
SUMMARY: Correlated Time Series Forecasting

using Modular Multi-Task Deep Neural Networks

Răzvan-Gabriel Ĉırstea, Darius-Valer Micu, Gabriel-Marcel Mureşan

June 7, 2018

The problem the paper explores is forecasting of time series. Though the
problem is not new, we aim to provide a novel method that uses deep learning
to improve upon the state of the art.

Given a set of time series X = 〈X(1), X(2), ..., X(n)〉 , where X(i) = 〈x(i)
1 ,

x
(i)
2 , ..., x

(i)
m 〉, i ≤ n the paper aims to predict p steps ahead window, i.e. 〈x(1)

a+l+1,

x
(1)
a+l+2, ..., x

(1)
a+l+p〉.

The paper presents a novel modular neural network that exploits the Convo-
lutional Neural Network (CNN) capabilities of capturing features and combines
it with Recurrent Neural Network (RNN) in the scope of regression. During
experiments the proposed model outperforms its competitors and proves itself
to be useful for long and short term forecasting.

The basic intuition of both is to separate the CNN for each time series and
merge the convoluted features as input for an RNN. The second model expands
CNN into a full auto-encoder that reconstructs the input time series, making it
a multi-task learning model. For the experiments we used mainly a real world
data set that consists of measurements of chemical concentrations within an
aeration tank of a sewage treatment facility, proving a good combination of
industrial and biological processes.

As second data set used in testing consisted of Google Trends search data.
Evaluation of the model shows lower errors compared to established linear

algorithms for time series forecasting and neural networks, models that do not
take advantage of correlations in time series. Two variations of the model are
described.

1

Correlated Time Series Forecasting using Modular
Multi-Task Deep Neural Networks

Răzvan-Gabriel Cı̂rstea
Aalborg University

rcirst16@student.aau.dk

Darius-Valer Micu
Aalborg University

dmicu16@student.aau.dk

Gabriel-Marcel Mureşan
Aalborg University

gmures16@student.aau.dk

Abstract—The problem the paper explores is forecasting of
time series. Though the problem is not new, we aim to provide a
novel method that uses deep learning to improve upon the state of
the art. The paper presents a novel modular neural network that
exploits the Convolutional Neural Network (CNN) capabilities
of capturing features and combines it with Recurrent Neural
Network (RNN) in the scope of regression. During experiments
the proposed model outperforms its competitors and proves itself
to be useful for long and short term forecasting. Evaluation of
the model shows lower errors compared to established linear
algorithms for time series forecasting and neural networks,
models that do not take advantage of correlations in time series.
Two variations of the model are described. The basic intuition
of both is to separate the CNN for each time series and merge
the convoluted features as input for an RNN. The second model
expands CNN into a full auto-encoder that reconstructs the
input time series, making it a multi-task learning model. For the
experiments we used mainly a real world data set that consists
of measurements of chemical concentrations within an aeration
tank of a sewage treatment facility, proving a good combination
of industrial and biological processes.

I. INTRODUCTION

In recent years big data is an increasingly common term,
with companies collecting more and more data at constantly
higher rates. From creating an advertisement profile of a user
to forecasting energy requirements of a city, time dependent
measurements are collected with the purpose of categorization,
outlier detection and forecasting.

These sequences of measurements are called time series.
Fields of industry such as stock exchange financial predictions,
web traffic analysis, road traffic, biological ecosystems, and
weather predictions present some sort of time dependent
correlated measurements that can be modeled as time series.

For example [1] shows how time series can be used while
teaching an AI to drive on a highway, which was the first
important step in the self-driving car industry. Another use
case for time series forecasting is the energy industry, [2]
proved that using neural networks it is possible to estimate
the wind speed in certain areas, resulting in more accurate
energy production estimations. [3] and [4] describes how using
neural networks can be beneficial to the healthcare system by
automatically detecting diseases such as Alzheimer or thyroid
problems.

Since in the real world many of those systems interact
with each other, those interactions reflect within the measure-
ments and can be quantified using correlation. Using sets of
correlated time series various techniques can be used for the

purpose of time analysis and forecast. They start with linear
methods such as regressions and moving on to more complex
non linear methods. The current state of the art being the use
of neural networks [5].

The structure of the paper is as follows, chapter II offers a
formal definition of a time series and introduces Convolutional
and Recurrent Neural networks that are to be used in the
following chapters. In II-B the problem statement of the
paper is concisely presented, together with the novelties of
the proposed models. Within chapter III are showcased other
papers related to time series forecasting that are considered to
be the state of art. From IV the proposed model is formally
explained with V and VI presenting the testing scenarios
and the results of the model respectively. In chapter VII the
final conclusion along with considerations observed during the
experiments are presented. Finally in chapter VIII we address
future adjustments that could potentially improve the proposed
models.

II. PRELIMINARIES

A. Definitions

A time series X(i) is a sequence of measurements x or-
dered chronologically, i.e. X(i) = 〈x(i)1 , x

(i)
2 , ..., x

(i)
m 〉. Usually

the time interval between two readings is constant. We refer
to x

(i)
t as the measurement belonging to series X(i) taken at

time tick t. For the scope of this paper we are going to work
only with time series where each measurement is a decimal
number.

A set of correlated time series is denoted as X , with the
assumption that there exists a relation between the measure-
ments of the component time series. The assumption can be
confirmed by computing the pairwise correlation coefficients
between the dependent (first) time series, and the remaining
independent time series using methods such as Spearman and
Pearson. The correlations coefficients have values in the range
of [-1, 1], with 0 indicating no correlation and -1 and 1
indicating a high negative and positive correlation respectively.

Table I presents all the notations used in the paper next to
their respective mathematical and semantic interpretations.

Symbol Definition

X X = {X(1), X(2), ..., X(n)}
Set of correlated time series

X(i) X(i) = 〈x(i)1 , x
(i)
2 , ..., x

(i)
m 〉, i ≤ n

Sequence of all readings from time series i
X̂(i) X̂(i) = 〈x̂(i)1 , x̂

(i)
2 , ..., x̂

(i)
m 〉, i ≤ n

Reconstruction of X(i)

Z Z = 〈z1, z2, ..., zp〉
Sequence of predicted values

x
(i)
t X(i) at time t, t ≤ m

Measurement at specific time t of X(i)

x̂
(i)
t X̂(i) at time t, t ≤ m

Reconstructed measurement at time t
z
(i)
t Z at time t

Prediction at specific time t
m m = |X(i)|

Length of time series X(i)

a a < (m− p− l)
Current prediction window

n n = |X|
Number of correlated time series

l l = |X(i)[(a+ 1)..(a+ l)]|
Length of a model input at window a

p p = |Z|
Prediction size

W W = {W 1,W 2, ...,W j}, j > 0
Set of weights matrices

b b = {b1, b2, ..., bk}, k > 0
Set of bias matrices

η η ∈ R
Learning rate

TABLE I: General notations

Neural networks are general mathematical models, inspired
from biology, that automatically learn how to map a set of
inputs to a set of outputs. Within the context of time series,
they are also capable of automatically capturing the dynamics
of time series for the purpose of classification and regression.
Neural networks can be classified into two categories, feed
forward and recurrent networks. The main difference between
the two is how they propagate the data through time, one
making use of recurrent cells while the other does not.

J. T. Connor et al. [6] proposed the recurrent neural
network (RNN) model that in theory is able to capture long and
shot term dependencies. Due to its recurrent nature it has been
proven that such a model requires more computation power to
be trained, compared with a feed forward network. In addition
it suffers from the vanishing gradient problem [7] that further
makes the network difficult to train.

B. Problem statement

The problem the paper wishes to address is as fol-
lows, given a set of correlated time series X =
〈X(1), X(2), ..., X(i), ..., X(n)〉 out of which the first one is
the dependent, target, series and the others are the independent
series, using the past values of each series 〈x(i)1 , x

(i)
2 , ...x

(i)
m 〉

where 1 ≤ i ≤ n and the relationship between the time series,
we aim to predict the next p future values for the dependent
series 〈x(1)a+l+1, x

(1)
a+l+2, ..., x

(1)
a+l+p〉, i.e. 〈z1, z2, ..., zp〉. Based

on state of art machine learning techniques two models are
proposed that aim to reduce the prediction error of current
baseline models.

The novelty of the paper consists in a new modular neural
network model that takes advantage of both convolutional and
recurrent properties for correlated time series prediction. By
combining those two, the model outperforms the separated
established models, and also other non-deep learning methods.
Furthermore one of the models incorporates a multi-task
learning method explained together with the loss function.

We also intent for the models to be robust, i.e. when given
uncorrelated time series the models should be able to disregard
the unnecessary data and perform similarly as when given just
the target time series alone.

III. RELATED WORK

Time series analysis and more precisely time series fore-
casting drew the attention from researchers in the recent years.
Methods such as exponentially weighted moving average [8]
or Autoregressive Integrated Moving Average (ARIMA) [9],
used for forecasting univariate time series were continuously
researched and improved since 1960. Even though the models
are fairly old and simple by nature, they proved to be efficient
for modeling linear time series and nowadays are commonly
used as base line comparison for new models. One drawback
that such models have is that they fail to take advantage of the
interactions between time series, when more such interactions
are available. For example, given a set of time series containing
measurements of chemical concentrations from an industrial
process, the chemical interaction can provide information that
is discarded by these methods.

An alternative to such time series forecasting methods
are neural networks. Using neural networks in this scope
is not something new, in [10] we have seen such an idea
being compared with Box-Jenkins, showing a promising way
forward.

In [11] [12] the authors proposed a hybrid model that
combines ARIMA with RNN. The model starts with ARIMA
which is able to identify the linear dependencies from the data
set. Afterwards the resulting residuals are fed to an RNN which
should be able to capture the nonlinear dynamics. Tested on
different data sets, the novel idea proved to be more efficient
than both models alone.

Developed by Hochreiter et al. [13] Long short term
memory (LSTM) is a new type of recurrent network. LSTM
is capable of controlling what information gets learned or
forgotten through structures named gates. It has been proven
that such a model is able to effectively solve the vanish
gradient problem for a more efficient learning [14].

In [15] the authors propose a novel model which comes as
an extension to the LSTM. Their model starts by automatically
extracting features from the data set using an LSTM auto-
encoder which are then merged with the input vector and fed
to an LSTM for predictions.

2

Input Convolution Layer Pooling Layer

A B C D E F G

RNN

Forecasting
LayerUnivariate Input Layer Output

Layer
Pooling
Merged

X = {X(1), X(2), X(3)}

X(1) = 〈x(1)
a+1

, x
(1)
a+2

, . . . , x
(1)

a+l
〉

X(2) = 〈x(2)
a+1

, x
(2)
a+2

, . . . , x
(2)

a+l
〉

X(3) = 〈x(3)
a+1

, x
(3)
a+2

, . . . , x
(3)

a+l
〉

Z = 〈z1, z2, ..., zp〉

Fig. 1: Modular Convolutional Recurrent Neural Network (MCRNN)

From their experiments adding the auto-encoder on top of
the LSTM increased the prediction accuracy significantly.

Assad et al. present in [16] a boosting algorithm for
single time series prediction using recurrent neural networks.
They train multiple models iteratively, with each consecutive
iteration putting more weight on fitting the data samples that
were improperly fitted in the previous iteration. When the
boosting reaches below a certain threshold the end result is
calculated by averaging the results on all the models.

Similarly, [17] uses CNN in combination with LSTM,
in what they call ConvLSTM, to predict one step ahead
the amount of precipitation. The convolutions take place in
between the recurrences of the LSTM combining the context
of the previous recurrence with the new input. The results show
an increased rate of correct predictions, lower false positives
and generally better MSE scores. ConvLSTM takes as input a
2D image, not time series, but it was taken into consideration
due to its similar idea of using a modular network network
model.

In [18], Pang et al. propose a multivariate time series
convolutional neural network (MTCNN) that uses a CNN to
extract features from a multidimensional input before passing
the results to a fully connected neural network layer. This
allows them to generate better predictions of power consump-
tion, in an industrial plant, compared to a regular CNN. The
idea is similar to the model we prose since it uses a CNN
feature extractor. Instead of connecting the features to a fully
connected layer, we added a pooling layer first and fed the
output to an RNN. In addition the learning procedure of the
CNN filters in our case is affected by the reconstruction error
which is not present in [18].

Single Time Series Multiple Time Series
Linear [8], [9] [19], [20]
Non linear [11], [12], [15], [16], [17] [6], [13], [18]

MCRNN, MAECNNRNN

TABLE II: Related work comparison

IV. PROPOSED MODEL

For the basic structure of our proposed model we used a
modular neural network. Within a regular feed forward neural
network all the nodes inside a layer, including input layer, are

connected to all the nodes in the following layers. In contrast,
a modular neural network does not obey this restriction. This
allows the creation of independent neural network, modules,
each using their own segment of original input. The output of
these modules can be collected by a fully connected network,
called intermediary, that produces the final output of the
network [21].

We have seen CNN being used with success for classifying
images [22], videos [23] and audio signals [24] further more
such networks have proven to be efficient in detecting shapes.
The problem that we are tying to solve is a regression problem,
which might require a different approach. The intuition is that
CNN can extract significant features from the time series.
Using those features further as input to an RNN, that can be
used for regression, should provide a higher accuracy, due to
reduced noise in the data.

By varying the type of both independent and intermediary
networks and the training methods we proposed two models.

A. Modular Convolutional Recurrent Neural Network
(MCRNN)

The first proposed model combines the CNN capabilities
of recognizing patterns and shapes from data with RNN which
is able of capturing short term dependencies and forecasting
future values. The graphical representation of the model can
be observed in Fig. 1.

The model takes as input a multidimensional array that
represents multiple time series, where each time series has a
total of l measurements. For each time series in the original
input X(1), X(2), and X(3) we create an independent CNN
that is going to receive as input a 1× l matrix as described in
column B.

We then apply convolutions on each time series individu-
ally (column C). In the convolution layer, when applying the
filters we have the option to choose how many filters we want
and their size. We apply γ, e.g., 3 in Fig. 1, filters. Each filter
is going to yield a 1 × l matrix, so in total we will have one
γ × 1 × l cube for each time series. After the convolution is
done, we apply the rectifier function (ReLU) to ensure that
all the resulting values are positive. Note that during some
preliminary tests we observed that removing the activation
function after the convolution layer improved the results.

3

Input Convolution Layer Pooling Layer

A B C D E F

G

RNN

Forecasting
Layer

Univariate Input Layer

Output

H I

Layer
Auto-Encoded

Layer
Pooling
Merged

Deconvolution Layer

f

f

f

X(1) = 〈x(1)
a+1

, x
(1)
a+2

, . . . , x
(1)

a+l
〉

X = {X(1), X(2), X(3)} X(2) = 〈x(2)
a+1

, x
(2)
a+2

, . . . , x
(2)

a+l
〉

X(3) = 〈x(3)
a+1

, x
(3)
a+2

, . . . , x
(3)

a+l
〉

Z = 〈z1, z2, ..., zp〉

X̂(1) = 〈x̂(1)
a+1

, x̂
(1)
a+2

, . . . , x̂
(1)

a+l
〉

X̂(2) = 〈x̂(2)
a+1

, x̂
(2)
a+2

, . . . , x̂
(2)

a+l
〉

X̂(3) = 〈x̂(3)
a+1

, x̂
(3)
a+2

, . . . , x̂
(3)

a+l
〉

Fig. 2: Modular Auto Encoder Convolutional Neural Network + Recurrent Neural Network (MAECNNRNN)

Afterwards, in column D, max or average pool is per-
formed on each matrix in order to capture the most repre-
sentative features. The pooling operator reduces the size of
each cube by half γ × 1 × l

2 since we used a 1×2 window
with a stride of 2. As the name implies when applying max
pooling, the biggest value from a certain window, 2 in our
case, is selected, while the latter would perform an average.

After the pooling layer we have a total of γ matrices of size
1× l

2 . All cubes are going to be merged into a 1 dimensional
vector of size n = |X| × γ × 1 × l

2 . The way we merged
the matrices is as follows: starting with the first cube we take
the first value from the first dimension, then from the second
dimension etc. The same process is applied afterwards for each
cube.

Next we feed the merged pooling layer to an RNN which
is responsible for forecasting the next p step ahead for the
target time series, X(1) in our case. An example of possible
input for the forecasting layer is presented in Fig. 6. Note
that the forecasting layer F can be replaced with any other
neural network model. For the experiments we used a vanilla
sigmoid-RNN implementation.

MCRNN can be adapted to work with any n number of
time series by creating a separate network branch for each
time series in columns B,C,D. In our experiments we tested
MCRNN with one, two, respectively three time series. In
addition the models can be easily modified to predict all time-
series if required.

Cost function and Optimization: The cost function for
MCRNN is described by equation (1) where Error(·, ·) is in
our case the mean square error function (MSE) that reflects
the model accuracy.

In equation (1), the loss function J1 takes as input: the set
of weights matrices W ′ of the Forecasting layer in column
F (for MCRNN Fig.1 and column H for MAECNNRNN
Fig.2) and Convolution Layer in column C; the set of biases
b′ from the same columns; the target time series X(1); and the
predicted time series Z in order to compute the forecasting
error. On the right side of the equation we have the average of
l Errors where each error represents the discrepancy between
the predicted value zi and the ground truth x(1)a+l+i at time tick

i.

J1(W
′, b′, X(1), Z) =

1

p

p∑
i=1

Error(zi, x
(1)
a+l+i) (1)

Eq.: Prediction loss function [18]

Learning is performed using backpropagation by minimiz-
ing the error term of the prediction. For the experiments the
Adam optimizer was selected. In [25] Adam optimizer has
been proven to be more efficient for gradient-based optimiza-
tion problems than classical approaches such as Stochastic
gradient descent (SGD).

When learning the weights matrices W , a fraction η
multiplied with the partial derivative of the cost function with
respect to the weights is subtracted from the old W. η denotes
the learning rate, a hyper-parameter that was manually tuned
for each data set individually for optimal results.

W =W − η ∂J(W, b,X,Z)
∂W

(2)

Eq.: Weights update function [18]

B. Modular Auto Encoder Convolutional Neural Network +
Recurrent Neural Network (MAECNNRNN)

The second proposed model Fig. 2, similar in spirit with the
first one, also combines CNN with RNN. The main difference
between the two models is that we replaced the Convolutional
and the Pooling layer (columns C and D in Fig. 1) with an
CNN auto-encoder (columns C, D, E, F in Fig. 2). As the
name implies the auto-encoder is responsible for learning the
data representation in an unsupervised manner. The intuition
behind this model is that the auto-encoder will learn more
robust features, and how to ignore the outliers. In addition the
auto-encoders work as a regularization term that will prevent
the model from over-fitting.

4

In order for the auto-encoder to reconstruct the original
time series a Deconvolution Layer was added (column E).
The Deconvolution Layer is going to take the resulting cubes
from the Pooling Layer as input and deconvolve each cube
into γ matrices that have the same size as the ones from
column C. Afterwards by applying the sigmoid function on
the matrices the output will correspond to the target output,
the reconstructed data for each time series X̂(1), X̂(2), and
X̂(3), where X̂(i) = 〈x̂(i)a+1, x̂

(i)
a+2, . . . , x̂

(i)
a+l〉.

Another important difference between the two models is the
learning problem. For the first model we tried to minimize one
error, the one produced by the forecasting layer (column F Fig.
1). For the second model we are minimizing a multi objective
function. The loss function consists of a sum of n+ 1 errors.
During backpropagation the error of each deconvolution layer
(column E) is only affected by the reconstruction error, while
the filters (column C) are affected both by the reconstruction
error and the prediction error.

Cost function: Equation (3) represents the model’s capa-
bilities to reconstruct the original data. It is a sum over all
the time series reconstruction errors, where the reconstructed
value is defined by x̂(k)a+i and the ground truth by x(k)a+i for each
time stamp (a+ i).

In equation (3), the loss function J2 takes as input: the
set of weights matrices W ′′ of the Deconvolution Layer in
column E and Convolution Layer in column C; the set of
biases b′′ from the same columns; all time series X; and
the reconstructed time series X̂ in order to compute the
reconstruction error. On the right side of the equation we have
the average sum for each p Errors where each error represents
the discrepancy between the reconstructed value x̂(k)a+i and the
observed value x(k)a+i at time tick i for each time series k.

J2(W
′′, b′′, X, X̂) =

1

l
· 1
n
·

n∑
k=1

l∑
i=1

Error(x̂(k)a+i, x
(k)
a+i) (3)

Eq.: Reconstruction error function

The loss function for MAECNNRNN is J = J1+J2. Since
the loss function is represented by a bi-objective function this
makes MAECNNRNN a multi task learning model, where the
model tries to minimize the final predictions made by the RNN
and CNN capabilities of reconstructing the data.

Note that MAECNNRNN, similar to MCRNN, can be
adapted to work and predict any n number of time series.

V. TESTING SCENARIOS

For the experiments we have selected two data sets, sewage
chemicals concentration and Google trends.

The first data set was provided by a sewage treatment
plant from Aalborg, Denmark, and it represents a collection
of time series. Each time series corresponds to a chemical
concentration measurement taken at an interval of two minutes
from each of the six aeration tanks within the facility. The
chemicals monitored are NH4, NO3, and O2. Furthermore,

from each of the 6 tanks we take three time periods resulting
in a total of eighteen smaller data sets for the experiments.

The second data set was taken from Google Trends and it
represents the search popularity of related terms on Google.
The set contains two time series with the dependent (target)
time series being the term potatoes and independent time
series being the term brown sugar. The Pearson correlation
coefficient of the two terms is 0.9601.

As mentioned previously, we have computed the pairwise
Spearman correlation coefficients between the dependent time
series and all the remaining independent time series and
the correlations discovered were significant enough for our
purposes. The chosen dependent variables are NH4 for the
chemical concentrations and potatoes of the second data set.

When learning the models we segmented our data sets into
multiple test cases using a sliding window. Fig. 3 illustrates
the process. The input data contains l time measurements while
target data contains p values ahead denoted in table IV. We
decided to segment the data set into multiple test cases so we
can learn by batches in order to boost the learning speed while
still maintaining good accuracy. In addition we normalized
the data by scaling individual time series between 0 and 1.
Evaluation of the model was used on a reserved 16% of the
window, referred to as testing data.

cases
training

q

Input data Target data

l p

Window

Training 84% Testing 16%

1st

2nd

3rd

thq

Fig. 3: Training vs Testing

Validation and hyper-parameters selection on the sewage
data set for all algorithms was performed on tank 4 section
1. This data set was excluded from all the results presented
later in the paper. The reason for exclusion is to eliminate any
conflict generated by the intersection of validation data with
testing data.

There are several parameters that can vary when testing
the models: n the number of time series in X , n = |X|; the
length of every time series in the input l; number of ticks to
forecast in the immediate future p. Table IV shows the values
of those parameters. The complete list of configurations that
are executed is presented in table III

Within the convolution layers of our models, we also varied
the number and the size of the filters per convolution. Also
adjusted was the number of convolution layers for each time
series. This is shown in table V.

5

Notation n l p
2 10 100 n = 2 l = 10 p = 100
2 50 100 n = 2 l = 50 p = 100
2 100 100 n = 2 l = 100 p = 100
2 50 1 n = 2 l = 50 p = 1
2 50 25 n = 2 l = 50 p = 25
2 50 50 n = 2 l = 50 p = 50

TABLE III: Experimental configurations for sewage data set

Parameter name Values
Number of time series n = {1, 2, 3}
Input length per time series l = {10, 50, 100}
Prediction steps p = {1, 25, 50, 100}

TABLE IV: Problem parameters

Parameter name Values
Convolution Layers c = {1, 2, 3}
Filters per convolution f = {2, 3, 4, 5, 8, 10, 16}
Filter size {1, 2, 3, 5, 10}
RNN hidden size {3, 4, 5, 6}

TABLE V: Solution parameters

Table VI shows algorithms tested together with the base
line comparison algorithms. The intuition is that models that
use correlation between time series are capable of generating
better results, as they are provided more relevant information.
Each algorithm is tested using two correlated time series to
show individual capabilities of modeling correlations.

In order to test the robustness of our models when given
a set of uncorrelated time series, a random time series was
generated and used together with a regular time series. The
intuition behind the comparison is that correlated series yield
a better prediction than non-correlated ones.

Our algorithms are compared with other established or state
of art algorithms.

Yesterday is a linear method of regression that propagates
the last know value of the time series for the entire prediction
window. It is commonly used in financial time series prediction
[26]. ARIMA is also a commonly used regression model for
time series applied in various fields of industry [9].

Explained in chapter III, MTCNN is multivariate and
nonlinear time series prediction model. It was selected as state
of art comparison for its related scope with our problem state-
ment. We were unable to find an implementation of MTCNN
by the original authors or otherwise, so we implemented it
ourselves in Python based on the model description chapter of
the paper [18]. Adjustments were made on the number of fully
connected hidden layers, number of nodes in those layers, and
learning rate for optimal results.

RNN and LSTM were selected as baseline comparisons for
their established deep learning regression uses.

Algorithm Multiple
Time Series

Nonlinear

Yesterday no no
ARIMA no no
MTCNN yes yes
RNN yes yes
LSTM yes yes
MCRNN yes yes
MAECNNRNN yes yes

TABLE VI: Classification of algorithms

VI. MODEL EVALUATION

For evaluating the models we have selected two error
measurements, root mean square error (RMSE) and mean
absolute percentage error (MAPE).

RMSE is a popular error measurement used for assessing
a model’s accuracy when working with Neural Networks
in the scope of regression. The formula is based on the
euclidean distance between the predicted zt and the observed
value x(1)a+l+t at every time tick t. Despite its popularity this
error measurement has two major drawbacks. RMSE tends to
heavily penalize large errors and is hard to interpret [27].

RMSE =

√√√√1

p

p∑
t=1

(zt − x(1)a+l+t)
2 (4)

The second error measurement, MAPE, was chosen be-
cause of its absolute nature independent of the scale of
measurements. This makes it easier to interpret for people not
familiar with the data. One big drawback of this method is that
it does not work when the data sets contain measurements
equal to 0, since this results in a division by 0. This is not
an impediment for us since the predicted time series, the
dependent one, does not contain such measurements.

MAPE =
100

p

∣∣∣∣∣
p∑

t=1

x
(1)
a+l+t − zt
x
(1)
a+l+t

∣∣∣∣∣ (5)

Evaluation of the model was performed in five stages
as follows: tuning of the solution parameters; comparison
between linear and non linear; comparison between using one
or multiple time series; comparison based on various of input
and output sizes; overall comparison.

A. Tuning of the solution parameters

We begin by adjusting hyper-parameters for each algorithm
for optimal results. These optimizations are based on the
evolution of the MSE after each epoch in order to achieve
models that are guarded against overfitting and underfitting.
The epoch size was set to 2000 for both data sets. We repeated
this process for each possible configuration illustrated in table
III (6 times for the sewage data set).

Due to the different nature of the second data set and the
the amount of time required to fine tune configurations the

6

Config/Alg YESTERDAY RNN LSTM MTCNN MCRNN MAECNNRNN ARIMA
2 10 100 01.02±00.36 00.69±00.30 00.71±00.28 00.60±00.31 00.64±00.33 00.57±00.30 01.42±01.00
2 50 100 01.00±00.36 00.74±00.28 00.79±00.29 00.64±00.35 00.74±00.35 00.58±00.31 01.15±00.47

2 100 100 01.08±00.59 00.83±00.37 00.83±00.38 00.73±00.44 00.95±00.50 00.66±00.38 01.18±00.66
2 50 1 00.09±00.03 00.21±00.13 00.15±00.09 00.14±00.08 00.13±00.08 00.20±00.13 00.05±00.02

2 50 25 00.93±00.22 00.44±00.22 00.45±00.24 00.45±00.25 00.42±00.26 00.38±00.21 00.74±00.25
2 50 50 01.03±00.28 00.66±00.30 00.55±00.31 00.57±00.34 00.54±00.29 00.47±00.28 01.03±00.40

TABLE VII: RMSE experiment results for sewage data set. For MAPE results see table X

Config/Alg YESTERDAY RNN LSTM MTCNN MCRNN MAECNNRNN ARIMA
2 50 25 1.02 0.66 0.64 0.60 0.53 0.53 1.04
2 50 50 1.10 0.67 0.60 0.73 0.60 0.62 1.18

TABLE VIII: RMSE experiment results for Google Trends data set. For MAPE results see table XI

1 2 3
Number of Time Series used

0.4

0.5

0.6

0.7

0.8

0.9

RM
SE

Variation in number of Time Series
YESTERDAY
RNN
LSTM
MTCNN
MCRNN
MAECNNRNN
ARIMA

1 2 3
Number of Time Series used

8

10

12

14

16

M
AP

E

Variation in number of Time Series
YESTERDAY
RNN
LSTM
MTCNN
MCRNN
MAECNNRNN
ARIMA

Fig. 4: RMSE (left) and MAPE (right) variation on sewage data set for configurations 1 50 25, 2 50 25, 3 50 25

Google Trends data set was ran on 2 configurations: 2 50 25
and 2 50 50. They were selected because they offer a balanced
amount of input and output data while taking advantage of the
correlated time series. Adjustments are made to the hyper-
parameters for these configurations for each algorithm.

B. Linear and non linear

The first assumption tested is that non linear models are
more suitable for regression in situations where the data might
convey non linear relations between time series. All deep
learning models used are inherently considered non linear.

Table VII and associated figures 8, 12, 13, 9 and 10
proves that all non linear models are more suitable for long
term predictions. However, linear models such as ARIMA and
Yesterday are more suitable for short term prediction Fig. 11.

C. Using one or multiple time series

The second assumption tested is that using multiple series
would generate an inherit advantage in regression due to more
information that can be extracted from the relations between
the time series.

We check this assumption by varying the problem param-
eter n. The other two problem parameters are kept constant
with l = 50 and p = 25 while n was varied between one, two
and three time series. Due to limited time the configurations
are ran on only on the first sewage data set.

Fig. 4 show the results of running these experiments. It can
be observed that increasing the number of time series resulted
in better RMSE and MAPE scores for MAECNNRNN. Both
MCRNN and its competitor MTCNN, show a slight increase
in error scores for two time series, but when the third time
series was added the performance increased significantly.

For our two models MCRNN and MAECNNRNN we also
tested their behavior when given uncorrelated time series, with
the assumption that they are able to filter out unnecessary data.
We do this by feeding the algorithm a set of regular target time
series and a random time series. The random time series was
prior created and tested so that there would not be a significant
correlation between it and the target series.

Table IX confirms our assumptions. It can be observed that
both proposed models are performing better when exploiting
the correlation between series. Note that MAECNNRNN is

7

0 25 50 75 100 125 150 175

4.5

5.0

5.5

6.0

6.5

RMSE: 0.16 | MAPE: 2.62

Ground Truth
MAECNNRNN Prediction

0 25 50 75 100 125 150 175

4.5

5.0

5.5

6.0

6.5

RMSE: 0.20 | MAPE: 2.96
Ground Truth
MCRNN Prediction

Fig. 5: Prediction example for MAECNNRNN (left) and MCRCNN (right) for configuration 2 50 25 on aeration tank 4 from
sewage data set

0 20 40 60 80 100

−1.5

−1.0

−0.5

0.0

0.5

1.0

MAECNNRNN Foreca ting Layer Input

Foreca ting Layer Input
Pooling TS 1 CH 1
Pooling TS 1 CH 2
Pooling TS 2 CH 1
Pooling TS 2 CH 2

0 20 40 60 80 100 120 140
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

MCRNN Forecasting Layer Inp t
Forecasting Layer Inp t
Pooling TS 1 CH 1
Pooling TS 1 CH 2
Pooling TS 1 CH 3
Pooling TS 2 CH 1
Pooling TS 2 CH 2
Pooling TS 2 CH 3

Fig. 6: Input for Forecast Layer MAECNNRNN (left) and MCRNN (right) for configuration 2 50 25 on aeration tank 4 from
sewage data set

MCRNN MAECNNRNN
Single target TS 10.8 10.7
With a correlated TS 8.3 9.1
With an uncorrelated TS 13.0 10.7

TABLE IX: Dealing with uncorrelated time series, MAPE

more robust. Due to its auto-encoders the model is able to
filter out the redundant information, random time series, from
the input and maintain the same error as the single target time
series configuration. The parameters used for these tests are
n = 1 or n = 2, l = 200, and p = 100 the tests are also ran
exclusively on the first sewage data set.

D. Comparison based on various of input and output sizes

Table III shows six configurations for the remaining two
problem parameters l, p.

Varying l, the length of the input time series, we discov-
ered that our model MAECNNRNN IV-B outperforms all its
competitors. The results are shown in Fig. 14. The other two
parameters n, p were set to 2 and 100 respectively.

The last problem parameter we tested is p, the length of
the model output. Fig. 15 shows that both of our algorithms
perform best on longer predictions periods. However it can also
be observed that ARIMA and Yesterday perform best when
p = 1, which is expected as chemical concentrations readings
can not change drastically within a time span of 2 minutes.

E. Overall comparison

Fig. 8, 9, 10, 11, 12, and 13 present the overall comparisons
between the RMSE and MAPE scores of all algorithms on the
sewage data sets. The values are averaged on all of the 17 data
sets and shown together with the standard deviation.

Our algorithms perform well on almost all the configura-

8

0 25 50 75 100 125 150 175 200

4.0

4.5

5.0

5.5

6.0

6.5

Real vs Reconstructed
Ground Truth
MAECNNRNN Reconstruction

Fig. 7: Reconstruction example for MAECNNRNN for
configuration 2 50 25 on aeration tank 4 from sewage data

set

tions, with the closest competitor MTCNN also offering good
results. In contrast to MTCNN, both of our algorithms present
as the intermediary network a vanilla RNN that uses informa-
tion propagated from previous predictions for the current one.
We believe this offers our models the edge when it comes
forecasting. A second major difference between our proposed
models and MTCNN is the complexity, MTCNN requiring
multiple fully connected layers resulting in a much greater
state space.

Fig. 5 is an example of predictions made by our two
models when n = 2, l = 50, and p = 25. It can be
observed that MAECNNRNN does a better job of predicting
the amplitude of the spike, but is smoother, meaning it ignores
the small distortions at the top. We consider this to be a
consequence of the auto-encoding process that might value
the correct amplitude more and ignores the small distortions.
This behavior can be observed in Fig. 7 where in red is
reconstructed input generated by the auto-encoder. In contrast
MCRNN, predicts a lower amplitude but does capture the
distortions at the top.

Fig. 6 shows the input of the Forecast Layer for our
two models. For MAECNNRNN we used 2 filters, γ = 2,
and for MCRNN 3 , γ = 3. As mentioned previously this
hyper parameter was chosen for optimal results. In the figure,
’Pooling TSi CHj’ stands for the output of the Pooling Layer
of the time series X(i) from channel j. For MAECNNRNN
each filter yields a more human readable result, with one of the
filters focused on a general representation of the input while the
other tries to model the residuals. Without the auto-encoding
layer, MCRNN is granted more liberty in selecting whatever
features it finds more usable, resulting in less human readable
input.

The two vanilla recurrent neural networks, RNN and LSTM
perform similarly. While LSTM is expected to outperform
RNN, our results might have been influenced by the manual
hyper-parameter adjustments.

As previously mentioned, Yesterday and ARIMA perform
the best when p = 1. Compared with each other, the simplicity
of Yesterday does not allow it generated massive errors result-
ing better RMSE and MAPE scores compared with ARIMA.
This might be due to the fact that ARIMA requires a lot of
parameter adjustment.

Table VIII and XI present the results of all the algo-
rithms on the Google Trends data set. MCRNN performs the
best while MAECNNRNN comes second on configuration
2 50 25. As observed in Fig. 5 and Fig. 7 MAECNNRNN
tends to overgeneralize. Because of Google irregularities, it
slightly decreases the model accuracy but still remains rela-
tively accurate.

VII. CONCLUSION

Both neural networks and time series prediction are in-
creasingly popular fields of research and development. In this
paper we presented MCRNN IV-A and MAECNNRNN IV-B,
two neural network based models for the purpose of correlated
time series prediction. The basic intuition for the models is
to utilize CNN capabilities of capturing features and feed
them to an RNN which is capable of identifying short term
dependencies in the data.

Empirically tested on a large real world data set containing
chemical measurements from a treatment plant both proposed
models showed increased accuracy compared with state of art
algorithms. Both models proved themselves to be robust and
confirm all our assumptions such that correlation improves
accuracy.

In conclusion, the paper achieved its goal of accurate
correlated time series prediction offering novel models that
combine convolutional and recurrent neural networks.

VIII. FUTURE WORK

Due to the limited period of time we only conducted ex-
periments on sewage and Google trends data sets. Even though
our models performed overall better than the competition on
the sewage data sets we can observe that for some specific
configurations that was not the case. Extensive experiments
on multiple data sets are required to identify the cause of the
problem.

One drawback of the model is the amount of time required
to fine tune it. There are a lot of hyper-parameters that need to
be properly selected so that the model will perform optimally.
This process is time consuming since it requires the models
to run a couple of times. An automatic way of selecting
the parameters could be beneficial or improving the model’s
running time.

The basic structure of our models is a modular neural net-
work. Both presented models, MCRNN and MAECNNRNN,
use an RNN as an intermediary network for forecasting and
various of CNN as independent networks. Changing the nature
of the independent and intermediary networks might result in
new models that offer improvements for certain data sets or
predictions tasks.

The presented models were tested and evaluated in the
scope of regression. By slightly modifying the model and

9

replacing the MSE error function with cross-entropy function
the new model is capable of doing classification. Further
experiments are required to confirm or contradict the proposed
models capabilities of classifying.

When applying the filters column C in figures Fig. 1
and Fig. 2 we have observed that removing the activation
function (ReLU) improved the results on some data sets. More
experiments are required to identify a pattern or an underlying
process.

ACKNOWLEDGEMENTS

We would like to thank our supervisor Prof. Bin Yang for
his guidance throughout the project period.

We also thank the treatment company for providing us the
data set, together with explanations to the processes involved.

10

APPENDICES

Config/Alg YESTERDAY RNN LSTM MTCNN MCRNN MAECNNRNN ARIMA
2 10 100 25.51±12.99 19.17±12.01 19.88±13.52 14.46±07.73 16.87±10.54 14.22±07.92 26.57±15.11
2 50 100 25.95±13.64 22.93±17.10 24.09±17.91 15.65±08.23 23.08±20.31 15.28±10.09 26.50±16.75

2 100 100 28.25±14.34 25.61±19.25 27.30±24.59 19.78±12.22 29.80±23.26 18.32±11.82 29.81±17.22
2 50 1 02.21±01.09 04.76±03.05 03.63±02.19 03.34±01.84 03.00±01.63 05.04±03.36 00.98±00.41

2 50 25 23.61±10.77 11.15±06.09 11.81±08.59 11.44±05.66 10.27±05.64 09.66±05.57 16.95±10.95
2 50 50 25.80±12.43 20.65±16.46 15.61±11.50 14.64±08.28 15.52±12.51 11.57±05.99 24.67±15.99

TABLE X: MAPE experiment results for sewage data set

Config/Alg YESTERDAY RNN LSTM MTCNN MCRNN MAECNNRNN ARIMA
2 50 25 392.66 337.09 403.97 469.04 347.68 395.33 700.16
2 50 50 407.11 368.47 363.02 462.82 425.61 484.09 671.68

TABLE XI: MAPE experiment results for Google Trends data set

MA
EC
NN

RN
N*

MT
CN

N

MC
RN

N* RN
N

LS
TM

YE
ST
ER
DA

Y

AR
IM
A

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

Average RMSE on 2_10_100
(0.57±0.30) MAECNNRNN*
(0.60±0.31) MTCNN
(0.64±0.33) MCRNN*
(0.69±0.30) RNN
(0.71±0.28) LSTM
(1.02±0.36) YESTERDAY
(1.42±1.00) ARIMA

MA
EC
NN

RN
N*

MT
CN
N

MC
RN
N* RN
N

LS
TM

YE
ST
ER
DA
Y

AR
IM
A

0

5

10

15

20

25

30

35

40

MA
PE

Average MAPE on 2_10_100
(14.22±7.92) MAECNNRNN*
(14.46±7.73) MTCNN
(16.87±10.54) MCRNN*
(19.17±12.01) RNN
(19.88±13.52) LSTM
(25.51±12.99) YESTERDAY
(26.57±15.11) ARIMA

Fig. 8: Average RMSE (left) and MAPE (right) on sewage data set for configuration 2 10 100

MA
EC
NN

RN
N*

MT
CN

N

MC
RN

N* RN
N

LS
TM

YE
ST
ER
DA

Y

AR
IM
A

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

RM
SE

Average RMSE on 2_50_100
(0.58±0.31) MAECNNRNN*
(0.64±0.35) MTCNN
(0.74±0.35) MCRNN*
(0.74±0.28) RNN
(0.79±0.29) LSTM
(1.00±0.36) YESTERDAY
(1.15±0.47) ARIMA

MA
EC
NN

RN
N*

MT
CN
N

RN
N

MC
RN
N*

LS
TM

YE
ST
ER
DA
Y

AR
IM
A

0

10

20

30

40

MA
PE

Average MAPE on 2_50_100
(15.28±10.09) MAECNNRNN*
(15.65±8.23) MTCNN
(22.93±17.10) RNN
(23.08±20.31) MCRNN*
(24.09±17.91) LSTM
(25.95±13.64) YESTERDAY
(26.50±16.75) ARIMA

Fig. 9: Average RMSE (left) and MAPE (right) on sewage data set for configuration 2 50 100

11

MA
EC
NN

RN
N*

MT
CN
N

RN
N

LS
TM

MC
RN
N*

YE
ST
ER
DA
Y

AR
IM
A

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

RM
SE

Average RMSE on 2_100_100
(0.66±0.38) MAECNNRNN*
(0.73±0.44) MTCNN
(0.83±0.37) RNN
(0.83±0.38) LSTM
(0.95±0.50) MCRNN*
(1.08±0.59) YESTERDAY
(1.18±0.66) ARIMA

MA
EC
NN
RN
N*

MT
CN
N

RN
N

LS
TM

YE
ST
ER
DA
Y

MC
RN
N*

AR
IM
A

0

10

20

30

40

50

MA
PE

Average MAPE on 2_100_100
(18.32±11.82) MAECNNRNN*
(19.78±12.22) MTCNN
(25.61±19.25) RNN
(27.30±24.59) LSTM
(28.25±14.34) YESTERDAY
(29.80±23.26) MCRNN*
(29.81±17.22) ARIMA

Fig. 10: Average RMSE (left) and MAPE (right) on sewage data set for configuration 2 100 100

AR
IM
A

YE
ST
ER
DA

Y

MC
RN

N*

MT
CN

N

LS
TM

MA
EC
NN

RN
N* RN
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RM
SE

Average RMSE on 2_50_1
(0.05±0.02) ARIMA
(0.09±0.03) YESTERDAY
(0.13±0.08) MCRNN*
(0.14±0.08) MTCNN
(0.15±0.09) LSTM
(0.20±0.13) MAECNNRNN*
(0.21±0.13) RNN

AR
IM
A

YE
ST
ER
DA
Y

MC
RN
N*

MT
CN
N

LS
TM RN
N

MA
EC
NN

RN
N*

0

1

2

3

4

5

6

7

8

M
AP

E

Average MAPE on 2_50_1
(0.98±0.41) ARIMA
(2.21±1.09) YESTERDAY
(3.00±1.63) MCRNN*
(3.34±1.84) MTCNN
(3.63±2.19) LSTM
(4.76±3.05) RNN
(5.04±3.36) MAECNNRNN*

Fig. 11: Average RMSE (left) and MAPE (right) on sewage data set for configuration 2 50 1

MA
EC
NN

RN
N*

MC
RN

N* RN
N

LS
TM

MT
CN

N

AR
IM
A

YE
ST
ER
DA

Y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

Average RMSE on 2_50_25
(0.38±0.21) MAECNNRNN*
(0.42±0.26) MCRNN*
(0.44±0.22) RNN
(0.45±0.24) LSTM
(0.45±0.25) MTCNN
(0.74±0.25) ARIMA
(0.93±0.22) YESTERDAY

MA
EC
NN

RN
N*

MC
RN
N* RN
N

MT
CN
N

LS
TM

AR
IM
A

YE
ST
ER
DA
Y

0

5

10

15

20

25

30

35

M
AP

E

Average MAPE on 2_50_25
(9.66±5.57) MAECNNRNN*
(10.27±5.64) MCRNN*
(11.15±6.09) RNN
(11.44±5.66) MTCNN
(11.81±8.59) LSTM
(16.95±10.95) ARIMA
(23.61±10.77) YESTERDAY

Fig. 12: Average RMSE (left) and MAPE (right) on sewage data set for configuration 2 50 25

12

MA
EC

NN
RN

N*

MC
RN

N*

LS
TM

MT
CN

N

RN
N

YE
ST

ER
DA

Y

AR
IM

A

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE

Average RMSE on 2_50_50
(0.47±0.27) MAECNNRNN*
(0.53±0.28) MCRNN*
(0.54±0.31) LSTM
(0.56±0.33) MTCNN
(0.65±0.30) RNN
(1.03±0.27) YESTERDAY
(1.04±0.38) ARIMA

MA
EC
NN

RN
N*

MT
CN
N

MC
RN
N*

LS
TM RN
N

AR
IM
A

YE
ST
ER
DA
Y

0

5

10

15

20

25

30

35

40

M
AP

E

Average MAPE on 2_50_50
(11.24±5.98) MAECNNRNN*
(14.15±8.30) MTCNN
(15.02±12.33) MCRNN*
(15.06±11.41) LSTM
(19.81±16.37) RNN
(24.16±15.56) ARIMA
(25.18±12.34) YESTERDAY

Fig. 13: Average RMSE (left) and MAPE (right) on sewage data set for configuration 2 50 50

10 50 100
Number of input values per Time Series

0.6

0.8

1.0

1.2

1.4

RM
SE

Variation in input length
YESTERDAY
RNN
LSTM
MTCNN
MCRNN
MAECNNRNN
ARIMA

10 50 100
Number of input values per Time Series

14

16

18

20

22

24

26

28

30

M
AP

E

Variation in input length

YESTERDAY
RNN
LSTM
MTCNN
MCRNN
MAECNNRNN
ARIMA

Fig. 14: Average RMSE (left) and MAPE (right) on sewage data with various input size

1 25 50
Number of steps ahead prediction

0.2

0.4

0.6

0.8

1.0

RM
SE

Variation in future size prediction
YESTERDAY
RNN
LSTM
MTCNN
MCRNN
MAECNNRNN
ARIMA

1 25 50
Number of steps ahead prediction

0

5

10

15

20

25

M
AP

E

Variation in future size prediction
YESTERDAY
RNN
LSTM
MTCNN
MCRNN
MAECNNRNN
ARIMA

Fig. 15: Average RMSE (left) and MAPE (right) on sewage data with various prediction size

13

MC
RN

N*

MA
EC
NN

RN
N*

MT
CN

N

LS
TM RN
N

YE
ST
ER
DA

Y

AR
IM
A

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

Average RMSE on 2_50_25

(0.53) MCRNN*
(0.53) MAECNNRNN*
(0.60) MTCNN
(0.64) LSTM
(0.66) RNN
(1.02) YESTERDAY
(1.04) ARIMA

RN
N

MC
RN
N*

YE
ST
ER
DA
Y

MA
EC
NN

RN
N*

LS
TM

MT
CN
N

AR
IM
A

0

100

200

300

400

500

600

700

M
AP

E

Average MAPE on 2_50_25

(337.09) RNN
(347.68) MCRNN*
(392.66) YESTERDAY
(395.33) MAECNNRNN*
(403.97) LSTM
(469.04) MTCNN
(700.16) ARIMA

Fig. 16: Average RMSE (left) and MAPE (right) on Google Trends data set for configuration 2 50 50

LS
TM

MC
RN

N*

MA
EC

NN
RN

N* RN
N

MT
CN

N

YE
ST

ER
DA

Y

AR
IM

A

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

Average RMSE on 2_50_50

(0.60) LSTM
(0.60) MCRNN*
(0.62) MAECNNRNN*
(0.67) RNN
(0.73) MTCNN
(1.10) YESTERDAY
(1.18) ARIMA

LS
TM RN
N

YE
ST
ER
DA
Y

MC
RN
N*

MT
CN
N

MA
EC
NN

RN
N*

AR
IM
A

0

100

200

300

400

500

600

700

M
AP

E

Average MAPE on 2_50_50

(363.02) LSTM
(368.47) RNN
(407.11) YESTERDAY
(425.61) MCRNN*
(462.82) MTCNN
(484.09) MAECNNRNN*
(671.68) ARIMA

Fig. 17: Average RMSE (left) and MAPE (right) on Google Trends data set for configuration 2 50 50

14

REFERENCES

[1] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[2] A. Yadav and K. Sahu, “Wind forecasting using artificial neural net-
works: A survey and taxonomy,” International Journal of Research In
Science & Engineering, vol. 3, 2017.

[3] B. Duraisamy, J. V. Shanmugam, and J. Annamalai, “Alzheimer
disease detection from structural mr images using fcm based weighted
probabilistic neural network,” Brain Imaging and Behavior, Feb 2018.
[Online]. Available: https://doi.org/10.1007/s11682-018-9831-2

[4] L. Ozyilmaz and T. Yildirim, “Diagnosis of thyroid disease using
artificial neural network methods,” in Neural Information Processing,
2002. ICONIP’02. Proceedings of the 9th International Conference on,
vol. 4. IEEE, 2002, pp. 2033–2036.

[5] B. Widrow, D. E. Rumelhart, and M. A. Lehr, “Neural networks:
Applications in industry, business and science,” Commun. ACM,
vol. 37, no. 3, pp. 93–105, Mar. 1994. [Online]. Available:
http://doi.acm.org/10.1145/175247.175257

[6] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural net-
works and robust time series prediction,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 240–254, Mar 1994.

[7] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning, 2013, pp. 1310–1318.

[8] P. R. Winters, “Forecasting sales by exponentially weighted moving
averages,” Management Science, vol. 6, no. 3, pp. 324–342, 1960.
[Online]. Available: https://doi.org/10.1287/mnsc.6.3.324

[9] G. Janacek, “Time series analysis forecasting and control,” Journal of
Time Series Analysis, vol. 31, no. 4, pp. 303–303, 2010.

[10] Z. Tang, C. de Almeida, and P. A. Fishwick, “Time series
forecasting using neural networks vs. box- jenkins methodology,”
SIMULATION, vol. 57, no. 5, pp. 303–310, 1991. [Online]. Available:
https://doi.org/10.1177/003754979105700508

[11] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[12] D. Ö. Faruk, “A hybrid neural network and arima model for water
quality time series prediction,” Engineering Applications of Artificial
Intelligence, vol. 23, no. 4, pp. 586–594, 2010.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong,
and W.-c. WOO, “Convolutional lstm network: A machine
learning approach for precipitation nowcasting,” in Advances in
Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 802–810. [Online]. Avail-
able: http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-
machine-learning-approach-for-precipitation-nowcasting.pdf

[15] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme event
forecasting with neural networks at uber,” in International Conference
on Machine Learning, 2017.

[16] M. Assaad, R. Bon, and H. Cardot, “A new boosting algorithm
for improved time-series forecasting with recurrent neural networks,”
Information Fusion, vol. 9, no. 1, pp. 41 – 55, 2008, special
Issue on Applications of Ensemble Methods. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253506000820

[17] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo,
“Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” CoRR, vol. abs/1506.04214, 2015. [Online].
Available: http://arxiv.org/abs/1506.04214

[18] N. Pang, F. Yin, X. Zhang, and X. Zhao, “A robust approach
for multivariate time series forecasting,” in Proceedings of the
Eighth International Symposium on Information and Communication
Technology, ser. SoICT 2017. New York, NY, USA: ACM,
2017, pp. 106–113. [Online]. Available: http://doi.acm.org/10.1145/
3155133.3155172

[19] C. Kongcharoen and T. Kruangpradit, “Autoregressive integrated mov-
ing average with explanatory variable (arimax) model for thailand
export,” in 33rd International Symposium on Forecasting, South Korea,
2013, pp. 1–8.

[20] M. Palomares and D. Pauly, “A multiple regression model for predic-
tion the food consumption of marine fish populations,” Marine and
Freshwater Research, vol. 40, no. 3, pp. 259–273, 1989.

[21] F. Azam, “Biologically inspired modular neural networks,” Ph.D. dis-
sertation, Virginia Tech, 2000.

[22] K. L. Wagstaff, Y. Lu, A. Stanboli, K. Grimes, T. Gowda, and J. Padams,
“Deep mars: Cnn classification of mars imagery for the pds imaging
atlas,” 2018.

[23] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov,
“Exploiting image-trained CNN architectures for unconstrained video
classification,” CoRR, vol. abs/1503.04144, 2015. [Online]. Available:
http://arxiv.org/abs/1503.04144

[24] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. Wilson, “Cnn architectures for large-scale audio
classification,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), March 2017, pp. 131–135.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[26] B. K. Yi, N. D. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos,
and A. Biliris, “Online data mining for co-evolving time sequences,”
in Proceedings of 16th International Conference on Data Engineering
(Cat. No.00CB37073), 2000, pp. 13–22.

[27] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean ab-
solute error (mae)?–arguments against avoiding rmse in the literature,”
Geoscientific model development, vol. 7, no. 3, pp. 1247–1250, 2014.

15

