which also improves coding efficiency. Finally, the data set in this project
consists mostly of music performed by multiple instruments and vocals, while [Ravelli
et al., 2008] uses a data set, which mainly contains single instruments, and a few multi
instrumental signals.

For finding sparse coefficients, OMP works well, but since the required computations
grow each iteration, this limits the size of data that can feasibly be worked on at once.
It might be better to use an algorithm, which exploits the statistics of audio or includes
a perceptual model, to converge faster for long signals. It may also be desirable to
perform the quantization during each iteration here, making it possible to cancel out
quantization effects to a degree. As it is OMP optimizes distortion without taking
quantization into consideration. Performing quantization during OMP effectively include
quantization noise in this optimization. Of course this requires the quantization level
to be known before coding. Another aspect of OMP is the convergence criterion. The
lower this criterion the more non-zero coefficients will have to be coded. Depending
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on the quantization level, it may be better for audio quality to raise the convergence
criterion. Essentially searching for a better balance between distortion from OMP and
quantization.

The comparison to [Ravelli et al., 2008] is made to their results without psychoa-
coustic modelling, same as ours, so the comparison is fair in that regard. That being
said, psychoacoustics are used in most modern audio coders, so it makes sense to discuss
it. A psychoacoustic model could be included in either the MP/OMP or the coder. For
example, a psychoacoustically based OMP might not select coefficients that would be
masked by already selected coefficients. [Ravelli et al., 2008] proposes a psychoacoustic
coder, which can likely be adapted to the concatenated convolution framelets used in
this project.

In terms of audio compression, there is still work to be done with concatenated
convolution framelets. It would be of interest to explore a more computationally efficient
way of finding sparse coefficients, so that longer audio signals can be compressed at
once. A psychoacoustic model, that can be included in the coder, to reduce perceptible
quantization noise. Concatenated convolution framelets show potential as audio signal
representations by way of their flexibility in both domain and redundancy level. The
bases used in their construction can be chosen to fit the signal characteristics, and the
redundancy can be controlled by the number of framelets, and their individual number
of patches. In this project, concatenated convolution framelets were demonstrated to
construct a system similar to the union of bases presented by [Ravelli et al., 2008], which
was usable for audio compression, baring the problems discussed above.
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A | Spectrograms

This appendix contains spectrograms and plots of coefficients for Section 4.5.1 and Sec-
tion 4.5.2. The spectrograms in Figures A.2 and A.3 display the time frequency content
of a short segment from Jazz.wav during eight points in the OMP and MP algorithms.
All 16 spectrograms use the same color scale. Figure A.1 contains a clean reference
spectrogram. It can be seen in Figures A.2a and A.3a that both algorithms initially
chose coefficients that describe the powerful low frequency content, which apparently
introduces large local-time errors across all frequencies. The following figures indicate
that both algorithms continue by constructing the most powerful signal content, corre-
sponding to yellow and orange colors, from low frequencies to higher frequencies. After
1000 iterations both algorithms appear to have reconstructed the most important signal
content, again indicated by warm colours, as seen in Figures A.2g and A.3g. After this
point, as seen in Figures A.2h and A.3h, the algorithms focus on correcting the errors
that were introduced in the earlier iterations. This appears to be where OMP begins
to perform much better than MP, as there are almost no visible artefacts left in Figure
A.2h.
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Figure A.1: Spectrogram of 4 blocks from Jazz.wav.

Figure A.4 contains the plotted coefficients of a single block from Jazz.wav, after the
OMP converged to −50 dB. The coefficients are separated into 6 graphs corresponding
to the 6 component framelets in the concatenated convolution framelet. From the graphs
it can be seen that the longer patch size framelets contain larger coefficients. Indicating
that the OMP prioritized long time patches with large energy to approximate the block,
and uses lower energy short time patches to capture the finer details in the block.



66

0.05 0.10 0.15 0.20 0.25 0.30 0.35
time [s]

0

5000

10000

15000

20000

fr
e
q
u
e
n
cy

 [
H

z]

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

(a) Spectrogram after 10 iterations.
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(b) Spectrogram after 50 iterations.
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(c) Spectrogram after 100 iterations.
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(d) Spectrogram after 150 iterations.
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(e) Spectrogram after 250 iterations.
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(f) Spectrogram after 500 iterations.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
time [s]

0

5000

10000

15000

20000

fr
e
q
u
e
n
cy

 [
H

z]

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

(g) Spectrogram after 1000 iterations.
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(h) Spectrogram after 2000 iterations.

Figure A.2: Spectrograms of 4 blocks from Jazz.wav, at certain points during orthogonal matching
pursuit.
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(a) Spectrogram after 10 iterations.
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(b) Spectrogram after 50 iterations.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
time [s]

0

5000

10000

15000

20000

fr
e
q
u
e
n
cy

 [
H

z]

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

(c) Spectrogram after 100 iterations.
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(d) Spectrogram after 150 iterations.
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(e) Spectrogram after 250 iterations.
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(f) Spectrogram after 500 iterations.
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(g) Spectrogram after 1000 iterations.
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(h) Spectrogram after 2000 iterations.

Figure A.3: Spectrograms of 4 blocks from Jazz.wav, at certain points during matching pursuit.
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(a) Coefficients from framelet with l = 27.
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(b) Coefficients from framelet with l = 28.
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(c) Coefficients from framelet with l = 29.
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(d) Coefficients from framelet with l = 210.
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(e) Coefficients from framelet with l = 211.
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(f) Coefficients from framelet with l = 212.

Figure A.4: Vectorized coefficients from each framelet in the concatenated framelet decomposition of
a single block of Jazz.wav. l denotes the patch size and red x’es denote boundaries between patches.
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B | Soundtracks

Key Title Artist(s) Album

FLY Come Fly with Me Frank Sinatra Nothing But the
Best: The Frank
Sinatra Collection

HRO Hr. Oluf Asynje Færd

LDY Lady (radio edit) Modjo Absolute Dance 30

LYS Nu Tændes Tusind
Julelys

Per Nielsen Christmas Time

FLU Flute (radio edit) Barcode Brothers Absolute Dance 30

CAD Guitar Gangsters &
Cadillac Blood

Volbeat Guitar Gangsters &
Cadillac Blood

SKL Skáll Asynje Færd

TRN I turn to you (Hex
Hector radio mix)

Melanie C Absolute Dance 30

BSS Phatt bass (Aquagen
short mix)

Warp Brothers Absolute Dance 30

GLO Gloria i excelsis Per Nielsen Christmas Time

BLE Die Blechtrommel
(single cut)

Taiko Absolute Dance 30

SER Serengeti (radio mix) Infernal Absolute Dance 30

ROC What is Rock Arone Dyer; Blue
Man Group; Peter
Moore

The Complex

HUN Ungarsk Dans Brahms Klassiske Mester-
værker

LAU Laudale Dominum Per Nielsen Christmas Time

jazz.wav Acoustic Jazz Quar-
tet no1

Claude Reid

Table B.1: The different soundtracks used under the simulations.
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