
Transfer of Knowledge in a
Reinforcement Learning Setting for a

Complex Environment
Progressive Networks in StarCraft II

8. of June 2018

Group DEIS1022F18
Aalborg University

Institut for Datalogi
Selma Lagerløfs Vej 300

9220 Aalborg Ø
Telefon (+45) 9940 9940

Fax (+45) 9940 9798
http://cs.aau.dk

Title:
PLACEHOLDER

Theme:
Specialization

Project Period:
Spring 2018

Project Group:
DEIS1022F18

Participant(s):
Andi Rosengreen Kjærsig Aaes
Kaare Bak Toxværd Madsen
Malthe Dahl Jensen

Supervisor(s):
Manfred Jaeger

Copies: 3

Page Numbers: 75

Date of Completion:
June 4th, 2018

Source Code:
Delivered separately as .zip file
(Private Repositories)

Abstract:

This project is a master thesis by a group on
the 10th semester of the software education
at Aalborg University.
The topic of this project surrounds using
reinforcement- and transfer-learning on the
complex environment of Starcraft II. We test
a number of different agent architectures to
find a candidate best suited for applying
transfer learning.
To test if transfer is possible on Starcraft II,
we use a network architecture proposed by
Google DeepMind in 2016 called progres-
sive networks[1], which allows us to leverage
knowledge from multiple tasks when train-
ing on new tasks. At the same time progres-
sive networks do not suffer from catastrophic
forgetting, which allows us to approximate
how much transfer is happening and where
in the network it is occurring.

http://cs.aau.dk

Signatures

Andi Rosengreen Kjærsig Aaes

Kaare Bak Toxværd Madsen

Malthe Dahl Jensen

Summary
The purpose of this project is to investigate if it is possible to utilize transfer learning from one
task to another in a complex environment such as Starcraft II.

The report starts by investigating multiple different agent architectures to find the one best
suited for grasping the complex environments, and thereby find the agent architecture with
the best chance of learning features that can be transferred across environments. These agent
architectures includes a standard A3C agent, a number of different agents that include some
kind of memory encoding, and a modified version of the A3C agent that was introduced in our
previous semester report[2] which we named SA3C that utilizes multiple location networks.
Based on findings gathered by testing these agents against each other, we discovered that none
of the agents were a significant improvement to the regular A3C, but were often more time and
resource consuming. Because of this we decided to move forward with the regular A3C agent.

For testing transfer learning on the game of Starcraft II, we focus on a network architecture
introduced by Google Deepmind in 2016 called progressive networks[1]. This network archi-
tecture makes it possible to leverage knowledge from an arbitrary number of source tasks when
training on a new target task. At the same time progressive networks do not suffer from catas-
trophic forgetting, which allows us to calculate an approximation of how much the transferred
knowledge is being leveraged for the target task, and make us able to investigate the details of
and conclude on the tests.

We first test our implementation of progressive networks on two less complex environments
namely CartPole[3] and Sonic the Hedgehog[4]. We do this in order to determine if our imple-
mentation of progressive networks is functional, before testing it on Starcraft II. Our findings
in these tests shows us that we can transfer knowledge from fully-connected and convolutional
layers on these low complexity games, even between different tasks.

After we concluded that our progressive networks are functional, we performed tests on Starcraft
II to determine if transfer of knowledge is possible, and beneficial. We tested the progressive
networks on three different minigames, leveraging knowledge from 1 and 2 minigames at a
time. We found that it is indeed possible to leverage knowledge from one Starcraft II minigame
to another, but that it was not always beneficial for the agent.

Some minigames allow for better transfer of knowledge between eachother, such as the Find-
AndDefeatZerglings and DefeatZerglingsAndBanelings minigames. Both minigames require
the use of multiple friendly units, the ranged marine unit, to fight and destroy enemy units.
Both minigames have the zergling unit as one of the enemy units, which is expressed as part
of one of the input features for the screen. This seems to make a transfer learning agent able to
leverage the constructed features from the convolutional layers.

We performed a proof of concept test on the DefeatRoaches minigame to verify that transfer was
possible when the source task and target tasks are identical, but this test showed that previously
learned knowledge is not always leveraged in the best case scenario.

We conclude that overall transfer learning in Starcraft II is possible when using progressive
networks, and that more tests should be performed to further verify when it can happen, and if
it reliably improves the convergence speed or average reward over time of the agent.

v

Preface

The Vancouver method is used for citations, where sources are indicated with a number in
square brackets (i.e. [2]), and comma separation if using multiple sources. The title, author(s)
and other relevant information is stated in the bibliography.

Several abbreviations and terms will be used throughout the report. The abbreviations are
described on first time use in the report, but for good practice the most frequent abbreviations
are stated here as well.

Abbreviations:

• Average Layer Sensitivity (ALS)
• Real-Time Strategy game (RTS)
• Application Programming Interface (API)
• Markov Decision Process (MDP)

Terms:

PySC2: A Python library for the Starcraft II API.

Agent: Software that can observe and actuate on an environment.

(Neural) Network: A set of neurons, ordered in layers, that has an input and output.

Episode: One game instance until player win, lose or time elapsed.

(Time) Step: One discrete observation of the environment.

Mini-game: An environment that is a subset of the full game, with one or multiple purposes
based on the full game.

Contents
1 Introduction 1

1.1 StarCraft II . 1
1.1.1 PySC2 . 3

1.2 Deep Reinforcement Learning . 4
1.2.1 Markov Decision Process . 5
1.2.2 Deep Neural Networks . 7
1.2.3 Learning Methods . 8
1.2.4 Actor-Critic . 8
1.2.5 Transfer Learning . 10

1.3 Problem Statement . 11

2 Agents 13
2.1 A3C Agent . 13

2.1.1 Approximating Episodic Advantage Actor-Critic 14
2.1.2 Asynchronous Advantage Actor-Critic . 17
2.1.3 Network Architecture . 18

2.2 SA3C Agent . 20
2.2.1 Network Architecture . 22

2.3 Memory Agents . 24
2.3.1 Network Architecture . 25

2.4 Tests and Findings . 27
2.4.1 Testing Procedure . 27
2.4.2 Results . 29
2.4.3 Test Discussion . 32
2.4.4 Test Conclusion . 34

3 Transfer Learning 35
3.1 Transfer Learning Methods . 35
3.2 Progressive Networks . 37

3.2.1 Transfer Analysis . 40
3.3 Progressive Network Implementation . 42

3.3.1 ALS Implementation . 47
3.4 Tests and Findings . 49

3.4.1 Proof of concept . 49
3.4.2 StarCraft Test . 60

4 Evaluation 70
4.1 Conclusion . 70
4.2 Future Work . 71

A Transfer 74
A.1 Three column progressive network . 75

ix

Chapter 1: Introduction
In this report we test if deep reinforcement learning, reinforcement learning using deep neural
networks, benefits from transferring of knowledge gained from similar environments, to assist
learning in problems with different goals, called transfer learning[5]. There are different ways
of performing transfer learning, where Progressive networks and finetuning are two types of
transfer learning that we focus on in the report.[1]

Transfer learning has been shown to improve agents when used in agents for solving various
games for the Atari platform, as well as a labyrinth navigation task.[1]

These tests were made on environments with relatively few actions, in the low 10s, and require
only simple strategies for completion of the task. We seek to determine if the discussed transfer
learning types can be used in a more complex environment, where there are a vast amount of
actions and where completing the tasks require relatively complex strategies.

Progressive networks in particular allows us to analyze how well previously learned knowledge
for one task is being leveraged in another task, which makes us better equipped for discussing
the impact of transfer learning in a complex environment.

With a more complex environment, the possibilities for knowledge transfer is more potent.
Higher complexity in the tasks often translates into longer training periods and higher risk for
sub-optimal policies stuck in local optimum. We investigate if the higher complexity of the
environment, and the strategy to complete the task, impact the usage of knowledge. Previous
study shows that transfer learning, progressive networks in particular, can utilize knowledge
from tasks that have little to no similarities with the task at hand[1]. However in this report we
will focus on determining if transfer learning is at all beneficial in a more complex environment
than the relatively simple Atari games.

Google DeepMind and Blizzard Entertainment have made it possible to use a complex game
based environment that fits our needs very well. It uses the computer game Starcraft II, with an
API for coupling the game environment with a reinforcement learning agent using python. Star-
craft II is a complex Real-Time Strategy (RTS) game, which can be split into sub-problems, called
mini-games, these mini-games utilize the same actions and similar observable environments.[6]

The following sections seek to introduce the background necessary for understanding the work.

1.1 StarCraft II

Starcraft II is a RTS video game that has a large competitive player-base, where worldwide
tournaments are held every year. The game is very hard to master and has a vast amount of
strategies, game elements, and simultaneous management tasks, that a player needs to decide
on and execute better than their opponent in order to win.

Starcraft II being a RTS game means that it does not have turns during which the player chooses
which action to take, based on some game state. The game runs in real-time, and the player can
choose to do an action at all times, thus a player might do better if he is faster at executing actions,
but more actions per minute(APM) does not necessarily make a good player. In Starcraft II the

1

2 Chapter 1. Introduction

player plays against one or more players, and the point of the game is to destroy all units of the
opponents in an environment with limited resources and space. At the start of a game, the player
must build structures to make a base, then build armies to defend or attack the opponent. The
only means to victory is through battle, so building units and structures for army production,
resources and upgrades, fighting the opponent player with units, defensive structures, are all
core elements of the game. Starcraft II is a very complex game, that requires multitasking,
planning and execution of strategy, and micromanagement all under time pressure, as well as a
vast knowledge of the purpose of all buildings, researches, and units, as some units, buildings,
and upgrades can be essential for countering certain strategies of the opponent. Starcraft II
has, as many other RTS games, a certain view-range or line of sight around all their units and
buildings in the game, where the surroundings can be seen. This means the player cannot see
what is going on in places where the player does not have units or buildings. Therefore the game
is partially observable, making it harder for the player or agent to predict what the opponent is
doing, and thus harder to counter the opponent’s actions.

Starcraft II allows for creating and playing mini-games, where developers can create customized
maps with many possibilities for changing units, game goals, visuals, game mechanics, and
much more. In this report, we will be referring to mini-games as games that incorporate a
smaller part of the regular player vs player game mode, but with less complexity. The mini-
games used in this project will be similar to the normal player vs player game previously
described, however we will change the goal of the game, to make a less complex environment.
All mini-games will however be without the player vs player aspect of the game, but instead
the goal will be to handle a specific aspect of the game as well as possible, which will be scored
with rewards depending on the goal of the mini-game. In the normal player vs player game,
the player has to make decisions early that can change the course of the whole game, and a lot
of the strategies in the game are long term, and need to be maintained throughout the game.
In the mini-games, the strategies are less complex and shorter lived then in the standard game.
By comparison, the length of a standard player vs player game can often go beyond 30 minutes
and require strategies for all aspects of the game, whereas the duration of the mini-games are
between 5 and 15 minutes and require only strategies for few selected aspects of the game, such
as combat, at once.

The combination of the hundreds of available actions, and the complexity of the decision making
required for Starcraft II, makes the Starcraft II game a hard environment for even state-of-the-
art reinforcement learning agents, and is therefore a very interesting environment for pushing
the limits of reinforcement learning. Google DeepMind was unable to create a reinforcement
learning agent that could play the full player vs player Starcraft II game[6], and as such decided
to focus on the described mini-games.

Google DeepMind and Blizzard Entertainment have created a Python library for the Starcraft
II API called PySC2, for connecting machine learning algorithms with the Starcraft II game
environment. We will utilize this library throughout the project, to handle all interaction with the
game environment. The library was created with a machine learning focus, so a few limitations
on the observations has been made, so that working with PySC2 requires less computational
power and helps agents converge faster. This is done by creating feature layers that extract
information from RGB pixels with spatial information of the screen, instead of feeding raw pixel
input to the agent. As an example, one feature layer represents units and their hp, and another
feature layer describes the type of units. However this implementation also limits the agent’s
knowledge of the game, for example the agent has no way of telling what actions the units are
doing based on a single set of feature layers, describing one frame of the game.

1.1. StarCraft II 3

1.1.1 PySC2

The PySC2 library allows a reinforcement learning agent, created in python, to interact with the
game of Starcraft II using an API. PySC2 is a library created with machine learning in mind, and
the creators have constructed features to be used as representation for the state of the game.

The library currently only supports usage of the constructed features, but there are plans to
allow for learning using the full RGB representation of the state. In this report we focus on
learning with the features constructed by the library.

There are three sets of features, each representing a specific type of data currently observable
in the current state by the player playing the game. These sets of features are screen spatial
features, minimap spatial features, and non-spatial features. The screen and minimap spatial features
represent the information available to the player through the primary screen, where the primary
interactions happen, and the minimap where an overview of the complete game is available in
low resolution. The game as seen through the library is displayed on Figure 1.1. The various
screen and minimap spatial features are displayed on Figure 1.2 on the next page.

Figure 1.1: Screenshot of the screen in the middle, minimap at the lower left and some non-
spatial features at the top

4 Chapter 1. Introduction

Figure 1.2: Screenshot of the 20 available spatial feature layers; 7 minimap layers and 13 screen
layers

The non-spatial features represent data that is not represented visually, but is still relevant for a
player, e.g. unit information and economy information.

Each of the features available are either categorical features, e.g. the screen unit_type feature
layer that distinguishes different types of units, or scalar features, e.g. the unit_hit_points feature
layer that gives a scalar value for the health in place of every unit present in the screen.

Some features may attain relatively large values due to the nature of the feature, such as the two
previously described unit type and health features that contain values in the thousands. We
perform preprocessing of features that may contain values in the hundreds or above, where we
normalize them to be between 0 and 1. This normalization was done based on findings in the
initial research paper for PySC2 by the deepmind team.[6]

All features are represented as arrays, where the size of the array depends on the data repre-
sented. Spatial features are 2D arrays of the same size as the screen, 64x64 by default.

Through this PySC2 library we are able to retrieve the state of the game, represented by all the
features, including all actions that can be executed. The library also handles interaction with
the game through a step function, that allows for executing a single action in the current state.
All features and methods available is described in the environment documentation.[7]

1.2 Deep Reinforcement Learning

Reinforcement learning is the act of placing an agent into an environment, allowing it to learn
to act well in the environment in order to maximize some cumulative reward from or based on
the environment. A reinforcement learning agent is not told which actions are good or bad, but
is only given reward. In contrast, a supervised learning agent will learn based on labeled data
that contains the correct answer.

We use reinforcement learning to grasp the complex environment of Starcraft II and the mini-
games supplied with the Starcraft II Learning Environment[6]. The Starcraft II environment

1.2. Deep Reinforcement Learning 5

makes a good platform for researching reinforcement learning, made more accessible by the team
at Google DeepMind[6]. The DeepMind team mentioned that it is a very interesting domain,
due to the complexity present in even simple mini-games that only contain few elements of
the full game. We focus on deep reinforcement learning, where neural networks are used as
function approximators.

When an agent is learning, it is presented with a choice between exploitation, exploiting what is
known to make the best decision for optimal reward, or exploration, the act of forgoing imme-
diate reward for gathering information that allows for potentially higher long-term reward.[8]
Overfitting and underfitting in reinforcement learning is related to the exploration-exploitation
trade-off. Overfitting occurs when an agent focusing on exploitation will become specialized in
a subset of the full action-state space, and therefore will not be able to generalize well. Under-
fitting occurs when an agent is not exploring the action-state space well enough, limiting it to
locally-optimal policies.[9] It is important to ensure that an agent is able to explore well in order
to visit higher value states, without limiting the exploitation of the agent such that it may never
be able to make the decisions that give higher reward in the newly explored state space.

A reinforcement learning problem being acted upon by a reinforcement learning agent, is de-
scribed by a Markov Decision Process (MDP)[10, 11]. The Markov Decision Process is described
in the next section, followed by a description of how an agent can learn the problem using
various learning methods, in particular the actor-critic method, and the objective function for
learning using an actor-critic method.

1.2.1 Markov Decision Process

A MDP satisfies the markovian property, meaning any decision to be made in the current
state is only dependent on information available in the current state. The following contains a
description of the elements of the MDP tuple:

• S - set of states for the environment
• A - set of actions for the agent
• T(s′| s, a) - state transition probability function: T(s′| s, a) = P[St+1 = s′| St = s,At = a]
• R(s) - reward function. Rewards are based on the current state s
• γ - discount factor for future rewards

Figure 1.3 contains a simple MDP. There are 11 different states with 3 terminal states that give
reward. The set of actions for this MDP is {↑, ↓,←,→}, and the reward is designated by the
numbers in the colored states. A reward of 2 is received when the current state is the right-most
state.

Figure 1.3: Example of a simple MDP with 11 states

6 Chapter 1. Introduction

For this example, the state transition probability function T will in this case have a probability
of 1 for the direction of movement chosen, without some chance of moving in one of the other
directions.

In order for an agent to act, it has to follow a policy π(a|s), which is a probability distribution
over actions given a state, as seen in Equation (1.1).

π(a|s) = P[At = a | St = s] (1.1)

The objective in reinforcement learning is to maximize the long-term future reward Gt seen in
Equation (1.2), by finding and following the optimal policy π∗ that always selects the action
maximizing long-term future reward.

Gt = Rt+1 + γRt+2 + ... =
∞∑

k=0

γkRt+1+k (1.2)

The example on Figure 1.4 shows the actions to be used in each state by following the optimal
policy π∗. This example assumes a γ value of 1. The reward in this case is 2 when the terminal
state with reward 2 is reached.

Figure 1.4: Example of applying an optimal policy to a MDP

There are 2 types of value functions that specify the expected long-term future reward; the state-
value function Vπ(s), and the action-value function Qπ(s, a). The state-value function of an MDP
is the expected return from being in state s and following the policy π, as seen in Equation (1.3).
The action-value function of an MDP is the expected return from being in state s, taking action
a, and following the policy π, as seen in Equation (1.4).

Vπ(s) = Eπ[Gt | St = s] (1.3)

Qπ(s, a) = Eπ[Gt | St = s,At = a] (1.4)

Each of these value functions can be converted to a Bellman equation, such that the succeeding
states are decomposed into a single component, as seen in Equation (1.5) for the state-value
function, and Equation (1.6) for the action-value function.

Vπ(s) = Eπ[Rt+1 + γVπ(St+1) | St = s] (1.5)

Qπ(s, a) = Eπ[Rt+1 + γQπ(St+1,At+1) | St = s,At = a] (1.6)

1.2. Deep Reinforcement Learning 7

The discount factor γ is there to determine how much future rewards should be weighted. A
high discount factor value means that all rewards are equal, and the highest reward should
always be chosen. A low discount factor means early rewards are more important, and should
be chosen over larger future rewards.

The example shown in Figure 1.4 on page 6 depicts a MDP with a discount factor of 1. However
if a discount factor of 0.5 is used, the policy will change to favor closer rewards, as seen in
Figure 1.5.

Figure 1.5: Example of applying an optimal policy to a MDP with lower value of γ

MDPs assume a markovian state and complete observability, but that does not fully describe the
reinforcement learning problems present in Starcraft II, as the game includes partial observability
where some states contain hidden information. Partially Observable Markov Decision Processes
(POMDP) are used to model problems with partial observability, and this may model the
problems better than a MDP.

Instead of introducing POMDP, we assume that complete observability of the state is not needed
for sufficient use of the MDP model. We can instead view the partially observed states as a
complete state of the game, which makes the markov assumption inaccurate due to states not
containing all relevant information, as it is hidden in partial observability.

Instead we attempt to alleviate the problem with the markov assumption by introducing mem-
ory. Since the MDP model determines actions based on the current state only, it may be possible
to help an agent get a better understanding of the current state, by remembering elements from
previous observations through the use of memory, by encoding the previous 4 states and actions
in the current state, and assuming this is the full state although that is not the case. This form of
simple memory has previously been utilized in Atari games.[12]

Knowning the full state is extremely important in the full game of Starcraft II, as strategies and
tactics differ based on the composition of units in the army of the enemy, which are partially
observable. Because we do not focus entirely on the full game of Starcraft II, where this is most
relevant, the simple encoding may suffice for the minigames where enemy army composition
does not change over time.

1.2.2 Deep Neural Networks

In deep reinforcement learning, deep neural networks with multiple hidden layers are used
due to the sheer size of the state-action space that makes it difficult to compute elements such
as the action-value and state-value functions. Neural networks with multiple hidden layers
are used to approximate a function using, typically, stochastic gradient descent optimization
algorithms. If a value function is the approximation target for a neural network, the function

8 Chapter 1. Introduction

Vπ(s;θV) signifies that the estimated value function output is influenced by the neural network
parameters θV.

1.2.3 Learning Methods

There are two distinct areas of methods that can be used to perform reinforcement learning;
model-free and model-based learning methods. In this report we focus on value based and
parameterized-policy based learning, both of which are model-free learning methods. These
types of learning focus on interacting with the environment itself, and compute a value function
or a policy respectively.

Model-based learning is about learning a model of the environment, which is then used to find
the optimal policy. This means the underlying elements of the MDP, such as the transition
function and the reward function, are explicitly defined in the learned model. The model is then
used to compute the optimal policy, possibly using Adaptive Dynamic Programming.[13]

Model-free learning is about sampling the environment to estimate either a value function or
a policy. Model-free methods cannot, unlike model-based methods, predict the next state or
reward.

Value-based learning is about estimating a value function, described in Section 1.2.1 on page 5.
The learned value function is then used to derive the optimal policy. An example of value-based
learning is Q-learning where action-values (Q-values) are estimated, and the policy is equivalent
to selecting the action with the highest value, called the greedy policy.

The purpose of Q-learning is to compute the optimal Q-function seen in Equation (1.6) on page 6.
Q-learning is off-policy, because the Q-function can be computed under any policy that is used.
Q-learning assumes a greedy policy is followed, where the action with the highest action-value
is chosen, but this includes no exploration, which is why epsilon-greedy is often used. Epsilon-
greedy policies have a chance 1 − ε to adhere to the greedy policy, or else explore by taking an
action uniformly at random.

Policy-based learning is about estimating the policy, a set of action probabilities, using policy
parameters. The policy parameters can then be improved using gradient ascent on the objective
with respect to the parameters.[14, Section 13.1]

The learning method used in this report is a combination of value-based and policy-based
methods, called actor-critic. We focus on an actor with a policy and a critic parameterized by a
deep neural network.

1.2.4 Actor-Critic

Actor-critic methods are combinations between policy-based and value-based learning methods.
The architecture for actor-critic can be seen on Figure 1.6 on the facing page, and is comprised
of an actor that performs policy improvement on the policy parameters θπ while ensuring
exploration, and a critic estimating the underlying value function, that is used to improve the
actor, and perform policy evaluation. Actor-critic methods are similar to policy iteration, but
the reward- and transition-functions are unknown.[15]

The actor is supplied the current state, and outputs an action to be executed in the environ-
ment. After executing the action, the environment outputs the succeeding state, and the reward

1.2. Deep Reinforcement Learning 9

obtained. The critic then receives the new state and reward, concluding a full experience. To
perform policy evaluation, the critic estimates values for the current state and the new state.
The actor then performs a policy improvement step, based on the value estimates of the critic.

Figure 1.6: Visualization of the Actor-Critic architecture. The Actor performs policy evaluation
using the value-estimate of the state, from the critic

The critics policy evaluation step utilizes bootstrapping[16].[14, Section 13.5] states that "Boot-
strapping is updating the value estimate for a state from the estimated values of subsequent
states" by some learning rate α:

Vnew(st;θV) = Vold(st;θV) + α
(
rt + γVold(st+1;θV) − Vold(st;θV)

)
(1.7)

The 1-step return, shown in Equation (1.8), is used as an estimate of the value of a state st, based
on the reward rt received by entering the state, and the value estimate of the following state
Vπ(st+1;θV). [14, Section 13.5]

Rπ(st) = rt + γVπ(st+1;θV) (1.8)

We know now that the critic is updated using bootstrapping, but updating the policy requires
an objective function for the policy with respect to the policy parameters θπ.

The objective function is the function that a learning algorithm in deep reinforcement learning
is trying to optimize. The function describes the objective of the algorithm with respect to the
elements of the MDP, and is used to determine changes to the parameters such that the objective
function is maximized.

We are working with episodes of experiences, where each episode contains a finite amount of
experiences in sequence. An experience is a tuple (st, at, rt, st+1).

The policy objective function for the episodic case, seen in Equation (1.9) on the following page,
is then equivalent to the true value of the start state s0 assuming the policy πθπ is followed.[14,
Section 13.2]

10 Chapter 1. Introduction

J(θπ) � Vπθπ (s0) (1.9)

In our case, the start state for every episode is not always the same, as Starcraft II introduces some
randomization when starting a game, but the difference between each start in most mini-games
and the full game is negligible.

The parameter update rule for improving the critic over a single step, to better approximate the
true value function using parameters θV, is shown in Equation (1.10). The parameter update
rule for improving the policy objective over a single step is shown in Equation (1.11). [14, Section
13.5]

θV = θV + ∇θV V(st;θV) ∗ α
(
Rt − Vπ(st;θV)

)
(1.10)

θπ = θπ +
∇θππ(at|st;θπ)
π(at|st;θπ)

∗ α
(
Rt − Vπ(st;θV)

)
(1.11)

[14, P. 329] states that "the fractional vector
∇θππ(at|st;θπ)
π(at|st;θπ)

is equivalent to the compact expression

∇θπ logπ(at|st;θπ)". Using the compact expression, the parameter update rule for improving the
policy objective over a single step becomes:

θπ = θπ + ∇θπ logπ(at|st;θπ) ∗ α
(
Rt − Vπ(st;θV)

)
(1.12)

1.2.5 Transfer Learning

A long standing goal of machine learning is continual learning, where agents can learn and
remember a sequence of tasks while having the ability to transfer knowledge from previously
learned tasks, to converge faster on new tasks[1].

Transfer learning focuses on being able to leverage previously learned knowledge to better/faster
learn a new task. An example of the transfer learning principle can be seen on Figure 1.7 on the
next page, where a model is trained on a source task, resulting in a trained model which we can
try to extract knowledge from and apply to the target task[5].

As an example, we choose our source task as the supervised problem of detecting cars based
on an image input. We start by training the model on the source task, giving us a model that is
able to detect cars. Now lets say we have a target task of detecting trucks, which is a somewhat
similar problem as detecting a car. We would now want to somehow leverage the knowledge
stored in our source task model to solve our target task of detecting trucks.

1.3. Problem Statement 11

Figure 1.7: Example of transfer learning principle

How exactly knowledge is transferred depends entirely on the transfer learning technique being
used. In this report we will be looking at two of the methods, namely Finetuning and Progressive
Networks.

Finetuning is a simple method for using transfer learning between different tasks, by using the
parameters from a neural network that has learned one task, and using those parameters instead
of randomly initialized parameters when the agent starts learning a new task.

Progressive Networks is a network architecture that was developed by Google Deepmind in
2016[1]. Progressive Networks moves towards solving the continual learning problem. It
leverages previously learned knowledge to learn new tasks, while avoiding loss of knowledge
about previously learned tasks, also called catastrophic forgetting, by saving and freezing all
parameters of the neural network, when moving on to the next task.

The action-state space of Starcraft II minigames and the full game share most of their elements,
like unit types, minerals and so on, which are represented the same way across all games. The
actions space is also the same across minigames, meaning that action 0 in one minigame will do
the same as in another. This could mean that there is a potential to reuse features learned from
one of the minigames in another. Both Finetuning and Progressive Networks have proven to
work on the game related environment Atari 2600[1].

1.3 Problem Statement

After the introduction of relevant theory and information, which created a foundation to work
upon, we now need to determine the problem that will be in the scope of this project.

The problem which we will be focusing on in this project, is an extension of the following
problem statement, which was used in our previous project[2]:

"How can an agent be trained efficiently with reinforcement learning for a complex environment?"

We determined from this problem statement that none of the implemented reinforcement learn-
ing agents were able to fully grasp the minigames supplied with the Starcraft II learning en-

12 Chapter 1. Introduction

vironment[2, Chapter 5]. Even with a simplified action-state space, using few selected feature
layers and actions, we were unable to reproduce results equivalent to current state-of-the-art[6]
or human levels. Because we were unable to reproduce the results, we will in this project start
by focusing on establishing our own baseline agents, using the full action-state space of the Star-
craft II learning environment. After establishing baseline agents, our goal is to utilize transfer
learning using the best performing agent, to give transfer learning the best foundation, to make
the agent achieve a better average reward and converge faster, in the complex environment of
Starcraft II.

This has inspired the following problem statement:

Can knowledge learned in a reinforcement learning setting from a complex environment, be leveraged to
learn another task in a similar complex environment?

In order to analyze how previously learned knowledge is being leveraged, we perform transfer
analysis. [1] introduces progressive networks, and a way of calculating if previous knowledge is
leveraged for new tasks, without only monitoring convergence and average reward return. This
is important as the convergence in the complex environment of Starcraft II is highly unstable,
which we discovered in our last project[2]. Therefore in order to determine the amount of
transferred knowledge from performance results, a very large amount of training tests would
be needed, which is impractical with our limited resources.

Chapter 2: Agents
In this chapter we will determine which agent we will continue development on, from those
developed in our previous project[2], and establish baselines for future agents. The contesting
agents will be described, tested and chosen for further development.

We aim to find the best agent, to give the best foundation possible for transfer learning. For
transfer learning, it is essential that the underlying agent can learn something meaningful from
the environment. We also use the baseline to later measure the impact transfer learning in
relation to performance metrics such as convergence speed, max reward, and average reward,
in order to measure whether or not transfer learning has a non-negligible impact in a very
complex environment such as Starcraft II.

Baseline Agents
We have previously tested different agents that could be used for transfer learning. The tests
and findings can be read about in our 9th semester project[2]. These agents include a DQN, A3C
and our own modified A3C agent, that we call SA3C. From these agents we will only continue
with A3C and SA3C. We will not be using DQN because it performed very poorly in previous
tests on the Starcraft II environment.

The A3C algorithm was used and confirmed to be the best among the algorithms tested by
Google DeepMind in their research with the Starcraft II environment[6]. Based on the A3C
algorithm used by the DeepMind team, we created a slightly modified version, that we named
SA3C[2]. We will modify and test these two baseline agents from our last semester project.
Both of these agents from the last semester project did not incorporate the use of all actions, all
non-spatial features, all screen feature layers, and did not use any minimap feature layers. Some
mini-games as well as the full game require the agents to have access to these, so changes had
to be made for more general purpose agents. The new SA3C implementation has had further
changes, which are described in Section 2.2 on page 20.

Along with the A3C and SA3C agents, we include a modified version of the A3C agent that
incorporates memory, described in Section 2.3 on page 24.

2.1 A3C Agent

The Asynchronous Actor-Critic Agent (A3C) algorithm was chosen for this project due to the
previous work done in relation to reinforcement learning in the PySC2 paper by the DeepMind
team[6] and the work from our 9th semester project[2]. In both of these it was shown that the
A3C algorithm was among the best of the tested reinforcement learning algorithms for Starcraft
II, and therefore the implementation used in our previous work is used in this project. This
section describes the various elements of the A3C algorithm, using an article on A3C[17] and
the A3C paper[18] as sources.

The input to the network is the currently observed state st. The output is then the estimate of
the state-value, Vπ(st;θV), assuming the policy πθπ is followed, and a probability distribution
π(at|st;θ′) over all actions that are possible in the current state. Because Starcraft II requires

13

14 Chapter 2. Agents

coordinate arguments for some actions, there is also a location parameter Πlt |st;θΠ
which is a

probability distribution over all coordinates.

A3C is an actor-critic reinforcement learning algorithm that estimates the policy and value
function using neural networks. As shown in Figure 2.1, the value estimate has the parameters
θV, and shares only part of the neural network parameters with the policy and location estimates,
namely the hidden layers with parameters θ. The neural network therefore has 4 sets of
parameters; the shared parameters θ, the parameters θV for the value estimate, the parameters
θπ for the policy estimate, and the parameters θΠ for the location estimate. It is in this section
assumed that the parameters θ are always included when referring to the parameters of either
of the estimates, e.g. the value function estimate Vπ(st;θV) is equivalent to Vπ(st;θ, θV).

Figure 2.1: Parameters shared between outputs. All hidden layers are shared.

2.1.1 Approximating Episodic Advantage Actor-Critic

The policy, location, and value estimates make up the actor-critic of the A3C algorithm for
Starcraft II. The critic is the estimate of the state-value function Vπ(st;θV). The actor is the
policy and location estimates, π(at|st;θπ) which is a probability distribution over all actions and
Π(lt|st;θΠ) which is a probability distribution over all coordinates in a (64x64) window.

The neural network used to approximate the state-value function, the location, and the policy
requires a loss function that defines the objective in order to improve. The update rules for
actor-critic, Equation (1.10) on page 10 and Equation (1.12) on page 10, are used as a basis for
creating the loss function for the neural network. The loss, or error, is then used by an optimizer
to compute and apply gradients for the network parameters that maximize the objective. The
derivative of the loss should be equivalent to the update rules.

The neural network optimization algorithm used in this project is RMSProp[19], which is an
optimizer that minimizes functions. Minimizing the loss is equivalent to maximizing the objec-
tive. The loss function for A3C is created based on the actor-critic update rules, such that the
derivative of the loss gives a gradient equivalent to the update rule, and is used by the optimizer
to minimize the error in the estimates of both the policy and the value function. The loss function
consists of three parts; the the value loss, the policy loss, and the entropy regularization.

Advantage:
The value loss is a squared error loss of the advantage. Advantage is used as a measure of
the value of actions relative to the value of the state, to distinguish how much better or worse
an action is than what was expected. In the advantage function, shown in Equation (2.2) on
the next page, the value of actions is estimated using the discounted n-step return R, seen in

2.1. A3C Agent 15

Equation (2.1), which is calculated based on a sample of n experiences in sequence. The n-step
return is an extension of 1-step return, described in Section 1.2.4 on page 8, to an n-degree
bootstrapping.[18]

Rπ(st,n) = rt + γrt+1 + · · · + γn−1rt+n + γnVπ(st+n;θV) (2.1)

On Table 2.1 an example is shown for calculating the return for a sample of 3 experiences. The
return is, in practice, usually calculated from the final timestep backwards to tstart in order to
reduce the computation time. The reason becomes apparent in the Simplified Return column
in the table, where the value of the return at timestep t + 2 can be saved and reused in the
calculation of the return at timestep t + 1 and so on.

Timestep Reward (rt) Return Rπ(st,n) Simplified Return Rπ(st,n)
tstart 2 rt + γ ∗ rt+1 + γ2

∗ rt+2 + γ3
∗ Vπ(st+3;θV) rt + γ ∗ Rt+1

t+1 1 rt+1 + γ ∗ rt+2 + γ2
∗ Vπ(st+3;θV) rt+1 + γ ∗ Rt+2

t+2 3 rt+2 + γ ∗ Vπ(st+3;θV) rt+2 + γ ∗ Vπ(st+3;θV)

Table 2.1: Example of n-step Return calculation using n = 3

The advantage is used to evaluate the actor’s policy, using the difference between actual return
Rπ(st,n) and the critic, the estimated value following the policy, Vπ(st;θV). The advantage
function can be seen in Equation (2.2).

A(st, at;θV)Rt − Vπ(st;θV) (2.2)

Value Loss: The advantage is a calculated estimate of the actual observed value of executing the
chosen actions in the experience batch, compared to the estimated value of following the policy,
starting from current state. If the estimated state-value is higher than R, then the wrong action
may have been selected, or the estimate may not be accurate yet. The squared error emphasizes
the larger values, such that a very low or very high advantage is influencing the loss much more
than close-to-expected advantage values. The value loss then becomes:

ValueLossπ(θV)(st) = [Rt − Vπ(st;θV)]2 (2.3)

The value loss is derived from the update rule, shown in Actor-Critic at Equation (1.10) on
page 10. We derive the gradient from the loss, to show that the gradient of the loss is equivalent
to the update rule. The derivatives assume that Rt is independent of the parameters θV. This
is assumed because the loss is derived for true-gradient methods, where Rt is replaced with the
true value function Vπ(st) which is constant. However we still use the true-gradient method’s
loss function in semi-gradient methods like the A3C, where a bootstrapping critic is used in the
calculation of Rt.[14, Chapter 9]

The gradient is derived from the value loss in Equation (2.4):

ValueLossπ(θV)(st) =
1
2

[Rt − Vπ(st;θV)]2 (2.4)

16 Chapter 2. Agents

The
1
2

fraction is added to simplify the gradient, by removing the 2 after calculating the derivative
of the square. The gradient of the loss is derived in Equation (2.5).

ValueGradientπ(θV)(st) =
1
2
∇[Rt − Vπ(st;θV)]2

=
1
2
∗ 2 ∗ (Rt − Vπ(st;θV)) ∗ ∇(Rt − Vπ(st;θV))

= (Rt − Vπ(st;θV))∇Vπ(st;θV)

(2.5)

This gradient is equivalent to the value update rule displayed in Equation (1.10) on page 10,
when applying the gradient using an optimizer that manages the learning rate.

Policy Loss:
The policy loss is the negative log-likelihood of the policy probability distribution multiplied
by the advantage. The log-likelihood will increase the loss for actions with low probability, and
make the result negative for minimization purposes. This helps with improving the probability
for an action that was better than expected, according to the advantage, where a lower probability
for the good action generates a large nudge, to help the policy to improve faster. The action a
drawn from the policy π in the current state st is used for calculating the loss.

Because we have both an action policy, and a location, the loss is calculated for both estimates,
and added together. Some actions in the action policy require a location that determines where
the action should be used.

The policy loss does not include any learning rate term, and is negative. The previously
mentioned optimizer minimizes rather than maximize the loss, and also manages the learning
rate term rather than it being explicitly present in the loss. The loss for the policy and the
location is shown on Equation (2.6) and Equation (2.7).

PolicyLossπ(θπ,θV)(st, at) = − logπ(at|st;θπ)(Rt − Vπ(st;θV)) (2.6)

LocationLossΠ(θΠ,θV)(st, lt) = − log Π(lt|st;θΠ)(Rt − VΠ(st;θV)) (2.7)

The location loss may influence the total loss a lot more than the policy loss, due to the granularity
of the map. Currently we use a granularity of 64x64 pixels to represent the observed values in
the spatial features, but any other granularity can be used. The higher the granularity, the lower
a probability will be assigned to many locations by Π(lt, st;θΠ). This may generate a very high
loss when a location with a small probability is chosen, possibly making learning unstable.

The update rule, or gradient, that we want to obtain is shown in Equation (1.12) on page 10. We
derive the gradient from the loss, to show that the gradient calculated based on loss is equivalent
to the update rule. The derivatives assume that the advantage (Rt − Vπ(st;θV)) is independent
of the parameters θπ (and θΠ for the location) and therefore constant.

The gradient of the policy, and location, loss is derived in Equation (2.8).

PolicyGradientπ(θπ,θV)(st) = ∇
(
(Rt − Vπ(st;θV)) logπ(at|st;θπ)

)
= (Rt − Vπ(st;θV))∇ logπ(at|st;θπ) (2.8)

2.1. A3C Agent 17

The added policy loss and value loss are combined into a single loss function, allowing a single
update for all the parameters θΠ, θπ, and θV:

Lossπ(θπ,θV),Π(θΠ,θV)(st, at, lt) = PolicyLoss + LocationLoss + ValueLoss (2.9)

Entropy:
The entropy regularization term was included as a way of improving exploration, by incorpo-
rating it into the policy[18]. The entropy regularization term is given by:

EntLossπ(θπ)(st) = −[βH(π(st;θπ))] (2.10)

H is the entropy of the policy and β is the entropy-weight hyperparameter for controlling
the impact of the entropy regularization term. The entropy is calculated as H(π(st;θπ)) =
−[π(st;θπ) · logπ(s;θπ)]. The entropy term will be small when the policy probability distribution
is concentrated around fewer actions, and largest when actions are equally probable.

The complete loss function for a single step t is seen in Equation (2.11).

Lossπ(θπ,θV),Π(θΠ,θV)(st, at, lt) = PolicyLoss + LocationLoss + ValueLoss + EntLoss (2.11)

We compute the loss in batches, where a batch is n number of experiences gathered in sequence.
The loss computed is then averaged by the batch size n Equation (2.12). This is repeated until
some number of total steps tmax have been performed. Π

Lossπ(θπ,θV),Π(θΠ,θV)(sn, an, ln) =
1
n
∗

n∑
t=1

(
PolicyLoss+SpatialPolicyLoss+ValueLoss+EntLoss

)
(2.12)

2.1.2 Asynchronous Advantage Actor-Critic

The A3C algorithm is an algorithm that allows for multiple actor-learners to run concurrently,
each with its own computing unit (such as a CPU core) and a different copy of the environment.
The asynchronous actor-learners allow for more diversity in the experience, a (s, a, r, s′) tuple,
used for batch updates of the neural network, as each of the environments may be acted upon
differently by each actor-learner. The diverse experience helps the algorithm not to overfit on
repeating experience, due to the similarity coming from the nature of progress in games where
each experience following another may be very similar.

Each actor-learner maintains a separate copy of the neural network, and then renews their copy
every time training has been performed. The renewal happens by cloning a shared global neural
network, that always has the latest and most updated network. The parameters of the global
and local networks are referred to as θ and θ′ respectively.

Each actor-learner copies the parameters of the global network to its local network when it
starts learning, and gathers experience until the experience buffer (batch), that contains some
number of sequential (s, a, r, s′) experiences, is full or a terminating state is reached. The loss is
then calculated from the batch of experience using the parameters θ′π, θ′Π and θ′V of the local
network, and used with the optimizer to calculate and apply the gradient to the parameters of
the global network. After applying the gradients to the global network, the local network is

18 Chapter 2. Agents

once again renewed, by cloning the global network. Afterwards the process repeats until some
number of global steps have been performed by all the actor-learners combined.

The implementation of the A3C algorithm, used in the project, follows the pseudo-code present
in Algorithm 1.

Algorithm 1 A3C - Pseudocode for each actor-learner used in this project

//Assume global network shared parameters θπ, θΠ and θV, and global shared step counter T = 0
//Assume local network parameters θ′π, θ′Π and θ′V
//Assume experience buffer of size tmax

1: Initialize thread step counter t← 1
2: repeat
3: Reset gradient: dθπ ← 0
4: Reset gradient: dθΠ ← 0
5: Reset gradient: dθV ← 0
6: Synchronize local parameters with global θ′π = θπ, θ′Π = θΠ and θ′V = θV
7: tstart = t
8: repeat
9: Get state st

10: Perform at according to policy π(at|st;θ′π) and Π(at|st;θ′Π)
11: Receive reward rt and new state st+1
12: Store experience (st, at, rt, st+1) in experience buffer
13: t← t + 1
14: T← T + 1
15: until terminal st or t − tstart == tmax

16: R =

0 for terminal st

V(st, θ′V) for non-terminal st // Return calculated from current state backwards
17: for i ∈ {t − 1, t − 2, . . . , tstart} in experience buffer do
18: R← ri + γR // Reuse of Return calculation
19: ValueLoss: LV ← LV + (R − V(si;θ′V))2

20: PolicyLoss: Lπ ← Lπ − logπ(ai|si;θ′π)(R − V(si;θ′V))
21: LocationLoss: LΠ ← LΠ − log Π(li|si;θ′Π)(R − V(si;θ′V))
22: Accum. combined Loss: L← L + LV + Lπ + LΠ − βH(π(si;θ′π))
23: end for
24: Calculate average loss Lavg =

L
tmax

25: Calculate gradient dθπ, dθΠ, and dθV of Lavg w.r.t. θ′π, θ′Π, and θ′V respectively
26: Perform asynchronous update of θπ using dθπ, θΠ using dθΠ, and of θV using dθV
27: until T >= Tmax

2.1.3 Network Architecture

There are important elements in the neural network architecture that was designed for use
with Starcraft II and PySC2. This section will describe the elements of the architecture used.
The architecture is heavily influenced by the one proposed by the deepmind team for their
FullyConv A3C agent[6].

In Figure 2.2 on the next page the architecture is visualized. The diamonds represent input,
the circles represent operations, and the arrows indicate the flow of information. It consists

2.1. A3C Agent 19

of fully-connected dense layers, and convolutional layers[2, Section 2.3.6]. The information
retrievable through the PySC2 library, described in Section 1.1.1 on page 3, has influenced the
choice of the types of layers used. We feed the non-spatial features into a dense layer, because
there is no inherent underlying structure in these features that we have to extract, besides the
meaning of the values themselves. The spatial features are image-based, and so convolutional
layers are used to detect an underlying structure in the data processed.

Figure 2.2: The neural network used in our A3C implementation

The action policy and state-value estimates are both utilizing the state-representation that com-
bines all observed information, because these depend on all information found, but not partic-
ularly the spatial locality of the data. E.g. if resources, a non-spatial feature, are low, a resource
miner should be selected and later ordered to gather resources, and if an enemy is spotted in
the base, the army units should be selected and later ordered to attack the enemy. The choice
for which action should be chosen is conditional on the situation, whereas the choice for where

20 Chapter 2. Agents

an action should be used is location dependent.

Locations are extracted from spatial features as part of the spatial structure of the features,
but the spatial structure is discarded once a fully-connected layer is used. Therefore a fully-
convolutional network is used to determine the location output.

The minimap and screen spatial features are input separately into two convolutional layers
detecting features on each input and later concatenated into a spatial state representation for
the inputs of the location output and the state representation layers. Although the images for
the screen and minimap are identical in size, they represent different categories of information,
with some overlap in information between categories. Therefore there are two convolutional
networks, one for the screen spatial features and one for the minimap spatial features.

2.2 SA3C Agent

The SA3C agent is based on the A3C, where the neural network architecture has been redesigned.
The agent’s neural network is redesigned so that the location output, instead of having a single
output, has an output for each action that needs a location in the game. Thus the SA3C has
many fully convolutional spatial networks, giving it the name Spatial-A3C.

The motivation for multiple spatial network outputs is that different action has very different
interactions with the elements in the environment, and that means the agent needs to radically
change location outputs, based on which action is used in the environment. As an example;
a select action should not be used to choose enemies, and for an attack action, friendly units
should not be chosen. Therefore coordinates chosen by the agent depends on which action the
agent has chosen. This has proven useful in some of the Starcraft II mini-games according to
our 9th semester project[2].

The idea initially came from our 9th semester project[2], where we implemented multiple neural
networks in one agent, one for deciding an action, and then one for each action that requires a
location, to chose the location for one specific action based on the raw spatial information from
the environment, see Figure 2.3 on the next page. However this solution does not scale well,
does not interact well with transfer learning, and was tested with a small subset of actions from
the game. To give the agent a chance of mastering more complex mini-games, or even the full
game, we would need to use around one hundred actions that require a location.

2.2. SA3C Agent 21

Figure 2.3: The old SA3C’s neural networks, with multiple large fully convolutional neural
networks. Arrows between networks describes the flow of the agent, no information is relayed
from decision networks to action specific networks.

The old SA3C has, as mentioned, one fully convolutional network for each action in the game
that requires a location. This network is only used and evaluated, when the specific action is

22 Chapter 2. Agents

chosen by the decision neural network. In our old 9th semester project[2], we used 6 actions in
the mini-games, resulting in about 4 times more network parameters than the standard A3C.
However, we would like to scale that up to all actions, and with all actions available, there will
be many times the parameters, and this is a noticeable and disfavorable amount for our agent.

2.2.1 Network Architecture

We decided to implement a revised version of the old SA3C idea, for a new and slightly different
SA3C agent. The new agent aims to scale better, be transfer learning compatible and be able to
handle upwards of a hundred actions that require a location output, with reasonable RAM and
computational usage. This agent is, as the old SA3C, a network architecture modification, and
uses all fundamental ideas from the A3C agent.

The idea is to reuse the convolutional layers of the main network, so that the action specific
location networks do not need to do feature extraction from the raw input. This is done
by relaying abstract spatial features, from the intermediate convolutional layer in the main
network, and feed those to the action specific location networks, as can be seen by the dotted
lines on Figure 2.4 on the facing page. The action specific location networks are only used when
the main network’s action policy chooses the specific action, and are only trained if there is at
least one experience utilizing the network.

This modification of the architecture requires a change to the loss function to account for the
loss of each of the action specific location networks. Each of the different networks has its own
seperate loss, but all of them use both the policy loss and value loss as described in Section 2.1.1
on page 14. The loss for the main network in the new SA3C is shown in Equation (2.13). The
main network does not have the location loss, because each of the seperate action networks
manage the location.

Lossπ(θπ,θV)(st, at) = PolicyLoss + ValueLoss + EntLoss (2.13)

The loss for the action specific location networks is similar to the loss for the main network,
except that the policy loss is swapped for the location loss since there is no action policy, as
shown in Equation (2.14). Each of the action specific location networks have their own value
estimate.

LossΠ(θΠ,θV)(st, lt) = LocationLoss + ValueLoss + EntLoss (2.14)

The old SA3C is trained to look at raw input, extract action specific features, and choose a
location for the specific action. The new SA3C is trained to create abstract features that should
be used for all actions, and then based on the universal abstract features determine the best
location for each action using a smaller action specific location network.

Because we want to have all actions available, and have a chance to use the baseline agent with
transfer learning, the old SA3C is not feasible. This means that we will only be going forward
with the new version of the SA3C agent.

We expect to see that the SA3C agent will yield better results in mini-games where the agent
needs to use actions with high diversity, especially in mini-games where the agent needs to use
selection and attack actions in sequence, as was indicated in our 9th semester report[2].

2.2. SA3C Agent 23

Figure 2.4: The new SA3C’s neural networks, with multiple action specific location networks.
The dotted lines describes a relay of abstract spatial features, from the main network, so the
action specific location networks only receives input from the main network.

24 Chapter 2. Agents

2.3 Memory Agents

We made an assumption Section 1.2.1 on page 5 that the complete state could be represented
using memory to help alleviate the markov assumption. In this section some different types of
memory will be looked at to determine how they may help alleviate the markov assumption for
the reinforcement learning agents.

Memory in reinforcement learning agents has previously been used in atari games[12] and for
Starcraft II [6] with noticeable improvements, but it is not always a clear winner.

In the atari games, the memory encoding was done by considering a sequence of observations
as the representation for a state; the previous 4 frames was given as input as the current state.
This type of memory, which we define as simple memory, does not require any alteration of the
network architecture. Simple memory was introduced to give agents the opportunity to identify
speed and direction of entities part of the state. This is also useful in Starcraft II, where units
can be issued commands to move around. We extend this to include the actions used in the
previous 4 frames, as many Starcraft II actions are compound actions where one action requires
another action to be used beforehand; the select action has to be used before the move action. It
is therefore useful to remember the used action.

The A3C FullyConv agent for Starcraft II, introduced in [6], was modified to include a Long
Short-Term Memory (LSTM) unit in the FullyConvLSTM variant. The LSTM unit is a special
kind of recurrent neural network (RNN), which is a network that is able to loop onto itself to
allow for information to persist through steps in time. Figure 2.5 depicts a simple RNN, which
takes an input and is able to pass along the information to the next timestep using a self-loop
mechanism. For input st+1 the RNN considers the input st+1 and the information extracted from
the previous timestep. The output ot+1 is then influenced by inputs over multiple timesteps
represented in the hidden state h.

(a) Simple RNN (b) Unrolled simple RNN

Figure 2.5: A simple recurrent neural network. st represents input from previous layers. The
RNN passes the hidden information ht to the next timestep ht+1, and outputs a value ot

LSTMs, and RNN in general, require an alteration of the architecture because they function as a
layer rather than a modification of the input, as in the case with simple memory. The LSTM unit
is useful because it is enables the agent to persist information for longer than the simple memory,
because it is a type of RNN, and is especially good at considering dependencies over longer
periods of time compared to a simple RNN due to the use of gates that control remembering
input, forgetting memory and outputting information[20]. In Starcraft II this may be useful
when trying to decipher which enemy units should be prioritized in a battle, as the LSTM may

2.3. Memory Agents 25

help an agent towards being able to determine that friendly units die less often when a specific
enemy unit type has been removed, allowing for countering strategies, or make the agent able
to distinguish visited areas from non-visited areas to be better at scouting.

We focus on implementing agents that incorporate simple memory and the LSTM variant of a
RNN, in order to determine if either is feasible as a baseline for Starcraft II.

2.3.1 Network Architecture

The architecture used for the memory variants are based on the architecture for the A3C agent.
Due to the limited time available for testing, versions based on the SA3C will only be created if
the A3C version performs well. The benefits should be very similar for A3C and SA3C.

The simple memory extension adds changes to the input. The non-spatial and spatial feature
inputs are modified to include the features from the previous 4 frames, giving 4 times the size
of the original input. The available actions non-spatial feature from the past 4 frames is not
included, because actions that were available in the past are not relevant.

In order to remember the actions used in the previous frames, the available actions feature is
extended to include the action IDs of the previous 4 actions used. The action memory does not
include the location parameter if one was included. These changes can be seen at the top of
Figure 2.6.

Figure 2.6: Architecture of the simple memory agent. Changes are made only to the input.

26 Chapter 2. Agents

We decided to include to LSTM agents, one using a convolutional LSTM[21] and one using a
conventional LSTM[22].

The conventional LSTM extension modifies the architecture to contain a LSTM layer after the
fully-connected layer of size 256 representing the current state. The LSTM receives the full
representation of the current state as input, and cycles through timesteps to determine temporal
dependencies. The layer was implemented using the built-in LSTM layer available in tensorflow.
The architecture for the LSTM version can be seen in Figure 2.7.

Figure 2.7: Architecture of the LSTM memory agent. A LSTM layer is inserted after the full
state representation, just before the value-estimate and policy-estimate output layers.

The ConvLSTM extension modifies the A3C architecture to contain ConvLSTM2D layers instead
of the second convolutional layers for both the screen and minimap inputs. The agent was
implemented using the built-in ConvLSTM2D layer available in tensorflow. The architecture
for the ConvLSTM version can be seen in Figure 2.8 on the facing page.

2.4. Tests and Findings 27

Figure 2.8: Architecture of the ConvLSTM agent. The second convolutional layers are replaced
by ConvLSTM2D layers.

2.4 Tests and Findings

This section contains documentation of our tests of baselines, where we compare results of the
A3C, SA3C, Simple memory, LSTM and ConvLSTM agents. The purpose is to find the agent
that is best equipped to handle a complex environment such as Starcraft II. In order to give
transfer learning the best conditions, we modify the best performing baseline.

2.4.1 Testing Procedure

In the baseline tests the agents will be trained on two Starcraft II minigames, namely FindAnd-
DefeatZerglings and DefeatRoaches, which can be seen on Figure 2.9 on the next page.

FindAndDefeatZerglings In this minigame the player starts by being in control of three ranged
combat units(marines), in a large enough map to require movement of the screen in order
to view the entire map. Enemy melee combat units(zerglings) are spawned at random
locations in the map, whenever one is defeated the player receives a reward of +1. If one
of the player’s units are defeated, a penalty of -1 is awarded. The minigame has a time

28 Chapter 2. Agents

(a) Screenshot of the FindAndDefeatZer-
glings minigame

(b) Screenshot of the DefeatRoaches
minigame

Figure 2.9: Screenshots of the minigames being used

limit of 180 seconds and requires the player to move their units around the map exploring
it, while trying to find enemy units and defeat them.

DefeatRoaches In this minigame the player starts with nine ranged combat units(marines), and
is opposed by four tougher enemy ranged units(roaches). When an enemy is defeated the
player is given a reward of +10, however if one of the player’s units dies a penalty of -1
is given. If all enemies are defeated a new set of four enemy units are spawned, and the
player is given 5 more marines as reinforcement. This minigame has a time limit of 120
seconds and requires the player to make smart engagements with its units.

The RMSProp[19] optimizer is used for all agents, and they will be tested on each minigame
five times, each with different learning rates between 10−3 and 10−5, using an entropy weight
of 10−3 for all tests. The learning rate is decayed to half its initial value during the training
period. The agents are tested with 8 workers each, unless the agent is unable to fit in memory
when using 8 workers, as is the case for SA3C which we had to limit to 6 workers. The Agents
are trained for approximately 50 million game steps. The hyper parameters ranges are chosen
because these are the hyper parameters that Google Deepmind use in their extensive tests[6].
We also confirmed this range to be functional in our previous semester report[2].

To measure the performance of agents, we have chosen to use the best moving average over
100 episodes. This measure of performance suggest that when an agent is performing well over
some steps, the agents model could be saved, extracted and tested without training and still
yield results close to the point at which the agent was saved. This assumes that the randomness
of the game and the agent does not cause major fluctuations to the performance of an agent
when the model is constant. To confirm that our speculations of this measure of performance
of an agent is true, we check the performance of an agent using the model at different points
during the training period, to see if the agent consistently achieve similar average score as the
loaded model. The performance test is depicted on Figure 2.10 on the facing page, where the
X points represent the points at which a model has been extracted from the A3C agent, as well
as the average reward of running the agent with these models, where we have run them for
300 episodes without training the models. Looking at the X points on Figure 2.10 on the next
page, we can see that the moving average reward over 100 episodes, depicted with the solid
green line, fairly accurately represents the performance of the agent at different points, when
the model is extracted and run to get an average reward over 300 episodes, as the performance

2.4. Tests and Findings 29

of the extracted models very closely corresponds to the training graph.

Figure 2.10: Training process for an A3C agent on the FindAndDefeatZerglings minigame
showing moving average reward over 100 episodes as a function of game steps. The X points
show the average reward over 300 episodes, for models extracted and frozen from the A3C
agent at the given points.

The test for each agent with the best moving average over 100 episodes will then be shown on
a graph while the rest will be shown on a table for each minigame with each test’s best moving
average and mean, describing how good the agent became, and how consistent the performance
in the test was.

2.4.2 Results

We start by comparing the results of the various agents from the FindAndDefeatZerglings
minigame, and afterwards compare the results from the DefeatRoaches minigame.

FindAndDefeatZerglings minigame
The tests for each agent that had the best running average over 100 episodes are pictured on
Figure 2.11 on the following page. We see that for this minigame the best A3C agent is reliably
better than all other agents, until the end where the best SA3C agent manages to obtain a similar
best moving average over 100 episodes as the A3C. The differences are so small, that it is difficult
to point out whether A3C or SA3C is better. Both are able to achieve equal best average reward
over 100 episodes, so based on these tests both SA3C and A3C are equally equipped to handle
the FindAndDefeatZerglings minigame.

30 Chapter 2. Agents

Figure 2.11: Training process on the FindAndDefeatZerglings minigame for A3C, SA3C, Simple
memory, LSTM and ConvLSTM. Solid lines are running mean rewards over 100 episodes as a
function of game steps for the run of each agent with the best running mean.

Table 2.2 lists the mean and the best running average over 100 episodes achieved by each agent
for each test on the FindAndDefeatZerglings minigame.

FindAndDefeatZerglings
Learning Rate Metric A3C SA3C Simple Memory LSTM

0.001
Mean

Best Moving Average
7

12
10
13

6
7

0
5

0.0005
Mean

Best Moving Average
18
24

15
18

8
12

4
8

0.0001
Mean

Best Moving Average
14
18

14
24

11
15

7
13

0.00005
Mean

Best Moving Average
12
15

11
18

10
13

4
6

0.00001
Mean

Best Moving Average
12
16

12
17

8
11

3
6

Table 2.2: Results for the different tests performed with each agent. For each test the learning
rate was modified

For the LSTM variants, we see a considerably worse performance for both the LSTM and the
ConvLSTM. We only performed a single test with the ConvLSTM agent due to the increase in
wall-clock time required for a single test. We talk more in-depth about this later in Section 2.4.3
on page 32. Even the best LSTM agent had difficulty learning anything meaningful.

Based on the tests performed in the FindAndDefeatZerglings minigame, both the A3C and
SA3C agents seem to be best equipped.

DefeatRoaches minigame
We decided to remove the LSTM and ConvLSTM agents from the test pool on the DefeatRoaches
minigame, because they did not show promise in the FindAndDefeatZerglings minigame, and
due to limited time and processing power we wanted to swap the time that would have been

2.4. Tests and Findings 31

spent on testing the LSTM variants on DefeatRoaches, with more time for testing transfer
learning.

The DefeatRoaches results can be seen on Figure 2.12. We see that the SA3C is unable to reach a
similar best moving average over 100 episodes as that reached by the A3C and Simple Memory
agents around 3 million steps. The Simple Memory agent achieves slightly better best moving
average over 100 episodes than A3C, but A3C achieves a more stable moving average.

Figure 2.12: Training process on the DefeatRoaches minigame for A3C, SA3C, and Simple
memory. Solid lines are running mean rewards over 100 episodes as a function of game steps
for the run of each agent with the best running mean.

The simple memory agent performed much better in the DefeatRoaches minigame than in the
FindAndDefeatZerglings minigame, as can also seen on Figure 2.12. It was able to achieve a
slightly higher best moving average over 100 episodes than the A3C, but does not manage to
stay stable and achieve a better mean over the span of the entire run. The simple memory
agent seems to have more difficulty than the A3C in learning the minigame, and is therefore not
deemed better equipped to handle the DefeatRoaches minigame.

These results are very similar to the findings from the FindAndDefeatZerglings tests, and show
that both the A3C and SA3C agents are able to graph both minigames, unlike the other agents,
however the A3C agent seems to achieve its best running average faster.

32 Chapter 2. Agents

DefeatRoaches
Learning Rate Metric A3C SA3C Simple Memory

0.001
Mean

Best Moving Average
12
16

5
8

5
7

0.0005
Mean

Best Moving Average
28
35

13
23

8
10

0.0001
Mean

Best Moving Average
22
31

17
30

16
36

0.00005
Mean

Best Moving Average
17
21

15
18

11
14

0.00001
Mean

Best Moving Average
11
17

13
15

2
3

Table 2.3: Results for the different tests performed with each agent. For each test the learning
rate was modified. The bold values are the ones displayed on Figure 2.12 on page 31

The A3C and SA3C agents were robust and show promise in both minigames, achieving a
similar best moving average over 100 episodes, and are the two agents best equipped to handle
the minigames out of all tested.

2.4.3 Test Discussion

In this section we point out some extra performance metrics to help us decide whether transfer
learning should be applied to A3C or SA3C, and discuss issues we encountered during our tests.

Training time
During testing we noted the wall-clock time required for doing 50 million steps for each of the
different agents. We decided to do this because we noticed a large difference in the time required
for each agent to go through all 50 million steps. The average training time for 50 million steps
for each agent is displayed in Table 2.4.

Agent: 50M average training time (hours) Relative to best training time
A3C 64 1
SA3C 80 1.25
Simple Memory 92 1.44
LSTM 68 1.06
ConvLSTM 180 2.81

Table 2.4: Average wall-clock training time for each agent, in the Starcraft II environment.

The A3C agent has the best overall training time, taking 64 hours on average to go through
50 million steps. The A3C agent is also the least memory intensive agent, as all other agents
expand upon the A3C architecture. Especially the SA3C agent is very memory intensive, unable
to fit in the limited amount of memory available to us, unless only 6 workers are used.

We mentioned that we only made a single ConvLSTM test because of the training time. The
training time of the ConvLSTM agent was almost 3 times that of the A3C agent, and it was
unable to perform better than any other agent, so since we were pressed on time for tests we
found it reasonable to remove the remaining ConvLSTM tests from the testpool.

2.4. Tests and Findings 33

Unstable learning

During training in Starcraft II, we encountered varying results when we performed new tests
with the same set of hyperparameters, showing that the network is extremely sensitive to the
randomness present. Both random initialization of the network parameters and the minigame
may influence this. This can be seen on Figure 2.13a and Figure 2.13b where two tests for the A3C
and SA3C agents are shown. The two A3C agents were both run with identical hyperparameters
and the two SA3C agents were run with identical hyperparameters, but in one test the SA3C
is quite a bit worse than the other SA3C. Looking at the A3C tests on Figure 2.13a we can see
something similar where one run starts out considerably better than the other.

(a) Two A3C runs on FindAndDefeatZerglings
(b) Two SA3C runs on FindAndDe-
featZerglings

Figure 2.13: Training process on the FindAndDefeatZerglings minigame with identical hyper-
parameters.

Because there is such a large discrepancy between tests of the same set of parameters, it is
difficult to conclude which agent is the best suited for the Starcraft II minigames, as more tests
could skew the favor towards either of the A3C or SA3C agents. Doing more tests would give a
better foundation for making a conclusion, but due to our time-constraints that is not viable for
us to pursue.

Sometimes an agent would crash during training, and never recover again. This did not
happened to all agents we tested, and if it happened we would restart the test if the agent had
not yet reached the 50 million steps. Figure 2.14 on the next page shows a run that was saved,
from an A3C agent test where this happened before 50M steps was reached. Looking at the
behaviour of the agent at this point, we observed upon a reload of the model, after the crash,
that the agent no longer attacked the enemy units, but instead never moved its own units. This
might be because the agent has learned that it is best to avoid the enemies all together instead
of receiving a negative reward for losing units to the enemy.

34 Chapter 2. Agents

Figure 2.14: Training process on the DefeatRoaches minigame. A3C agent crashes and does not
recover.

Through out testing all the agents, we have found out that with a specific set of hyperparameters,
the A3C agent were more stable. Furthermore we have made small changes to the agent, that
also improved the performance and stability, for example slightly changing the entropy so that
it has one entropy for location output and one for action policy. This could also be done to the
A3C’s policy loss, so that they could be scaled in a manner that either favor one or the other
or made them equally impactful. For the transfer learning, the agent has these small changes
and we will only be using the best set of hyper parameters, as we do not have the time or
computational power to go through multiple hyperparameters.

2.4.4 Test Conclusion

Both the A3C and SA3C agents were able to improve on both minigames during the training
period. As can be seen on Figure 2.12 on page 31, results for the DefeatRoaches minigame, the
running average reward was better for the A3C for most parts of the training, and only in the
end did the SA3C start to perform a bit better. For the DefeatRoaches minigame, the A3C’s best
and worst run both perform better than its counterparts from the SA3C, and the Simple Memory
agent was able to achieve a similar running average reward as the A3C agent, however in the
FindAndDefeatZerglings minigame the SA3C looks more stable, and ends up with a better
running average reward at 50 million steps than the A3C, where the Simple Memory agent is
unable to grasp the minigame as well as A3C and SA3C.

Both the A3C and SA3C agents are able to grasp the minigames at similar performance levels,
and therefore both agents could be potential candidates as a foundation for using transfer
learning. However since the performance level was very close and the fact the SA3C requires a
bit more resources and was slower than A3C, we will continue to work with the regular A3C,
because we believe that transfer learning will exacerbate the issues with memory and time.

Chapter 3: Transfer Learning
In this chapter we introduce the main topic of this report, Transfer learning. Transfer learning
is the act of gaining knowledge from one or more source tasks, that can be leveraged in a target
task to improve performance. Transfer learning can be done in multiple ways, each with their
own advantages and disadvantages.

We select a transfer learning method that we implement and test. The tests are performed to
help us conclude on the problem statement, seen in Section 1.3 on page 11, on whether transfer
learning can be utilized in a complex environment such as Starcraft II.

3.1 Transfer Learning Methods

In this section we introduce two methods used for applying transfer learning. The first method,
finetuning, is the most wide-spread transfer learning method, and is relatively simple to im-
plement, test and use. The second method, progressive networks, is a relatively new transfer
learning method that both leverages transfer of knowledge between tasks as finetuning, and
avoids loss of knowledge from previously learned tasks, called catastrophic forgetting, which
finetuning does not.

Finetuning is a simple method for transferring knowledge between different tasks, by using the
parameters from a neural network that has learned one task, and using those parameters instead
of randomly initialized parameters when the agent starts learning a new task, this is illustrated
in Figure 3.1. Finetuning is a well established and widely used method, because it works with
many tasks, is simple to implement and has been proven to yield good results[23, 24].

Figure 3.1: Example of Finetuning principle, where the tasks change, but the model stays the
same.

When applying finetuning, the output layer of the model is changed to represent the target
task, as shown in Figure 3.2 on the next page. After changing the model so the parameters are
from a previously trained neural network, but the output layer is newly initialized and possibly
changed in size depending on the target task, the model is now trained or "Finetuned" on the
target task. If transferable aspects exists between the two tasks, the hope is that the training
time of the target task is reduced or has better performance.

35

36 Chapter 3. Transfer Learning

Figure 3.2: Applying finetuning on a neural network, the output layer is still initialized normally,
while the rest of the parameters is initialized as the old model that has been trained.

Finetuning is susceptible to catastrophic forgetting. When finetuning on the target task, the
learning process may overwrite the features learned on one or more source tasks, making it
unable to leverage them.

In order to evaluate finetuning, several tests have to be performed to compare average perfor-
mance measures before and after applying finetuning. In other words, only the performance
graph of the training period can be analyzed to determine if finetuning is useful or not. In the
tests of baseline agents, we have determined that the performance graphs in form of reward
while training, can be varying. This means that multiple tests for average performance would
be needed to determine how finetuning impacted the training period, which is not feasible with
our level of computational power.

Progressive networks is a network architecture that was developed by Google Deepmind in
2016[1]. Progressive Networks moves towards solving the continual learning problem, where
the focus is on learning continuously and adapt to every task in an incremental development of
knowledge.

Progressive Networks leverages previously learned knowledge to learn new tasks, while avoid-
ing catastrophic forgetting, by saving and freezing all parameters of the neural network used
for a source task, and creating a random initialized copy of the neural network when moving
on to a new target task. This architecture splits the network into columns, where the newest
column is the network learning the target task, and the previous columns are frozen networks
that have learned the source tasks.

The paper also introduces transfer analysis, described more in-depth in Section 3.2.1 on page 40,
which allows for analysis of transfer between columns in the progressive network. Instead
of limiting the analysis of transfer to the performance graph, the network itself is analyzed to
determine how much the output depends on each layer in the network. Using this transfer
analysis, it is possible to determine if transfer is happening without running a lot of tests, as is
required when evaluating finetuning.

Due to our limited time and computing resources, we will focus on transfer learning with
progressive networks in this project. We will implement progressive networks, perform tests
and analyze them to determine if transfer of knowledge between tasks is happening.

3.2. Progressive Networks 37

3.2 Progressive Networks

This section describes the various elements of progressive networks, using the progressive
networks paper[1] as the source.

Lets say we have a problem where we have to solve the three games shown in Figure 3.3. One
could assume that some of the aspects in these games might overlap and knowledge about it
be reused. For instance this could be that in Infinite Mario the agent figures out that it should
collect coins, avoid enemies or something else entirely, which could perhaps be reused in Pac
Man.

Figure 3.3: Screenshots of the three games, Infinite Mario, Atari Pong, and Pac Man

A progressive network starts out with one column as seen on Figure 3.4a on the following
page, which is a deep neural network having hidden activations h(i)

i , where i ≤ L and L is
the number of layers in a column. θ(1) represents the parameters of column one. We start by
training the parameters θ(1) on the first task(Infinite Mario), until convergence. Now we have
some "knowledge" stored in the first column which we want to leverage when learning our
second task(Atari Pong), but at the same time we do not want to lose the obtained "knowledge"
involving the first task, in case we want to train on a third task, we want to leverage the
"knowledge" from both the first and second task. To avoid loosing any knowledge about the
first task, the parameters θ(1) are frozen and a new column with random initialized parameters
θ(2) is instantiated. In order to leverage the "knowledge" from the first column, the definition
of the hidden activations for the i′th layer of the second column h2

i is changed to receive input
from both the previous layer of the current column and of the previous column, corresponding
to h(2)

i−1 and h(1)
i−1. The two column network can be seen on Figure 3.4b on the next page, where

each column is a different color and use the connections of the arrows that match in color. Now
the parameters θ(2) can be trained, while hopefully being able to use "knowledge" from the first
column. Doing the same again for the third task(Pac Man) we will get a three column network
as seen on Figure 3.4c on the following page. Now our three column network has a column for
each task that is able to do that task, however the network is not able to choose which column
to use for a task by itself. One way to do this would be to label the tasks and columns. As
we accumulate an increasing number of columns by training on more tasks, we will have more
"knowledge" to leverage when training on new tasks.

This can be generalized to k tasks as follows:

h(k)
i = ReLU((W(k)

i h(k)
(i−1) + B(k)

i) +
∑
j<k

h(j)
(i−1)U

(k: j)
i), (3.1)

where W(k)
i ∈ Rn(i−1)×ni is the weight matrix of the i’th layer of column k and ni refers to the

38 Chapter 3. Transfer Learning

(a) One column (b) Two columns (c) Three columns

Figure 3.4: Figure showing a one, two and three column progressive network, dotted borders
means that the parameters are frozen

number of nodes of layer i, B(k)
i is the bias of the i’th layer of column k, and U(k: j)

i ∈ Rni−1×ni

are linear lateral connections from layer i − 1 of column j, to layer i of column k. The linear
lateral connections are trainable weight matrices, connecting the hidden activations of columns
to subsequent columns. As mentioned U(k: j)

i ∈ Rni−1×ni which means that the weight matrix

U(k: j)
i is of size ni−1 × ni. The connection is done by multiplying the hidden activations h(1)

1 with
the weight matrix U(2:1)

2 . This is done for the hidden activations of each layer h(<k)
i−1 in previous

columns and the lateral connections U(k: j)
i are summed and added to the original layer output

before being activated using a ReLU activation function.

The Finetuning method is limited to only leverage knowledge from one trained network at
a time. Using the Finetuning approach you could however still make use of more tasks, by
first training the network on a task(1), followed by another task(2) and then a third task(3).
One of the problems with this approach could be that some of the features from task(1) could
be overwritten during learning task(2), while they might still have been useful for task(3).
Overwriting the features learned in previous tasks is catastrophic forgetting, which limits the
transfer of knowledge to multiple target tasks.

Progressive networks do not have the same problem as they avoid catastrophic forgetting, and
can make use of arbitrarily many source tasks. Each new column in a progressive network is
intialized with random values, and slowly learn to use or not to use the previously learned
knowledge using its lateral connections. Since each lateral connection only moves forward in
the network and parameters for all previous columns {θ(j); j < k} are kept frozen, the outcome
of earlier columns do not change and hence we avoid catastrophic forgetting.

In practice we use a slightly different approach also proposed in the progressive network
paper[1], which makes use of adapters. Progressive networks with adapters are the only
networks that they use and test in the paper [1]. The linear lateral connections are replaced with
adapters, which feature a scalar to scale all inputs from previous columns at once and an extra
dense/convolutional layer.

3.2. Progressive Networks 39

Figure 3.5: Visual representation of a progressive network with three columns

An overview of an adapter in a three column network with two lateral connections can be seen
of Figure 3.6. This figure will be used as an example throughout the remainder of the section.

Figure 3.6: Figure showing an example of node connection in a three column network with a
dense layer of size 4 to another of size 8

The input activations to the adapter is defined as h(<k)
i−1 = [h(1)

i−1 . . . h
(j)
i−1 . . . h

(k−1)
i−1], which has a

40 Chapter 3. Transfer Learning

dimensionality equal to the number of hidden activations for the layer i − 1 of all preceeding
columns n(<k)

i−1 . On Figure 3.5 on page 39 the input activations for adapters corresponds to
the diagonal arrows going to them, and on the example on Figure 3.6 on page 39 our input
activations are h(1)

i−1 and h(2)
i−1. In the adapter we start by multiplying the input activations from

each column with a separate trainable scalar α(j)(k)
i , with i being the layer that the adapter belongs

to, j being the column from which input activations are multiplied with the adapter scalar, and
k being the column which the adapter belongs to. The adapter scalar α(j)(k)

i has the purpose
of adjusting for different scales of different inputs. In the example on Figure 3.6 on page 39
the multiplication is represented as an un-trainable layer, with bias of 0, a linear activation
function, and weights being set to α(j)(k)

i . The weights that the input activations are multiplied

with changes in accordance with how α(j)(k)
i is trained. We then concatenate each of the scaled

activations, giving us the scaled input to the layer V(k: j)
i . V(k: j)

i is a dense layer with a non-linear
activation, it also results in a projection from the size of the concatenated scaled inputs n(<k)

i−1 to

the size of the preceeding layer ni−1. We then add the information of V(k: j)
i to h(k)

i (on the example

this is h(3)
i) via a linear lateral connection U(k: j)

i , which is a trainable weight matrix, with a linear
activation function. Hence the hidden activations for a layer i in a column k can be defined as
seen on Equation (3.2).

h(k)
i = f

(
W(k)

i h(k)
i−1 + B(k)

i + U(k: j)
i g

(
WV(k: j)

i
α(<k)(k)

i h(<k)
i−1 + BV(k: j)

i

))
(3.2)

Both f and g in Equation (3.2) refer to any non-linear activation function.

For convolutional layers the projection V(k: j)
i is done with a 1x1 convolutional layer with number

of filters being equal to the number of filters for the input to the adapter hi−1.

When measuring the knowledge transfer of transfer learning methods, it can be hard to see if
previous knowledge is actually leveraged or if one agent performs better due too pure coinci-
dence.

3.2.1 Transfer Analysis

Progressive networks keeps all the previous learned parameters frozen while training on new
tasks, which makes it possible to analyze how much the agent’s output depend on the previously
learned parameters. This might be useful for explaining a potential increase in convergence or
performance of the agent, or to find out if the previous knowledge is being leveraged or if it is
just ignored while training on a new task. Transfer analysis in this explicit way cannot be done
for finetuning, as the parameters are changed, and it is hard to tell how an agent leveraged the
knowledge. Finetuning can be evaluated on the reward returns, however as we have showed,
in Starcraft II this is not always feasible because of the highly unreliable reward returns that we
get from the agent while training.

The paper for Progressive Neural Networks[1] proposed a measured perturbation method and
a calculated output-sensitivity of the layers, for analyzing the networks with multiple columns.

Perturbation
Perturbation tests are simple in nature, but is a slow way of analysing the network. The tests
are done by injecting noise into one layer in the network, and then by measuring the drop in

3.2. Progressive Networks 41

performance determining how reliant the agent is on the specific layer. The actual measure
that we can use for our network, will require that we use noise with variance similar to the
activation, then increasing the noise until we get 50% drop in rewards averaged over a couple
of episodes. After the test, the increase in noise before the 50% drop will be our measure of how
much the agent depends on the specific layer.

We will not be using the perturbation method, because the nature of the analysis method does
not work well with our environment. Our agent’s average reward varies a lot in the Starcraft
II environment, the amount of episodes needed for an average reading of reward would have
to be a large number. That and the fact that we would need a multiple average reward score
per layer, and we have a lot of layers, means that it would require quite a lot of work, and
computational power.

However the paper also introduced a calculated value, that approximates that of the perturbation
method. Since that value is calculated and not measured, it means that we would not be required
to run the agent for long to get an average reward measure.

Average Layer Sensitivity
The calculated approximation of the perturbation test is a method proposed by Rusu et. al.[1],
the paper also proves that it yields similar results to the perturbation test. We will call this value,
that describes the estimated output-sensitivity with respect to a specific layer, the Average Layer
Sensitivity (ALS).

When calculating ALS, we use first order partial derivatives, a derivative of a function f ′(x)
represents the amount of change in the output of the function as x changes. For a function with
multiple variables f (x, y) a first order partial derivative means that all but one variable is kept
constant, for example if f (x, y) = y2

∗ x and we take the partial derivative w.r.t. x, then y will be
kept as a constant value, the partial derivative of f ′y(x) would be f ′y(x) = y2, so the rate of change
of the function f (x, y) = y2

∗ x when x changes, is y2.

To calculate ALS as the outputs sensitivity to some activations in a layer, we need to take the
partial derivative of the policy output in our neural network π(st, θ). The policy output is a
vector that depends on the current input to the network and the parameters of the output. The
partial derivatives is calculated with respect to normalized activations in a single layer i in a
specific column k in our network ĥ(k)

(i) . We do a normalization of the activations so that the scales
of the derivatives are comparable across layers and columns. Thus a single partial derivative of
the j’th output in π(st, θ) w.r.t the a’th normalized activation of ĥ(k)

(i) would be:

∂π(j|st, θ)

∂ĥ(k)
(i) (a)

(3.3)

The next step is to calculate the sensitivity of the output w.r.t. all the activations in a layer.
Therefore we define one policy output’s sensitivity to a full layer by creating a gradient vector,
including all partial derivatives of the j’th policy output w.r.t. all the normalized activations of
a layer, where the amount of activations in ĥ(k)

(i) is n. We define a vector, that describes exactly
that:

∇ĥ(k)
(i)

log(π(j|st, θ)) =
(∂log(π(j|st, θ))

∂ĥ(k)
(i) (1)

,
∂log(π(j|st, θ))

∂ĥ(k)
(i) (2)

, · · · ,
∂log(π(j|st, θ))

∂ĥ(k)
(i) (ni)

)
(3.4)

42 Chapter 3. Transfer Learning

Now to get a single value for the j’th policy output’s sensitivity w.r.t. the full layer, instead of a
vector, we take the dot product of the vector with itself:

LS(k)
(i) (π(j|st, θ)) = ∇ĥ(k)

(i)
log(π(j|st, θ)) • ∇ĥ(k)

(i)
log(π(j|st, θ)) (3.5)

Giving us essentially the sum of squared partial derivatives of one output π(j|st, θ) w.r.t each
index in the vector ĥ(k)

(i) . Which will describe the sensitivity of the policy’s j’th index w.r.t. the
normalized hidden layer, we call this value the layer sensitivity score of the policy’s j’th index
w.r.t. a layer i at column k (LS(k)

(i) (π(j|st, θ))).

Until now every partial derivative has been for a single input, but before we can make our
final Averaged Layer Sensitivity(ALS), we would need to calculate the sensitivity based on an
averaged state distribution. We then need to sum all the Layer sensitivities for each policy
output, as can be seen on Equation (3.6):

ALS(k)
(i) (π(θ)) = Eρ(s)

[∑
j LS(k)

(i) (π(j|st, θ))
]

(3.6)

In practice to get an average state distribution, we average ALS scores for all steps in multiple
episodes, until the change in the averaged ALS score is negligible.

The ALS score as calculated in Equation (3.6) describes the full policy’s average sensitivity of
layer i in column k. The ALS is a sum of squared partial derivatives of all policy outputs w.r.t.
all normalized activations of nodes in a specific layer, giving an ALS score for each layer. The
ALS calculation is essentially the same as Progressive Networks paper[1] suggests, they just call
it Average Fisher Sensitivity (AFS) instead. We chose to rename AFS to ALS because the authors
of the paper made the name based on small technicalities that were not at the core of the score.
We believe Average Layer Sensitivity better describes the purpose of the score. In Section 3.4.1
on page 54 we will determine if the ALS values are as expected, to prove that ALS is correctly
constructed and implemented.

3.3 Progressive Network Implementation

This section will describe how we implemented progressive networks as an extension to be
used with Tensorflow. The "layers" submodule of Tensorflow allows the user to create neural
networks by instantiating different types of layers and connecting them, while encapsulating
the inner workings of the layers. An example of this can be seen on Listing 3.1, where we first
instantiate a convolutional layer and define its different parameters such as the input, number
of output etc, followed by a fully connected layer which uses the output of the convolutional
layer as its input.

1 inpConv = layers.conv2d(input,
2 num_outputs=16, #Number of filters
3 kernel_size=5, #Size of conv window
4 stride=1,
5 activation_fn=tf.nn.relu)
6

3.3. Progressive Network Implementation 43

7 dense1 = layers.fully_connected(layers.flatten(inpConv), #input
8 num_outputs=128,
9 activation_fn=tf.tanh)

Listing 3.1: Tensorflow constructing layers example.

Tensorflow contains many variants of layers that can be used, but no layers for progressive
networks. Because of this our progressive network implementation is an implementation of a
convolutional and a fully connected layer which can be used with Tensorflow just as its internal
layers. For comparison, an example of how to instantiate a progressive network similar to the
one in Listing 3.1 on page 42, but with two columns can be seen on Listing 3.2.

1 totalColumns = 2
2

3 inpConv = progConv2d(input,
4 numOutputs=16,
5 kernelSize=5,
6 stride=1,
7 activation=tf.nn.relu,
8 totColumns=totalColumns)
9

10 dense1 = progFc(layers.flatten(inpConv),
11 numOutputs=128,
12 scope="dense1",
13 totColumns=totalColumns,
14 activation=tf.tanh)

Listing 3.2: Progressive networks extension constructing layers example.

In order to explain how these layers are computed, psuedocode for a fully connected progressive
layer can be seen in Algorithm 2 on the next page. The progFc procedure shown in the pseudo
code creates layer i for all columns k, meaning that each use of progFc will compute the layers
as shown by each black arrow in Figure 3.7 on the following page. The first call to progFc or
progConv2d will compute the top layer for each column, and then the next call will compute the
subsequent layer for each column. We can do this as new layers do not not depend on layers
deeper into the network, but only the preceding set of layers.

44 Chapter 3. Transfer Learning

Figure 3.7: Visual representation of a progressive network with three columns, black lines
indicate flow of layers are instantiated

In the algorithm we start by initializing a dense layer for the first column with the input being
the hidden activations of the previous layer of the same column h(1)

(i−1). If the current layer is
an input layer or from the first column, we activate it as shown on line 8 and the calculation
of the layer is complete as the layer needs no adapter. If on the other hand the layer is not
an input layer and not from the first column, we compute the adapter which returns a linear
lateral connection U(k: j)

(i) and add it to the previous layer, before applying a non-linear activation
function. This loop is continued until layer i has been computed for all columns.

Algorithm 2 Progressive fully connected layer - Pseudocode for constructing a fully connected
progressive network layer

1: procedure progFc
//For more transparency between the formal description and the psuedocode, ”i” will refer
to the layer number of the progressive layer currently being created

2: for h(k)
i in {h(1)

i . . . h(kmax)
i } do

3: Initialize Dense layer with h(k)
(i−1) as input

h(k)
i ← Dense(input = h(k)

(i−1),numOutputs = n(k)
i)

4: if h(k)
i is NOT input layer AND j > 0 then

5: Adapter from h(<k)
(i−1) to h(k)

i : U(k: j)
(i) ← adapter(h(<k)

(i−1),n
(k)
i)

6: h(k)
i ← Activation(h(k)

i + U(k: j)
i)

7: else
8: h(k)

i ← Activation(h(k)
i)

9: end if
10: end for
11: return {h1

i . . . h
kmax
i }

12: end procedure

3.3. Progressive Network Implementation 45

The adapter is computed as shown in the psuedocode on Algorithm 4 on page 47, which returns
a linear lateral connection U(k: j)

i for all preceding columns < k to current column k. Here we

start for each input(each preceding column) h(j)
(i−1) instantiating an adapter scalar α((j)(k))

i and

multiplying the input with it. Then we create a dense layer V(k: j)
i which is our projection layer

from n(<k)
(i−1) to n(i−1). This layer is activated and then we create a new dense layer without bias

and with a linear activation which is our lateral connection U(k: j)
i and give the activated V(k: j)

i as

input. The output of U(k: j)
i is returned as the adapter output.

Algorithm 3 Adapter for fully connected layer with fully connected input - Pseudocode of an
adapter in a fully connected layer

1: procedure adapter
2: for h(j)

(i−1) in {h(1)
(i−1) . . . h

(k−1)
(i−1) } do

3: Instantiate adapter scalar for the input h(j)
(i−1) to column k, α(j)(k)

i ← random(0.01, 0.05)

4: Multiply input hiddens with adapter scalar h(j)
i−1 ← h(j)

i−1 × α
(j)(k)
i

5: end for
6: Initialize projection layer V(k: j)

i ← Dense(input = h(<k)
(i−1),numOutputs = n(i−1))

7: Activate projection layer V(k: j)
i ← Activation(V(k: j)

i)

8: Initialize lateral connection U(k: j)
i as a dense layer without bias U(k: j)

i ← Dense(input =

V(k: j)
i ,numOutputs = n(k)

i , excludeBias = True)

9: return U(k: j)
i

10: end procedure

46 Chapter 3. Transfer Learning

Figure 3.8: Visual representation of our progressive StarCraft II network with two columns

The progressive network paper[1] does not explicitly state how to proceed if a layer receives
input from both convolutional and fully connected layers. If we look at the architecture of our
Starcraft II network for the A3C agent with two columns, which can be seen on Figure 3.26
on page 63, we can see that the dense layer preceding our value and action policy output
layer receives input from both a convolutional and a fully connected layer. A three column
example of our network architecture can be seen on Figure A.1 on page 75. We handle this
case as seen on the psuedo code Algorithm 4 on the facing page. Just like when we only
have fully connected input, we start by multiplying the input activations with seperate adapter
scalars. Then we split the inputs h(<k)

(i−1) into two groups, one containing all input activation maps
received from convolutional layers Ch(<k)

(i−1)
and one containing input activations received from

fully connected layers Fh(<k)
(i−1)

. Instead of having one projection layer V(k: j)
i we instantiate one for

convolutional inputs CV(k: j)
i

and one for fully connected inputs FV(k: j)
i

. Both of these projection
layers are activated separately with a non-linear activation function and the convolutional
projection layer is flattened, before concatenating the activations of CV(k: j)

i
and FV(k: j)

i
, giving us

3.3. Progressive Network Implementation 47

V(k: j)
i . We then initialize our linear lateral connection Uk: j

i giving the activations of V(k: j)
i as input.

Algorithm 4 Adapter for fully connected layer with both convolutional and fully connected
input

1: procedure adapter
2: for h(j)

(i−1) in {h(1)
(i−1) . . . h

(k−1)
(i−1) } do

3: Instantiate adapter scalar for the input h(j)
(i−1) to column k, α(j)(k)

i ← random(0.01, 0.05)

4: Multiply input hiddens with adapter scalar h(j)
i−1 ← h(j)

i−1 × α
(j)(k)
i

5: end for
6: Split input hiddens h(<k)

(i−1) into convolutional Ch(<k)
(i−1)

and fully connected input Fh(<k)
(i−1)

7: Initialize convolutional projection layer CV(k: j)
i
← Conv(input = Ch(<k)

(i−1)
,numOutputs =

Cn(i−1) , kernelSize = 1, stride = 1)
8: Activate convolutional projection layer CV(k: j)

i
← Activation(CV(k: j)

i
)

9: Initialize dense projection layer FV(k: j)
i
← Dense(input = Fh(<k)

(i−1)
,numOutputs = Fn(i−1))

10: Activate dense projection layer FV(k: j)
i
← Activation(FV(k: j)

i
)

11: Flatten convolutional projection layer CV(k: j)
i
← Flatten(CV(k: j)

i
)

12: Concatenate output of convolutional and dense projection layer V(k: j)
i ←

concat(CV(k: j)
i
,FV(k: j)

i
)

13: Initialize lateral connection U(k: j)
i as a dense layer without bias U(k: j)

i ← Dense(input =

V(k: j)
i ,numOutputs = ni, excludeBias = True)

14: return U(k: j)
i

15: end procedure

3.3.1 ALS Implementation

This section describes technicalities of the implementation of ALS, that had to be overcome in
order to implement it using tensorflow. The section does not contribute new relevant knowl-
edge w.r.t. ALS. The implementation was mostly straight forward, however tensorflow did
complicate the implementation, and that is what this section is about.

We decided to train an agent’s model normally, then save the model and transfer it into another
agent made for calculating ALS. The ALS agent does not train, but acts according to the model’s
policy to get the estimated state distribution needed to calculate ALS. The ALS agent has one
change to the network; all the layers have softmax activations, since this gives us the normalized
activations that we need in ĥ(k)

(i) . otherwise the ALS agent and the agent used to train the model,
are identical, only change is that ALS is calculated for each step, and that the agent does not call
any training function.

Tensorflow’s functions and graph creation for optimizing the process was not easy to understand
and work with. The code for calculating ALS could not be debugged at run-time, only when the
environment was setting up and the graph created. We encountered multiple other problematics,
but the most impactful where using conventional control structures with tensorflow’s internal
graph. Even though the graph had multiple complications some very simple, for example just
handling variables and operations in the graph, we will only describe how we handled the

48 Chapter 3. Transfer Learning

control structures.

Tensorflow graph problematics and optimizations
The first implementation of ALS revealed a problem. While the first couple of ALS values
were a success, it was only tested on a network with less than 50 parameters in the model.
When the first ALS implementation was tested on one of our Starcraft II models with hundreds
of thousands of parameters, it took several hours to create parts of the internal graph, before
crashing due to memory limitations.

Tensorflow creates a graph of all the code that is used for interacting with the neural network
model, and all training and ALS calculation is done through this graph. The graph is a smart
way of constructing the code, as it maps dataflow in the code, and this gives the possibility
for distributed computation, parallelism, and portability. The graph is also optimizing the
processes by only computing the parts of the graph needed for the output the surrounding code
needs from the graph. e.g. if the surrounding code wants the location output, the graph only go
through the nodes in the graph that are strictly necessary for computing that output, this cuts
off computation of loss function, gradients and the rest of the neural network, even though the
graph also includes these.

Nodes in the graph describe operations, and edges between them describe the dataflow. Vari-
ables that persists through multiple runs of the graph can be created, used and manipulated
through operations in the graph. One problem with this graph is that it cannot optimize on
conventional control structures like if-statements or loops. An if-statement is constructed at
compile-time, and will impact the structure of the graph rather than create an edge in the graph.
When loops are created in the graph, they also impact the structure of the graph in the same
manner, constructing the graph as if the loop was unrolled instead of described in a loop. This
can potentially make large graphs, that take a lot of memory and time to create. An example of
this is creating one node for each gradient needed to compute ALS for each layer in the network..

Instead of the conditional if-statement, tensorflow graphs use a function called cond which takes
one boolean, followed by a function that is to be called if the boolean is true, and another
function that is called if the boolean is false. An example of this can be seen in Algorithm 5 on
the next page on line 3 where the function is called. The graph used by tensorflow limits the
possibilities with these functions; they cannot change variables in the graph and they need to
return tensors of the same shape. The reason for this is that when the graphs are constructed,
the shapes/sizes of all edges is accounted for.

Since we want to be able to decide whether we want to calculate or not calculate ALS, we need
to return the same shaped tensor even if we don’t calculate the ALS. This led us to simply return
the input array as it had the same shape as the ALS, as can be seen on Algorithm 5 on the facing
page. This is useful if we want to calculate the ALS for each third step the agent takes, since
experiences are sequential, thus close states does not change much, this might be a faster way
of estimating the state distribution.

The loop control structure used in Algorithm 5 on the next page is inefficient, as previously
explained, they can potentially create a huge amount of nodes and thus use up huge amounts
of memory and time. Instead tensorflow has a function called While_loop that takes a list of
all variables, a predicate that returns true if the loop should continue, and a loop body. An
example of the While_loop can be seen on Algorithm 6 on the facing page. When constructing
the graph, tensorflow will determine if the predicate can be pre-calculated and thus determine
if computations can be parallelized. This function creates a single node in the graph and reuses
that, instead of creating multiple nodes. This loop is also optimized by tensorflow to incorporate
parallelism and calculation reuse.

3.4. Tests and Findings 49

Algorithm 5 Tensorflow graph conditional control structure

1: CalculateALSBool = True
2: WantedLayers = [0, 0][1, 1] // We want layer both 0 and layer 1 in 2 columns
3: ALS = tf.cond(tf.equal(CalculateALSBool, tf.constant(True)), CalculateALS(WantedLayers),

DoNothing(WantedLayers))
4:
5: procedure CalculateALS(WantedLayers)
6: for each layer ∈ WantedLayers do
7: ALS = CalcLayerALS(layer)
8: end for
9: Return ALS

10: end procedure
11:
12: procedure DoNothing(WantedLayers)
13: Return WantedLayers
14: end procedure

Algorithm 6 Tensorflow whileloop

1: procedure CalculateALS(WantedLayers)
2: loop_Vars = [tf.variable(0, int), tf.TensorArray(size=WantedLayers.length(), float)]
3: cond = lambda i, a: i < WantedLayers.length()
4: body = lambda i, a: (i + 1, a.write(CalcLayerALS(WantedLayers[i])))
5: i, ALSList = tf.while_loop(cond, body, loopvars)
6: return ALSList
7: end procedure

We needed to use the while_loop shown in Algorithm 6. With the while_loop the graph takes
under a minute and virtually no additional memory, as opposed to several hours and crashing
in need of more memory.

3.4 Tests and Findings

In this section we will test our progressive networks, and we seek to determine if transfer learning
can be used in a complex environment such as Starcraft II. Before testing the progressive network
on Starcraft II we verify that the implementation is functional, and that the progressive networks
leverages transferred knowledge. This is done through simpler environments, namely the Gym
library’s CartPole[3] and Sonic the Hedgehog[4] environments.

3.4.1 Proof of concept

For proof of concept we will be using environments with less complexity than the Starcraft II
environment. The reason for this is because the reward graphs of Starcraft II does not converge
in a reliable way, however in the less complex environment, the convergence is reliable and
smooth, making it possible to compare differences in the agents’ performance, from a graph of
smoothed average reward.

50 Chapter 3. Transfer Learning

We use the Gym library for these tests, which is a toolkit for developing and comparing rein-
forcement learning algorithms. This library allows us to test the algorithms on multiple different
environments with very little reconfiguration.

In this section we will describe the two environments, CartPole and Sonic, show that progressive
network architecture gives an improvement in convergence, and analyze the results with an ALS
analysis.

CartPole

CartPole is a simple game with two actions, move left or right. The environment returns four
numbers, which describe the pole’s positioning. The pole is always on top of the cart, so when
moving the cart either left or right, the lowest point of the pole is also moved in that direction.
The cart is fixed vertically, so that it can only move horizontally, the pole on top however is
affected by some gravity physics that makes the pole fall downwards with the upper most end
of the pole. An image of the CartPole environment can be seen on Figure 3.9.

The CartPole game does not have any spatial features, since the statespace is described by
four float values, this makes the CartPole agent use a simple network, consisting of two fully
connected hidden layers with 24 and 48 nodes.

Figure 3.9: The CartPole environment, keep the pole affected by gravity from falling by moving
the cart underneath it at all times, actions include move left and right, denoted with green
arrows.

The test consist of three different agents that have all been run for 32 million steps in the same
task. We chose to use the same base task for all our agents, as the transfer of knowledge is
always greatest when the source task is the same as the target task. Progressive networks start
with randomly initialized column for the target task, and do not immediately use the previous
column(s), so it will not be good at the game instantly. On the other hand, finetuning only has
to relearn the output layer to perform well, so those agents should improve quicker than the
other agents.

The agents are using the A3C algorithm, each running with 16 workers. The three agents have
different amounts of columns in the network, where the 1-column agent is essentially just an
A3C agent. The 2-column agent was created by using the converged network from the 1-column
test as the first column, and similarly for the 3-column agent which uses the converged 2-column
agent’s network for the first and second columns.

On Figure 3.10 on the next page the results can be seen for the test. The reward in CartPole is
equivalent to the number of steps the pole has not fallen, maxed out at 200 steps after which
the episode resets. The graphs show the mean score after each episode, that the agents with the
1, 2 and 3-columns gained through 32 milion game steps. To show a more detailed view of the
results, they are also plotted on Figure 3.11 on the facing page, with 2 slim lines and a shaded
area between them, showing rewards between first and third quartile for each network setup
over 5 runs.

3.4. Tests and Findings 51

It is clear that on average, Figure 3.10, the baseline A3C agent (1-column) is slightly worse than
the progressive network transfer learning agents (2 and 3-columns). The transfer learning agents
are relatively slow at learning in the beginning, but can converge to a better policy than the 1-
column agents. The tests clearly show that rewards are higher when using our implementation
of progressive networks, with all columns trained on the same simple game.

Figure 3.10: Graph showing mean reward as a function of steps on the CartPole game, for 1, 2
and 3-column networks

Figure 3.11: Graph showing reward graphs for 1, 2 and 3-column progressive networks, bold
lines represents means, and coloured areal is the first to third quartils of all runs with the
respective network

These results suggest that we leverage previously trained networks well, since we can see better
convergence across all 2-3-column tests. The previously trained columns are trained on the
same task, so the columns should be highly usable. We have tested the 1, 2 and 3-column
networks 5 times each, and they all suggest that the 2-column network works better than 1
and 3-column networks for the CartPole game. This indicates that we can leverage previously
learned knowledge, when a column is trained on the same task ensuring knowledge can be

52 Chapter 3. Transfer Learning

leveraged.

The slower convergence right at the start of the 2 and 3-column networks could possibly be
due to the increased amount of trainable parameters. This could also be the reason why the
2-column networks usually performs better than 3-column networks in this case. The 3-column
networks becomes as good as the 2-column networks, but they are slower at the start.

There are some 2-column tests that differ slightly in their convergence speed. It would be
interesting to know why there is a difference between them, we will attempt to determine why
during the ALS analysis in Section 3.4.1 on page 54.

Sonic

Sonic is a more complex game from the Genesis console with 9 discrete actions, including
movement and jump. This environment returns pixel information in three channels(RGB) to
the agent, from a screen of size 224x320, giving us an input of size 224x320x3. We preprocess
the screen input by converting the image to grayscale and resizing it to 92x92 pixels, giving
us an input of 92x92x1. This environment is a platform game where the player controls a
character(Sonic) and has to make it to the end of the map by moving right while avoiding or
destroying obstacles on the way. The agent is rewarded with +100 whenever it destroys an
enemy, and also receives +1 reward for each pixel it moves Sonic towards the goal. A screenshot
of the game can be seen of Figure 3.12.

Figure 3.12: The SpringYardZone level of the Sonic environment

The emulator running Sonic the Hedgehog is not able to run multiple environments at once,
hence the A3C algorithm is not optimal for testing on this game as we are not able to use multiple
workers to get diverse experience. We can however still test our Progressive Network library
using another agent. For this we used an open source DQN algorithm[25], which is better when
limited to a single environment as it trains on diverse experience by using experience replay[26].

3.4. Tests and Findings 53

Figure 3.13: The GreenHillZone level of the Sonic environment

We start by training the DQN agent with 1-column on act 1 of the SpringYardZone level shown
on Figure 3.12 on page 52 followed by training the 2-column on the first act of the GreenHillZone
level shown on Figure 3.13, using the SpringYardZone 1-column as the first column. These two
levels have a huge visual gap between them while some of the core elements like the controlled
character stay the same. The two different levels also incorporate different mechanics required
to complete them. The results of doing this can be seen on Figure 3.14.

Figure 3.14: Graph showing moving average of the reward as a function of game steps on
GreenHillZone act 1. The green line is a 1-column network. The blue line is a 2-column
network, where the first column has been trained on SpringYardZone act 1

For the next test we train on act 3 of the SpringYardZone, using a 1 column network, and a 3
column network, which can be seen on Figure 3.15 on the next page. The 3 column network
uses the previous 2-column network for the first 2 columns.

54 Chapter 3. Transfer Learning

Figure 3.15: Graph showing moving average of the reward as a function of game steps on
SpringYardZone act 3. The green line is a 1-column network. The red line is a 3-column
network pre-trained on GreenHillZone act 1 and SpringYardZone act 1

Figure 3.16: Graph showing moving average of the reward as a function of game steps on
GreenHillZone act 3. The green line is a 1-column network. The red line is a 3-column network
pre-trained on GreenHillZone act 1 and SpringYardZone act 1

For both of these tests the multiple column networks seem to have an edge, having a slightly
higher moving average throughout most of the training period on both tests. For the test shown
on Figure 3.14 on page 53 the two column network seems to be learning a bit faster than the
1 column network, however since we do not have more tests than are shown, all of this could
also be due to pure coincidence. We do not know at this point if the agent is actually able to use
the progressive convolutional layers, only that they do not break the agent. We can instead use
ALS analysis to find out if the agent actually leverages knowledge from the previous columns.

ALS analysis

The ALS analysis is in two parts, CartPole where we seek to verify the ALS score itself and
verify transfer is happening, and Sonic where we will analyze the network to find out to which

3.4. Tests and Findings 55

extent previously trained models are leveraged in different environments. Sonic was chosen
for network analysis because the network was similar to Starcraft II, since it has image based
input, and that we can train on different levels and see transfer to similar but different tasks.
The analysis seeks to prove that ALS scores gives a meaningful representation of the level of
transfer happening between columns, and that progressive networks are capable of leveraging
transfer of knowledge in an image based game such as Sonic.

CartPole
We chose to use the agents from the CartPole game to verify the ALS score, since the reward
curves from the game through learning are smooth and consistent, and convergence happen
within an hour of training. It would require much more data and time to make these tests on
one of the Starcraft II mini-games, since the convergence is very spiky, slow, and inconsistent,
as discussed in Section 2.4.3 on page 32.

The first test done to verify the ALS score, was to compare the ALS score with the actual rewards
earned while one layer is missing. This test is meant to verify that high ALS scores translate
into a reduction in rewards if the layer was taken out, and vice versa if the ALS score is low.

We first calculate the ALS score for the neural network. Calculating the ALS score is only done
once, to determine the output’s dependence on a layer.

To verify the ALS scores, we compare ALS scores to an observed average drop in reward when
removing a layer present in the neural network. We modify the output of a layer, by replacing the
activations with very small random numbers, to remove any correlation between the modified
output and the input.

After removing a layer, we run the agent for 200 episodes, to calculate a ratio of drop in reward,
we call it the inverse normalized reward. We repeat this process for each layer in the network,
so we know how much the absence of each layer will influence the average reward. This allows
us to depict the impact of removing the layer, by showing the inverse normalized reward for
each layer, similar to the ALS score that depicts the output’s dependence on each layer.

It is obvious that calculating the inverse normalized reward for each layer is tedious compared
to the ALS score, as the agent has to be started, run to get an average reward sample, stopped,
and reprogrammed for each layer in the neural network, instead of once for the ALS score.

We make this test to validate what would happen if layers are removed. If the ALS score depicts
how much the output depends on a specific layer, we expect to see the reward go down for a
layer that the output somewhat depends on. If a layer has a very low AFS score, the policy
does not depend on the contributions of that layer and it should have very limited impact on
the reward if it is removed.

The inverse normalized reward for each layer can be seen on Figure 3.17b on the following page.
At each layer in the network, the inverse normalized rewards are stated. The colouring are for
swift overview and easy comparison, the higher the number the more colour. A score of 0 is
equivalent to no change in the reward achieved before and after the layer is removed, and a
score of 1 is a reduction in average reward per episode to 0.

The Calculated ALS scores can be seen on Figure 3.17a on the next page, where the ALS scores
are positioned in their respective layer. It is obvious that there are similarities in the two scores,
indicating that the ALS score represents an accurate estimate of the sensitivity of the output
w.r.t. each layer. Removing a layer with a high ALS score gives a lower reward, and removing
a layer with close to 0 ALS score gives virtually no change in reward.

56 Chapter 3. Transfer Learning

(a) Shows the sensitivity in the output based on
change in one layer, normalized over layers in
all columns.(ALS)

(b) Shows the drop of reward over the max-
imum theoretical reward, when replacing the
respective layer with noise.

Figure 3.17: ALS and simple layer dependence.

The second test on the CartPole game, compares the learning graphs with the ALS scores, as
we argued in section Section 3.4.1 on page 50, if the reward graphs consistently converge in a
certain way, while comparing tests of various progressive networks, it has to correlate to the
changes in the network and thereby the previously gained knowledge. This implies that if the 2-
column networks generally get better rewards and faster convergence, the 2-column progressive
networks must leverage the first column to some extent. If that is true, our hypothesis is that the
ALS analysis must show usage of the first column in the 2-column networks on the CartPole task,
because in the CartPole task we observe both faster convergence and convergence to a higher
average when using multiple columns. The single column tests all show similar convergence
trends, so we hypothesize that if a 2-column network does not leverage knowledge from the
previous column, it should have a similar convergence trend to a 1-column network.

We take one of our 2-column agents and calculate each layer’s ALS score, with results for one
of the 2-column test shown on Figure 3.18, where the reward graph for the specific run of the 2-
column network are shown on Figure 3.18a. This 2-column network has the 1-column network,
displayed as col0 in the reward graph, as the first column. The ALS analysis of the 2-column
network is shown on Figure 3.18b.

(a) Agents’ earned rewards(y) at game step/time(x). Green
line one run of a 1-column network. Blue agent is one run
of a 2-column network.

(b) ALS figures over the plotted 2-column
progressive network.

Figure 3.18: Progressive network analysis example 1, a closer look into one of the runs of the
2-column agent.

Our hypothesis seems to be validated; we get high usage of the previous column and when

3.4. Tests and Findings 57

the reward graph for the 2-column network shows faster convergence to a higher average. The
reason why an agent that purely uses another column can still perform better than an agent
with only that one column, could be because it has vertical connections with fully connected
layers, which can make interpretations on the previously learned features, meaning that it can
add knowledge through these connections and not only through the newest column.

Another interesting 2-column network to analyze, is displayed on Figure 3.19, in this run the
reward graph of the 2-column network is more similar to the 1-column network. As mentioned
above, we hypothesised that this could be due to the new column of the 2-column network
relearning the features of the game, rather than leveraging the knowledge of the previous
column. Figure 3.19b displays the ALS analysis.

(a) Agents earned rewards(y) at game step/time(x). green
agent is only one column. Blue agent is 2-columns(with
col 0 has frozen parameters from the green agent).

(b) ALS figures over the plotted 2-column
progressive network.

Figure 3.19: Progressive network analysis example 2, a closer look into one of the worst runs of
the 2-column agent.

The ALS analysis shows that there is a lower degree of dependence of the previous column
in this test, compared to the previous 2-column ALS analysis, but the network still leverages
knowledge from the first column. This corresponds well to the faster convergence to a higher
average reward per episode, although the convergence rate is much slower than in the previous
example from Figure 3.18 on page 56.

The ALS analysis has been performed with the model extracted from the last possible part of the
graph, meaning that even after the 2 column has run on max score for a while, the progressive
network still leverages the previously learned knowledge instead of rewriting it all.

Sonic
We perform the ALS analysis on our two column network to analyze how the progressive neural
networks leverages the previously learned data in Sonic. We want to confirm that Progressive
networks can leverage knowledge from convolutional layers, since we could not prove that in
the CartPole test. The Sonic test should also conclude if it is possible to leverage knowledge
gained from another task that is similar but different from the target task.

The first Sonic ALS analysis is performed on a 2-column network trained on act 1 of the
GreenHillZone, with the first column being pre-trained on act 1 of the SpringYardZone. We
analyze the trained agent at three different points during the training of the 2-column agent, we
call each point a slice. The slice is an ALS analysis performed on the network using a model
extracted from a specific point during training, the slice analysis takes multiple slices to see how
the usage of transferred knowledge changes through training. On Figure 3.20 on the next page
the three slices we perform ALS analysis on can be seen, marked with vertical lines of different
color corresponding to the color of the figures shown in Figure 3.21 on the following page.

58 Chapter 3. Transfer Learning

Figure 3.20: Figure showing points at which ALS is calculated for a 2 column network on
GreenHillZone act 1

Looking at Figure 3.21 we can see that at the first point the agent only leverages the two first
convolutional layers of the first column in the network, and has learned to do even more so at
the second point. Then at the third point the agent has replaced most of the knowledge from the
second layer of the first column with new features. This suggests that the agent starts relearning
features because it deems it better than to use the old features of the first column.

Figure 3.21: ALS figures, showing 3 different points in the sonic agents training period, 0.9M,
1.5M and 3.5M. The input layer is omitted, only convolutional and dense layers are shown. The
reward graph over the training period can be seen on Figure 3.20

We also performed another ALS analysis on the second 3 column agent, which can be seen on
Figure 3.22 on the facing page, and the analysis was performed after the agent finished training.
The 3-column agent trained on Green Hill act 3 used the 2-column agent as the two first columns.
The graph over the rewards gained while training can be seen on Figure 3.16 on page 54, in
general the 3-column agent converges fast to a stable average reward, with performance worse
than that of a 1-column network on the same Sonic act.

3.4. Tests and Findings 59

The analysis shows that a high amount of transfer of knowledge between levels and acts does
not guarantee the agent equal or better performance compared to a 1-column agent. This
could also explain why the 2-column slice analysis show that the agent slowly begins to learn
its own features instead of persistently using the transferred knowledge. It is plausible that
the agents yield lower rewards and slowly ignore transferred knowledge, because the features
transferred are generally weak. In the start it could be slightly easier to learn meaningful features
by leveraging transferred knowledge, than by improving the randomized features in the new
column, but the transferred knowledge utilized in the start may prove to be bad or unreliable
for the new task in general.

Figure 3.22: ALS figures at the final training point for the 3-column network trained on Green-
HillZone act 3, the pre-trained columns are the 2-column Sonic agent. Connections between
columns are omitted, though the layers are still connected, as normal. The reward graph for
this 3-column network can be seen at Figure 3.16 on page 54.

The ALS analysis of the Sonic game shows that the 2-column agent had low amounts of knowl-
edge transfer compared to the ALS analysis on the CartPole game, as seen on Figure 3.21 on
page 58. The 3-column agent had, after the complete training period, a high amount of trans-
ferred knowledge. The lower knowledge transfer on the 2-column agent could be due to our
reinforcement learning algorithm’s overall level of performance on the games. At the last point
in the learning process, the agent sometimes ran directly into the first obstacle and died, even
though it is the simplest of obstacles that it has encountered the most. This could mean that the
agent’s learned features are not good enough for stable and useful transfer, driving the agent
to leverage less and less of the previous column’s learned features, as the agent learns what it
decides are better features.

The ALS analysis for Sonic proves that an agent can leverage knowledge from progressive
convolutional layers, and because the previously learned knowledge is generated from another
level in Sonic, it also proves that we can leverage knowledge from similar but different tasks.
Furthermore the 2-column test could indicate that the agent had faster convergence because of
the transfer of knowledge, since the agent converges faster and utilizes the previously learned
knowledge, however the 3-column agent that leverages the transferred knowledge and performs
poorly, so it is not always the case that the agent achieves faster convergence or better results
even when leveraging transferred knowledge.

Test Conclusion
The main purpose of this test was to prove that our progressive network and ALS imple-
mentation was functional, which was done using the two games Cartpole[3] and Sonic The

60 Chapter 3. Transfer Learning

Hedgehog[4].

The network for the Cartpole game only makes use of dense layers, and its input only consists
of non-spatial features, and the strategy required to master the game is relatively simple. The
tests on the game show us that we can leverage information gained from the same task, when
using only dense layers in the progressive network. The potential of transfer is greatest when
the first column is trained on the same task as the target task, allowing almost complete usage
of the first column.

We can also conclude that the implementation of the ALS score gives meaningful results, al-
lowing us to analyze if there is a transfer of knowledge in our progressive network agents that
utilize multiple columns. In this test the progressive networks utilize the previously learned
features even after converging. The results show when we utilize transfer learning, the con-
vergence is happening faster, and it can result in even better performance than agents trained
without transfer learning. This suggests that the use of progressive networks allows for faster
convergence to a higher level of performance by using the previously learned knowledge, and
at the last point in the training, the progressive networks are still leveraging some transferred
knowledge.

The Sonic game requires a much more complicated strategy to master while the input consists
only of pixel information, and our network is a combination of convolutional and dense layers.
This game allowed us to test our progressive convolutional layers and transfer between similar
but different tasks from a more complex environment compared to Cartpole. Based on our find-
ings for these two tests, we can conclude that our progressive network implementation is in fact
able to leverage knowledge from previous columns and in most cases it improves performance,
even when transferring knowledge from other tasks with different visuals. However in Sonic
the results were only improved two out of three times, and the the progressive networks one
time slowly learn to leverage less and less of the transferred knowledge, as documented on
Figure 3.21 on page 58, where ALS is calculated from different points in the training. This trend
suggests that the progressive network leverages the knowledge to get faster learning in the start,
but does not deem much of the knowledge usable enough to refrain from relearning features,
however more analysis is needed to conclude anything definitively. The progressive networks
are not guaranteed to improve performance, and more tests are needed to conclude on whether
the transfer learning agents are able to achieve a higher performance than 1-column agents in
games other than CartPole, as more tests may prove there are agents with other hyperparameters
that perform much better which may also allow for more useful transfer of knowledge.

3.4.2 StarCraft Test

Based on our tests for Cartpole in Section 3.4.1 on page 50 and Sonic in Section 3.4.1 on page 52, we
know that the A3C agent is able to utilize both our progressive dense layers and our progressive
convolutional layers. In this section we will test our implementation of progressive networks
on Starcraft II. The goal is to determine if we can transfer knowledge in a complex environment
and potentially achieve higher rewards or faster learning. The tests are all performed with a
specific set of hyperparameters which we found made the agents a bit more stable than in the
tests shown in Section 2.4 on page 27, like having two different entropy’s, one for the action
policy and one that is slightly lower for the location policy.

For this test we use three different Starcraft II minigames, including DefeatRoaches, FindAndDe-
featZerglings which are described in Section 2.4.1 on page 27, and DefeatZerglingsAndBanelings

3.4. Tests and Findings 61

which is similar to DefeatRoaches except that there are two different enemy types, which require
different tactics to defeat.

Due to time constraints all agents are tested only once with the optimal hyperparameters found
in Section 2.4 on page 27. This means that we will not be able to tell necessarily if using more
columns is an improvement in general, but we should still be able to find out if we are able to
transfer knowledge using ALS analysis. Again the learning rate of the agents is decayed to half
its initial value during the entire training period, and we use 8 workers for the test. We train the
agents for approximately 50 million steps, using RMSProp optimizer.

Proof of concept

We start by making a proof of concept test on Starcraft II, which is depicted on Figure 3.23.
Here we have training graphs showing moving average reward over 100 episodes on the De-
featRoaches minigame, where we have a 1-column network and a 2-column network where
the first column is also trained on the DefeatRoaches minigame. This test is similar to the tests
performed on CartPole, to determine if transfer is happening when the target task is the same
as the source task. This 2-column network should be able to use the features learned in the
first column as it is the same minigame, assuming that the transfer of knowledge is possible in
Starcraft II.

Figure 3.23: Graph showing moving average reward over 100 episode as a function of steps on
the DefeatRoaches minigame, for a 1 and 2-column network pre-trained on the same minigame.

Figure 3.23 shows slightly faster learning for the 2-column network at the beginning of the
training period, but starts lacking behind the 1-column network after a fairly short time. In
order to investigate what is happening and figuring out if transfer is occurring, we perform an
ALS slice analysis of the model of the 2-column network at three different slices on the graph.
The three chosen slices where we perform the ALS analysis are depicted on Figure 3.23, and
the ALS analysis itself is depicted on Figure 3.24 on the following page. Looking at the ALS
analysis we can see that the first slice at 6 million steps leverages some knowledge from the first
column, and at 13 million steps it leverages the knowledge of the first column even more. If we
look at the third slice it uses slightly more of the first column.

This shows us that it is possible to transfer knowledge on the Starcraft II environment via
progressive networks, even though it does not necessarily improve the performance of the
agent if we measure by highest moving average reward over 100 episodes.

62 Chapter 3. Transfer Learning

Figure 3.24: ALS figures over the proof of concept in Starcraft II, the 2-column agents training
graph with slice indicators can be seen at Figure 3.23 on page 61

3.4. Tests and Findings 63

DefeatZerglingsAndBanelings test

The first minigame was tested on DefeatZerglingsAndBanelings minigame, and is shown on
Figure 3.25. Here we have a 1-column network, and a 2-column network which has its first
column trained on the DefeatRoaches minigame.

Figure 3.25: Graph showing moving average reward over 100 episode as a function of steps on
the DefeatZerglingsAndBanelings minigame, for a random policy agent and a 1-column and a
2-column network with its first column trained on the DefeatRoaches minigame.

We performed an ALS analysis on the 2-column network seen in Figure 3.25. The ALS analysis
can be seen on Figure 3.26.

Figure 3.26: ALS figures for the 2-column progressive network after training, the training run
is plotted on Figure 3.25. Tested on DefeatZerglingsAndBanelings and first column trained on
DefeatRoaches

64 Chapter 3. Transfer Learning

The ALS analysis shows little transfer of knowledge in the convolutional layers, and a larger
amount of transfer in the non-spatial features.

We perform an in depth analysis of the transfer of knowledge happening, and we try to relate
the transfer to the different minigames’ mechanics and how they relate to each other: The
features that can be extracted from the minimap input are not very relevant for this minigame,
so it makes sense that it does not rely on this knowledge from the first column. The features
extracted from the screen input are more relevant, as it contains information relevant to combat,
so here it makes sense that more of this knowledge is leveraged. The strategies required in the
two minigames is also quite a bit different. On the DefeatRoaches minigame it is important
to focus attack specific units in order to reduce the damage output of the enemies as fast as
possible, while it is much more important to split up the friendly units into small groups to
avoid area damage from specific enemy units in the DefeatZerglingsAndBanelings minigame.

The action info input and the general input can be used to determine if a unit is selected, which
unit is selected, and which actions are available. The reason that these are leveraged heavily may
be due to the importance of knowing which unit, or if a unit, is selected in Starcraft II. If a unit
is selected, the next action should probably be some kind of move or attack action, especially
on these minigames where there is little need to reselect units. This is relevant because the
DefeatZerglingsAndBanelings and DefeatRoaches scenarios have similar mechanics where the
agent has to move around its own units and attack the enemy.

FindAndDefeatZerglings test

The second minigame we performed tests on in Starcraft II is shown on Figure 3.27 and de-
picts the FindAndDefeatZerglings minigame. Here we have a 1-column network, a 2-column
network with its first column trained on the DefeatZerglingsAndBanelings minigame, and a 3-
column network which uses the 2-column network trained on the DefeatZerglingsAndBanelings
minigame seen above, for the previous columns.

Figure 3.27: Graph showing moving average reward over 100 episodes as a function of steps on
the FindAndDefeatZerglings minigame, for a random policy agent and a 1-column, 2-column
and 3-column network, where the 2-column agent is pre-trained on the DefeatZerglingsAnd-
Banelings minigame, and the 3-column network uses the 2-column network trained on the
DefeatZerglingsAndBanelings minigame

3.4. Tests and Findings 65

Looking at Figure 3.27 on page 64 we can see that the 2-column agent seems to be learning
faster at first, while it ends up with a mean reward somewhat similar to the 1-column agent.
The faster learning at the start might not be due to transfer, but we can analyse the model with
ALS analysis to see if the transferred knowledge is leveraged. The 3-column agent also seems
to have slightly faster learning than the 1-column agent at first, but starts lacking behind after
about 15 millions steps, however it ends up with about the same moving average reward over
100 episodes as the 1-column agent.

We performed a slice ALS analysis for both the 2-column and the 3-column agents from the Fin-
dAndDefeatZerglings tests. The 2-column agent slices we analyzed can be seen on Figure 3.28a,
and the 3-column agent slices we analyzed can be seen on Figure 3.28b.

(a) Figure showing points at which ALS is cal-
culated for the 2-column network depicted on
Figure 3.27 on page 64

(b) Figure showing points at which ALS is cal-
culated for the 3-column network depicted on
Figure 3.27 on page 64

Figure 3.28: Figure showing points at which ALS is calculated for the 2 and 3-column networks
depicted on Figure 3.27 on page 64

66 Chapter 3. Transfer Learning

Figure 3.29: ALS per layer over the plotted 2-column progressive network in Figure 3.27 on
page 64

3.4. Tests and Findings 67

By studying the ALS analysis of the 2-column agent depicted on Figure 3.29 on page 66, we
can see that it leverages knowledge from all layers except the minimap convolutional layers.
Throughout learning it manages to leverage more and more of the transferred knowledge, but
never uses any of the features from the minimap convolutional layers.

The first column is trained on the DefeatZerglingsAndBanelings minigame, which does not
require the player to use the minimap as the entire map is in view of the screen. It therefore
makes sense that the minimap features are relearned by the agent, because only the new task,
FindAndDefeatZerglings, requires usage of the minimap as part of the mechanics.

The FindAndDefeatZerglings minigame relies heavily on the ability of the agent to utilize the
minimap input as only part of the map can be observed at any time on the screen input, while
the minimap can be used to see what part of the map the screen is focusing on, and also to
change the view of the screen.

It also makes sense that most layers other than the minimap layers can still be used as the
agent in both minigames uses a specific unit type(marines) and have to defeat a specific enemy
type(zerglings), on the FindAndDefeatZerglings minigame the agent has to look for the enemies
around the map as well. For the fourth slice, which is at the end of the training period, the agent
has relearned a bit more for other layers as well, but still leverages much knowledge from the
first column.

68 Chapter 3. Transfer Learning

Figure 3.30: ALS per layer over the plotted 3-column progressive network in Figure 3.28b on
page 65

3.4. Tests and Findings 69

The ALS slice analysis of the 3-column network for FindAndDefeatZerglings can be seen on
Figure 3.30 on page 68. In the first slice the agent leverages some knowledge from the first con-
volutional layer, after the screen input, of the second column which is the DefeatZerglingsAnd-
Banelings minigame, however it does not leverage knowledge from the first column that was
trained on the DefeatRoaches minigame. This could once again be due to the FindAndDefeatZer-
glings and DefeatZerglingsAndBanelings minigames having more in common regarding unit
types. Unlike the 2-column agent, the 3-column agent has relearned even the screen features at
the second and third ALS slices.

The ALS slice analysis Figure 3.30 on page 68 shows that the agent does not really use much of
the transferred knowledge, compared to the 2-column network also trained on the FindAndDe-
featZerglings minigame. This could be due to the amount of parameters, as they increase with
every new column, or it could be because the agent was unable to leverage the features in this
test. More tests have to be made to determine the cause for the 3-column agent relearning the
features. The agent starts by leveraging some of the screen convolutional features, then it learns
to use its own features by the second slice at 31 million gamesteps, and then again at the third
slice it relearns to leverage the features from the first convolutional layerr of the second column.
This suggests that it has trouble determining if it is useful to use the previous features.

Test Conclusion
Ideally we would have wanted to do more tests on each minigame but due to time constraints
and the amount of time it takes to train the agents we had to make do with the tests shown in
this section. Even so we were able to gather interesting results, that indicate transfer learning is
possible and sometimes, but not always, beneficial.

On Table 3.1 the training times for 1, 2, and 3-column networks in the Starcraft II environment
can be seen. Here we can see that the training time increases as we add more columns which
also makes sense as there are more parameters to be trained. This could pose a problem when
expanding to even more columns as the training time per episode will keep increasing, however
it could also result in faster convergence in which case it might not pose a problem.

of columns Training time (hours) Relative to best training time
1 64 1
2 86 1.34
3 110 1.83

Table 3.1: Table showing Average wall-clock training time for different amounts of columns, in
the Starcraft II environment.

Based on the tests performed on the DefeatZerglingsAndBanelings minigame and the proof of
concept test on the DefeatRoaches minigame, we see that multiple columns do not always seem
to improve learning significantly. Transfer of knowledge is still observed on these minigame
tests, but it does not guarantee faster convergence or higher average reward even when using
a previous column trained on the same minigame. This may also be because of the instability
in the training on the Starcraft II environment, which is discussed in Section 2.4.3 on page 32. It
is possible the first columns do not contain any meaningful features that could be leveraged for
the subsequent tasks, but the proof of concept test performed on the DefeatRoaches minigame
is an exception, where one could rightly assume that most if not all pre-trained features could
be leveraged. The tests for the FindAndDefeatZerglings minigame, depicted on Figure 3.27 on
page 64, indicate that given the right circumstances the agents can be improved on Starcraft II
by transferring knowledge, where especially the 2-column agent performed well.

Chapter 4: Evaluation
This chapter will evaluate the project and conclude upon whether and how well the project
solved the problem statement. We will also present some future work that might be relevant.

4.1 Conclusion

Based on our previous work with reinforcement learning and the Starcraft II environment we
decided to work with the following problem statement for this project.

Can knowledge learned in a reinforcement learning setting from a complex environment, be leveraged to
learn another task in a similar complex environment?

To create the best foundation for transfer learning, five tests were conducted with different
variations of the A3C reinforcement learning algorithm. The best performing agent on the
complex environment Starcraft II was chosen. We determined the A3C, also used in the initial
Starcraft II tests by DeepMind[6], to be the agent best suited of the tested agents, and modified
it to be transfer learning compatible.

For transfer learning we have used the network architecture progressive networks to determine
if knowledge can be leveraged in a complex environment. Progressive networks are ideal for
this, as it avoids catastrophic forgetting and thereby allows us to calculate an approximation
of whether or not an agent leverages previous knowledge, and where the agent leverages the
previously learned knowledge. Progressive networks are also ideal since they can leverage
knowledge learned from multiple tasks while solving one task, which is Starcraft II has great
potential to produce and utilize knowledge from multiple tasks, as the environment is similar
across minigames, and minigames can be constructed as needed.

We tested our progressive network solution on three different domains. The first two domains
were Cartpole[3], and Sonic The Hedgehog[4]. These were mainly used to prove that progressive
networks and our implementation of them was functional and that we could perform ALS
analysis on them. Based on these tests we found that our progressive network implementation
was in fact functional, and able to leverage knowledge from previously learned tasks.

When testing on the high complexity game of Starcraft II, the progressive networks showed
faster convergence to a higher average reward for one of three tests. We determined that faster
convergence or a higher average reward is not always achieved even though the agents were
able to leverage knowledge from different columns on all the minigames, as they did not all
converge faster or to a higher average reward.

Based on our findings, we can conclude that it is indeed possible to transfer knowledge on a
complex environment such as Starcraft II, but that this does not always improve the end result,
and there is definitely potential for future work using progressive networks.

70

4.2. Future Work 71

4.2 Future Work

We have concluded that transfer learning is possible in complex environments. More tests are
needed for further conclusions, so more comprehensive testing is needed, and other things that
could be interesting to see would be how longer training times affect the agent, and it could also
be interesting to test the progressive networks on another kind of complex environment;

Longer & More Resourceful Training We would like to work with longer training times, if the
base agent can be improved and better features learned, there might be a better possibility for
transferring knowledge.

In the SC2LE paper from Google Deepmind[6], they tested every agent with 100 different hyper
parameters settings, where we started out with 5 sets of hyper parameters, and narrowed it
down in the final results to one set of hyper parameters. Gooogle Deepmind also ran every
test for 600 million steps instead of our 50 million steps, and they used 64 workers, where
we used 6-8. This means that we train our agents less and with less diverse experience than
DeepMind, and since their average reward results were higher then ours, there could be more
or better features for the agents to learn given more time. However the agents we made did get
much better than the random agents, meaning they did learn and they are functional, but could
potentially be trained even further.

New Complex Environments It would be interesting to see how the progressive networks would
perform in other complex environments. Starcraft II is very complex in the sense that there are
many actions with different impact on the games, and high precision locations that could have
very different outcome depending on the imprecision in the location output. However the tasks
of most of our mini-games are quite simple, for example: pick a marine, move to a point. It
would be interesting to see what changes, if the action space and input space were simpler
but the strategy required was more complicated and how that would influence the transfer
happening in progressive networks which we have tested in this report.

Bibliography
[1] DeepMind. Progressive Neural Networks. 01-03-2018. url: https://arxiv.org/pdf/1606.

04671.pdf.

[2] Opstad et al. SC2AI - Reinforcement Learning in StarCraft II. 01-03-2018. url: http://
projekter.aau.dk/projekter/da/studentthesis/sc2ai--reinforcement-learning-
in-starcraft-ii(59829e57-446c-4890-9b03-dc0bb6a959a6).html.

[3] OpenAI. Gym. 22-04-2018. url: https://gym.openai.com/envs/CartPole-v1/.

[4] sonicretro. Sonic the Hedgehog Genisis -Sonic Retro. 22-04-2018.url:http://info.sonicretro.
org/Sonic_the_Hedgehog_Genesis.

[5] Sebastian Ruder. Transfer Learning - Machine Learnings next frontier. 22-04-2018. url: http:
//ruder.io/transfer-learning/.

[6] Blizzard DeepMind. StarCraft II: A New Challenge for Reinforcement Learning. 16-09-2017.
url: https://deepmind.com/documents/110/sc2le.pdf.

[7] DeepMind. PySC2 Environment. 16-09-2017. url: https://github.com/deepmind/pysc2/
blob/master/docs/environment.md.

[8] David Silver. Lecture 9: Exploration and Exploitation. 23-04-2018. url: http://www0.cs.
ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf.

[9] Vinyals et. al. A Study on Overfitting in Deep Reinforcement Learning. 23-04-2018. url: https:
//arxiv.org/pdf/1804.06893.pdf.

[10] Katerina Fragkiadaki. Markov Decision Processes. 12-03-2018. url: https://www.cs.cmu.
edu/~katef/DeepRLControlCourse/lectures/lecture2_mdps.pdf.

[11] David Silver. Lecture 2: Markov Decision Processes. 12-03-2018. url: http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf.

[12] Mnih et al. Playing Atari with Deep Reinforcement Learning. 19-10-2017. url: https://www.
cs.toronto.edu/~vmnih/docs/dqn.pdf.

[13] Xiaoli Z. Fern. Reinforcement Learning. 23-04-2018. url: http://web.engr.oregonstate.
edu/~xfern/classes/cs434/slides/RL-1.pdf.

[14] Sutton and Barto. Reinforcement Learning: An Introduction. 26-04-2018. url: http : / /
incompleteideas.net/book/the-book-2nd.html.

[15] Nahum Shimkin. Reinforcement Learning – Basic Algorithms. 30-04-2018. url: http://
webee.technion.ac.il/shimkin/LCS11/ch4_RL1.pdf.

[16] Milica Gasic. Actor-critic methods. 01-05-2018. url: http://mi.eng.cam.ac.uk/~mg436/
LectureSlides/MLSALT7/L5.pdf.

[17] Arthur Juliani. Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous Actor-
Critic Agents (A3C). 15-10-2017. url: https://medium.com/emergent-future/simple-
reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2.

[18] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In:
arXiv preprint arXiv:1602.01783 (2016).

72

https://arxiv.org/pdf/1606.04671.pdf
https://arxiv.org/pdf/1606.04671.pdf
http://projekter.aau.dk/projekter/da/studentthesis/sc2ai--reinforcement-learning-in-starcraft-ii(59829e57-446c-4890-9b03-dc0bb6a959a6).html
http://projekter.aau.dk/projekter/da/studentthesis/sc2ai--reinforcement-learning-in-starcraft-ii(59829e57-446c-4890-9b03-dc0bb6a959a6).html
http://projekter.aau.dk/projekter/da/studentthesis/sc2ai--reinforcement-learning-in-starcraft-ii(59829e57-446c-4890-9b03-dc0bb6a959a6).html
https://gym.openai.com/envs/CartPole-v1/
http://info.sonicretro.org/Sonic_the_Hedgehog_Genesis
http://info.sonicretro.org/Sonic_the_Hedgehog_Genesis
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
https://deepmind.com/documents/110/sc2le.pdf
https://github.com/deepmind/pysc2/blob/master/docs/environment.md
https://github.com/deepmind/pysc2/blob/master/docs/environment.md
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf
https://arxiv.org/pdf/1804.06893.pdf
https://arxiv.org/pdf/1804.06893.pdf
https://www.cs.cmu.edu/~katef/DeepRLControlCourse/lectures/lecture2_mdps.pdf
https://www.cs.cmu.edu/~katef/DeepRLControlCourse/lectures/lecture2_mdps.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/RL-1.pdf
http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/RL-1.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://webee.technion.ac.il/shimkin/LCS11/ch4_RL1.pdf
http://webee.technion.ac.il/shimkin/LCS11/ch4_RL1.pdf
http://mi.eng.cam.ac.uk/~mg436/LectureSlides/MLSALT7/L5.pdf
http://mi.eng.cam.ac.uk/~mg436/LectureSlides/MLSALT7/L5.pdf
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

Bibliography 73

[19] Kevin Swersky Geoffrey Hinton Nitish Srivastava. “Overview of mini-batch gradient
descent”. English. 9-10-2017. 2016. url: https://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf.

[20] deeplearning4j. A Beginner’s Guide to Recurrent Networks and LSTMs. 10-01-2018. url:
https://deeplearning4j.org/lstm.html.

[21] Tensorflow. Class ConvLSTM2D. 03-06-2018. url: https://www.tensorflow.org/api_
docs/python/tf/keras/layers/ConvLSTM2D.

[22] Tensorflow. Class LSTM. 21-05-2018. url: https://www.tensorflow.org/api_docs/
python/tf/keras/layers/LSTM.

[23] Juan C. Caicedo Angie K. Reyes and Jorge E. Camargo. Fine-tuning Deep Convolutional
Networks for Plant Recognition. 01-05-2018. url: http://ceur-ws.org/Vol-1391/121-
CR.pdf.

[24] Tajbakhsh et. al. Convolutional Neural Networks for Medical Image Analysis: Full Training or
Fine Tuning? 01-05-2018. url: https://arxiv.org/pdf/1706.00712.pdf.

[25] sonicretro. devsisters/DQN-Tensorflow: Tensorflow implementation of human level control, through
Deep Reinforcement learning. 22-04-2018. url: https://github.com/devsisters/DQN-
tensorflow.

[26] Daniel Takeshi. Going Deeper Into Reinforcement Learning: Understanding Deep-Q-Networks.
23-10-2017. url: https://danieltakeshi.github.io/2016/12/01/going- deeper-
into-reinforcement-learning-understanding-dqn/.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://deeplearning4j.org/lstm.html
https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
http://ceur-ws.org/Vol-1391/121-CR.pdf
http://ceur-ws.org/Vol-1391/121-CR.pdf
https://arxiv.org/pdf/1706.00712.pdf
https://github.com/devsisters/DQN-tensorflow
https://github.com/devsisters/DQN-tensorflow
https://danieltakeshi.github.io/2016/12/01/going-deeper-into-reinforcement-learning-understanding-dqn/
https://danieltakeshi.github.io/2016/12/01/going-deeper-into-reinforcement-learning-understanding-dqn/

Chapter A: Transfer

74

A.1. Three column progressive network 75

A.1 Three column progressive network

Figure A.1: Visual representation of our progressive StarCraft II network with three columns

	Title page
	Contents
	1 Introduction
	1.1 StarCraft II
	1.1.1 PySC2

	1.2 Deep Reinforcement Learning
	1.2.1 Markov Decision Process
	1.2.2 Deep Neural Networks
	1.2.3 Learning Methods
	1.2.4 Actor-Critic
	1.2.5 Transfer Learning

	1.3 Problem Statement

	2 Agents
	2.1 A3C Agent
	2.1.1 Approximating Episodic Advantage Actor-Critic
	2.1.2 Asynchronous Advantage Actor-Critic
	2.1.3 Network Architecture

	2.2 SA3C Agent
	2.2.1 Network Architecture

	2.3 Memory Agents
	2.3.1 Network Architecture

	2.4 Tests and Findings
	2.4.1 Testing Procedure
	2.4.2 Results
	2.4.3 Test Discussion
	2.4.4 Test Conclusion

	3 Transfer Learning
	3.1 Transfer Learning Methods
	3.2 Progressive Networks
	3.2.1 Transfer Analysis

	3.3 Progressive Network Implementation
	3.3.1 ALS Implementation

	3.4 Tests and Findings
	3.4.1 Proof of concept
	3.4.2 StarCraft Test

	4 Evaluation
	4.1 Conclusion
	4.2 Future Work

	A Transfer
	A.1 Three column progressive network

