Indoor Visual Navigation using Deep
Reinforcement Learning

Soren Skov

AALBORG UNIVERSITY
STUDENT REPORT

Aalborg University
Mathematical Engineering

Aalborg University, June 7, 2018

Seren Skov
<sskol2@student.aau.dk>

Copyright (© Aalborg University 2017

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Indoor Visual Navigation using
Deep Reinforcement Learning

Project Period:
September 2017 - June 2018

Project Group:
G3-115

Participants:
Seren Skov

Supervisors:
Zheng-Hua Tan
Morten Kolbaek

Copies: 1
Page Numbers:

Date of Completion:
June 7, 2018

Mathematical Engineering
Aalborg University
http://www.aau.dk

Abstract:

The focus of this project is to train an
agent to improve its behaviour of nav-
igating in an indoor environment us-
ing visual input. This is done through
the use of deep reinforcement learning
trained on images to find a number
of target positions. The work in this
project is based on [Zhu et al. 2016]
where an agent is trained on 100 mil-
lion images to find 100 targets. The
performance of this algorithm shows
that there are room for improvements.
Therefore, in this project an analysis of
what such as agent learns during the
training is carried out to get an un-
derstanding of what the agent learns
and how this might effect the perfor-
mance. A way to visualize what the
agent learns during the training is pro-
posed to help this analysis.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Preface

This project is written by the student Seren Skov at Aalborg University under the
supervision of Professor Zheng-Hua Tan at Aalborg University and Ph.d Morten
Kolbaek. Both supervisors are from the department of Electronic Systems. It is
written as part of the fulfilment of his Master of Science degree in Mathematical
Engineering. References will be used throughout, and can be found in the bibli-
ography at the end. Specific page numbers or sections may be mentioned. The
files are available for replication of results, and are found at AAU project library,
projekter.aau.dk. The models have been implemented in Python within both
Keras framework and Tensorflow.

Resumé

Dette projekt omhandler anvendelsen af deep reinforcement learning til at leere
en agent at navigere rundt i indenders miljoer for at finde en bestemt lokation. I
dette projekt beskrives den grundleeggende teori bag reinforcement learning, og
hvordan dette kan kombineres med teori fra deep learning, som ger det muligt at
anvende reinforcement learning til at lose realistiske problemer i virkerlige miljoer.

Reinforcement learning gar ud pa at leere en agent at optimere dens opforsel
i et givent miljo mens den selv interagerer. Specifik tages der udgangspunkt i at
leere en agent at beveege sig rundt i indenders rum i huse, hvor den har til opgave
at finde feom til bestemte lokationer ved brug af billeder. Da treening af en sddan
algoritme kreever meget data og at disse data ofte er tidskreevende at opsamle,
benyttes simuleret data fra 3D modeller af indenders rum.

Dette projekt tager udgangspunkt i artiklen [Zhu et al. 2016], hvor en agent er
treenet til at finde den korteste vej til 100 forskellige lokationer i 20 forskellige rum.
Denne agent er treenet pa 100 millioner billeder og den gennemsnitlige leengde det
tager agenten at na frem til de bestemt destinationer er omkring 100 meter i et
indenders milje. Dette er en lang vej agenten skal tilbageleegge i et almindelig rum
i et hus.

Artiklen benytter en populeer algoritme i deep reinforcement learning, som
hedder A3C. Denne har vist gode resultater i andre domeener som video spil og
er den, der tages udgangspunkt i. Model arkitekturen for algorithmen i|[Zhu et al.
2016] analyseres ved at kigge pa hvad algoritmen leerer undervejs for at undersoge
om dette har indflydelse pa konvergens og eventuel of performance.

I dette projekt undersoges det dermed, hvordan det kan veere, at leengden fra
en tilfeeldig start lokation til lokationen, som agenten skal finde, er s& lang. Dette
gores ved at visualisere, hvad agent leerer undervejs og en analyse af dette bruges
til at give nogle forklaringer pa, hvorfor agenten opferer sig som den gor. For
at simplificere analyseprocessen bliver en agent som er treenet pad et enkelt rum
analyseret.

Vii

Contents

[List of Figures| xi
I__Introduction 1
1.1 Problem mentl 3

2 Reinforcement Learning 5
N r Decision Processes|00 7

2.2 Dynamic Programming| 12
2.2.1 Policy Evaluation| 12

2.2.2 Policy Improvement| 13

2.2.3 Generalized Policy Iteration|. 14

3 Q-Learning|. oL 14
2.4 Grid World Navigation|. 16
2.4.1 Dynamic Programming| 17

242 Q-Learning| 21

{3 Deep Learning) 25
B.1 Artificial Neuron| L. 26
3.2 Feed-Forward Neural Networks 27
[3.3 Universal Approximation Theorem|. 29

A4 nvolutional ral ksl oL 30

3.5 Learning Algorithm| 32

4 Deep Reinforcement Learning] 35
4.1 Deep Q-Networks|. 36
.2 Asynchronous Advantage Actor-Critic Algorithm| 37
#.3 Grid World Navigation|. 39
431 Deep Q-Networks| 39

432 A3C Algorithm| 44

[> Target-Driven Visual |
[Indoor Navigation| 47
Bb.1 _Simulation Framework!| 48
.2 State Representation using Images 49
p.3 Target-Driven Navigation| 52

ix

X Contents

6 Resultsl 55
[6.1 Target-Driven Grid World Navigation| 56
[6.2 Target-Driven Visual Navigation| 63

[7Z__Discussionl 65

8 Conclusion| 69
Bl FutureWork] 70

A Scripts 7

B Grid World| 75

[C Convergence of Q-Learning| 77

[D Convergence of Deep Q-Network| 79

[E Grid World Navigation Reults| 81

List of Figures

2.1 Agent and environment interaction Model.| 6
2.2 Convergence of policy iteration.| 14
23 Gridworldl 16
2.4 Grid world environment related to a Markov decision process.| . . . 17
2.5 Convergence of value iteration.| 19
2.6 Q-values from value iteration| 20
R7 Gridworldl 21
2.8 Convergence of Q-learning, iteration O and 100. 23
2.9 Convergence of Q-learning, iteration 300 and 10,000(. 24
B.1 Artificialneuron] oo 26
3.2 Two types of activation functions.| 27
(3.3 Fully connected teed-forward neural network| 28
[3.4 Illustration of the relationship between input, filter and feature maps [

tfor a convolutional layer,|.o 00000 31
.1 Deep Q-network architecture for the grid world environment,|. . . . 41
4.2 Convergence of deep Q-network,|. 42
4.3 Convergence of deep Q-network|. 43
4.4 Convergence of A3C Algorithm|. 45
4.5 Convergence of A3C Algorithm|. 46

1 Six differen nes in the THOR simulation framework with corre-

sponding scenename|. 50
.2 Effect of widthand height|, 51
0.3 Network architecture of target-driven visual navigation|. 53
[6.1 Grid world with Four Targets| 55
[6.3 Target 1 after 30,000 samples| 57
[6.4 Target 2 after 30,000 samples| 59
[6.5 Target 2 after 60,000 samples| 60
[6.6 Convergence of Target-Driven Grid World Navigations| 61
[6.7 Convergence of A3C Algorithm|. 62
[6.8 Results for image states.| 000 L. 63
(6.9 Results for image states| o 0 0L 64

xi

xii List of Figures

B.1 Panorama vi tkitchen). o oo o oo 75
B2 Gridworldl........... 76
[C.1 Convergence of the table-based Q-learning algorithm from Section

| ??, for a fixed € with varying learning rate, a. | 77
[C.2 Convergence of the table-based Q-learning algorithm from Section

| ??, for a fixed € with varying learning rate, «. | 78

[D.1 Convergence of the deep Q-network algorithm applied to the grid
| world environment. The deep Q-network is is trained three times

| where each color represents the error betweenthe| 79
[E.1 Target 1 after 300,000 samples 82
[E.2 Target 2 after 300,000 samples| 83
[E.3 Target 3 after 300,000 samples|, 84

[E.4 ‘Target 4 after 300,000 samples 85

Chapter 1
Introduction

Artificial intelligence is a branch of science concerned with building intelligence
into computer systems or machines [Nilsson 2010]. Intelligence can be grouped
into different categories such as solving math problems, being able to learn from
from mistakes, playing challenging games such as check etc. [Nilsson [2010]. These
are tasks humans have to solve on a daily basis, and the human brain is a very
complex organism that allows us to do exactly that [Haykin 2009].

Machine learning is one particular important area in building intelligent sys-
tems. If a machine is asked to solve a difficult task, it can be challenging to address
the problem by designing a fixed program to complete the task [[Goodfellow, Ben-
gio, and Courville 2016]. Instead one could address the problem by using machine
learning. In general there are three different ways to approach a machine learning
problem, which includes supervised -, unsupervised -, and reinforcement learning.
In reinforcement learning the learning agent, often just called the agent, directly
interact with the environment in which it has to optimize its behaviour. Therefore,
in this approach the data set might not be available prior to the training, but is
instead collected over time.

Accessibility of large amount data and the increasing computational power to
process these huge amount of data has made machine learning algorithms, and
specially deep learning, more attractive. In the last decade artificial intelligence,
and specially machine learning, has received a lot of attention in fields such as
image recognition, image caption, gaming and robotics. Advances in deep learning
has given computers the ability to classify images with a high precision accuracy
[Lecun, Bengio, and Hinton 2015]. Techniques in deep learning has even made
it possible for intelligent systems to capture and describe the actions in an image
[Lecun, Bengio, and Hinton 2015].

In the field of deep reinforcement learning, which is a combinations of tech-
niques in both deep learning and reinforcement learning, computers are now able
to beat humans in games like GO and different Atari games. In [Mnih et al. 2015]
a deep reinforcement learning algorithm is trained to play old Atari games and
is able to beat human players in many of the games. In [Silver et al. 2016]| re-
inforcement learning is used to train a computer to play the game of GO. GO is
considered the most complex board game in the world due to its enormous num-
ber of different board configurations, and for first time a computer has been able

2 Chapter 1. Introduction

to beat a human professional in the game [Silver et al. 2016].

An interesting application of artificial intelligence is in the field of robotics. One
of the goals of artificial intelligence is the development of intelligent agents that
can act autonomously without the need of human supervision [Arulkumaran et al.
2017]]. This has many different applications as robots are used to take over tasks
normally performed by humans. Therefore, robots should also be able to navigate
in the real-world environments where these tasks are performed. Combining deep
learning with reinforcement learning is a necessary step towards making agents
that are capable of solving real world tasks [Mnih et al. 2015].

One such area of real world tasks is in the field of robotics, and specially social
robots, where robots are interacting with humans. For such robots to be successful,
they must be able to solve different social tasks such as face recognition, speech
recognition and indoor navigation. In the development of autonomous robots,
one of the challenges is to learn the robot to navigate in the same environment as
humans. In [Zhu et al. 2016] a robot is trained to navigate to target positions in
indoor scenes using visual data in terms of images. The algorithm is trained on
100 million images from a simulation framework to find 100 different targets in 20
scenes. The performance is measured as the average trajectory length from 10 trials
for each of the 100 targets. On average the agent needs to perform 210.t actions to
find the targets and with a step size of 0.5 meters, this corresponds to about 100
meters inside an indoor environment.

Learning from interactions is the general idea behind reinforcement learning
[Sutton and Barto [1998]. By learning, one means that the agent should be able to
not only use precepts of the environment to act, but also utilize past experience
to improve its behaviour in the future, which for example could be finding the
shortest path length that bring the the learning agent from its current position to a
target position.

One of the disadvantages of applying reinforcement learning to robotics in
real-world environments is the amount of data required to train the model. Real-
world samples are often time consuming and tedious to acquire [Kolve et al. 2017].
Therefore, a simulation framework is provided in |[Kolve et al. 2017] to acquire
training data to train these models.

This report is focused around the work in [Zhu et al. 2016]. The goal of
the project is therefore to understand the fundamental idea behind reinforcement
learning and why these methods work to solve a navigation problem of navigating
the agent to some predefined target positions in an indoor environment. Meth-
ods from deep learning are an essential part in applying reinforcement learning to
real world applications. This combination of deep learning and reinforcement is
known as deep reinforcement learning and therefore, to describe this approach a
brief knowledge of theory and ideas in deep learning and reinforcement learning
is required.

1.1. Problem Statement 3

1.1 Problem Statement

The average performance of the algorithm in [Zhu et al. 2016] is that the targets
are found by moving about 100 meters inside an indoor environment. For a single
room in a traditional house this is a long travel. In this project answers to why the
performance is better than are sought.

How can visual data in terms of images be used to control a robot to find a
predetermined location in the scenes of an indoor environment?

e How can a visualization of what the agent learns be conducted and used to
analyse how the performance can be improved?

e How can the performance be explained using these visualizations?

e How can the amount of training samples be reduced for robot navigation
using visual input?

In this project an analysis of what the agent learns is conducted to see how the per-
formance of the algorithm in the original paper [Zhu et al. 2016]] can be improved.

Chapter 2
Reinforcement Learning

In reinforcement learning one consider the interaction between an agent, also called
the decision maker, and an environment. This interaction is illustrated in Figure
The agent senses the environment through sensors, and is able to respond to
the environment through actions performed by what is called actuators |[Russell
and Norvig 2010]. The sensors and actuators depends on the problem in hand,
but examples of these are cameras that make the agent sense the environment,
and motors that moves the agent around in the environment, respectively. The
fundamental idea behind reinforcement learning is to learn the agent to achieve
a goal by letting it interact with the environment |[Sutton and Barto (1998, p. 51].
This could be described as a sequential decision making problem, where the agent
performs actions in sequence to achieve a goal. The goal is what the agent should
learn to do in its environment [Sutton and Barto 1998, p. 56]. This problem of
learning an agent to behave in an environment to achieve a goal is from now on
referred to as the reinforcement learning problem.

Consider the reinforcement learning problem just described. To have an agent
achieve a wanted goal can be formalized by defining an appropriate reward func-
tion and letting the goal of the agent be to maximize the reward it gets over time
[Sutton and Barto [1998, p. 56]. If the environment is complex it could be tedious
to code what the agent should do in every possible action. Instead of telling what
exactly the agent should do in any situation, the agent must self discover how to
reach the goal by selecting the best actions in any given situation.

The agent receives information about the environment, called states, at discrete
or continuous time steps, but from now on only discrete time steps will be consid-
ered. Upon receiving a state of the environment, the agent responds by picking an
action from a decision rule [Puterman 1994]. An immediate or delayed feedback
from the environment is then given to the agent that tells how good that action
was for the agent in that state [Sutton and Barto [1998]].

The environment in which the agent has to operate can have some different
properties, depending on the design of environment and agent. One thing to
consider is the amount of information about the environment the agent has access
to. One of the first things to consider is whether the environment is discrete or
continuous. If the environment is discrete, it means that there are limited number
of percepts and actions of the environment [Russell and Norvig 2010]

6 Chapter 2. Reinforcement Learning

Agent

Reward, r;

_/

Figure 2.1: Interaction between an agent and the environment surrounding the agent. Recreation of
the figure in |[Sutton and Barto 1998, p. 52],

Additionally, the environment can be both deterministic or stochastic [Russell
and Norvig 2010]. If the environment is deterministic it means that the next state
of the environment is completely determined given the previous state and the
action picked by the agent. However, if the agent has to deal with uncertainty of
the environment, it is considered stochastic [Russell and Norvig 2010]. In some
cases while the agent experiences the environment, it might change over time. For
example, objects or people can move around changing the environment. If this
is the case, the environment is considered dynamic. Otherwise, it called a static
environment.

The experience the agent gets from interacting with the environment can be
both episodic or nonepisodic [Sutton and Barto 1998]. Experience is considered
episodic if it can be divided into episodes, where a completion of a task ends an
episode. [Russell and Norvig 2010]

Reinforcement learning differs from supervised learning where the supervisor
is replaced with a reward signal |[Sutton and Barto 1998|]. This means that there are
no labelled data set available for training, but only a reward signal that defines the
goal of what the agent should try to achieve. This is due to the fact that actions
might not only affect the immediate reward, but also the reward of actions in the
future [Sutton and Barto (1998, p. 4]. In addition to this, the agent is also able
to influence the environment, and therefore also the data given to en algorithm,
through the actions the agent decides to take. Acquiring data of the desired be-
haviour of the interaction between agent and environment, that allows the use of
a supervised learning approach, is often impractical as it does not cover all the
interaction situations |[Sutton and Barto 1998, p. 4].

In robotics, making a robot navigate in an indoor environment can be con-
sidered as a reinforcement learning problem as in [Zhu et al. 2016]. The goal of
the agent could be to find a specific target position in a room and move to the
target position from the agents current position. For a robot with a number of spe-
cific actions, such as moving forward and turning left, the robot should perform

2.1. Markov Decision Processes 7

a sequence of actions that brings it from its current position to the target. In this
reinforcement learning problem, the order in which the actions are performed is
important.

In much of the literature of reinforcement learning, the interaction model be-
tween the agent and the environment is modelled as a Markov decision process
[Sutton and Barto 1998, which is described next.

2.1 Markov Decision Processes

A Markov decision process is a mathematical framework for sequential decision-
making, which consists of five components being a state space, S, an action space,
A, transition probabilities p(s’|s, a), rewards (s, a), and a discount factor, -y |[Littman
2015]. These five components together constitute a Markov decision process, for-
mally given by the set

{S, A,p(s’\s,a),r(s,a),’y}. (2.1)

This section is limited to discrete time Markov decision processes, where the in-
teraction between agent and environment happens at discrete time steps, t =
1,2,3,....

The state space, S, is the set of available states of the environment. At each
discrete time step, t, the agent receives a state, s; € S, which contains the infor-
mation about the environment that is available to the agent at time ¢. The second
component is the action space, .4, which is the set of actions the agent can perform
in the environment. From a given state, s, there might be some actions that the
agent cannot perform, which limits the action space in that state, denoted as A(s).
If both A and S are finite sets, the process is called a discrete-time finite Markov
decision process. |[Sutton and Barto 1998]].

The third component in a Markov decision process is the reward function that
gives the agent feedback from the environment |[Sutton and Barto [1998, p. 7] The
feedback is given in terms of a scalar reward R; € R after the agent has performed
an action in the occupied state. The reward function specifies the goal of the
reinforcement learning problem |[Sutton and Barto 1998, p. 7] For example if a
robot has to find the shortest path to a location in a room, the reward function
can be constructed in such a way that the agent receives a penalty in terms of a
negative reward for every step it takes without reaching the object. In this way the
agent will try to reach the goal by finding the shortest path to the location. A high
positive reward is then given for the actions that brings the agent to the state of the
location the agent is asked to find.

The environments respond to an action taking at time step t + 1 would in the
most general case depend on everything that has happened up to this time step
[Sutton and Barto 2017]. Mathematically, this can be expressed using conditional
probability as

P (Rt+1 =7, St-i—l — S/ ’ SO/ AO, Rl/ e /St—llAt—ll Rt/ St/ At) 7 (2'2)

8 Chapter 2. Reinforcement Learning

for all r, s’ and values of past events Sy, Ao, Ry, ...,S¢-1, At—1, Re, St, Ay, if it is as-
sumed that there are a finite number of states and reward values [Sutton and Barto
2017]. The dynamics can therefore only be specified by knowing the probability
distribution of Equation Instead one can model the environment to satisfy the
Markov property. A first order Markov property states that the transition from s;
to s;1 only depends on the most recent state, s; and not the history of all the state
before s; [Haykin 2009, p. 657]. Hence,

P (St+1 = S,/ ‘ SO/ AO/ Sl/All- . -/St/At) =P (St+1 = S/ | St =5, At = Cl) (23)

The transition probabilities refers to probabilities of changing from state s to a
successor state s’ given that action a is performed by the agent, and is given in

Equation 2.4
p(s'ls,a)P (S31 =" | St =5, Ar = a) (2.4)

The transition dynamics, that now satisfy the Markov property, is often summa-
rized in a transition graph for small state and action spaces. An example of a part
of a such a transition graph is seen in Figure

The last component of the Markov decision process is the discount factor, y €
[0,1]. This is used to measure the accumulated rewards, called return, to determine
how much future rewards should influence the return |[Sutton and Barto (1998, p.
58], The closer 7 is to 1 the more affect future rewards have on the return.

Definition 2.1 (Return)
Let R; be the immediate reward at time step ¢, and ¢ € [0,1] be the discount
factor. The return, Gy, is then defined as in [Sutton and Barto (1998, p. 58]

T
Gt = Z Y Reskr (2.5)
k=0

where T is the last time step in the interaction between agent and environment.

For a reinforcement learning problem that breaks into episodes, for example in a
single game of checkers where a terminal state is reached when the game is finish,
G; is a finite sum of rewards. In this case G; will itself be finite, if the immediate
rewards are finite [Sutton and Barto [1998, p. 58], However, for a reinforcement
learning problem that does not naturally break into these subsequences with a
finite episode length a discount factor v < 1 prevents the return from being infinite
[Arulkumaran et al.2017]]. Therefore, note that T = oo and ¥ = 1 must not both be
satisfied.

In the Markov decision process framework, the goal is to find a policy, denoted
7, that maximizes the return over time. The policy is the agents way of behaving,
which for any given state determines the next action the agent should take. In
general such a policy can be both deterministic or stochastic, where a deterministic
policy specific tells the agent what action should be taken. A stochastic policy, on

2.1. Markov Decision Processes 9

the other hand, provides the agent with a probability of taking each action available
from that state. However, a deterministic policy can be derived from a stochastic
policy, for example by taking the action with the highest probability. [Sutton and
Barto [1998]

Definition 2.2 (Policy)

A deterministic policy, 77(s), is a mapping from state to action 7 : S — A.

A stochastic policy, also noted by 7t(s), is a mapping from a state to a probability
of taking a specific action, 77 : S — [0,1]. where 71(s,a) denotes the probability
of taking action 4 in state s.

A key concept of a Markov decision processes is value functions [Sutton and
Barto 1998]. Value functions tell the agent how good it is to be in a given state in
terms of how much future rewards that can be accumulated from that state [Sutton
and Barto [1998]. For some solutions methods for Markov decision process value
functions are used in the search for optimal policies, which will become clear later
when the solution methods are described. For now, two different values function
are defined. The first value function is called state-value function, denoted V7 (s).
It computes the value of being in state s and then following a policy 7. The value
can be calculated by the expected amount of reward the agent can expect to get
from state s.

Definition 2.3 (State-Value Function)
The state-value function, V7 (s), for a given state, s, and policy, 7, is defined as
in [Sutton and Barto (1998, p. 69].

V7™(s) = Ex

Y PRk |8 = s] , VsES (2.6)
k=0

where [E[-] is the expectation operator for a policy 7t that the agent follows.

The value of a state s, which is given by the state-value function, can be expressed
in terms of a immediate reward and the value of the successor state, s’. This
recursive relationship between V7 (s) and V7 (s’) is known as the Bellman equation
[Sutton and Barto (1998]. Mathematically the Bellman equation can be derived
starting from the definition of the state-value function. This derivation follows the

10 Chapter 2. Reinforcement Learning

one in [[Sutton and Barto 2017,

V7i(s) =Ex |), ’Yth+k+1‘5t = S]
k=0
=Ex |Rip1 + ("Yth+k+z) ’St = S]
k=1
=Y n(als) Y Y p(s,rls,a) |r+ 9B | Y “Yth+k+z)5t+1 = s” 2.7)
a shr k=1

= L lals) LY p(rlsa) [+ V™ (s')] @8)

Equation is called the Bellman equation for V7 (s). As seen from the Bellman
equation it expresses a way of calculating the expected accumulated return using
the immediate reward and the value of the successor state, s’. It averages over all
values of possible transitions to successor states weighting each by the probability
of taking the action that leads to the transition [Sutton and Barto[1998, p. 70].

The second value function is the action-value function, denoted Q™ (s,a). The
motivation for introducing Q7 (s,a) will become clear later, but first the relation
between V7 (s) and Q" (s, a) is described. The action-value function is close related
to the state-value function but is also conditioned on the action, a. Instead of
measuring the value of being in a specific state, it measures the quality of taking
action, a, when the agent is in state, s.

Definition 2.4 (Action-Value Function)
The action-value function, Q" (s, a), for a given state-action pair s, a is defined as
[Sutton and Barto 1998, p. 69].

Q" (s,a) =Ex , (2.9)

Z ’Yth+k+1’5t =s,Ar=a
k=0

where [E[] is the expectation operator for a policy 7t that the agent follows.

In the search for optimal behaviour of the agent, one wants to keep improving the
current policy. A policy 7 is better than another policy 7/, that is 7w > 77/, if the
expected return for 7t is greater than that for 7/, meaning that V7 (s) for all states
s € §. If one policy is the best among all other policies, that policy is called the
optimal policy and is denoted 7r* |[Sutton and Barto 1998, p. 75]. In principle, there
might be multiple optimal policies [Sutton and Barto 1998, p. 75].

Definition 2.5 (Optimal Value Functions)

The optimal state-value function is a function V : S — R defined as

V*(s) =maxV7(s) VseS (2.10)

T

2.1. Markov Decision Processes 11

Similar, the optimal action-value function is defined as

Q*(s,a) = max Q"(s,a) Vs e SandVa e Als)

Writing the Bellman equation for the optimal state-value function V* gives the
Bellman optimality equation. The derivation of this equation follows that in [Sutton
and Barto 1998|. The interpretation of the Bellman optimality equation is that the
value of a state evaluated for an optimal policy must be equal to expected return
when in state s and picking the best action in this state.

V*(s) = max Q" (s,a)

ac A(s)
= max,E ;- Z 'ykRHkH‘St =s5,Ar=a
k=0
= max Er |Repa+7), 'Yth+k+2‘St =s,Ar=a
k=0

= ImaXx IEH* [Rf+1 + v* (S/)’St =S5, At = El]

a

= max Y p(s',rls,a) [r+yV*(s")]

s’

This means that for reinforcement learning methods, that use value function to
find optimal policies, such an optimal policy can be derived from an optimal value
function, by picking the best action in each state, where best means the action that
maximizes the value of the next state in each state. This means that a policy that
acts greedy on the optimal state-value function V* is an optimal policy |[Sutton and
Barto 1998]. This also applies to the action-value function

Q*(s,a) =) _p(s,rls,a) r—f—’yn}lgle*(s’,a’)

s !

However, finding an optimal policy in practice almost never happens, only if the
state and action spaces are small, these can be found. However, acting greedy
according to an approximation of an value function could still lead to good policies.

A key difference between solving a reinforcement learning problem and solving
a Markov decision process is that in a reinforcement learning problem there is
typically no information about the transition dynamics of the underlying Markov
decision process [Arulkumaran et al. 2017].

So far, the reinforcement learning framework has been introduced and how to
make the agent achieve a goal by extracting an optimal policy from value function.
It has not been mentioned how to actually compute the value function in order to
find good policies. In general there are two main approaches to solve the reinforce-
ment learning problem. One of them uses estimated value functions to structure
the searching for good policies, where the other instead search for good policies
directly in the space of policies [Arulkumaran et al. 2017]. Respectively, these

12 Chapter 2. Reinforcement Learning

methods are called value-based and policy-based methods. The solution methods
presented in this section are all table based methods, which means that the value
function is represented in terms of a look up table. Each state, s € S, is an entry in
a table with a corresponding value V (s) or Q(s, a) for each entry.

] V7(s)
S1 VT[(Sl)
S Vn(Sz)
S3 V”(S3)

In the next sections algorithms to actually compute value functions in order to
extract policies from these are described.

2.2 Dynamic Programming

Dynamic programming is a class of algorithms that can be used to find optimal
policies for a Markov decision process under the assumption of known transition
dynamics of the model [Sutton and Barto|1998, p. 89]. So, given {S, A, p(s'|s,a),(s,a),v},
one wants to find optimal behaviour in terms of calculating an optimal value func-
tion and extracting an optimal policy 7* from it. This computational approach to
solving a Markov decision process is also considered as a model-based approach,
since a model is utilized to find 7* [Hester 2013, p. 13].

In general, dynamic programming is a divide-and-conquer approach of solving
complex problems by breaking the complex problem into simpler subproblems
[Thomas, Cormen, and Leiserson 2009, p. 359]. The idea is that each of these
subproblems occur multiple times, when solving the overall complex problem.
The optimal solution to each of the subproblems are then computed and stored for
later use when that subproblem occurs again.

In dynamic programming value functions are used to find good policies [Sutton
and Barto (1998, p. 89]. Two of the most common algorithms in dynamic program-
ming are policy iteration and value iteration [Sutton and Barto 1998, p. 108]. These
are two special cases of the general idea of generalized policy iteration. Common
to these methods are that they involve the two steps, policy evaluation and policy
improvement.

2.2.1 Policy Evaluation

In dynamic programming, policy evaluation is a way of computing the state-value
function, V7, for an arbitrary policy, 7 [Sutton and Barto [1998, p. 90]. Recall, that
V7 is the state-value function calculated for all the states in the state space, V7 (s)
for all s € S. Thus, it computes the value for each state s € S given a specific
policy.

Often policy evaluation is also referred to as the prediction problem, because
it estimates how good a state is based on computations of the state-value function

2.2. Dynamic Programming 13

[Sutton and Barto 1998, p. 90]. An iterative algorithm called iterative policy evalua-
tion can be used to evaluate an arbitrary policy for all states in the state space. The
idea is to use the Bellman equation given in [2.8 as an update rule for computing
the state-value function. The update rule is given by

Vi (s) =) _m(als) ZZP(SCHS/@ [r+ V7 (s")]

where 71(s|a) is the probability of taking action a in state s and Vi(s') is the value
function from the previous iteration of policy evaluation. Asymptotically, iterative
policy evaluation can be shown to converge to the value function, V7 (s), using the
update rule given in Equation but is omitted in this project.

For iterative policy evaluation a natural question is when has the algorithm
converged to V7(s) and can be stopped. For a given threshold € > 0, the algo-
rithm can be stopped when the difference from iterative to iterative is below this
threshold. Mathematically this is expressed as

max | Vii1(s) — Vi(s)| < e. (2.11)
seS

When a policy, 77, has been evaluated, hence values for each state is found using
the policy 71, one wants to improve 7 by a finding a new policy, 77/, that is better
or at least as good as the old policy. This approach is called policy improvement.

2.2.2 Policy Improvement

When a policy has been evaluated using policy evaluation and an approximate
value function has been estimated, one can use this to find even better policies
[Sutton and Barto [1998]. This is known as the policy improvement step, but is also
referred to as control. In improving a policy one would like to know whether a
policy for some state should be change to pick another action instead of following
the policy. A greedy policy 77'(s) can be constructed by picking the action that
looks best after only one look ahead.

7' (s) = argmax Q7 (s, a)

acA(s)
= argmax) _p(s',rs,a) (r+yV7(s)) (212)
acA(s) s r

This is the same as the Bellman optimality equation, and therefore policy improve-
ment ensure that the policy improves from iteration to iteration, except when the
policy is already the optimal one. The policy improvement step therefore uses a
greedy policy which guarantees the policies not to be worse than the old one.

14 Chapter 2. Reinforcement Learning

2.2.3 Generalized Policy Iteration

In generalized policy iteration, policy evaluation and policy improvement repeat-
edly interact with each other to compute an optimal policy |[Sutton and Barto [1998)
p. 105]. The general idea behind generalized policy iteration is summarized in
Figure First, one initialize a value function, for example V(s) =0 forall s € S,
and a policy, for example a random policy. The policy evaluation step then evalu-
ates the current policy computing V7 (s) for a number of steps. This step is shown
as the arrows pointing upwards in Figure The new value function is then used
to find a better policy by greedily picking the best action in each state.

Initial
V and 7©

Optimal
V* and 7t*

Figure 2.2: Illustration of how policy iteration converges to the optimal policy and value function.
The illustration is inspired from the picture in [Sutton and Barto|1998, p. 106].

The two algorithms policy iteration and value iteration are both algorithms that
all into the category of generalized policy iteration. Policy iteration will converge to
an optimal policy, but a disadvantage of this algorithm is that for each new policy
found by the policy improvement step, the policy evaluation step has has to run
until the value function V™ has converged [Sutton and Barto[1998]]. This can be time
very time consuming if it converges slow. Instead one can use the algorithm called
value iteration, where only a single iteration of policy evaluation is computed in
between each policy improvement step. The value iteration algorithm is seen in
Algorithm

2.3 Q-Learning

Q-learning is a type of algorithm called temporal-difference learning [Sutton and
Barto 1998]. Temporal-difference learning combines ideas from both dynamic pro-
gramming and Monte Carlo methods [Grondman et al. [2012]]. Like Monte Carlo
methods, temporal-difference learning does not require any knowledge of the un-
derlying Markov decision process, but instead use experience through sampling of
episodes [Sutton and Barto 1998]]. It can thus learn how to behave in the environ-
ment only through sampled experience.

Monte Carlo methods have the advantage of not requiring a model of the
Markov decision process in order to achieve optimal behaviour. However, it is

2.3. Q-Learning 15

Algorithm 1: Value Iteration |[Sutton and Barto 2017

Initialize value function V, e.g. by V(s) = 0 for all states s € S.
Repeat

A<+ 0

Repeat for all s € S.

v+ V(s)

V(s) max, Do, p(s,7ls,0) (r +7V(S')

A < max (A, |v—V(s)|)

Output deterministic policy, 77, such that
mt(s) = argmax, max, }_q , p(s',7|s,a) (r + yV(s'))

based on full sampled episodes, which in some application might not be attractive
since episodes can be very long |[Sutton and Barto 1998]. Also, in some applica-
tions there might not even be a terminal state, since the agent in principle con-
tinues to interact with the environment to eternity. Compared to this approach,
temporal-difference learning is instead able to immediately update the estimate of
the action-value function after a single time step. So instead of waiting to update
the action-value function until the end of an episode, it can be done after the agent
has perform a transition from s; to s;.

In the literature, Q-learning is considered to be one of the most important
breakthroughs in reinforcement learning [Arulkumaran et al. 2017]. Q-learning
is an off-policy method that is able to estimate the optimal action-value function,
Q*(s,a), regardless of what policy the agent follows. This means that Q*(s,a) can
be estimated for example from a random policy without any knowledge of the
optimal policy. For a one-step Q-learning approach, the update rule is given by

Q(st,ar) = Q(st,ar) +a (rt + 7y max Q(St41,at) — Q(st,at))) (2.13)

where « is the learning rate, 7 is the discount factor |[[Sutton and Barto [1998].
Q' (st, a;) will converge asymptotically to the optimal action-value function Q* (s, a¢).
The Q-learning algorithm is seen in Algorithm

Algorithm 2: Q-Learning [Sutton and Barto [1998]
Initialize Q(s,a) arbitrary.
Repeat for a number of episodes.
Initialize s.
Repeat until episode terminates.
Choose a from s using policy derived from Q.
Take action a and observe r and s'.
Q(5,a) « Q(s,a) + & (r + 7 maxy Q(s',a') — Q(s,a)).
Update current state, s < s'.

16 Chapter 2. Reinforcement Learning

24 Grid World Navigation

In this section some of the methods described for solving the reinforcement learn-
ing problem will be applied to a small grid environment. This should help un-
derstanding the theory and build a connection between theory and practice, and
see that it can be applied to solve a simple navigation problem. An overview of
the grid world environment is seen in Figure For details about the grid world
environment and how it is conducted, see Appendix

The goal of the agent is to get to the finish square located at (x,y) = (8,7)
in the grid. This is achieved through a number of available actions the agent can
perform given by the discrete set, A = {aup, Adown, @efts Aright}- The state space,
S, consists of all the white squares in Figure denoted s(y). The agent is not
able to move to the black squares or out of the environment, and the action space
is therefore limited for example A(s(3)) = {aup, Aett }-

1 2 3 4 5 6 7 8 9
1 - + -
2 4. A d

s
<.
)

SERE

i
4_1_.
4_1

Figure 2.3: Grid world environment example. The white squares are the available positions of the
agent in the environment and the black squares represent unavailable positions. The
arrows show the possible movements of the agent for a given state.

IR

'
L2 e I 2 Ear 2 I AS Bt 2 ar'

4—t>4—>4—><—><—><—>

The environment in Figure is related to the notation of Markov decision
processes, which was described in Section This relationship is seen in Figure
In this Markov decision process of the grid world environment the probabil-
ities of the available actions in a given state is uniformly distributed. Given the
agent is in a state, for example $(32)s and selects action a3, the transition probabil-
ity p(s',r|s,a) is 1.0 of ending up in state s4,). However, one could reduce this
probability to model uncertainty into the environment, for example by allowing
the agent to end up in a neighbour state if action a3 in state s(35) is selected. This
uncertainty is not modelled in this project.

In the next sections, solutions to the grid world problem using dynamic pro-
gramming and Q-learning will be presented. The idea is to apply the theory to

2.4. Grid World Navigation 17

\:. . . @/10 \:

Figure 2.4: Illustration of the relationship between the grid world environment and a Markov
decision process. The Markov decision process for the whole grid world environ-
ment is to big to show, so instead a little part of it is shown. The action space is

A= {ﬂupr Adowns Mefts ”right} = {110/a1r as, ﬂ3}-

a small navigation example to see if these methods converge to the same solution
or solutions close to each other. It also makes it possible to compare the methods
to the methods presented in Chapter 4l This should help the analysis of what the
more complex algorithms learns.

24.1 Dynamic Programming

In this section, dynamic programming is used to solve the reinforcement learn-
ing problem for the grid world environment just described. The value iteration
algorithm presented in Algorithm (1| is used, where one policy evaluation step is
followed by a policy improvement step. The initial value function and initial pol-
icy is shown in the top of Figure The value function is initialized by setting
V(s) = 0 for all s € S. Also, by definition the value of the terminal state is zero
[Sutton and Barto [1998]. Furthermore, the initial policy is chosen to be a uniform
distribution over the available actions from that state, where the available actions
in each state are the set of actions that does not bump into walls or moves the
agent out of the grid. The policy shows the action with the highest Q-value in
each state, but for states where multiple actions share the same highest Q-value,
all these actions are shown. This means that all actions in such a case are equally
good.

The next pairs of value function and policy are for iteration 3, 10 and 25 of the
value iteration algorithm, respectively. As seen from the third iteration of the value
iteration algorithm, the value function spreads out from the finish state, where the
transitions to the finish state is rewarded by 1.0. Since dynamic programming
sweeps through the whole state space for each iteration the value for each state

18 Chapter 2. Reinforcement Learning

s € § is updated, which also means that the Q-values for each state are updated.
The Q-values are used to extract a policy from the value function from iteration to
iteration.

The value of a state can be calculated by utilizing the Bellman equation in Equa-
tion and as an example the value of state s(g¢) is calculated. This state has
two available actions each with a probability of 0.5 of being selected. Each of these
actions transitions to a single successor state with a probability of 1.0. However,
uncertainty can be build into the model by allowing the agent to transition to mul-
tiple successor states, but this is omitted in this project. The value of the state can
then be calculated giving the initial policy as follows

Ve(si86) = L als) L L p(srls,a) [r+ V()

—05-1.0-(1.0+0.9-0.0) +0.5-1.0(—0.05 + 0.9 - 0.0)
= 0475

After the update of the value function, the policy is then updated by making the
it greedy with respect to the current value function. Since transitioning to the
terminal state s(g) receives a reward of 1.0, the greedy policy will now prefer this
action. This results in a new policy where 7(s(g6),41) = 1.0. The value function
for s(g), given this new policy, is then calculated by

V™ (s(86)) = 1.0-1.0(1.0 + 0.9 - 0.0)
= 1.000

This approach of alternating between updating the value function and policy leads
to the optimal value function, and hence also the optimal policy. This is seen
after 25 iterations of the value iteration algorithm, where the value function has
converged to a stationary solution. Since this is a small example and the grid world
environment is intuitive to understand, it is also possible to verify the correctness of
dynamic programming applied to solve this navigation problem. After the value
function has converged to the optimal one, each additional step away from the
terminal state reduces the value of that state calculated by the Bellman equation.
This reduction is determined by the discount factor and the reward function, which
in this case penalizes each transition not ending up in the terminal state by -0.05.

By examining the policy after 25 iterations, it is seen that in each state, the
policy moves the agent one step closer to the terminal state. This is easy to verify,
that this policy is indeed the optimal one for this grid world environment. For a
script that implements dynamic programming to solve the reinforcement learning
problem for the grid world environment, see Appendix

The value function calculated using dynamic programming provides an opti-
mal value function. This is used as an analytic solution to the grid world environ-
ment which is used to see if other solution methods converge to the same analytic
solution. To be able to compare the solution presented in this section to other meth-
ods, such as Q-learning, the action-value function is shown in Figure Instead
of showing the value for each state the Q-value for each action is shown along the
side of the corresponding action.

2.4. Grid World Navigation 19

1 2 3 4 5 6 7 8 9 1
1 |0.00 | 0,00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 1]
2 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 2| b
3 |0.00 | 0.00 3 }.
4 /000 | 0.00 4| b
5 | 0.00 | 0.00 5 }.
6 | 0.00 | 0.00 6| b
7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 7| &
(a) Initial value function, V7.
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 [-015|-015|-015|-0.15|-0.15| -0.15 | -0.15 | -0.15 | -0.15 1 555
2 |-015|-0.15|-0.15 |-0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 2| b e e e e e
3 |-0.15|-0.15| - 3 }. 4%
4 |-015|-0.15 4 }. 4{
5 |-0.15|-0.15 5 }. .{
6 |-0.15|-0.15 6 }. 4{
7 |-015|-0.15|-015 | -0.15| 037 | 0.94 | 1.00 | 0.00 7| b
(c) VT after 3 iterations. (d) 7 after 3 iterations.
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 |-0.48|-048[-0.48 | 0.00 | 054 | 0.59 | 0.65 | 0.71 | 0.65 T e e e e e
2 |-048|-048 0.00 | 0.54 | 059 | 0.65 | 0.71 | 0.76 | 0.71 2| b
3 |-048] 000 | -048) 76 | 0. 3|
4 | 000|054 4| p
5 | 054|059 5
6 059|065 6|
7 065|071 | 076 | 0.82 | 0.88 | 0.94 7| -
(e) V™ after 10 iterations. (f) 7t after 10 iterations.
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 032|037 | 043|048 | 054 | 0.59 | 065 | 0.71 | 0.65 I I e R B et Bt e R
2 037|043 | 048 | 054 | 059 | 0.65 | 071 | 0.76 | 0.71 2| o~
3 | 043 3|
4 |04 4| o
5 | 054 5
6 |059 6|
7 065|071 | 076 | 0.82 | 0.88 | 0.94 7| -
(g) V7 after 25 iterations. (h) 7t after 25 iterations.

Figure 2.5: Convergence of value iteration for the grid world environment. The left column shows
the value function after just one iteration of iterative policy evaluation for the current
policy. The right column shows the greedy policy extracted from the estimate value
function. If multiple actions achieve the same maximum Q-value for a given state, the
policy for that state is a uniform distribution over these action.

20 Chapter 2. Reinforcement Learning

1 2 3 4 5 6 7 8 9

0.2629 0.3183 0.3703 0.4262 0.4811 0.5365 0.5924 0.6489 0.5923

[y
%920
19920
03717
Z81€0
2
61ZE0
€920
53
1870
5950
64
72650
05924
8879°0
05923

0.3183

0.3110 0.3720 0.3813 0.4330 0.4847 0.5422 0.5730 0.7059 0.6489
0.2626 0.3183 0.3718 0.4263 0.4811 0.5365 0.5924 0.6489 0.5924

N
6S1€°0
0.3720
€81€°0
0.3765
02L€0
0.4298
89€°0
0.4848
96210

54
P78%°0
0.6060
8850
0.7059
S809°0
0.6489
69(4[0
0.6489

0.3666
0.3161

W
T1E0
04263
02LE0

0.4253
0.3718

=
8GCY°0
0.4811
€910

0.4806
0.4259

)
01870
0.5365
11870

0.5362
0.4810

24

fox)

N
79650
9650

0.5

0.5924
0.5365

N
2650
0.6489
72650

0.5924

Figure 2.6: Illustration showing the Q-values, Q(s,), for each state and action pair when the value
iteration has converged. The four values are the Q-values for the action that moves the
agent in the given direction.

2.4. Grid World Navigation 21

24.2 Q-Learning

In this section the Q-learning algorithm in Algorithm [2| is applied to solve the
reinforcement learning problem for the grid world example. Since Q-learning can
solve the reinforcement learning problem without prior knowledge of the model,
the set up is a bit different from dynamic programming. Instead of limiting the
action space in some states, the agent is allowed to bump into walls by allowing all
four actions to be available in all of the states. If the agent performs an action that
results in collision with a wall, the state of the environment is unchanged. This
means that just by sampling interactions of the agent acting in the environment,
one can improve a policy. Te environment is illustrated in Figure

8 9

4_1_.
4_1»

ESEEE
4_1»

e [[t [t [t [[0 -

Figure 2.7: Grid world example of navigation. The white squares are the available positions of the
agent in the environment and the black squares represent unavailable positions. In this
grid world environment, the agent is allowed to pick all available actions.

Compared to dynamic programming where the solution methods sweep through
the whole state space for each iteration, each Q-value is only updated when the
agent discovers the state. This means that some states might be updated more than
others. Extracting a greedy policy could then lead to too much exploitation of the
knowledge the agent has learned. The agent should keep discovering the whole
state space to be able to search for better policies. To do this an e-soft policy is
used. This means that if a random sampled number between 0 and 1 is under a
specified € value a random action is picked instead of selecting the one with the
highest Q-value [Sutton and Barto [1998]. This is used to let the agent discover
states that might not be visited a lot of times in order to update the Q-value for
these states, which could eventually lead to better policies.

A script that implements the Q-learning algorithm can be found in Appendix[A]
As seen from Figure 2.9 an optimal policy is achieved after 300 episodes regardless
of the action-value function being the optimal one. By examining Figure 2.8 one
can see that the Q-values for states close to the goal convergence faster to the

22 Chapter 2. Reinforcement Learning

optimal ones, than the ones far away from the goal. This has several reasons. First,
the agent has to discover the goal in order to get the reward for achieving the goal.

Another reason that the Q-value for the state s(; ;) convergence slower, is this
this state is not visited as many time as the state closer to the goal, and therefore
has not its Q-values updated as much. The ratio of exploration and exploitation
used in the algorithm is € = 0.3. This is used to maintain exploration to states that
is not visited that often. If € = 1, the agent will pick a random action every time,
which means that it will not exploit any knowledge it has learned.

In practice, however, some of the traditional ways of solving a reinforcement
learning problem are infeasible. This could be due to the huge number of states in
the state space of real world reinforcement learning problems. Therefore, the field
of classical reinforcement learning can benefit from techniques in deep learning.
This leads to an introduction of some of the theory of deep learning, which is
described next.

If the problem in hand has a model with a huge number of states, it might be
infeasible to stores the value function as a table for later use. Instead of a table,
the value function can be considered as a parametrized function that approximates
the value function for a given input. Model in deep learning has the ability to
approximate any function, no matter the complexity of the function. In this way
deep learning and reinforcement learning is combined into deep reinforcement
learning. Before describing the techniques in deep reinforcement learning, some
theory of deep learning is needed.

23

2.4. Grid World Navigation

(a) Initial Q" (s, a).

0£80°0~ 1990°0-
& 3|2
& —»3Is '
o (=] fe=)
-0.0780 0.1897
SL20°0- 1€50°0-
I N
s —+gE >
S S|lo
-0.0699 -0.0578
1280°0- SI¥C0
=3 N INY »
<o) ofal
3 —+g&
S S|o
-0.0923 -0.0998
6¥01°0- 96100~
) oo
£t .
S Slo
-0.1110 -0.0973
T1€1°0- CLiro- ceero-
N ol *
=) ==
| -
S S|s
-0.1338 -0.1322
YIvLo- PP1L0-
) INIE)
=3 D
gt EE.
o (=] fe=)
-0.1420 -0.1491
LEST°0- LSS1°0- 01810~
— | b~
&A| 1818 —>
— =
S S|s
-0.1569 -0.1584 -0.1551
0291°0- 66910~ 6951°0- €CeT0-
10 —|n »
o [N [
S 3=
3 3|<
-0.1605 -0.1643
Y910~ €991°0-
Dy oo oo * | * ofw ol © * I
) NI = 0 [—= s S 0 [15} 0
= =2 =2 == s =l s =
< « SN « U< U S U< < <
-0.1603 -0.1603 -0.1619 -0.1552 -0.1411 -0.1342 -0.1110
Ll (o] o Ay Lo =) D~

(b) Q™ (s, a) after 100 episodes.

Convergence of Q-learning for the grid world environment. The four values at each line

Figure 2.8

of each square represents the Q-value of going in that direction. The arrows in each

square represents a greedy policy.

24 Chapter 2. Reinforcement Learning

1 2 3 4 5 6 7 8 9

-0.2241 -0.2042 -0.1855 -0.1649 -0.1356 0.0897 0.0859 -0.0076 -0.0763

o
Yz
-0.2191
780C0-
-0.1997
8610
01572
68510~
-0.1371
9FFL0-
1
SHOL0-
47
80700
0.0696
2100
-0.0570
7500
-0.0601

-0.2217 -0.1794 -0.1555 0.0668 -0.0781 0.0888 0.6223 0.5541 0.1715
-0.2108 -0.1977 -0.1925 -0.1315 -0.0848 0.1267 0.1516 0.1588 -0.0619

45

— —

-0.0725

6€L1°0-
0.3157
0Z?9'0
0.0323

—- O

N
62020~
7:
r61°0-
TLET0-
0.4057
€eIro-
0.5552
1#81°0
64
8L1%°0
0.7050
188%°0

0.1

-0.2036 -0.1378 -0.0539
-0.1928 -0.1853
o

v

-0.1900 0.0875
-0.1866 -0.1424

(O3]
61610
17
94810~

=
€ELT0-

02
SIST0-

g1
81010
7
£801°0-

(=)
THELO-
0.0624
€690°0-

Finish

N
28100~
55
90520

(@) Q™ (s, a) after 300 episodes.
1 2 3 4 5 6 7 8 9

0.2629 0.3183 0.3703 0.4262 0.4811 0.5365 0.5924 0.6489 0.5923

[y
%920
31
19920
-
0.3717
¢81¢0
42
614£°0
0.4811
€910
0.5365
T18%°0
59
G9¢S°0
0.6489
26570
0.5924
8879°0
0.5923

0.3110 0.3720 0.3813 0.4330 0.4847 0.5422 0.5730 0.7059 0.6489
0.2626 0.3183 0.3718 0.4263 0.4811 0.5365 0.5924 0.6489 0.5924

N
6G1€°0
37.
€81€°0
0.3765
0220
2!
894£°0
0.4848
96210
4
7870
60
88€5°0
0.7059
S809°0
0.6489
fL
0.6489

0.3666 0.4263
0.3161 0.3720

(O8]
T1£E0
42
02LE0

0.4253 0.4811
0.3718 0.4263

=
8STH°0

481
€920

0.4806 0.5365
0.4259 0.4811

6)
01870
53
1870

(=)}
79650
59
S9€5°0

Finish

N
72650
648
¥2650

(b) Q™ (s, a) after 10000 episodes.

Figure 2.9: Convergence of Q-learning for the grid world environment. The four values at each line
of each square represents the Q-value of going in that direction. The arrows in each
square represents a greedy policy.

Chapter 3
Deep Learning

In machine learning, the algorithms is able to learn from data. In some cases
solving a task or problem using a fixed designed program might be too difficult
[Goodfellow, Bengio, and Courville 2016, p. 97]. Such a task could be to classi-
fying images by determining whether a given image contains a house, a tree, or
something else. Solving this task with a fixed program is very difficult, especially
if the number of classes is large. Instead, one could address this task by presenting
the algorithm for a number of images of trees and houses and let it learn how to
classify the images from these data samples.

The input to conventional machine learning algorithms is hand crafted features,
which is extracted from the data itself [Lecun, Bengio, and Hinton 2015]. Extract-
ing these features from the data typically require much knowledge of the domain
in order to design a useful feature extractor. However, instead of hand crafting the
feature extractor, it can be learned directly from the data using deep learning mod-
els. Deep learning models typically consist of multiple layers each transforming its
input to a more abstract representation using non-linear functions |[Lecun, Bengio,
and Hinton 2015]. By building a model with multiple of such transformations very
complex functions can be learned. This also means that deep learning models are
typically able to process the raw data by learning the features through training of
the parametrized transformations [Lecun, Bengio, and Hinton 2015].

In this chapter two models in deep learning is presented, which are called feed-
forward neural networks and convolutional neural networks. Before introducing
these two models artificial neurons are first presented, which are small mathemati-
cal models neural networks consist of. Furthermore, a motivation for using neural
networks is given by the universal approximation theorem, which states that neu-
ral networks can approximation any function. Lastly, the learning procedure for
adjusting the weights to fit a desired function is described.

25

26 Chapter 3. Deep Learning

3.1 Artificial Neuron

An artificial neuron is a simple mathematical model that mimics the way biological
neurons in the human brain process information [[Haykin 2009, p. 32]. In order to
understand neural networks, one first need to be familiar with the computational
units they consist of. An illustration of a model of a neuron is seen in Figure

wo

X0

X1

Xy ——

XM

Figure 3.1: Illustration of how an artificial neuron transforms its inputs x1, x5 ..., xp to its output y.

A neuron is a computational unit that takes as input a number of M input signals,
X1,X2,...,Xpm, and combine them into a scalar output [Haykin 2009], thus it can be
considered as a mapping & : RM — R. Each of the input signals are multiplied
by their own weight wq, wo, ..., wy, that determines how much the individual
input signals affect the output of the neuron. These weighted inputs are summed
together and a bias, b, is added. The bias has the effect of applying an affine
transformation to the sum [[Haykin [2009, p. 41], before it is passed through an
activation function, ¢. Formally, the output is expressed by the two equations

M
v=) wixj+b (3.1)
j=1

and
y=¢(0) =h(x,x2,...,xm) (3.2)
The bias can be incorporate in the sum by setting xp = 1 and letting wy = b, as
in the illustration in Figure After v has been computed, it is passed through
an activation function, that has the affect of applying a non-linearity to v. There
are different activation functions that can be used, where the sigmoid function
and rectified linear unit function, often called ReLU, are two of the most popular
choices |[Goodfellow, Bengio, and Courville 2016]. The activation function is some
times also called squashing functions as they limits the output value of a neuron
[Haykin 2009, p. 40]. The sigmoid is an example of such a squashing function as it
limits the range of y € [0,1]. A formula for the sigmoid activation function is given
in Equation3.3|and the graph is seen in Figure The ReLU function, expressed
in Equation does not set an upper limit of the output value and does not allow
negative output. A graph of the ReLU function is seen in Figure

1
¢(0) =1,

¢(v) = max(0,v) (34)

(3.3)

3.2. Feed-Forward Neural Networks 27

An important property of both of these functions are that they are non-linear.
Differentiability is also a particular important property as it allows for gradient-
based learning methods.

5 Rectified Linear Unit 1.0 Sigmoid Function
4 0.8
3 0.6
2 0.4
1 0.2
0 —4 -2 0 2 4 0-0 -4 -2 0 2 4
(% (%
(a) The ReLU activation function. (b) The sigmoid activation function

Figure 3.2: Two different types of activation function.

Neurons are used to construct networks of connected neurons also known as
neural networks. The neurons are organized in different layers and these layers are
then stacked to build larger networks. There are different types of neural networks
for which feed-forward neural networks and convolutional neural network are two
common types.

3.2 Feed-Forward Neural Networks

A feed-forward neural network is a network of neurons that is used to approximate
some desired function y = f(x;6), where x is the input and 6 is a set of parameters
of the model. A feed-forward neural network uses multiple layers of non-linear
transformation to transform the input into new representations [Lecun, Bengio,
and Hinton 2015]. In a feed-forward neural network the information flows through
the network from the input layer to the output layer without any form of feedback.
Feedback is where the output of a neuron is fed as input to itself. For every layer
the input passes through more abstract representation of the input is produced.

One distinguish between three different types of layers in a feed-forward neural
network called input layer, hidden layers, and output layer. The input layer consists
of a number of input neurons corresponding to the dimension of the input vector,
x € RM. The output layer has a neuron for each dimension in the output, y € RY.
A neural network can thus be considered as a mapping f : RM — RN,

Between the input and output layer, a number of hidden layers are inserted.
If multiple hidden layers are inserted, the approximated function is composed by
multiple functions [Goodfellow, Bengio, and Courville2016]. For example consider
the feed-forward neural network seen in Figure This network can be consid-
ered as a function f : R® — IR2. In this case the function f is composed of three

28 Chapter 3. Deep Learning

other functions as seen in Equation

y=f% (2 (fV)) (35)

Each of these functions transforms its input to an output by the formula,
h=¢@(Wx+Db), (3.6)

where h € R"*! is an hidden abstract representation, W € R"™ ™ is a weight
matrix, and b € R"*!, and ¢ is a non-linear activation function applied entry-wise
to the output of the transformation Wx + b. Doing this for all the layers in the
network, results in

y = o (wmq,(z) (W(Z)(p(l) (w<1>x + b“)) + b(2)> + b(3)) (3.7)

The parameter set of the network in Figure is then given by all the weight
matrices and bias vectors in the model given by the parameter set

0= {W(l),W(z),W(3),b(l),b(2),b(3)} (3.8)

When talking about the network architecture, this concerns the number of layers in
the network and how many neurons each of these consists of, which has an effect
on 6.

Input Hidden Output
layer layers layer

Figure 3.3: A fully connected feed-forward neural network with two hidden layers. The information
flows from left to right.

Feed-forward neural networks typically consists of multiple hidden layers that
maps the input to high dimensional representations. Typically such models have
million of parameters which allows it to approximate very complex functions.

3.3. Universal Approximation Theorem 29

3.3 Universal Approximation Theorem

In this section, the universal approximation theorem is described as a motivation
for the use of neural network in the rest of this project. The universal approxi-
mation theorem states that a feed-forward neural network with a single layer can
approximate any function, as long as the number of neurons in the hidden layer is
sufficiently large. There are different versions of the theorem, but the one given in
this section is adapted from [Haykin 2009].

Theorem 3.1 (Universal Approximation Theorem [Haykin 2009])

Let ¢ be a non-constant, bounded and monotone-increasing continuous activa-
tion function and let I,,, denote an my-dimensional unit hypercube [0,1]". Let
C(Ly,) denote the space of contentious functions on I,. Given any function
f 2 C(Iy,) and tolerance x > 0, there exists an integer m; and sets of real con-
stants «;, b; and w;; such that

mq mo
F(xl,xz,...,xmo) = leigb (Zwuxﬁ—b]) (3.9)
i=1 =1

may be defined as an approximation of a desired function f. That is
|F(x1,%2, .« Xmy) — f(X1,X2, ..., Xy)d| < K (3.10)

for all x1, xp, ..., Xy, .

The universal approximation theorem states that any continuous function can
be approximated with a single hidden layer feed-forward neural network. How-
ever, using a single hidden layer with a huge number of neurons might not be the
best architecture in terms of parameter efficiency or the ability the generalize to
new inputs. Instead neural networks are typically made deeper [Haykin [2009].

3.4 Convolutional Neural Networks

Another type of network is called convolutional neural networks. They are partic-
ularly good for processing data where the spatial structure of the data is important
[Goodfellow, Bengio, and Courville 2016]. An example of this is images, where
pixels close to each other are higher correlated [Goodfellow, Bengio, and Courville
2016]| than pixels far away from each other. In applications, convolutional neu-
ral networks have shown to be very good at classifying images, by determining
whether a given image contains a dog, a ball or something else [Lecun, Bengio,
and Hinton 2015]. In this section, convolutional neural networks are introduced by
describing the different kind of layers that together constitute these types of neural
networks, but first a motivation is given.

One motivation for using convolutional neural networks rather than a fully
connected feed-forward neural network is that is allows for sparse connections

30 Chapter 3. Deep Learning

in the network in contract to traditional neural networks, where each neurons in
adjacent layers are connected to each other [Goodfellow, Bengio, and Courville
2016]. This is achieved by making the input to the network smaller than the size
of the filters, which convolutional neural networks consists of. A results of this
is an reduction in the number of parameters in the network since the number of
connections are smaller.

In addition to the fully connected layers also used in feed-forward neural net-
works, convolutional neural networks implements two other type of layers, called
convolutional layers and pooling layers. These layers inserted before the fully con-
nected layers to extract features from the input.

Convolutional neural networks are neural networks where at least one of the
layers uses the convolutional operator, a so-called convoluional layer [Goodfellow,
Bengio, and Courville 2016|]. Such a layer consists of a predetermined number of
filters and another parameter called stride. Each filter have a fixed size, for example
2 x 2. A feature map for each of the filters is produced by convolving these with
the input to the layer, where the stride determines the shift of the convolutional
operator. An example of how the convolutional layer functions is seen in |3.4].

Input Filter Feature map
1 1 0 O
1 0 1 O 01 2 1
1 0 1 O 1 ﬂ E 2
1 0 1 1

Figure 3.4: Illustration of the relationship between input, filter and feature maps for a convolutional
layer.

Another type of layer is called pooling layer. This is used to reduce the spa-
tial size of the feature maps produced by the convolutional layers, to reduce the
parameters in the network [Goodfellow, Bengio, and Courville 2016]. A common
type of pooling technique is called max pooling and the idea behind it is to re-
duce a rectangular neighbourhood to only a single number, namely the max value
within this area.

After a number of convolutional layers and pooling layers, the features ex-
tracted using these layers are concatenated into a single feature vector. This feature
vector then serves as the input to a number of fully connected layers. All the neu-
rons in the previous layer are connected to all the neurons in the next layer, hence
the name fully connected layers.

3.5. Learning Algorithm 31

3.5 Learning Algorithm

As motivated in Section [3.5/a neural network with a single hidden layer is capable
of approximation any function if the hidden layer has enough neurons. How-
ever, this theorem does not state what the values of the weights and biases in
the network are. Given a network architecture, one wants to adjust these weights
and biases given by the parameter, 0, so that it best fits the function one wants
to approximate. This can be considered as an optimization problem, where the
parameters are adjusted to reduced some cost function, C(6). Many different op-
timization methods exist, but for training neural network, methods using gradient
information is used to adjust the parameters to find a local minimum in the param-
eter space. The non-linearity of a neural network implies that the error function
becomes non-convex |[Bishop 2006], and therefore finding a local minimum, this
point cannot be guaranteed to be a global minimum.

The procedure of using a data samples to adjust the parameters in a machine
learning model to reduce some cost function is referred to as a learning algorithm
[Haykin |[2009]. The learning algorithm for training neural networks can be thought
of as a three step procedure. First input samples are fed through the network from
the input layer to the output layer to compute the estimated outputs for those input
samples. This output is used to calculate the cost function. The procure is outlined
here:

1. Forward propagate inputs samples, x through the network to compute the
activations of the units in both the hidden layers and the output layer.

2. Compute the error between the target and and the network output and back
propagate this error back through the network to compute the gradient.

3. Adjust the parameters, 6, based on the gradient information computed in
step 2.

The parameters are adjusted according to the procedure of gradient decent
optimization. The goal is to find weights and biases in terms of parameters, 6,
where the cost function is minimized [Ruder 2017]]. Gradient decent methods uses
the gradient information to adjust the parameters a small step in the direction of
the negative gradient. This allows the parameters to be adjusted towards a local
minimum where

VC(8) =0 (3.11)

The gradients VC(0) are provided by backpropagation. Typically, the weight space
will have many points that satisfy Equation (3.11} and therefore a global optimum
cannot be guaranteed.

Therefore an iterative approach to finding a local minimum is used. This means
that starting from an initial value of 8y, one can iteratively adjust the parameters
according to the following formula

01 = 0 — 1V C(6), (3.12)

32 Chapter 3. Deep Learning

where 17 > 0 is called the learning rate.

According to [Ruder 2017] there are three different variations of gradient de-
cent optimization in the context of training a neural network, which differ in the
amount of data used to compute the gradient. Batch gradient decent and stochastic
gradient decent utilize the whole training data set and a single data sample from
the training data set to compute the gradient of the cost function, respectively.
Because batch gradient decent uses the whole training data set it can be a slow
approach to update the parameters. Rather than computing the gradient based on
the whole data set, stochastic gradient decent uses only a single data sample to
update the parameters. The third method uses a mini-batch, which uses not the
whole data set, but a number between 1 and N. This means that the total error of
a mini-batch becomes

C(6) =)_Ci(0), (3.13)

where | is the size of a mini-batch. In gradient decent optimization one has to
manually select the learning rate, . This can be a difficult task, and it has to be se-
lected carefully because it has a significant affect on the performance of the model
[Goodfellow, Bengio, and Courville 2016, p. 302]. If it is too small, the parameters
will converge slowly to an optimum resulting in long training time. On the other
hand, if the learning rate is too high, the parameters might end up not converting.
Instead of a fixed learning rate, it can adaptively be adjusted according to the gra-
dient. Describing the various algorithms that implement adaptive learning rate is
out of the scope of this report.

To compute the gradients used to train a neural network backpropagation is
used. It is used to compute the gradients of the cost function with respect to each
of the individual adjustable weights in the neural network |[Haykin 2009, p. 183].
Thus, it provides a way of determining how much each individual weight con-
tributes to the error given by the cost function. Weights with small gradients have
a little impact on the cost function and weights with higher gradients contributes
more to the error. In order to compute these gradients a single forward propaga-
tion should be perform to compute the error between the targets and the output of
the model.

Having introduced the concepts of reinforcement learning and deep learning,
these two areas are now combined into what is called deep reinforcement learning.

Chapter 4
Deep Reinforcement Learning

In this chapter deep learning and reinforcement learning is combined into what
is called deep reinforcement learning. The methods for solving the reinforcement
learning problem in Chapter 2| were table-based solution methods, which is feasible
for state and action spaces with a limited number of states and actions [Sutton and
Barto [1998]]. In cases where both S and A are big sets, these methods are not only
infeasible due to memory requirements for storing the big value function tables,
but also due to the data needed to fill out these tables accurately and the time
needed for acquiring that amount of data [Sutton and Barto (1998, p. 193].

If the state is represented by a gray-scale image of size 224 x 224 pixels, this
would yield a huge number of states corresponding to the number given in Equa-
tion if each pixels is a 8-bit number.

Card(S) = 256244244 (4.1)

where Card(-) is the cardinality of a set. Instead of a table representation of the
value function, one can use a function that approximates the desired value func-
tion. This function approximator is then trained using interactions between agent
and environment. In applications where the states are complex representations of
the environment, such as images [Sutton and Barto (1998, p. 193], the exact same
state might not have been sensed by the agent before. Therefore, when the agent
senses new unknown states, it should be able to generalize these new states to the
states it has already sensed [Sutton and Barto (1998, p. 193]. Also, the table based
methods are limited in their ability to generalize to states that has not been visited
before, since each unique state has its own entry in a table.

In this chapter, the focus is on models in deep learning that provides function
approximation, such as neural networks or convolutional neural networks. When
deep learning models are used as function approximators in reinforcement learn-
ing it is called deep reinforcement learning [Arulkumaran et al.|[2017]]. This applies
to both policy based methods as well as for value based methods, where neural
networks are used to approximate a function f that approximates the state-value
function,

f(s;0) = V7™(s), VseS& 4.2)

where f(s; 0) is a function of state, s, with adjustable parameters 6, as in Chapter
More precisely, because the model is unknown, the state-value function is not

33

34 Chapter 4. Deep Reinforcement Learning

sufficient to determine a policy, as it involves the transition probabilities |[Sutton
and Barto 1998]. Instead the action-value function is approximated.

Q(s,2,0) = Q"(s,a), VseS§, Vaec A(s) (4.3)

The goal is then to use interaction experience, or more formally sequences of
(¢, a¢,1¢,5¢41) to train the parameters 6 to approximate the optimal action-value
function. Instead of having the value function represented by a explicit repre-
sentation, so the value function is instead characterized by parameters 0. This
allows the agent to generalize from visited states to unvisited states, through this
parametrization.

This chapter starts out by describing deep Q-networks which was one of the
first successful implementations of deep reinforcement learning, trained to play
Atari games [Mnih et al. 2015]. One disadvantage of representing the action-value
function using a neural network is that it can not be guaranteed to converge to
the optimal action-value function, compared to the table based method, where the
action-value function can be shown to converge to the optimal one [Mnih et al.
2015|]. Therefore a technique called experience replay is introduced next. Lastly an
algorithm called Asynchronous Advantage Actor Critic algorithm, known as the
A3C algorithm, is described.

4.1 Deep Q-Networks

A deep Q-network as introduced in [Mnih et al. 2015]| is where a deep learning
model is used to approximate the action-value function. A convolutional neural
network was used as the function approximator for action-value function. The
convolutional neural network is trained on images of the screen of an agent playing
an Atari game, thereby learning to play the game directly from raw pixels without
any prior knowledge of how the game is played.

Previously, reinforcement learning has been limited to domains with low-dimensional
state spaces or domains where handcrafted features can be extracted from the data
[Mnih et al. 2015]. The deep Q-network extract these features directly from the
image by learning new abstract representations of the input data.

The deep Q-network algorithm presented in |[Mnih et al. 2015] is seen in Algo-
rithm [2| Reinforcement learning using a neural network as the function approxi-
mator for the action-value function is known to be unstable or diverge [Mnih et al.
2015], and therefore to try to stabilize the algorithm something called experience
replay is used. Experience replay reduces the correlation of the sequence of actions
used as training data. The experience acquired by the agent in the environment is
stored in the experience replay memory D; = {ej, ey, ..., ¢}, and not immediately
used for training such as in online reinforcement learning, since this would result
in training on highly correlated training data.

Experience replay is used to stabilize the training when a non-linear function
is used to approximate the action-value function, such as a neural network |[Mnih
et al.[2016]. Training a reinforcement learning agent requires data of the transitions
between agent and environment. In online reinforcement learning algorithms,

4.2. Asynchronous Advantage Actor-Critic Algorithm 35

where the agent is learning side by side with experiencing the environment, each
data sample is used to train the agent once immediately after it has been experi-
enced, and then discarded. This way of training the agent works fine for the table
based methods, since updating a Q-value only affects itself and not all the other
Q-values, such as if a parametrization the action-value function is used. However,
when the action-value function is represented by a non-linear function instead of
a table the action-value function becomes unstable [Mnih et al. [2016].

Training an agent in an online manner results in strongly correlated transitions,
and one way to try to avoid using correlated transitions as training data is to use
what is called experience replay [Mnih et al. 2016]. Instead of throwing away each
transition after each update, transitions are instead be stored in a buffer, called
experience replay [Zhang and Sutton 2017]]. Experience replay is a memory that
stores the most recent transitions up to its capacity. After the buffer is filled, the
oldest transitions in the memory are replaced by the new ones. The transitions are
not used immediately after it has been experienced, but instead a mini-batch of
transition are sampled from the experience replay memory and used to train the
agent. This could be a uniform distributions over the experience replay memory if
no transitions are preferred over others. In this way experience replay may avoid
using strongly correlated transitions by sampling from a memory of transitions
which stabilizes the training of an online reinforcement learning agent [Zhang and
Sutton 2017]]

Compared to online reinforcement learning additional memory is required for
storing the transitions when using experience replay [Mnih et al. 2016]. As for the
the table-based Q-learning algorithm in Section, the agent selects actions according
to a parameter €. If the agent chooses to exploit what it has already learned,
the next action is selected by passing the current state through the action-value
function, represented by a neural network.

4.2 Asynchronous Advantage Actor-Critic Algorithm

Until now, the focus has been on value based methods, where the policy is given
implicit by the value function by choosing the actions according to a greedy pol-
icy. However, another class of methods exists that directly estimates the policy
without the need of a value function. Instead of finding policies by estimating
value functions and extracting a policy from that, one can instead directly opti-
mize the parameters of a parametrized policy 7t(s,4;0) [Sutton and Barto 1998].
Policy gradient methods do this by using a parametrization of the policy, denoted
7t(s,a; 0), where 0 is the parameters, and optimize it with respect to the parameters
0. The idea is then to adjust 6 using optimization to converge to an optimal pol-
icy 71*(s,a;0). Policy gradient methods are a general approach to finding optimal
behaviour in an environment, but requires methods from function approximation.
This could be a linear function, as described in [[Sutton and Barto 1998, but the
reason for first introducing these types of methods in this chapter is, that in this
project policy gradient methods are limited to neural networks as being function
approximators. This is therefore considered a deep reinforcement learning method,

36 Chapter 4. Deep Reinforcement Learning

Algorithm 3: Deep-Q-Network [Mnih et al. 2015]
Initialize experience replay memory D to size N
Initialize action-value function, Q, with random weights, 6.
Initialize target action-value function, Q, with weights 6=06.
Repeat for a number of episodes.
Initialize s;
Repeat until episode terminates
Draw random number, k, uniform between [0, 1].
pick random action a; € A(s) ifk <e
t max, Q (¢p(s,a);0) ifk>e
Execute action, a; in emulator and observe reward r; and state, s; 1.
Set ;41 = S¢, at, X¢+1 and preprocess ¢ri1 = P(S¢+1)-
Store transition (¢, as, rt, pr+1) in D.
Sample a random mini-batch of transitions (cpj, aj,7j, cptH) from D.

7 if episode terminates at step j
vi ri + 7y maxy O (¢p1+1,a';0) otherwise
Perform gradient decent step on (y; — Q(¢j, aj, ¢j+1))2

with respect to the parameters 6.
Every C number of steps set Q = Q.

because the policy is approximated by a model, such as a neural network, from
deep learning.

The Asynchronous Advantage Actor-Critic algorithm, named A3C [Mnih et al.
2016], for deep reinforcement learning uses such a parametrized policy. The A3C
algorithm is a type of method called actor-critic. The actor-critic method is a com-
bination of value based and policy based methods, that uses the advantages of both
these methods [Grondman et al. 2012]. It is among the most popular algorithms
in the area of reinforcement learning and specially in deep reinforcement learning
[Grondman et al. [2012].

Instead of experience replay, the A3C algorithm utilizes multiple agents work-
ing in parallel to reduce non-stationarity [Mnih et al. 2016]. Each of these agents
operates in their own instance of the environment and each agent is therefore able
to execute its actions independent of the other agents in an asynchronously man-
ner. Since the agents will experience a variety of different states, the agents” data
will be decorrelated into a more stationary process. In addition this to, the A3C al-
gorithm is able to benefit from the parallel computing that applies to CPUs, instead
of relying on specialized hardware such as GPUs.

Since the actor-critic method is an on-policy algorithm, experience replay can-
not be used to stabilize the algorithm, since experience replay is limited to off-
policy algorithms [Mnih et al. 2016]. Instead another paradigm is presented in
[Mnih et al. 2016]| which provides a way of stabilizing the algorithm for on-policy
deep reinforcement learning, such as the actor-critic method.

In actor-critic method a policy and a value function is learned, represented by

4.3. Grid World Navigation 37

the actor and critic, respectively. The actor learns about the policy and how to
act to achieve the most reward, while the critic learns to criticize the actor based
on a value function [[Sutton and Barto [1998|]. Actor-critic methods, A3C utilizes
a parametrized policy 7(a;|s;;0) and a parametrized value function V(s 6) to
solve the reinforcement learning problem. Just like the policy based reinforcement
learning methods, the actor-critic method uses a parametrization of the policy,
n(als; 0) and update the parameters of the policy to. In the standard REINFORCE
algorithm, which is a policy gradient method, the parameters are updated in the
direction [[Mnih et al. [2016]

Vo log 7(at|st; 0) Gy (4.4)
which is an unbiased estimate of
Vo E[Gi]. (4.5)

The variance of this estimate can be reduced by subtracting a baseline function,
bi(s¢) from the return, Gy, resulting in the gradient estimate

Vo log 7r(at|st; 0) (R — by(s)). (4.6)

If this baseline function is an approximation of a value function, R; — b;(s¢) can be
interpreted as the advantage of taking action a; in state s;. The advantage function
can be expressed as

A(st,ar) = Q(st,ar) — V(st).

The A3C algorithm is seen in Algorithm @ which is adapted from [Mnih et al.
2016].

4.3 Grid World Navigation

Deep reinforcement learning is in this section applied to the grid world environ-
ment described in Appendix Bl The two algorithms applied is deep Q-networks
and the A3C algorithm, described in Section [4.1|and 4.2} respectively.

4.3.1 Deep Q-Networks

In this section, Algorithm [3|is applied to the grid world environment to improve
the behaviour an agent having to find one target position in the grid world envi-
ronment. Since a state is represented by a vector, s € R?, a feed-forward neural
network is used instead of a convolutional neural network to model the action-
value function, Q * (s, a). The four actions available for the grid world environment
results in the neural network having four output neurons, and can thus be consid-
ered as a mapping ¢ : R? — R*. The architecture of the neural network is seen in
Figure It has four hidden layers with 100 neurons in each of these layers. There
is no specific reason for this architecture, but with its about 30,000 parameters it is
expected to be enough parameters to approximate Q*(s,a) ~ Q(s,a,).

38 Chapter 4. Deep Reinforcement Learning

Algorithm 4: Asynchronous Advantage Actor-Critic algorithm for one actor-
learner thread. The algorithm is adapted from |[[Mnih et al.|[2016].
Global shared parameters 6 and 6, and global shared counter T = 0
Specific thread parameters 6’ and 6,
Initialize thread step counter t <— 1
repeat until T > Tyax
Reset gradients 46 <— 0 and d6, < 0
Synchronize thread parameters 0 =0 and 6; =0,

Estart = ¢

Get state s;

repeat until terminal state s; or t — tspart = tax
Perform a; according to policy 7t(a¢|st;)
Receive reward r; and new state s; 1

t+—t+1
T+ T+1
end
_Jo if s; is terminal state
V(St, 9;) if St

for indicies i €
R+ r+9R
Accumulate gradients with respect to parameter ¢’
d0’ + d0+ Vg log t(a;|s; 0') (R — V(s;; 0,))
Accumulate gradients with respect to parameter 0,
6., < de, +9(R — V(s;;0.,))*/06,
end
Perform asynchronous update of 8 using d0 and of 6, using d0,
end

The two neural networks are initialized with the same architecture and param-
eters, one for the action-value function, Q, and the other called the target action-
value function, Q. The training process is repeated until the agent has reached the
target position 1500 times. The actions the agent performs are picked according to
an e-soft policy, where non-random actions are chosen by passing the current state
through the network Q and picking the action with the highest Q-value. This done
in order to keep exploring the state space. The experience replay buffer is set to a
size of 10,000.

The code for running the deep Q-network on the grid world environment ex-
ample can be found in Appendix |Al For a plot that shows the error after each
completed episode compared to the solution from dynamic programming, see Ap-
pendix [D

In Figure 4.2 and 4.3, the results for different numbers of episodes used for
training deep Q-network is shown. It is seen that applying deep Q-networks can
indeed by used to improve the agents behavior towards a policy, that finds the
target position. Since the deep Q-network estimates the solution to the Bellman

4.3. Grid World Navigation 39

7]
100
100
100
100

[4]

Figure 4.1: Architecture of the deep Q-network used for the grid world environment.

equation that estimates of a Q-value in a states is based on. For each action the
agent perform, the model is trained on 20 data samples sampled from the experi-
ence memory.

It is also seen that after the deep Q-network is trained on 1,500 episodes only
a single state has a policy that is not optimal. This is the state s(3 3), where instead
of moving one step closer to the target, the policy in this state picks an action that
bumps into the wall. This could be explained by the amount of times this state is
used as training data for the deep Q-network. One reason for this could be that
the state is only visited a few number of times cause by the lag of exploration of
the environment due to the value of €. Another reason for this could be that this
state is not sampled as many times from the experience replay buffer.

40 Chapter 4. Deep Reinforcement Learning

1 2 3 4 5 6 7 8 9

0.0073 0.0115 0.0174 0.0247 0.0327 0.0416 0.0486 0.0522 0.0515
= NE els gls NE NE zle zle Ble z
1 8 (g 5|2 g2 g3 2|3 g3 2|2 2|3 2
=) oo o o j=] o)} oo oo =1 ' O | o
0.0114 0.0167 0.0234 0.0313 0.0392 0.0470 0.0534 0.0576 0.0602
0.0132 0.0213 0.0331 0.0484 0.0638 0.0800 0.0890 0.0901 0.0830
o ; o
o (=}
2 |3 V23
@ [=1 [}
0.0196 0.0299
0.0235 0.0380
o u(ﬂ) o
3 I 418
O oI
0.0329 0.0506
0.0389 0.0645
= gk
4 |3 g3
[} o
0.0510 0.0804
0.0595 0.0993
= 2k
5 124 g2
0.0730 0.1159
0.0823 0.1335
o m o
6 |5 SIS
- [=1 1 S}
0.0939 0.1452
0.1018 0.1553
o 2le
° .
7 12 gls Finish
ol O
0.1084 0.1584

(a) Initial Q(s,a).
1 2 3 4 5 6 7 8 9

0.0454 0.0534 0.0660 0.0884 0.1311 0.2109 0.3165 0.3809 0.4163

p—
82600
01155
1600
0.1236
87600
0.1370
9901°0
6
YGEL0
2!
T6l0
0.3306
6vLT0
43
1€ 0
04753
81070
04937

0.1515 0.1388 0.1327 0.1489 0.1997 0.2879 0.3906 0.4613 0.5184
0.0768 0.0874 0.1021 0.1305 0.1835 0.2861 0.3847 0.4313 0.4607

N
20ST°0
0.1698
€SP0

0.2302 0.2101
0.1289 0.1437

@»
T°6€T0
0.2425
°UTT0

0.3322 0.3081
0.2084 0.2315

=
£9e€°0
0.3279
98ee0

0.4302 0.4197
0.2958 0.3314

)
PPIFO0
04101
62270

0.4908 0.4887
0.3686 0.4112

=)
€T97°0
0.4766
|8¥440}

0.5216 0.5192
0.4514 0.5165

Finish

N
8280
55
09050

(b) Q(s,a) after 100 episodes.

Figure 4.2: Results showing the convergence of applying a deep Q-network to the grid world envi-
ronment. he four values at each line of each square represents the Q-value of going in
that direction. The arrow in each square represents a greedy policy.

4.3. Grid World Navigation 41

1 2 3 4 5 6 7 8 9

0.0940 0.0682 0.0531 0.0457 0.0612 0.1209 0.2278 0.3035 0.3112

g <

[uny
79810
0.1169
€LET0
0.0854
18600
62200
06
64400
01022
8IZI0
20
8610
32
8€LT0
03521
€200
03167

0.2621 0.1705 0.1117 0.0877 0.1159 0.2154 0.3400 0.4050 0.3710
0.1667 0.1267 0.0929 0.0750 0.0876 0.1683 0.2848 0.3396 0.3089

—-

LTE0

N
9¢8T0
0.1980
Praaai]
0.1585
€910
0.1179
881T°0

10:
SPIT0
0.1385
6€L1°0

26
€970

38
6LE€°0
0.3811
0.3267

0.3709 0.2736
0.2570 0.2173

W
LL9E0
0.2856
LLTE0

0.4482 0.3895 0.1804
0.3356 0.3002

=~
wivo
0.3585
€48€0

0.4916 0.4494
0.3897 0.3599

a1
9STH0
0.4021
7070

0.5139 0.4768
0.4403 0.4221

=)
LIEYO
0.4481
85T 0

0.5361 0.5200
0.4727 0.4998

82
00870

—
1
IS

0.5639 0.6029

Finish

N
88E70

(@) Q(s,a,0) after 500 episodes.
1 2 3 4 5 6 7 8 9

0.3191 0.3470 0.3946 0.4430 0.5082 0.5628 0.6089 0.6197 0.5985

p—
002€0
37
ZE1€0
0.4020
9€2€0
46
06£€0
52
186€0
0.5824
00870
62
12850
65
¥2190
0.6410
07590
05772

0.3680 0.3561 0.3660 0.3927 0.4421 0.5334 0.6279 0.7036 0.6321
0.3024 0.3120 0.3499 0.4086 0.4756 0.5340 0.6000 0.6185 0.6028

N
F0S€0
363
6LVE0
0.3637
L9¥€°0

0.3
¥85€°0
44
£T8€°0
0.5438
02L¥0
61
29950
68
78290
0.6861

?9 0
0.6358

0.4233 0.4050
0.3352 0.3293

03]
996€°0
40
SS6€°0

0.4723 0.4746 0.3826
0.3907 0.3757

=

69770
47

verro

0.5186 0.5366
0.4539 0.4385

9)}
29670
53
81670

=)
TThe 0

56
€995°0

Finish

|
8850
\
656
80650
\
1

(b) Q(s,a,0) after 1500 episodes.

Figure 4.3: Results showing the convergence of applying a deep Q-network to the grid world envi-
ronment. he four values at each line of each square represents the Q-value of going in
that direction. The arrow in each square represents a greedy policy.

42 Chapter 4. Deep Reinforcement Learning

4.3.2 A3C Algorithm

In this section, an implementation of the A3C algorithm, found in is applied to
solve the navigation problem in the grid world environment for a single target.
The implementation of the A3C algorithm EI used throughout this project is an
implementation found in [Zhu et al. 2017]. This implementation is then modified
to take a two dimensional state represesntation instead of images.

Since the A3C algorithm uses both a a parametrized policy and value func-
tion, both of these function are inspected. The algorithm is trained on four thread
running in parallel. Note here that the output of the policy is a probability distri-
bution and not Q-values, which means that the values for deep Q-networks cannot
be compared to the ones illustrated for deep Q-networks. However, a greedy pol-
icy for both the figures can be compared, where the greedy policy picks the action
with the highest probability in each state. The amount of data used to train the two
model cannot be compared since the deep Q-network is trained for a number of
episodes using experience replay, and the A3C algorithm runs for a specific num-
ber of samples. The A3C implementation converges for a single states both for the
policy and for the value function.

Thttps:/ / github.com/zfw1226/icra2017-visual-navigation

4.3. Grid World Navigation

1

2

3

5

6

7

8

9

00034 | 00162 00628 | 0313 | 0.1082 0.0656 | 0.0452 | 00176 0.0073
2 a2z 2. gL & gl g2 .82 s 8
1 5 gI8 Elhe B3« FE 38 —»Zlz >33 =S 3
5 = S|Z SIS S| S| 3S|a Sl® sl =
08228 | 06435 04142 | 02167 | 00833 0.1285 | 0.3909 0.6949 0.7577
00025 | 00141 0.0681 01447 | 0.1039 00616 | 00417 | 00147 | 0.0058
o qle =le sle 2ls zle sle sle qle 2
2 5458 42k y g8 3 Rz R3 —~9E 3y &
N [=] e8] =1 [=11¢] - f=1] 2] (=] (=) — f=] =)} (=1
0.8832 0.0950
0.0017
o gle
3 B g5
'S S|
0.9340 0.0437
0.0012
= N
(=3 i=3
4 124 53
0.9624
0.0010
o gl
(=1 (=1
5 F 4 EB
0,959
0.0010
o g2
6 5, 22
~N j=1 \\e)
0.8047
0.0004
o NS
7 8 g8
— o =3
= f=1 k=)
0.2311
(a) Policy after 50,000 samples
1 0.1060 0.1206 0.1065 0.0957 | 01212 0.2991 0.4282 0.4282 0.1901
2 0.1494 | 0.1509 00298 | -0.0869 | 01102 | 02333 0.4792 0.5079 0.2719
3 0.2186 0.2368
4 0.2775 0.3065
5 0.3282 0.3910
6 0.4050 0.4855
7 0.5131 0.6161

steps.

(b) Value function after 50,000 samples

Figure 4.4: Convergence of the model in [Zhu et al. 2016] for the grid world problems after 50,000

43

44 Chapter 4. Deep Reinforcement Learning

1 2 3 4 5 6 7 8 9

0.0084 0.1154 0.0904 0.0406 0.0142 0.0048 0.0051 0.0003 0.0000

o
€2100
0.0233
7100
0.5274
11000
0.8956
20000
09573
10000
0.9843
10000
0.9919
21000
0.8525
96100
0.0103
T€8CT0
0.0002

0.9561 0.3432 0.0128 0.0019 0.0014 0.0033 0.1412 0.9698 0.7166
0.0024 0.0990 0.2927 0.1904 0.0747 0.0190 0.0112 0.0005 0.0001

— —5|

N
90100
0.0034
0£€0°0

<o ~
e 8
=8 o}
S| S

01000
0.8050
€000°0
0.9232
20000
0.9769
72000
0.8503
80€0°0
0.0080
026€°0
0.0001

0.9835 0.7216 0.0036 0.0039
0.0005 0.0290

W
19000
0.0008
90€0°0

0.9936 0.9131
0.0002 0.0060

=
12000
0.0006
L110°0

0.9972 0.9728
0.0001 0.0021

6]]
80000
0.0019
€000

0.9971 0.9785
0.0003 0.0015

=)
$000°0
0.0690
20000

0.9303 0.7603
0.0001 0.0001

N
00000
0.9322
00000

0.0676 0.0162

(a) Policy after 150,000 samples
1 2 3 4 5 6 7 8 9

1 0.1365 0.1868 0.2549 0.3317 0.3894 0.4474 0.5032 0.6106 0.4763

2 0.1661 0.1896 0.2007 0.2858 0.3920 0.4949 0.5783 0.6926 0.5294

3 02511 02425

4 0.3090 0.3614

5 0.3792 0.4567

6 04579 05286

7 0.5357 0.6265

(b) Value function after 150,000 samples

Figure 4.5: Convergence of the model in [Zhu et al. [2016] for the grid world problems after 150,000
steps.

Chapter 5
Target-Driven Visual
Indoor Navigation

In this chapter the problem changes from a two-dimensional state representation of
the grid world environment to a new state representation in terms of images from
an indoor environment. Navigation in an indoor environment is a very common
ability robots need to posses, if they have to interact in the same environments as
humans. The environment could for example be a house where the robot should
be able to navigate around in the different rooms inside the house.

In the grid world navigation problem from Section the problem was to
improve the behaviour by estimating an action-value function and then extracting
a greedy policy from this. The grid world environment could be considered as
a simplification of a room in a house. An agent in this environment is learned
to find target positions in the room by using a two-dimensional position vector
as the state representation. Instead of using a position vector, the robot could be
equipped with cameras that allows the agent to get images of the room it has to
navigate around inside. In this way the agent is trained to find target locations
using a visual representation of the positions inside the room.

Therefore, using images as state representation will affect the state representa-
tion by turning it into a more complex representation, than just a position in a grid
as used in Section [2.4)and Section Furthermore, since the states are not known
a model of the underlying Markov decision process is known neither. This means
that knowledge of what states transition to what states is only gained through
experience of the interaction between agent and environment.

Ideally, the data in terms of samples including a state, an action and a reward,
would come from robot experiencing a physical room, because the finally goal
would be to test the algorithm in a real world scenario. Acquiring the data in this
way also has a number of disadvantages such as being very time consuming [Kolve
et al. 2017]. The robot used to acquire data from a real world scenario is limited in
the way that before a new image can be provided to the agent, the robot first has
to perform the action of moving to the next position. This could take a lot of time,
if the robot has to perform a lot of such actions.

To get an idea of how time consuming the process of acquiring data from a real
world scenario is, a little example is provided. In|[Zhu et al. 2016] the algorithm

45

Chapter 5. Target-Driven Visual
46 Indoor Navigation

is trained on 100 million samples. This is done in parallel on 100 threads, which
means that for each target approximately 1 million samples are used. If the robot
can perform an action in one second, training the algorithm on a single target
would take about 11 days. In addition to this, each time the robot finishes an
episode, the robot should be moved to a new starting position. Acquiring the data
using simulations of a 3D environment could speed up this process.

Another disadvantage is that during the data acquisition process the robot
might bump into things resulting in damage to objects in the room or damage
to parts of the robot [Kolve et al. 2017]. The last disadvantage is the difficulty of
finding the rooms in which the data acquisition should be conducted. This would
again require 20 different rooms. During 11 days of data acquisition the room
might be unusable to the occupants of the house, because the model in |[Zhu et al.
2016 is trained without these dynamic factors of the environment. This would add
further complexity of the environment in which the robot is trained to navigate.

To avoid the problems just discussed, a simulation framework is used to acquire
data to train the model. However, simulated data cannot replace data acquired by
a robot in a real environment, because the level of details might be reduced in a
3D model of the same environment |[Kolve et al. 2017]].

5.1 Simulation Framework

In this section the simulation framework for acquiring the data used to train the
deep reinforcement learning model in [Zhu et al. 2016]] is described. This frame-
work, called AI2-THOR [[Kolve et al. 2017], is also the one used in this project. For
a quick introduction of how to use and install the framework, see the AI2-THOR
tutorial ﬂ This provides a Python library for interacting with the Unity 3D game
engine with 3D modelled environments. 3D models of multiple types of rooms
are provided including the functionality of moving around in these rooms. The
different types of rooms are

Kitchen 30 different scenes.
Living room 30 different scenes.
Bathroom 30 different scenes.

Bedrooms 30 different scenes.

Some examples of scenes are seen in Figure 5.1. AI2-THOR provides the possibility
of a discrete and a contioious action space, but this project is limited to a discrete
action space. In total there are eight different actions used to navigate the agent
around in the environments.

e Move forward

e Move backwards

1 http:/ /ai2thor.allenai.org/tutorials/installation

5.2. State Representation using Images 47

Move left

Move right

Rotate left, 90 degrees

Rotate right, 90 degrees

Look up, 30 degrees
e Look down, 30 degrees

Additionally, AI2-THOR provides actions that allow the agent to interact with ob-
jects, but these are ignored, as the goal of this project is to navigate to target loca-
tions only, and not to interact with the things it finds in these locations.

5.2 State Representation using Images

In this section the state representation using images is described. The agent in
the AI2-THOR framework provides visual inputs of the environment a bit like the
way in which a human would visual sense the room. The agent in the AI2-THOR
framework is equipped with a single camera, which allows the agent to get visual
inputs of the agent in a single direction. The AI2-THOR framework implements
the ability for the user to vary the size of the field of view for the agent. Increasing
the width of the images has the effect of increasing the view angle of the agent,
hence more information about the environment is gained in both sides of an image
The effect of increase in width of the images is seen in Figure 5.2.

In[Zhu et al. 2016] images of a size of 224 x 224 x 3 are used, which represents
the height, width, and channels, respectively. A channel is used for each of the
three colors red, green, and blue. If the size of the images is increased this results
in an exponential growth in the number of pixels in the image which would cor-
respond to an increase in the complexity of the state representation. On the other
hand, this also means an increase in the details in an image. Throughout this re-
port the size of an image provided by the AI2-THOR framework is kept fixed to a
size of 224 x 224 x 3.

Chapter 5. Target-Driven Visual
48 Indoor Navigation

FloorPlan3 FloorPlan9

FloorPlan203 FloorPlan205

FloorPlan213 FloorPlan218

Figure 5.1: Six different scenes in the THOR simulation framework with corresponding scene name

5.2. State Representation using Images

Figure 5.2: Illustration of the increase in view angle when varying the width of the images.

49

Chapter 5. Target-Driven Visual
50 Indoor Navigation

5.3 Target-Driven Navigation

In order to make deep reinforcement learning to indoor navigation, the agent has
to learn to find multiple locations rather than just a single one. In the grid world
environment only a single target was used to prove that these methods could be
used for a simple navigation task.

Using either the approach from Section [#.T|or 4.1 to find a single target location,
the location of the target is incorporated into the parameters of the model, because
all the parameters of the model would be adjusted towards a policy that only finds
this specific target location. Using this approach would require a new model for
each of the target positions in each different room. This would be impractical
because a lot of different models need to be stored and a new model should be
loaded every time a new target should be found. In this way the benefits of neural
networks being universal approximators are not really used to its fully potential.

An advantage including the target location as input to the network is that the
same network can be trained to locate multiple target locations. The classical rein-
forcement learning algorithm presented in Section [2.4f were only trained to find a
single target. If these methods should be used to find multiple locations, a table-
based representation of the value function is required for each target the agent has
to find. Instead, the strength of using a function approximator to represent either
the policy or the value function is utilized.

Before images are fed to the algorithm each image is reduced from a size of
224 x 224 x 3 to a 2048-dimensional vector by feeding it through the ResNet-50
model [He et al. 2015], where the last softmax layer is removed, producing a 2048-
dimensional output.

A Figure of the network architecture is seen in Figure 5.3. The algorithm is the
type of A3C, as described in section In [Zhu et al. 2016]| a model, that takes
both the current state and a state representation of the target, is proposed. This is
called target-driven navigation as the target is also used as the input to the model.
The same model could then be trained to find multiple target positions in a room,
by also including the target as an input to the model. Therefore in [Zhu et al. 2016]
a target-driven network architecture is presented that takes an image of both the
current location and the target location. This is achieved by using a network archi-
tecture called a deep siamese actor-critic model, which allows the generalization to
new target objects without the need to retrained the model the new target objects.
This architecture is used to allow the agent with an understanding or the relative
spatial position between the current location and the target position is to project
them into the same embedding space |[Zhu et al. 2016]. These embedding spaces
are then concatenated into a 1024-dimensional vector which is then fused into a
joint representation using a fully connected layer.

A deep siamese network architecture is used to learn the spatial relation be-
tween the current location and the target location. Features are extracted from
both the current state and the target observation. This is done using a pre-trained
convolutional neural network, called ResNet-50 [He et al. 2015]. The four 2048-
dimensional vectors are concatenated into a single 8192-dimensional vector. This

5.3. Target-Driven Navigation 51

vector is used as input for a fully-connected layer of 512 neurons, resulting in a
weight matrix of size 512 x 8192 and a bias vector of 512. The same procedure
is repeated for the state of the target location, but instead of having individual
parameters for current and target location, these parameters are shared. The 512-
dimensional output of both of these streams are concatenated into a single 1024-
dimensional vector which is then projected into a 512-dimensional fusion space by
a fully-connected layer. This joint representation is then used as input to scene-
specific feed-forward neural networks. A scene-specific network consists of one
hidden layer of 512 neurons. This hidden layer is connected to an output layer
with 5 output neurons; four neurons for the policy and one neuron for the value
function. Since a probability distribution over the four possible actions is wanted,
a softmax function is used to map the four policy neurons in the output layer into
probabilities.

In|[Zhu et al. 2016]| a state is represented by not only the current camera image
available to the agent, but also the images from the three most recent movements
the agent has performed. The motivation behind this is to utilize the most recent
movements of the agent to find the target object.

Q| AN
ResNet-50 |& =
I N g
N Scene-specific layer
. N Policy
. o
N — - - -~ -7
N . Lo
N N ﬂ-{
[] AN ! N
0 > — —
/ Lo Lo /
4 /
7 ’ i Va - - -
L7 Lo ,
V 7 Value
ee] N P
ResNet-50 | |= .
1Y L7

Figure 5.3: Network architecture of target-driven visual navigation adapted from |[Zhu et al. 2016]}

Chapter 6
Results

In this chapter, the results for target-driven visual navigation is presented. In these
experiments the simple grid world environment is extended by adding multiple
target positions the agent should be trained to locate. The complexity of the nav-
igation task is increased by adding a total of four different target positions inside
the same room in the AI2-THOR environment. The positions of the four targets in
the grid world environment is seen in Figure

el L L [e -

Figure 6.1: Grid world navigation example with four different target positions. The target positions
are named by the numbers from one to four.

In this chapter, different experiments are presented. First, the algorithm in |[Zhu
et al. 2016] is modified to run on the grid world example there positions states are
used. The next experiment uses images as states, where a new state representaion
is proposed, that simplifies the comparison between results from the grid world
environment and results for models trained with images as input. During the
experiments presented in this section, the hyperparameters such as the learning
rate are kept fixed for all the experiments. The learning rate is the same as used in
??. The implementation of the algorithm described in Section [5.3|is found in [Zhu
et al. 2017]. Since this implementation uses pre-generated data files, the code is
modified to interact with the AI2-THOR environment during training.

53

54 Chapter 6. Results

6.1 Target-Driven Grid World Navigation

The algorithms until now have been applied to a simple grid world problem, where
the agent is trained to find a single target location. In this section, this is ex-
tended to training the agent to find a total of four different targets. The four
target positions are seen in Figure The algorithm used to train the agent is the
one described in Section However, instead of using images as input, a two-
dimensional state representation is used for both the current position of the agent
in the environment and the target location the agent has to find. The changes of
the network architecture is therefore only found in the input layer and the next
layer, where the two-dimensional state is not passed through the ResNet50 model,
but directly concatenated to a four-dimensional input.

500

— Target 1
—— Target 2
—— Target 3

- 400 —— Target 4

e}

[®)]

C

o]

-

2 300

o

=t

(8}

Q

o

= 200

9]

o

o

9]

>

< 100

0 = —_——
0 20000 40000 60000 80000 100000

Number of Training Samples

Figure 6.2: Figure showing the average trajectory length evaluated for every 5,000 for each target.

By examining Figure [6.2] target number one and four is seen to improve faster
than the other two targets. Therefore a study of the training data is analysed to
answer this question. This is first analysed for target 1, which is seen to converge
better than target 2. To be able to answer this question both the policy and value
function is examined together with an distribution of what states the agent has
discover the previous 1,000 steps. In Figure 6.3 both the policy and value function
after the algorithm is trained on 30,000 samples. The policy is illustrated together
with a distribution of what states are visited the most during the previous 1,000
training samples. A dark blue color means that a state is visited many times, while
a white color means that a state is only visited a few times. The policy seems to
already converge for the states close to the target position. The same is observed
for the value function, where the states nearest the target position almost share
the same values as the solution from dynamic programming in Section after

6.1. Target-Driven Grid World Navigation

being trained for 30,000 samples.

1 2 3 4 5 6 7 8 9

0.0075 0.0089 0.0102 0.0113 0.0121 0.0123 0.0119 0.0110 0.0098

ot
61010
0.1395
66110
01398
VZETO
01415
9910
01476
€GP0
0.1580
¥8TL0
0.1730
SS0T0
0.1866
9580°0
01930
50200
0.1913

0.7511 0.7314 0.7109 0.6946 0.6846 0.6862 0.6960 0.7104 0.7284
0.0095 0.0114 0.0132 0.0147 0.0156 0.0157 0.0148 0.0133 0.0117

N
88800
0.1889
8010

0.7128
0.0116

W
G100
0.2643
€£80°0

0.6526
0.0130

=
§2S0°0
0.3751
9€90°0

0.5595
0.0134

a1
$9€0°0
05055
8TH0°0

0.4447
0.0130

=)
95200
0.6206
28200

0.3409
0.0116

N
9810'0
07110
€020'0

0.2587

(a) Stochastic policy for target 1 after being trained for 30,000 samples.

1 2 3 4 5 6 7 8 9

1 04175 | 06015 | -0.8087 | -09549 | -1.0017 | -0.8087 | -0.4291 | -0.0366 | 0.2952
2 | -03065 | 05082 | -07626 | 09830 | -1.0280 | -07602 | -02624 | 01925 | 05327
3 -0.1696 | -0.3380
4 00035 | 01235
5 0.1273 0.0616
6 0.2338 0.2501
7 0.3221 0.4084

(b) Value function for target 1 after being trained for 30,000 samples.

Figure 6.3: Policy and value function for target 1 after being trained for 30,000 samples.

56 Chapter 6. Results

In Figure 6.5 the same is seen for target 2, which did not improve as fast as
target 1. The policy for target 2 is seen to move the agent in the direction of target
1 and not target 2 as expected. This affects the distribution of states the agent
visits. Instead of moving towards target 2, the agent gets stuck trying to find target
1, which means that the majority of the states visited by the agent is close to target
1. As a result of this, the agent is not trained on data where the target is found.
When examining the value function, it is seen that the values for all the states are
wrong compared to the value function calculated by dynamic programming.

As observed in Figure 6.2 after the agent is trained for 60,000 samples the policy
states to improve. Already after an additional 30,000 training samples, the policy
is seen to move the agent in the direction of taget 2 rather than in the direction
of target 1. Therefore, the previous 1,000 training samples is also seen to be dis-
tributed around the right target. From the additional 30,000 training samples it is
seen that the value function is now closer to the true value function.

In machine learning, it is typically important to test the models on a test data
set, which has not been used for training. By doing so, the model’s ability to
generalize to data it has never seen before can be evaluated. This is done by
visualizing the policy for the two new targets seen in Figure 6.7. To verify this
generalization, two new targets in each both ends of the room is used.

6.1. Target-Driven Grid World Navigation

1 2 3 4 5 6 7 8 9

0.0065 0.0074 0.0082 0.0087 0.0090 0.0092 0.0092 0.0089 0.0082

0

o
TS2T0
01617
SE020
0.1623
02€20

0.1604
1¥sT0
0.1592
79

0.1586
92970
0.1587
°€ST0
0.1574
LLETO
0.1518
8€IT0
0.1420

0.6567 0.6268 0.5994 0.5780 0.5679 0.5695 0.5802 0.6016 0.6360
0.0082 0.0093 0.0102 0.0108 0.0111 0.0113 0.0114 0.0110

N
Y0LT0
0.2108
S661°0

0.6106
0.0102

[63)
L1910
0.2752
18810

0.5529
0.0120

N
9FP10
0.3601
T0ZT°0

0.4834
0.0132

)}
TETL0
04561
0SF1°0

0.4075
0.0142

=)
85010
05449
GeTro

0.3351
0.0141

N
72800
0.6299
81010

0.2686

(a) Stochastic policy for target 2 after being trained for 30,000 samples.

1 2 3 4 5 6 7 8 9

1 44978 | 46945 | -4915 | 51037 | 5225 | 52723 | 51968 | -5.0489 | -4.8149
2 45767 | 47623 | -49951 | 51957 | 53201 | 53186 | -52172 | -5.0256 | -4.7695
3 46778 | -4.8278
4 47950 | -4.9284
5 -4.9141 -5.0026
6 5.0050 | -5.0590
7 50618 | -5.0878

(b) Value function for target 2 after being trained for 30,000 samples.

Figure 6.4: Policy and value function for target 2 after being trained for 30,000 samples.

Chapter 6. Results

1 2 3 4 5 6 7 8 9

0.0639

0.0971 0.0989 0.0929 0.0912

—
72000
0.8265
28000
0.8374
68000
0.8442
22000
0.8542
99000
0.8576
99000
0.8314
92000

0.0826
—
0.1021 0.0713 0.0497 0.0393 0.0429 0.0708
0.1289 0.1647 0.1875 0.1876 0.1738 0.1652
0.0316
0.3154

- —

N
S200°0
0.8189
68000
0.7949
£600°0
0.7804
88000
0.7841
82000
0.7963
S200°0
0.7905
06000

0.0447
0.2559

0.0195 0.0368

W
78000
Y
0.7171
86000
v
6

0.0187 0.0134
0.4248 0.4971

=
68000
0.5584
8010°0

0.0079 0.0057
0.5600 0.6189

6)}
06000
0.4273
01100

0.0037 0.0028
0.6355 0.6727

=)
£800°0
0.3537
<0100

0.0020 0.0016
0.6559 0.6782

N
08000
0.3349
£600°0

0.0013 0.0011

(a) Stochastic policy for target 2 after being trained for 60,000 samples.

1 2 3 4 5 6 7 8 9

1 0.0890 0.1195 0.1980 0.2788 0.3635 0.4107 0.4280 04121 0.3601
2 0.0952 0.1260 0.1519 0.2212 0.3336 0.4156 0.4510 04236 0.3616
3 0.0163 0.0249
4 00992 | -0.1388
5 02563 | -03227
6 03972 | -04759
7 05015 | -05731

(b) Value function for target 2 after being trained for 60,000 samples.

Figure 6.5: Policy and value function for target 2 after being trained for 60,000 samples.

6.1. Target-Driven Grid World Navigation

(g) Policy for target 4.

0.13

0.22

0.35

0.46

0.54

0.34

0.11

0.15

0.28

0.47

0.59

0.37

1 2 3 4 5 6 7 8 9
043 | 048 | 057 | 0.64 | 0.71 | 079 | 085 | 093 | 1.00
041 | 051 | 059 | 0.67 | 0.76 | 0.84 | 091 | 099 | 1.01

0.81

0.74

0.61

0.82

0.76

0.90

0.81

0.65

059

0.53

045

0.38

0.27

0.58

0.85

0.90

0.98

047

0.37

0.22

(h) Value function for target 4.

59

Figure 6.6: The left column shows the policy for each target position, and the right column shows
the value function at the same time step. These are the results after the agent is trained

on 300,000 samples.

60 Chapter 6. Results

1 2 3 4 5 6 7 8 9

0.0000 0.0000 0.0006 0.0005 0.0010 0.0020 0.0039 0.0071 0.0104

p—
10000
0.0230
9000
0.0032
Oﬂ*‘? 0
0.0004
59?6 0
0.0000
68?6 0
0.0000
64?6'0
0.0000
09?6 0
0.0000
6z?6 0
0.0000
SG?G 0
0.0000

0.9769 0.9903 0.3850 0.0028 0.0001 0.0001 0.0001 0.0001 0.0001
0.1608 0.1019 0.0580 0.1006 0.1954 0.3145 0.4034 0.4583

L. L

N
.%
o
—

aQ

a

&
88610
0.2374
698{2 0
0.0014
61760
0.0000
%ef 0
0.0000
9770*8 0
0.0000
99?9 0
0.0000
996; 0
0.0000
L1%S°0
0.0000

0.4030 0.0001 0.0000
0.6487 0.9755

W
21000
0.3494
S110°0

0.0007 0.0002
0.9949 0.9971

=
£000°0
0.0048
92000

0.0000 0.0000
0.9983 0.9920

6)]
£000°0
0.0010
64000

0.0000 0.0000
0.9950 0.9391

(=)
7000
0.0006
8090°0

0.0000 0.0000
0.9613 0.5692

N
18€0°0
0.0006
80€¥°0

0.0000 0.0000

(a) Policy for the new first target.

1 2 3 4 5 6 7 8 9

0.0000 0.0000 0.0001 0.0001 0.0001 0.0003 0.0005 0.0003 0.0002
= 2lg N g(2 gle B2 8|2 22 g2 g
1 8 32 88 »z2 »352 »58 &2 |, 28 | g8 | £
=] j=] I} f=1 I j=] | ¥} [=] o5} f=4] j=] k=] f=1] =)} f=] [=} o
0.4595 0.2428 0.0859 0.0327 0.0408 0.2124 0.8660 0.9739 0.9470
0.0007 0.0012 0.0016 0.0022 0.0019 0.0039 0.0140 0.0083 0.0066
g 2lg sle = 22 olg 2lg g2 gle 2
2 g 52 »E2 >3 —»35 32 %3 &2 g2 g
(=] S| = o= N SN (=1 <) f=11") =1 (=11 (=1
0.0788 0.0462 0.0057 0.0447
0.0535 0.1057
o F; o
3 B —»%8 —»
i=3 S
=] (=1
0.0033 0.0021
0.7450 0.9135
o @ o
4 g e
=] o=
0.0001 0.0000
0.9131 0.9517
f=1 % (=1
j=1 [=3
5 " g
(=] (=1
0.0000 0.0000
0.8596 0.8629
o g o
6 5 28
—_ j=1] 1S}
0.0000 0.0000
0.6264 0.5176
o % o
f=3 (=3
7 g B[S
= [=1] 1%}
0.0000 0.0000

(b) Policy for the new second target.

Figure 6.7: The left column shows the policy at different number of steps used to train the network.
The right column shows the value function at the same time step.

6.2. Target-Driven Visual Navigation 61

6.2 Target-Driven Visual Navigation

In this section the same model architecture as in [Zhu et al.[2016] is used, with four
images of both current position and target position is used. In this experiment
instead of training the algorithm using images from previous movements, another
state representation is used, where an image in each of four directions are used.
As seen from Figure only the policy for target 2 seems to converge, and
in the end it is event seen to become worse. For such high trajectory lengths, it is
expected that the agent moves around in loops in order to move so many states
without finding the target. This can also be verified by looking at Figure

—— Target 1 —— Target 2 —— Target 3 —— Target 4

10000

8000

6000

4000

Average Trajectory Length

2000

0 250 500 750 1000 1250 1500 1750 2000
Number of Training Samples

Figure 6.8: Average trajectory length using image states. The number of samples used are listed in
1,000s.

62

1

2

Chapter 6. Results

3 4 5 6 7 8 9

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

0.4296

00000

0.3302

0.2402
00000

0.4296

0.3302

Figure 6.9: 1,000 last training samples after the algorithm is trained for 300,000 samples.

Chapter 7
Discussion

This chapter will discuss the results provided in Chapter [6] together with some of
the results and observations from Section 2.4 and

In Section 2.4 the classical reinforcement learning solution methods were ap-
plied to solve a simple reinforcement learning problem in the same environment
used to evaluate the performance of the experiments in Section [f| In this way it is
easy to compare the analytical solutions to the algorithms, to see if these converge
to something similar.

In|[Zhu et al. 2016]| the state representation consists of four images, one for the
current view point of the agent and the previous 3 views. The idea behind this
is to keep track of previous movements of the agent, since the agent has to know
in which direction it is pointing. The reason for this is that not only the agents
position in the room is important, but also in which direction it points. This state
representation is not each of visualize and therefore a new state representation is
proposed for easier visualization.

In this project, instead of using previous images in the state representation the
agent is provided with an image in four direction north, south, east and west. This
helps simplifying the analysis of how the algorithm can be improved, because each
state would not take into account this direction and is not based on previous im-
ages, which simplifies how a policy can be visualized. However, this also means
that this procedure cannot be directly compared to the one in [Zhu et al. 2016]
These two state representations could be analysed to see which one provides the
agent with the beset knowledge of the environment. Pros of using the state repre-
sentation used in this project could be that providing the agent with information
in all four direction could be a better state representation, since the agent does not
have to rotate to get information about the state outside of the field of view.

From the results in Section it can be concluded that the network architec-
ture presented in [Zhu et al. 2016]] can be used to achieve nearly optimal behaviour
when trained on multiple target positions in the grid world environment. As seen
in Appendix [E| the value function has converged to nearly the solution calculated
by dynamic programming in Section This is important, since the A3C algo-
rithm uses the value function to calculate the advantage, as seen from Equation
to scale the gradient. However, if a wrong estimate of the value function is used to
calculate the advantage, it would be expected to affect the gradient and therefore

63

64 Chapter 7. Discussion

also in which direction the parameters are updated. How much this really affects
the convergence of the A3C algorithm could be investigated further by providing
the algorithm with a value function calculated using dynamic programming. In
this way the affect of a wrong value estimate could be studied.

In Section the policy is seen to converge for all four targets and by exam-
ining the policy for each individual target it is also easy to verify by inspection
that these policies are close the the optimal one, except for a few states for target
1. This is verified by extracting a deterministic policy from the stochastic policy by
greedily choosing the action with the highest probability. Since a stochastic policy
is used when evaluating the performance, this might increase the trajectory length
a bit compared to a deterministic policy. The reason for this is that if the policy is
stochastic and the actions for a state has equally likely probability of being picked,
the agent might end up increasing the trajectory length a bit. However, since a lot
of the policies assign a high probability to one target, this should not have a big
effect on the performance.

During the training of the model in Section [6.1]it was observed that the policy
for some of the targets converged faster than others. For some of the targets, the
agent was even trained to locate the wrong target. As seen from Figure target
2 and 3 was the two targets that showed the slowest improvements. This could be
explained by what target the agent discovered first. Imagine that target 1 is the first
to be discovered, which seems like reasonable assumption. If this target is the only
one discovered in the beginning of the training phase, the parameters of the model
will be optimized towards a policy that only finds this single target. Otherwise, the
agent is only trained using samples where the agent is penalized for not reaching
the target, and is therefore not able the optimize the parameters in the direction of
a good policy. It is therefore crucial that the agent discovers the target in order to
receive the the reward so the value function can be estimated correctly and a good
policy can be found.

In|[Zhu et al. 2016]| the model is trained on 100 randomly selected targets from
20 different scenes, with an average of 5 different targets per scene. In this project,
only a single scene of an indoor environment is used to train and evaluate the
algorithm. This is a reduction in the complexity of the navigation problem but
also simplifies the analysis or the training phase, since 100 targets should not be
analysed.

In [Zhu et al. 2016] the performance is measured by moving the agent to a
random starting position and using the stochastic policy from the model to pick
the next action the agent has to perform. The trajectory length of one episode is
measured by the number of steps from the starting position until the agent reaches
the target position. If the target position is not reached by the agent the episode is
ended with a trajectory length of 10,000 steps. For each of the 100 targets used to
train the algorithm in [Zhu et al. [2016], 10 episodes are evaluated for each of these
targets. The overall performance is then calculated by the average trajectory length
of these 1000 episodes.

One problem with this way of evaluating the performance is the transparency
of what the agent has actually learned. This means that for some targets the agent

65

might have converged to a good policy that brings the agent from its starting
position to the target position in a few number of steps. For other targets the agent
might move into loops that results in episodes having a trajectory length of 10,000
steps, because the agent continues to select actions from a bad policy.

For the Q-learning algorithm presented in Section an e-soft policy was
used to force the agent to keep exploring the environment. A greedy policy is
extracted from the estimated value function by picking the action with the highest
value. If an e-soft policy is not used, the agent will exploit what it has already
learned at every time step, meaning that if the agent ends up in a loop, it will be
stuck moving between the same states. Different things could be tried to avoid
the problem where the agent gets stuck in loops. As an example the model could
be pre-trained on a training set consisting of guided paths from starting position
to the target position. The idea behind this is to feed the algorithm with useful
data instead of training the algorithm completely from scratch. This ensures that
the agent discovers all the targets equally many times during this phase and may
avoid the problem of training policies to find the wrong target as seen from the
experiments in Section

In|[Zhu et al. 2016]|the algorithm is trained using 100 million samples across 100
targets. The algorithm is then trained by 100 thread, one for each target. Every tar-
get is then trained using approximately one million samples. Since the 100 threads
cannot be guaranteed to perform the computations equally fast, the number of
samples used to train each target might not be completely uniformly distributed.
This means that in principle for some of the targets the agent could be trained on 1
million frames where the agent never reaches the target and gets no reward. This
also means that the policy for this target would probably never converge to a good
policy. This could mean that the training data might be reduced because this data
is not useful for training, and thereby reducing the number of training samples
used.

Alternative to using an e-soft policy the A3C algorithm utilizes the fact that
the policy outputted from the model is a probability distribution. Therefore a
stochastic policy is used instead resulting in exploration by picking the actions
according to this probability distribution. This means that exploration will be
ensured as long as all actions have a probability of occurring that is different from
zero. However, as seen from the experiments the policies seem so converge to
where a single target is preferred over others meaning that the exploration will be
highly reduced. An as seen from the experiments in Section it is important that
the agent main exploration. If one action dominates the others by having a much
higher probability of being picked, this could also lead to loops in the training
data, which has been seen to influence the the training of the algorithm.

With this extension of the grid world environment and the algorithms from
deep reinforcement learning, where the action-value function is modelled using
neural networks, a huge amount of data is required to get a good estimate of the
action-value function.

Since the amount of parameters in the model is increased by using a four-
dimensional input instead of a 8194-dimensional one, this will also mean that the

66 Chapter 7. Discussion

amount of data required to train the model will has to increase for each policy.
This could explain why the experiment suddenly converges. More data is required
to train the increased number of parameters of the the model using images and the
model using states. This would mean that if the agent after a lot of trains finally
reaches the target positions, this would not be enough to change the policy to find
the target.

Accoding to [Mnih et al. 2016]] the use of more threads during the training helps
stabilizing the algorithm because the data used for training is decorrelated into a
more stationary process. Therefore experiments with more threads per target could
be conducted. However, [Zhu et al. 2016]| also uses a single thread per target.

As seen from the experiments in Section it was shown that the algorithm
converged for two-dimensional position states, but not for the image states. A
hypothesis for this is that the algorithm is trained better on the targets that provides
the algorithm with data of the agent receiving the reward for finding the target
position.

Chapter 8
Conclusion

In this project, reinforcement learning has been used to solve a reinforcement learn-
ing problem, where an agent has to navigate from a starting positing to a target
position in an environment in as few steps as possible. The various experiments
are conducted using data simulated from a framework called AI2-THOR, which
provide 3D models of indoor scenes and an interface that allows an agent to move
around inside the 3D model of these different indoor scenes. This framework
makes it possible to train an agent, while the agent is interacting with the envi-
ronment, to improve its behaviour by training the agent’s policy to find the target
positions in the fewest number of steps.

Reinforcement learning provides a framework for such sequential decision-
making where an agent is trained in its environment. Classical solution methods
such as dynamic programming and Q-learning provide theoretical solutions to
be able to compare this to that the deep reinforcement learning algorithm learns.
However, these classical methods are not tractable for applications with higher
complexity where states are represented by images instead of a simple two-dimensional
position vector.

To handle the increased complexity classical reinforcement learning methods
are combined with deep learning, that allows complex function to be approxi-
mated. This fusion, called deep reinforcement learning, has shown promising re-
sults for complex tasks, and is therefore applied to target-driven visual navigation
in |[Zhu et al. 2016]. The model trained in |[Zhu et al. 2016|] presents performance
that is better than previous attempts, even though the trajectory length is still far
away from the optimal. However, no knowledge of that is actually going on inside
the network is not known.

This project provides an analysis of the training of what the agent learns during
training. This analysis is carried out by visualizing what the algorithm learns and
inspecting these data. This is carried out by proposing a new state representation.
This state representation uses four images in each of four directions. This simplifi-
cation allows for comparison with the experiments and results from a simple grid
world environment, where results are easy to verify. Using this visualization and
the ability to compare the results to the theory it is seen that during the training,
some targets are trained on more useful data than other targets, since some targets
are trained to find the wrong target locations. Some of the targets are found a

67

68 Chapter 8. Conclusion

few times, which might not be enough to train a policy for this targets. This will
have an impact on the performance when this is evaluated. Also, since training
the model on loops of data might only affect the optimization of the parameters in
the model in a negative way, such loops could be breaked when discovered, which
could mean a reducing in the amount of data used to train the algorithm, since
such loops could affect the policies for other targets in a negative way.

8.1 Future Work

For future work, it should be studied if the state representation used in this project,
where an image in four different directions are used instead of images from previ-
ous moves, has any impact on the performance of the results provided in Section
compared to the state representation in [Zhu et al. [2016].

As discussed in Chapter [7] it was found that during the training of the agent,
the agent learned polices policies that directed it towards a wrong target. As a
result for some of the targets the agent was looping and continually trained on
data where the agent never received a positive reward for finding the target. Since
this could indicated that the algorithm was trained better for some targets, because
it was trained on more useful data, it could be interesting to study if pre-training
of the algorithm could solve this problem, making sure at every target is trained
on useful data.

Another interesting thing to study would be the amount of influence the esti-
mated value functions has on the performance of the algorithm. If the estimated
value function shows to have an high impact on the performance of the algorithm,
i would be interesting to see if the value function could be constructed in a differ-
ent way. If the agent was instead trained to find specific objects around in a house,
instead of locations, it would be interesting to see if image processing could be
utilized to create a more clever value function.

Since the experiments in Section[6.1showed that the algorithm converged using
two-dimensional position vectors, it could be investigated whether a mapping from
image states to position states could be learned. This could then be used during
training to map the image state the agent received down to a position state to
inherit the convergence and data efficiency properties of the algorithm trained on
position vectors.

Bibliography

Arulkumaran, Kai et al. (2017). “A Brief Survey of Deep Reinforcement Learning”.
In: CoRR abs/1708.05866.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag. 1seN: 0387310738.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:

//www.deeplearningbook.org. MIT Press.

Grondman, Ivo et al. (2012). “A Survey of Actor-Critic Reinforcement Learning:
Standard and Natural Policy Gradients”. In: 42, pp. 1291-1307. 1ssN: 1094-6977.
DOI1:110.1109/TSMCC.2012.2218595.

Haykin, Simon (2009). Neural Networks and Learning Machines. Third Edition. Pear-
son Education.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In:
CoRR abs/1512.03385. arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.
03385.

Hester, Todd (2013). TEXPLORE: Temporal Difference Reinforcement Learning for Robots
and Time-Constrained Domains. Springer, Heidelberg.

Kolve, Eric et al. (2017). “AI2-THOR: An Interactive 3D Environment for Visual
Al”. In: arXiv.

Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: 521,
pp- 436—444. 1ssN: 0028-0836. po1:|10.1038/nature14539.

Littman, Michael L. (2015). “Reinforcement learning improves behaviour from eval-
uative feedback”. In: 521, pp. 445-51. 1ssN: 1476-4687. Do1:/10.1038/nature14540.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518, 529 EP —. URL: http://dx . doi.org/10. 1038/
naturel4236.

Mnih, Volodymyr et al. (2016). “Asynchronous Methods for Deep Reinforcement
Learning”. In: CoRR abs/1602.01783. arXiv: 1602.01783. URL: http://arxiv.
org/abs/1602.01783.

Nilsson, Nils J. (2010). The Quest for Artificial Intelligence. Cambridge University
Press.

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Mathematical Ststistics.

Ruder, Sebastian (2017). “An Overview of Gradient Decent Optimization Algo-
rithms”. In: ArXiv e-prints.

69

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TSMCC.2012.2218595
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14540
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783

70 Bibliography

Russell, Stuart J. and Peter Norvig (2010). Artificial Intelligence : A Modern Approach.
Upper Saddle River, NJ : Pentice Hall.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks
and tree search”. In: Nature.

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement Learning: An Intro-
duction. MIT Press.

— (2017). Reinforcement Learning: An Introdutction. The MIT press.

Thomas, H. Cormen, Thomas H. Cormen, and Charles E. Leiserson (2009). Intro-
duction to Algorithms. 1sBN: 0-262-03384-4.

Zhang, Shangtong and Richard S. Sutton (2017). “A Deeper Look at Experience
Replay”. In:

Zhu, Y. et al. (2016). “Target-driven Visual Navigation in Indoor Scenes using Deep
Reinforcement Learning”. In: ArXiv e-prints. arXiv: 1609.05143 [cs.CV].

Zhu, Yuke et al. (2017). “Target-driven Visual Navigation in Indoor Scenes using
Deep Reinforcement Learning”. In: IEEE International Conference on Robotics and
Automation.

http://arxiv.org/abs/1609.05143

Appendix A
Scripts

This appendix presents the scripts and data files used throughout the project. This
include the algorithms and scripts with the results.

Scripts

Environment.py Script that contains the environment class with functions to create the AI2-
THOR environment and functions to interact with the environment. Used
for the A3C implementation.

Agent.py The base class used for the classical reinforcement learning algorithms. Con-
trols the environment from AI2-THOR.

TabularBased.py Script containing the TabularBased class used for the classical reinforcement
learning methods. Copntains help functions and function to create the grid
world figures.

DynamicProgramming.py Script that contains the DynamicProgramming class with functions such as
policy evaluation and policy improvement and other help functions.

Qlearning.py Script with the functions to train an agent in the grid world environment
using the Q-learning algorithm.

DQN.py Scripts with the DQN class with the functions to train a deep-Q-network to
find a target in the grid world environment.

Experience_Replay.py It contains the Experience_Replay class that lets one create and store transi-
tions in an experience replay buffer.

ModelNewlImage.py This consists of the code to train the target-driven A3C model on the image
state proposed in this project.

ModelSimple.py Code to run the target-driven A3C algorithm on the grid world environment.

71

Appendix B
Grid World

In this appendix, the grid world environment from Section is described and
how it is conducted. The design of the simple grid world example is conducted
from a kitchen in the AI2-THOR framework [Kolve et al.[2017], named FloorPlan1.
The AI2-THOR framework is described in details in Section[5.1} A panorama view
of the kitchen from which the environment is conducted is seen in Figure

0 30 60 90 120 150

180 210 240 270 300 330

Figure B.1: Panorama view of the kitchen used in the gridworld example.

The goal of the agent is to get to the finish square located at (x,y) = (8,7) in the
grid. This is achieved through a number of available actions the agent can perform
given by the set, A = {aup, ddown, Mefts Aright}-

The state space, S, is determined by moving the agent around to all possible
positions with a step size of 0.5 meter. This step size is chosen, because a lower step
size would result in a much bigger grid, which is not necessary for showing that the
algorithms work properly. The state space then consists of the possible positions
(x,y), where the framework provides the x and y for each position. These unique

73

74 Appendix B. Grid World

positions are then used to create the grid world environment seen in Figure [2.3| as
the white squares. The black squares are in this case positions with tables and are
therefore unavailable positions for the agent. Therefore, for some states the actions
space is limited for example for A(s3)) = {aup, dleft }-

1 2 3 4 5 6 7 9

1 TV VY VY| TV -3

2 «}»«L%.«Lﬁl» J
%) t t,

=
2 I Tt 2 Ear 20N A Hr 2 ar

Figure B.2: Grid world example of navigation. The white squares are the available positions or states
of the environment and the black squares represent unavailable positions.

Appendix C
Convergence of Q-Learning

In this appendix, the convergence of the Q-learning algorithm is described. The
focus is to investigate the influence of the learning rate, « and the exploration
versus exploitation parameter, €. To investigate how fast the Q-learning algorithm
in Section converges to the optimal action-value function Q*(s,), the solution
from dynamic programming after it has converged is used as the target. The total
error is then calculated by the sum of squared error for all the states in the state
space. Figure C.1 shows the number of episodes required to achieve an close
approximation of Q*(s,a) for different choices of the learning rate, a for a fixed
value of €. As expected the learning rate influence the speed of convergence of the
algorithm. A learning rate of « = 0.1 has not converged to the optimal action-value
function after 10000 episodes.

Convergence of Q-Learning (e-experiment)

— (.1
—().3
0.7 -— (5
— (.7

0.9

Mean Squared Error
o o o
w = ot

o
[\]

e
—

“ala - — S
0 500 1000 1500 2000 2500 3000 3500 4000
Episodes

0.0

Figure C.1: Convergence of the table-based Q-learning algorithm from Section ??, for a fixed e with
varying learning rate, a.

75

76 Appendix C. Convergence of Q-Learning

Convergence of Q-Learning (a-experiment)

e (.1
- (.3
- (.5
- (.7

0.9

Mean Squared Error

0 2000 4000 6000 8000 10000
Episodes

Figure C.2: Convergence of the table-based Q-learning algorithm from Section ??, for a fixed e with
varying learning rate, .

Appendix D
Convergence of Deep Q-Network

In this appendix, the convergence of deep Q-networks are examined. The focus
is to investigate if the deep Q-network applied to the grid world environment
converge to a steady solution. The training of the same deep Q-network is repeated
three times for different seeds. For each deep Q-network the mean squared error
is between the output of the deep Q-network compared to the solution in Figure
[2.7)is calculated. For each of the three training tests the deep Q-network converges
to action value that is close to the optimal one.

Figure D.1:

Convergence of Deep Q-network

0.08

0.06

0.04

Mean Squared Error

0.02

0 200 400 600 800 1000 1200 1400
Episodes

Convergence of the deep Q-network algorithm applied to the grid world environment.
The deep Q-network is is trained three times where each color represents the error be-

tween the

77

Appendix E
Grid World Navigation Reults

In this appendix, the policies and value function for each target is provided for the
algorithm trained on position states. This results are seen after the algorithm is
trained for 300,000 data samples across all four target.

79

Appendix E. Grid World Navigation Reults

1 2 3 4 5 6 7 8 9

0.0000 0.0002
1 2 5(8 (3
' S| S|
0.9859 0.8731
0.0001 0.0024
=) 3 ale
j=1 o N
2 5 g8 4
0.9849 0.8445
0.0001 0.0073 0.0390
o 1= ale ; ¢
3 I8 =8 (3 —> —>
= =k SR 3 3
0.2041 0.0041 0.2401

(a) Stochastic policy for target 1 after being trained for 300,000 samples.

1 2 3 4 5 6 7 8 9

1 014|013 | 013 | 022 | 035 | 046 | 054 | 0.54 | 0.34
2 (017] 014 | 012 | 0.16 | 0.29 | 047 | 0.60 | 0.62 | 0.37
3 |021| 019

4 | 029 | 0.30

5 | 034] 039

6 | 043 | 049

7 | 051 | 0.60 | 0. 0.76 | 0.86 | 0.92 | 0.99

(b) Value function for target 1 after being trained for 300,000 samples.

Figure E.1: Policy and value function for target 1 after being trained for 300,000 samples.

1 2 3 4 5 6 7 8 9

0.0002 0.0002
o E (=}

1 B g —
o N (=] N
=] [=] {=)

0.0044 0.0017
0.0173 0.0212
o m o

2 18 > —-
o N (=]

(= oS
0.0002 0.0001
07193 0.8258

o ls o

3 g &g
S (=] {=)

0.0000 0.0000 0.0000 0.0000
09788 0.9860

2 =2

4 2 88
o j=] [}

0.0000 0.0000
09784 09783

o olo

5 8 " g
o j=] =}

0.0000 0.0000
0.9420 0.9000

o % (=}

o (=3

6 2 2
=] [=] =}

0.0000 0.0000
0.7637 05579

o H=

o o

7 g g|g
i=] oS

0.0000 0.0000

(a) Stochastic policy for target 2 after being trained for 300,000 samples.

1 2 3 4 5 6 7 8 9

1 | 044 | 049 | 057 | 0.65 | 0.71 | 0.79 | 0.86 | 0.94 | 1.00

2 | 042 | 051|059 | 067 | 076 | 0.84 | 0.92 | 0.99 | 1.01

3 | 035|043

4 | 030 | 0.34

5 | 023] 0.28

6 | 0.19 | 0.19

7 | 013 | 0.14 | 0.15 | 0.23 | 0.34 | 0.42

(b) Value function for target 2 after being trained for 300,000 samples.

Figure E.2: Policy and value function for target 2 after being trained for 300,000 samples.

Appendix E. Grid World Navigation Reults

1 2 3 4 5 6 7 8 9

0.0011 0.0015 0.0016
s sle |2 slg =
o Nel Nel e
1 |8 S|g+ S8+ S8+ S
o oo ol O | o
0.0039 0.0065 0.0120
0.0338 0.0447 0.0467
= sls sls sls 2
2 IS S|lg<+ S|é<+ Slg< S
(=] oW (=] o%) o= o
0.0082

(a) Stochastic policy for target 3 after being trained for 300,000 samples.

1 2 3 4 5 6 7 8 9

1 |079|087 |09 | 082 075 | 0.69 | 0.61 | 0.54 | 0.43

2 | 08| 094|099 | 090 | 0.81 | 0.73 | 0.65 | 0.54 | 0.40

3 | 090 | 099

4 | 0.83 | 092

5 | 076 | 0.84

6 | 0.72 | 0.74

7 | 0.66 | 0.64

(b) Value function for target 3 after being trained for 300,000 samples.

Figure E.3: Policy and value function for target 3 after being trained for 300,000 samples.

1 2 3 4 5 6 7 8 9

0.0036 0.0616

(a) Stochastic policy for target 4 after being trained for 300,000 samples.

1 2 3 4 5 6 7 8 9

1 059 | 059 | 054 | 046 | 039 | 034 | 028 | 0.19 | 0.07

2 065 | 067 | 058 | 047 | 037 | 030 | 022 | 0.12 | 0.02

3 | 071 | 077

4 | 077 | 0.84

5 085 | 092

6 | 091 | 099

7 | 098 | 1.01

(b) Value function for target 4 after being trained for 300,000 samples.

Figure E.4: Policy and value function for target 4 after being trained for 300,000 samples.

	Front page
	English title page
	Contents
	List of Figures
	1 Introduction
	1.1 Problem Statement

	2 Reinforcement Learning
	2.1 Markov Decision Processes
	2.2 Dynamic Programming
	2.2.1 Policy Evaluation
	2.2.2 Policy Improvement
	2.2.3 Generalized Policy Iteration

	2.3 Q-Learning
	2.4 Grid World Navigation
	2.4.1 Dynamic Programming
	2.4.2 Q-Learning

	3 Deep Learning
	3.1 Artificial Neuron
	3.2 Feed-Forward Neural Networks
	3.3 Universal Approximation Theorem
	3.4 Convolutional Neural Networks
	3.5 Learning Algorithm

	4 Deep Reinforcement Learning
	4.1 Deep Q-Networks
	4.2 Asynchronous Advantage Actor-Critic Algorithm
	4.3 Grid World Navigation
	4.3.1 Deep Q-Networks
	4.3.2 A3C Algorithm

	5 Target-Driven Visual Indoor Navigation
	5.1 Simulation Framework
	5.2 State Representation using Images
	5.3 Target-Driven Navigation

	6 Results
	6.1 Target-Driven Grid World Navigation
	6.2 Target-Driven Visual Navigation

	7 Discussion
	8 Conclusion
	8.1 Future Work

	A Scripts
	B Grid World
	C Convergence of Q-Learning
	D Convergence of Deep Q-Network
	E Grid World Navigation Reults

