
Efficient Stochastic Routing in

PAth-CEntric Uncertain Road Networks.

Master’s thesis - Georgi Andonov - Group dpw1010f18 -

Computer Science (IT)

Copyright © Aalborg University 2018

Computer Science(IT)
Aalborg University

http://www.aau.dk

Title:

Efficient Stochastic Routing in PAth-CEntric

Uncertain Road Networks.

Theme:

Scientific Theme

Project Period:

Spring Semester 2018

Project Group:

dpw1010f18

Participant(s):

Georgi Andonov

Supervisor(s):

Bin Yang

Copies: 1

Page Numbers: 17

Date of Completion:

June 8, 2018

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the author.

http://www.aau.dk

Project Summary

This project investigates the Shortest path with on time arrival probability (SPOTAR) problem

which tries to find an a priori path that maximizes the on time arrival probability in destination

within a predefined time budget. We apply the Path Centric (PACE) uncertain road network

model to the SPOTAR solution. PACE maintain joint distributions not only for edges but also

for paths. This aims to improve in comparison with the classical model which maintain travel

time only for edges and uses convolution of probability distributions to find the distribution

of a paths. Using convolution, could discard the joint dependency between the edges of a

path and drops the quality of the SPOTAR solution. We propose an A* based algorithm for

computing a SPOTAR path within a PACE uncertain road network model where travel times are

maintained not only for edges but also for paths. The algorithm uses heuristic to prune the

search space which is discovered, hence it minimizes the search space resulting in a speedup.

Different heuristic functions have been examined. Euclidean distance to destination is referred

as a baseline approach (BA), minimum travel time to destination using shortest path (SP) and

Arc-Potentials. All the heuristics are able to be used with the proposed A* search. In order

to compute SP heuristic, first we reverse the graph by reversing all edges, second we run

a shortest path tree computation from destination vertex in the reversed graph. Finally, all

vertices are labeled during the shortest path tree computation with their minimum travel time

to destination.

We study the Stochastic on time arrival problem (SOTA). SOTA tries to find a routing policy that

maximizes the probability of arriving on time at destination within a predefined time budget.

The solution of the SOTA problem tells us at each vertex which is the next optimal adjacent

vertex to follow and what is the associated probability of following this vertex to destination

within a time budget. This information can be used to compute more advanced heuristic

functions in comparisons with BA and SP heuristics. In order to compute SOTA problem for

some destination and a time budget one has to first find the order of vertices for which the

SOTA policy must be computed. We proposed an recursive procedure that explores the graph

similarly to a depth-first search while it generates an update graph which holds the sequence

of vertices for which the optimal policy must be computed for some time. Once the update

graph is generated, we extract a topologically sorted array of pairs of the form (vertex,time).

Next, we reverse the topologically sorted array the topologically sorted array and we obtain the

update sequence. We propose an algorithm that computes the SOTA policy for a given source-

destination pair and some time. The algorithm uses dynamic programming. We consider each

vertex for which the SOTA policy to be computed for some time to be a sub problem. We use

a bottom-up procedure since we sort our subproblems at the beginning. The SOTA policy is

computed only for vertices and times which have not been computed before. If a specific

policy to some destination for some time has been computed before, we reuse the computation

instead of recalculating it again. We furthermore improve the accuracy of the SOTA by applying

the PACE model to the computation. Because the SOTA problem provides an natural upper

bound for the search, we can stop the search once we find destination vertex. This is in contrast

with the naive heuristic approaches, i.e. BA and SP which continue to explore the search space

because nothing can guarantee that there isn’t a better solution .

To this end we propose an efficient method that can guide the search towards a destination be

using the SOTA policy. Unfortunately, computing and maintaining the SOTA policy can require

prohibitively large amount of space. To contest with this problem Arc-Potential is proposed.

By using Arc -Potentials lower memory consumption can be achieved without sacrificing the

running time of queries. Arc-Potentials partition the graph into destination regions and label

each edge of the graph with an array of size equal to the size of destination regions. Each entry

contains the minimum travel time needed by the edge to become a part of an optimal policy to

a corresponding destination region. This information is then used to prune the search space

and speed up the search. We conduct experiments to show useful inside about the proposed

method. For the experiments we varied the time budget and the distance between source-

destination pairs. We perform experiments with different number of destination regions in

order to show that Arc Potentials can be used to lower the space consumption without affecting

the run time.

CONTENTS

I Introduction 1

II Preliminaries 2
II-A Edge-centric uncertain road network model (EDGE) . 2
II-B Path-centric uncertain road network model (PACE) . 2

III Related work 3

IV Proposal for solution 4
IV-A SOTA . 4
IV-B SOTA problem and the PACE road network model . 4
IV-C The update graph and the vertex ordering . 5
IV-D Computing the optimal policy . 7
IV-E Example of computing SOTA policy . 9

V Pruning with Arc-Potential 11
V-A Algorithm for generating Arc-Potentials . 13

VI Experiments 13
VI-A Setup . 13
VI-B Experimental Results . 14

VII Conclusions and Outlook 17

References 17

Efficient Stochastic Routing in PAth-CEntric
Uncertain Road Networks.

Abstract—We investigate the area of stochastic path finding
which we apply to the PAth-CEntric (PACE) uncertain road
network model. PACE maintain uncertain travel time for all
edges and the most popular paths in a graph. By using trajec-
tories, we instantiate and maintain uncertain travel times for
edges and paths which aims to exploit the dependences in a road
network. This increases the accuracy of the uncertain travel cost
distribution estimation under the PACE model in comparison
with the traditional edge based model where uncertain travel
times are maintained only for edges but not for paths.

We aim to find the shortest path with on-time arrival reliability
(SPOTAR) under the PACE road network model. SPOTAR aims
at finding an a priori path that has the highest probability of
reaching destination from source within a predefined time budget.
We propose algorithm for solving SPOTAR problem that uses
different heuristic functions to speed up the search by pruning
the explored search space. In this article, we shows how Arc-
Potentials could be used as heuristic for our A* based search.

Arc-Potentials is an efficient precomputation technique, a
stochastic version of Arc-Flags. To generate Arc-Potentials we
first need to solve the Stochastic on time arrive problem (SOTA).
SOTA problem tries to find the most reliable path between source
and destination within a predefined time budget. It uses an
optimal policy that can tell which is the next optimal node to
follow on each junction based on already realized travel time. We
adopt the PACE road network model to the computation of the
SOTA policy, then we use this policy to generate Arc-Potentials.

We conduct series of using PACE model in the experiments
showing that Arc-Potential heuristic performs well in different
settings. We instantiate PACE road network model based on real
wold trajectory data.

I. INTRODUCTION

The growing volume of spatially and temporally related data
can be harnessed to extend and improve existing routing ser-
vices making possible reduction in greenhouse gas emission,
traffic congestions as well as reduction in travel time. As a
consequence of this information growth, new road network
models have been proposed and established, allowing for better
and reliable routing. Stochastic path finding uses the classical
uncertain road network model where each link is labeled by
a uncertain travel time represented as a probability function.
Although, the classical uncertain road network model provides
framework for solving problems which involve probability
distributions as edge weights, it also lacks accuracy because it
discards the dependencies between the edges in the network,
disallowing for accurate joint distribution estimations. To
solve this, the PAth-CEntric road network model has been
proposed [2], [3]. The model can be seen as an extension
of the classical ’edge’ based uncertain road network model.

In this paper, we study the SPOTAR problem which tries
to find an a priori path that maximizes the on-time arrival
probability within a predefined time budget. SPOATR has
been studied previously in literature [4], [5]. The authors
considered two constraints regarding SPOAR. First, indepen-
dence between the edge’s uncertain travel times, and second,
uncertain travel times are maintained only for edges but not
for a sequence of edges i.e. paths.

Recently, PACE uncertain road network model has been
successfully integrated within SPOTAR [1], the solution is
an A* search which finds a priori the most reliable path
form source to destination within a predefined time budget.
It exploits trajectory data to derive cost distributions of paths
which are then used by the algorithm. Previously, the algorithm
has been tested against a few heuristics [1]. The best performed
one is the minimal travel time to destination as an upper
bound of the search. We refer this heuristic as (SP) heuristic.
Euclidean distance to destination was also used as heuristic,
we refer to it as a baseline approach(BA). BA was completely
outperformed by the SP heuristic as showed [1], .

[1] show that, minimum travel time heuristic performs
well but it is consider ’too loose’, meaning that it is not
likely that only minimum travel time will be realized traveling
from source to destination. In this article, we propose a better
heuristic function which can outperform the SP heuristic,
i.e. Arc-Potentials. Arc-Potential is a powerful preprocessing
technique which can speed up the queries in graph by pruning
edges considered not relevant. In order to derive an Arc-
Potentials, the Stochastic on-time arrival problem (SOTA)
must be solved first. SOTA tries to find an optimal policy
for each vertex in a graph toward a destination. If a travel is
located in a vertex, the policy tells us which is the next optimal
adjacent vertex to follow considering the already realized
travel time, this is the vertex that maximizes the on-time
arrival probability. We adopt the PACA uncertain road network
model to the SOTA policy computation increasing the accuracy
of the method. Naively implemented Arc-Potentials will be
calculated for all destinations which is going to consume a
lot of space. We show how only subset of all destination
vertices (called boundary vertices) could be used to speed
up the preprocessing time. Additionally, Arc-Potentials can
optimized the space consumption on the prize of slowing
down the running time. By partition the graph with more finer
partition, more space is consumed and queries are fast. By
using more coarser partition, less space is required but queries
are slow. This suggest that by using Arc-Potentials space can
be trade for time and the opposite.

1

Contribution To the best of our knowledge, this is the first
paper that utilizes the SOTA policy to be used within the PACE
uncertain road network model which exploits the unchristian
travel time dependency in a graph. We show how to use the
SOTA policy to generate Arc-Potentials and used them as a
heuristic in the algorithm for solving SPOTAR. We conduct
series of experiments in order to provide useful inside of the
quality and the performance of the proposed Arc-Potentials
heuristic function.

II. PRELIMINARIES

We use G to denote a directed graph that represents a road
network, formally G = (V,E), where V is a set of vertices
i.e. road network intersections and E ⊆ V × V is a set of
edges i.e. road network segments. The number of vertices in
the graph G is m = |V |, and the number of edges in G is
n = |E|. Each edge in the graph G has a tail and a head. For
example in Figure 1, the edge e1’s head is a vertex vs and e1’s
tail is vertex ve ,therefore we can also denote edge e1 with
(vs, ve). A model of a road network represented as a directed
graph can be seen in Figure 1. It consists of 6 vertices and 9
edges.

A path has been defined as a sequence of adjacent vertices
P = 〈v1, v2, . . ., vg〉. A sub-path P ′ of a path P is a
subsequence of vertices from path P i.e. P ′ = 〈vi, vi+1, . . .,
vj−1, vj〉, where 1 ≤ i < j ≤ g ≤ n. We consider the vertices
that form a path P to be unique, which implies the following
two constraints. First, vi 6= vj , if 1 ≤ i, j ≤ n and i 6= j, and
second, the number of vertices in a path must be greater than
one i.e. n ≥ 1.

We consider two road network models, the classic edge-
centric uncertain road network model, i.e. EDGE, and the
path-centric uncertain road network model, i.e. PACE. They
both are based on the preliminaries defined in Section II.
The difference between the two models is whether or not
independence between the edges in the road network has been
considered. PACE and EDGE road network models have
been previously studied in [1], [2], [3].

A. Edge-centric uncertain road network model (EDGE)

The edge centric uncertain road network model maintain
travel cost for each edge. This can be done by using a function
W : E 7−→ TC that accept as input an edge ei ∈ E and
returns the associated uncertain travel cost TC. The edge-
centric model is considered to be the classical road network
model in stochastic routing [4], [5], [6], [7], [8], [9], [16].

In order to instantiate travel cost, trajectories have been
used. We collect travel cost information from all trajectories
that are traversing a particular edge, hence we are able to
derive travel cost value for all edges that have been traversed
by any trajectories. If an edge has not been traversed by any
trajectory, speed limits have been used to derived a travel cost.
When the travel cost is defined as travel time, then we can

divide the length of an edge by the speed limit of the same
edge which returns a travel time associated with the edge.

v v v

v

1->0.3
2->0.7

1->0.2
2->0.8

v v

2->0.7
3->0.3

1->0.6
3->0.4

2->0.4
3->0.6

1->0.2
3->0.8

1->0.5
3->0.5

2->0.5
3->0.5

3->0.5
4->0.5

e1

e2

e3

e6 e9

e5

e4

e7 e8

s e h

r q d

Fig. 1: Road Network and Uncertain Edge Weights

Table I summarizes information about 140 trajectories. 100
trajectories are traversing path 〈e1, e4〉 and 140 trajectories
path 〈e4〉. Based on this information we can instantiate travel
cost distribution for edge e1 and e4. Since there are 100
trajectories traversing edge e1, 30 trajectories took 1 mins,
and 70 trajectories took 2 mins. Therefore we can instantiate
W (e1) = {(1, 0.3), (2, 0.7)} as shown in Figure 1. We per-
form the same procedure to instantiate travel cost distribution
for edge e4. There are 140 trajectories which traverse edge e4.
70 trajectories took 2 mins and 70 trajectories took 3 mins.
Based on this we instantiate W (e4) = {(2, 0.5), (3, 0.5)} as
shown in Figure 1.

Traversed Path Costs on edges # of trajectories
〈e1, e4〉 1, 2 30
〈e1, e4〉 2, 3 70
〈e4〉 2 40

TABLE I: Trajectory Examples

In the classical edge-based road network model convolu-
tion has been used to derive a travel cost distribution of
paths [4], [5], [6], [7], [8], [9], [16]. Convolution of probability
distribution assumes that the random variable which have to
be convolve are independent, which is the case in the classical
edge-based road network model. Unfortunately, this approach
lacks accuracy because it ignores the dependencies among the
edges in a path. If we consider independence between edges in
our representation, we calculate the cost distribution of a path
by first computing the joint distribution of the path and second
deriving travel cost form the joint distribution. This process has
been shown in Table II, considering path Pe1,e4 = 〈e1, e4〉.

B. Path-centric uncertain road network model (PACE)

In addition to the travel cost distribution maintain by func-
tion W in the EDGE based model, the PACE road network
model also maintain joint distribution of paths. Therefore, in
the EDGE based model, function W has to accept a path as
an input and has to output the associated travel cost. Formally,

2

e1 e4 Probability
1 2 0.15
1 3 0.15
2 2 0.35
2 3 0.35
(a) Joint Travel Time Distribution

Pe1,e4 Probability
3 0.15
4 0.55
5 0.35

(b) Total Travel Time Distribution

TABLE II: Joint vs. Total Travel Time Distribution

we define function W for the PATH based road network
model as follows: W : P 7−→ TC, where P is some path in
G and TC is the travel cost of path P .

Considering the example in Figure 1 additionally to the
travel costs W (e1) and W (e4), we also maintain W (Pe1,e4).
Trajectories are used to directly derive joint distribution of
paths. For example if we consider Table I, we can instantiate
joint distribution of path Pe1,e4 , the results are shown in
Table III.

e1 e4 Probability
1 2 0.3
2 3 0.7
(a) Joint Travel Time Distribution

Pe1,e4 Probability
3 0.3
5 0.7

(b) Total Travel Time Distribution

TABLE III: Joint Distributions in PACE

The number of possible paths in a road network can be
significantly large, it grows exponentially in the number of
edges in the network. Therefore, we can not afford to maintain
all paths in a road network. Usually, a parameter b is used
to control the number of paths which are maintained as
explained in [2]. The parameter specifies the minimum number
of trajectories that have to traverse a path in order to maintain
this path. Hight value of b means less paths, while low values
of b mans that more paths will be maintained.

Next, we show by example, how to compute joint dis-
tribution of a path in PACE road network model. The
graph in Figure 1 is used as a uncertain road network in
the example. In this example travel time distributions are
maintained by function W for paths Pe2,e6 = 〈e2, e6〉 and
Pe6,e9 = 〈e6, e9〉, i.e. W (Pe2,e6) and W (Pe6,e9) respec-
tively. We are interested in finding the joint distribution
of path Pe2,e6,e9 = 〈e2, e6, e9〉. There are multiple path
compositions which cover path Pe2,e6,e9. The first one is
{W (e2),W (Pe4,e9)}, the second is {W (Pe2,e6),W (e9)} and
the third is {W (Pe2,e6),W (Pe6,e9)}. It has been proven that
the composition with the longest overlap (sub-path) shared by
the paths in the composition, provides the most accurate uncer-
tain travel time estimation [2], [3]. This composition has been
referred as the coarsest composition. In our example, we iden-
tify the coarsest composition to be {W (Pe2,e6),W (Pe6,e9)},
since it has the longest sub-path 〈e6〉.

Let the coarsest composition P1, P2,Pc is identified for
a query path P , then the joint distribution of P is computed
according to Equation 1

prob(P) =
Πc

i=1W (Pi)

Πc−1
i=1W (Pi ∩ Pi+1)

(1)

In Equation 1, Pi ∩ Pi+1 denotes the overlapped path of
path Pi and path Pi+1. We use Equation 1 in our example to
calculate the distribution of path P = 〈e2, e6, e9〉 as follows:
prob(Pe2,e6,e9) =

W (Pe2,e6
)·W (Pe6,e9

)

W (〈e6〉) , where the overlap-
ping sub-path is Pe2,e6 ∩ Pe6,e9 = 〈e6〉.

Problem Definition: Find the path P ∗ that starts in vertex
vs ∈ V , ends in vertex vd ∈ V and results in the maximum
probability of reaching the destination vd within a time budget
T . P ∗ is formally defined in Equation 2, where Path is the
set of all paths that starts in vertex vs and ends in vertex vd
and P.TravelT ime is the travel time of path P .

P ∗ = arg maxP∈Path Prob(P.TravelT ime ≤ T) (2)

We also have to ensure that we find a solution of the problem
efficiently.

III. RELATED WORK

We start by distinguishing two types of road net-
work models, the classical which assumes that uncer-
tain travel times are assigned and maintained only for
edges, discarding possible uncertain travel time depen-
dencies among consecutive edges which form a path.
The classical model has been widely used in the litera-
ture [4], [5], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].
It was suggested, that convolution of probability distribution
can be used to derive a travel time distribution of paths. Con-
volution of probability distribution discard any dependency
between the random variables which are convolved , hence
resulting in inaccurate uncertain travel time estimation. To
challenge this, the PACE uncertain road network model has
been proposed [2], [3]. The model exploits trajectory data in
order to derive and maintain travel cost distributions not only
for edges but also for sequence of edges i.e. paths.

Next, we distinguish two categories in the domain of
stochastic path finding, namely, the Shortest path with on-
time arrival reliability problem (SPOTAR) and the Stochastic
on time arrival problem (SOTA) [4], [5], [6]. SPOTAR aims
at finding an a priori path that maximizes the on-time arrival
probability. SOTA problem considers a vehicle that keeps on
moving and has to be rerouted based on its current location
considering the already realized travel time. This means that
if a vehicle is located at a junction, the SOTA policy will tell
which is the next optimal edge to follow, i.e. the edge that
will maximizes the on-time arrival probability at destination.
SOTA problem is usually formalized as a dynamic programing
problem and then can be solved with a dynamic programing
algorithm [4], [5], [6]

3

In order to achieve speed up of the queries in deterministic
path finding, preprocessing techniques such as Arc-Flags [17],
Contraction hierarchy [20], Transit node routing [21] and
Reach based routing [18], [18] have been used. Stochastic
variants of Arc-Flags and Reach [5] have been previously
used with the the SOTA problem. The main disadvantage of
stochastic version of Arc-Flags and Reach is the significant
amount of space which they consumed. This can be explain
with the fact that they require storing arc flags for all time
budgets up to some time. To content with the large amount of
space which has been used, a new preprocessing techniques
has been proposed, i.e. Arc-Potential. It can be applied to
stochastic path finding and it can speed up the query time
over no preprocessed network with an order of magnitude.

IV. PROPOSAL FOR SOLUTION

We present an efficient algorithm for solving the Shortest
path with on-time arrival reliability (SPOTAR) problem under
the PACE road network model. The proposed algorithm is
an A* search that uses heuristic to speed up the search by
decreasing the search space discovered by the algorithm.

A. SOTA

Previous work on the SPOTAR problem identifies minimum
travel time with shortest path tree heuristic i.e. SP as shown
in [1]. The idea is to label all the vertices of a graph with the
minimum travel time to destination. This has been achieved by
running a backward Dijkstra search from the destination vertex
in the reversed graph Grev of G and label all nodes with their
minimum travel time to destination. Only the nodes which
are visited by the shortest path tree computation are labeled
with a positive travel time, all unvisited nodes are labeled with
negative travel time. Based on that, all nodes with negative
labels can be discarded by the algorithm for solving SPOTAR.
The minimum travel time heuristic performs well but it is
highly unlikely that only the minimum travel time has been
realized during a journey. Euclidean distance to destination,i.e.
(BA) have been also used as a upper bound heuristic but it was
outperformed by (SP).

In this article we investigate the Stochastic on-time arrival
problem (SOTA) which we adopt as heuristic for our proposal
for solution. Pre-processing of the graph is in the core of
SOTA. The SOTA policy is obtained by a pre-computation
of the graph and has been used to speed up the query time.
The solution of the SOTA problem provides an optimal policy
for each vertex in the graph towards a destination. The optimal
policy of a vertex tells us which is the next optimal vertex to
follow on the path to destination, as well as the probability
of following this vertex. By following the optimal policy we
maximizes the probability of arriving at destination within a
predefined time budget.

Let vi be a vertex such that vi ∈ V . We define uvivd(t) to
be the maximum probability of reaching the destination vertex

vi

v

v

vd

j1t1

t2

T-t1

T-t2

uvj1,vd

uvj2,vd
j2

Fig. 2: SOTA policy and the time spent while traveling.

vd from vertex vi for a time budget t ≤ T , by following
the optimal policy to destination vd. We define vj = fvivd(t)
to return the vertex that has to be visited next when traveler
is located at vertex vi and by following the optimal policy
towards the destination vertex vd for a time budget t ≤ T .
This means that at each vertex vi the traveler must pick
edge (vi, vj) that maximizes the on time arrival probability to
destination vd within time t. As shown in Figure 2, since the
traveler can spent at most time t traveling along edge (vi, vj)
with probability pvi,vj (t), then the remaining time T − t is
spent traveling from vertex vj to destination vertex vd with
probability uvj ,vd

(T−t) where the initial time budget is equal
to T .

The SOTA problem has been defined in discrete time with
the system of Equations 3, 4, which are using convolution of
probability distributions. Equation 3 calculates the probability
of following the optimal policy from a given vertex vi towards
the destination vd.

uvivd(t) = max
vj :(vi,vj)∈E

T∑
0

pvivj (t).uvjvd(T − t)

∀vi ∈ V, vi 6= vd, 0 ≤ t ≤ T

uvdvd(t) = 1,∀t ≤ T

(3)

Equation 4 returns the next optimal vertex from a given
vertex vi by following the outgoing edge that maximizes the
on time arrival probability at destination vd.

fvivd(t) = arg max
vj :(vi,vj)∈E

T∑
0

pvivj
(t).uvjvd(T − t)

∀vi ∈ V, vi 6= vd, 0 ≤ t ≤ T
(4)

B. SOTA problem and the PACE road network model

The definition of the SOTA problem as it is given until
now does not exploit the dependencies between the edges in
the graph during the computation of the policy. For example in
Figure 2 we consider edge (vi, vj1) independent from (vj1 , vd)

4

and also edge (vi, vj2) independent from (vj2 , vd). This can
be seen also in Equations 3, 4 where convolution is used to
derive the sum of the distributions pvivj (t) and uvjvd(T − t).
This consideration drops the quality of the solution which can
be a subject to optimization. We try to improve the accuracy
of the SOTA policy be applying the PACE road network model
in the computation of the policy. Applying the PACE model
to the SOTA policy computation increases the accuracy and
can be further used in our SOTA heuristic computation.

In order to apply the PACE road network model in the SOTA
policy computation, we consider two cases which examine
whether there are dependencies in the SOTA path. Next we
define the two cases and provide an examples to clarify them.
We use Figure 3 in the example, the figure represent a path
centric uncertain road network. The network consists of 10
vertices, 12 edges. We define P1 = 〈a, b, c〉, P2 = 〈a, g, h〉
and P3 = 〈g, h, i〉. P1, P2, and P3 have been assigned with
path weights.

a b c

g h

de1

e2

e3

e5e4

e7

e0

f ee8

ie6

e9

P1
P2 P3

e10

e11

Fig. 3: SOTA policy using the PATH road network model
showing the cases we considered in the policy computation.

If we use Figure 3 as an example where we want to
compute the optimal policy for vertex va, then we have to
find the next optimal edge to follow i.e. e0, e1 or e2 according
to Equations 3, 4. We propose two cases to be examined as
follows.

Case 1

The first case considers independence between the edges in
the graph, i.e. the classical model, this case has been defined
with the system of Equations 3, 4. In this case, we examine
edge e0 and the probability of reaching destination vd from
va following edge e0. Since this case considers independence,
it happens when function W do not maintain any paths that
covers edge e0, hence Equations 3, 4 are used.

Case 2

In order to explain the second case we use the same
example we already used in Case 1, where we are interested

in computing the optimal policy for vertex va. In this case,
we compute the probability of reaching destination vd from
source va, following edge e1. If the optimal edge to follow
after vertex vb is e4, we check for dependency between edges
e1, e4. In this case, we maintain a path Pe1,e4 that covers
e1,e4 which means that there is a dependency between this
two edges. We treat this as a path in the computation since
it has associated uncertain travel time which is maintained by
the function W . We denote the start vertex of the path with vi.
We denote the end vertex of the path with vk. Following the
example we alter the formulation as it was in Equations 3, 4
and instead of the probability pvivk(t) we use the probability
pv̂ivk(t) which denote the travel cost of a path that starts in
vertex vi and ends in vertex vk, we again use uvkvd(T − t)
as in case 1. This definition can be seen in Equation 5 case
2. If multiple paths satisfy the conditions defined in case 2,
then the one that maximizes the on-time arrival probability,
according to Equation 5 has been used.

Given the two cases which have been identified we define
the discrete time SOTA policy under the PACE road network
model with equations 5, 6 Equation 5 gives the probability
of following the next optimal edge or path to destination vd
within a predefined time budget.

uvivd(t) = max
vk:(̂(vi,vk)

T∑
t=0

p̂vivk
(t).uvkvd(T − t)

∀vi ∈ V, vi 6= vd, 0 ≤ t ≤ T

uvdvd(t) = 1,∀t ≤ T

(5)

Equation 5 specifies which is the next vertex in which a
path or an edge are ending.

fvivd(t) = arg max
vk:(̂(vi,vk)

T∑
t=0

p̂vivk(t).uvkvd
(T − t)

∀vi ∈ V, vi 6= vd, 0 ≤ t ≤ T
(6)

The SOTA definition given in Equations 5, 6 is in contrast
with the original definition given in Equations 3, 4 because it
considers joint distributions of paths in the policy computation.

The first case, given by Equations 3, 4 considers indepen-
dence between the uncertain travel time of edges, while the
second case given by Equations 5, 6 considers dependency
between the uncertain travel time of a sequence of edges i.e.
a path.

C. The update graph and the vertex ordering

The optimal policy can be calculated by solving Equa-
tions 5, 6. In order to compute uvivd(t), first uvjvd(t′) has to
be computed, where t ≤ T , 0 < t′ ≤ t−minvi,vj , minvi,vj
is the minimum travel time along edge (vi, vj), and (vi, vj) is
an edge or a path. We compute the optimal policy of vertex

5

Array entry: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time budget: 9 8 7 5 6 4 5 3 1 2 0 4 2 8 6 4 5 3 7 5

Vertex: vs vr vq vd vh vd ve vq vd vh vd vh vd ve vq vd vh vd vh vd

TABLE IV: Update array A

Array entry: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time budget: 5 7 3 5 4 6 8 2 4 0 2 1 3 5 4 6 5 7 8 9

Vertex: vd vh vd vh vd vq ve vd vh vd vh vd vq ve vd vh vd vq vr vs

TABLE V: Reversed update array Arev

vj i.e. uvjvd(t′) for time budget up to t′ before computing the
optimal policy of vertex vi i.e. uvivd(t). By propagating this
constraint starting from the source vs towards the destination
vd and decreasing the time budget up to which the convolution
value has been computed, was used to derive an order of the
updates required to compute the SOTA policy. We explore the
graph systematically in a depth-first manner while we preserve
each last-active path in order to prevent loops. We do not
consider loops since we search for the path that maximizes the
on-time arrival probability a priori and cycles can not increase
the on-time arrival probability in such a scenario.

We start by traversing graph G, but instead of marking all
visited veracities in order to prevent visiting a vertex twice,
we preserve all last-active paths to prevent loops. During the
traversal of G, a new graph Gupd has been generated. We add
a new vertex to Gupd every time a vertex from G is visited
during the traversal, we also add the edge which connects the
new vertex with the last one. The vertices which we add to
the update graph Gupd store the original vertex identifier (from
graph G) and the time budget up to which the optimal policy
for the vertex has to be computed. Lets say we visit vertex
vi ∈ G.V , and we have to compute the optimal policy for this
vertex up to Ti. Therefore, we add a unique new vertex in the
graph Gupd associated with the pair (vi, Ti). An example of
Gupd can be found in Figure 4. The update graph has been
derived from the graph shown in Figure 1 with an initial time
budget T equal to 9.

Since graph Gupd does not contain cycles, we are able to
extract a topologically sorted array A of the vertices of G
which are going to be touched by the SOTA computation
to some time budget. Table IV shows a topologically sorted
array derived from the update graph in Figure 4 for a time
budget equal to 7. The reverse array Arev of array A holds
the sequence of updates needed to compute the SOTA policy
starting from destination vertex and going to source. If traveler
is located at destination and has to reach destination, then
the associated probability is consider to be 1.0 and it appears
to be a base case. Once we have the sequence of updates
stored in Arev , we are able to compute the optimal policy
using equations 3, 4. The result of this pre-computation of the
SOTA policy is saved in two matrices. The first one denoted
with Mud holds all uvivd values, where vi ∈ V and vd is
a destination vertex. The second matrix Mfd holds all fvivd

v

v

v

v

v

vvv

v v

v v

v

vv

vvv

v

v

9

88

57 6 7

54 54

2 3

6 3

21

0

4

5

s

e

hq

dhd

dd

d

dd

d

h

hh q

eq

r

11

31

1 1

1

1

1

2

2

2

2 2

2 2

2

2

Fig. 4: Gupd the graph which contains all vertices and the time
budgets up to which an optimal policy must be computed. The
graph shows the dependencies between the vertices which have
to be visited in order to compute the SOTA policy for vertex
vs and a time budget of 9. The graph in Figure 1
is used to derive Gupd

values for vi ∈ V and vd is a destination. Example of matrix
Mud and matrix Mfd are given in Table VI and Table VII
respectively. The results have been obtained by solving the
SOTA problem for the road network in Figure 1 with a time
budget T equal to 9. Table VI holds the on time arrival
probability in destination vd within a time budget T equal to
9. Table VI shows which is the vertex that has to be followed,
the vertex that provides the best on time arrival probability of
reaching destination vertex vd within a time budget of 9. The
results for time t = 7, 8, 9 are summarized into one column,
since maximum probabilities are already achieved from all
sources for time equal to 7, i.e. probability of 1.0.

We propose Algorithm 1 which can be used to generate

6

t=1 t=2 t=3 t=4 t=5 t=6 t=7,8,9
vs 0.0 0.0 0.0 0.12 0.42 0.68 1.0
vr 0.0 0.0 0.24 0.6 0.76 1.0 1.0
ve 0.0 0.0 0.12 0.2 0.6 1.0 1.0
vq 0.0 0.4 1.0 1.0 1.0 1.0 1.0
vh 0.0 0.6 1.0 1.0 1.0 1.0 1.0
vd 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE VI: Matrix Mud. The matrix holds all uvivd values,
where vi ∈ V , vd is a destination vertex, and T is the time
budget for which the optimal police has been computed.

t=1 t=2 t=3 t=4 t=5 t=6 t=7,8,9
vs - - - vr vr vr vr
vr - - vq vq vq vq vq
ve - - vh vq vq vq vq
vq - vd vd vd vd vd vd
vh - vd vd vd vd vd vd
vd - - - - - - -

TABLE VII: Matrix Mfd. The matrix holds all fvivd values,
where vi ∈ V , vd is a destination vertex, and T is the time
budget for which the optimal police has been computed.

Gupd. It is implemented as a recursive procedure which is
exploring the graph G according to constraints involving the
time budget up to which we have to compute the optimal
policy. While exploring the graph G, the procedure creates
the update graph Gupd which we then topologically sort to
extract the sequence of updates needed to compute the SOTA
policy.

Algorithm 1 Compute Gupd(G, vi, vd, path, T,Gupd)

1: procedure VISIT(G, vj , vd, path, T,Gupd)
2: if vi! = vd then
3: adjNodeArr = list(G.neighbors(vi))
4: if len(adjNodeArr) > 0 then
5: for vj ∈ adjNodeArr do
6: if vj 6∈ path then
7: ejoint = W.getEdgeWeight(vi, vj)
8: T ′ = T − ejoint.getMinTravT ime()
9: if T ′ ≥ 0 then

10: path = path+ [vj]
11: v1 = NewNode(vi, T)
12: v2 = NewNode(vj , Tmin)
13: Gupd.addNode(v2)
14: Gupd.addEdge(v1, v2)
15: VISIT(G, vj , vd, path, T ′, Gupd)
16: end if
17: end if
18: end for
19: end if
20: end if
21: end procedure

The VISIT procedure takes as an input the original graph
G, vertex vi which is the vertex that has to be visited, vd is the
destination vertex, the path variable is a list of vertices visited
starting from source toward vertex vi, at the begging path = ∅.
T is the time budget up to which the optimal policy has to
be computed for vertex vd. Gupd is the update graph which
does contain only the source vertex vs at the beginning of the
traversal. In the beginning, we call V ISIT (G, vs, vd, ∅, T, ∅),
since path = ∅ and Gupd = ∅

In line 2 the algorithm checks if the visited vertex vi is a
destination, the algorithm proceed only if vertex vi is not equal
to destination vertex vd . In line 4 the algorithm checks if the
adjacent vertices are more then zero and it proceed only if this
is true. Next, the algorithm iterate over the adjacent vertices
(line 5). For each such a vertex vj , it checks if the vertex is
already in the path (line 6), and it continues only if the path
does not form a loop. If the path does not form a loop the
edge joint distribution ejoint is obtained in line 7. Next, the
algorithm calculates the time budget T ′, up to which we have
to compute the optimal policy for node vj minimum travel
time (line 8). After that, the algorithm checks if T ′ is greater
then zero (line 9), and it continues only if the condition is
equal to true. If T ′ ≥ 0, vertex vj is added to path (line 10),
vertices v1 and v2 have been initialized in lines 11, 12. Next
we add vertex v2 to Gupd in line 13 and edge (v1, v2) to
Gupd in line 14. Finally, we call the visit procedure recursively
(line 15). The result of the algorithm is the update graph Gupd

required in order to obtain the order of the vertices for which
the optimal policy has to be computed. Figure 4 shows Gupd

generated by the algorithm 1 using he graph from Figure 1 to
be traversed.

D. Computing the optimal policy

The solution of the SOTA problem provides an optimal
policy toward a destination. We can calculate the policy based
on Equations 5, 6. We propose Algorithm 2 to compute the
optimal policy between a vertex vi and a destination vd.
Algorithm 2 is executed in a loop for all vi ∈ Arev , where
array Arev refer to the reversed update array extracted by
topologically sorted graph Gupd. It holds the sequence of
vertices as they have to be computed without violating the
constraints, regarding the time budget up to which the optimal
policy has to be computed for each vertex.

The optimal policy is calculated by using dynamic pro-
gramming algorithm. We consider each vertex that has to
be visit with the time budget up to which the policy has to
be computed as a subproblem. The subproblems have been
sorted, by first, generating graph Gupd, then deriving an array
A of topologically ordered vertices, and finally reverse array
A into an array Arev . Since we first order and then solve
the subproblems, we define this algorithm as a bottom-up
dynamic programing algorithm [22] which iterates over the
ordered array of vertices Arev and computes the optimal
policy for each vertex according to Algorithm 2. We save the

7

solution of subproblems which have been already computed,
because we do not want to recompute them more then one
time. Since bottom-up dynamic programing algorithm has
been used, recursion is not required for the implementation,
considering that it can be slower in comparison with a simple
loop, it also can require more space.

Algorithm 2 computes the optimal policy for an interme-
diate vertex vi toward the destination vertex vd within a
predefined time budget t. The algorithm takes the following
parameters as input: vertex vi ∈ Arev , destination vertex
vd ∈ V , matrix Mud, matrix Mfd, time t up to which the
policy has been computed for vertex vi , original graph G and
function W . Matrix Mud holds the optimal policy probabilities
toward a destination vd for all vi ∈ Arev ∈ V and time
budget less then t, the initial time budget. Matrix Mfd holds
the optimal next vertex to follow, i.e. the vertex that maximizes
the on-time arrival probability toward a destination vertex vd.

The algorithm starts by obtaining all adjacent vertices of
vertex vi and assign them to a list adjNodeArr (line 1).
Next, the algorithm checks if vertex vi is not a destination
vertex vd and the length of adjNodeArr > 0 (line 2). It
also checks whether the optimal policy for vertex vi has been
computed up to the time t or the optimal policy for vertex vi
was not computed (line 3). This check is performed to avoid
recomputing the police again if it was already computed. The
algorithm continues only if both the conditions are satisfied. In
line 4 variable size is initialized to be equal to zero. Next, the
algorithm checks if the optimal policy for vertex vi has been
computed for times smaller then the time budget t (line 5)
and if so it set the size variable to be equal to the time
up to which the optimal policy for vertex vi was computed
(line 6). This way the algorithm does not recompute the policy
for all times up to t, instead it computes the optimal policy
of vertex vi for times greater then size and smaller then t.
Next, a list maxuvivd is defined and initialized with length
equal to (T − size), all its entries are set to be equal to
0.0 (line 8). maxuvivd list is used to store the probability
values of the optimal policy for vertex vi. i.e. the values
which was not yet computed. Since we can have more then
one adjacent vertex, the variable maxuvivd stores the value
which maximizes the probability of reaching the destination
vertex vd among the adjacent nodes. Similarly, the algorithm
initialize a variable maxfvivd which holds the next optimal
vertex to follow(line 9). Next, Algorithm 2 iterates over the
adjacent vertices of vertex vi (line 10). For each such a vertex
vj , the algorithm extract list of paths that traverse edge (vi, vj)
(line 11), this is where the PACE road network model is
applied to the SOTA computation. The algorithm does not
only check the adjacent edges of vertex vi, i.e (vi, vj), it
also considers all the paths traversing the edge (vi, vj) as
explained in Section IV-B. We use a function getAllPaths
which takes as input graph G, weighted function W and an
edge (vi, vj) and returns all paths which traverse edge (vi, vj)
and which are starting in edge (vi, vj). The algorithm iterate
over the paths which traverse edge (vi, vj) (line 13). Next, a

Algorithm 2 Compute SOTA policy for a single source
(vi, vd,Mud,Mfd, t, G,W)

1: adjNodeArr = G.neighbors(vi)
2: if vi! = vd ∧ len(adjNodeArr) > 0 then
3: if (vi ∈Mu ∧ len(Mud[vi]) < t) ∨ vi 6∈Mud then
4: size = 0
5: if vi ∈Mu ∧ len(Mud[vi]) < t then
6: size = len(Mud[vi])
7: end if
8: maxuvivd = [0.0] ∗ (t− size)
9: maxuvivd = [0.0] ∗ (t− size)

10: for vj ∈ adjNodeArr do
11: pathsij = getAllPaths(G,W, (vi, vj))
12: sizePaths = len(pathsij)
13: for path ∈ pathsij do
14: vl = path[len(path)]
15: pathjoint = W.getPathWeight(path)
16: pathmin = pathjoint.minTravelT ()
17: if t− pathmin >= 0 ∧ vl ∈Mud then
18: if vi ∈Mud ∧ len(Mud[vi]) < t then
19: c = cnvext(pathjoint,Mud[vl], t)
20: else
21: c = cnv(pathjoint,Mud[vl], t)
22: end if
23: for l ∈ range(0, t− size) do
24: if maxuvivd [l] < c[l] then
25: maxuvivd [l] = c[l]
26: maxfvivd [l] = vl
27: end if
28: end for
29: end if
30: end for
31: end for
32: if vi 6∈Mud then
33: Mud[vi] = maxuvivd
34: Mfd[vi] = maxfvivd
35: else if len(Mu[vi]) < t then
36: Mud[vi].extend(maxuvivd)
37: Mfd[vi].extend(maxfvivd)
38: end if
39: end if
40: end if

variable vl is initialized to hold the vertex in which the path
under consideration ends (line 14), then joint distribution of
the path is obtained using the function W (line 15) and then
the minimum travel time for the path (line 16) is derived.
The algorithm proceed by checking if the remaining time
t − pathmin > 0 when located in vertex vl, and whether the
optimal policy for vertex vl has been computed (line 17), if
so the algorithm has to convolute the path distribution with
the uvl,vd

(t) distribution. Since we might have computed the
optimal policy up to some time, we wold like to reuse it,
instead of recompute the optimal policy for all time budgets.

8

This is why the algorithm checks if the optimal policy for
vertex vi was computed to a time t, line 18. If the optimal
policy was not computed, the algorithm commutes it (line 21),
If the optimal policy was computed up to some time less
then time t (line 20), we compute the optimal policy only for
times greater then the times we already have been computed
(line 19). Next, the algorithm maximizes the values of the
optimal policy over all the adjacent vertices of vertex vi for
all considered times(line 23,line 24,line 25,line 26). Finally,
the algorithm assigns the maximized values in matrix Mud

and matrix Mfd which store the results. (line 32to line 37)
Algorithm 2 computes the SOTA policy only for a single

source towards a destination, therefore we have to execute it in
a loop to compute the optimal policy for all sources vs ∈ Arev .
We propose Algorithm 4 which perform the same, it iterates
over the sources vs ∈ Arev and compute the optimal policy
for each source towards the destination.

Algorithm 3 Compute SOTA for all sources in Arev

1: procedure COMPSOTA(G,Arev, vd,Mud,Mfd, t, G,W)
2: for vs ∈ Arev do
3: Run Algorithm 2(vs, vd,Mud,Mfd, t, G,W)
4: end for
5: end procedure

Since the solution of the SOTA problem has to be computed
for all sources, all destinations and all time budgets, it is
considered to be a time consuming operation. Equations 5, 6
define SOTA problem in discrete time. We use ∆t to denote
the discretization interval of interest, 0 < ∆t < tmin, where
tmin is the minimum travel time among all edge in the set
E. In reality selecting proper discretization can be important
consideration. We can decrease ∆t which can increase the
quality of the solution, but will decrease the running time of
Algorithm 1,Algorithm 2. This suggests that time can be trade
for quality and the opposite while computing the SOTA policy.

E. Example of computing SOTA policy
We provide a simple example of SOTA policy computation

for a four vertices, i.e. vd, vq , vh and ve. We try to show how
the computation starts and we leave to the reader the rest of
the SOTA computation. The example considers the graph in
Figure 1 and initial time budget T = 9. We first generate an
update graph Gupd as in Figure 4. Next, an update array A is
extracted from Gupd by using topological sorting, Figure IV,
Next the reverse of A, Arev is instantiated V. We clarify
that the probability of reaching a destination when situated
at destination is equal to 1.0 as shown in Equation 5. This
holds for all times t ≤ T . This can be seen in Table VI in the
row with key vd all values for all time budgets are equal to
1.0. We set all values of this row to 1.0 at the very beginning.

After, Arev is obtained we can run Algorithm 3. This means
that we have to loop over all vertices vs ∈ Arev and compute
the SOTA policy for each vertex vs toward the destination vd.

We start with vertex vd and time T ′ = 5. It is already
computed no need to recomputed. Next entry in Arev is
vertex vh with time T ′ = 7. The algorithm has to compute
uvhvd(T ′) for T ′ ∈ [1, 7]. Since there is only one adjacent
vertex, the algorithm computes the optimal policy for this
vertex which will be the maximum over all adjacent vertices.
The computation is performed as follows:

uvhvd(1) =

=
T ′∑
k=1

pvhvd(k).uvdvd
(T ′−k) =

1∑
k=1

pvhvd(k).uvdvd(1−k) =

= pvhvd(1).uvdvd(1 − 1) = pvhvd(1).uvdvd(2) = 0.0 ∗ 1.0 =
0.0

uvhvd(2) =

=
T ′∑
k=1

pvhvd(k).uvdvd
(T ′−k) =

2∑
k=1

pvhvd(k).uvdvd(2−k) =

= pvhvd(1).uvdvd(2− 1) + pvhvd(2).uvdvd(2− 2) =
= pvhvd

(1).uvdvd(2) + pvhvd(2).uvdvd(1) =
= 0.0 ∗ 1.0 + 0.6 ∗ 1.0 = 0.0 + 0.6 = 0.6

uvhvd(3) =

=
T ′∑
k=1

pvhvd(k).uvdvd(T ′−k) =
3∑

k=1

pvhvd
(k).uvdvd(3−k) =

= pvhvd(1).uvdvd(3 − 1) + pvhvd(2).uvdvd(3 − 2) +
pvhvd(3).uvdvd(3−−3) =
= pvhvd

(1).uvdvd(2) + pvhvd(2).uvdvd(1) +
pvhvd(3).uvdvd(0) =
= 0.0 ∗ 1.0 + 0.6 ∗ 1.0 + 0.4 ∗ 1.0 = 0.0 + 0.6 + 0.4 = 1.0

uvhvd(1) = 0.0, uvhvd(2) = 0.6 and uvhvd(3) = 1.0 are
inserted into matrix Mud for row with key vh and t ∈ [1, 3]
as it is in Table VI uvhvd(T ′) = 1.0, for each T ′ > 3 and
T ′ ≤ 7. This is the case because the travel cost distribution
is a cumulative function which is increasing for input t. We
insert uvhvd

(T ′) = 1.0, for each T ′ > 3 and T ′ ≤ 7 values in
matrix Mud in row with key vh.

Next vertex in Arev is vd with t = 3, it is already computed,
no need to recomputed again. Next vertex in Arev is vh with
t = 5. We already have computed vh for t = 7, since 5 < 7
no need to recomputed again. Next vertex is vd, it is already
computed.

Next vertex in Arev is vq with t = 5.
uvqvd(T ′) =

max(
T ′∑
k=1

pvqvh(k).uvhvd(T ′−k),
T ′∑
k=1

pvqvd(k).uvdvd(T ′−k))

We do not maintain any paths that cover edges
(vq, vh),(vq, vd), therefore SOTA Case 1 is used for both edges
(vq, vh),(vq, vd). The algorithm has to compute and maximize
over uvqvd(T ′) and uvqvh

(T ′) for T ′ ≤ t. First, we compute
uvqvd(T ′) as follows:

uvqvd(1) =

=
T ′∑
k=1

pvqvd(k).uvdvd
(T ′−k) =

1∑
k=1

pvqvd(k).uvdvd
(1−k) =

= pvqvd(1).uvdvd
(1−1) = pvqvd(1).uvdvd(2) = 0.0∗1.0 = 0.0

9

uvqvd(2) =

=
T ′∑
k=1

pvqvd(k).uvdvd
(T ′−k) =

2∑
k=1

pvqvd(k).uvdvd
(2−k) =

= pvqvd(1).uvdvd
(2− 1) + pvqvd(2).uvdvd(2− 2) =

= pvqvd(1).uvdvd(2) + pvqvdvd(2).uvdvd(1) =
= 0.0 ∗ 1.0 + 0.4 ∗ 1.0 = 0.0 + 0.4 = 0.4

uvqvd(3) =

=
T ′∑
k=1

pvqvd(k).uvdvd(T ′−k) =
3∑

k=1

pvqvd(k).uvdvd(3−k) =

= pvqvd(1).uvdvd(3 − 1) + pvqvd(2).uvdvd(3 − 2) +
pvqvd(3).uvdvd(3−−3) =
= pvqvd

(1).uvdvd(2) + pvqvd(2).uvdvd(1) +
pvqvd(3).uvdvd

(0) =
= 0.0 ∗ 1.0 + 0.4 ∗ 1.0 + 0.6 ∗ 1.0 = 0.0 + 0.4 + 0.6 = 1.0

uvhvd(T ′) = 1.0, for T ′ > 3 and T ′ ≤ 5.
Second, we compute uvqvh(T ′) as follows:

uvqvh(1) =

=
T ′∑
k=1

pvqvh(k).uvhvd(T ′−k) =
1∑

k=1

pvqvh(k).uvhvd(1−k) =

= pvqvh(1).uvhvd
(1 − 1) = pvqvh(1).uvhvd(2) = 0.5 ∗ 0.0 =

0.0

uvqvh(2) =

=
T ′∑
k=1

pvqvh(k).uvhvd(T ′−k) =
2∑

k=1

pvqvh(k).uvhvd(2−k) =

= pvqvh(1).uvhvd(2− 1) + pvqvh(2).uvhvd(2− 2) =
= pvqvh(1).uvhvd(2) + pvqvh(2).uvhvd(1) =
= 0.5 ∗ 0.0 + 0.5 ∗ 0.0 = 0.0 + 0.0 = 0.0

uvqvh(3) =

=
T ′∑
k=1

pvqvh(k).uvhvd(T ′−k) =
3∑

k=1

pvqvh(k).uvhvd(3−k) =

= pvqvh(1).uvhvd(3 − 1) + pvqvh
(2).uvhvd(3 − 2) +

pvqvh(3).uvhvd(3−−3) =
= pvqvh(1).uvhvd(2) + pvqvhd(2).uvhvd(1) +
pvqvh(3).uvhvd(0) =
= 0.5 ∗ 0.0 + 0.5 ∗ 0.0 + 0.5 ∗ 0.6 = 0.0 + 0.0 + 0.3 = 0.3

We stop because uvqvd(T ′) = 1.0, for T ′ ∈ [4, 5] and we
can not obtain greater value than uvqvh(T ′), for T ′ ∈ [4, 5]
After we have computed uvqvd(T ′) and uvqvh(T ′) for T ′ ∈
[1, 5] we maximize. It is obvious that uvqvd(T ′) shows greater
values for T ′ ∈ [1, 5].

We inserted uvqvd(1) = 0.0, uvhvd(2) = 0.4 and
uvhvd(3) = 1.0 into matrix Mud into row with key vq and
t ∈ [1, 3] as it is in Table VI For each uvqvd(T ′), where
T ′ > 3 and T ′ ≤ 5 are going to evaluate also to 1.0. We
insert these values in matrix Mud in row with key vq and the
corresponded times.

Next vertex from Arev is ve with time t = 8.
uvevd(T ′) =

max(
T ′∑
k=1

pvevh(k).uvhvd(T ′−k),
T ′∑
k=1

pvevq (k).uvdvd(T ′−k))

We do not maintain any paths that cover edges
(ve, vh),(ve, vq), therefore SOTA Case 1 is used for both
edges (ve, vh) and (ve, vq). The algorithm has to compute and
maximize over uvevq (T ′) and uvevh(T ′) for T ′ ≤ t. First, we
compute uvevq (T ′) for T ′ ≤ t as follows:

uvevq (1) =

=
T ′∑
k=1

pvevq (k).uvq (T ′ − k) =
1∑

k=1

pvevq (k).uvq (1− k) =

= pvevq (1).uvq (1− 1) = pvevq (1).uvq (0) = 0.0 ∗ 0.0 = 0.0

uvevq (2) =

=
T ′∑
k=1

pvevq (k).uvq (T ′ − k) =
1∑

k=1

pvevq (k).uvq (1− k) =

= pvevq (1).uvq (2 − 1) + pvevq (2).uvq (2 − 2) =
pvevq (1).uvq (1)+pvevq (2).uvq (0) = 0.0∗0.0+0.5∗0.0 = 0.0

uvevq (3) =

=
T ′∑
k=1

pvevq (k).uvq (T ′ − k) =
3∑

k=1

pvevq (k).uvq (3− k) =

= pvevq (1).uvq (3−1)+pvevq (2).uvq (3−2)+pvevq (3).uvq (3−
3) = pvevq (1).uvq (2) + pvevq (2).uvq (1) + pvevq (3).uvq (0) =
0.0 ∗ 0.0 + 0.5 ∗ 0.0 + 0.5 ∗ 0.0 = 0.0

uvevq (4) =

=
T ′∑
k=1

pvevq (k).uvq (T ′ − k) =
4∑

k=1

pvevq (k).uvq (4− k) =

= pvevq (1).uvq (4−1)+pvevq (2).uvq (4−2)+pvevq (3).uvq (4−
3) + pvevq (4).uvq (4− 4) =
= pvevq (1).uvq (3) + pvevq (2).uvq (2) + pvevq (3).uvq (1) +
pvevq (4).uvq (0) =
= 0.0 ∗ 1.0 + 0.5 ∗ 0.4 + 0.5 ∗ 0.0 = 0.2

uvevq (5) =

=
T ′∑
k=1

pvevq (k).uvq (T ′ − k) =
5∑

k=1

pvevq (k).uvq (5− k) =

= pvevq
(1).uvq

(5−1)+pvevq (2).uvq (5−2)+pvevq (3).uvq (5−
3) + pvevq (4).uvq (5− 4) + pvevq

(5).uvq
(5− 5) =

= pvevq (1).uvq (4) + pvevq (2).uvq (3) + pvevq (3).uvq (2) +
pvevq (4).uvq (1) + pvevq (5).uvq (0) =
= 0.0 ∗ 1.0 + 0.5 ∗ 1.0 + 0.5 ∗ 0.2 + 0.0 ∗ 0.0 + 0.0 ∗ 0.0 = 0.6

uvevq (6) =

=
T ′∑
k=1

pvevq (k).uvq (T ′ − k) =
6∑

k=1

pvevq (k).uvq (6− k) =

= pvevq (1).uvq (6−1)+pvevq (2).uvq (6−2)+pvevq (3).uvq (6−
3) + pvevq (4).uvq (6 − 4) + pvevq (5).uvq (6 − 5) +
pvevq (6).uvq (6− 6) =
= pvevq (1).uvq (5) + pvevq (2).uvq (4) + pvevq (3).uvq (3) +
pvevq (4).uvq (2) + pvevq (5).uvq (1) + pvevq (6).uvq (0) =
= 0.0 ∗ 1.0 + 0.5 ∗ 1.0 + 0.5 ∗ 1.0 + 0.0 ∗ 0.2 + 0.0 ∗ 0.0 = 1.0

For each uvhvd(T ′) = 1.0, for T ′ > 6 and T ′ ≤ 8.

10

Second, we calculate uvevh(T ′) for t ∈ [1, 8]

uvevh(1) =

=
T ′∑
k=1

pvevh(k).uvh(T ′ − k) =
1∑

k=1

pvevh(k).uvh(1− k) =

= pvevh(1).uvh(1− 1) =
= pvevh(1).uvh(0) =
= 0.2 ∗ 0.0 = 0.0

uvevh(2) =

=
T ′∑
k=1

pvevh(k).uvh(T ′ − k) =
2∑

k=1

pvevh(k).uvh(2− k) =

= pvevh(1).uvh(2− 1) + pvevh
(2).uvh(2− 2) =

= pvevh(1).uvh(1) + pvevh(2).uvh(0) =
= 0.2 ∗ 0.0 + 0.0 ∗ 0.0 = 0.0

uvevh(3) =

=
T ′∑
k=1

pvevh(k).uvh(T ′ − k) =
3∑

k=1

pvevh(k).uvh(3− k) =

= pvevh(1).uvh(3−1)+pvevh
(2).uvh(3−2)+pvevh(3).uvh(3−

3) =
= pvevh(1).uvh(2) + pvevh(2).uvh(1) + pvevh(3).uvh(0) =
= 0.2 ∗ 0.6 + 0.0 ∗ 0.0 + 0.8 ∗ 0.0 = 0.12

uvevh(4) =

=
T ′∑
k=1

pvevh(k).uvh
(T ′ − k) =

4∑
k=1

pvevh(k).uvh(4− k) =

= pvevh(1).uvh(4−1)+pvevh
(2).uvh(4−2)+pvevh(3).uvh(4−

3) + pvevh(4).uvh(4− 4) =
= pvevh(1).uvh(3) + pvevh(2).uvh(2) + pvevh(3).uvh

(1) +
pvevh(4).uvh(0) =
= 0.2 ∗ 1.0 + 0.0 ∗ 0.6 + 0.8 ∗ 0.0 + 0.0 ∗ 0.0 = 0.2

uvevh(5) =

=
T ′∑
k=1

pvevh(k).uvh(T ′ − k) =
5∑

k=1

pvevh(k).uvh(5− k) =

= pvevh(1).uvh(5−1)+pvevh(2).uvh(5−2)+pvevh(3).uvh(5−
3) + pvevh(4).uvh(5− 4) + pvevh

(5).uvh(5− 5) =
= pvevh(1).uvh(4) + pvevh(2).uvh(3) + pvevh(3).uvh

(2) +
pvevh(4).uvh(1) + pvevh

(5).uvh(0) =
= 0.2∗1.0 + 0.0∗1.0 + 0.8∗0.6 + 0.0∗0.0 + 0.0∗0.0 = 0.68

uvevh(6) =

=
T ′∑
k=1

pvevh(k).uvh(T ′ − k) =
6∑

k=1

pvevh(k).uvh(6− k) =

= pvevh(1).uvh(6−1)+pvevh(2).uvh(6−2)+pvevh(3).uvh(6−
3) + pvevh(4).uvh(6 − 4) + pvevh(5).uvh(6 − 5) +
pvevh(6).uvh(6− 6) =
= pvevh(1).uvh(5) + pvevh(2).uvh(4) + pvevh(3).uvh(3) +
pvevh(4).uvh(2) + pvevh(5).uvh(1) + pvevh(6).uvh(0) =
= 0.2∗1.0+0.0∗1.0+0.8∗1.0+0.0∗0.6+0.0∗0.0+0.0∗0.0 =
1.0

uvevh(T ′) = 1.0, for T ′ > 6 and T ′ ≤ 8.
After we have computed uvevq (T ′) and uvevh(T ′) for T ′ ∈

[1, 8] we maximize. It is obvious that uvevq (T ′) show greater

values for T ′ ∈ [4, 8] while uvevq (T ′) for T ′ = 3.
The algorithm continues in the same way. It calculates the

SOTA policy for each element in Arev as a source toward the
destination until no more vertices are left inside Arev .

V. PRUNING WITH ARC-POTENTIAL

In the case of deterministic path finding, all edges of a graph
have associated deterministic values e.g. minimum travel time.
There are well known algorithms such as Dijkstra’s algorithm
and A* which can find the shortest path between source
and destination vertex in a deterministic graph. Even though,
Dijkstra’s algorithm runs in super-linear time, optimization
techniques allow for sub-linear running time. By preprocecing
a deterministic graph, we can speed up the queries in the graph
with an order of magnitude in comparison with no preprocesed
graph.

A well known technique for speed up the queries in a graph
is Arc-Flags. In the deterministic version of Arc-Flags speed
up of the queries is achieved by pruning the discovered search
space. The graph is first partitioned into p number destination
regions, p > 0 and p ≤ m. For each destination region Di ∈
D, where i ≤ p and D is the set of all destination regions.
We also use a function Q : vd → Di that maps a destination
vertex vd with its destination region Di, each edge of the
graph is associated with a bit vector with a size equal to p,
i.e. the number of destination regions. Each entry of the bit
vector has value equal to one iff the edge is at the beginning
to at least one shortest path to the corresponding destination
region or it is set to zero otherwise. This is done by running a
shortest path three computation in the reversed graph for each
destination vertex vd in a destination region Q : vd → Di.
All vertices which have been touched by the shortest path tree
computation are labeled with their travel times to destination.

Unfortunately, the number of destination vertices in a
destination region can be large which means that we have
to perform large number of shortest path tree computations
which can be simple inefficient. To contest with this two
important observations are made, first, a shortest path towards
a destination can be decomposed into two paths which are
also going to be shortest paths, and second, a shortest path
which starts in a vertex vi located outside of a destination
region Q : vd → Dj , must enter the destination region Dj

at some edge. We denote this edge with (vh, vt), vh is the
head vertex and vt the tail vertex of edge (vh, vt). Such
edges are called boundary edges. The tail vertex vt of a
boundary edge is called boundary vertex. We denote the
set of boundary vertices Bi, where i refer to the index of
the destination region under consideration. We also define a
function R : Di → Bi which returns the set of boundary
vertices for a given destination region. Based on the obser-
vations, a conclusion was made that only, boundary vertices
in a destination region has to be considered as sources of the
shortest path tree computations when preprocess the graph.

11

This reduces the number of destination vertices by using only
a subset of the destinations located in a destination region,
hence improves the speed of preprocessing.

Example of boundary vertices and boundary edges is pro-
vided in Figure 5 where a simple graph has been partition in
four destination regions. The destination region under which
the boundary vertices and edges are considered is Region2.
The boundary edges are (vb, vc), (vj , vi), (vh, vi), (vk, vm) and
the boundary vertices are vc, vi, vm.

v v v

v

v

v

v
v

v

v v

v

v

Region1 Region2

Region3Region4

a b

d

e

g
j

f

h
k

r

mi

c

Fig. 5: Arc-Flags, boundary vertices and boundary edges

Arc-Flags already have been upgraded to stochastic Arc-
Flgs [5] by changing the concept of belongs to a shortest
path with belongs to an optimal policy instead. Stochastic
Arc-Flags associate each arc of the graph with a number of bit
vectors, each with a size equal to the number of destination
region in the graph. The number of bit vectors associated
with each arc is equal to the time budget because we have
to compute SOTA for all times less then or equal to the
initial time budget T . Each entry of such a bit vector which
corresponds to a time t′ is equal to one if the arc is on the
optimal policy to at least one destination in a destination region
within some time less then or equal to the corresponding vector
time t′. This means that in the stochastic settings, Arc-Flags
has to be computed for all time budget up to T which can be
significant overhead for large values of T . Stochastic arc-flag
has linear space complexity Θ(T).

For example Table VIII shows the computed Arc-Flags of
some edge from some graph partitioned into four regions,
where the initial time budget T = 5. Table VIII must be
interpreted as follows: for a time equal to 3 the edge belongs
to an optimal policy towards destination Region 1, 2 and 4.
The arc does not belong to an optimal policy to destination
Regions 3 for a time equal to 3.

It can be seen that the number of vectors increases when the
time budget increases and also multiple such tables must be
preserved, one for each edge in the graph. This could require

significant computation power and might be prohibited for
large networks.

Reg. 1 Reg. 2 Reg. 3 Reg. 4
Vector 1, t=1 0 0 0 1
Vector 2, t=2 0 1 0 1
Vector 3, t=3 1 1 0 1
Vector 4, t=4 1 1 0 1
Vector 5, t=5 1 1 1 1

TABLE VIII: Stochastic Arc-Flags

Arc-Potential is a graph preprocessing techniques which
is an improvement of stochastic Arc-Flags, it reduces the
information associated with each vertex (the number of bit
vector equal to the initial time budget T). Instead of storing
whether an edge belongs to an optimal policy for all time
budgets up to T , Arc-Potential partition the times into time
buckets in the form (t-,t+), for each such time bucket, Arc-
Potential record whether or not an edge becomes a part of an
optimal policy for some destination region. Table IX shows
how time buckets are used to store Arc-Potentials. The space
consumption drops when the size of the time buckets increases
and the opposite. The information form table IX must be
interpreted as follows: the edge belongs to some optimal policy
to destination Regions 1 ,2 and 4 for a time t ∈ [3, 4]. The
same edge does not belong to any optimal policy toward a
destination Region 3 for a time t ∈ [3, 4].

Reg 1 Reg. 2 Reg. 3 Reg. 4
t ∈ [1, 2] 0 1 0 1
t ∈ [3, 4] 1 1 0 1
t ∈ [5, 6] 1 1 1 1

TABLE IX: Arc-Potential using time buckets

[4] argue that recording only the minimum time budget
up to which an arc become a part of an optimal policy
for some destination region within a predefined time budget
T can be stored without affecting significantly the pruning
ability of Arc-Potential. In this paper we consider recording
the minimum time budget for which an arc become part of an
optimal police to destination within a predefined time budget.
Table X shows an example of Arc-Potential using only the
minimum time for which the arc becomes a part of an optimal
policy towards a destination region. This settings of Arc-
Potential allows for liner space complexity in the size of the
time budget T

Reg 1 Reg. 2 Reg. 3 Reg. 4
Min time 3 2 5 1

TABLE X: Arc-Potential using minimum time budget for
which the arc becomes part of an optimal policy toward a
destination region

12

A. Algorithm for generating Arc-Potentials

Matrix Mfd holds all fvivd(t) values computed by the
optimal policy, where vi ∈ V , t ≤ T and vd is the destination.
We define the set Ld to contain all keys of matrix Mfd .
For example in Table VII the set of keys Ld consist of the
following vertices vs, vh, ve, vd, vq, vr (the column to the left).

We define φvivj (Dk) to be the Arc-Potential minimum time
for which the edge (vi, vj) becomes a part of an optimal policy
towards a destination region Dk. We define ψvivj (Dk, t) to
be the Arc-Potential probability of edge (vi, vj) to reach
destination a destination region Dk for a time t. Algorithm 4
show how Arc-Potentials have been computed by using SOTA
policy.

Algorithm 4 Compute Arc− Potentials(G,T,D,Mu)

1: for edge(vi, vj) ∈ E do
2: for Dk ∈ D do
3: φvivj (Dk) =∞
4: Ψvivj (Dk, t) = [0.0] ∗ T
5: end for
6: end for
7: for Dk ∈ D do
8: Bk ← R : Dk

9: for vd ∈ Bk do
10: for vi ∈ Lid do
11: T ′ = minimum time budget for which vi
12: become a part of an opt. pol.
13: for T ′ < t ≤ T do
14: vj = fvivd(t)
15: prvj = uvivd(t)
16: φvivj (Dk) = min(φvivj

(Dk), t)
17: ψvivj (Dk, t) = max(ψvivj (Dk, t), prvj)
18: end for
19: end for
20: end for
21: end for

The algorithm starts by iterating over all edges in G, line 1,
for each edge (vi, vj) we iterate over all destination regions
Dk ∈ D, line 2. The algorithm set the correspond Arc-
Potential of edge (vi, vj) towards a destination region Dk

to infinity in line 3, Arc-Flag probabilities of edge (vi, vj)
towards a destination region Dk are also initialized in line 4.

Next, the algorithm iterates over all destination regions.
line 7. For each such region Dk, the set of boundary vertices
Bk is obtained by using function R, line 8. Next, the algorithm
iterates over the destinations vd form the set Bk which contains
all boundary vertices for destination region Dk, line 9. Next,
the algorithm iterates over all keys vi ∈ Ld, this are the keys
from the Mud matrix, line 10. Next the algorithm finds the
minimum time budget for which the vertex can be part of an
optimal policy, line 11. How to find the minimum time can
be explained using Table VI. Say, we are interested in finding
the minimum time for vertex ve, we get the row with key ve
from Mud and we check for each time 0 < t ≤ T whether the

probability of reaching destination is greater then 0.0. we stop
the loop once we find probability grater then zero. Finally, we
lock up the associated travel time as a minimum travel time
for which the node become a part of optimal policy.

Next the algorithm iterates over all times between T ′ and
T , line 13. In line 14 we initialize vertex vj to hold the next
optimal vertex of vertex vi for each time t, 0 < t ≤ T . In
line 15 the algorithm obtain the probability of edge (vi, vj) to
become a part of an optimal policy toward a destination vertex
and some time. In line 16, the algorithm check if the current
Arc-Potential of edge (vivj) towards a destination region Dk

is larger in comparison with time t if so we reset the Arc-
Potential of edge (vivj) towards a destination region Dk to be
equal to the time t In line 17, the algorithm check if the current
Arc-Potential probability of edge (vivj) towards a destination
region Dk for a time t is larger in comparison with time prvj
and if so, we set the Arc-Potential probability of edge (vivj)
towards a destination region Dk for a time t to be equal to
the time prvj .

VI. EXPERIMENTS

In this section we provide experimental results obtained by
using a real world GPS trajectories data.

A. Setup

To conduct experiments, a road network of Aalborg, Den-
mark has been used. It consists of 4.142 nodes and 9,258
edges. 37 million GPS records that occurred in Aalborg from
Jan 2007 to Dec 2008 with a sampling rate of one GPS record
per second, i.e. 1 Hz, have been used to instantiate the PACE
model. Because not all edges are covered by the GPS data, we
divide the length of an edge by the speed limit of the same
edge to derive a travel time values. Additionally, only paths
traversed by more than 10 trajectories are considered to be
instantiated using trajectory data. If less then 10 trajectories
traverse a path, speed limits have been used to derive joint
distributions. Figure 6 provided by [1], shows a visual repre-
sentation of the edges which are covered and also not covered
by the GPS trajectories. The red color is used for edges which
have been covered by the trajectory data, the blue color is used
for edges that are not covered by any GPS trajectory, which
means that speed limits have been used to derived a travel
cost.

Preprocessing: In the conducted experiments we consider
various settings for Arc-Potentials preprocessing. The prepro-
cessing involves, first, computing the SOTA optimal policy up
to a desired time budget, and second, derive Arc-Potentials
from the optimal policy. Next, Arc-Potentials are used as
heuristic to find the SPOTAR solution efficiently. Computing
the SOTA optimal policy takes most of the time for prepro-
cessing. The computation must be preformed for all sources,
all destination and all time budgets. For the network used in
the experiments, it took around 24 hours while executing the
SOTA optimal policy computation in parallel on the server
machine on 32 cores.

13

Fig. 6: Aalborg network. The red segments have been rendered
thanks to the trajectory GPS data. For these segments exists
enough information to derived travel cost distribution. For the
blue segments the speed limits have been used to derive travel
cost. [1]

In the experiments, we use Arc-Potentials with rectangular
partition scheme. We use four different rectangular partitions
7x7, 15x15, 25x25 and maximum regions(one vertex per one
destination). We report on running time for preprocessing and
the space consumed by the Arc-Potentials for each partition.

Queries: In the conducted experiments we consider various
settings to generate SPOTAR queries.

First, we vary the time budget (seconds) from 300, 500, 700,
to 1,000. Second, we vary the Euclidean distance (km) be-
tween source-destination pairs: [0, 1), [1, 2), [2, 3), and [3, 4).
For each of the settings, we randomly generate 20 source-
destination pairs. Third, we compare our proposal for solving
the SPOTAR problem using different heuristic functions: (1)
the proposed solution which uses Arc-Potentials obtained
by the SOTA policy where the PACE road network model
has been applied. Additionally, we use different partitions
to for Arc-Potentials, i.e. 7x7, 15x15, 25x25 and maximum
regions(one vertex per one destination) to examine how they
affect the SPOTAR solution; (2) the minimum travel time
to the destination using shortest path trees (SP) [1]; (3) the
baseline heuristic using Euclidean distance divided by the
maximum speed limit (BA) [1];

Evaluation Metrics: We report on average run times and
sizes of search space for running SPOTAR in different settings.
We also report on average run times and sizes consumed for
preprocessing with Arc-Potentials.

The experiments have been conducted on two computers.
First, a powerful server needed to preprocess the network,
i.e. it has to compute the SOTA policy up to a desired time
budget and then it derive Arc-Potentials from the policy.
The computation can be done in parallel, therefore a multi-
core processor were used to speed up the computation. The
server HP 585 with 4x16 cores working on 2.294 GHz, 512
GB RAM, 1 TB 7,2k RPM disk. The second less powerfull

work station used to execute the queries with the following
characteristics: Intel® Core™ i5-4210U CPU @ 1.70 GHz ×
4 processors with 12 GB RAM with 64 bit Linux Fedora 25
operation system. The code was implemented in Python 3.

B. Experimental Results

Preprocessing:
We report on the preprocessing time as well as the space

consumed by the AP using different partitions. We report on
7x7, 15x15, 25x25 and maximum regions where each region
has one vertex from the graph and the number of regions is
the same as the number of vertices in the graph. We measure
the space and time used for generating Arc-Potentials.
Preprocessing runtime: We measure the running time needed
to generate AP. The results are shown in Figure 7 b). It is clear
that the running time needed for generating Arc-Potentials
increase when the number of regions increases.
Preprocessing space consumption: Figure 7 a) shows that
the space consumed by the Arc-Potential increases when the
number of region increase

(a) Space consumption (b) Run time

Fig. 7: Preprocessing with Arc-Potentials

Queries:
Queries runtime:

Figure 8 shows the running times when using three methods
(AP max, SP and BA) under different settings. We observe that
when the distance between a source-destination pair increases,
the running times of all methods also increases. Figure 12
also shows that when the time budget increases the running
time of all methods also increase. The AP max heuristic
shows significantly better running times in comparison with
the SP and BA heuristic under all settings. The SP shows
better running time in comparison with the BA heuristic
but it is outperformed by the AP max. In addition, it is
clear that the slowest runtime growth when distance between
source-destination increases has been achieved by AP max.
The fastest runtime growth when distance between source-
destination increases has been achieved by the BA heuristic.
SP heuristic growth is faster than the AP max and slower than
the BA heuristic. The growth of BA is significantly faster in
comparison with the AP heuristic as the distance between a
source-destination pair increases.

14

(a) Time budget 400 (b) Time budget 600

(c) Time budget 800 (d) Time budget 1000

Fig. 8: Runtime

(a) Time budget 400 (b) Time budget 600

(c) Time budget 800 (d) Time budget 1000

Fig. 9: Runtime AP

(a) Time budget 400 (b) Time budget 600

(c) Time budget 800 (d) Time budget 1000

Fig. 10: Search Space

(a) Time budget 400 (b) Time budget 600

(c) Time budget 800 (d) Time budget 1000

Fig. 11: Search Space AP

15

s

d

(a) BA

d

s

(b) SP

s

d

(c) AP 72 regions

d

s

(d) AP 152 regions

s

d

(e) AP 252 regions

s

d

(f) AP maximum regions

Fig. 12: Pruning of Aalborg network

Figure 9 shows the runtime of the SPOTAR solution using
Arc-Potential heuristic with different number of destination
regions. It can be seen that when the distance between source-
destination pair increases the running time also increases, it
is also true that when the time budget increases the running
time also increases. For all settings the best running time
has been achieved by using Arc-Potential with maximum
number of partitions (one per destination region). The slowest
running time has been achieved by the Arc-Potential with 7x7
regions. It shows running time closer to SP heuristic. The
running time of the SPOTAR solution using Arc-Potential with
25x25 regions shows running time very close to the running
time of Arc-Potential with maximum number of partitions.
According to Figure 9 Arc-Potential with 25x25 regions will
consume around 70% of the space required by Arc-Potential
with maximum number of partitions. Arc-Potential with 15x15
partitions shows faster running time in comparison with AP
7x7, SP and BA. It consumes only 30% of the space used by
AP max. regions.

Queries search space: Now, we show the size of the search
space which has been discovered by different methods in order
to find a solution to the SPOTAR problem. In this paper, we
define the search space to be the edges that have been explored
by a method under given settings.

We are further showing comparison between the search
spaces explored by different methods in combination with
different settings.

The total amount of edges discovered using AP max,SP and
BA heuristics, classified by four time budgets can be seen in
Figure 10. The results from the figure suggest that the search
space explored by AP is the smallest, while the search space
discovered by BA is the largest. SP search space is less than
the BA and larger compare to AP max. This holds for all time
budgets and all distances between source-destination pairs.
The search space increase when the distance between a source-
destination pair increases for all methods. The search space
also increases for all methods when the time budget increases.
We report the smallest growth of the explored searched space

16

by using AP max heuristic. SP and BA growths are consider
to be faster in comparison with AP max.

Figure 11 shows the searched space explored by the
SPOTAR solution using Arc-Potential with different number
of destination regions, i.e. 7x7, 15x15, 25x25 and maximum
regions. When the distance between source and destination
increases, the running time also increases for all methods. The
smallest searched space was explored by AP max regions. The
largest search space was discovered by AP 7x7. The number
of edges explored by AP 25x25 is close to AP max regions.
AP 15x15 explored less searched space in comparisons with
AP 7x7, SP and BA.

Finally, we show visually the searched space discovered by
the algorithm for solving SPOTAR using different heuristic,
i.e. Arc-Potentials, SP, BA. The results are presented in
Figure 12

VII. CONCLUSIONS AND OUTLOOK

We investigate an efficient solution of the arriving on time
problem which is important for many modern transportation
systems and services. We present an effective heuristic func-
tion which can be used with our proposal for solving the
SPOTAR problem. We apply the PACE model in the SOTA
policy, and then we derive Arc-Potentials to solve SPOTAR
problem efficiently considering the travel time dependencies of
sequence of edges, i.e. paths. We provide experimental results
using real-world trajectories which suggest that the proposed
algorithm is effective.

In the future, we plan to improve the scalability of the
proposal by increasing the discretization factor. This decreases
the times for which the optimal policy must be computed by
a constant factor, which must reduce the query time.

REFERENCES

[1] G. Andonov, B. Yang, “Arriving On Time: Stochastic Routing in Path-
Centric Uncertain Road Networks”, MDM 2018.

[2] J. Dai, B. Yang, C Guo, C. S. Jensen, and J. Hu, “Path Cost Distribution
Estimation Using Trajectory Data”, PVLDB 10(3): 85-96 (2016).

[3] B. Yang, J. Dai, C Guo, C. S. Jensen, and J. Hu, “PACE: a PAth-CEntric
paradigm for stochastic path finding”, The VLDB Journal, online first.

[4] M. Niknami, S. Samaranayake, A. Bayen, “Tractable Pathfinding for the
Stochastic On-Time Arrival Problem”, August, 2014

[5] G. Sabran, S. Samaranayake, A. Bayen, “Precomputation techniques for
the stochastic on-time arrival problem”, 2014.

[6] Yu (Marco) Nie and Xing Wu, “Shortest path problem considering on-
time arrival probability.“, Transportation Research Part B: Methodolog-
ical, 2009.

[7] S. Lim, C. Sommer, E. Nikolova, and D. Rus. Practical route planning
under delay uncertainty: Stochastic shortest path queries. Robotics:
Science and Systems, 8(32):249–256, 2013.

[8] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang. Stochastic skyline
route planning under time-varying uncertainty. In ICDE, pages 136–147,
2014.

[9] B. Yang, M. Kaul, and C. S. Jensen. Using incomplete information for
complete weight annotation of road networks. TKDE, 26(5):1267–1279,
2014.

[10] C. Guo, B. Yang, J. Hu, C. S. Jensen. Learning to Route with Sparse
Trajectory Sets. ICDE, 12 pages, 2018.

[11] H. Liu, C. Jin, B. Yang, A. Zhou. Finding Top-k Optimal Sequenced
Routes. ICDE, 12 pages, 2018.

[12] H. Liu, C. Jin, B. Yang, A. Zhou. Finding Top-k Shortest Paths with
Diversity. TKDE, 30(3):488-502, 2018.

[13] J. Hu, B. Yang, C. Guo, C. S. Jensen. Risk-aware path selection with
time-varying, uncertain travel costs: a time series approach. The VLDB
Journal 27(2):179-200, 2018.

[14] J. Hu, B. Yang, C. S. Jensen, Y. Ma. Enabling time-dependent uncertain
eco-weights for road networks. GeoInformatica 21(1):57-88, 2017.

[15] Z. Ding, B. Yang, R. H. Güting, Y. Li. Network-Matched Trajectory-
Based Moving-Object Database: Models and Applications. IEEE Trans.
Intelligent Transportation Systems 16(4):1918-1928, 2015.

[16] B. Yang, C. Guo, Y. Ma, and C. S. Jensen. Toward personalized, context-
aware routing. VLDB Journal, 24(2):297–318, 2015.

[17] M. Hilger, E. Köhler, R Möhring, and H. Schilling. Fast point-to-point
shortest path computations with arc-flags. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, 74:41–72, 2009.

[18] R. Gutman. Reach-based routing: A new approach to shortest path
algorithms optimized for road networks. In ALENEX/ANALC, pages
100–111, 2004.

[19] A. Goldberg, H. Kaplan, and R. Werneck. Reach for A* : Efficient
point-to-point shortest path algorithms. In ALENEX, volume 6, pages
129–143. SIAM, 2006.

[20] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies:Faster and simpler hierarchical routing in road networks. In
Experimental Algorithms, pages 319–333. Springer, 2008.

[21] H. Bast, S. Funke, and D. Matijevic. Transit: ultrafast shortest-path
queries with linear-time preprocessing. 9th DIMACS Implementation
Challenge [1], 2006.

[22] Ch. Leiserson, Cl. Stein, R. Rivest and T. Cormen. Introduction
to algorithms and DS, 4th edition, pages 319–369., Mit Press Ltd,
ISBN13:9780262533058, 2009.
.

17

	Front page
	Introduction
	Preliminaries
	Edge-centric uncertain road network model (EDGE)
	Path-centric uncertain road network model (PACE)

	Related work
	Proposal for solution
	SOTA
	SOTA problem and the PACE road network model
	The update graph and the vertex ordering
	Computing the optimal policy
	Example of computing SOTA policy

	Pruning with Arc-Potential
	Algorithm for generating Arc-Potentials

	Experiments
	Setup
	Experimental Results

	Conclusions and Outlook
	References

