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Chapter 1
Introduction

Language recognition refers to the process of automatically detecting the language
spoken in a speech utterance. Its applications range across customized speech
recognition, multi-language translation, service customization and forensics (Ba-
hari et al. 2014). Language recognition is a similar task to speaker recognition.
The focus of research in the field has been on developing recognition methods to
improve the performance of general systems, while little attention has been given
to improving the noise-robustness of language recognition systems.

NIST Language recognition evaluations (LRE) has played an instrumental role
in driving language recognition research over the years and LRE constantly in-
creases the challenge level of its evaluations. The most recent LRE 2017 evaluation
(NIST 2017 Language Recognition Evaluation Plan 2017a) presents a new scenario
with a significant mismatch between training and evaluation data. The training
dataset consists of a large amount of narrow-band telephone speech, which is in
line with previous evaluations. However, the evaluation dataset consists of a com-
bination of narrow-band telephone data and wide-band data from Internet videos.
Furthermore, the LRE 2017 organizers provide a limited amount of in-domain de-
velopment data for model adaptation and calibration purposes. While telephone
speech contains low levels of noise and reverberation, it was observed that the
video audio data is severely degraded by babble noise, music and reverberation.
The LRE 2017 has both a fixed and an open training condition. Fixed training
conditions will be offered to allow cross-system comparisons and open training
conditions to understand the effect of additional and unconstrained amount of
training data on system performance (NIST 2017 Language Recognition Evaluation
Plan 2017b). This project will focus on the fixed training condition.

There is generally three approaches to make a system noise robust. First train
the system using noisy data, and second use data augmented with noise, and
thirdly remove the noise beforehand. Noisy training data is not available, which
leaves two choices of either augmenting the training data with noise or removing
the noise. The advantage of making a model that removes the noise is it could
be used by multiple systems. And it would, if it was perfect, spare the following
system from having to model noise. This project will focus on removing the noise.
Single-channel speech enhancement (SE) can be used as preprocessing to mitigate
the aforementioned degradation and reduce the mismatch between training and
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2 Chapter 1. Introduction

evaluation data. SE has been widely used as preprocessing for speech applica-
tions, such as automatic speech recognition (ASR) (Weninger et al. 2015), speaker
verification (Michelsanti and Tan 2017), mobile communications and hearing aids
(Kolbæk, Tan, and Jensen 2017). This project uses using single-channel SE because
the data is limited to a single-channel. The research questions posed on this project
is

1. What is the effectiveness of utilizing single-channel speech enhancement to
improve the noise-robustness of a language recognition system.

2. How can a speech enhancement system be train with only limited noise ex-
amples in the in-domain noisy video audio development data?

It has been experimentally shown that applying ideal binary mask in the time-
frequency domain is able to improve speech intelligibility of noisy speech signals
for both normal hearing and hearing impaired listeners with various noise types
(Wang et al. 2009). Various ideal ratio masks have become preferable over ideal bi-
nary mask in recent studies (Kolbæk, Tan, and Jensen 2017; Wang, Narayanan, and
Wang 2014; Erdogan et al. 2015). In (Lu et al. 2013; Xu et al. 2015) a DNN is trained
to predict clean speech from noisy speech without the use of a mask by casting it
as a regression problem. A long short-term memory (LSTM) network has shown to
outperform feed-forward DNN methods, when used as preprocessing for noise ro-
bust ASR (Weninger et al. 2015), and the bidirectional extension of LSTM (BLSTM)
achieves further improvement (Erdogan et al. 2015). This project follows the suc-
cess of the BLSTM SE method, and applies it to a language recognition system.
The BLSTM SE is processed in the time-frequency domain, but only deals with
the magnitude while the phase component remains corrupted, similar to the other
DNN-based SE methods. The method internally predicts a mask from BLSTM, and
the predicted mask is multiplied by the noisy speech magnitude, which yields the
enhanced magnitude. The network is trained with the mean square error criterion
between the clean and enhanced magnitudes. In BLSTM SE (and other DNN-
based enhancement), only additive noise is considered, where the noise source is
extracted from in-domain data with limited size in our setup. The effectiveness of
BLSTM SE on the language identification is evaluated by a state-of-the-art bottle-
neck i-vector LRE system, where BLSTM SE is used as preprocessing of the LRE
system (Richardson et al. 2018).

To validate the effectiveness of the BLSTM SE methods, it is compared with the
optimally-modified log-spectral amplitude (OM-LSA) speech estimator with the
improved minima controlled recursive averaging (IMCRA) noise estimator (Cohen
and Berdugo 2001), (Cohen 2003). OM-LSA is a well-known signal processing
method that does not require data-driven training and adaption stages.

The outline of the report is as such: Chapter 2 introduces the language recog-
nition system. Chapter 3 introduces the speech enhancement system. Chapter 4
contains the experimental setup and results. Chapter 5 is the conclusion and future
work.



Chapter 2
Language Recognition System

The purpose of this chapter is to describe the language recognition system used for
the experiments. The language recognition system is a state-of-the-art bottleneck i-
vector system (Richardson et al. 2018). The system is implemented in Kaldi (Povey
et al. 2011). The pipeline of the system can be seen in figure 3.1 with the proposed
preprocessing speech enhancement step added.

MFCC i-Vector 
ExtractorBNF GBE Calibratio

nSE

Figure 2.1: Proposed i-Vector language recognition system with single-channel enhancement. The
language recognition system takes the time domain speech signal as input and returns
for each language a log probability of the speech signal given the language. The system
consists of the following blocks: Speech Enhancement, Mel Frequency Cepstral Coeffi-
cient, BottleNeck Features, i-Vector Extractor, Gaussian classifier Back End, Calibration

The overall function of each step in the system can be described as:

• Speech enhancement removed noise from the input speech signal s(t).

• MFCC are features engineered for human speech time domain signals.

• BNF extracts features using a DNN utilizing a large time context window.

• i-Vector extractor extracts fixed length features for language recognition.

• The Gaussian classifier classifies languages from high level i-vector features.

• The Calibration is an affine transformation that ensures proper log probabil-
ities.

The steps MFCC, BNF, and i-vector extractor should be considered the front
end of the baseline language recognition system and GBE and calibration should
be the back end. The front end is responsible for extracting features and the back
end is responsible for the classification. The remaining section will explain the
individual steps outlined above.

3



4 Chapter 2. Language Recognition System

2.1 Speech Enhancement

The purpose of the speech enhancement system is to make the language recog-
nition system robust to noisy speech signals by removing the noise. This speech
enhancement step is not part of the baseline language recognition system. It takes
the speech signal s(t) in the time domain and returns the enhanced speech signal
ŝ(t) in the time domain. The speech enhancement block is an independent prepro-
cessing step to the language recognition. This enables the use of an out of the box
speech enhancement system which eliminates the long training process or training
a speech enhancement system tailored to the language recognition task, languages,
and noise domain. The latter will be attempted in chapter 3 with a BLSTM model.

A classical speech enhancement signal processing algorithm should be used
for comparison with the BLSTM which is a DNN model. The baseline speech
enhancement system is the optimally-modified log-spectral amplitude (OM-LSA)
speech estimator with the improved minima controlled recursive averaging (IM-
CRA) noise estimator (Cohen and Berdugo 2001), (Cohen 2003). OM-LSA is a
well-known signal processing method that does not require data-driven training
and adaptation stages. It was recently used as a baseline in(Chazan, Goldberger,
and Gannot 2017).

2.2 Mel-Frequency Cepstral Coefficients

The purpose of the Mel-Frequency Cepstral Coefficients (MFCC) block is to extract
features from time domain speech. These features describe the overall shape of
the power spectral density, which is the energy as a function of the frequency, in
a time-frequency domain. The time-frequency domain consists of 25 millisecond
segments or frames with a 10 millisecond shift to the next segment. The MFCC has
many parameters, but most importantly is how many coefficients are kept in the
end corresponding to how much information is discarded. The MFCC extracting
features from human speech signals have been hand engineered by subject matter
experts (O’shaughnessy 1987). It relies on assumptions such as the power spectral
density is smooth and the dynamic range of the higher frequencies are higher than
the low frequencies, but not more important. Additionally, the energy of the higher
frequencies is lower, but less important because of it. The overall step of the MFCC
transform in the Kaldi implementation is as follows (Povey et al. 2011):

1. Optional: dithering, preemphasis, dc offset removal.

2. Windowing

3. Compute the power spectrum with the FFT.

4. Compute the energy in each bin of the mel filter bank.

5. Take the cosine transform of the log energy.

6. Keep the specified first number of coefficients.
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The parameters used are: dithering, preemphasis, dc offset removal, windowing
with 25 millisecond frames shifted by 10 millisecond each time, 23 mel filters, and
20 MFCC kept.

MFCC has a history of use in the hidden Markov model automatic speech
recognition. The idea being these features are useful in predicting the phoneme
of each segment. The MFCC are used as input to a deep neural network. Deep
neural networks are not dependent on human engineered features. The idea is that
they learn the features they use from data in addition to the original task. With
every layer in a deep neural network it could learn higher level features or more
complicated deep features. The DNN could learn its deep features directly from
time domain frames input features.

This raises the question of why keep using it? Assuming MFCC is an optimal
input feature and a deep neural network is trying to learn the MFCC transform, it
might be a difficult transform to learn. One should also expect that it would require
more data and training time to learn features directly from lower level features
such as the time domain, than higher level MFCC features. If this is true and if
the MFCC is optimal or close to it then using MFCC features would be beneficial
to the model. On the other hand if the MFCC throws away vital information it
should be expected that it would be beneficial to dropping the MFCC in favor
of time domain frames or a more general time-frequency domain feature like the
spectrogram. The point being that these alternatives makes less assumption about
human speech signals. In any case the human engineered MFCC features are
still in use in this state-of-the-art system, which should give credit to the MFCC
assumptions. The different elements of the extraction of the MFCC will now be
described in the following section.

2.2.1 Human Speech Signal

Sound is variations in air pressure over time. Human speech sound can be divided
into three types of sound or phonemes, which is voiced, unvoiced, and plosive
(Deller Jr., Hansen, and Proakis 2000). Voiced sounds are made by pushing air past
relaxed vocal cords, such that they vibrate in a repeating pattern of opening and
closing. This produces quasi-periodic longitudinal air pressure waves in the vocal
tract. Quasi-periodic mean that the periods are irregular or flawed. Examples of
voiced sounds are the vowels and some consonants like ’/b/’, ’/d/’, ’/g/’ and
’/v/’. Unvoiced sounds are stochastic in nature, unlike the quasi-periodic voiced
sounds that are close to being deterministic. They are formed when the vocal
tract is constantly open. The process is analogous to white noise being filtered into
colored noise. Examples of unvoiced sound are ’/s/’ and ’/f/’. Plosive sounds like
’/p/’, ’/t/’ and ’/k/’ are formed by closing the vocal tract with the lips, tongue,
etc. and building up pressure before releasing it quickly.

A microphone is used to convert the sound wave signals to an analog electric
voltage signal. The Sound wave signals can be digitally represented with a wavefile
’.wav’ in the time domain, where the analog electric voltage signal is sampled with
a sampling frequency fs and a quantization of the amplitude. The waves fluctuate
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around zero, representing silence, with more extreme positive and negative values
corresponding to higher wave amplitudes and in turn louder sounds. It is possible
to see the change in volume over time, and recognize sound types, but it is difficult
to distinguish sounds within the same type from each other, in the time domain. At
the 5 second time scale of a human speech signal in figure 2.2 it is possible to see the
changes in volume and two long segments of silence. This sample will be reused
throughout this section for illustration purposes. At a much smaller time scale of
25 milliseconds the quasi-periodic pattern of the voiced sound ’/b/’ can be seen
in figure 2.3 with its corresponding frequency content in figure 2.4. At the same
time scale of 25 milliseconds the colored noise of the unvoiced sound ’/s/’ can be
seen in figure 2.5 with its corresponding frequency content in figure 2.6. It has
a much lower energy than the voiced sound, There is however a noticeable offset
away from zero, which has led to a noticeable energy at the zero Hz frequency. It
is however similar to the ’/b/’ in figure 2.4. Such offset can be an artifact of the
microphone recording. Things such as wind or breath can disturb the microphone
during recording. At the time scale of 100 milliseconds the word ’the’ with the
plosive sounds in the beginning can be seen in figure 2.7 with its corresponding
frequency content the entire word in figure 2.8. They are all clearly different from
each other.
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Figure 2.2: This illustrates a 5 second speech segment in the time domain using a 16-bit and 8000
kHz. The signal has been decoded from the 8-bit µ-law encoding. The signal has several
spoken words with pauses in between. The x-axis is time and the y-axis is amplitude of
the sound wave signal.
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Figure 2.3: This is a 25 millisecond sample of the voiced sound ’/b/’ in the time domain using a
16-bit linear PCM and 8000 Hz sampling. Note the quasi-periodic pattern. There is close
to 39 samples per quasi-period corresponding to a frequency of 205 Hz. Some of the
imperfections are the highest of the positive alternating peaks increasing amplitude and
other’s declining amplitude. Thirdly by the end the two negative peaks have become
equal in amplitude.

0 1000 2000 3000 4000
Frequency [Hz]

122
112
102

92
82
72
62
52
42

Po
we

r S
pe

ctr
al 

De
ns

ity
 [d

B]

Figure 2.4: This is the power spectral density of the voiced sound ’/b/’ in figure 2.3. The first peak is
around 210 Hz with the next at 415 Hz which corresponds to the fundamental frequency
and the second harmonic. The peaks are not exact due to noise and only 25 milliseconds
of data is being used.
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Figure 2.5: This is a 25 millisecond sample of the unvoiced sound ’/s/’ in the time domain using a
16-bit linear PCM and 8000 Hz sampling. The stochastic pattern is high frequency which
can be seen in figure 2.6. The amplitude is significantly smaller than the voiced sound
’/b/’ in figure 2.3. There is a large offset relative to the amplitude of the sound segment.
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Figure 2.6: This is the power spectral density of the unvoiced sound ’/s/’ in figure 2.5. There are no
peaks rather the energy is spread in the interval ranging from close to 2600 Hz to 4000
Hz. There is also significant energy at the lowest frequencies due to a relatively large
offset in figure 2.5.
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Figure 2.7: This is a 100 millisecond sample of the word ’the’ in the time domain using a 16-bit
linear PCM and 8000 Hz sampling. The plosive sound in the beginning has the largest
amplitude and a quasi-period and low frequency pattern can be seen at the end of the
word.
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Figure 2.8: This is the power spectral density of the word ’the’ in figure 2.7.
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2.2.2 Speech Signal Sample Rate

Most of the data available for this project is narrow-band telephone speech signal
that uses a sampling rate of 8000 Hz (NIST 2017 Language Recognition Evaluation
Plan 2017b) and quantization with µ-law or A-law 8-bit encoding. Because of lim-
ited data sampled at a higher frequency the sampling frequency fs of 8000 Hz is
used in this project, corresponding to 0.125 milliseconds between samples. By the
Nyqust-Shannon sampling theorem frequencies in the interval [0, 4000) Hz can be
represented. Human hearing is limited to 20000 Hz, but it is typically lower for
adults. Parts of the speech signal is lost (Pisoni and Remez 2004), but a higher
sample rate of 16000 Hz is only available for the newest data, and a choice is made
to down sample everything to 8000 Hz.
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Figure 2.9: The average power spectral density of the TIMIT corpus. Using a 512 Hann window
with no overlap. The average energy in the higher frequency bands decreases quickly,
especially considering the logarithmic scale.

What is lost by down sampling? The average power spectral density of human
speech sampled in 16000 Hz can be seen in figure 2.9. Only very little energy is lost
on average by using the 8000 Hz sampling frequency. The energy in the 4000-8000
Hz frequency band is much lower than the 0-4000 Hz frequency band. Despite its
low energy the 4000-8000 Hz frequency band might have variations from language
to language containing useful information for language recognition. The speech
signal is from the TIMIT corpus, specifically the training set that contains close to
4 hours of speech (Garofolo 1993). TIMIT consist of 16-bit 16000 Hz microphone
speech signal, which is a higher quality than the 8-bit µ-law or A-law 8000 Hz
narrow-band telephone speech signal. The narrow-band telephone speech signal
has in general been band-pass filtered to the 300-3400 Hz frequency band, which
help send more signals with a limited available analog transmission bandwidth
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(Recommendation G.191 STL-2009 Manual (11/09) 2009). The power spectral density
may be a biased estimate average human speech signal power spectral density.
The TIMIT corpus have 438 male and 192 female American speakers, and women
have a higher pitch than men (Archana and Malleswari 2015). Whether it differs
from the gender distribution of LRE17 is unknown. In addition„ the corpus has
a limited range of sentences 10 sentences being spoken per person. Two of the
sentences are identical, five of them drawn from a group of 450 sentences, and the
remaining three drawn from another group of 1890 sentences. There is a consider-
able overlap in the sentences compared to the LRE narrow-band telephone speech
signals, where the sentences are chosen at random in conversation. That however
does not guarantee that it is unbiased. To summarize the power spectral density
may biased, but the indecation is most of the speech signal energy is preserved
with the 8000 Hz sampling frequency. New language identification datasets with
higher sample rates are required to conclude if the energy lost is important.

2.2.3 Speech Signal Quantization

The signal amplitude is quantified with a pulse code modulation (PCM) where
each symbol corresponds to a quantization level. The simplest is linear PCM
where the quantization levels are uniformly spread. In this case a 16-bit signed
integer is used by assigning each of the integers in the interval (−215, 215 − 1)
which is (−32768, 32767) as a quantization level. The recorded sound waves fluc-
tuate around zero and waves with higher amplitudes reach higher negative and
positive values. Care has to be taken to ensure the signal amplitude is contained
within the quantization range or else the amplitude will be clipped to the smaller,
but highest quantization level.

Other encodings exist such as the logarithmic PCM µ-law and A-law. The dis-
advantage of a linear quantization is that the quantization error and thereby the
signal-to-noise-ratio will change with the amplitude of the speech signal. A lower
amplitude corresponds to a lower signal-to-noise-ratio. The amplitude of the hu-
man speech signal fluctuates, this will lead to a fluctuating quality. In the late
1960’s the two logarithmic quantization algorithms was developed making quanti-
zation noise more uniform and less dependent on the amplitude. The quantization
levels are denser closer to zero. These encodings are designed to compress human
speech recordings, for use in telephone applications, with a sample rate of 8000
Hz and 8-bits per sample, the bit-rate is 68 kbit/s (Recommendation G.191 STL-2009
Manual (11/09) 2009, Chapter 3). Most of the dataset used in training this model
was narrow-band telephone signals which has been compressed using these en-
codings. The logarithmic PCM µ-law and A-law are based on analog compression
characteristics. The compression characteristics for µ-law quantization is given by

c(x) =
log(1 + µ|x|)

1 + log(µ)
sign(x), −1 ≤ x ≤ 1 (2.1)

where µ is 255 because of the 8-bit choice and the range of x has been normalized
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to [−1, 1]. The compression characteristics for A-law quantization is given by

c(x) =


A|x|

1+log(A)
sign(x) if |x| ≤ 1

A
1+log(A|x|)

1+log(A)
sign(x) if 1

A ≤ |x| ≤ 1
(2.2)

where A = 87.56 as chosen by ITU and the range of x has been normalized to
[−1, 1]. The range of the compression characteristics is also in the interval [−1, 1].
The compression characteristics of µ-law is close to linear when the amplitude is
small, but A-law is linear (Recommendation G.191 STL-2009 Manual (11/09) 2009,
Chapter 3). A comparison of the two compression characteristics when the ampli-
tude is small can be seen in figure 2.10.

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
x

1.0

0.5

0.0

0.5

1.0

c(
x)
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Figure 2.10: This is a comparison of the two logarithmic PCM µ-law and A-law for small amplitudes.
c(x) is the compression characteristics which is a function of the amplitude x, which
has been normalized to the interval [−1, 1]. µ-law and A-law are similar for larger
amplitudes. A-law is a piecewise function and for smaller amplitudes within |x| < 0.011
it is linear. The compression of x is related to the derivative of c(x). A derivative of one
implies uniform quantization levels. When the derivative is smaller than one expansion
occurs and when it is larger than one compression of the quantization levels occurs.

A linear-piecewise approximation is used to convert the compression charac-
teristics to digital 8-bit encodings. The fist bit is a sign, the next 3 bits is the
identity of the linear-piecewise segment, and the remaining four is position in a
given segment. For µ-law (2.1) that results in 15 linear-piecewise segments, be-
cause of symmetry the one segment on either side of zero can be joined as one.
The 15 linear-piecewise approximation of the µ-law compression characteristics
can be seen in figure 2.11. For A-law (2.2) two segments on either side of zero can
be joined as one because of symmetry and the linear expression within |x| ≤ 1

A in
(2.2). The result is 13 linear-piecewise segments.
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Figure 2.11: The 8-bit µ-law linear-piecewise approximation can be seen with the circles marking the
connections. c(x) is the compression characteristics which is a function of the amplitude
x, which has been normalized to the interval [−1, 1]. There are 16 bins within in each
segment, except the middle which has 32. Each bin correspond to a µ-law quantization
level. The bin intervals are doubling in length with each interval away from zero. For
a 16-bit linear PCM input x the outer bins each contain 1024 linear PCM quantization
level.

To do the compression the tables of (Recommendation G.711 (11/88) 2009) con-
tains the details of the 8-bit linear-piecewise approximation of µ-law and A-law.
Decoding back to linear PCM can be done by table lookup or algorithmic conver-
sion. The sounds signal segments of ’/b/’, ’/s/’, and ’/t/’ from the figures 2.3,
2.5, and 2.7 look visually unchanged if quantized with 8-bit µ-law quantization.
As explained in figure 2.12 that would not have been the case for the sound ’/s/’
in figure 2.5. The lower amplitude of unvoiced sounds would be completely dis-
torted using 8-bit linear PCM. At the other end of the scale the voiced ’/b/’ sound
segment from 2.3 is scaled to the highest amplitude in figure 2.4, where it looks
visually unchanged, a testament to the logarithmic PCM quantization methods.

Quantization to the 8-bit µ-law and A-law incur an error can be referred to as
the quantization noise. There is also a quantization error in 16-bit linear PCM,
but it is 28 = 256 times less than 8-bit linear PCM. If the quantization noise is
correlated with the signal, then harmonic distortions are introduced that corrupt
the spectrum of the signal. Kaldi uses a process called dithering which adds noise
to the signal such that the quantization noise appears uncorrelated with the signal.
The harmonic distortions are reduced, but white noise is added to the spectrum
instead. This is relevant when quantizing or encoding with fewer quantization
levels.

float barrier
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Figure 2.12: This is a comparison of 16-bit linear PCM versus 8-bit µ-law quantization encoding at
low amplitudes. The speech segment used is from figure 2.5 and is a 25 milliseconds
sample of the unvoiced sound ’/s/’ in the time domain using a 16-bit linear PCM and
8000 Hz sampling. The 8-bit µ-law samples in orange is on top of the 16-bit linear PCM
samples, but 8-bit linear PCM would only have had (28 · 0.06)/2 ≈ 8 quantization levels,
but 8-bit µ-law has 95 quantization levels available.
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Figure 2.13: This is a comparison of 16-bit linear PCM versus 8-bit µ-law quantization encoding at
high amplitudes. The speech segment used is from figure 2.5 and is a 25 milliseconds
sample of the voiced sound ’/b/’ in the time domain using a 16-bit linear PCM and
8000 Hz sampling. The 8-bit µ-law samples in orange is on top of the 16-bit linear PCM
samples, but 8-bit linear PCM would only have had 256 16-bit linear PCM values per
quantization level at the edge, but 8-bit µ-law has 1024.
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2.2.4 Preemphasis

By applying a digital high-pass filter before further processing emphasis is put on
the higher frequencies, which have a lower energy in human speech signal. The
filter also reduces the speech signal offset found in the ’/s/’ sound signal segment
in figure 2.5. The filter is defined as

yn = xn − 0.97 · xn−1 (2.3)

where yn is the output sample n and xn is the input sample n. Its frequency
response is shown in figure 2.14. The filter has one zero at 0.97 and is a finite
impulse response filter of order 1. The filter has a gain of 0.03 at 0 Hz and a gain
of a half at 650 Hz and a gain of 1 at 1350 Hz and gain of 1.97 at 4000 Hz. The
effect of preemphasis on the power spectral density of a speech signal segment can
be seen in figure 2.15.
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Figure 2.14: This is the frequency response of the preemphasis digital FIR filter. It is a high-pass
filter meant to be used on the time domain speech signals.

Preemphasis is a computational cheap normalization method. It could be re-
placed with a full normalization, but it is still used today in the Kaldi toolbox
(Povey et al. 2011). Normalization can be used to ensure all features have the
same importance. Machine learning algorithms such as deep neural networks of-
ten use a full normalization of its input dataset. This could be rescaling or mean
and variance removal. This is very expensive compared to applying the 1. order
digital high-pass filter. Preemphasis would not have an effect on relative power
between the low and high frequencies if such normalizations were used, if the nor-
malization was used in an appropriate domain where the relative importance of
the frequencies can be changed. For a simple example where this can not be done,
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Figure 2.15: This is a comparison of the average power spectral density of the speech signal from
2.2 before and after applying the preemphasis digital FIR filter in equation (2.3). The
preemphasized signal has almost lost energy at the lowest frequencies especially at 0
Hz. The higher frequencies have been amplified, but they are still weaker than the
lower frequencies.

take total energy of the signal then the relative importance of energy from only a
subset of the frequencies can not be increased.

Does all the languages behave in the same way as the small 5 second speech
signal sample in figure 2.15? The average power spectral density of the TIMIT
corpus in figure 2.9 showed that the average spectral power of the English language
was lower for the higher frequencies, with more than a order of magnitude. To
verify that this is also the case for all the other languages in the language groups
the average power spectral density for all the languages is shown in figure 2.16.
All the languages show the same declining trend. There is quite a bit of variety
among the languages between 3400 Hz and 4000 Hz. Some languages seems to be
dominated with narrow-band telephone data that have been low-pass filtered to the
300-3400 Hz frequency band. Data for some of the languages have been collected
from multiple sources, that might explain some the differences in the 3400-4000 Hz
frequency band (NIST 2017 Language Recognition Evaluation Plan 2017b).

see table for the language groups,
Why does the languages have low average power spectral density in the higher

frequencies? The unvoiced ’/s/’ sound signal sample in figure 2.5 was shown to
have most of its energy in the 2500-4000 Hz band. That segment has considerably
lower energy than the voiced ’/b/’ sound signal sample in figure 2.3. Is the average
power spectral density in the higher frequencies low because sounds there have
lower energy, or is the average low because sounds in the higher frequencies are a



18 Chapter 2. Language Recognition System

0 1000 2000 3000 4000
Frequency [Hz]

90

80

70

60

50

Po
we

r S
pe

ctr
al 

De
ns

ity
 [d

B]

Arabic
English
Iberian
Slavic
Chinese

Figure 2.16: This is a comparison of the average power spectral density of the speech signal from in
the LRE17 training set. The languages are color coded with the five language clusters
of the LRE17 training set. The mean of the average power spectral densities falls from
about -53 dB to -73 dB in the interval 500 Hz to 3400 Hz. That is an order of magnitude
per 1450 Hz. Each language uses up to 12 hours speech signals with a few exceptions,
due to less data being available. For each language hours of speech signals has been
segmented into 32 millisecond segments with no overlap. The average power spectral
density is calculated using the resulting 127 DFT bins from each segment.

rare occurrence? Figure 2.17 shows that the higher frequencies have lower energy
and that their highest energy follows the same declining trend as all the languages
in figure2.16. The figure uses the American English, but the same trend is assumed
to be true for the other languages. Sounds in the higher frequencies might also be
less commonly occurring, but the same trend of 20 dB decline in energy matches
the observations of 2.16. In summation preemphasis increases the relative energy of
the lower energy high frequency sounds in the speech signals of all the languages.

float barrier
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Figure 2.17: This is the distribution of power in the power spectral density of the American-English in
the LRE17 training set. The rate of occurrence values are plotted in a log scale, because of
the many empty segments caused by silence and sounds being sparse in the frequency
domain. The 12 hours of the speech signals has been segmented into 32 millisecond
segments with no overlap. The power spectral density for each segment is calculated
in dB. A 20 bin histogram has been calculated for each of the 127 DFT frequency bins,
and the values have been smoothed using quadratic polynomial interpolation. There is
a declining trend of the energy with higher frequency.

2.2.5 Time-Frequency Domain

Speech can also be represented in the time-frequency domain using the discrete
short-time Fourier transform (STFT). This has already been done implicitly dur-
ing the power spectral density calculations before the averaging across the frames.
The time domain representation of speech signals is a correlated and dense rep-
resentation of speech, but the time-frequency representation is sparse. This time-
frequency domain is called the power spectrogram, or spectrogram for short, when
the magnitude is squared of the STFT values. Each time step is referred to as a
frame and it corresponds to a column of the spectrogram containing a power spec-
trum. The spectrogram is plotted in figure 2.18. With the spectrogram the sounds
can be differentiated by their short-time frequency content across time.

The STFT consists of first windowing sound segments into frames, comput-
ing the power spectrum for each frame, and then stacking the power spectrums
as columns into a time-frequency matrix. The purpose of the windowing is to
make stationary speech signal frames. Human speech signals vary by phoneme,
but there is also a transition between the phonemes. This means that the human
speech signal is non stationary and that the power spectrum changes over time.
What would happen if the power spectrum was to be computed on a non station-
ary signal? Assuming that it consists of multiple sounds that by themselves are
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Figure 2.18: This figure illustrates the spectrogram of a 5 second speech segment which is in the
time-frequency domain. It is the same speech segment as seen in the time domain in
figure 2.2. Time is still on the x-axis, but the y-axis now has frequency. There are 129
frequency bins per frame and the color shows the log power of a frequency bin at that
given time frame. A pattern can be seen that changes or gradually evolves with each
phoneme in the words.

stationary, it would be similar to computing a power spectrum of several added
stationary signals. Ignoring the transitions between sounds, there is still the mat-
ter of nonaligned or opposite phases that might cancel out energy from the power
spectrum. The analogy tells us that parts of the human speech signal would be av-
eraged and detailed information would be lost. Human speech can be assumed to
be stationary for short 30-40 millisecond segments (Oppenheim and Schafer 2014)
at the time. In Kaldi 25 milliseconds is used as the frame length (Povey et al. 2011).
That corresponds to 200 samples with a sample rate of 8000 Hz.

Each frame is multiplied element wise with a window to remove discontinu-
ities. The discontinuities come from the periodicity assumptions that the discrete
Fourier transform (DFT) will use later. A window is in general highest at the center
and goes towards zero at the edges, where the discontinuities have been introduced
by segmenting (Oppenheim and Schafer 2014). This means that most of the signal
is lost at the edges of the window. To avoid losing information more of the signal
can be preserved by overlapping the frames. The Kaldi uses a 15 millisecond over-
lap corresponding to a 10 millisecond shift of each frame (Povey et al. 2011). With
a sample rate of 8000 Hz the frames are shifted 80 samples. This is illustrated in
figure 2.19. As an optional step the dc offset, which is mean amplitude shift from
zero, is removed now. The samples sm from the signal vector sn that belonging to
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the ith frame is written as

si,n = svi+n, m = 0, 1, . . . , N − 1

where n is the sample number within each frame, N = 200 is the number samples
per frame, and v = 80 is the frame shift in samples. The frame matrix si, m needs
to have all the frames be the same length the signal is zero padded which is to say
extended with zeros such that signal length M

M = N + v(I − 1), I ∈ Z>0

where I is the number of frames, with i = 0, 1, . . . , I − 1. It can found by

I = max

(
1,

⌈
M− N + v

v

⌉)
.

The time domain human speech signal has now been divided into discrete time
step frames, with i denoting the time step.

Figure 2.19: This figure illustrates windowing by plotting several windows and windowed segments
called frames under the speech signal, with a shared time x-axis. Below the speech
signal are several red windows overlapping by half. The next three signals are the
frames, which is the result of multiplying each of the first 3 windows in turn with the
speech signal. This figure is taken from the author’s previously graded work.

differentite power spectrum desity as an estimate, and the power spectrum as
the other, also named the periodegram

Kaldi uses the window referred to as Povey (Povey et al. 2011) which is

wn =

(
0.5− 0.5 ∗ cos

(
n2π

N

))0.85

, n = 0, 1, . . . , N − 1
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where N = 200 is the window length and equal to the frame length. The window
is multiplied element wise with each frame. The next step is calculate the power
spectral density by applying the discrete Fourier transform defined as

Definition 2.1 (Discrete Fourier Transform)
The discrete Fourier transform (DFT) of the signal vector xn, of length N, is
defined as

DFT(xn) = Xk =
N−1

∑
n=0

xne−j 2π
N kn, k = 0, 1, . . . N − 1,

where j2 = −1 and Xk is a vector the DFT coefficients (Oppenheim and Schafer
2014).

When the DFT is applied separately to each windowed frame the result is the
short-time Fourier transform. Then the time-frequency domain is formed with
the frames being a function of time and the DFT coefficients being a function of
frequency. The DFT coefficients are complex numbers that can be split into a
magnitude and a phase. The phase is discarded and only the magnitude that has
information about the energy in the time-frequency is kept. For every frame i the
one sided power spectral density is calculated as

Pi,k =
2
N
|DFT(si,n ◦wn)|2, i = 0, 1, . . . , I − 1

where ◦ is the element wise multiplication operator and only first half of the sym-
metric power spectrum is kept (Kay 2006). The result is the Spectrogram Pi,k, a
(I × N/2 + 1) matrix which can be seen in figure 2.18.

2.2.6 Mel Filter Bank

The mel filter bank smooths the frequency envelope of each frame and compresses
resolution of the high frequencies. The assumption is that the high frequencies
of human speech signals only contain low resolution information. This could be
justified by the fact that the resolution of the human ear is less sensitive at high
frequencies (O’shaughnessy 1987). That a humans ability to differentiate or notice
two tones with separate frequency is worse at higher frequencies. The mel scale is
a function of frequency as defined by (Povey et al. 2011) is

Mel( f ) = 1125 log
(

1 +
f

700

)
(2.4)

where f is the frequency in Hz and the inverse is

Mel−1(u) = 700
(

exp
( u

1125

)
− 1
)
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where u is the mel. There is more than one mel scale because it is an approximation
of experimental data. The mel scale Mel( f ) in equation (2.4) is plotted in figure
2.20. The mel filter bank is constructed by triangle filters with the corners being
uniformly separated in the mel scale. When converted back to Hz they will have
a nonlinear separation distance. Kaldi uses 23 triangle filter (Povey et al. 2011),
which is close to a 4.4 times reduction of the frequency resolution. The triangle
filter uses the center points of the adjacent triangles filters as corners, which is to
say they overlap by half. The outer edges of the triangle filters are chosen to be 20
Hz and 3700 Hz. The center points including the outer edges are

lt = {Mel(20) + t∆|t = 0, 1, T + 2}, ∆ =
Mel(3700)−Mel(20)

T + 1
ct = {Mel−1(ct)|t = 0, 1, T + 2}

where the points lt is in mel and uniformly separated. ct is in Hz. The center
points including the outer edges can also be seen in figure 2.20. The triangle filters
magnitude frequency response of the mel filter bank is defined as

Ht( f ) =


0 if f ≤ ct−1
f−ct−1
ct−ct−1

if ct−1 ≤ f ≤ ct−1
ct+1− f
ct+1−ct

if ct ≤ f ≤ ct+1

0 if f ≥ ct+1

, t = 1, 2, . . . , T (2.5)

note that their magnitude frequency response sum to one between them, such that
the energy is preserved.

These triangle filters are defined in continuous frequency and needs to be sam-
pled to match the N frequency bins of the spectrogram.{

fs
k
N

∣∣∣∣k = 0, 1,
N
2

}
where N is even, when odd the endpoint of k will (N − 1)/2. The center points
can be rounded to the nearest frequency bin to have those bins have a magnitude
frequency response of one, and the rest have rational numbers. The magnitude
frequency response of the filter can be seen in figure 2.21. The sampled mel filters
bank is

Hk,t = Ht

(
fs

k
N

)
, k = 1, 2, . . . ,

N
2

, t = 1, 2, . . . , T

and it is a (N/2 + 1× T) matrix with each row consisting of magnitude and the
frequency response of a triangle filter. The filter bank features can be calculated by
matrix multiplication

Ei,t = Pi,k Hk,t

where Ei,t is a (I × T) matrix composed of the rows of frames containing the cor-
responding filter bank features. The sparseness of the triangle filter bank from
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Figure 2.20: This is the mel scale as defined in equation (2.4). The orange circles represent the edges
of the magnitude frequency response of the triangle mel filter bank. The triangle filters
are each of the three consecutive points. The triangle filters are uniformly placed in the
mel scale, but not in Hz.

equation (2.5) have not been utilized to save computation by matrix multiplication.
The filter bank features seen in figure 2.22 correspond to the spectrogram in figure
2.18.

latex newcommand move caption up on all figure and clip some white space

2.2.7 Discrete Cosine Transform

The last step of the MFCC, the discrete cosine transform (DCT) that further reduces
the dimensionality which can help due to the curse of dimensionality. The curse of
dimensionality has two sides. The first is that more features require more data to
fit properly. The second is that the complexity in big O notation of many machine
learning algorithms is worse than linear. Growing computational power is reduc-
ing this restriction. The DCT also produces decorrelated or whitened features from
the more correlated mel power spectrum. The differences can be seen in figures
illustrating the mel filter bank features 2.22 and the MFCC features 2.23. The DCT
is defined

Definition 2.2 (Discrete cosine Transform)
The discrete cosine transform (DCT) of the real signal vector xn, of length N, is
defined as

DCT(xn) = Ck =
N−1

∑
n=0

xn cos
(

π

N

(
n +

1
2

k
))

k = 0, 1, . . . , N − 1
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Figure 2.21: This is the mel filters used for the mel filterbank calculation. They are sparse and only
smooth the power spectrum locally. The center points have been rounded to the nearest
spectrogram frequency bin.

where Ck is a vector the DCT coefficients.

The DCT defined here is known as DCT-II. The DFT assumes the signal to be
periodic, but the DCT-II assumes the boundary to be even around n = − 1

2 and
n = N − 1

2 . The assumption holds true for the mel power spectrum, but not the
power spectrum as it is even around the zeroth coefficient corresponding to 0 Hz.

The DCT is applied to log of every row of Ei,t to get the DCT coefficient for
every frame. The dimensionality is reduced by keeping the first q coefficient which
in this case is 20. The first q coefficients are kept and the remaining T − q coeffi-
cients corresponding to fast changes in the mel power spectrum are discarded, as
to further use the smoothness assumption of the power spectrum and only repre-
sent its general shape. The MFCC features can be seen in 2.23. There is no longer
a clear visible pattern as in mel filter bank features in figure 2.22.
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Figure 2.22: This figure illustrates the filter bank features of a 5 second speech segment. It is the
same speech segment as seen in the time domain in figure 2.2. Time is still on the x-
axis, but the y-axis now has the frequency in mel. There are 23 filter bank coefficients
per frame and they are plotted in a log scale. A pattern can be seen that changes or
gradually evolves with each phoneme in the words, similar to the spectrogram in figure
2.18.
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Figure 2.23: This figure illustrates the MFCC features of a 5 second speech segment. It is the same
speech segment as seen in the time domain in figure 2.2. Time is still on the x-axis, but
the y-axis now has MFCC. There are 20 MFCC per frame. The first coefficient has been
omitted because of it large scale.
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2.3 Bottleneck Features

The purpose of the bottleneck features block is to use the modeling abilities of
deep neural networks with a large time context to discover and exploit structures
in data to make information dense features. This is done by forcing it to move
information though a bottleneck layer. The way to succeed at this is by encoding
as much information as possible into this layer and decoding it on the other side.

Phonetic discriminant bottleneck features (BNF) is obtained from the MFCCs.
This means that the model is trained to classify phonemes or rather senone acoustic
units, which is phonemes and the many possible transitions from one phoneme to
another. After the bottleneck layer the network has to decode all the information
it can from it to classify the senone acoustic units. The classification task is not
the important part. It is just an simple label that serves as a need to discover and
encode structures in the data to predict the label. The idea is similar to the auto
encoder concept, where the labels are the input and a bottleneck layer forces the
discovery of structures in the data that can be used to encode the bottleneck layer.
To calculate the bottleneck features give the MFCC sequence as input and extract
the activation of the bottleneck layer yielding the sequence of BNFs.

The bottleneck network was trained on 1800 hours of Fisher English using Kaldi
(Povey et al. 2011). The network consisted of 7 hidden layers, the 6th layer was an
80 dimensional linear bottleneck layer; the rest were Time delay neural network
(TDNN) (Waibel et al. 1990) layers with p-norm activations with input/output
dimension equal to 3500/350. The output layer was a softmax that classifies 5577
senone acoustic units. Short-term mean and variance normalization was applied
with a 3-second sliding window and silent frames were removed.

TDNN

2.4 i-Vectors

remove we The i-vector paradigm (Dehak et al. 2011) transforms the sequence of
BNFs into a fixed-dimensional embedding. Before this step the sequences would
vary depending on their length. As an example the video audio all have the orig-
inal length of their corresponding videos. The fixed-dimensional embedding is
useful as it allows the use of standard classification algorithms.

Each speech segment is modeled by a Gaussian mixture model (GMM) whose
super-vector mean M is assumed to be

Ms = m + Tws (2.6)

where m is the GMM-UBM mean super-vector, T is a low-rank matrix and w is a
standard normal distributed vector. M defines the total variability space, i.e. the
directions in which the UBM can move to adapt it to a specific segment. The
GMM-UBM represents the speaker-independent distribution of feature vectors.
The maximum a posteriori (MAP) point estimate of w is the i-vector embedding.
The GMM-UBM uses 2048 clusters with full covariance and the i-vector embed-
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ding has a length of 600 (Richardson et al. 2018). The i-vector extractor is trained
in Kaldi (Povey et al. 2011)

2.5 Gaussian Back-End (GBE) with Domain Adaptation

A linear Gaussian classifier was used to compute the language log-likelihood scores
from the i-vectors. This back-end models each class with a Gaussian where the
within-class covariance matrix is shared across languages. The weight of each
language was equalized in the covariance estimation. There are 14 languages in
LRE17.

For domain adaptation, the a priori back-end means and covariances were com-
puted on out-domain data and applied Maximum a posteriori (MAP) adaptation
using in-domain data. The adaptation equations for the Gaussian classifier are

µl = αlµMLl
+ (1− αl)µ0l

l = 1, . . . , L (2.7)

SW =
1
L

L

∑
l=1

[βlSMLl + (1− βl)S0

+βl(1− αl)
(

µMLl
− µ0l

) (
µMLl

− µ0l

)T
]

(2.8)

where

αl =
Nl

Nl + rµ
βl =

Nl

Nl + rW
; (2.9)

L is the number of languages, Nl is the number of samples of language l; µ0l
and

S0 are the prior means and covariance; µMLl
and SMLl are the maximum likelihood

means and covariances for language l computed on the in-domain data; and rµ and
rW are the relevance factors.

2.6 Calibration

Finally, a linear calibration function was applied to convert the Gaussian back-end
scores into well-calibrated log-likelihoods. The calibration function had a language
dependent bias and a common scaling parameter, and was trained using multi-
class logistic regression.



Chapter 3
Speech Enhancement System

3.1 Speech Enhancement system

3.1.1 Speech enhancement system evaluation

To verify if the SE model itself works, it should be evaluated with a listening test to
fully evaluate the performance. However, to quickly and cheaply evaluate devel-
opment work, a number of objective algorithms are used instead. These algorithms
are designed to emulate human evaluation of SE, with a higher score being better.
The first is perceptual evaluation of speech quality (PESQ) which is meant to em-
ulate human evaluation of the pleasantness of listening to the speech audio (Rix
et al. 2001; ITU-T 2005). The PESQ score is defined in the interval [−.5, 4.5]. An-
other is the short-time objective intelligibility measure (STOI) (Taal et al. 2011) and
the extended STOI (eSTOI) (Jensen and Taal 2016) meant to emulate human word
comprehension, i.e. a human word error rate if you will. They are defined in the in-
terval [0, 1]. Compared with the above measures, signal-to-distortion ratio (SDR) it
aims to evaluate the audio source separation quality, but it is still used as a speech
enhancement measure by regarding enhanced data and subtracted noise data as
sources (Vincent, Gribonval, and Févotte 2006), which is defined in the interval
(−∞, ∞). The enhancement algorithms in this project are evaluated with these
measures by comparing their enhanced signals to the original uncorrupted signals.
The need for uncorrupted signals restricts this evaluation form to simulated data.

3.1.2 Speech enhancement dataset

This section describes our speech enhancement dataset, which is generated for the
purpose of speech enhancement experiments on the LRE17 task. The corruption
of a speech signal can be seen as two types: additive and convolutional. Additive
noise is typically independent of background noise, whereas convolutional noise
can come from reverberation in rooms, and will be correlated with the speech
signal. In this study only additive noise is considered, where the adopted signal
model for the noisy speech signal y as

y(t) = s(t) + n(t) (3.1)

where s is the speech signal and n is the noise signal.

29



30 Chapter 3. Speech Enhancement System

In the dataset, noisy speech signals are created for each SNR level of {-3, 0,
3, 6, 9, 12, 15} dB equally. Simple voice activation detection is used to account
for silence regions in speech signals, when calculating the energy. The training
and validation datasets have no overlap and are split into 90 and 10 percents,
respectively. The speech signals are taken from the LRE17 training set consisting
of 2069 hours of telephone conversations. They are all sampled at 8 kHz with
a mix of precision encodings. The noise signals come from the audio signals in
the LRE17 development video domain. Most of these audios except for the talk
shows contain noisy speech segments. Examples of background noise are babble,
television, clapping, laughing, kitchen work and wind. The dataset also includes
signals with reverberation which are left as is. Speech segments in these signals
have been manually marked as speech intervals. A noise signal is a concatenation
of all non-speech intervals in a noisy speech signal. The concatenation is performed
with 128 samples of overlap and using a Hanning window of length of 256 samples.
Noise intervals less than 125 milliseconds of length are discarded. This results in
6.6 hours of noise signals, which are expected to be closer to the noise sources in the
target domain. Note that these noise signals potentially contain background speech
since some recordings are annotated with segments of dominant speakers, and
the aforementioned approach unintentionally includes speech segments of non-
dominant speakers as noises. The noise signals are repeated to create 2069 hours
of speech and noisy speech signal pairs, which are then cut into 5 second long
segments.

The input feature for our BLSTM speech enhancement system is now explained.
First, the noisy speech signal in the time domain is transformed using short time
Fourier transform (STFT) into a time-frequency domain spectrogram. It uses a
modified Hanning window w of length of 256 samples and an overlap/step of 128
samples.

w[k] =
1
2
+

1
2

cos

(
2π

(
k− K−1

2

)
K

)
, k = 0, 1, . . . , K− 1 (3.2)

After STFT, the 100-bin log Mel filterbank coefficients are extracted. Finally, the fil-
terbank coefficients are normalized using the global mean and variance computed
over the training samples. With these input features, the BLSTM model outputs
the mask for each time-frequency bin, which is then multiplied by the original
noisy speech magnitude spectrogram to get the enhanced magnitude spectrogram
as an approximation of the uncorrupted speech. The time domain signal of the
enhanced speech can be synthesized by using the inverse STFT, where the phase is
taken from the original noisy speech spectrogram.

3.1.3 Model and training

The BLSTM-based model architecture is adopted for speech enhancement. BLSTM
recurrent neural networks offer an elegant way to incorporate context information,
instead of explicitly choosing the context based on feed-forward neural networks.
The baseline BLSTM has 2 layers with 384 hidden units with an additional fully
connected layer to transform a concatenation of the bi-directional output of 768
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Figure 3.1: Proposed i-Vector language recognition system with single-channel enhancement.

units to 129 frequency bins for each time step. A sigmoid activation function is
applied to constrain the mask to the interval from 0 to 1. By following the previous
work of (Erdogan et al. 2015), the magnitude time-frequency approximation is used
instead of a mask approximation for the objective function. First, consider the
following distance function D(·):

D(â ◦ |Y| − a ◦ |Y|) (3.3)

where a is the ideal mask, ◦ is element-wise multiplication, â is the approximated
mask obtained by BLSTM, and |Y| is the magnitude time-frequency representation
of the noisy speech. For the sake of simplicity, the time-frequency index is omitted
in the formulation. Several masks have been proposed and an overview can be
found in (Erdogan et al. 2015). The SE system uses the ideal amplitude mask aiam

aiam =
|S|
|Y| (3.4)

where |S| is the magnitude time-frequency representation of the uncorrupted speech.
The justification is that the language recognition system uses the magnitude only,
and does not consider the phase. Equation (3.3) reduces to

D(â ◦ |Y| − aiam ◦ |Y|) = D(â ◦ |Y| − |S|). (3.5)

With this representation, the mean squared error (MSE) based objective function is
represented as:

minimize
θ∈Rn

1
M

M−1

∑
m=0

(â ◦ |Y| − |S|)2 (3.6)

with M being the number of total samples in a minibatch, n being the number
of BLSTM parameters, and θ is the BLSTM parameter space. Adam is used as a
stochastic minimizer. The model is implemented in the PyTorch framework.

3.2 Experimental setup

3.2.1 NIST LRE17 dataset

The approach is evaluated on the NIST language recognition evaluation 2017 (LRE17)
task (NIST 2017 Language Recognition Evaluation Plan 2017a). The LRE17 task con-
sists of closed set language identification between 14 languages from 5 language
clusters (Arabic, English, Slavic, Iberian and Chinese).

The focus was on the fixed condition where the organizers constrained the
datasets allowed for system development. NIST provided a training set (TRN17)
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consisting of narrow-band telephony speech built from previous NIST evaluations
(around 2000h). Switchboard and Fisher English telephony corpora was also al-
lowed for training. Additionally, NIST provided a development set (DEV17) con-
taining around 60 hours of speech from a domain similar to the evaluation set.
Both, development and evaluation sets contain audios from two sources: narrow-
band telephony and broadcast radio (MLS14); and wide-band video (VAST). MLS14
audio files consisted of segments of 3, 10 and 30 seconds while VAST audio files
contained the full duration of the original source video file.

Language recognition systems were requested to provide a vector of calibrated
log-likelihoods, one for each target language. Performance was measured using a
detection cost function which is a weighted average of miss and false alarm rates.

C(γ) =
1
L

L

∑
i=0

[
PMiss(i, γ) +

γ

L− 1 ∑
j 6=i

PFA(i, j, γ)

]
(3.7)

where γ = (1 − PT )/PT , PT is the target language prior, and L the number of
languages. PMiss(i, γ) is the miss rate for language i and PFA(i, j, γ) is the proba-
bility of detecting language i in an audio containing language j. Miss and false
alarms are computed by applying detection thresholds log(γ) to the language log-
likelihood ratios (derived from the calibrated log-likelihoods). The primary metric
averages (3.7) for two operating points, PT = 0.5 and PT = 0.1. Also, the counts of
each corpus (MLS14 and VAST) are equalized when computing the cost function
so both have the same weight in the metric.

3.2.2 Experiments

The baseline is the language recognition system described in Section 2. The consid-
ered systems are with Gaussian back-end non-adapted to the LRE17 development
set; adapted to the full development set (condition independent); and adapted to
the specific domain (condition dependent), i.e., different adapted model for MLS14
and VAST. The condition independent and dependent score calibration is also con-
sidered. The development and evaluation data is processed with the OM-LSA
and BLSTM SE methods. Thus, speech enhancement was included in the back-
end adaptation and calibration steps. The training and validation loss is shown
in figure 3.2 in Hyperparameter optimization was done for the BLSTM model but
there as no change in the training or validation loss, when doubling the neuron, or
adding an extra layer, or changing the batch size, or changing the learning rate. A
sweep was done the language recognition from the epochs 25 to 150 in figure 3.3,
where each epoch corresponds all the noise being used once which is 6 hours.

3.3 Results

3.3.1 Speech quality measures

Table 3.1 shows the SE performance with four performance measures (PESQ, STOI,
eSTOI, and SDR), as introduced in Section 3.1.1. The performance of OM-LSA
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Figure 3.2: This is a plot of the training and validation loss of the BLSTM model.

was slightly degraded on the PESQ, STOI, eSTOI scores, but improved on the
SDR score. This is because OM-LSA tends to remove noise components overly,
which would affect the speech quality and intelligibility, especially for the high
SNR setting. On the other hand, the BLSTM SE system outperformed OM-LSA for
all measures consistently in both high and low SNR settings.

3.3.2 Language recognition

Table 3.2 presents language recognition in terms of the detection cost as defined in
Section 3.2.1. The OM-LSA method improved the performance from the baseline
in most of the cases. Meanwhile, the proposed BLSTM improved the performance
in all the adaptation conditions, outperforming OM-LSA. For the MLS14 case, the
BLSTM performance was degraded in some cases, but not significantly. For the
VAST (noisy video) case, the improvement was very significant in all conditions.
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Figure 3.3: This illustrates a sweep of language recognition evaluations.

The best language recognizer, including condition dependent back-end and cali-
bration, achieved 11.3% relative improvement when using our BLSTM SE. In av-
erage of the MLS14 and VAST cases, the relative improvement of BLSTM SE was
around 6.3%, which is still significant.

Another thing worth mentioning is that, with applying SE, the gap between
condition-dependent and condition-independent back-end systems was reduced.
This property is quite useful in a real application, since it can be avoided to use a
complicated condition-dependent system, which requires to have multiple domain-
dependent models with a precise domain detector.
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Table 3.1: Result for the speech quality (PESQ), speech intelligibility (STOI, eSTOI), and audio source
separation (SDR) for the simulated validation set. The values should be compared relative
to the reference values. Higher is better for all speech enhancement measures.

System PESQ STOI eSTOI SDR

All SNRs:
Reference 2.456 0.733 0.565 4.395
OM-LSA 2.379 0.708 0.546 6.502
BLSTM 2.815 0.793 0.634 12.333

15 dB SNR:
Reference 3.042 0.875 0.761 13.507
OM-LSA 2.895 0.844 0.730 13.249
BLSTM 3.305 0.895 0.801 18.670

-3 dB SNR:
Reference 1.895 0.568 0.362 −4.626
OM-LSA 1.809 0.541 0.346 −1.722
BLSTM 2.291 0.665 0.440 5.517
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Table 3.2: Results for the addition of a preprocessing speech enhancement step, for different lan-
guage recognition systems. Consider systems with three types of back-end non-adapted
to the development data, condition independent adapted (CI) and condition dependent
adapted (CD); and two calibrations, condition independent and dependent. The values
are from equation (3.7), where lower is better and the MLS14 and VAST display the result
for the telephone and video audio respectively. The baseline is without SE

System Baseline OM-LSA BLSTM

Cost average:
GBE Non-adapt + Cal-CI 0.306 0.289 0.269
GBE Non-adapt + Cal-CD 0.292 0.277 0.265
GBE Adapt-CI + Cal-CI 0.234 0.238 0.207
GBE Adapt-CI + Cal-CD 0.221 0.227 0.199
GBE Adapt-CD + Cal-CI 0.219 0.235 0.209
GBE Adapt-CD + Cal-CD 0.206 0.218 0.193

MLS14:
GBE Non-adapt + Cal-CI 0.198 0.218 0.193
GBE Non-adapt + Cal-CD 0.193 0.213 0.192
GBE Adapt-CI + Cal-CI 0.165 0.185 0.165
GBE Adapt-CI + Cal-CD 0.162 0.183 0.164
GBE Adapt-CD + Cal-CI 0.168 0.188 0.169
GBE Adapt-CD + Cal-CD 0.164 0.185 0.166

VAST:
GBE Non-adapt + Cal-CI 0.414 0.360 0.346
GBE Non-adapt + Cal-CD 0.391 0.340 0.337
GBE Adapt-CI + Cal-CI 0.304 0.291 0.249
GBE Adapt-CI + Cal-CD 0.280 0.270 0.235
GBE Adapt-CD + Cal-CI 0.270 0.282 0.249
GBE Adapt-CD + Cal-CD 0.248 0.252 0.220
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Conclusion

We proposed a BLSTM speech enhancement technique to improve language recog-
nition in a noisy signal condition. The BLSTM is trained to estimate a time-
frequency mask indicating the quality of each frequency bin. Using this mask,
we obtained an enhanced version of the signal spectrogram, and recover the time
domain waveform. We evaluated the quality of the enhanced signals in the recent
NIST 2017 language recognition evaluation, where there is a condition with noisy
audio from Internet videos. We compared results using the proposed method and
baseline OM-LSA; also adapting the language recognition system to the target do-
main and non-adapting. In the noisy condition, we obtained performance gains
around 16% for the case without adaptation and around 11% for the case where
we performed condition dependent adaptation of the recognizer. Performance in
clean conditions was not degraded. Also, speech enhancement contributed to re-
duce the gap between condition dependent and independent recognizers, which
could greatly simplify the systems.

As future work, adding external and more realistic noise databases like CHiME-
4 (Vincent et al. 2017), and Musan (Snyder, Chen, and Povey 2015), it would be
possible to investigate the importance of in domain versus out of domain noise
data. And examine the relationship between the noise database size and perfor-
mance. Are there diminishing returns with addition of more noise data? And is
a large out of domain noise source beneficial in addition to the in domain noise
source?

There are several straight forward improvements to the project such as adding
reverberational noise, to handle the few noisy speech signals with considerable
reverberations in the LRE17 challenge. Performing the speech enhancement in
wide-band speech, and then down sampling to 8000 Hz could improve the speech
enhancement on the 16000 Hz video audio data. Having the language recognition
system operate in 16000 Hz would probably be beneficial but the language data is
not available to train it. There might also be newer and better speech enhancement
models and approaches to consider, such as mixture networks, generative adver-
sarial networks, and convolution networks (Chazan, Goldberger, and Gannot 2017;
Pascual, Bonafonte, and Serra 2017; Zhao et al. 2018). Adding a data augmentation
baseline using the same noise sources to compare with the speech enhancement
preprocessing step, would give valuable comparison of the two approaches.

37
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With a realistic noise database the in domain noise extraction method could
be examined, by simulating noisy speech and then extracting noise signals from
it. Thus by comparing a system trained using the original noise source with one
using the extracted noise source, it could reveal the effect of having a noise source
contaminated with speech and the concatenation effect. To examine the concatena-
tion effect alone the pure noise corresponding to the extracted segment from the
noisy speech could be used to make the noise source instead.

The idea of utilizing in domain noisy speech in training speech enhancement
could be explored further. The current approach is to simulate speech and noisy
speech pairs to use supervised learning. l speech and noisy speech pairs could be
used instead of simulation, but it requires a costlier special setup. The simulation
requires a noise source, that can be in domain or out of domain. The in domain
noise source would be preferential, but it is not always available. Sometimes and in
this case noisy speech is available. Instead of extracting noise from noisy speech,
a domain translation approach could be used. The method cycle generative ad-
versarial network or CycleGAN for short is introduced in the paper "Unpaired
image-to-image translation using cycle-consistent adversarial networks" (Zhu et al.
2017). It can be used to learn domain transformation using unpaired data from two
domains. In our case the domains are the noisy speech data and speech domain
data. There would be no need to rely on a concatenated noise source that only
extracted 6 hours of noise from 45 hours of noisy speech data. Instead the model
could learn to remove noise present in all the 45 hours of noisy speech data.

An end to end model possibly using multi-task learning could simplify the
training of the speech enhancement system, and would provide training and val-
idation curves directly related to the language recognition task. Instead of only
relying on the MSE of the magnitude spectrogram approximation. The end to end
model could be used with a bottleneck layer, so the features could be integrated
into an i-vector for any other system in general. The multi-task learning would
hopefully adapt the speech enhancement to the language recognition task.

Finally as language recognition is similar to speaker recognition the positive
result could possibly be duplicated with the same approach.

add overfit eksperiment to conclusion
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Abstract

This paper proposes to apply deep neural network (DNN)-based
single-channel speech enhancement (SE) to language identifica-
tion. The 2017 language recognition evaluation (LRE17) intro-
duced noisy audios from videos, in addition to the telephone
conversation from past challenges. Because of that, adapting
models from telephone speech to noisy speech from the video
domain was required to obtain optimum performance. How-
ever, such adaptation requires knowledge of the audio domain
and availability of in-domain data. Instead of adaptation, we
propose to use a speech enhancement step to clean up the noisy
audio as preprocessing for language identification. We used
a bi-directional long short-term memory (BLSTM) neural net-
work, which given log-Mel noisy features predicts a spectral
mask indicating how clean each time-frequency bin is. The
noisy spectrogram is multiplied by this predicted mask to ob-
tain the enhanced magnitude spectrogram, and it is transformed
back into the time domain by using the unaltered noisy speech
phase. The experiments show significant improvement to lan-
guage identification of noisy speech, for systems with and with-
out domain adaptation, while preserving the identification per-
formance in the telephone audio domain. In the best adapted
state-of-the-art bottleneck i-vector system the relative improve-
ment is 11.3% for noisy speech.
Index Terms: speech enhancement, BLSTM, language recog-
nition, NIST LRE17.

1. Introduction
Language recognition refers to the process of automatically
detecting the language spoken in a speech utterance. Its ap-
plications range across customized speech recognition, multi-
language translation, service customization and forensics [1].
The focus of research in the field has been on developing recog-
nition methods to improve the performance of general systems,
while little attention has been given to improving the noise-
robustness of language recognition systems.

NIST Language recognition evaluations (LRE) has played
an instrumental role in driving language recognition research
over the years and LRE constantly increases the challenge level
of its evaluations. The most recent LRE 2017 evaluation [2]
presents a new scenario with a significant mismatch between
training and evaluation data. The training dataset consists of a
large amount of narrow-band telephone speech, which is in line
with previous evaluations. However, the evaluation dataset con-
sists of a combination of narrow-band telephone data and wide-
band data from Internet videos. Furthermore, the LRE 2017
organizers provide a limited amount of in-domain development
data for model adaptation and calibration purposes. While tele-
phone speech contains low levels of noise and reverberation, we

observed that the video data are severely degraded by babble
noise, music and reverberation.

Single-channel speech enhancement (SE) can be used as
preprocessing to mitigate the aforementioned degradation and
reduce the mismatch between training and evaluation data. SE
has been widely used as preprocessing for speech applications,
such as automatic speech recognition (ASR) [3], speaker ver-
ification [4], mobile communications and hearing aids [5]. In
this study we investigate the effectiveness of utilizing single-
channel SE to improve the noise-robustness of a language
recognition system.

It has been experimentally shown that applying ideal bi-
nary mask in the time-frequency domain is able to improve
speech intelligibility of noisy speech signals for both normal
hearing and hearing impaired listeners with various noise types
[6]. Various ideal ratio masks have become preferable over ideal
binary mask in recent studies [5, 7, 8]. In [9, 10] a DNN is
trained to predict clean speech from noisy speech without the
use of a mask by casting it as a regression problem. A long
short-term memory (LSTM) network has shown to outperform
feed-forward DNN methods, when used as preprocessing for
noise robust ASR [3], and the bidirectional extension of LSTM
(BLSTM) achieves further improvement [8]. This paper fol-
lows the success of the BLSTM SE method, and applies it to a
language recognition system. The BLSTM SE is processed in
the time-frequency domain, but only deals with the magnitude
while the phase component remains corrupted, similar to the
other DNN-based SE methods. The method internally predicts
a mask from BLSTM, and the predicted mask is multiplied by
the noisy speech magnitude, which yields the enhanced magni-
tude. The network is trained with the mean square error crite-
rion between the clean and enhanced magnitudes. In BLSTM
SE (and other DNN-based enhancement), only additive noise is
considered, where the noise source is extracted from in-domain
data with limited size in our setup. The effectiveness of BLSTM
SE on the language identification is evaluated by a state-of-the-
art bottleneck i-vector LRE system, where BLSTM SE is used
as preprocessing of the LRE system [11].

To validate the effectiveness of BLSTM SE methods, we
also compare our SE with the optimally-modified log-spectral
amplitude (OM-LSA) speech estimator with the improved min-
ima controlled recursive averaging (IMCRA) noise estimator
[12], [13]. OM-LSA is a well-known signal processing method
that does not require data-driven training and adaption stages.

2. Speech Enhancement system
2.1. Speech enhancement system evaluation

To verify if the SE model itself works, it should be evaluated
with listening test to fully evaluate the performance. However,



to quickly and cheaply evaluate development work, a number
of objective algorithms are used instead. These algorithms are
designed to emulate human evaluation of SE, with a higher
score being better. The first is perceptual evaluation of speech
quality (PESQ) which is meant to emulate human evaluation
of the pleasantness of listening to the speech audio [14, 15].
The PESQ score is defined in the interval [−.5, 4.5]. Another
is the short-time objective intelligibility measure (STOI) [16]
and the extended STOI (eSTOI) [17] meant to emulate hu-
man word comprehension, i.e. a human word error rate if you
will. They are defined in the interval [0, 1]. Compared with the
above measures, signal-to-distortion ratio (SDR) aims to eval-
uate the audio source separation quality, but it is still used as a
speech enhancement measure by regarding enhanced data and
subtracted noise data as sources [18], which is defined in the
interval (−∞,∞). The enhancement algorithms in this paper
are evaluated with these measures by comparing their enhanced
signals to the original uncorrupted signals. The need for uncor-
rupted signals restricts this evaluation form to simulated data.

2.2. Speech enhancement dataset

This section describes our speech enhancement dataset, which
is generated for the purpose of speech enhancement experi-
ments on the LRE17 task. The corruption of a speech signal can
be seen as two types: additive and convolutional. Additive noise
is typically independent of background noise, whereas convolu-
tional noise can come from reverberation in rooms, and will be
correlated with the speech signal. In this study we only consider
additive noise, where we adopt the signal model for the noisy
speech signal y as

y(t) = s(t) + n(t) (1)

where s is the speech signal and n is the noise signal.
In the dataset, noisy speech signals are created for each

SNR level of {-3, 0, 3, 6, 9, 12, 15} dB equally. Simple voice
activation detection is used to account for silence regions in
speech signals, when calculating the energy. The training and
validation datasets have no overlap and are split into 90 and
10 percents, respectively. The speech signals are taken from
the LRE17 training set consisting of 2069 hours of telephone
conversations. They are all sampled with 8 kHz with a mix of
precision encodings. The noise signals come from the audio
signals in the LRE17 development video domain. Most of these
audios except for the talk shows contain noisy speech segments.
Examples of background noise are babble, television, clapping,
laughing, kitchen work and wind. The dataset also includes sig-
nals with reverberation which are left as is. Speech segments
in these signals have been manually marked as speech intervals.
A noise signal is a concatenation of all non-speech intervals
in a noisy speech signal. The concatenation is performed with
128 samples of overlap and using a Hanning window of length
256 samples. Noise intervals less than 125 milliseconds are dis-
carded. This results in 6.6 hours of noise signals, which are
expected to be closer to the noise sources in the target domain.
Note that these noise signals potentially contain background
speech since some recordings are annotated with segments of
dominant speakers, and the aforementioned approach uninten-
tionally includes speech segments of non-dominant speakers as
noises. The noise signals are repeated to create 2069 hours of
speech and noisy speech signal pairs, which are then cut into 5
seconds long segments.

Now we describe the input feature for our BLSTM speech
enhancement system. First, the noisy speech signal in the

time domain is transformed using short time Fourier transform
(STFT) into a time-frequency domain spectrogram. We use
a modified Hanning window w of length 256 samples and an
overlap/step of 128 samples.
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After STFT, we extract the 100-bin log Mel filterbank coeffi-
cients. Finally, the filterbank coefficients are normalized us-
ing the global mean and variance computed over the training
samples. With these input features, the BLSTM model outputs
the mask for each time-frequency bin, which is then multiplied
by the original noisy speech magnitude spectrogram to get the
enhanced magnitude spectrogram as an approximation of the
uncorrupted speech. The time domain signal of the enhanced
speech can be synthesized by using the inverse STFT, where
the phase is taken from the original noisy speech spectrogram.

2.3. Model and training

We adopt BLSTM-based model architecture as speech enhance-
ment. BLSTM recurrent neural networks offer an elegant way
to incorporate context information, instead of explicitly choos-
ing the context based on feed-forward neural networks. The
baseline BLSTM has 2 layers with 384 hidden units with an ad-
ditional fully connected layer to transform concatenation of the
bi-directional output of 768 units to 129 frequency bins for each
time step. A sigmoid activation function is applied to constrain
the mask to the interval from 0 to 1. By following the previous
work of [8], we consider magnitude time-frequency approxima-
tion instead of a mask approximation for the objective function.
First, we consider the following distance function D(·):

D(â ◦ |Y | − a ◦ |Y |) (3)

where a is the ideal mask, ◦ is element-wise multiplication, â
is the approximated mask obtained by BLSTM, and |Y | is the
magnitude time-frequency representation of the noisy speech.
For the sake of simplicity, we omit the time-frequency index
in the formulation. Several masks have been proposed and an
overview can be found in [8]. The SE system uses the ideal
amplitude mask aiam

aiam =
|S|
|Y | (4)

where |S| is the magnitude time-frequency representation of the
uncorrupted speech. Equation (3) reduces to

D(â ◦ |Y | − aiam ◦ |Y |) = D(â ◦ |Y | − |S|). (5)

With this representation, the mean squared error (MSE) based
objective function is represented as:

minimize
θ∈Rn

1

M

M−1∑

m=0

(â ◦ |Y | − |S|)2 (6)

with M being the number of total samples in a minibatch, n
being the number of BLSTM parameters, and θ is the BLSTM
parameter space. Adam is used as a stochastic minimizer. The
model is implemented in the PyTorch framework.

3. Language recognition system
Figure 1 shows the pipeline of a state-of-the-art i-vector lan-
guage recognition system with an additional speech enhance-
ment step. Following, we explain each of the steps.
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Figure 1: Proposed i-Vector language recognition system with single-channel enhancement.

3.1. Feature extraction

We computed 20 dimensional Mel-frequency cesptral coeffi-
cients (MFCCs) from the noisy/enhanced speech signal. From
MFCCs, we obtained phonetic discriminant bottleneck features
(BNF). The bottleneck network was trained on 1800 hours of
Fisher English using Kaldi NNet2 [19]. The network consisted
of 7 hidden layers, the 6th layer was an 80 dimensional linear
bottleneck layer; the rest were TDNN layers with p-norm ac-
tivations with input/output dimension equal to 3500/350. The
output layer was a softmax that classifies 5577 senone acoustic
units. Short-term mean and variance normalization was applied
with 3 second sliding window and silence frames were removed.

3.2. i-Vectors

The i-vector paradigm [20] transforms the sequence of BNFs
into a fixed-dimensional embedding. Each speech segment is
modeled by a Gaussian mixture model (GMM) whose super-
vector mean M is assumed to be

Ms = m+Tws (7)

where m is the GMM-UBM mean super-vector, T is a low-
rank matrix and w is a standard normal distributed vector. M
defines the total variability space, i.e. the directions in which we
can move the UBM to adapt it to a specific segment. The GMM-
UBM represents the speaker-independent distribution of feature
vectors. The maximum a posteriori (MAP) point estimate of w
is the i-vector embedding.

3.3. Gaussian back-end (GBE) with domain adaptation

We used a linear Gaussian classifier to compute the language
log-likelihood scores from the i-vectors. This back-end models
each class with a Gaussian where the within-class covariance
matrix is shared across languages. We equalized the weight of
each language in the covariance estimation.

For domain adaptation, we computed the a priori back-end
means and covariances on out-domain data and applied Maxi-
mum a posteriori (MAP) adaptation using in-domain data. The
adaptation equations for the Gaussian classifier are

µl = αlµMLl + (1− αl)µ0l l = 1, . . . , L (8)

SW =
1

L

L∑

l=1

[βlSMLl + (1− βl)S0

+βl(1− αl) (µMLl − µ0l) (µMLl − µ0l)
T
]

(9)

where

αl =
Nl

Nl + rµ
βl =

Nl
Nl + rW

; (10)

L is the number of languages, Nl is the number of samples
of language l; µ0l and S0 are the prior means and covariance;
µMLl and SMLl are the maximum likelihood means and covari-
ances for language l computed on the in-domain data; and rµ
and rW are the relevance factors.

3.4. Calibration

Finally, we applied a linear calibration function to convert the
Gaussian back-end scores into well-calibrated log-likelihoods.
The calibration function had a language dependent bias and a
common scaling parameter, and was trained using multi-class
logistic regression.

4. Experimental setup
4.1. NIST LRE17 dataset

We evaluated our approach on the NIST language recognition
evaluation 2017 (LRE17) task [2]. The LRE17 task consists of
closed set language identification between 14 languages from
5 language clusters (Arabic, English, Slavic, Iberian and Chi-
nese).

We focused on the fixed condition where the organizers
constrained the datasets allowed for system development. NIST
provided a training set (TRN17) consisting of narrow-band tele-
phony speech built from previous NIST evaluations (around
2000h). Switchboard and Fisher English telephony corpora
were also allowed for training. Additionally, NIST provided a
development set (DEV17) containing around 60 hours of speech
from a domain similar to the evaluation set. Both, development
and evaluation sets contain audios from two sources: narrow-
band telephony and broadcast radio (MLS14); and wide-band
video (VAST). MLS14 audio files consisted of segments of 3,
10 and 30 seconds while VAST audio files contained the full
duration of the original source video file.

Language recognition systems were requested to provide
a vector of calibrated log-likelihoods, one for each target lan-
guage. Performance was measured using a detection cost func-
tion which is a weighted average of miss and false alarm rates.

C(γ) =
1

L

L∑

i=0


PMiss(i, γ) +

γ

L− 1

∑

j 6=i
PFA(i, j, γ)




(11)

where γ = (1 − PT )/PT , PT is the target language prior,
and L the number of languages. PMiss(i, γ) is the miss rate
for language i and PFA(i, j, γ) is the probability of detecting
language i in an audio containing language j. Miss and false
alarms are computed by applying detection thresholds log(γ) to
the language log-likelihood ratios (derived from the calibrated
log-likelihoods). The primary metric averages (11) for two op-
erating points, PT = 0.5 and PT = 0.1. Also, the counts of
each corpus (MLS14 and VAST) are equalized when computing
the cost function so both have the same weight in the metric.

4.2. Experiments

The baseline is the language recognition system described in
Section 3. We considered systems with Gaussian back-end
non-adapted to the LRE17 development set; adapted to the full
development set (condition independent); and adapted to the
specific domain (condition dependent), i.e., different adapted



Table 1: Result for the speech quality (PESQ), speech intelli-
gibility (STOI, eSTOI), and audio source separation (SDR) for
the simulated validation set. The values should be compared
relative to the reference values. Higher is better for all speech
enhancement measures.

System PESQ STOI eSTOI SDR

All SNRs:
Reference 2.456 0.733 0.565 4.395
OM-LSA 2.379 0.708 0.546 6.502
BLSTM 2.815 0.793 0.634 12.333

15 dB SNR:
Reference 3.042 0.875 0.761 13.507
OM-LSA 2.895 0.844 0.730 13.249
BLSTM 3.305 0.895 0.801 18.670

-3 dB SNR:
Reference 1.895 0.568 0.362 −4.626
OM-LSA 1.809 0.541 0.346 −1.722
BLSTM 2.291 0.665 0.440 5.517

model for MLS14 and VAST. We also considered condition
independent and dependent score calibration. We processed
the development and evaluation data with the OM-LSA and
BLSTM SE methods. Thus, speech enhancement was included
in the back-end adaptation and calibration steps.

5. Results
5.1. Speech quality measures

Table 1 shows the SE performance with four performance mea-
sures (PESQ, STOI, eSTOI, and SDR), as introduced in Sec-
tion 2.1. The performance of OM-LSA was slightly degraded
on the PESQ, STOI, eSTOI scores, but improved on the SDR
score. This is because OM-LSA tends to remove noise compo-
nents overly, which would affect the speech quality and intelli-
gibility, especially for the high SNR setting. On the other hand,
the BLSTM SE system outperformed OM-LSA for all measures
consistently in both high and low SNR settings.

5.2. Language recognition

Table 2 presents language recognition in terms of the detec-
tion cost as defined in Section 4.1. The OM-LSA method im-
proved the performance from the baseline in most of the cases.
Meanwhile, the proposed BLSTM improved the performance in
all the adaptation conditions, outperforming OM-LSA. For the
MLS14 case, the BLSTM performance was degraded in some
cases, but not significantly. For the VAST (noisy video) case,
the improvement was very significant in all conditions. The
best language recognizer, including condition dependent back-
end and calibration, achieved 11.3% relative improvement when
using our BLSTM SE. In average of the MLS14 and VAST
cases, the relative improvement of BLSTM SE was around
6.3%, which is still significant.

Another thing worth mentioning is that, with apply-
ing SE, the gap between condition-dependent and condition-
independent back-end systems was reduced. This property is
quite useful in a real application, since we can avoid to use
a complicated condition-dependent system, which requires to
have multiple domain-dependent models with a precise domain
detector.

Table 2: Results for the addition of a preprocessing speech en-
hancement step, for different language recognition systems. We
consider systems with three types of back-end non-adapted to
the development data, condition independent adapted (CI) and
condition dependent adapted (CD); and two calibrations, con-
dition independent and dependent. The values are from equa-
tion (11), where lower is better and the MLS14 and VAST dis-
play the result for the telephone and video audio respectively.

System Baseline OM-LSA BLSTM

Cost average:
GBE Non-adapt + Cal-CI 0.306 0.289 0.269
GBE Non-adapt + Cal-CD 0.292 0.277 0.265
GBE Adapt-CI + Cal-CI 0.234 0.238 0.207
GBE Adapt-CI + Cal-CD 0.221 0.227 0.199
GBE Adapt-CD + Cal-CI 0.219 0.235 0.209
GBE Adapt-CD + Cal-CD 0.206 0.218 0.193

MLS14:
GBE Non-adapt + Cal-CI 0.198 0.218 0.193
GBE Non-adapt + Cal-CD 0.193 0.213 0.192
GBE Adapt-CI + Cal-CI 0.165 0.185 0.165
GBE Adapt-CI + Cal-CD 0.162 0.183 0.164
GBE Adapt-CD + Cal-CI 0.168 0.188 0.169
GBE Adapt-CD + Cal-CD 0.164 0.185 0.166

VAST:
GBE Non-adapt + Cal-CI 0.414 0.360 0.346
GBE Non-adapt + Cal-CD 0.391 0.340 0.337
GBE Adapt-CI + Cal-CI 0.304 0.291 0.249
GBE Adapt-CI + Cal-CD 0.280 0.270 0.235
GBE Adapt-CD + Cal-CI 0.270 0.282 0.249
GBE Adapt-CD + Cal-CD 0.248 0.252 0.220

6. Conclusions

We proposed a BLSTM speech enhancement technique to im-
prove language recognition in a noisy signal condition. The
BLSTM is trained to estimate a time-frequency mask indicat-
ing the quality of each frequency bin. Using this mask, we ob-
tain an enhanced version of the signal spectrogram, and recover
the time domain waveform. We evaluated the quality of the en-
hanced signals in the recent NIST 2017 language recognition
evaluation, where there is a condition with noisy audio from In-
ternet videos. We compared results using the proposed method
and baseline OM-LSA; also adapting the language recognition
system to the target domain and non-adapting. In the noisy con-
dition, we obtained performance gains around 16% for the case
without adaptation and around 11% for the case where we per-
formed condition dependent adaptation of the recognizer. Per-
formance in clean conditions was not degraded. Also, speech
enhancement contributed to reduce the gap between condition
dependent and independent recognizers, which could greatly
simplify the systems.

As future work, we plan to use more realistic noise
databases like CHiME-4 [21], and Musan [22]. Additionally,
reverberation could be simulated as well to reduce the noise
mismatch further. Also, we want to perform speech enhance-
ment in wide-band speech, instead of downsampling to 8 kHz,
which should improve the language recognition performance on
videos.
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