
Summary

We examine the topic of randomness beacons, services that provide public randomness, and identify
a gap in the current literature. The gap consists of the practical implementation and security analysis
of randomness beacons. We seek to design and implement a secure beacon that can be used in real
life. We explore a set of use cases to motivate the use of randomness beacon, and argue for the
necessity of security under these circumstances.

This work is a continuation of the work we did in the previous semester: We analysed the structure
of beacons and how they are commonly structured and used. This culminates in three operational
models for beacons, the Autocratic Collector, Specialized MPC and Transparent Authority, and three
input sourcing models, private input sources, publicly available sources, and user input. These models
are referenced throughout the paper as a means of describing key approaches to analysis, design,
and implementation.

To better understand how to design a secure beacon, we analyze the threats towards a randomness
beacon. We identify threats both from outsiders, i.e. the users of the beacon, and insiders, also
called the beacon operator, and estimate the different severities of each threat. The estimation of
the threats is driven by the DREAD method, which we slightly alter to fit the analysis of randomness
beacons.

Based on the threats discovered to beacons, as well as the operational and input models previously
examined, we construct a set of requirements for our own beacon. These requirements address the
criteria for a randomness beacon, given our world view — nobody can trust anyone but themself.
The requirements form the base of our design, which encompasses both the architecture and security
properties of the beacon.

We scrutinize which factors define how users should trust the beacon, and design our major
contribution; a beacon protocol that uses a series of time offset delay functions to provide randomness
at regular intervals. We show it enables users to have a probabilistic level of trust in the beacon,
meaning that each user will use their own assumptions about the world we live in, to assign a
certainty to the trustworthiness of the randomness beacon. All this is done, while ensuring a scalable
and easily deployable beacon.

We also go in depth with the implementation of the beacon, and detail which choices have been
made in the process. This includes the tools and frameworks used in the construction, and we also
consider their effects on the security of the beacon. We break down the beacon and explain how
each component works, and how they live up to the previously established requirements and design.

To evaluate the performance of our beacon, we select key areas to examine, such that reasonable
statements can be made about the randomness beacon as a whole. This performance evaluation
includes benchmarks of our expected bottlenecks, and an assessment of the intricate computations
of the beacon. We find that our beacon fulfills our expectations when it comes to performance, and
will be able to handle virtually any real world usage.

To contextualize the beacon we designed and implemented, we present a series of applications of
our beacon, detailing how the beacon should be used to guarantee security. This involves perceiving
the randomness beacon as a cryptographic primitive used to build secure ceremonies. We discuss
topics that have come up during the process of developing our beacon, as well as any future work
relevant to our beacon and randomness beacons in general. Lastly, we conclude on how our design
and implementation fulfill the requirements, and how the beacon mitigates the threats found in the
security analysis.
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Abstract

Randomness beacons are services that emit a random
number at a regular interval. A recent trend in these
beacons is making them transparent or secure such
that no party can covertly influence the output with-
out detection. Existing literature on the subject lacks
a bridge from their respective theoretical solution to
a practical implementation suitable for deployment
and usage. Much of the existing literature also lacks
a structured security analysis.

We close these gaps by designing and implementing
a randomness beacon supporting a broad range of
use cases. The randomness beacon is designed to
be practical in the real world while prioritizing the
security and integrity of the output.

Our randomness beacon is based on a service ori-
ented architecture and supports a multitude of in-
put and output channels. The transformation from
input to output utilizes a Commit-Compute-Output
(CCO) workflow combined with a delay function. To-
gether, these provide good security guarantees even
under the assumption that everybody else is collud-
ing against you. Our beacon greatly minimizes the
amount of trust needed in such a way that each user
can decide how much they want to trust. As such,
even fastidious users can be serviced by our random-
ness beacon.

Lastly, we explore a variety of applications for our
randomness beacon as a cryptographic primitive, and
discuss how to use it in a secure way.

1 Introduction

A randomness beacon, i.e. a service emitting unpre-
dictable random values at fixed intervals, is not a
new concept. In 1983 Michael O. Rabin coined the

term and utilized one to add probabilistic security in
several protocols [21]. In this definition, a random-
ness beacon was to be seen as a third-party trusted
to be unbiased towards any outcome. As such, you
should trust the beacon operator (the entity running
the beacon service) to not be biased since you can
not verify that they were unbiased.

For quite a while, randomness beacons did not
receive much attention, likely because alternatives to
Rabin’s protocols not requiring a trusted beacon were
used instead (such as [2]). In circa 2010, a renewed
interest in beacons was seen as an increase in beacon-
related literature; the trend in this new literature
was to remedy the need to trust the beacon operator.
We believe it was a reaction to revelations like the
National Security Agency (NSA) whistle-blower leaks
that diminished people’s trust in authorities. In other
words, people had their eyes opened to the fact that
trust can be an issue in itself and that removing the
need for trust in any one entity could be beneficial.
As an example, cryptocurrencies have flourished in
recent years alongside a sharp rise in the popularity of
blockchains — two technologies seeking to facilitate
cooperation of mutually distrustful users.

Conceptually, randomness beacons seem to fit this
environment of minimizing the need to trust. How-
ever, the old generation, requiring users to trust the
operator, simply shifts the trust issue to the central-
ized entity, i.e. the beacon operator. In new generation
beacons described in the recent literature, the beacon
is acting as an impartial party.

The merit of a randomness beacon lies in contexts
where a set of users needs to agree on some ran-
dom outcome, but do not trust each other or a third
party to make the decision. Therefore, a random-
ness beacon is not required in the case a user needs
randomness for just themself. In this case, standard
ways, e.g. using /dev/urandom, of generating ran-
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1 INTRODUCTION

domness on a computer are far easier. Similarly, if
users trust each other or a third party randomness
generation is also trivial. A randomness beacon is not
necessarily generating “more random” numbers — it
merely allows users to agree on the same randomness
without trusting anyone.

Even though the literature theoretically argues for
a variety of solutions, we have not seen many im-
plementations of randomness beacons. We believe
that bridging a theoretical design and practical im-
plementation is uncharted territory. Additionally, the
literature which somewhat explore this bridge either
culminate in a highly specialized solution unfit for a
public context [8, 25], or disregards a thorough, struc-
tured security analysis [7]. Throughout this paper
we design, implement, and evaluate a randomness
beacon, borrowing from existing research while in-
troducing novel ideas; both in the system but also
the operation of it.

In any case, randomness beacons are interesting
as a concept, and we feel it needs further exploration
to find real world applications. This paper will be a
step in that direction.

Regarding terminology, we use the terms “random-
ness beacon” and “beacon” interchangeably in this
work.

1.1 Security Goals

Using an old generation beacon simply shifts the issue
of trust to the beacon. Therefore, we strive to design
and implement a new generation beacon that works
on the most pessimistic assumption possible: “Every-
body is secretly colluding against you and is willing
to put an unlimited amount of money and resources
towards manipulating or biasing the randomness. As
such, you can only trust yourself.”

These assumptions describe the mindset we take
on while designing and implementing the beacon.
We have not seen any work on beacons that can guar-
antee a completely trustless beacon. Therefore, such
a trustless system may not be practically feasible to-
day. As we also need to account for the feasibility of
the system in real world applications, we consider
degrees of trust, i.e. we perceive it as a system with
variables. We seek to minimize the trust required
and ultimately let each user decide how much they
want to trust. In essence, a user will know that under
self-chosen trust assumptions, the randomness has
not been manipulated.

1.2 Beacon Context

As stated, beacons are relevant in contexts where
several users want to agree on some random outcome,
but do not trust anyone to solely decide that outcome
— a pattern which fits a number of use cases.

Consider the generic use case of sampling. Essen-
tially, sampling is about selecting representative data
points, potentially with high stake consequences. It
would not be far-fetched to imagine someone wants
to bias this sampling process in order to skew the
results. One such sampling process is lotteries, which
need to randomly sample a pool of participants to
draw winners.

The field of cryptography also contains use cases.
Many cryptographic schemes require some constants
in the design of algorithms, and it has been shown
that some schemes have been intentionally built
with specific constants in order to facilitate a back-
door [13]. Selecting constants with a randomness
beacon can prove to the users of such cryptographic
schemes that the constants were not manipulated and
thus are unlikely to contain backdoors [1]. One could
even in some use cases imagine a “refreshing” algo-
rithm where constants are variables which change
with new beacon outputs.

Staying in the field of cryptography, zero-know-
ledge succinct non-interactive arguments of knowl-
edge (zkSNARKs) require a lengthy process of ini-
tial bootstrapping. In systems such as zcash1, this
bootstrapping has been performed by a multi-party
computation (MPC) [5]. However, the MPC scales
poorly because of the many rounds of communica-
tion needed between parties alongside big amounts
of data to ensure a fair output. Bowe, Gabizon, and
Miers [6] suggest avoiding the heavy communica-
tion and computation, and instead propose a simpler
MPC where users directly contribute a random num-
ber. To avoid the last user carefully choosing their
input to manipulate the bootstrapping to their ben-
efit (a so-called last-draw attack), an output from a
randomness beacon is applied as the last input. As
such, they decrease the number of rounds in the MPC
protocol from four (plus several subprotocol rounds)
to just two, decrease the amount of communication
between users, and decrease the complexity of the
computation. Thus, a lengthy MPC is substituted with
a quick round of user input and sealing the deal with
a randomness beacon.

1https://z.cash
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1.3 Beacon Concepts

A randomness beacon emits an unpredictable random
value at a regular interval, e.g. every five minutes.
Figure 1 shows the workings of a simple, generic
beacon. The beacon performs some computation on
an input source in order to generate an unpredictable
number. The result of this computation is sent to
users. This workflow is repeated indefinitely at the
specified interval.

Input
source

Computation Users

Figure 1: Abstract randomness beacon

Examining existing beacons [1, 3, 4, 7, 8, 9, 11, 14,
18, 22, 25], a few common ways of composing the
input sourcing and computation are discernible and
can be described as specific models. Here, we distin-
guish between an input source model and operational
model. The input source model describes the way the
beacon sources its input, while the operational model
describes the design of the protocol, i.e. how to per-
form the computation and publish the output. These
models are based on our earlier work [17], a survey
of different approaches to randomness beacons as
presented in literature.

1.3.1 Input Source Models

Based on a survey of randomness beacons we made in
previous work [17], there are three sources of input:

Private Input Sources A beacon can use a private
source of data to produce randomness. This allows
them to produce randomness of high quality at a high
rate, but since users are seldom present to physically
inspect this private source, it requires users of the
beacon to trust the beacon and its randomness. This
does not align well with our aforementioned security
goals, since inputs cannot reliably be distinguished
from carefully crafted values that appear to be ran-
dom.

An example of this input source model is the Na-
tional Institute of Standards and Technology (NIST)
randomness beacon [18] which observes quantum
mechanical effects to produce what they claim is high-
quality randomness. Ultimately it requires trust, since
the observations cannot be repeated, and therefore
users cannot make sure that the value is indeed from

observing the quantum mechanical effects. As such,
the users need to blindly trust the beacon operator,
which in the case of NIST can be hard given their
history [13, 19, 20].

Publicly Available Sources This input source is us-
ing publicly available sources that everyone can agree
on the value of, such as bitcoin blocks, stock market
data, or lottery winning numbers from several inter-
national lotteries. The user must trust the source, and
this is reasonable since these sources are governed by
some guarantees, and often it is easy to see the fresh-
ness of these values. In case of bitcoin, the blocks
have a monetary value and are virtually impossible
to forge. Users have to interact with the source to
indirectly influence the beacon and prevent biased
outputs. However, it may also be harder for adver-
saries to bias the beacon through the source unless
they are in complete control of the given source.

User Input A user can be allowed to directly pro-
vide input to the beacon. The idea is that a user pro-
vides a value that they firmly believe is sufficiently
random, such that nobody could have predicted the
value. In other words, users know their own value
is fresh, and no other party could realistically have
used this value before. There exists no concept of
ownership of specific values, which means that users
should trust the input they give, and not the fact that
it is their own. However, for the sake of simplicity
we, throughout this paper, refer to an input trusted
by a given user to be said user’s input.

The beacon performs an operation on a set of user-
supplied inputs. The output of the beacon is struc-
tured in a way that a) allows all users to verify the
inclusion of their input and b) allows all users to
verify the validity of the computation.

If these are satisfied, the user knows that a value
they trust to be random has been part of the random
output generation. The computation performed by
the beacon should ensure that users cannot know-
ingly bias the output to anyone’s disadvantage. As
such, the user knows that his input was not knowingly
“counteracted” by another used.

1.3.2 Operational Models

Alongside presenting input source models in our pre-
vious work [17], we also identify three ways in which
a beacon is typically operated:
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Autocratic Collector A beacon is run by a party,
which deems it irrelevant to prove honesty, thus re-
quiring blind trust from the users. As such, the com-
putation is a black box with no possibility for proof of
honesty. This type lies in the trust-requiring category
of beacons, i.e. the old generation.

Specialized MPC Users utilize multi-party compu-
tation (MPC) to collectively produce randomness,
typically from their own inputs. Given an honest ma-
jority, this type of beacon produces randomness that
is not biased against the participants, and although
work has been done in the field, they are difficult to
scale to large groups since any addition or removal of
a user requires a new setup phase [8, 25]. This type
of beacon is therefore unsuited for public settings,
but might fit in a controlled private context.

In Section 1.6.1 we describe the state of the art of
specialized MPC randomness beacons.

Transparent Authority A single entity collects in-
put and publishes it with a focus on transparency.
Users can, by observing the beacon, verify that it be-
haves according to protocol. This does not directly
prevent byzantine behavior, but rather makes it diffi-
cult or nearly impossible to hide such behavior. This
type also support a wide variety of implementations,
and is potentially scalable to a public setting.

1.4 Delimitations

We want to create a public randomness beacon that
is secure under the assumption that everyone may
be colluding against a given user, as per our security
goals in Section 1.1. As such, we can immediately
see that the autocratic collector is not suitable for
our security goal, because it requires users to trust
its claimed honest operation. The MPC model does
not scale well enough for general use in public ran-
domness beacons [25]. As described by Damgård
and Ishai [10], MPC protocols either assumes an hon-
est majority, which is a weaker assumption than our
security goals, or cannot guarantee fairness and out-
put delivery, a likewise undesired behavior. Even as
more scalable MPC protocols has been developed,
they still need some assumptions about the protocol
participants, which we cannot guarantee in a pub-
lic randomness beacon. An example of this is the
MPC protocol designed by Damgård and Ishai [10],
which they claim is the first scalable general MPC

protocol. This protocol still only allows for corrup-
tion of some constant fraction of the participants, and
furthermore assumes a computationally simple pseu-
dorandom generator to maintain a constant number
of rounds needed to complete the protocol.

Since our world view of “everybody is colluding
against you” is far more pessimistic than the guaran-
tees provided by the aforementioned protocols, MPC
is not suitable for us, although the model could fit
in a more controlled or private environment. This
leaves us with the transparent authority model which
we adopt. This choice adds a role to our environment:
the beacon operator. Our security goal of everybody
colluding against a user must therefore be expanded
such that “everybody” includes the beacon operator.

Regarding input source models, we can immedi-
ately discard private input sources as they are tied
to the autocratic collector model, and as such do not
work for the transparent authority. The guarantees by
publicly available sources are weak compared to user
input. If sufficiently paranoid, the user will want to
bias these publicly available sources to make sure all
other users are not colluding. Therefore, user input
is the simplest solution and provides the strongest
guarantees for the user.

1.5 Contributions

We bridge the gap between theoretical solutions and
the real world by designing and implementing a se-
cure, trust-minimizing randomness beacon based on
the transparent authority model with user input. The
design is based on a structured analysis of threats to a
randomness beacon. We design the beacon from the
ground up based on tried and tested methods as well
as novel ideas. Specifically, we differ from previous
transparent authority approaches by the following:

• We describe a novel way of parallelizing the com-
putation in the beacon protocol to minimize pos-
sibility of malicious operation while avoiding
idle periods.

• Unlike all other approaches of transparent au-
thorities we have seen, the beacon operator in
our beacon design has no private information
— all inputs are hashed and are released to the
public in batches.

• We choose to use Merkle trees as the data struc-
ture for inputs to allow reducing the computa-
tion proof size.
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• We allow multiple input channels and output
channels to be instantiated for reliability, dis-
tribution of workload, easy scaling, and conve-
nience for the users.

Combined, our novel ideas significantly decreases the
need for blind trust and limits the severity of a myriad
of attacks. We evaluate our work both performance-
wise and whether the design and implementation
satisfy the requirements. Lastly, we explore usage of
our beacon in context. As such, we describe several
use cases and how the beacon output is used as a
cryptographic primitive in a way that aligns with and
extends our security goals.

1.6 RelatedWorks

To establish an idea of the field of randomness bea-
cons, both current literature and implementations,
we present some related work.

1.6.1 Drand— A Distributed Randomness
Beacon Daemon

The Decentralized and Distributed Systems Research
Lab (DEDIS) at EPFL in Switzerland has developed
an open source distributed randomness beacon called
Drand2. The beacon uses the Specialized MPC com-
putation model and deploys a set of limitations and
assumptions which makes it well-suited for a private
setting. Drand links nodes together to periodically
and collectively produce what they claim is “publicly
verifiable, unbiasable, unpredictable” random val-
ues. The beacon shares many authors with, and is
based on, another paper regarding distributed ran-
domness [25].

At its core Drand consists of two phases, a setup
phase which requires knowledge of all participating
nodes, and a randomness generation phase which
must be initiated by a single leader. The setup phase
and requirements for a leader to initiate the random-
ness generation makes the operation of Drand static,
i.e. new nodes cannot join an already running proto-
col. However, due to the mechanisms underlying the
randomness generation, faulty or unavailable nodes
may not hurt the availability of the beacon, provided
a defined threshold of running nodes is achieved. The
details of the two phases are described in Appendix C
on page 31.

2https://github.com/dedis/drand

While our beacon does not borrow many ideas
from Drand, we believe that understanding a state of
the art specialized MPC based randomness beacon is
beneficial to underline the contrast and thus why we
choose a transparent authority as operational model.
One such contrast is the static nature of Drand and
its participation scheme where we choose to have no
notion of regular participants, but instead aim for a
dynamic set of different users.

1.6.2 A random zoo: sloth, unicorn, and trx

Lenstra and Wesolowski [14] implement a protocol
reminiscent of a beacon as a way to generate random
numbers and parameters for elliptic-curve cryptog-
raphy (ECC). They produce random numbers by col-
lecting data from a variety of sources before running
it through a time-hard delay function called sloth.
Sloth is a strictly sequential function which is orders
of magnitude faster to inverse for verification. The
time-hardness prevents last-draw attacks, as attackers
have to dedicate large amounts of time to compute
how to bias the output, during which new inputs can
render their efforts pointless.

The combination of input collection from multiple
sources and then computing the output of a delay
function, is presented as the unicorn protocol. This
protocol resembles that of the transparent authority
beacon computation model, and is done by a single
entity. In the paper, Lenstra and Wesolowski sug-
gest feeding sloth with an aggregation of user inputs,
such as tweets, and private input sources such as a
sampling of weather data. While they guarantee ran-
dom unpredictable outputs even if all other users are
malicious, they do not explore the scenario of a mali-
cious operator, who colludes with adversarial users.
Furthermore, the unicorn protocol lacks a concrete
implementation and security analysis.

To generate the aforementioned ECC parameters, a
final protocol named trx3 is presented, which utilizes
the output of the unicorn — thus completing the zoo
analogy.

The sloth delay function will be a key part of our
randomness beacon. However, the supporting struc-
tures driving the beacon will be different. We go in
greater detail with the security of both the protocol
and the beacon operator, and in particular assume
the beacon operator can be malicious. We expand on
this throughout the paper.

3pronounced like the T. rex dinosaur
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1.6.3 Proofs-of-delay and randomness beacons
in Ethereum

As an extension to the ideas presented by Lenstra and
Wesolowski [14], the work of Bünz, Goldfeder, and
Bonneau [7] uses a delay function and the bitcoin
blockchain as a public available source. The idea
of using a blockchain as a source of randomness is
also seen in other previous work. They use a delay
function to mitigate issues of biasing the blockchain
in anyone’s favor, and to limit the benefits of a block-
withholding attack. These two attacks are claimed to
be prevalent in naïve blockchain based randomness
beacons without usage of a delay function.

The operation of the beacon is based on operator
election, with the option for anyone to become the
new operator. Outputs can be publicly contested,
prompting the operator to verify correct execution.
They present an incentive structure for operating
the beacon and fulfilling verification, which relies
on the beacon being operated as a “greater good”.
The contesting and verification is implemented in an
Ethereum smart contract, which attaches a cost to
contesting correct operation. The usage of a smart
contract limits the availability for users not invested
in the Ethereum blockchain, and restrict the possible
delay functions to sequential hash chains. They con-
sider the sloth delay function to be a state-of-the-art
delay function, but use sequential hash chains as they
are cheaper to verify in a smart contract.

Compared to this approach, our beacon exists with-
out the need for smart contracts and buying into
various cryptocurrencies. This simplifies the beacon,
but also removes a convenient way of disbanding a
dishonest beacon operator. However, we believe that
the added complexity of relying on e.g. Ethereum will
repel many potential users, who do not want to get
involved monetarily to use a randomness beacon.

2 Threat Analysis

We now turn to considering possible threats to a
generic randomness beacon in order to understand
the surrounding environment. These threats assume
the user input model of input as well as a beacon
based on the transparent authority model.

Randomness is the fundamental resource that ad-
versaries would attempt to threaten and control. It
is considered and used as a fair determinant, and
adversaries can seize control of it to control the out-
comes it is used to determine. Once in control of the

randomness, an adversary can bias it towards their
own benefit, ensuring that otherwise fair outcomes
will consistently favor them. Alternatively, an adver-
sary colluding against a user will only have to make
sure the randomness is either biased against or not
available to that user.

2.1 Threat Discovery

To facilitate the process of discovering threats to a
general beacon, we classify threats as they are found
in a two-dimensional matrix. This helps us discover
and explore new threats from multiple sides.

The important part of a beacon that must be pro-
tected is the output. Adversaries can harm the output
in two ways: Either a threat targets the availability,
i.e. making the output unavailable, or it targets the
integrity, i.e. reducing the quality of the beacon out-
put potentially to a state where the output should not
be used at all. What the threat targets is as such one
of the dimensions.

The other dimension depicts who is able to exploit
a given threat. Here, we distinguish between insiders
and outsiders. An insider is anyone with the capa-
bilities of the beacon operator, which ideally is just
the beacon operator, but for all intents and purposes
may as well be anyone gaining inside access to the
beacon, e.g. by hijacking it. Because the beacon op-
erator should not be trusted either, we see no reason
to distinguish between a legitimate beacon operator,
a malicious beacon operator, or an adversary mali-
ciously acquiring access to the inside of the beacon.
An outsider is anyone who can influence the beacon
operation from the outside network, and thus does
not possess inside access.

Figure 2 visualizes these dimensions. After listing
the found attacks in the following sections, we relate
them to this matrix.

Insider Outsider

Threats to
availability

Threats to
integrity

Figure 2: Amatrix visualizing the two dimensions we classify by.
Threats target either availability or integrity of the beacon, and
can be performed by adversaries either inside or outside the
beacon.
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2.2 Scoring Framework

We consider a wide variety of threats, and analyze
their severity according the DREAD framework with
some modifications. DREAD consists of five met-
rics [16], that we score on a scale of 1 to 3 (low,
medium, high): DAMAGE: How bad would such an
attack be? REPRODUCIBILITY: How easy is it to re-
produce such an attack? EXPLOITABILITY: How little
work is required to launch the attack (3 being the
least)? AFFECTED USERS: How many users will be
impacted? DISCOVERABILITY: How easy is it to dis-
cover the threat? Discoverability can, however, be
considered to reward security through obscurity. As
such we will not consider it, as an adversary with
unlimited resources is expected to have knowledge
of all possible exploits.

In the following section, all threats are accompa-
nied by a DREAD score which is portrayed as follows:

D
2
R
3
E
2
A
3
Σ
10

The first four numbers each corresponds to the first
four DREAD metrics. The fifth, discoverability, is
omitted. The last number, Σ, is the sum of the prior
numbers, and used as a severity indicator.

We go more in-depth with our use of the DREAD
framework and explain our scoring of some specific
threats in Appendix A.

2.3 Threats

This section lists the threats we are able to find along-
side our best educated guess on a DREAD score. The
list is split into two; first attacks threatening the avail-
ability of the beacon, and then attacks that threaten
the integrity of the output. A summary of the threats
can be seen in Figure 3 on the following page.

2.3.1 Threats to Availability

If the beacon is not available, users will potentially
not have a stake in the output in the first place.
The special case is an output withholding attack and
eclipsing the beacon before output, both making users
believe there is going to be an output, but it never
comes. In these cases, users will have placed their
stake in the beacon output, but the protocol fails.
Another thing to consider is that users’ faith in the
beacon will erode each time it fails to output. This in
turns makes it less attractive for operators to attack
the availability, as they will slowly drive their user
base away.

Input Flooding D
2
R
3
E
2
A
3
Σ
10 Outsiders can overwhelm

the beacon with inputs to prevent other users from
contributing their own input, thus denying service.
Another approach could be to perform a denial of
service (DoS) attack on the central server of the bea-
con to prevent operation. This is quite a big threat
as users can temporarily be denied service, and the
attack is quite easy to execute — any determined ad-
versary could rent a botnet to flood input collectors.

Shutdown D
2
R
2
E
2
A
3
Σ
9 A malicious beacon operator

can shut the beacon down, completely denying avail-
ability. This threat is impossible to prevent for a
beacon run by a single operator, as the operator can
always shut any part of the beacon down, but will
only be able to get away with it a finite number of
times.

Withholding Output D
2
R
2
E
2
A
3
Σ
9 The operator can

withhold outputs that are not favorable to his inter-
ests. This threat is also quite severe as it not only
denies an output, but also ruins the beacon reputa-
tion. More gravely, it can be blamed on technical
mishaps such as crashes to conceal malicious behav-
ior, while remaining easy for the operator to execute.

Eclipsing the Beacon D
2
R
1
E
1
A
3
Σ
7 An outsider can

deny all users from providing input or receiving the
output by infiltrating the inbound and outbound con-
nection to the beacon. We believe it is a difficult
attack to execute, but if successful the outsider can
potentially eclipse the beacon from all users.

Eclipsing (Select) Users D
2
R
1
E
1
A
1
Σ
5 An outsider can

deny select users from accessing the beacon to pro-
vide input or receive output. This is a quite small
threat, as it is extremely hard to completely prevent
a determined party from accessing the beacon, and
such an eclipse would still only affect that party.

2.3.2 Threats to Integrity

These threats are far more damaging if not detected.
Where availability is binary and users obviously can-
not use a missing output, successful integrity attacks
provide an output, that appears legitimate, but is bi-
ased. We consider using a biased output the worst
thing for any user, which makes these threats critical.
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Input Biasing D
3
R
3
E
2
A
3
Σ
11 An outsider can provide in-

put that knowingly biases the output to their benefit
or others’ disadvantage. In this attack the outsider
constructs an input such that it affects the output in
a known way despite other users contributing input
later. If the outsider has the capability of providing
the last input, it is a last-draw attack.

This is a severe threat to the beacon, as the ad-
versary is able to freely manipulate the output with
their input, and violates the unpredictability of the
random number as the adversary now knows more
than everybody else. The attack can be executed by
anyone with access to the input collectors given that
they have the ability to pre-compute outputs.

OutputDegradation D
2
R
3
E
3
A
2
Σ
10 Adversaries can sup-

ply “bad” input to reduce the quality of the output.
This is also a serious threat as it will affect the quality
of randomness provided to all users, a randomness
which may not even be usable. In addition, it is easy
to do given access to the input collectors, and could
even happen by accident.

InputManipulation D
3
R
3
E
2
A
3
Σ
11 The operator can ma-

nipulate the input to bias the output of the beacon.
He can also selectively exclude inputs from certain
users to deny them availability. This threat is quite
severe as the operator has direct access to manipu-
late the inputs, and may even be able to do so in a
way that cannot be detected. It is also easy for any
operator capable of pre-computing the output, and
affects the randomness given to all users.

Man in the Middle D
3
R
1
E
1
A
3
Σ
8 Adversaries can inter-

cept and change data sent between user and beacon.
This threat could be significantly damaging but also
extremely hard to execute for adversaries.

Due to the nature of beacons we recommend us-
ing them when you need to agree on some random
number — thus, to intercept and manipulate inputs
and outputs, the adversary would have to distribute
the manipulated number to all users, as they would
otherwise disagree on the numbers, leading to the
manipulation being discovered.

Emitting False Output D
2
R
1
E
2
A
3
Σ
8 A malicious oper-

ator can output false results of the computation that
benefit him. While this is technically a threat to the

integrity of the beacon, the effects should be similar
to those of a withholding attack. This is due to the
fact that simply publishing false output would rapidly
be discovered in a transparent authority beacon, mak-
ing the output unusable, but also removing any faith
in the operator.

LeakingOutput D
3
R
3
E
2
A
3
Σ
11 The operator can give ac-

cess to the output earlier to some parties than others
— potentially selling early access. This threat can be
quite severe, as we do not know how early access
can be granted compared to when the randomness is
used. It also violates the unpredictability property of
the beacon, and is easily executable for any malicious
operator of the beacon. In the worst case it would
affect all users.

Cryptography Exploit D
3
R
3
E
1
A
3
Σ
10 Weaknesses or ex-

ploits may exist in the cryptographic techniques that
protect the beacon. While we estimate it will be hard
to find such exploits, they would likely be quite easy
to apply once found, and would affect all users. In
this case one might also consider the effect quantum
computers would have on the use of cryptography,
which could also threaten the beacon.

2.4 Summary

Figure 3 shows the above threats in the matrix. To
reiterate, an insider can always perform outsider at-
tacks, and outsiders can perform insider attacks if
they obtain sufficient privileges, e.g. through hijack-
ing the beacon.

Insider Outsider

Th
re
at
s
to

av
ai
la
bi
lit
y

Shutdown
Withholding output

Input flooding
Eclipse beacon
Eclipse (select) users

Th
re
at
s
to

in
te
gr
it
y Input manipulation

Leak output
Emit false output

Input biasing
Output degradation
Man in the middle
Cryptography exploit

Figure 3: The identified attacks in the previously definedmatrix
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3 Requirements

This section lists the requirements for a randomness
beacon suitable for our security goals and the threats
that exist towards beacons. We decided on using the
transparent authority type of beacon, which requires
a high level of transparency, and as such we build
requirements on top of that. The requirements pre-
sented here will serve as a foundation of our design.

3.1 Transparent Operation

Users should be able to oversee that the beacon oper-
ates according to protocol and thus catch any devia-
tions from it. This in turn requires all aspects of the
protocol to somehow publicly announce or display
their work for users to verify. Fundamentally, users
should be able to see which inputs have been used
to produce randomness and verify that they do pro-
duce the published output. This benefits the integrity
of the beacon as some previously mentioned attacks
would be detected in this setting. It is also a necessity
for our chosen type of input model, user input, which
requires users’ ability to verify that their own input
is used to produce outputs.

Firstly, users should be able to see which inputs
are used to produce an output. Being able to verify
whether their own input has been used allows users
to determine whether they should trust the output. If
their input has not been used, they should not trust it.
Secondly, they should be able to repeat the process
on their own computers as a means of verification.
This also requires the process to be deterministic.
However, the output should still be unpredictable,
even to the beacon operator.

3.2 Open and Secure Protocol

Anyone should be able to easily contribute to the
beacon protocol to influence the random generation.
There should be no requirements imposed on users
to limit their contribution rate besides DoS protec-
tion. The protocol should be secure meaning that
even if only a single user is honest, the output is still
unpredictable.

3.3 Timely Publishing

The protocol should enforce that input, output, and
any data needed for verification of an output is pub-
lished as soon as possible to make the beacon more

transparent. By having a requirement of timeliness at
the protocol level, we restrict the time a malicious op-
erator has available to diverge from protocol before
users will suspect them.

Giving users all the tools to replicate and over-
see the process makes it difficult for adversaries to
covertly manipulate the beacon to their benefit, and
allows users to complete output computation them-
selves if the beacon stalls. This in turn mitigates one
of the greatest threats from the operator, input manip-
ulation. A beacon that does not reveal which inputs
were used before publishing the output will essen-
tially be admitting that they picked the inputs to bias
the output.

We should also note that despite having this prop-
erty the beacon does not guarantee outputs on any
specific wall-clock time, e.g 12:00:00, 12:01:00 &
12:02:00. Instead, it will output as soon as possible
after each period of input collection. Barring any
attacks, this will provide a regular stream of outputs.

3.4 Practicalities

A part of the goal is to create a beacon that is prac-
tical and implementable in the real world. As such,
we value requirements that other purely theoretical
approaches may not consider. Scalability of all com-
ponents is important as we envision a general beacon
suitable for many use cases. Therefore, it should scale
to at least several thousand users contributing with
user input in every output. Here, other approaches
usually only focuses on scalability of the core theory,
but we will consider all parts.

If users lose confidence in an operator, a new op-
erator and thus new beacon can be used instead. As
the beacon is expected to be run as a greater good,
nobody should need to make any large investment to
deploy a beacon instance and become operator of it.
As such, we value easy deployment and installation
of the beacon, in order for it to not be a hindrance
for deciding to run a beacon.

It will be beneficial to allow different channels for
input and output, both to make the beacon easier
to access for users, but also to make it resilient to
having any single channel attacked. Should a single
channel be attacked, input could still be submitted to
another. This requirement further increases usability
since different users may prefer different input and
output channels. We also consider fault tolerance
a valuable property to have, and having multiple
channels still allows users to input if one fails.
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4 Design

This section describes our beacon design, the major-
ity of which is concerned with mitigating threats as
security is an important aspect of any randomness
beacon. The design choices are based on fulfilling
the requirements and incorporating mechanisms to
prevent as many of the threats identified in the threat
analysis.

4.1 Architecture

To meet the requirements of modular input and out-
put and fault tolerance, we use a service oriented
architecture (SOA) in the beacon design. This archi-
tecture splits systems into application components,
also called services. These services serve a single
purpose, i.e. they each logically represent part of the
activity needed for the entire system and have a spec-
ified outcome. Communication between services is
done according to a well-defined protocol.

This architecture provides loose coupling in the
system and also allows for easier fault tolerance since
services, being black boxes, are easily replaceable on
failure. Furthermore, each service can be scaled as
needed.

The beacon could also have been designed as a
monolithic program running on a single machine.
This would likely be more efficient initially, but would
fail to scale to meet large demands, and would like-
wise represent a single point of failure for the entire
randomness beacon.

4.2 Services

An instance of a randomness beacon designed in the
SOA pattern will consist of a number of services. To
fulfill our requirement of modular input and output
methods, we will allow multiple different input col-
lectors and output publishers to exist in the system.
Lenstra and Wesolowski [14] mention having several
input sources, but to our knowledge we are the first
to generalize it in the design to allow virtually any in-
put source. We believe this is superior as it increases
redundancy, increases usability, and spreads the load
to several smaller services.

A number of INPUT COLLECTOR services collect in-
put from a myriad of different sources. These sources
could for example be email, irc, a bot for your fa-
vorite instant messaging service, tweets with a spe-
cific hashtag, raw TCP or HTTP connections, a pretty

website, SMS, Morse telegraph, or carrier pigeon4.
An INPUT PROCESSOR service acts as an aggregator of
the input from all collectors and hands it over to the
COMPUTATION service, which commits to the aggre-
gated input and runs the computation to generate an
output. Finally, various PUBLISHER services publish
the commitment, output, and any relevant proofs to
different outlets. These outlets could be the same
media as input collectors use but can be different.

Input Collectors Publishers

Input
Processor

Computation

Figure 4: An abstract beacon architecture based on services.
Solid boxes illustrate services and arrows represent data flow.

A simple randomness beacon illustrating these ser-
vices and their relationships can be seen in Figure 4.
Being a loosely coupled system, the arrows in the
figure are not a given. Services need a way to know
about other services. As such, some kind of service
discovery is needed in the implementation. Service
discovery can be a single point of failure but is mit-
igated by using redundancy [15]. Alternatively, a
peer-to-peer method of service of discovery could be
used to have services connect directly to each other.

4.3 Pipeline

In our beacon, as illustrated in Figure 4, data only
flows one way through the system and each compo-
nent performs an independent transformation. This
effectively means that a beacon is a pipeline where
data flows into the system as inputs, is processed,
transformed to a random output, and lastly pub-
lished.

The pipeline architecture can be seen as a special-
ization of the SOA pattern, since each step in the
pipeline is a service as defined in a SOA. When con-
sidering the system as a pipeline some restrictions are
imposed compared to the more generic SOA, because
data only flows in one direction. This means that if
data is lost due to failure, e.g. a component crashing,
we cannot inform previous pipeline components to

4For carrier pigeon we recommend the IP over Avian Carriers
proposal: https://www.ietf.org/rfc/rfc1149.txt
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resend the data. However, since our beacon design
is meant to operate in a forward-only manner, this
loss of data should be tolerated, and even expected
in some cases. This underlines the fact that users
should always verify both inclusion of their input and
correct computation of output — users should not
assume that a submitted input is always included in
the next output.

4.4 Security Design

From a security perspective, new attack surfaces may
be introduced by splitting up the system from a mono-
lithic self-contained architecture to a service-oriented
kind. When designing a composable system such as
our randomness beacon it is important to take the
inter-component communication into account. For
example, the architecture can potentially make it pos-
sible for adversaries to block out parts of the system,
by means of DoS attacks. The protocol used to com-
municate from service to service must be secure in
a way that prevents adversaries from being able to
covertly manipulate the messages.

In the case of a randomness beacon, the security
also embodies the operator’s ability to predict or ma-
nipulate the output. This means we need a mech-
anism to prevent the operator from disguising last-
draw attacks as regular user inputs, and from exclud-
ing certain inputs to alter the output. We also want
to prevent the operator from initiating multiple bea-
con computations, and then only publish the output
which benefits the operator the most.

4.4.1 CCOWorkflow

Our solution for this problem is to enforce what we
will call a Commit-Compute-Output (CCO) workflow
in the beacon protocol. We have designed this work-
flow to govern the security of the beacon, and is one
of our contributions. It means that each published
output is paired with a commitment which can be
used in the verification of the beacon. The operator
must publish the commitment a significant amount
of time before the output is published — otherwise,
the beacon operator could just publish a commitment
to any desired output. Furthermore, the operator is
limited to a single commitment — otherwise the op-
erator could publish several commitments and only
publish the most desirable output.

Contrary to other approaches of transparent au-
thorities, we have decided on an even more trans-

parent approach: The commitment contains all data
required for the computation and all inputs. To our
knowledge, we are the first to take transparency to
this extreme.

The transparency allows any party to compute the
randomness alongside the beacon operator. It en-
sures that the operator can not cause much damage
by withholding output or by deciding not to open a
traditional (e.g. hashed) commitment. In essence,
it reduces the “market value” of the output, making
it less attractive to leak output (i.e. sell early access
to the output) because everyone can just compute it.
While it does not prevent the operator of performing
a withholding attack, it minimizes the effects of it, as
others can compute the output from the commitment
and still obtain an equally valid output.

4.4.2 Delay Functions

To decrease the possibilities of the operator trying
different commits before releasing them, we use a
delay function. Delay functions can be seen as black
box hash functions that require a given amount of
time to run and are inherently sequential, meaning
they cannot benefit from parallel execution. It en-
sures that the output cannot be instantly computed,
and ensures that the operator cannot try more than
one commit before running out of time. As such, the
operator is unable to perform the input manipulation
attack in a meaningful way. The operator is of course
able to exclude or change output, but not in a way
that knowingly benefits anyone because the effect of
the manipulation is hidden behind the delay function.

When deploying delay functions in randomness
beacons, it is important to keep verification in mind.
A user should be able to run the delay function in
reverse to confirm that an output matches the com-
mitment. To avoid having to require each user to
execute the full delay function, we use a flavor of de-
lay functions which is asymmetrically hard, i.e. hard
to compute but easy to verify. In the normal case only
the operator runs the full delay function, resulting
in much CPU time saved globally and thus electricity,
too. In the case that the operator is (maliciously or
not) performing an output withholding attack, users
still, because of the CCO workflow, have all the infor-
mation needed to run the delay function themselves.
It might even be imagined that a few volunteers will
run their own “mirror beacon”, each mirroring the
computation of the main beacon operator. This adds
redundancy in the computation.
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The delay function also protects against last-draw
attacks by adversaries. A last-draw attack would at-
tempt to bias the output by crafting an input to pro-
duce favorable randomness. The adversary needs to
compute the result of adding a specific input as the
last input. Delay functions make this significantly
more difficult to attempt due to the time needed to
compute the result. Given a delay function that takes
five minutes to complete, an adversary must dedi-
cate five minutes of processor time to any given input
he attempts to use. This means he must dedicate
large amounts of resources to perform any significant
amount of attempts, and more importantly if a single
input is added to the beacon within that five minute
period, all of his work will be null, and he will be
forced to restart.

4.5 Exploring Trust Assumptions

Given the precautions taken in the design, the amount
of trust required to use the beacon should be minimal
or non-existent. We propose two scenarios, which
explore the users’ trust assumptions towards the bea-
con. In both of these scenarios, we focus on a user
named Alice, while all other users are regarded as
potentially colluding adversaries with malicious in-
tent. The only assumption about adversarial users,
is that they can interact with the beacon in the same
manner as Alice; i.e. send inputs to the beacon. In
the second scenario the beacon operator is also an
adversary and thus has total control of the beacon.

Because network latency is dependent on many
variables in a system and virtually impossible to ver-
ify, Alice should not trust any claim from the beacon
operator regarding latency. To protect herself, Alice
should assume that any inputs she sends is received
immediately by the beacon, and vice versa — any
message from the beacon is received instantly by her.
This can be considered a “worst-case” time. This
means that the beacon will not be able to claim differ-
ent timings than what Alice observes — and as this
observation is all she can trust, she should base her
decisions on that.

Scenario #1: An Honest Operator This is the best
case scenario for Alice. The operation of the beacon
is honest, which means that a) the beacon operator
will accept all inputs, i.e. not exclude any; b) the
commitment is published as soon as possible, i.e. right
after a batch of inputs has been processed; and c) the
output and proof is published immediately after the

computation, i.e. the delay function, is done. This
operation is also depicted in Figure 5.

Any adversarial users can try to manipulate the
output by providing their own inputs, but Alice can
disregard this, as long as she can verify the presence
of her own input. With this honest beacon, Alice
knows exactly how long the computation took, and
can trust the output to not be manipulated in any
predictable way. However, assuming that the beacon
is honest is not advised, since it leaves Alice vulnera-
ble by exploiting this trust. If Alice trusts the beacon
operator to be honest, she will not suspect them to
act according to scenario #2.

Alice Honest Beacon

collectInputs()

sendInput()

hash of input

processInputs()

commitmentcommitment

computeOutput()

output, proofoutput, proof

Figure 5: Sequence diagram depicting one beacon iteration from
the perspective of Alice. The beacon operator is honest.

Scenario #2: A Malicious Operator This is the
worst case scenario for Alice; a beacon operator which
is trying to choose the output, yet still make it ap-
pear valid to Alice. The malicious operator will not
exclude Alice’s input, since they are interested in
fooling her to trust a forged output. Besides, the ma-
licious operator should be expected to collude with
all other users against Alice — she is effectively alone
in Wonderland.

When the operator acts maliciously, they try to
manipulate the output, while displaying correct op-
eration outwards. This means that Alice still receives
a commitment, output, and proof, which she can use
to verify the correctness of the output. She will re-
ceive these messages at seemingly the same timing
as described in the honest operator scenario. The
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main difference here is that Alice should not assume
correlation between the timing of received messages
and timing of beacon process.

Assume the following behavior of a malicious oper-
ator: a) the beacon operator will stop input collection
after receiving Alice’s input; b) they will attempt to
publish the commitment, output, and proof when
it is expected by Alice; c) the operator will use un-
limited resources to pre-compute possible outputs to
seemingly valid commitments; d) the operator will
use pseudo inputs to affect outcomes, which will give
the impression of input collection after Alice’s input;
e) out of the pre-computed outputs, the malicious
operator will choose the one which benefits them the
most. This behavior is also depicted in Figure 6.

In this scenario the operator will effectively carry
out a last-draw attack against Alice. However, if the
malicious operator cannot compute an outcome they
deem beneficial, they can claim disrupted operation
before publishing any commitment. This will leave
Alice without any output, a withholding attack, and
she will not know if the operator was malicious or
disrupted by a third party adversary.

4.6 Rational Trust Assumptions

In our approach to a randomness beacon we want to
push beyond the need for honest operators and naïve
users. To achieve this we extend the work of Lenstra
and Wesolowski [14] to quantify trusting the beacon
and determine thresholds for reasonable behavior
when using delay functions. This provides a measure
of rational trust, where users decide for themselves
if what they observe is adequate.

We present a property which, if satisfied, means a
user can trust that the beacon operator is not capable
of fooling them. This property is true if the user
determines that nobody is able to compute the delay
function in the time between the users input and the
user receiving the beacon’s commitment. This can be
condensed to:

tCOMMITMENT − tINPUT < TDELAY FUNCTION

given that tINPUT is the time when the user sent the
input, tCOMMITMENT is when the user received the com-
mitment, and TDELAY FUNCTION is the fastest computa-
tion of the delay function. So for users to be more
likely to trust a beacon, the time between sending
the input and receiving the commitment must be
significantly smaller than the time between the com-

Alice Malicious Beacon

collectInputs()

sendInput()

hash of input

addFakeInputs()

processInputs()

commitment
computeOutput()

output, proof

Pre-Computing outputPre-Computing output

selectBestOutput()

commitment

output, proof

Figure 6: Sequence diagram depicting one beacon iteration form
the perspective of Alice. The beacon operator is malicious.

mitment and the output. In fact, it must be smaller
than the shortest time the user thinks the operator
could compute the delay function.

An example could be that a user believes that the
world’s fastest computer can compute the delay func-
tion in 2 minutes. In this case the user can trust the
output if he sees a commit to a set of inputs contain-
ing his input within 2 minutes of his input, because
then he knows that nobody could have had time to
run the computation on his input before choosing to
release a commitment or not. This relation between
the time taken to compute the delay function and the
time before a commit is seen allows users to flexibly
adjust their willingness to trust the outcome has not
been biased against them.

This threshold is also described by Lenstra and
Wesolowski [14], where they advise a ratio of no
more than 1

5 of the computation time spent collect-
ing inputs. In their paper, Lenstra and Wesolowski
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furthermore state that smart participants will always
try to minimize the time between their input and the
commitment. We see this as potentially problematic,
since such behavior can create congestion in the sys-
tem, which might result in some inputs not being used
in the intended output computation. This means that
users whose inputs were not included cannot trust
the output of the given beacon iteration.

Taking all this into consideration we present a bea-
con operation protocol which can be adjusted to in-
crease or decrease the ratio and thereby the limit for
probabilistic trust. The operation must be sequential
which means that we must collect input before com-
puting the delay function. However, because we want
to spend more time computing than we are collecting
input, a strictly sequential beacon will contain dead
spots where no user is submitting input. This may be
acceptable in some scenarios, but we want to design
a beacon which always accepts inputs and will not
be suspected of malicious operation. To achieve this
we parallelize the beacon protocol, meaning that sev-
eral delay functions run in parallel but offset in time
and on different input. In Figure 7 this is illustrated,
where these offset but parallel beacons are seen.

Input Computation

Input Computation

Input Computation

Input Computation

Figure 7: Parallelized beacon protocol, with o�set input collec-
tion and overlapping computation. A�er every computation
the output is published.

We observe that no input collection is run in par-
allel nor overlapping, which resembles a constant
stream of input collection. In addition, the computa-
tion components can eventually be reused for future
beacon computations, thereby eliminating the need
for spinning up new computation services. These ob-
servations are depicted in Figure 8, where the beacon
would output at each circle shown in the diagram.

4.6.1 Number of Computation Nodes

The number of computation nodes required in this
fashion is the duration of the delay function divided
by the duration of input collection:

Number of Nodes=
¡

TDELAY FUNCTION

TINPUT COLLECTION

¤

Input Collection Stream

ComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputation

ComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputation

ComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputation

ComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputation

ComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputation

ComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputationComputation

Figure 8: Parallelized beacon protocol, with input collection
stream and overlapping computation. A circle denotes out-
putting at the end of the computation.

As an example, an input collection time of 2 minutes
and a delay function of 10 minutes will require 5
computation nodes to always begin a computation
every 2 minutes.

However, the delay function is not guaranteed to
precisely take e.g. 10 minutes — the computation
nodes are expected to be running other processes re-
quiring CPU time such as an operating system. There-
fore, the delay function can be expected to from time
to time finish a bit later than naïvely anticipated. This
will over time cause the beacon output to be increas-
ingly more skewed compared to the initial output
frequency, since they can only be delayed and not
catch up by being faster sometimes.

To remedy this, a number of additional nodes
should be kept at hand. Therefore, we update the
prior equation to take this extra time for each de-
lay function into account. Let δ be this extra time
additional to the delay function.

Number of Nodes=
¡

TDELAY FUNCTION +δ
TINPUT COLLECTION

¤

If, for example, the delay function is expected to al-
ways finish at most 2 minutes later than the expected
time of 10 minutes (i.e. a worst-case time of 12 min-
utes) and the input collection is 2 minutes, 6 nodes
in total are necessary to guarantee a node is always
ready every 2 minutes, given a maximum of 2 minutes
expected delay.

The beacon operator should find a sensible num-
ber of nodes that maximizes the chances of a ready
computation node given expected delays, while mini-
mizing the idle time of the nodes.

4.6.2 Expected User Behavior

Based on what Lenstra and Wesolowski [14] write
about smart users always trying to input as close to
the commitment as possible, we admit that our solu-
tion of parallel offset computations will not prevent
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such behavior. However, the goal of our approach is
not to eliminate this user strategy, but to minimize
the need for it.

In our beacon we do not expect to give guarantees
about deadlines, such as commitment and output
publishing, since such guarantees only would serve
as false reassurance to the user. Instead, our beacon
is adjustable, such that a ratio of input collection and
computation time, which most users finds reasonable,
can be deployed.

Users are still welcome to contribute input as close
to a deadline as possible in order to gain a better
probabilistic guarantee. This may, however, be tricky
as the beacon will not announce deadlines as to not
encourage users to input at the same time. Instead,
we propose another strategy for the smart user: In-
stead of supplying one input, multiple unique inputs
should be supplied spaced apart in time. For exam-
ple, a user supplying an input every 10 seconds until
receiving a commitment will have a better chance of
coming close to the deadline.

4.7 Scalability

We consider the scalability of the beacon to be a signif-
icant factor in both performance, operation, and de-
ployment. Potential bottlenecks in the system should
be easy to mitigate, and beacon operators should not
be burdened by the architecture and design choices
deploying and expanding their randomness beacon.

Our choice of pipeline and SOA fits well with our
intentions for scaling the beacon. Individual services
in the SOA can be scaled as needed, as they are de-
signed to be stateless and loosely coupled with each
other. As long as the overall contract of the pipeline
is respected, i.e. the order of component types, indi-
vidual steps in our design can be scaled as needed.

In some scenarios a beacon may consist of multiple
computation services as a mean of redundancy, as
long as each computation is run on the same input.
The same can be said about input processors, where
a beacon may need redundancy to likewise avoid
a single point of failure. This presents the issue of
consensus about which input to use, but that is out
of scope for this report.

4.8 Review of Requirements

We established a set of requirements for our beacon,
and we now briefly describe how each requirement
is fulfilled by our design.

We designed the beacon in a SOA. The architecture
facilitates the scalability of our beacon, and allows for
multiple interchangeable components making it easy
to have multiple channels of both input and output.

The beacon operation is structured around a CCO
workflow, which makes it transparent. There are
no requirements on users, which makes it easy for
anyone to contribute. As such, it is an open protocol.
The commits contains enough information for users
to compute the output alongside the beacon.

Using delay functions makes the beacon more se-
cure, as the output is harder to pre-image due to the
time it takes to compute. The sloth function, being
asymmetrically hard, also enables faster verification
of the result. It also facilitates a secure protocol, in
the sense that any single honest user will render the
output unpredictable. The delay function provides a
measure of timeliness to the output, as it will always
take some regular wall-clock time to compute for the
beacon. Timely commits also form the basis of our
rational trust assumptions, that helps users decide
whether to trust a specific beacon output.

The design contains succinct and well-separated
components. And because of this we believe fault tol-
erance will be easy to implement, and it will facilitate
ease of deployment and installation. We leave these
areas to be fulfilled in the implementation, as they
are tightly coupled to which tools we use.

4.9 Review of Threats

In the process of designing our beacon, we have con-
sidered the threats to a beacon and designed mea-
sures to mitigate them. We present the threats we
consider to be successfully mitigated with our design,
and list them in Figure 9 on the next page.

Output Degradation D
2
R
3
E
3
A
2
Σ
10 The beacon will ad-

ditively aggregate inputs. Because of the amount of
inputs, the input space will likely be larger than the
output space. Utilizing a hashing algorithm with dif-
fusion and confusion properties, any input, no matter
the quality, will unpredictably affect the output. It
is not possible to statistically reason about the out-
put of the beacon related to the input, besides being
well-distributed.

Input Manipulation D
3
R
3
E
2
A
3
Σ
11 We have designed

the beacon around delay functions specifically to pre-
vent this attack. As previously mentioned, it requires
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an adversary to spend significant resources to com-
pute a single pre-image before releasing a commit-
ment, which is essential to this type of attack. This is
not possible under our CCO workflow and reasonable
trust assumptions by the users. This also makes any
attempt at this attack from the operator equivalent
to a withholding attack, as users should not use an
output they did not see a timely commit for.

Input Biasing D
3
R
3
E
2
A
3
Σ
11 This threat is mitigated by

the same means as the previously addressed threat
mitigation — input manipulation.

LeakingOutput D
3
R
3
E
2
A
3
Σ
11 Our delay function based

CCO workflow also mitigates the operator leaking out-
puts that give any significant advantage. An output
will never be used unless a commit for it is seen, and
the commit contains all the data required to com-
pute the output alongside the operator — thus the
operator can only leak outputs that are already pre-
determined, removing their “market value”.

Withholding Output D
2
R
2
E
2
A
3
Σ
9 The CCO workflow

accompanied by a delay function minimized the con-
sequences of this type of attack. Using delay functions
and requiring the beacon to publish a commit to a
set of inputs before computing, prevents malicious
operators from pre-computing outputs, and withhold-
ing if they are not beneficial. The operator could still
withhold the commit to prevent availability, but they
can not know whether the output favors them or not.

Man in theMiddle D
3
R
1
E
1
A
3
Σ
8 This threat is rendered

ineffective because of the CCO workflow. Assuming
the adversary is not able to compute the delay func-
tion significantly faster than anyone else, a man in
the middle attack will only affect the availability of
the beacon for the targeted user.

The user must receive a timely commitment and
verify inclusion of the input in the output, and if an
adversary is capable of this the adversary has per-
formed the same work as an honest beacon operator
would have performed. As such, the user can actu-
ally use the output. However, if an adversary has the
resources to compute the delay function in time to
release a timely commitment, they can potentially
present a seemingly valid commit and output to the
user. In this case the attack resembles that of the

input manipulation threat, since the user will be un-
able to distinguish the adversary from the beacon
operator.

Normal man in the middle mitigation using certifi-
cates will be redundant here. We do not care who
the beacon operator is. As long as a user’s input is
included in a valid output, that output is good to use
for that user — no matter who did the computation.

Emitting False Output D
2
R
1
E
2
A
3
Σ
8 Users should not

trust an output that cannot be verified both for inclu-
sion of input and correctness of computation, and as
such emitting a false output will simply be an avail-
ability attack — the output cannot be used and as
such could be non-existent. While the beacon opera-
tor practically could easily do this, it would not cause
much harm, since our CCO workflow ensures that
users can compute the delay function themselves.
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Figure 9: The state of mitigated threats (striked through)

4.9.1 Unmitigated Threats

There are unmitigated threats, particularly the threats
concerning availability by outsiders. A variety of ex-
isting solutions for mitigating input flooding attacks
already exist, and these problems are not particular
to randomness beacons.

Both eclipsing attacks are difficult for us to mitigate.
Essentially, it requires control of the connections to
all the users. To launch this kind of attack, it would
require the role of system administrators at ISP level
or similar, and thus it is deemed out of scope. Eclips-
ing the beacon could be mitigated by having several
redundant forms of communication with the outside
world. We also cannot prevent the operator from
shutting down the beacon, but this attack will even-
tually drive users away from the malicious operator.
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Cryptography exploits is the last threat we have not,
and quite possibly cannot account for. Our beacon
uses a variety of cryptographic components like hash
functions and delay functions. If exploits in these
were found, it would change the assumptions on the
beacon. A shortcut to computing the delay function
would allow adversaries to perform many of the other
attacks. We have partly mitigated it by allowing the
hashing algorithm to be switched out.

5 Implementation

In this section we present the general idea behind
the implementation of our beacon design, technolo-
gies used in said implementation, and a discussion
of implementation details which affect the beacon
protocol. We seek to realize the design introduced in
Section 4 while making reasonable trade-offs where
necessary. This means that some parts of the imple-
mentation will be seen as future work, in the interest
of time. However, the implemented beacon will be a
functional proof of concept (PoC), with an underlying
infrastructure suitable for real world deployment and
usage, and as such a good infrastructure is something
we will prioritize.

In the implementation of the beacon, we choose not
to focus on usability applications, such as allowing
a user to track their input automatically through the
beacon. Instead, we implement a beacon with simple,
secure, and succinct operation. For some concrete
details about the implementation beacon, including
the file structure, see Appendix B on page 31.

5.1 Overview

This chapter explains the choices leading to the spe-
cific implementation seen in Figure 10. As such, the

figure can be used as a reference as we explain the
various parts of the implementation.

At a glance, the figure shows the services and how
they interact. All services are controlled by the bea-
con operator. Examples of input collectors are shown,
and each of them hash inputs as they are received
and send them to a known proxy (fan-in pattern). It
also responds to the user with the hash of the given
input. The proxy forwards any message to the input
processor. The input processor adds each input to a
Merkle tree structure. Here the pipeline fans out.

A computation node that is ready to take on work
signals its readiness to the input processor (1). Here,
the input processor internally adds the computation
node to a queue. The input processor will at an in-
terval equal to the input collection duration send the
current Merkle tree (2) to the computation node in
front of its queue and starts building a new Merkle
tree with new input. This ensures that e.g. every
minute a computation node is starting a computation
based on the Merkle tree built during the past minute.
Once given the Merkle tree, the computation node
releases a commitment (3) to this input, and runs the
delay function on it (4). Eventually the output (5) is
sent to the output proxy (fan-in pattern). This proxy
forwards the output to each publisher. A publisher
then packages the received output and sends it to a
specific outlet.

5.2 Framework and Language Choice

To achieve the service oriented architecture (SOA)
and pipelining presented in Section 4, we utilize a
framework for asynchronous message passing and
concurrency. This will allow us to develop the compo-
nents separately and to gradually implement business
logic by mocking not-yet-complete services, as long
as the inter-component communications protocol and
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Figure 10: Significant data flows in the beacon. Arrows signify data flow. Only the top-most arrows are labelled, but labels on the top
arrow apply to all arrows beneath.

17



5 IMPLEMENTATION

message passing method is agreed upon. We choose
to use ZeroMQ5 as this framework for message pass-
ing and concurrency.

5.2.1 ZeroMQ

ZeroMQ is language agnostic with bindings for virtu-
ally all programming languages, and that it is fast,
flexible, and scalable. The name ZeroMQ hints at its
alternative approach to a messaging framework, in
that no (or zero) broker is needed between compo-
nents. This means that our beacon implementation
does not rely on any centralized broker for passing
around messages — no single point of failure in that
aspect.

The pipelining fan-in and fan-out patterns are im-
plemented using the primitives of ZeroMQ. These
primitives provide useful patterns for communication,
e.g. pipeline and publish/subscribe patterns. Using
something like ZeroMQ and not developing our own
ad-hoc solution, allows us to leverage well-tested
technologies, and focus on the beacon itself instead.

Another reason for choosing ZeroMQ is the guar-
antees it provides us in relation to communication.
Messages sent and received are atomic, meaning that
we either receive everything or nothing at all. Loos-
ing a message is not critical in our use case, and when
messages are used to drive actions (e.g. control and
status messages), we simply retransmit if an acknowl-
edgement is not sent back. Furthermore, we can
enable authorization and authentication protocols on
ZeroMQ, which limits who can send and receive which
messages, using elliptic curve cryptography and cer-
tificates. However, as we are implementing a PoC
we are not using any authentication and authoriza-
tion, for simplicity and fast prototyping. Previously,
some security vulnerabilities have been found in Ze-
roMQ regarding privilege escalation where crafted
packages could downgrade the version of the proto-
col being used, but these were all patched in prior
releases, as evident in their public repository6. As of
writing this, no existing security issues with ZeroMQ
are published.

5.2.2 Python

The components of our beacon are mainly imple-
mented using Python 3, both for fast prototype
turnaround, but also because of a state of the art

5http://zeromq.org/
6https://github.com/zeromq/libzmq/

ZeroMQ library. However, in some cases the perfor-
mance overhead in Python is unsuitable for the task
at hand. Fortunately, Python programs can easily be
extended with C code, and due to our SOA entire
components can be implemented in this fashion if
deemed necessary.

5.3 Infrastructure

Establishing a solid and scalable infrastructure is a
significant part of implementing our beacon. We
choose not to rely on running all components of the
beacon on the same machine.

Because of this, we use TCP sockets through Ze-
roMQ. This means that operations such as reading
bytes from the sockets and reconnecting in case of
networking issues is handled by ZeroMQ, which also
maintains a local queue per socket to mitigate net-
work congestion. Sockets in ZeroMQ require one end
to bind and the other to connect, and usually it is
recommended that the most stable or consistent com-
ponent binds, while dynamic or unstable components
connect. Only one component can bind to a given
socket while many can connect to that same socket.

Between computation nodes and publisher, the
“publish/subscribe” pattern provided by ZeroMQ han-
dles the message routing based on subscription pre-
fixes, which means less traffic on our network. Fur-
thermore, the fan-in pipelining is implemented with
a “push/pull” socket pair which ensure fair operation,
thereby avoiding starvation of components. Lastly, Ze-
roMQ guarantees atomic delivery of messages, which
means that we can assume all parts of a message or
none at all. This is the most desirable scenario for us
since lost messages should be relatively insignificant,
while malformed messages usually means strenuous
error and edge case handling.

5.3.1 Proxies

In the interest of rapid iteration and ease of configura-
tion, we deploy proxies at key points in the pipeline.
This allows us to add and remove components eas-
ily from the network, since components then do not
need to know of each other — they only need to
know of the proxies. An alternative would be to use
some form of service discovery to allow components
to discover and connect to each other directly.

We insert two proxies in the network: one between
input collectors and the input processor and one be-
tween computation and publishers, as depicted in
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Figure 10 on page 17. Another benefit of using prox-
ies is the ability to have a many-to-many connection,
since the proxy binds both its frontend and backend
socket, which components then connect to.

These proxies are written in C for performance and
since they utilize a ZeroMQ primitive for the actual
forwarding, their operation is quite stable. It should
be noted that these proxies inherently introduce sin-
gle points of failure in our beacon, which could be
detrimental for continuous and stable operations. In
Section 5.3.2, we describe a way to mitigate this.

While the two proxies serve the same purpose, i.e.
pass along traffic between components, their work-
loads are vastly different. The proxy between compu-
tation and publishers is a forward proxy, which trans-
parently facilitates publish/subscribe pattern. In our
beacon, this proxy will never see a high frequency of
messages, since the number of outputs, commits, and
proofs are limited by the beacon output frequency.
The proxy will, however, be subjected to significantly
larger messages, due to especially commits which
must contain every input used in the output computa-
tion. Even with the large message, the infrequency of
them is far from saturating the capacity in this proxy.

Between the input collectors and input processor,
we have a stream proxy, which ensures that the fan-in
and fan-out patterns are executed fairly, i.e. no con-
nected components are starved. This is facilitated
through a round-robin message distribution. In con-
trast to the previous, this proxy is required to be able
to handle a substantial amount of messages, since
every input submitted to the beacon will pass through
it. While the messages are remarkably smaller (64
bytes of application data), the amount of messages
can become a problem, when the fair distribution and
no starvation policy must be enforced.

In the later Section 6.1 on page 22, we evaluate
the performance of our proxies.

5.3.2 High Availability

One way to mitigate single points of failures could
be to implement a pattern called “binary star” by
ZeroMQ. Here a component is configured with two
instances, a primary and a backup. The backup can
then take over and signal for a new backup to be
started if the primary disappears from the network.
This pattern can potentially be applied to all compo-
nents exposed as a single point of failure and would
be sufficient in most cases of crashes. Some scenar-
ios where this pattern can improve availability are

hardware failure, instability or disappearance of the
network link, or the component code crashing.

The success of such a “binary star” pattern also de-
pends on the assumption that both the primary and
backup will not fail at the same time, which might
prove difficult to guarantee if our system is under at-
tack. However, as we deploy a pipeline architecture,
the randomness beacon will generally only move for-
ward; missing inputs or computations is considered
an affordable loss.

Avoiding availability issues when encountering
byzantine components is often more troublesome
than mitigating crashes, since adversarial compo-
nents will try to display correct operation. We deem
this as outside the scope of our randomness beacon,
where we instead opt to make suspicious activity such
as manipulated packages detectable.

Another measure to provide high availability in the
beacon is our delegation of user interaction to input
collectors and publishers. In the system, user interac-
tion is the most demanding task regarding availability,
and the statelessness of the components means that
adding new instances is as easy as executing a shell
command as the operator.

Summarizing, the reliability of the beacon could
be greatly improved by eliminating single points of
failure, such as the proxies and input processor. How-
ever, changes as these are fairly trivial to implement,
and we deem them unnecessary for a PoC random
beacon.

5.4 System Interface

As previously mentioned, the system boundaries, i.e.
where users and the outside world interacts with
the beacon, are handled by input collectors and pub-
lishers. We implement these and the surrounding
infrastructure, as well as vertical scaling if the load
becomes too high on a single component.

To limit the space of potential messages and mes-
sage sizes passed around inside of our system, we
sanitize the user inputs by hashing them at the entry
point. Realistically, allowing any input could be seen
as an invitation by some users to post messages or
even files, e.g. illegal or inappropriate content. Our
choice of hashing at entry point will mitigate this.

Given a substantial amount of users, receiving
and hashing inputs may become a costly affair
performance-wise. Fortunately, the state of an in-
put collector is only relevant to a single input request,
meaning that scaling and even distributing across
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many machines is a trivial task. When we hash an
input, as a convenience we return the hashed input as
a response. As such, they will later be able to confirm
that their hashed input was used in the output of the
beacon. To allow users to verify correct hashing, the
hashing algorithm should be made publicly known.

Currently we use the SHA512 hashing algorithm
since its digest size is 64 bytes, which gives us rea-
sonably sized messages flowing through the system,
while still having 2512 possible different values. It
could be argued that the 32 bytes of SHA256 are more
than enough for any use case. However, SHA512 is
actually roughly 1.5 times faster than SHA256 on a
64-bit CPU [12]. Therefore, we see no reason to limit
the possibilities to 2256, since we do not expect 512
bits per input to be too much data. We implement
the system such that the chosen hashing algorithm
can be configured at beacon start.

Notice that a beacon outputs twice per cycle. Be-
fore the delay function is applied, a commitment is
released from the computation node and published
through all publishers. Specifically, this commitment
contains all leaf nodes of the Merkle tree, which cor-
responds to all inputs. After the delay function, the
output is sent to the publishers. The output consists of
two parts: a) the result, computed from the commit-
ment; and b) a witness, which can be used to rapidly
verify the result. The commitment and output are
correlated by an arbitrary sequence number.

The publishers publish to multiple different outlets.
We implement several publishers, with different ca-
pabilities. This means that e.g. a JSON publisher can
dump all messages, while a Twitter publisher only is
able to post messages with 280 characters.

5.5 Input Processing and Computation

The “core” of the beacon, i.e. input processing and
computation, is what collects and compiles the user
inputs, and then computes the random output. In
our beacon implementation we separate these steps
into the two distinct components as described in the
design of the beacon.

We develop these steps to be independent of each
other, besides a well-defined contract consisting of
two messages from the input processing to the compu-
tation, specifically: a) condensed output from input
processing, which is the input to the computation;
and b) data from input processing, which is the com-
mitment to the computation.

5.5.1 Combining Inputs

One way to combine the inputs is the simple oper-
ation of concatenating them. This is then used as
commitment data, while a hash of the commitment
data can be used as the condensed output. This pro-
cessing method requires the users to acquire the full
commitment, if they want to confirm the inclusion
of their input — which can be suboptimal in cases of
significantly many users.

Although our beacon implementation allows for
virtually any input processing method, we choose to
focus on a Merkle tree approach. A Merkle tree is a
special binary tree where the value of each node is
the hash of the concatenation of its two children.

In our implementation this means that the leaf
nodes are user inputs, which are already hashes, and
the root node is the condensed output. For consis-
tency, the hashing algorithm used to construct the
tree is the same as the one applied to sanitize each in-
put (SHA512). Truncating a SHA512 to any desired
length is safe [12].

Merkle trees as commitment data allows third-
party applications to provide verification, since the
inclusion of a given leaf node in a Merkle tree can be
verified by providing all siblings to the nodes on the
path up to the root. This greatly limits the amount
of data which the user needs to fetch and process to
log n + 1 where n is the number of leaf nodes in a
Merkle tree where all levels are filled, i.e. there is a
power of two number of leaves. The data consists
of log n sibling nodes in the path to the root, and
for comparison the root node as well (the +1). The
commitment data consist of only the leaf nodes. This
is possible if the ordering of the leaves is retained,
and the algorithm to construct the tree is publicly
available.

Another property of the Merkle tree is that, like
hashing a concatenation of all collected inputs, each
leaf node equally affects the root node, due to the
diffusion property of the hashing algorithm. This
means that any change to the set of inputs completely
changes the root node in the Merkle tree.

To the best of our knowledge Merkle trees has never
been used in previous beacon implementations as a
means of combining inputs. However, they are used
in other cases where it is undesirable for users to
fetch all data for verification, e.g. in bitcoin where
a Merkle root of all transactions in a given block is
stored in the block header.
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5.5.2 Parallel Computation

As we discussed in Section 4.6, we need parallel
and time offset computations in the beacon. This
is achieved by letting the input processor handle the
scheduling of computations.

The beacon is configured to process inputs at a
lower bounded interval, which means that the in-
put processor will send work at fixed times, given
an available computation component. It should be
noted that if no such computational component is
freely available, the input processor will just con-
tinue collecting input. Does no computation service
announce itself within a given threshold, the input
processor will give a warning to the system operator.
This scenario should be unlikely since the beacon op-
erator should configure the system to always have
available computation components waiting for work.

The worker announcements and subsequent work
assignments are facilitated with ZeroMQ’s “router/
dealer” socket pair which allows asynchronous ad-
dressed messaging. When a computational node con-
nects to the input processor it sends a READY message,
receives an OK, and proceeds to wait for incoming
work; this process, accompanied by what follows
inside the computational node, can be seen in Pseu-
docode 1. The input processor then keeps track of
each announced worker, and when the time comes,
sends condensed processing output and commitment
data to the next free worker.

If the worker does not acknowledge the work with
an OK response, the inputs are reprocessed, and the
next free worker is assigned. This cycle continues
until a worker accepts the work, while new incoming
inputs are included in each reprocessing of inputs.
Having duplex communication between the input
processor and the computation nodes is a practical
compromise between a strict pipeline pattern and a
monolithic input processor/computation node.

5.5.3 Delay Function

For the computation we implement a delay function
based on sloth by Lenstra and Wesolowski [14]. The
general idea behind sloth is to use modular square
root arithmetics to construct a deterministic time hard
algorithm, while containing a trapdoor for fast rever-
sal, i.e. verification. The computation of sloth iterates
through modular square root permutations of a large
prime number. This is a significantly more expensive
operation than its inverse, which is used in the verifi-

Pseudocode 1 Specification of computational node outlining the
communication pattern with the input processor.

1 procedure INITIALIZATION( )
2 CONNECTTO(input processor, publishing proxy)
3 end procedure
4 procedure MAINLOOP( )
5 repeat
6 SENDTOINPUTPROCESSOR( READY )
7 if OK received before timeout then
8 W ← RECEIVEWORK( ) . blocking call
9 if W is valid then

10 SENDTOINPUTPROCESSOR( OK )
11 STARTCOMPUTATION(WINPUT)
12 SENDTOPUBLISH(WCOMMIT)
13 wait for computation to finish
14 C ← COLLECTCOMPUTATIONRESULT( )
15 SENDTOPUBLISH(COUTPUT, CPROOF)
16 else
17 SENDMESSAGE( ERROR )
18 end if
19 else
20 continue
21 end if
22 until the end of time
23 end procedure

cation process. Essentially, the verification calculates
squares of the output from the computation.

When implementing delay functions in systems that
rely on their time guarantees, it is important to focus
on performance, since an obvious yet undeployed
optimization of execution time would compromise
the “time hardness” of the algorithm. Because of this,
and the fact that Python is not the best performing
language, we implement sloth as a Python module
with a C-extension for the actual algorithm. In the
C-extension the GNU MP library7 is used to perform
integer arithmetics with extremely large numbers.

In Section 6.2 on page 23 we evaluate using sloth
as our delay function, and how execution time of the
delay function can be adjusted.

6 Performance Evaluation

One way of evaluating our beacon is to examine the
performance of the key parts. In this section we ex-
plore the performance of potential system bottlenecks
to gauge reasonable throughput. We also investigate
our chosen delay function sloth and different config-
urations of it.

7https://gmplib.org/
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All tests are executed on a server with an Intel
Core i7-2600 CPU, which runs at 3.40 GHz and has
4 cores. As such, it can run 4 simultaneous sloth
computations. Further, it supports simultaneous mul-
tithreading, “hyper-threading”, but irrelevant to our
system. While it might improve total throughput
of multiple computations, it also does not speed up
individual runs of sloth. We use SHA512 as the un-
derlying hashing algorithm in both the Merkle tree
and in the sloth delay function.

6.1 Bottlenecks

We examine two potential bottlenecks in our beacon.
These are components which require the most effort
to scale horizontally, and as such for simplicity we
want to discover the current limits before scaling.
Furthermore, it is important to determine if these are
actual bottlenecks before attempting to scale, as we
want to avoid premature optimization.

6.1.1 Proxies

As presented in Section 5.3 on page 18, our beacon
contains two proxies. We believe that the forward
proxy between computation and publishers never will
be a bottleneck in a real world randomness beacon
deployment, as the data passing through it only con-
sists of outputs, commitments, and proofs. However,
the stream proxy situated between input collectors
and input processors must be equipped to handle a
constant stream of input messages.

As previously mentioned, this proxy facilitates fan-
in and fan-out pipelining with fair message distribu-
tion using a round-robin strategy. Hence, we test the
throughput of the proxy in different configurations
of input collectors and input processors. For simplic-
ity and benchmark consistency, we utilize “dummy”
components for this. The input collectors are referred
to as pushers and fan in at the proxy, while the input
processors are called pullers and fan out. In the tests
we transmit messages which resemble those of an
actual beacon in size, i.e. 64 bytes of application data
plus any ZeroMQ packaging; in this case one byte
which serves as a flags field, and one byte to denote
the length of the message body8.

In Figure 11 we see how the aforementioned differ-
ent configurations affect the throughput of messages
in the proxy. Firstly, no configuration combination

8As per the framing specification in https://rfc.zeromq.org/
spec:23/ZMTP
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Figure 11: 64 bytes message throughput per second of stream
proxy, with di�erent numbers of pullers and pushers. Over-
head of round-robin message distribution can be seen a�ect-
ing throughput.

measured results in a throughput below circa 200,000
messages per second. We presume this is significantly
higher than the number of inputs a real world beacon
would ever be constantly subjected to — as this also
would cause significant problems further down the
pipeline, e.g. the sheer amount of data contained in
a commitment.

It is the scenario of one pusher to sixteen pullers
that results in the lowest throughput, which can be
caused by the overhead of the fair message distribu-
tion enforcement. However, as we add pushers at
sixteen pullers, a slight increase in throughput can be
seen, suggesting that fair distribution is easier with
more suppliers.

Another observation we can make from Figure 11
is that increasing the number of pushers does not
affect the throughput as much as adding pullers does.
This evinces that fan-out is a considerably more ex-
pensive task than fan-in — a fortunate fact, since a
deployment of our beacon most likely will consist of
remarkably more pushers than pullers.

We can conclude that the proxies in our system
are extremely unlikely to be bottlenecks, and we
should rather look further down the pipeline for is-
sues; hence we examine the input processor.

6.1.2 Input Processor — Building Merkle Trees

The most expensive task performed in a bottleneck is
building the Merkle tree in our input processor. This
task is done periodically when it is time to compute a
new random output. It should not take a significant
amount of time, since this would extend the time be-
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Figure 12: Correlation between number of leaves and the time it
takes to build a Merkle tree, with those leaves.

tween the last seen input and publishing the commit.
As such, we examine how the number of leaves, i.e.
inputs, affects the building time of the Merkle tree.

In Figure 12, a linear growth in build time is seen
as a factor of the number of leaves. The growth is
slow and is negligible in our beacon. There needs to
be well over 2 million leaves to result in a build time
over three seconds. We can describe the relationship
as follows, where N is the number of leaves:

1.41µs · N + 1.41ms

Admittedly, the build time could be a problem if
significantly many inputs are used. However, in this
case one might reimplement the input processor in
a more performant language than Python, e.g. C. In
addition, the construction of Merkle trees is trivially
parallelized. Our implementation of Merkle trees
does not take advantage of this fact, and so building
subtrees in multiple processes and merging them to
form the final tree will likely provide a significant
speed-up with a factor close to the number of avail-
able CPU cores.

6.2 Parameters of sloth

The computation and verification time of the delay
function, sloth, can be configured by adjusting two pa-
rameters. These are a) the size of the prime number
used in the computation, in bits (must be a multi-
ple of 512); and b) the number of times to iterate
through the permutation process of said prime.

To evaluate the sloth delay function we run a series
of tests of the algorithm. During the tests we sample
multiple rounds with random inputs and take the
average. This is done to mitigate testing inputs, which
are significantly faster to find primes for.

In Figure 13a on the following page we illustrate
the correlation between these two parameters, and
the time it subsequently takes to do a computation
with a given combination of bits and iterations. We
see that an increase in number of bits used for the
prime number results in an exponential growth of the
computation time, while an increase in number of
iterations cause a linear growth. The data points in
the plot are highly regular as expected as it only de-
pends on single-core performance. It shows that the
computation time is reliable and grows as expected
without significant deviations, despite running the
tests on a machine with a fully fletched operating
system.

While computation time is important for the de-
lay function, another significant metric is verification
time — especially in relation to the computation time.
Figure 13b on the next page illustrates this relation-
ship, where the z-axis shows how many more times
it takes to compute the output relative to how long it
takes to verify. Although the data is more scattered
than in the previous figure, we see a trend where
the growth of this factor levels out just above 102.
This means that in configurations with more than
roughly 3,000 iterations, the computation time is al-
ways more than two orders of magnitude larger than
the verification time.

We also see that the number of bits does not affect
the factor except for some irregularities in the data.
These irregularities are believed to partly be caused
by the extra time it potentially can take to initially
find the prime number; an operation which can vary
in time depending on how close the numeric repre-
sentation of the hashed input string is to a prime.
Since larger primes (given by number of bits) can
be more difficult to find, the data fluctuates more at
larger number of bits.

7 Applied Use Cases

To demonstrate the usefulness of our randomness
beacon we present a series of use cases, where it may
be utilized. The fundamental use case of a beacon is
to generate a random value that multiple parties can
agree is not biased to anyone’s advantage or disad-
vantage.

Our beacon can be thought of as a cryptographic
primitive that can be used to obtain randomness.
Users can then use the beacon in a way that fits their
specific application of randomness. Conducting cere-
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Figure 13: Execution time of sloth computation and verificationwith di�erent parameters. The computation time grows exponentially
as the number of bits is increased, and linearly as more iterations are performed. Verification time grows far less.

monies around the usage of a beacon output is critical
to properly apply the randomness produced by our
beacon. In essence, the spirit of our security goals for
the beacon itself must be carried on to the use cases.

Thus, we present not just the use cases, but how our
beacon can be used to securely provide randomness
for them.

In all use cases, a mapping from the beacon output
space (in our case a 512-bit string) to the desired
application space, must be known before the output
is announced.

7.1 Lotteries

A lottery is an example of a sampling use case. Lotter-
ies exist in many shapes and sizes, from traditional
lotteries with a grand prize to military conscription
lotteries, in which many of the picked men would
later be sent to the Vietnam War [24]. The exam-
ple is also generalizable to other sampling use cases,
such as sampling counties to perform election re-
counts [23]. Lotteries have clear incentives, as they
have direct notions of prizes, money, advantages, or
disadvantages; and because they are also general
and describes many use cases, lotteries make a good
example of beacon application ceremonies.

We consider ceremonies for two types of lottery
applications: a) between a group of friends (“small
lotteries”) and b) with a weekly lottery service (“large
lotteries”). We illustrate the differences between the
two and how to structure the use of the beacon to
obtain randomness in line with our security goals.

7.1.1 Small Lotteries

Consider a group of three friends that organize a
small lottery among themselves. To prevent cheating
they decide to use our beacon to pick the winner.
Recall that a user can only trust an output that they
have inputted to — so all three must be able to find
their inputs in a single output in order to use it.

We also do not guarantee any single output to con-
tain the inputs of all three friends, so we advise users
to repeatedly submit their inputs unless they see a
commit with their input and a corresponding output.

Each friend commits to a specific input before re-
peatedly inputting it to the beacon, until a commit-
ment containing all three inputs is released by the
beacon. They should then use the output that corre-
sponds to that commitment and use that to determine
who wins. How the three friends maps the output
space of the beacon to their three outcomes, should
be agreed upon before engaging in the lottery.

7.1.2 Large Lotteries

While the approach of having everyone input works
for small groups, we cannot reasonably expect every
participant in large groups to repeatedly input to the
beacon until a common commitment containing all
inputs is found.

We consider a weekly lottery that is open for any-
one to purchase tickets. Since we cannot wait for
simultaneous inputs from all customers, we instead
use the set of beacon outputs produced during the
lottery lifetime, giving customers a larger time-frame
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to influence the outcome. To determine the lottery
lifetime, and more specifically when to stop collect-
ing beacon outputs, a transparent way to signal the
last beacon output to use is needed. Practically, the
lottery must commit to a stop message.

The lottery then collects all beacon outputs pub-
lished in the duration of the lottery, and combines
them for use in the final decision, e.g. by use of a
hashing function. This combining should be prede-
termined such that the output of said operation is
as unpredictable as the beacon outputs themselves.
Once it is time to draw the winners, the lottery sends
a signed version of the previously mentioned stop
message as input to the beacon. The stop message
must be cryptographically secured by signing it, such
that no other party can send the message and thus
stop the lottery prematurely. When a commit from
the beacon containing the signed stop message has
been seen the lottery entity, the lottery entity then
announces the signed version of the message. The
beacon output containing the stop message is then
the final one used in the aforementioned output com-
bining, which can now determine who wins.

This scheme relies on the lottery being able to end
their collection of input securely, and gives four guar-
antees to users. 1) users can verify the presence of
the signed stop message in the output by checking the
beacon commitment; 2) users can verify that the stop
message was sent by the lottery, as they can verify the
signature; 3) users can be certain that the lottery did
not craft the stop message to bias the input in a last-
draw attack, as it was committed to at the beginning
of the lottery; and finally 4) users can be sure that
adversaries did not craft a last-draw attack around
the stop message, as they did not know the signature
of the message beforehand.

Users will also have a large opportunity to input to
the beacon to influence the final draw. This ceremony
extends the “three friends’ lottery” to accept inputs
from a large group over an extended period.

7.2 Cryptography

Some cryptographic concepts can benefit from using
a randomness beacon, namely parameter generation
and protocol bootstrapping. Many cryptographic pro-
tocols and schemas require some parameters to ini-
tialize. Choosing these can be a lengthy process [6],
but also requires a great deal of trust as they can
contain backdoors if crafted meticulously [13].

Alternatively the parameters could be pseudo-

randomly generated by a generator that only gener-
ated good parameters. The generator could be seeded
by a randomness beacon, as described by Baignères,
Delerablée, Finiasz, Goubin, Lepoint, and Rivain [1].
This could be accomplished much like the large lot-
tery ceremony by announcing a collection period and
stop message. Using all inputs collected within that
period as the seed would then make a wide variety
of interested parties able to input to the parameters,
giving them some measure of trust in the protocol.

7.2.1 Bootstrapping Protocols

Another use case is bootstrapping for zkSNARK sys-
tems. Such systems require a common reference string
that must be generated as part of the bootstrapping
process. Generating this string can be an extremely
complicated process as the trust of the entire system
rests on the string. Should any party possess the com-
plete data from which the string was generated they
can fake proofs of anything, undermining the system.

The process requires users to trust at least one
participant of the bootstrapping ceremony. Because
of the complexity it is difficult to scale to more than a
handful of participants. Using a randomness beacon
allows the process to scale far beyond the norm, as
demonstrated by Bowe, Gabizon, and Miers [6]. They
present a MPC protocol for zkSNARK bootstrapping.
The protocol operates across two rounds and each
includes an input from a randomness beacon.

Practically, each round could be organized around
a number of beacon outputs containing specific round
number messages. These messages are signed and
committed similarly to the stop messages explained in
Section 7.1.2. This extends the period of the rounds
beyond that of our beacon’s output intervals, and
ensures that the completion of the bootstrapping pro-
tocol is not disrupted by a missing beacon output.

8 Discussion

In this section we discuss some questions, which came
up during our work. This includes presenting some
alternatives to our approaches, and exploring threats
which we did not succeed in mitigating.

8.1 Output Dependency

We suggest a variety of use cases for our beacon, but
we must include one important caveat: users should
not critically depend on the output.
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This is because we can not always guarantee that
there will be an output due to the possibility of attacks
on the availability. Instead, users should aim towards
being flexible with when they need to use an output.
An example could be to use the next output that they
see a timely commit containing their input to. Only
then will they be certain that the output is not biased.

8.2 Alternative Delay Functions

We currently use a time-hard function to compute
our randomness. This provides us some indication of
the computational effort needed to correctly produce
a random number, and thus makes it harder to cheat.
However, requirements on processing power is not
an insurmountable obstacle for motivated attackers.
An excellent example of this is the bitcoin blockchain,
where mining consists of solving a computational puz-
zle by repeatedly hashing. Here, Application-Specific
Integrated Circuits (ASICs) have allowed significant
speedups in the mining process, which has resulted
in raised mining difficulty, and ordinary computers
becoming comparatively useless for mining purposes.
If any party was to develop ASICs for our delay func-
tion, they would be able to solve it much faster than
any other party. This would diminish the security
provided by the delay function, and open up for last-
draw attacks from the party with the ASIC.

One way to mitigate this would be to increase the
difficulty of the delay function, like it has been done
in bitcoin. However, this would have the side effect
of making the function much more costly to compute
for any party without ASICs. This could even include
the beacon operator, which would impact operations.

Another way to mitigate this would be to use a de-
lay function that was also memory-hard, i.e. required
large amounts of memory to compute. This would
make it resistant to ASIC-equipped adversaries, as
these have small amounts of memory to optimize for
speed. While the function requires more resources, it
should still be computable for an ordinary computer.

8.3 Salting

One thing we considered in the design of the beacon
was having the operator add a salt to the inputs. This
would make the operator the only party capable of
computing the output, which would prevent outsiders
from pre-imaging and performing last-draw attacks
without help from the operator.

On the other hand, this would give the operator
even more power. They could perform more damag-
ing withholding attacks, as they would be the only
party capable of producing the beacon output. This
could be mitigated by having the operator publish a
timed commitment to the salt alongside the inputs
— this second commit could then be revealed by out-
siders given enough time, which would prevent the
operator from withholding once both commits were
published.

8.4 Smart Contracts

A distrustful environment is an obvious setting for
a randomness beacon, and one of the most obvious
types of these are public blockchains. We therefore
find it interesting to consider implementing our bea-
con in a smart contract on a blockchain. We consider
implementing it in a public blockchain such as the
bitcoin or Ethereum blockchains.

There would be some definite benefits to this,
namely that it would remove the need for a single
operator, which removes some threats towards the
beacon. In addition, it would be much harder to
DoS attack the beacon, as it would be run by the
entire network. However, a central aspect of our
beacon is practically incompatible with the nature
of smart contracts, as delay functions are computa-
tionally intensive. Smart contracts need to pay for
each computation they make, which would make the
beacon costly to run.

This would tie the beacon into the monetary incen-
tive structures that dictate smart contract behavior.
However, some parts, like the verification process,
are not nearly as intensive, and could potentially be
implemented in a smart contract.

In addition, since parts of the beacon would still
be off-chain, those parts would still be dependent on
an operator and vulnerable to DoS attacks.

Another thing to consider is that everything that
occurs on a blockchain occurs because someone put
it into a block. This is typically the job of miners, who
have different interests than other users. They are
incentivized to include the transactions that give the
greatest rewards for the block. Thus, a user would
have to pay a competitive fee to interact with a beacon
on a blockchain.

If we also consider the trust assumption of every-
one being against the user, they would have to mine
the block themselves to guarantee their interaction,
which is a steep requirement.
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9 Conclusion

This work was based partly on interest in randomness
beacons, and partly on wondering why these services
are not implemented for real world usage.

While we took inspiration from previous work
and literature, designing a randomness beacon from
scratch was no simple feat. We designed a system
which is based on simple and succinct principles.
However, simple systems still have many details in
their implementation. We made conscious choices
regarding communication framework, communica-
tion patterns, compromises between verbosity and
bare essentials in communication, and put a lot of
thought into the practicalities of deploying and oper-
ating our beacon. In particular, we parallelized the
beacon operation to have a continuous input stream
and regular output, and outlined a formula for find-
ing the number of computation nodes. We also scaled
input collection by enabling horizontal scaling, and
improved usability of the system by allowing these
input collectors to collect from a variety of sources
with easy access for users.

We showed the possibility of instantiating a ran-
domness beacon with sensible guarantees for any sin-
gle user; i.e. given their random input to the beacon,
they can easily and rapidly verify the computation,
and decide if they deem it trustworthy.

We performed a security analysis of randomness
beacons to identify threats towards them, and incor-
porated counter measures for them in the design of
our own beacon. Some threats were impossible to
counter, and these were discussed.

We refined and extended the work of Lenstra and
Wesolowski [14], who propose a delay function and
provide a short discussion on the repercussions of
the users’ trust assumptions by using a delay func-
tion. Our refinement allows all users to run the delay
function in parallel with the beacon operator, or to
run it if the beacon operator (maliciously or not) per-
forms an output withholding attack. We extended
the discussion of users’ trust assumptions by provid-
ing a succinct formula, which only depends on two
timestamps and what the user believes is the fastest
possible computation of a given delay function.

Further, we have proposed a parallelization tech-
nique for the beacon pipeline, such that input collec-
tion is a continuous stream. This allows the output
frequency to be considerably increased, and enables
adjustments to the ratio between input collection time
and computation time. Simultaneously, we noted

that computation components can be reused for sub-
sequent computations instead of instantiating new
services, thereby removing startup time. For redun-
dancy, reducing bottlenecks, and usability we allow
multiple input and output channels.

We also explored the applications of our random-
ness beacon as a cryptographic primitive in a variety
of use cases. We presented ceremonies for using our
beacon to securely obtain public randomness. The
use cases range from lotteries to crypto system boot-
strapping, and each has a ceremony associated with
it. As such, we not only investigated the gap in liter-
ature of a practical beacon implementation, but also
discussed the practicality of the beacon in context.

We believe our contributions fills a hole in current
literature, and as such can be seen as a step forward.
It is, however, clear that there is need for more work
that is not necessarily technical in nature. No matter
how much we believe in randomness beacons as a
concept, it might prove hard to convince users to use
a beacon. While we argued that the beacon is not
necessarily expensive to run for the beacon operator,
incentives to run a beacon still needs further thought.
Finally, usability of the beacon needs to be improved
if we expect normal users to use it.

In the future, trusting any entity with decisions
will, in our opinion, be more far-reaching than it is to-
day. We see more and more corporate giants virtually
controlling whole industries. Before empowering a
few world-wide corporations to make decisions that
affect us, we, as normal users in society, need ways
to ensure fairness. Randomness beacons might be
one such way.

10 Future Works

This section outlines next steps to explore regarding
our randomness beacon.

10.1 Usability Applications

To ease users interaction with the beacon and the
process of verification, some usability applications
could be implemented.

This could be in the form of a “client” application,
which facilitates input submitting and output verifica-
tion. Interacting with such an application could from
the users’ perspective be as simple as running it in
the background, while the application constantly in-
puts to the beacon, and verifies both inclusion of said
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input and correct computation of the output. The
user could then at any time poll the application for
a verified beacon output. In this scenario, the user
would inherently need to trust the application to not
be acting malicious.

Another usability application, taking a far simpler
approach, could be a simple verification service. It
allows users to painlessly check if their input was used
in a beacon output. Since our beacon uses a Merkle
tree for storing the inputs, the verification service
could provide users with proofs of inclusion, without
them needing to fetch the entire set of used inputs. In
fact, user would at most need to download log n+ 1
nodes in the Merkle tree, to validate the proof; this is
further explained in Section 5.5.1 on page 20. Users
could then correlate the valid proof with the output
of the beacon for complete verification.

10.2 Incentives and Use Cases

We have assumed that our beacon will be run by an
interested authority as a greater good. In our design,
the speed of the beacon operator’s computer will not
be significantly important. The computation is only
a service to save all users the CPU time of computing
it themselves. As such, the computation of the delay
function should only happen so fast that users will not
be annoyed and run the delay function themselves
— there is no loss of security by waiting a bit for the
beacon operator’s output. The only thing that matters
in the design of our beacon is the time from a user
inputting and the user receiving a commitment. This
duration should be lower than what the user believes
is the fastest possible execution of the delay function
by any computer in the world.

Because of the fact that speed does not matter
much, it enables a relatively low entry barrier. We
have imagined universities or privacy-minded cor-
porations to run the beacon as a public good. It
will not require much besides a reasonably power-
ful server, where the single-core performance and
number of cores will be the main resources to con-
sider. These authorities’ willingness to run a beacon
is purely speculative, and as such we do not know if
these authorities are even interested in running a bea-
con. Therefore, incentives for running a beacon will
need to be investigated further. A strong incentive to
run a beacon is compelling use cases. As such more
use cases, and incentives for using a beacon as a cryp-
tographic primitive, should also be further explored,
beyond our discussions in Section 7 on page 23.
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Appendices

A DREAD Details

This section serves to further expand our use of the
DREAD framework for threat evaluation. We further
explain the different measures we use, and examine
certain threats closer.
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A DREAD DETAILS

A.1 DREAD components

The first component of DREAD is damage, how dam-
aging an attack is. We consider the most damaging
attack to be one that successfully makes users use
a biased input. This way users will be tricked into
using an input that favors certain parties, which is
the exact thing the beacon is supposed to prevent.
This requires the attacker to bias the outcome without
breaking the beacon protocol, as the output would
otherwise not be used by observant users. A slightly
smaller threat is DoS attacks. While this does prevent
users from using it, the damage it causes is still less
than it would be from using a biased output. Finally,
the damage caused by attacks revealed through the
transparency of the beacon cause negligible damage,
as they are unlikely to be used by anyone but the
most careless users.

The second component is reproducibility, how easy
the attack is to reproduce. Generally, many of the
attacks on the beacon are easily reproducible, but we
consider it to be lower for malicious operators. This
is because the power of malicious operators relies on
users of the beacon. Whenever they diverge from
protocol, or deny an output, whether by withholding
or crashing, users will lose trust in that operator. As
a result, they may eventually find themselves with
no users of their beacon — this limits their ability to
reproduce attacks. On the other hand, outsiders that
want to bring the beacon down can use this fact to
undermine even legitimate operators by continually
DoS-attacking them.

The third component is exploitability, and describes
how little work is required to launch the attack. This
is essentially the initial investment required by the
adversary to launch the attack, and the smaller that
investment is, the greater the threat it poses.

The fourth and final component we use is affected
users, which describes how many users are affected
by a given attack. Here, we distinguish between an
attack affecting all users, some users, or only a few
to determine the score.

A.2 In-Depth Threats

We have selected a few threats to describe in depth.
The threats were selected based on their severity and
their ability to exemplify their respective categories.

InputManipulation D
3
R
3
E
2
A
3
Σ
11 The operator can ma-

nipulate the inputs received to produce a biased input,

that still appears legitimate to verifiers. The damage
of the attack is severe, as all users will use the bi-
ased output without suspicion. The attack is also
completely reproducible, as long as the operator has
the ability to execute it and is not somehow caught
red-handed — something that would be extremely
difficult to do. Thus he will theoretically be able to
bias every single output of the beacon to his own
benefit while still appearing as an honest operator.
The attacks does require being the operator, but oth-
erwise evaluates identically to the input bias attack
performed by outsiders. This is because an outsider
with the power to execute such an attack would like-
wise be able to bias every single output.

Emitting False Output D
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8 As a contrast to

the previous attack, here the operator forgoes the
process of making it look legitimate, and simply emits
a biased output. This output should never be used
by any critical users, and so will not cause much
damage by itself. In fact, the attack is more akin to
a withholding attack, as it effectively denies users
the output they have input to. It is also has low
reproducibility as it would significantly impact the
credibility of the operator. This attack will most likely
tarnish the reputation of the operator, and as such the
beacon will be used by an ever decreasing number of
users.

Shutdown D
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9 The operator can at any time

shut the beacon down to deny operation to all users.
This is quite damaging, but ultimately not as bad
as making them use a biased input. This attack is
also easy to reproduce, but limited by the fact that
users will lose faith in a beacon that shuts down of-
ten, which eventually drives them away. While the
attack is trivial to execute for an operator, we con-
sider becoming the operator of a beacon a minimum
investment in and of itself, hence why the E is a 2.

Input Flooding D
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10 When it comes to avail-

ability attacks, outsiders are ultimately the greater
threats, as they do not have a vested interest in the
beacon. Besides, the beacon operator has easier at-
tacks in his arsenal with the same outcome from the
perspective of the users. Hence we see that this at-
tack is slightly more reproducible, as the users would
eventually abandon the beacon, which would be a
success for the outsider.
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C DETAILS OF DRAND PHASES

B Implementation Structure

Code for the beacon can be found at our GitHub
repository9, and latest commit as of writing this is
47beb4ec03031c22b34d06db85d6fcc9c7bb1fd4.

The concrete implementation of our PoC randomness
beacon is structured as a Python package named rand-
beacon. See Figure 14 for a visual representation. In
this package, each group of components, i.e. input
collecting, input processing, computation, and pub-
lishing, is its own module. Even though no single
component relies on any other, with the exception of
the utils module for code reuse, this module struc-
ture makes it convenient to deploy a beacon instance
during the development phase.

To orchestrate said deployment, we use the termi-
nal multiplexer tmux10 and a Python program called
tmuxp11, which allows us to easily specify a beacon
configuration in a yaml file. This way of deploying
through tmux is intended as a means of debugging
and demoing the beacon.

Dependencies are managed with pipenv12 and a
Pipfile, thus encouraging the use of virtual Python
environments. Besides the randbeacon package, the
beacon relies on a proxy written in C, which can be
found in the proxy directory. Outside the repository
for the randomness beacon, we use our implementa-
tion of the sloth delay function13 and our own fork of
pymerkletools14. External dependencies are fetched
from the official Python package repository15.

C Details of Drand Phases

Setup Phase During the setup phase each node to
be included in the beacon generates a public/private
key-pair, to be used long-term. A file called the group
file is then created, consisting of all participants’ pub-
lic keys, and configuration metadata regarding the
beacon operation.

The group file is then distributed amongst the
nodes, whom then participate in a distributed key
generation (DKG) protocol. This protocol creates a
collective public key, and a sharded private key, with

9https://github.com/randomchain/randbeacon
10https://github.com/tmux/tmux
11https://tmuxp.git-pull.com/
12https://docs.pipenv.org/
13https://github.com/randomchain/pysloth/
14https://github.com/randomchain/pymerkletools/
15https://pypi.org/

randbeacon

__init__.py

computation

__init__.py

base.py Base class

delay_sloth.py

input_collection

__init__.py

urandom.py

simple_tcp.py

simple_http.py

telegram_bot.py

input_processing

__init__.py

base.py Base class

concat_sha512.py

merkle.py

publishing

__init__.py

json_dump.py

twitter_bot.py

utils.py

Figure 14: Structure of core beacon components. Placed under
one python package, with modules for each group. The blue
files indicate the components used in the current PoC deploy-
ment demo.

each node in possession of a unique shard, used for
the internal cryptographic operations of Drand.

Randomness Generation Phase Any node may
function as a leader and initiate the randomness gen-
eration phase by broadcasting a message consisting
of a time stamp to all nodes. This time stamp mes-
sage is then signed by all participating nodes with a
threshold version of the Boneh-Lynn-Shacham (BLS)
signature scheme. The threshold version allows any
node to construct the full signature, which is the ran-
dom output, given that enough nodes has provided
their shard signature.

Output values can be verified by using the public
key generated in the distributed key generation.
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