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Abstract

Being able to project future spatial population distri-

butions is an important tool to tackle challenges fol-

lowing continuous global population growth and pos-

sible future climate challenges. This report presents

an answer to how a convolutional neural network can

be used to project future spatial population distribu-

tion and what results can be achieved by using this

approach. This is investigated by designing a convo-

lutional neural network, PopNet. PopNet identi�es

complex spatial patterns in historical data, on a 250

meter resolution grid and projects the future spatial

population distribution. From this architecture, two

future scenarios are simulated based on IIASA SSP2

population projections for Denmark and France re-

spectively and the results evaluated. While the neu-

ral network method does have �aws, the results prove

how, and that, convolutional neural networks can be

used to project future population distribution. A num-

ber of key challenges, strengths and weaknesses are

found and further alterations are proposed that could

improve PopNet precision and applicability for future

use.

Hans Skaarup Larsen Niels Bach-Sørensen Thomas Breilev Lindgreen



Preface

This report is our master's thesis in Geoinformatics at Aalborg University. The project-

period has elapsed from February 1st to June 8th 2018. The centre of interest in the

thesis is to improve how future spatial population distribution can be projected using a

convolutional neural network.

Reading Instructions

We are referring to sources in the guidelines given by the Harvard reference method. This

means a citation will appear as [Surname, Year, page number] in the text, while details

on it is available in the bibliography. We have created all �gures and tables that does not

have a citation.

Software

The results achieved in the project has been reached with several resources among those

are: programming languages, applications and libraries. The most notable of those

are listed below. All code related to this project can be accessed through https:

//github.com/knasti/PopNet.

� Languages

� PostgreSQL (with PostGIS) and Python

� Applications

� pgAdmin III, PyCharm and QGIS

� Libraries

� GDAL, NumPy, psycopg2, scikit-learn and Tensor�ow

Hardware

The hardware is a premise for the possibilities and limits of what can be done within the

�eld of neural networks. This have had an essential impact on the report as all processes

have been run on the available laptop computers. An overview of the used laptops, their

CPU's and GPU's can be seen in table 0.1. These are the most vital parts used in training

and application of the convolutional neural network created.

PC One PC Two PC Three
GPU NVIDIA GeForce GTX 960M NVIDIA GeForce GTX 980M NVIDIA Quadro M2200
GPU Dedicated Memory 2019 MB 8153 MB 4062 MB
CPU Intel(R) Core(TM) i7-6700HQ CPU Intel(R) Core(TM) i7-6700HQ CPU Intel(R) Core(TM) i7-7700HQ CPU
CPU Performance 2.60GHz (8 CPUs), ∼2.6GHz 2.60GHz (8 CPUs), ∼2.6GHz 2.80GHz (8 CPUs), ∼2.8GHz

Table 0.1: Hardware used for processing and running PopNet
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Abbreviations

In table 0.2 the abbreviations used in this project are listed.

Abbreviation Explanation

ADAM Adaptive Moment Estimation

CIESIN Center for International Earth Science Information Network

CNN Convolutional Neural Network

EEA European Environment Agency

GPW Gridded Population of the World

GADM Global Administrative Areas

GHSL Global Human Settlement Layer

IIASA International Institute for Applied Systems Analysis

LRN Local Reponse Normalization

MAE Mean Absolute Error

RMSE Root Mean Square Error

SEDAC Socioeconomic Data and Applications Center

SSP Shared Socio-economic Pathways

UN United Nations

UN DESA United Nations, Department of Economic and Social A�airs

Table 0.2: Abbreviation overview

In addition to the abbreviations listed above, we are using PopNet, short for Population

Neural Network, as a name for the �nal neural network architecture presented in the

project.

The term geosimulation, which in its essence refer to a stochastic type of prediction

model, will in this report be used as a broader catch-all term. As such the term will

cover both stochastic models, rule based models and deterministic models, that do not use

machine learning to project future spatial population distribution.

The resolution of geographical grids mentioned in this report is the resolution that is

applicable at equator.
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Problem Area 1
Projecting the future population is an important piece of information to tackle future

demands for food, water and energy supply. The projections also tell policy-makers and

experts about major trends that could have national and global e�ects, and thus enables

decision-makers can take action based on di�erent future scenarios. This can be in the

form of adapting policies to the scenarios, but also through investments that will help

accommodate the changes to maintain, or improve, a sustainable society whether that is

economically, socially or environmentally [Population Reference Bureau, 2001; Ahn et al.,

2005].

Population projections are usually done at country level, and this project focuses on

distributing those numbers to a spatial grid to achieve a high resolution spatial population

distribution. This will give opportunity to more accurately adapt to future local changes

and tell where possible challenges will appear and react to those in time. The question

of where, that is addressed by such a population distribution, allows for further analysis

that can decide the right action to take for the di�erent communities. The knowledge

of where has also become increasingly important with global warming impacting the

world. Consequences ranges from sea-level rise that could leave large populated areas

uninhabitable, droughts that kills o� crops and makes animal husbandry impossible, to

heat waves that make for unbearable living conditions [Carson et al., 2016; Patz et al.,

2005]. Being able to match projections of these phenomena with population may prove to

be important to avoid disasters through knowledge-based decision- and policy-making.

Today there are models that predict spatial population distribution using geosimulations.

These models have to be kept simple due to manually created programming rules and

computational scalability. This means that the complexity of the population cannot be

modelled on a local scale and might miss important correlations between di�erent variables

[Jones and O'Neill, 2016; Keÿler and Marcotullio, 2017]. To improve on this we apply the

use of a neural network. This �eld of research has matured along with new computational

capabilities that allow for creating very accurate classi�cations in domains such as image

recognition based on analyses of complex patterns in the data [Goodfellow et al., 2016].

That matureness of machine learning is sought to be used and implemented into the

modelling of future spatial population distribution. Namely convolutional neural networks

(CNNs) are of interest as they have previously been used to recognise spatial patterns,

and we believe they can also be used on historical spatial data [Castelluccio et al., 2015].

By that, complex contexts between population and spatial data can be obtained to build

a function that estimates the future spatial population distribution.

Thereby, improvements to the spatial population prediction capabilities can improve and

11
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support planning and decision-making for the future which in turn could help shape a

sustainable future.
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Research Questions 2
This section introduces the main research question and a number of sub-research questions

that will serve as a supporting structure for the report and a guide to how the main research

question is answered.

In light of the gains and bene�ts of knowing where how many people live in the future, the

objective of this report is to expand the knowledge of solutions within the �eld of predicting

future population distributions. The speci�c purpose of this report is to investigate how

it is possible to use a CNN to estimate the future spatial population distribution. From

this purpose the following research question has been formulated:

How can a convolutional neural network be used to project future spatial

population distribution and what results can be achieved?

To further guide and support the answering of this question a number of sub-research

question have been formulated. The purpose of these questions is to ensure a thorough

answer for the main research question, in a structured manner.

The sub-research questions are presented below along with an elaborating explanation of

their purpose and how they are sought answered.

1. What projections of future population growth are applicable to project future spatial

distribution?

The purpose of this questions is to ensure that the research done is up to date within

the �eld of population projections. That we use applicable and reliable data as a

basis for the spatial population distribution. In this respect, answering this question

also ensure a foundation of knowledge for understanding possible impacts on results,

that using a certain population projection compared to another could have.

This will be answered by doing a literature review of available population projections

and current research, especially in regard to spatially explicit projections. Doing so

enables us to determine their di�erences, methods and if there are clear indicators

on how acknowledged they are within their �eld.

2. What high resolution spatial and historical population data exists and what

geographical features a�ect future spatial population distribution?

This question ensures we are up to date on current research regarding to

what geographically related elements are generally accepted to impact population

distribution and what spatially explicit historical population data exists. By

answering this question, the possible sources of population data we have to train

13
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our CNN are uncovered. This is because the neural networks' ability to predict the

future spatial distribution of population is based on historical changes.

To answer this question a literature review of relevant and related research, as well as

a study of existing spatially explicit population data is done. As such this question

is answered by a review and presentation of existing data and of the discovered rele-

vant geographical elements, that can have an in�uence on future spatial distribution.

This is both done in relation to how data is produced and its reliability in terms of

possible e�ects for further use, but also in relation to metadata such as scale, fre-

quency, age and precision. The data covered is thereby only a review of existing and

used data within the �eld, and not an exhaustive list of all data that could be applied.

3. What current models and technical approaches are, or can be, used to project future

spatial population distributions?

Answering this question ensures we are up to date on the �eld of projecting spatial

population distribution and ensure that the research done by this report is not

redundant or have already been conducted by others. It also ensures a basic

introduction and understanding of CNNs as an approach to solving the main research

question.

It will be answered by a literature review of existing research on the topic of geosim-

ulations and spatial projection. This will be followed by a technical walkthrough

of CNNs and how this technology are likely to be able to answer the main research

question in terms of possible challenges and solutions.

4. How can the CNN setup for projecting future spatial population distribution be

constructed and how can the used geospatial data be processed and prepared to work

with it?

The purpose of this question is to ensure a thorough description of how the CNN

architecture and practical design is created and why. It also covers what preparation

and processing is done to the used geospatial data and the choices made within this

process and why.

By answering this question, transparency into the process, data preparation, choices

and construction of the CNN is ensured. This is important as the structure of the

CNN and the choices made during preparation of the geospatial data are essential,

and have fundamental impact on the results the model gives.

5. How well does the model predict future population distribution?

This question focuses on the results and evaluation of how the model performs when

run. Answering it ensures a thorough analysis of the performance and results of the

model so that patterns, tendencies, strengths and weaknesses can be found.

The question is answered by analysing the resulting projections made by the model in

order to �nd tendencies, patterns as well as to estimate how well the model projects

future population distribution.

6. What knowledge can be gained from the results, experiments and tests?

14
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Answering this question will widen the scope of �ndings from the results, in order to

provide a wider context on how they can contribute both to the �eld of CNNs as well

as spatial population projections in general. Doing so opens for a discussion of how

the research done compare to other methods within the �eld and discuss strengths,

weaknesses and new knowledge gained through the entire process.

The questions are therefore answered by discussing the �ndings of the results, tests

and experiments. This is done in a broader context of research already done within

the �eld of projecting future population projections as well as discussing concepts

such as causality and uncertainty. As such, the discussion will focus to a lesser degree

on the actual prediction results, but more on the methods and perspectives on using

a CNN to project spatial population distribution.

The next chapter will brie�y introduce the methodologies used and outline how the sub-

reasearch questions are answered in relation to the overall report structure.

15





Methodology 3
This chapter presents the neural network practical methodology and how it is applied in

the report. The chapter also contains an overview of the report in the shape of a �gure.

This �gure shows how and where the both the practical methodology is applied but also

highlight the use of literature reviews in relation to what sections, and what sub-research

questions they support answering.

This means that the methodology presented in this chapter is not exhaustive but only

presents the formal methodology that is not commonly applied in research. As such the

literature review is not explained in greater detail here. In respect to the evaluation

chapter no overall formal methodology for evaluating this type of results exist. As a result

the individual methods applied have been considered in terms of their ability to explain

and evaluate the results.

3.1 Neural Network Practical Methodology

This section contains the considerations and approach to using and evaluating the neural

network. It also points out the necessity of building and testing a neural network in praxis

rather than discussing the possibility of applying a CNN.

Within the �eld of combined neural networks and geoscience there are no immediate �xed

methodologies on how to evaluate the applicability of a neural network in regard to a

certain task or objective. This means the possibilities of use cannot necessarily be fully

understood beforehand, but has to be continually tested, changed and applied to a certain

setting to understand it, and its applicability [Goodfellow et al., 2016]. So while the �rst

step of applying a machine learning approach is choosing an algorithm and understanding

the principles behind it, the second is to be able to monitor and use the feedback to

adapt the model [Goodfellow et al., 2016, p. 416]. In the scope of answering the research

question, the �rst step has been chosen in advance, as the CNN is incorporated in the

research question.

What this means in relation to our approach of using a neural network for prediction of

future spatial distribution of population, is that to fully understand and �nd out if it is

doable, it is needed to build and test it. This aligns well with the normal praxis on the

area of neural networks, where development and science happen in close proximity with

building and testing the projects in question. It also means that it is not possible to

fully understand the possibilities of applying a neural network in regards to the research

question without creating one, testing it and adapting it [Nielsen, 2017].

In relation to the neural network built for the purpose of this report, an overall practical

17
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methodology by Goodfellow et al. [2016] were followed as a guideline to the process

and approach. The individual four points can be seen presented below along with an

explanation of how this translates into the report [Goodfellow et al., 2016, pp. 416-417].

1. Determine your goals � what error metric to use, and your target value for this

error metric. These goals and error metrics should be driven by the problem that the

application is intended to solve.

In the terms of predicting future population distribution our error metric is logically

the number of population and the goal is to have a realistic projection of where peo-

ple will likely live.

2. Establish a working end-to-end pipeline as soon as possible, including the estimation

of the appropriate performance metrics.

This sets the practical �rst goal of establishing an initial working end-to-end pipeline,

meaning a CNN that is capable of having an input in the correct format and out-

putting a result. In this case our �rst step is therefore to establish a simple neural

network capable of using a basic spatial population layer and based on this predict

and output a result in a useful format such as an image or raster.

3. Instrument the system well to determine bottlenecks in performance. Diagnose which

components are performing worse than expected and whether poor performance is due

to over�tting, under�tting, or a defect in the data or software.

Point number three refers to the complete design and structure of the code. It should

be straight forward to complete the incremental changes mentioned in point number

four and see the e�ects of such changes. However, this point will also be revisited for

adjustments incrementally as better ways to design the architecture might come up.

4. Repeatedly make incremental changes such as gathering new data, adjusting

hyperparameters, or changing algorithms, based on speci�c �ndings from your

instrumentation.

When the base has been successfully established as described in bullet point two,

more ancillary data can be added through an iterative process. In the case

of the neural network established here, the ancillary layers are linked to spatial

phenomenons and attain the same format as the input data. In addition to adding

data, a number of changes are likely to be made and evaluated, both as a result of the

instrumentation and the cost-function, but also as a result of testing the capabilities

of the neural network on di�erent scenarios.

In addition to the practical methodology presented, the architecture have to be considered

more closely. This is because the neural network have to be adapted to �t the research

question and have the capability to estimate, rather than categorize. What is meant by

this is that the CNN have to use population projection numbers and therefore these have

to be integrated into the architecture. This process is covered in greater detail in chapter

8.

18



3.2. Report Overview Aalborg Universitet

While the e�ects of following this methodology cannot necessarily be readily seen from

the report, as the process of building the neural network itself cannot be observed, some

e�ects can be seen from the report structure and the process of testing, evaluating and

changing the network (cf. section 8.3 and 8.4).

3.2 Report Overview

This section contains a simple overview of the report and to what chapters the di�erent

methodologies have been applied to and what research question is answered by each part

of the report.

Figure 3.1: Overview of report structure, research-questions and methodology application

In relation to the conclusion, the main research question is not answered by the conclusion
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itself but by the answers to- and �ndings of the sub-research questions which is summarized

in the conclusion - thereby answering the main research question.

The next part will examine existing research through the literature review. The �rst

chapter of the next part will introduce population projections created by di�erent

organisations.
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Literature Review
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Population Projections 4
This section introduces the concept of population projections and the context of them in

the report. The two main organizations and their respective population projections are

introduced and loosely compared in order to highlight existing di�erences, both in terms

of methodology and resulting numbers. The section ends with a short discussion that

compares the di�erent projections to the report purpose and their use in current research

of spatially explicit population projections.

4.1 Global Population Projections

There is an increasing number of humans on the planet and this number has been steadily

increasing for thousands of years. While the early stages of increasing population was

largely linked to the invention and adoption of agriculture, it was mainly from the 19th

century and onwards that human population experienced increasing growth. This is linked

to a number of inventions such as fresh water supply, improvements within health, nutrition

and medicine that resulted in lower death rates. Later the introduction of medicine such

as antibiotics once again drove death rates down further and while these changes occurred

relatively fast, the more cultural and tradition based norms a�ecting the number of children

a family got, changed comparatively far slower [KC and Lutz, 2017, p. 181]. These

previously described advancements along with further improvements within medicine,

vaccines and healthcare led to a population increase from roughly 2.5 billion in the 1950's

to 7.5 billion in 2017 [United Nations, 2017b]. Some research however, suggests that we

are likely to see a peak in world population during the next 100 years due to a number

of things such as decreasing birth rate [IIASA, 2014]. Yet if this will come true is still

debatable, as other sources, for example the United Nations (UN), forecasts continuous

population growth at least until the year 2100 [United Nations, 2017a].

For the purpose of this report we rely on existing future population projections and

therefore do not present changes, new models or projections. It is nonetheless important

to understand the scope and limits of the projections used. Global population projections

rely on predicting human behaviour and knowledge of social and economic trends, that

depend on how humans act in the future. Predicting the future dealing with human

behaviour cannot be done without uncertainty [Lutz and Samir, 2010, p. 2783]. This

inherent uncertainty of the projections must therefore be considered in relation to the

results in this report.
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4.2 Di�erent Population Projections

Creating projections about the future world population is bound to di�erent dynamics,

population drivers and assumptions about how the world develops and how this impacts

the population growth and trends. A number of individual organizations create

varying projections about future world population, based on di�erent methodologies and

assumptions. This section will introduce a number of di�erent, available projections of

future world population which can be used as a basis for determining spatial distribution

of future population.

The United Nations, Department of Economic and Social A�airs (UN DESA) publishes

a set of world population projections and currently revises the assessments every second

year, the last revision published in 2017. The UN population projections present estimates

for 233 countries and areas based on both o�cial data from the individual countries as

well as data gathered by other survey programs and departments of the UN such as United

Nations High Commissioner for Refugees on for example international migration patterns

[United Nations, 2018].

The UN world population data contains a historical time series from 1950 and currently

projects world population till the year 2100. The basis of the UN population projection is a

medium variant projection which corresponds to the median of several thousand projected

trajectories of speci�c demographic components. There is however a total of nine di�erent

projection variants in the 2017 revision, which di�er in relation to assumptions on the

level of fertility as well as mortality and migration, the di�erence between the individual

projections can be seen from table 4.1 [United Nations, 2017c, p. 30]. These di�er however

based on the medium variant, for example as the high fertility variant is projected as

0.5 births above the medium variant and the low fertility projection as 0.5 births below

[United Nations, 2017c, p. 16].

Table 4.1: Projection variants in terms of assumptions for fertility, mortality and
international migration [United Nations, 2017c, p. 31]

In more recent times compared to when the UN started publishing population predictions,

the International Institute for Applied Systems Analysis (IIASA) started publishing long-

range global population projections in 1994. These projections were centered around 13
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regions and three di�erent scenarios [O'Neill et al., 2001, p. 209]. They are currently

contributing to a larger research project called the Shared Socioeconomic Pathways (SSPs).

The human core, which is what the population projections of the shared socioeconomic

pathways is, is a joint project between the IIASA and other members of the Wittgenstein

Centre of Demography and Global Human Capital [Lutz et al., 2014a, p. 4].

The SSPs are part of a scenario based framework, established by the climate change

research community in order to facilitate the integrated analysis of future climate impacts,

vulnerabilities, adaptation, and mitigation. The pathways were developed over the last

years as a joint community e�ort and describe plausible major global developments that

together, would lead to di�erent challenges for mitigation and adaptation to climate

change, in the future [van Vuuren et al., 2017, p. 153].

The SSP scenarios consist of �ve scenarios that are built upon �ve di�erent qualitative

predictions of possible future world developments. While the SSPs main purpose is to be

used in relation to climate change adaption and mitigation, the scenarios are constructed

based on socioeconomic and environmental elements, challenges and development that

have been judged to be determinants for adaption and mitigation [O'Neill et al., 2017, p.

171].

The �ve di�erent scenarios can be described brie�y as;

The �rst scenario, SSP1, is a positive sustainability scenario that describe a gradual change

toward a more balanced and sustainable path with shared global resources, decreased

inequality and increasing education and health worldwide. The second, SSP2, is the middle

of the road scenario where world development continues based on historical patterns with

slow improvements to inequality and slow improvements to sustainability. The third,

SSP3, is a regional rivalry scenario that puts emphasis on a fragmented and nationalist

world which leads to decreasing focus on equality, sustainability, health and education.

The fourth, SSP4, is a scenario with focus on social inequality both within and between

countries leading to a gap between groups of people with lower education and labor

intensive jobs and an internationally connected group with higher education and economic

wealth. The �fth and last SSP5 focuses on a rapid fossil-fueled development future, in

which faith is put in the market economy and technological progress. This development

leads to increased investment in health and education, but also relies upon the faith in

successful mitigation of possible environmental problems [van Vuuren et al., 2017, p. 157].

The population projections are one of the key SSP scenario quantitative drivers, of the

overall SSP framework and the main focus in relation to this report. The individual

population projections and how the SSP scenarios have been translated into population

projection parameters of fertility, mortality, migration and education based on certain

country grouping. The country groupings consist of high fertility countries, low fertility

countries and low fertility countries that are part of OECD. This can be seen from table

4.2 presented below. Projections are done on a country level for all countries of the world,

and have projections stretching to the year 2100.
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Table 4.2: Shared Socioeconomic Pathways de�nitions for the demographic and human
capital component [KC and Lutz, 2017, p. 184]

This highlights one key di�erence between the UN projections and the IIASA SSP

projections. The IIASA addresses the role of education level in global population trends.

Lutz et al. [2014a] argue that by adding education as a key component to the conventional

demographic projection elements of age and sex, this substantially alters the resulting

future population projections. The argument is that education serves as a clear, if not

the single most important source of population heterogeneity, as higher education leads to

lower mortality and fertility [Lutz and Skirbekk, 2017, p. 2]. Thereby the addition of the

education element serves as a supporting quality dimension to predicting future population

numbers. It is however stressed by Lutz et al. [2014a] that it is nearly impossible to proof

causality between these factors under all circumstances and cultures, yet they argue that

there are good reasons for assuming that the assumption would hold over the projection

period [KC and Lutz, 2017, p. 182].

4.3 Comparing Projections

The UN data is the most used population projection but the IIASA is also widely used.

These are therefore the main focus in terms of possible predictions for creating future

spatial distribution of population [Lutz et al., 2014a, p. 528].

As described previously the UN and SSP population projections do not match up

completely. As can be seen from �gure 4.1, showing the scenarios as graphs of projected
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world population by the UN and SSP, these are quite di�erent.

Figure 4.1: Comparison of UN and IIASA medium population projection scenarios
[United Nations, 2017b; IIASA, 2018]

From these we can see that the UN population projection predicts a vastly higher amount

of population growth for both the medium variant compared to the SSP2 scenario and the

high Variant compared to the SSP3 scenario. On the medium scenario the UN projects

a growth towards a world population of approximately 11.2 billion people by the year

2100 compared to the SSP2 projection which projects more than two billion less people at

approximately 9 billion people by end of the decade.

One reason for this is as previously touched upon that the UN and IIASA population

projections use di�erent assumptions for how to calculate future fertility and mortality

trajectories which result in di�erent population projection results. However, there are

two other factors that impact this. The �rst is the fact that IIASA adds a level of

education as an impacting factor on especially fertility. When this arguably important

source of population heterogeneity factor is taken into account it can impact projections

signi�cantly. An example of this can be seen from Nigeria. Here the UN projects a

population increase from 160 million to 914 million from 2010 to 2100 compared to the

IIASA, who using education as a factor, projects an increase to 576 million by 2100 [Lutz

et al., 2014b]. Unrelated to that, the second factor is that the UN and the IIASA have

di�erent approaches to current fertility in China and Africa. In the example Nigeria from

2014, the UN uses an assumption that a woman gets an average of six children, which
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has been steady for the previous 10 year period. Data from 2013 however, point toward

an average of 5.5 children per women in Nigeria, which the UN projects to hit around

2020-2025. As a result IIASA research argue that the UN is slow to adjust to new data

and changes because of their statistical approach [Lutz et al., 2014b].

In the scope of this report, the problem lies in projecting where people will live in the

future and in that respect we build upon, and therefore inherit the same challenges and

uncertainties as displayed from the di�erent population projection choices.

In relation to spatial population geosimulations and spatial demographic projection

research, there are examples of both the UN and the SSP projections being used.

Keÿler and Marcotullio [2017], uses the data supplied by the UN DESA as that data

simultaneously distinguish between rural and urban population per country which can

support the spatial distribution of the population numbers. In comparison, Jones and

O'Neill [2016] uses the SSP population projections in conjunction with the matching SSP

urbanization projections to generate an outcome that matches the SSP prediction.

As such there are examples of contemporary research relying on either of the two datasets.

While the demographic projections that the IIASA SSP projections seem the most inclusive

as they are based on both a qualitative, as well as a quantitative research process and

include more demographic elements in the form of the education parameter.

The data used for the spatial projections in this report will mainly rely on the IIASA SSP

medium scenario. This is done to be able to create a result consisting of comparable spatial

projections for multiple countries or regions based on the same population projection.

These can then in the future be compared to results based on di�erent population

projections to see how this a�ects the projected future spatial distribution.

The di�erences between projections also highlight that every result that builds upon the

population projections, and thereby the projected spatial distribution of the projected

population, must be regarded with a higher risk and uncertainty the further it goes into

the future. This is unavoidable due to the nature of predicting an aspect of the future that

depend on human behaviour which apply to both projecting population development but

also to the projection of the spatial distribution of said population.

This section answers the �rst sub-question of; What projections of future population growth

are applicable to project future spatial distribution?. Both the UN and the IIASA SSP

population projections which are introduced are highly used and projects population

growth by country until 2100. The IIASA SSP projections seem to have a slight edge

as it is uses more elements in form of education which arguably have a high impact on

future population growth. In the scope of applicability in regards to spatial population

distribution, there are examples of both being used in current research and the numbers

projected are the main di�erence between the two. The numbers however do not a�ect

the spatial projection method, but only the results.

The next chapter will investigate available data that is applicable to recognise population

patterns, and thereby can be used to make a gridded population distribution prediction.
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In recent years there have been a substantial development in relation to available satellite

imagery and spatial datasets, that are relevant for global human population estimation

and mapping. This section introduces available data that can be used within a machine

learning environment to model future spatial population distribution in di�erent countries.

Furthermore, it will investigate the data in terms of its characteristics and the methods

used to produce the data.

5.1 NASA Socioeconomic Data and Applications Center

Gridded Population of the World (GPW) is a global dataset developed by Center for

International Earth Science Information Network (CIESIN). The �rst version of GPW was

released in 1995, and the current GPW version 4 (GPWv4) was released in July 2016

and updated in November 2017. GPW models the human distribution on Earth, on a

continuous global raster surface with di�erent target years. The latest GPWv4 consists of

the following layers and target years [CIESIN, 2016]:

� Population Count (2000, 2005, 2010, 2015, 2020)

� Population Density (2000, 2005, 2010, 2015, 2020)

� UN WPP-Adjusted Population Count (2000, 2005, 2010, 2015, 2020)

� UN WPP-Adjusted Population Density (2000, 2005, 2010, 2015, 2020)

� Data Quality Indicators (2010)

� Land and Water Area (2010)

� Administrative Unit Center Points with Population Estimates (2000, 2005, 2010,

2015, 2020)

� National Identi�er Grid (2010)

� Basic Demographic Characteristics (2010)

Di�erent resolutions and formats are available for the GPWv4 dataset. The native and

most detailed resolution is a global gridded output of approximately one kilometer at

equator in reference system GCS WGS 1984. The grid has also been aggregated to other

lower resolutions of approximately 5, 30, 55 and 110 kilometers. All layers are available in

GeoTi�, ASCII and �ve of the layers are also available in NetCDF format. However, the

NetCDF format is not available in a 1 kilometer resolution [CIESIN, 2017, p. 4].

Development Method

The GPWv4 uses an areal-weighting method combined with census data to produce a

gridded raster surface covering the Earth. The development consists of the following steps:
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1. Locate tabular population counts

2. Match population counts to geographic boundaries (census or administrative)

3. If needed, adjust boundaries to the global framework

4. Estimate population for target years

5. Adjust population to UN estimates

6. Estimate population by age and sex

7. Transform to raster

The GPWv4 is developed by collecting tabular population data from national statistical

o�ces and organisations. This data is then matched to spatial boundary data from national

agencies such as statistical o�ces, mapping agencies and planning agencies. To ensure

alignment between boundary data, it is then matched to the Global Administrative Areas

(GADM) data layer [Hijmans et al., 2015]. Thereafter, the population is estimated and

adjusted for all census or administrative areas, and adjusted to the UN estimate if needed.

The estimated population within each administrative boundary area is then distributed

using an areal-weighting method to a one kilometer grid [CIESIN, 2017, pp. 6-11].

Accuracy and Limits

Because of the way the GPWv4 dataset is developed using areal-weighting, it may have

certain characteristics that the user needs to keep in mind. By not using additional data

for allocating the population to the grid other than census data within the administrative

boundaries, and by utilizing a simple areal-weighting approach, the data keeps the �delity

of the input data. However, the areal-weighting method is a�ecting the precision of the

population within each cell in the grid, as the precision and accuracy of a given cell is a

direct function of the size of the input administrative area. This means, that in countries

or areas, where the input administrative areas are quite large, the precision within each

grid cell will be degraded [Lloyd et al., 2017b, p. 2]. Therefore, study areas that are

smaller than the average size of the administrative units, should not be used. As such, the

data is most suited for larger study areas and will only be applicable for local analysis in

certain places. Furthermore, the data also contains arti�cially high population densities

along coastlines next to high populated areas, where actual land area within a given cell

may be very small. This is again related to the areal-weighting method [CIESIN, 2017, pp.

24-25].

5.2 European Commission � Global Human Settlement

Layer

The Global Human Settlement Layer (GHSL) project is supported by the Joint Research

Centre European Commission which contributes to the project together with CIESIN,

Columbia University. The project produces several datasets that contain information

about the spatial population distribution on earth. These data layers consist of built-

up areas, population density maps and settlement maps. The information for these layers

is derived from data mining technologies and evidence-based analytics of global archives

with satellite imagery, census data and volunteered geographic information. The data is

automatically and systematically processed to generate information about the presence of

population, settlements and infrastructure. The dataset consists of the following layers

and target years [European Commission, 2015]:
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� GHS Built-Up Grid (1975, 1990, 2000, 2015)

� GHS Built-Up Quality (1975, 1990, 2000, 2015)

� GHS Population Grid (1975, 1990, 2000, 2015)

� GHS Settlement Grid (1975, 1990, 2000, 2015)

Depending on the data layer, the data is available in di�erent resolutions. The layer is

either available in a 38, 250 or a 1000 meter grid in reference system GCS WGS 1984.

Built-Up Grid is available in all resolutions. Built-Up Quality is only available in a 38

meter grid. Population is available in 250 and 1000 meter grids and Settlement is only

available in a 1000 meter grid. The data is available in raster format as TIFF �les together

with OVR (pyramids) �les [European Commission, 2016].

Development Method

The GHSL project builds upon the GPWv4 project, to produce a multi-temporal

population grid with better resolution than GPWv4. This is done by combining the

GPWv4 population estimates from CIESIN with GHS Built-Up presence for the years

1975, 1990, 2000 and 2015 to a 250 meter grid. Population estimates are produced and

provided by CIESIN for the target years. The population estimates are then matched to

administrative boundaries and checked for bordering issues, because di�erent countries or

administrative areas can have di�erent surveying techniques. To correct these issues, the

GADM data layer is used. Furthermore, the GHS Built-Up layer, which is derived from

LANDSAT imagery for the target years, has been aggregated from the native 38 meter

grid to a 250 meter grid, which describes the proportion of built-up area within each cell.

The �nal population grid is produced through raster based dasymetric mapping, where

the Built-Up layer is used to allocate and restrict the distribution of the population [Freire

et al., 2016, pp. 1-3].

Accuracy and Limits

A validation was performed by IRC and CIESIN on a sample of the data to ensure that all

of the input population was disaggregated, and that the totals from each administrative

area was preserved. This was performed through a correlation analysis on a sample of

18 European countries resulting in an r-value of 0.83, which means that there is a strong

correlation between the input population and the disaggregated result from the dataset

[Freire et al., 2016, p. 4].

5.3 WorldPop

The WorldPop project started in 2013 to combine the continent based studies of Afripop,

Asiapop and Ameripop. The aim with the project is to produce detailed population

distribution data for the whole of Central and South America, Africa and Asia that can

be used to measure the future impact of population growth and facilitate planning. The

resolution of this dataset is a 100 × 100 meter grid [WorldPop, 2016a]. The coordinate

system varies, but usually UTM is used for country level data with people per hectare

or a country speci�c grid. Datasets with people per pixel is usually projected in GCS

WGS 1984. The temporal resolution is however varying between two or three target years

[WorldPop, 2016b].
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Production Method

Like GHSL, WorldPop also uses a semi-automated dasymetric modeling approach, where

population census data, satellite images, administrative areas and ancillary data used as

a weight layer, are combined in a 100 meter grid to estimate the population distribution

for di�erent years. The approach is similar to GHSL, but Worldpop also uses the ancillary

data which are comprised of layers that describe the land cover and subsequently have a

relation to the presence of people. These land cover data are among others; urban area,

water bodies, trees, industrial area, slope and protected areas [WorldPop, 2016c].

5.4 Ancillary Datasets

In dasymetric modelling, it is common to include ancillary data layers, that can have an

in�uence on the population distribution. This is done to improve the detail and precision

of the estimates and can be done by utilizing the relationship between the ancillary data

and the presence of, or lack o�, people.

This can be seen in the population grids introduced previously, for example the WorldPop

project use them for estimating spatial population distribution based on historical data

[Tatem, 2017]. In both previous and current research, there are examples of using ancillary

data to estimate current and future land use or urban growth, and to support estimation

of future spatial population distribution.

Herold et al. [2003] use slope, roads network, lakes, ocean, parks and natural preserves

as ancillary data to describe and improve estimation of future urban growth. What this

points toward is that there is a correlation between for example the slope of a given area

or distance to nearest road and future urbanization.

The same point is made by Pijanowski et al. [2013], as they use ancillary data such as

distance to existing urban area, distance to stream, distance to primary road and more, to

support a simulation urban growth. In this report which focuses on US data, they discover

that highways in this case had the highest positive contribution to the goodness of �t of

the model [Pijanowski et al., 2013, p. 262].

While these examples of literature do not directly link the associated ancillary data with

population, they do link it to urban land use. This logically leads to the conclusion that

if urbanization is linked to these factors, so is population, as urbanization usually follow

increasing population numbers. There is of course exceptions related to industrial areas

where people do not live. In the same way, areas with water bodies are likely linked as

a limiting factor to urban land use and can thereby also be used as a logical inhibitor to

human habitation in general.

These links are also supported by the research on future population distribution. Keÿler

and Marcotullio [2017] uses water bodies to ensure that the population estimation is only

done on viable areas and urban extends as this is a key part of their model. In the same

way, Jones and O'Neill [2016] uses slope, surface water and mandate for protection to

narrow down where future urbanization and thereby population increases are likely to

occur.
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As such, existing research underline that ancillary data is a key component in improving

the estimation of future spatial distribution of population. Which ancillary data to use

depends on what is being modelled and what the researcher is trying to estimate. The most

commonly used datasets describe areas with; slope, major roads and various land cover

types like permanent water bodies, wetlands, forests and protected nature types [Nagle

et al., 2014, p. 3].

Ancillary Data

The following subsection will investigate the availability and coverage of possible ancillary

datasets that can have either a negative or a positive correlation with population and

settlement distribution.

The Copernicus Programme

Copernicus Global Land Service is part of the Land Monitoring Core Service. The

Copernicus Programme monitors the earth to provide a wide range of services by combining

data from satellites and ground censors. The pan-European component of Copernicus

coordinated by the European Environment Agency (EEA) provides land cover and land

use data which covers Europe. Potential ancillary data from Copernicus and coverage

years are listed below [Copernicus, 2018]

� Corine Land Cover (1990, 2000. 2006, 2012)

Corine land cover consists of 44 di�erent classes of land cover types such as; water

bodies, sea and ocean, forests, green urban areas, continuous urban fabric etc.

available as vector data.

� EU-DEM Slope (2012)

Slope is available as a 25 meter resolution raster grid

� Forests (2012)

Forests is available in a 20 or 100 meter resolution raster grid

� Permanent Water Bodies (2012)

Permanent Water Bodies is available in a 20 or 100 meter resolution raster grid

� Wetlands (2012)

Wetlands is available in a 20 or 100 meter resolution raster grid

Other Datasets

As mentioned, major roads are also an indicator for the presence of people and for

expansion of settlement which always branches out from existing roads. Sources with

road data that has a good coverage are found to be OpenStreetMap and Socioeconomic

Data and Applications Center (SEDAC), which is a department under NASA. Sources

with available road data with global coverage and the layer names are therefore;

� OpenStreetMap - Roads

� SEDAC - Global Roads Open Access Data Set
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EEA is also a large provider of di�erent environmental datasets. One of the datasets

provided contains lakes and rivers available as vector data [European Environment Agency,

2012], which can be useful for calculating coverage. OpenDataSoft also provides di�erent

free datasets, among those are European train stations [Capitaine Train, 2015] which likely

correlate with the presence of population.

� EEA - European Lakes

� OpenDataSoft - European train stations

This section has touched on topics in relation to the second sub-question from the research

question section:

What high resolution spatial and historical population data exists and what geographical

features a�ect future spatial population distribution?

Upon researching what spatially explicit population data that exists, it is apparent that

the availability of such data and its temporal resolution is fairly limited. When estimating

the future population for a given country or region, there is a need for a wide range of

ancillary and population data for as many target years as possible, which leaves a wider

temporal resolution as something to be desired in the current datasets. As it can be seen in

the summary data table 5.1, three sources for temporal population data was found, them

being SEDAC, European Commission and WorldPop. Of these three data sources, the

European Commission data seems to be a somewhat precise and detailed dataset in terms

of its grid size of 250 meters and its population estimate in each grid cell. SEDAC has a

larger grid size and does not incorporate built-up areas when estimating the population

in each grid cell, from the administrative areas. WorldPop has less coverage and with a

temporal resolution of only two to three target years.

The next chapter is investigating research and approaches that have been used to create

spatial population distributions, while examining it in a machine learning context.
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Source Layer Name

Data Format

Grid Sizes

meters = m,

kilometers = km

Temporal Resolution

(Target Years)
Coverage

GPWv4 Population Count
Raster
1, 5, 30, 55 and 110 km

2000, 2005, 2010, 2015, 2020 World

GPWv4 Population Density
Raster
1, 5, 30, 55 and 110 km

2000, 2005, 2010, 2015, 2020 World

GPWv4 UN WPP-Adjusted Population Count
Raster
1, 5, 30, 55 and 110 km

2000, 2005, 2010, 2015, 2020 World

GPWv4 UN WPP-Adjusted Population Density
Raster
1, 5, 30, 55 and 110 km

2000, 2005, 2010, 2015, 2020 World

GPWv4 Data Quality Indicators
Raster
1, 5, 30, 55 and 110 km

2010 World

GPWv4 Land and Water Area
Raster
1, 5, 30, 55 and 110 km

2010 World

GPWv4
Administrative Unit Center Points
with Population Estimates

Vector (Point) 2000, 2005, 2010, 2015, 2020 World

GPWv4 National Identi�er Grid
Raster
1, 5, 30, 55 and 110 km

2010 World

GPWv4 Basic Demographic Characteristics
Raster
1, 5, 30, 55 and 110 km

2010 World

GHSL GHS Built-Up Grid
Raster
38 m, 250 m and 1 km

1975, 1990, 2000, 2015 World

GHSL GHS Built-Up Quality
Raster
38 m

1975, 1990, 2000, 2015 World

GHSL GHS Population Grid
Raster
250 m and 1 km

1975, 1990, 2000, 2015 World

GHSL GHS Settlement Grid
Raster
1 km

1975, 1990, 2000, 2015 World

WorldPop Population 100 m
Varies between 2010 to 2020
with two or three target years.

Central and South America,
Africa and Asia

Copernicus Corine Land Cover Vector 1990, 2000, 2006, 2012 Europe

Copernicus EU-DEM Slope
Raster
25 m

2012 Europe

Copernicus Forests
Raster
20 m and 100 m

2012 Europe

Copernicus Permanent Water Bodies
Raster
20 m and 100 m

2012 Europe

Copernicus Wetlands
Raster
20 m and 100 m

2012 Europe

OpenStreetMap Roads Vector Varies World

SEDAC Global Roads Open Access Data Set Vector
Varies depending on country
from 1980 and 2010

World

EEA European Lakes Vector 2012 Europe

OpenDataSoft European Train Stations Vector 2015 Europe

Table 5.1: Summary table of sources and available data
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The SSP and UN scenarios predict an increase in the human population throughout the

21st century (cf. chapter 4). To meet the challenges that arise with such an increase, it is

essential to know the future spatial distribution of people [Keÿler and Marcotullio, 2017].

This will allow governments and organizations to assess resource allocation, transport and

urban planning, poverty mapping and environmental impacts among other, which thereby

allow them to act proactively [Lloyd et al., 2017a].

The idea of projecting future population can be traced back to 1798, where Malthus [1798]

put focus on issues arising with population increase. More recently, studies have been

trying to �nd methods to predict population growth on a country basis, but also in higher

spatial resolution with grids from 1.000 × 1.000 meter to 100 × 100 meter. The addition

of geosimulation has played a major role in achieving such high spatial resolution.

Torrens and Benenson [2005] introduced the concept of geosimulation, which is based

on Cellular Automata and Multi-Agent Systems, combined referred to as Geographic

Automata Systems. In such a system automatons change states in time-steps according to

predetermined rules based on internal and external information. In general an automaton's

neighbourhood impacts the change in states the most. However, the automatons can

also change location allowing for simulating moving objects such as migrating households,

that gives the opportunity to model complex phenomena. Geosimulations were initially

used in urban modeling, but have many other use cases in a spatial context, for example

distribution of population over time. Benenson and Torrens [2004] have implemented such

a geosimulation approximating the future global population.

Keÿler and Marcotullio [2017] have recently published an article that introduces a

population geosimulation. The simulation estimates the future spatial population

distribution globally on a grid with 1.000 × 1.000 meter resolution up to year 2100. The

approach in this paper is based on rules that randomly relocates people into cells so that

they match the population projection of UN DESA. In addition country-speci�c thresholds

on the cells' maximum number of people are used to determine how the population is

distributed. The simulation runs the rules in ten year increments [Keÿler and Marcotullio,

2017, p. 2]. This, despite its simplicity, produces a seemingly realistic scenario on a

global scale. However, to capture the future spatial population distribution accurately on

a local scale, more complex simulations will be needed. This could be in the form of a

model with more complex rules based on statistics as proposed by the authors, but we

believe this problem is potentially better suited for a machine learning approach [Keÿler

and Marcotullio, 2017, p. 3].
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Machine learning, and especially neural networks, can pick up patterns that are hard for

humans to discover, and even then are extremely hard to capture in a programming context.

This is due to its ability to mimic complex phenomena through layers of neurons that are

interconnected with weights and biases, as shown in �gure 6.1. The input layers represents

the features that are used to predict the output, where the hidden layers are used to �nd

patterns in the input features. While traditional machine learning techniques like Linear

Regression, K-means, Decision Trees and Random Forest are generally easier to set up and

trains faster, they tend to perform worse than neural networks when predicting complex

phenomena. This is evident from, among other, the ImageNet competition, where neural

networks outperforms other machine learning algorithms [Goodfellow et al., 2016, pp.

18-25]. This is the reason why we are exploring the usage of neural networks, and not

other machine learning techniques, to estimate future population, which is a very complex

phenomenon as it depends on numerous factors and their interaction with each other.

Figure 6.1: Simple neural network showing the connections between neuron-layers [Nielsen,
2017]

Furthermore, historical population data is now available in structured grids as found in

chapter 5. This �ts neural networks' requirement about having highly regular data input

[Qi et al., 2016, p. 1].

There are three paradigms within machine learning; supervised learning, unsupervised

learning and reinforcement learning [Sutton and Barto, 2017, pp. 1-2].

Supervised learning is used to predict phenomena by training a model fed with input

and labeled data. The model creates a function so the model's output has as big of an

resemblance as possible of the labeled data. When this process, called training, is �nished it

is possible to use new input data, but without the labeled data, to predict the phenomenon

[Learned-Miller, 2014]. This is used in di�erent �elds such as speech and image recognition

that has a wide range of application uses.
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Unsupervised learning is used to �nd hidden structures in unlabeled data [Sutton and

Barto, 2017, p. 2]. A simple example is height and weight di�erences between men and

women, where an unsupervised learning algorithm can separate such data points into two

clusters. A more useful example is to use it for data security, where an unsupervised

learning algorithm can detect anomalies and act on those [Eskin et al., 2002]. This

paradigm has a lot of potential as there is no need for creating labels manually, which

can be a hindrance as it takes time and are not necessarily simulating the correct behavior

[Hinton and Sejnowski, 1999].

Reinforcement learning trains agents to take actions in an environment towards a speci�c

goal [Sutton and Barto, 2017, pp. 1-2]. The agent is rewarded for desired actions leading

it closer to the goal, thus making it go through a trial-and-error process to determine the

best actions. This means that this technology is excelling, when it is possible to de�ne an

isolated environment and de�ne rules and a goal within it [Sutton and Barto, 2017, pp.

2-4]. This is for instance used in games, where the goal is to win, where the likes of

AlphaGo have beat the best human players in Go [Sutton and Barto, 2017; Churchland

and Sejnowski, 2016, pp. 365-372].

The supervised learning paradigm is the most suitable for our project. We have historical

data that can be used as input and labels. In addition, this data has undergone data

processing making it suitable for this project (cf. chapter 5). At the same time there is

no apparent way to create an environment with rules and a goal, to resemble the required

conditions in reinforcement learning. The neural network method, CNN, that is part of

the research question and typically used for supervised learning is explained below.

CNNs emerged in 1998 with Yann LeCun's neural network (LeNet-5) inspired by the

research made by Hubel and Wiesel [1962] on the visual cortex and receptive �eld

[LeCun et al., 1998, pp. 2284-2285]. The concept of CNNs builds upon construction

of complex patterns, that can be used to analyze images, based on local features derived

from neighboring pixels. This is based on the assumption that neighboring pixels are

more correlated than others, which corresponds well with Tobler's �rst law of geography

"everything is related to everything else, but near things are more related than distant

things" [Tobler, 1970, p. 236]. Thus, it should be possible to use a CNN similarly to analyze

spatial phenomena, such as the focus in this project; spatial population distribution. At the

same time neural networks have become more feasible due to the amount of data available

and increasing computing power. The data makes neural networks able to train on large

amounts of historical data to learn, and the computational improvements makes it possible

to do it within a reasonable time frame. Krizhevsky et al. [2012] showed the potential

of neural networks in 2012 in the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC), where he achieved the highest accuracy with his CNN AlexNet. Most recently

the CNNs GoogLeNet and ResNet have achieved even higher accuracy in the competition,

which just stresses the continuous improvement in the �eld [Szegedy et al., 2015; He et al.,

2016]. There are other types of neural networks such as the recurrent neural networks that

memorizes data used in speech, but they are not nearly as e�cient in recognizing spatial

and gridded patterns [Goodfellow et al., 2016, pp. 326-335].

A simpli�ed describtion of CNN's is that they operate by �nding patterns in image format

data. An example of this could be an input image of 224 × 224 × 3 pixels. In this case
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the �rst two numbers refer to the height and width of the image and the last number

refers to the depth which for regular images is three from the red, green, blue image layers

(RGB). The basics of the CNN is that the computer reads the input pixel as a number

corresponding to for example the RGB 255 color scale in pictures. This can then be used to

�nd and identify patterns by applying supervised machine learning like CNN [Goodfellow

et al., 2016].

The CNN trains on the image through convolutional layers. In the �rst convolutional layer,

the �lters applied looks for a certain amount of overall patterns such as orientation, lines,

colors etc. An example of such a trained layer can be seen visualized below in �gure 6.2.

Figure 6.2: Example visualisation of an initial convolutional layer trained on AlexNet
[Krizhevsky et al., 2012, p. 6]

A second convolutional layer then applies the �ndings from the �rst one and combines

them to create new and more complex set of patterns than the �rst convolutional layer.

An example of a visualization of a second convolutional layer can be seen in �gure 6.3

where elements such as lines, circles and curves are combined.

Figure 6.3: Example visualisation of a second convolutional layer [Zeiler, 2015]

In short, the more correctly applied layers the more complex and unique shapes the neural
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network is capable of identifying. This also depends on the data that the �lters are trained

on, as in most cases it is trained as a supervised learning from which it learns the �lters

as visualised in �gure 6.2, 6.3 and 6.4.

Figure 6.4: Example visualisation of a third, fourth and �fth convolutional layer [Zeiler
and Fergus, 2013]

When the model with all trained layers is applied it will ideally recognize the pattern of the

image to be somewhat similar to the images trained on and classify the content accordingly.

While this is a very simpli�ed way of describing the more advanced CNNs, since they utilize

a number of advanced functions to change values, decrease size by combining values to,

for example, decrease processing time and improve recognition ability. This is also based

on the fact that most CNNs are, as previously noted, used to classify image content such

as a certain object like a car, boat or horse.

The use of neural networks is not entirely new in geographic science as Tang et al. [2006]

back in 2006 proposed to use neural network models to improve population estimates.

In 2013, Pijanowski et al. [2013] made use of a CNN in a geographical context, where the

Stuttgart Neural Network Simulator was used. The neural network they created performs a

geosimulation that predicts urban growth on a national scale. The geosimulation is based

on The Land Transformation Model, which uses historical data to learn about spatial

patterns. The model's results are validated against independent datasets from another

source or year, as there are no ground truth to validate against.

Another study, authored by Robinson et al. [2017] uses a CNN on satellite imagery to

estimate population in a 0,01° × 0,01° grid. Di�erently from our study, the authors are

trying to compliment the existing gridded population data such as the once mentioned in

chapter 5 (WorldPop, SEDAC and GHSL), rather than predicting the future population

distribution. The neural network is trained on input from LANDSAT and US Census

population counts from year 2000 and validated on the same data from year 2010. They

have treated the problem as a classi�cation problem and based the architecture on the

VGG-models in the high-level neural network API, Keras [Simonyan and Zisserman,

2014b]. This means that rather than �nding a speci�c number of people within a grid

cell they have classi�cations such as; no people, few people and many people.

The text above answers the sub-question; What current models and technical approaches

are, or can be, used to project spatial population distributions? and touches on the other

sub-question; How well does the model predict future population distribution?.
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In regard to the �rst of those questions, it is apparent that a lot of models that deal

with spatial change already exist. Those models have been changing over time, and have

gotten better. Currently geosimulations have been used to simulate and estimate similar

challenges to that of our research objective. However, this approach become increasingly

harder the more complex the model, while also su�ering from performance issues. A

handful of studies have also used neural networks to estimate and predict spatial change,

but all as classi�cation problems. We want to implement a CNN that solves a regression

problem, e.g. the number of people within a given cell. This will be done by creating a

network architecture that captures the spatial patterns in spatial population development

based on historical population data paired with features such as slope, height, water and

infrastructure.

Validation of population estimates can be tricky as there is no ground truth to compare the

results to. This is also applicable for regular historical population counts or the population

grids mentioned in chapter 5, as they all have uncertainties attached to them. Nonetheless,

those datasets can be assumed to be somewhat close to reality and thus also be used as

validation datasets, while keeping their uncertainties in mind. This means it could be

possible to train the model on a number of years and then leave a year out for validation

like Pijanowski et al. [2013] and Robinson et al. [2017] do. Another approach is to train

the model on a country and use that model on another country in the same region, that

can be expected to have similar population distribution patterns.

This chapter marks the end of the Literature Review, and the next focus will be on

the preparation and implementation of spatial population distribution predictions using a

CNN.
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This chapter will answer the secondary part of the fourth sub-question;

How can the CNN setup for projecting future spatial population distribution be constructed

and how can the used geospatial data be processed and prepared to work with it?

After acquiring and downloading the necessary raw data from di�erent portals and data

suppliers listed in chapter 5, it needs to be prepared and formatted correctly, so that it

can be used by the CNN. The input format for the CNN is normally in the form of images.

This means that it is based on reading a set of pixels where every pixel contains one value.

This is the same principle as with raster geodata. The e�ect of this is that every set of

data needs to be formatted and contained in an image-like format.

In this case a TIFF image �le format has been chosen. The TIFF �le can be geocoded

as a GeoTIFF which means that its geospatial location can be saved and read from the

metadata. This is however not useful in relation to using the data in a CNN environment

- rather the geolocation known in the GeoTIFF metadata is merely the outermost X and

Y coordinates of the entire array of pixels which is useful for later visualization. Each

TIFF �le can however contain multiple bands which can be described as di�erent sets of

pixel values, which means that every set, both population data and ancillary data, can

be saved into the same �le in di�erent bands. Before the data is saved as di�erent bands

in the TIFF �le format, the needed calculations and preparation has to be done. In the

case of this project the preparations are done partially by python scripting, tools such as

a PostgreSQL/PostGIS database as well as GDAL and OGR2OGR tools.

This chapter contains a presentation of how the raw data from chapter 5, consisting of

population and ancillary data is processed through Python and PostgreSQL to prepare it

for use with the CNN. The whole preparation process is illustrated in �gure 7.1.
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Figure 7.1: The data preparation process in Python and PostgreSQL

7.1 Initial Data Preparation

The data preparation is handled with the use of Python programming, di�erent libraries

for example GDAL, and PostgreSQL to prepare the raw data for use with the CNN. In

this project it was decided to automate the preparation process to be able to process data

for one country at a time when needed. Several approaches were investigated, especially
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how to optimize the time consuming spatial queries in PostgreSQL. In the initial setup,

the data was processed in PostgreSQL on a country level, which led to queries taking days

to calculate. A solution for this was found by combining Python loops with a grid and

through an iterative process calculate smaller sections of the map at a time. The whole

data preparation process illustrated in �gure 7.1 consists of several scripts and is explained

in subsequent text.

The whole algorithm is divided into several scripts and functions:

� main.py - main script, choose country, di�erent options and run the data preparation

� process.py - script for initial data preparation and import of functions from other

scripts

� import_to_postgres.py - contains a function to import data to PostgreSQL

� postgres_queries.py - contains the PostgreSQL query setup

� postgres_to_raster.py - contains functions for extraction of data from PostgreSQL

and conversion to raster format.

� rast_to_vec_grid.py - contains a function for converting raster to vector grid

The initial part of the data processing is handled in Python with the use of GDAL. This

process takes care of limiting and extracting the data that matches the chosen country and

prepare it for import to PostgreSQL. This is done to limit the data and optimize calculation

time, by only operating on data within the spatial extend of the chosen country.

The chosen country is �rst extracted with GDAL from the GADM adm0 dataset containing

country polygons and an extent or bounding box layer is created. The extent is then used

to clip the country out of the slope and GHS population rasters. The end result of this,

is four population rasters for the years 1975, 1990, 2000, and 2015, which are saved in a

merge folder awaiting merging with other data. The slope raster, which is in a grid of

25 meters, is altered to 250 meters with gdalwarp by using the extent of one of the GHS

population raster �les through a subprocess call.

1 cmds = 'gdalwarp -s_srs EPSG:54009 -tr 250 250 -te {0} {1} {2} {3} -cutline {4} -srcnodata 255

-dstnodata 0 {5} {6}'\

2 .format(minx, miny, maxx, maxy, cutlinefile, srcfile, dstfile)

3 subprocess.call(cmds, shell=True)

We are using the world Mollweide equal area projection, EPSG 54009. The reason why

this projection is used is because it is an global equal-area projection which aligns with

the idea of being able to make spatial population predictions for any country in the world

or even on a global scale. It is also the same format that the GHS population data is in,

which makes it easy to use this as the basis and adapt other data to it. The drawback

of using a pseudocylindrical projection is that the scale becomes less accurate the farther

away from the 40:44 N and 40:44 S standard parallels. For this research it means that

this should be considered when preparing data for certain locations such as far from the

center of the projection - and under certain circumstances such as calculating distances to

a linestring with few vertexes, that have been reprojected from another projection.

Afterwards, the slope pixel values, which initially have values between 0 and 255, is

recalculated with an equation provided with the dataset, to give the real slope value

between 0 and 90 degrees, before the slope raster also is saved in the merge folder.
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1 cmds = 'python {0}\gdal_calc.py -A {1} --outfile={2}

--calc="numpy.arcsin((250-(A))/250)*180/numpy.pi" --NoDataValue=0'\

2 .format(python_scripts_folder_path, dstfile, outfile)

Next, two vector grid layers are created with the function "rasttovecgrid". This is a 50

km iteration grid and a 250 meter analysis grid, which are used in PostgreSQL to speed

up the query calculation time and to store data. The spatial extent is taken from one of

the existing population rasters and grid cell size is set to 250 meters.

1 rasttovecgrid(out_file name and path, minx, maxx, miny, maxy, size_x, size_y)

The rest of the data, which is water, municipalities, train, Corine cover and roads, are

prepared by either clipping to country extent or extracting necessary features with ogr2ogr

before importing them to PostgreSQL together with the iteration- and analysis grid.

7.2 Calculation in PostgreSQL

After the data is loaded into PostgreSQL the main calculations are done based on area.

The main concept of this, is that there is a need to process the vector data and other

information into an input, such as an integer, that can be interpreted by the CNN and

output it in a pixel based format. The data handling with Python in PostgreSQL is built up

around the 50 km iteration grid and communication with PostgreSQL is handled through

Psycopg2, which is a Python package for handling comminucation with PostgreSQL. This

section contains a walk through example of the processing done and the queries used, which

is illustrated in �gure 7.1 in the box labelled PostgreSQL. All coverage calculations follow

the same procedure, which is described below.

The �rst step in the data process is to get the id numbers of all the cells in the 50 km

iteration grid covering the chosen country, which are saved in a list called ids with the

following code:

1 # getting id number of sections within the iteration grid covering the country

2 ids = []

3 cur.execute("SELECT gid FROM {0}_iteration_grid;".format(country))

4 section_id = cur.fetchall()

5

6 # saving ids to list

7 for id in section_id:

8 ids.append(id[0])

The list of ids is then used to iterate through the 50 kilometer grid, selecting one 50

kilometer section at a time. For each section, a check is initially performed, this check

is implemented to speed up the overall query time, as the check does not cost a lot of

time. For the Corine 1990 layer, the check is performed by con�rming, if the 50 kilometer

section intersects with any Corine data. If it does not intersect, there is no need to

calculate anything as the coverage column in the 250 meter analysis grid is initially set

to 0 by default. Therefore, the script proceeds to the next section in the 50 kilometer

grid. If the section does intersect with the Corine 1990 data layer, the section is saved as

a table containing the 250 meter grid cells' geometry and ID's for further processing, as

seen below in the code.

1 for section in ids:
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2 # start single section query time timer

3 t0 = time.time()

4

5 # Check if section intersects with corine cover layer

6 cur.execute("SELECT {0}_iteration_grid.gid \

7 FROM {0}_iteration_grid, subdivided_{0}_corine90 \

8 WHERE ST_Intersects({0}_iteration_grid.geom, subdivided_{0}_corine90.geom) \

9 AND {0}_iteration_grid.gid = {1};".format(country, section))

10 result_check = cur.rowcount

11

12 if result_check == 0:

13 print("Section number: {0} \ {1} is empty, moving to next section".format(section,

len(ids)))

14

15 else:

16 print("Section number: {0} \ {1} is not empty, Processing...".format(section,

len(ids)))

17

18 # select cells that is within each section and create a new table

19 cur.execute("CREATE TABLE section_nr{1} AS (SELECT {0}_cover_analysis.id,

{0}_cover_analysis.geom \

20 FROM {0}_cover_analysis, {0}_iteration_grid \

21 WHERE {0}_iteration_grid.gid = {1} \

22 AND ST_Intersects({0}_cover_analysis.geom,

{0}_iteration_grid.geom));".format(country, section))

23 conn.commit()

The last part of the code is the actual calculation of the Corine coverage. The query

selects all the ID's in the section, which is actually the ID's of the 250 meter grid cells

within the section and calculates the intersection area between a 250 meter cell and Corine

1990 cover. The result is then saved in the 250 meter analysis grid, where the ID's match

between the section ID and analysis grid ID. Lastly, the section table is dropped, before

moving on to the next section in the 50 kilometer grid.

1 # calculating corine 1990 coverage

2 cur.execute("WITH a AS (SELECT section_nr{1}.id, sum(ST_AREA(ST_INTERSECTION(section_nr{1}.geom,

subdivided_{0}_corine90.geom))/62500*100) as corinecover \

3 FROM section_nr{1}, subdivided_{0}_corine90 WHERE

ST_intersects(section_nr{1}.geom, subdivided_{0}_corine90.geom) \

4 GROUP BY id) \

5 UPDATE {0}_cover_analysis SET corine_cover90 = corinecover from a WHERE a.id

= {0}_cover_analysis.id;".format(country, section))

6 conn.commit()

7.3 Post Data Preparation

When all the data, consisting of water, Corine 1990, Corine 2012, train, roads,

municipalities has been calculated and saved in separate columns in the 250 meter analysis

grid. It is then exported to di�erent shape�les by the use of ogr2ogr as seen in examples

below.

1 cmd = 'ogr2ogr -f "ESRI Shapefile" {0} PG:"host={1} user={2} dbname={3} password={4}" \

2 -sql "SELECT id, corine_cover, geom FROM {5}_cover_analysis"'.format(path, pghost, pguser,

pgdatabase,

3 pgpassword, country)

4 subprocess.call(cmd, shell=True)

Once all the data has been exported, the shape�les are then turned into rasters to match

the GHS population raster with gdal_rasterize as seen below. These �les are then saved
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in the merge folder, where the slope and population raster �les also are located.

1 cmd = '{0}\gdal_rasterize.exe -a CORINE_COV -te {1} {2} {3} {4} -tr {5} {6} {7} {8}' \

2 .format(gdal_rasterize_path, minx, miny, maxx, maxy, xres, yres, src_file, dst_file)

3 subprocess.call(cmd, shell=True)

The last operation is merging the raster �les into single multiband raster �les for the years

1975, 1990, 2000 and 2015. This is done with gdal_merge.py. The input for this script is

an out�le path and name, and a list of TIFF �les that needs to be speci�ed in the same

order as the bands they should be saved in. In this process the population rasters are

divided into the four years and a merge with the ancillary data is performed for each of

the four years. Furthermore, the Corine layer also has di�erent years, 1990 and 2012. It

was decided to include Corine 1990 for the years 1975 and 1990, and Corine 2012 for the

years 2000 and 2015.

1 outfile = country_path + "\{0}.tif".format(1975)

2 original_tif_pop = merge_folder_path + "\GHS_POP_1975_{0}.tif".format(country)

3 water = merge_folder_path + "\{0}_water_cover.tif".format(country)

4 road_dist = merge_folder_path + "\{0}_roads.tif".format(country)

5 slope = merge_folder_path + "\slope_{0}_finished_vers.tif".format(country)

6 corine = merge_folder_path + "\{0}_corine1990.tif".format(country)

7 train = merge_folder_path + "\{0}_train_stations.tif".format(country)

8 municipal = merge_folder_path + "\{0}_municipality.tif".format(country)

9 cmd_tif_merge = "python {0}\gdal_merge.py -o {1} -separate {2} {3} {4} {5} {6} {7} {8}"\

10 .format(python_scripts_folder_path, outfile, original_tif_pop,

11 water, road_dist, slope, corine, train, municipal)

12 subprocess.call(cmd_tif_merge, shell=False)

The merged TIFF �les one for each year is then saved in a �nal folder, ready to be used

in the CNN, as seen in the bottom of �gure 7.1.

In the next chapter the convolutional neural network architecture is described, tested and

adapted. This will then fully answer the fourth research question.

50



The Neural Network 8
This chapter shows how we have been using machine learning to answer the �rst part of

the sub-question;

How can the CNN setup for projecting future spatial population distribution be constructed

and how can the used geospatial data be processed and prepared to work with it? The second

part of the question will also be addressed in section 8.2 as chapter 7 does not cover it

completely.

The machine learning framework used is Google's Tensor�ow which provides functions and

methods to support a neural network architecture. This also means that Python is used,

as it is the main language that Tensor�ow is directed towards [Google, 2018a].

8.1 Programming Structure

The structure of the project's machine learning code is important to ensure simplicity

that helps with understanding, using the code and following the principles of the practical

methodology from section 3.1, that refers to the design and structure of the code's ability to

adapt to changes. Our structure is heavily inspired by Gemy's GitHub project Tensor�ow-

Project-Template, while also picking up elements from Qi's PointNet [Gemy, 2018; Qi

et al., 2016].

The structure allows for changing model hyperparameters in a con�guration �le. his means

that parameters such as learning rate, batch size etc. can be controlled and changed in

one place when training and testing di�erent scenarios. In addition, the di�erent models

can be saved in speci�c folders, indicated in the con�guration �le, which makes it possible

to have log data, models and output for multiple countries and regions at once, in a simple

and controlled way. The code design is object-oriented, thus allowing for easier debugging

and avoidance of redundant code among other.

Gemy's structure is well accepted on GitHub, meaning that our structure should be natural

to navigate for developers and researchers familiar with machine learning. This will allow

for easy replication of this project's setup and methodologies.

The structure can be seen in �gure 8.1 below. It consists of the following folders: base,

con�gs, data, data_loader, data_scripts, experiments, mains, models, trainers and utils.

The data-folder contains the input data that was created in chapter 7 and data_scripts

have the code from that chapter.
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Figure 8.1: Folder structure used in the programming structure

The folder, which contains the classes for base-model and -trainer, is base. The base-classes

ensure that di�erent models and trainers inherit the same methods, thus making a change

to a model or trainer easier.

When the base-classes are created, the model(s) and trainer(s) which are tailored to our

solution, can be used. The models and trainers are available in the models- and trainers-

folder respectively.

The utilities folder, utils, contains scripts that logs results, parse the con�guration �le and

creates new folders in experiments based on the country or region that has been chosen.

Before training can be started, data needs to be processed and loaded so it �ts the model's

data placeholders' shape, in Tensor�ow this is where the input data will be assigned upon

training, testing and use. This is done with scripts in the data_loader folder, which

loads the previously prepared data from data, and also generates arrays that �ts the

before-mentioned placeholders. Furthermore, the user needs to specify parameters for the

con�guration-�le, in the con�gs folder, as mentioned above.

The mains folder contains the main �le, which utilizes and gathers the elements from the

other folders. This means that when running this �le it will automatically load in the data

chosen in the con�guration, load in the model and start training and testing as well as

logging the process.

Trained models are saved on the �y so that it is possible to have access to models even

though the training has not yet �nished. In addition, a model will be created when the

last epoch of the training has been run. This folder also contains the script, that uses a

trained model to generate an output e.g. a prediction for the the future spatial distribution

in the given area. Outputs, logging and models are saved within the experiments folder's

sub-folders such as country- or region-names like Denmark, India and Northern-Africa.
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8.2 Neural Network Preparation

In chapter 7 we create a multiband TIFF that can be imported as a 3D-Tensor, which

has the shape; [height, width, features]. This tensor will have to be processed further

for it to be used in the neural network. In theory we could feed in the whole tensor at

once, but this creates several issues. One is that it takes a lot of memory to run all the

data simultaneously, while only allowing the weights to update once per epoch, which is

ine�cient in itself. In addition, some optimizers have hard times escaping local minima,

if the data is not noisy, which is not the case when the whole dataset has been processed.

This results in an even more ine�cient training that might get stuck [Bottou, 2010; Ge

et al., 2015]. Furthermore, this will only allow the model to be used for equally sized tensors

limiting the use to the country it was trained on. Thus, it will remove the possibility to

use the model for parts of the country or other similar countries. The alternative is to use

batches, where a batch contains a small sample of the dataset. In models that train on the

renowned MNIST-dataset which consists of 70,000 images of handwritten digits, a batch

is typically set to 100 images [Google, 2018b]. However, our dataset is one grid and not

a bunch of images like the MNIST-dataset or many of the other datasets used in CNNs

(cf. chapter 6). To cope with this, the grid is divided into mini grids, in this report called

chunks, that each basically resembles an image as shown in �gure 8.2. Hereafter we can

divide the chunks into batches like image-data.

Figure 8.2: Visualization of the transformation from grid to chunks

The size of the chunks are important, as they need to be so big that geographic patterns

and their developments such as edges of settlements can be learned by the model. At

the same time their size should not get too big as the issues with memory and e�ciency,

mentioned above, will re-emerge. It is also worth noting that the countries tend not to �t

the placeholders meaning we have to create null-cells, to keep the tensor-shape valid. This

means that we have to add null-cells based on the remainder between chunk size and the

input tensor's height and width as shown in equation 8.1.

null_cells = chunk_size− input_tensor mod chunk_size (8.1)
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An example is shown below, where chunk size is 16× 16 and the input tensor's height and

width is 31 × 27, which shows that there should be added one row and �ve columns of

null-cells, making it a 32×32 tensor. The values carried by the null-cells are corresponding

to the value that are expected to have the least appeal to people, meaning that they are

�lled up with water, far away from roads and has no population etc.

(16, 16)− (31, 27) mod (16, 16) = (1, 5)

Despite the irregularity created by the null-cells, the model should learn that people cannot

live in a null-cell and thus not distribute people there, and in any case the �nal output gets

clipped to its original width and height. Figure 8.3 below shows the concept of null-cells.

Figure 8.3: Addition of null-cells to make tensor valid

With the chunks and null-cells we have a data-structure that is similar to that of regular

images, which as previously mentioned is known to work well with CNNs. Therefore, we can

split the dataset randomly into a train- and test-set. The training data will directly impact

the model's weights and biases and that way continuously improve it until convergence.

After each epoch of training the model is tested on the test data, to check for over�tting,

and importantly the results are not used to update weights and biases, to avoid the model

being correlated to that data. Because the model is tested for every epoch it is possible to

see the cost function's progress over time, thus determining if the training is going well.

The data can also be divided into a third category, evaluation data. This data works like

the test data, but where the test data can be used to adjust the hyperparameters such as

number of epochs, learning rate and the architecture of the model itself, evaluation data

is only used in the very end for a �nal evaluation. The concept of dividing the data into

train, test and eval data is shown on �gure 8.4.
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Figure 8.4: Flow-chart that shows the usage of train, test and evaluation data

The randomization happening in the split of the data is important as the model can then

otherwise have problems converging. This will happen if the model is fed the same type

of chunks over and over again, leading it to, wrongfully, believe that this type is the true

value of all chunks [Bengio, 2012].

We have opted not to normalize all the data because we are interested in the actual

population values and their development. It is hard to capture future development, when

all data is between zero and one. In addition, there is no obvious way to obtain the original

unit, which makes it harder to de�ne thresholds based on population projection numbers

from SSP. The disadvantage is that the training will take longer to converge because the

initial values are so di�erent, not all between zero and one, thus making it harder for the

weights to adjust.

The training will be done chronological for each epoch so 1975 - 1990 is used �rst, then

1990 - 2000 and �nally 2000 - 2015, where the last year works as label and the �rst as

input. It could potentially also be viable to train on all of the dataset on equal terms, but

we believe the most recent years should have the most impact on the model, thus training

on them last makes sense. After dividing the data it is now ready to enter the neural

network.

This �nishes the answer for the last part of sub-question How can the CNN setup for

projecting future spatial population distribution be constructed and how can the used

geospatial data be processed and prepared to work with it?, that partly have been covered

in the previous chapter as well as in this section. When data is prepared for a CNN like

the one in this project it requires multiple processing steps, and can be quite an extensive

task. This goes from handling big TIFF-�les, spatial operations and merging rasters as

initial actions to create a multiband raster. This raster needs further processing in the

form of null-cells, randomization among others to match the neural network's placeholders

and general criteria. Some of the preparation is essential for the neural network, while

other are best-practice approaches to obtain good results in a machine learning context.

The next section will present the neural network architecture used and the reasoning behind

it.
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8.3 Neural Network Architecture

A supervised machine learning approach with CNN is well suited for �nding patterns in a

gridded geographic dataset like ours, as mentioned in chapter 6. Therefore the architecture

is built up around this.

We are using the Recti�ed Linear Unit (ReLU), f(x) = max(0, x), activation function to

determine whether a neuron should �re or not. This is based on research showing that

ReLU trains much faster than traditionally activation functions like Tanh and Sigmoid

without su�ering from accuracy issues [Krizhevsky et al., 2012, p. 3]. In this project we

are also interested in values that are above one, ReLU can do exactly that.

Most studies using CNNs uses Cross-Entropy as their cost function, this includes the

majority of the CNNs mentioned in chapter 6. However, Cross-Entropy is designed for

categorical data in classi�cation problems, and thus is not applicable for the problem we

are trying to solve. Instead we need a cost function that can evaluate continuous data

by measuring how far o� it is from the correct continuous values. Mean Absolute Error

(MAE), de�ned as equation 8.2 below, can do exactly this, and is our choice of cost

function.

MAE =
1

n

n∑
i=1

|yi − ŷi| (8.2)

The choice is based on the preservation of unit, in this case population numbers, making

it easier to relate the error to the actual problem. This means an error of one, can be

directly translated into an average deviation of one person per cell. Other regression

functions like Root Mean Squared Error (RMSE) and Mean Squared Error punishes

bigger errors as it squares the errors, which can be bene�cial in some cases. While

RMSE seems to also preserve unit Willmott and Matsuura [2005] argues that it is an

inappropriate and ambiguous measure of average error. Their argument is that RMSE

has three characteristics; average, power and square and thus is biased from the power

and square components compared to MAE that only has average. This further establishes

our choice of cost function. MAE keeps track of how well each cell matches up with the

label cell, but we do also need to track and train on the overall population progress to

implement the projection numbers from SSP2 (cf. chapter 4).

To do this we introduce a complimentary cost function that takes the di�erence between

the predicted sum for a chunk and its label. The label is de�ned as, popproj
popchunkcur

popcur
,

where popproj is the total projected number for the population, popcur is the total current

(training data year) population number and popchunkcur is the current population in the

given chunk. Thereby we try to retain some similarity to the percentage of population that

is within the chunk, while applying the projection number and guiding the development.

The weight of each of the cost functions are set to 80 procent and 20 procent for MAE and

the complimentary cost function respectively based on results from the testing (cf. section

8.4). The target value for the combined cost function is one, based on the criteria from the

practical methodology, which might seem low. But in Denmark alone there are 2.6 million

cells meaning this target error could at worst be o� with 2.6 million persons, if all of the

errors are either below or above the label value. The higher the population density of the
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country or region the less this error means relatively.

We are using the Adaptive Moment Estimation (ADAM) optimizer to minimize our cost

function. ADAM has advantages over the traditional Gradient Descents optimizers, as it

progressively adapts and decreases the learning rate on the �y. This gives the option to use

a larger learning rate in the beginning, thus allowing for fast convergence. This also means

that we do not have to spend much time tuning the learning rate. ADAM, alongside most

optimizers in machine learning, is using backpropagation to determine which weights and

biases have to be adjusted to minimize the cost function [Kingma and Ba, 2014; Bengio,

2012; Walia, 2017].

We want the output tensor shape to be equal to the input's shape height and width, as

the algorithm needs to predict the future population for the area represented by the input

tensor. This means that we have to design the architecture so we get this shape. The

output shape after going through a convolutional layer is given in equation 8.3, where the

following parameters are included; �lter size (F), input size (W), padding (P) and stride

(S). Filter size is the tensor shape of the �lter used for convolution and input size is the

tensor shape of the input chunk. Padding is extra cells that are added around the input

chunk to make sure that the output of the convolutions match the desired shape. The last

parameter, stride, represents how many cells the �lter moves on the input chunk. All the

parameters are visualized on �gure 8.5.

Figure 8.5: Illustration of convolutional layers - �lter size (F), input size(W), padding (P)
and stride (S)

output_shape =
W − F + 2P

S
+ 1 (8.3)

For this equation to maintain the same shape we need to add a certain amount of padding
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depending on the �lter size and stride. Equation 8.4 is applicable for getting the same

shape when stride is one. Maintaining the shape of the �rst three dimensions (batch size,

height, width) is desired in this project because we want the output width and height to

be equal to that of the input shape's. The padding used is symmetric, which prevents the

model from predicting sharp edges between chunks.

padding =
F − 1

2
(8.4)

When multiple �lters are used, each produces a data point in the last dimension. In

our project this means a 4D-tensor input as [batch size, chunk height, chunk width,

no. features] will get the shape [batch size, chunk height, chunk width, no. �lters].

Cutting edge neural networks in image recognition are using downsampling techniques

like pooling, larger strides and dilated convolutions. The downsampled results represent

di�erent features in an image whether that is hair, a nose or some other object and

thus does not necessarily need all of the values from the original input image leading

to a computational performance improvement [Springenberg et al., 2014]. In this project

we will not use downsampling, as we are interested in population in all cells, and can

therefore not a�ord to lose or generalize information in neighbouring cells. While we do

not downsample the grid size, we are downsampling the number of features to just one,

representing population.

The �nal architecture, named PopNet, illustrated in �gure 8.6, consists of three consecutive

convolutional layers each using a �lter size of 3 × 3 and having 256 �lters. This is based

on the technique used by VGGnet [Simonyan and Zisserman, 2014a]. The idea behind the

consecutive 3× 3 convolutional layers is that they add up so that the second convolution

of 3 × 3 would e�ectively cover an 5 × 5 area, as it is based on the results of an initial

3× 3 convolution and so on [Simonyan and Zisserman, 2014a, pp. 2-3]. In addition to the

convolutional layers, there are two dense layers, the �rst one having 512 neurons and the

second one at the end connecting all the neurons into one output prediction.

Figure 8.6: Cnn Structure

This architecture represents one way to set up a CNN for projecting spatial population

distribution.

The architecture has continuously been adapted and improved through the testing covered

in the following section.
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8.4 Testing

The architecture has been adjusted based on a number of tests and incremental changes,

based on the practical methodology in section 3.1, which has been used to understand the

functions, input and processes in relation to the output. This gives an insight into how

to a�ect the output toward a realistic prediction function. Tensorboard's graphs, log �les

and visualizations of the output are used to evaluate the changes.

To do this in a structured manner the di�erent hyperparameters must be tested and

assessed if not individually then methodological. There are multiple aspects that need to

be tested and assessed, which cannot be done in a reasonable amount of time if they are

tested for all possible scenarios. As an example we do not test the impact of changing

the chunk size twice just because there has been changes to other hyperparameters or the

architecture, unless we have a suspicion that it will have a di�erent impact than earlier.

As such, there are overall multiple aspects to changing and adjusting hyperparameters.

Some of the tests have shown obscurities in the trained model due to input layers' values.

For example the default value of the distance to roads of water covered tiles was set to

a value of one million meters. This resulted in the removal of population within entire

chunks that had a lake in it, as shown in �gure 8.7. While this is not realistic, it does

show that the neural network is capable of restricting areas that it weights unsuitable for

population. The solution to the issue was adjusting the distance to road value initially

from one million to �fty thousand.

Figure 8.7: Two chunks in the middle of Copenhagen completely emptied for people due
to lakes in them
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Throughout the testing it also became apparent that the algorithm could not recognize

unique patterns around larger cities, which we believed to be a result of lack of input

features. This resulted in the algorithm having an upper bound of around 200 people

per cell, which lead to a severe underestimation of the amount of people in larger Danish

cities like Copenhagen and Aarhus, where there are cells that should have more than

3,000 people. So despite having a cost function that meets the target value and most

cells are predicted correctly as shown from the histogram in �gure 8.8, the model gives an

unrealistic picture of the future spatial population distribution. Furthermore this model

strengthens its own patterns from iteration to iteration as it aggressively spreads larger

cities boundaries to meet the projected population number for the country in question. At

the same time it captures the pattern of urbanization, leading to towns and villages being

abandoned, however it is seemingly exaggerated making the prediction less realistic.

Figure 8.8: Population di�erence cells from 2015 to a predicted population distribution in
2020

For the model to be able to recognize the patterns in the cities we tried to feed it more

data. For this the number of train stations within a distance from each cell has been

used, as this should likely correlate with how large and dense a city is. Despite adding

this data it did not help the underlying problem, which was caused be the architecture

itself. The network architecture used Local Response Normalization (LRN) layers after

each convolution as done in AlexNet [Krizhevsky et al., 2012]. The implementation of

the LRN layers did improve the speed at which convergence occurred, but as the name

suggest impacted the output values as these became normalized in the network, and thus

60



8.4. Testing Aalborg Universitet

had lower maximum values than intended. This use of LRN layers was thereby removed

from the architecture of PopNet.

We have also been trying to add administrative boundaries to the algorithm. The goal was

to recognize patterns that divides urban and rural municipalities and through that improve

the accuracy. However, categorical data needs to be embedded, in a one-hot encoding or

similar, to make sense in a machine learning context. Because CNNs are mostly used for

image-recognition Tensor�ow is not supporting categorical data since it only makes sense

if the data represents temporal or spatial data that relates to the image. Therefore, we

have not tested this feature, but suspect that it could provide improvements to the �nal

model.

Besides the data, the variables related to the neural network setup needs to be tested. An

assessment is needed of the e�ects of the following hyperparameters and functions.

� Batch size

� Chunk size

� Learning rate

� Number of epochs

� Population projection

� Cost function

� Optimization function

� Activation function

� Depth and width

Changing chunk size has a big impact on the cost function as well as the nature of the

output. Small chunk sizes from 8 × 8 to 32 × 32 lowers the cost function over time and

leads to converging, but the size itself limits those chunks. This limitation manifests when

the model allocates people to a populated chunk iteratively resulting in the chunk getting

�lled with population, as pictured in the timeline in �gure 8.9. This issue stems from

the fact that the model evaluates and predicts each chunk individually and thus cannot

distribute people into neighbouring chunks. This issue could possibly be solved by use of

overlap between chunks or by relating the given chunk to its surroundings, so it is aware of

the pattern in neighbouring chunks and can adapt accordingly. These ideas are illustrated

in �gure 8.10 and 8.11, but has not been implemented because of its complexity and likely

corresponding time requirements. Zhang et al. [2018] have recently used self-attention in

a CNN, which is similar to the surroundings idea and has shown to do well in capturing

long-range dependencies. This presents an actual way of taking cells that are not inside

the immediate neighbourhood into account.
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Figure 8.9: Chunk being �lled by population symbolized by the white colour

Figure 8.10: Chunks showing the overlapping idea
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Figure 8.11: Chunks showing the surroundings idea

To lower the impact of the issue mentioned above, it is possible to create larger chunks

from 64× 64 to 128× 128 as they will be �lled up less frequently. However, those chunks

tend to not improve as the training goes on. We believe this is a result of the bounding

box of Denmark containing a lot of water, which drowns the other features, meaning that

the algorithm has a hard time distinguishing small parts of a large chunk from each other,

that should have a relative large impact. This results in almost all population cells being

set to zero and despite how unrealistic this scenario is it does in fact produce a relative

good cost function at around two because so many cells in the ocean do indeed have zero

population. So choosing a chunk size at around 16×16 currently makes for the best results.
In addition we are shifting the chunks, as shown in �gure 8.12. This shifting is an addition

of a random number of null cells to the top and left side of the array, between zero and

half the chunk size. This removes or at least makes the chunk edges less visible, that was

an issue caused by the chunk being �lled up.
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Figure 8.12: Illustration of chunk shift implementation

Changing the learning rate should not have a big impact, as the ADAM-optimizer is

updating it along the way. It was however found during tests that the initial learning rate

was essential to avoid the ADAM-optimizer to initially fail under certain circumstances

due to what we suspect is testing all �lter weights as 0 with good results, resulting in it

�nding a local minima it could not escape. This tendency can be seen visualized through

Tensorboard in �gure 8.13 of the training from where it can be seen that the cost function

did not decrease beyond the initial improvement even after running 400,000 batches. Due

to this we lowered the learning rate tenfold to 0.0001 which seemingly allows the optimizer

to �nd di�erent improvements and avoid getting stuck, allowing the ADAM-optimizer to

then set an appropriate learning rate itself.

Figure 8.13: Cost function improvement over continuous training - The orange graph shows
training- and the blue shows test progression

Testing other optimizers like gradient descent showed worse results than ADAM, and

required much more �ne-tuning of the learning rate to obtain a reasonable result.

Test of alternative activation functions to ReLU, Sigmoid and Tanh, also does not have

any notable impact on the cost function value. Nonetheless Sigmoid and Tanh function

does slightly a�ect the computation speed negatively, which was expected as papers have

documented that ReLU reduces the likelihood of vanishing gradient [He et al., 2016].
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The number of epochs required to run before convergence depends on the chunk size. Small

chunks requires fewer epochs to obtain good results, around 40 to 200 epochs depending on

country size, while large chunks improves slower. However, we have not run the model long

enough to observe an actual converging, as it keeps improving, even though it diminishes

over time.

The batch size determines how often the neural network's weights are updated. We have

observed that the batch size generally does not impact the result. However, Keskar et al.

[2016] have shown that large batch sizes performs worse which also relates to the point

made about running the whole dataset at once in section 8.2. Therefore, we are using

batch sizes of 16 or below depending on the chosen chunk size.

The cost function evaluates on the chunks as well as the cells, as described in section 8.3.

MAE, that is used for evaluating the cells have the biggest impact on reducing the cost

function. This has led to better results, when the cost function that evaluates the individual

cell population change, have a higher weight and the chunk evaluation a comparatively

lower weight. The result of this is that the weighting in the �nal model is distributed

80/20 percent to individual evaluation and chunk evaluation respectively.

Depth and width of a CNN refers to the number of convolutional layers, depth, and the

number of �lters applied within each layer, width.

As were covered previously in section 8.3 our current applied neural network consists of

three individual convolutional layers consisting of 256, 256 and 256 �lters respectively.

Regarding the number of convolutional layers chosen for the CNN, multiple things were

revealed by testing. In theory, more convolutional layers and a larger number of �lters can

more precisely recognize and identify unique patterns as the amount, and the complexity

of both, increases with a higher number (cf. chapter 6). This is supported by the �ndings

and trends of CNN research such as Goodfellow et al. [2013] which found that increased

CNN depth improved performance in street number recognition. The trend also seems

clear when looking at the CNN contestants of ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) over the years where the number of convolutional layers applied tend

to increase from year to year.

If you compare the network created for the purpose of this report to well known CNNs

such as AlexNet (2012) or VGG Net (2014), one can see that both the number of �lters

and convolutional layers are higher. AlexNet applies �ve convolutional layers with between

48 and 192 �lters [Krizhevsky et al., 2012]. In comparison VGG Net has a more special

structure applying only 3 × 3 �lter dimensions and applied up to 16 convolutional layers

with between 64 and 512 �lters [Simonyan and Zisserman, 2014a]

The subject of convolutional depth and width however also relates heavily to the question

of hardware requirements, and in the scope of this report, limits. While a larger and more

complex network is in essence better the computing requirements do increase substantially

which can be seen again from AlexNet or VGG Net as they before their appliance in the

ILSVRC were trained respectively by two GTX580 GPU's for �ve to six days and four

Nvidia Titan Black GPU's for two to three weeks [Krizhevsky et al., 2012] [Simonyan and

Zisserman, 2014a]. This of course cannot be compared one-to-one with what we test and
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strive to achieve, but still serves as a clear example of the possible computing resources

that can be applied.

With these considerations factored into our tests the goal was to achieve the highest number

of convolutions within the scope of available computational resources. During the tests it

became clear that without applying pooling layers, which we are unable to do due to the

needed output as mentioned in section 8.3, the increase from three convolutional layers to

four, made the neural network's ability to converge too slow with the given resources. An

example of these tests is visualized from Tensorboard in �gure 8.14, showing a network

with three convolutional layers. Here the network starts to improve and converge after

only a few epochs. While the same applies to the network with four likewise convolutions,

each chunk and epoch takes increased time to train equalling a decrease from 36 batches

per second on three convolutional layers, to 26 batches per second with four convolutional

layers.

Figure 8.14: Cost function improvement over continuous training with three convolutional
layers - The orange graph shows training- and the blue shows test progression

As a result of this, the number of three convolutional layers were chosen even though

a deeper network could possibly support better pattern recognition and therefore more

precise predictions of spatial population distribution.

In terms of network width, the number of �lters applied by the convolutional layers, there

seems to be an agreement that a wider network generally improves accuracy to a certain

degree. Tests done on Ca�eNet, which is a copy implementation of AlexNet in terms of

setup, pointed toward that having a narrow network leads to a signi�cant decrease to

accuracy. Continuously increasing width however, only improves accuracy to a certain

point, at which it starts to over�t [Mishkin, 2016]. The same was pointed out again by

Mishkin et al. [2016] who found that network widths contribution gets increasingly lower

as can be seen from their tests on Ca�eNet shown in �gure 8.15, that shows saturation at

about three times the original width.
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Figure 8.15: Ca�eNet image classi�cation performance with di�erent width settings
[Mishkin et al., 2016, p. 13].

What these tests highlight is that network width can have an impact on a larger CNN

such as AlexNet/Ca�eNet, especially if the network width is lower than ideal. There is

however no way of calculating or knowing what the right settings to apply to a given CNN

is, outside of testing it extensively. Increasing the width of the network also increases he

computational requirements and thereby the time it takes to train.

In relation to tests done on our CNN, with the purpose of predicting population

distribution, results of changing the width does also have an impact. It is however harder

to test as a prediction cannot be immediately veri�ed as true or false nor as a result of an

improved cost function.

To test the e�ect of the width of our network a number of tests have been done with

di�erent settings. These were done on the version of PopNet that still utilized the LRN

and as such the exempli�ed results should be seen in this perspective.

One example is a model trained on three convolutions of 128, 128 and 256 respectively,

this has an improving cost function over time. The output value sum that should equal

population were always between 4.9 and 5.5 million fpr every iteration from the year 2020

to 2100. While the projected numbers haven't been precisely hit in any test, this result is

millions o� from the projected increase from 6.8 to 7.4 million. The number however is only

part of the problem as based on inspection clear irregularities seem clear.in Comparison

the model trained on three convolutions of 64, 64 and 64 act di�erently. This model also

have issues with predicting the correct amount of population and has an increasing amount

starting at 6.4 million and ending at close to 12 million. This is thereby also far from the

current or projected population of Denmark. it does however predict city growth in a

pattern that �ts the expectation of growing big cities due to factors such as being trained

on data showing historical urbanization.

Looking at the tests done on that version of PopNet in relation to �lter width, there

is as exempli�ed through above examples, no clear pattern of improvement and change
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seems sporadic. This is likely because other hyperparameters are more essential and that

the performance of �lter width are hard to evaluate when we use the CNN as we do.

Because of this we rely on the theoretical and practical knowledge that numbers between

128 to multiple thousands are likely a good choice [Mishkin, 2016]. This is balanced with

a consideration for the increased computational requirements that follow a wider network

and a middle way between them was chosen. The result of this is a network of three

convolutional layers all consisting of 256 �lters.

Chapter 7 and 8 thereby answers the fourth sub-research question; How can the CNN

setup for projecting future spatial population distribution be constructed and how can the

used geospatial data be processed and prepared to work with it?. Results and experiments

produced with PopNet for Denmark and France will be analysed, evaluated and discussed

in the next part.
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Evaluation 9
This chapter contains the results produced by the �nal models trained on the neural

network architecture and the corresponding evaluation of those results. This speci�cally

relates to the sub-research question How well does the model predict future population

distribution? and partially to What knowledge can be gained from the results, experiments

and tests?.

The evaluation is based on predictions made by PopNet with the settings previously covered

in section 8.3 and 8.4. The CNN models used are one made for Denmark and one made

for France, these are introduced, described and evaluated concurrently. This means that

both will be initially introduced and then evaluated based on di�erent methods that gives

insight into the results and model.

A loose methodological approach is thereby used for the evaluation. This is chosen because

there are no previously created overall methods for evaluating the workings and results

that we would like to achieve. The �ndings and results are then discussed further in the

discussion chapter.

The training parameters for Denmark and France are listed in table 9.1 and 9.2. The

learning rate, batch and chunk size are chosen based on the tests described in the previous

section. The French model has been trained signi�cantly longer, 17 hours, compared to

the Danish model, 9 hours. When examining the cost function for the two models it is

apparent that the Danish model obtains a lower value for the cost function. We believe

that this is because Denmark has many water cells that are relatively easy to predict for

the neural network, and thus lowers the cost function arti�cially. This means that based

on the cost function value, we cannot conclude that one model is better than the other, let

alone conclude whether the models are realistic. However, the cost function does indicate

that the results are somewhat good as they are close to the target value of one, but this will

be investigated later in the evaluation. Another interesting observation is that the French

test has achieved a lower cost function than the training, this is unexpected as the neural

network has not adjusted weights and biases based on this data. But we believe this is

because of the chunks that have been randomly put into the test dataset coincidently have

been easier to predict similar to the water cells in Denmark. Otherwise this just indicates

that the model is not over�tted to the training data.

Danish Model Learning rate Chunk size Batch size No. batches No. epochs Time Cost function

Train
0.0001 16× 16 16

218,000 (70 %)
115 09h00m

0.78
Test 93,000 (30 %) 0.94

Table 9.1: Training and testing of the Danish Model
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French Model Learning rate Chunk size Batch size No. batches No. epochs Time Cost function

Train
0.0001 16× 16 16

455,000 (70 %)
44 17h15m

1.35
Test 195,000 (30 %) 1.23

Table 9.2: Training and testing of the French Model

To evaluate the �nal trained model for Denmark and France, a test is conducted on a

period of time for which we have available data on what change have occurred, and how

the historical population distribution is. To do this, the CNN is set to predict the spatial

population distribution change from the year 2000 to 2015 for both countries. The results

will then be evaluated against the historical 2015 datasets for Denmark and France. The

model is thereby trying to predict data that has been used for training which is not ideal,

but as historical data is sparse, using a period outside of training is simply not reasonable.

The e�ect of this is however negligible as the model is equally trained on the change

between the four periods of time, and thereby cannot simply recreate the progress between

the chosen periods. This can thereby indicate how well the trained models perform, when

trying to predict the future distribution. In the following evaluation for Denmark and

France, the population and mean absolute error in tables 9.3 and 9.4 is based on all cells and

their corresponding values. The remaining presented results of the historical comparison,

only takes cells with a values that are greater than or equal to one into account. The

reason for this is that by excluding the large amount of cells with values below one, such

as water cells and large empty stretches of land, the di�erence in the populated areas that

are hard for the model to predict, become more clear.

The results for Denmark can be seen in table 9.3 and �gures 9.1 and 9.2. When comparing

the prediction to the historical 2015 data, it is evident that the model is slightly o� in its

ability to predict the total population as it predicts 103,856 people less than the historical

population total from 2015. This could among other things be due to the model not being

trained enough and it might bene�t from longer training. The MAE of 0.9, which resembles

the value of the cost function, indicates that the prediction in general on average is o� by

0.9 per cell. The mean and standard deviation of the di�erence between the prediction

and historical data is negative 3.73 and positive 42.37 people respectively. The negative

mean indicates that the model in general is underpredicting by a small fraction and the

data varies around the mean with an average of 42.47, as seen in table 9.3.

Denmark Predicted Population
Di�erence in
Population

Mean Absolute Error Mean Population Di�erence Standard Deviation of Di�erence

Prediction 5,565,141
103,856 0.9 -3.73 42.37

Historical 5,668,997

Table 9.3: Denmark - population di�erence between predicted 2015 and historical 2015

Figure 9.1 shows a comparison between the predicted values and the historical values in a

cumulative histogram plot. The histogram plot shows the number of cells per population

value and is divided into four subplots with population per cell; 0 - 100, 100 - 250, 250 -

500 and 500 - 4000. These show that the Danish model underestimates the number of cells

in the 0 - 15 population per cell range, but catches up to the historical data and predicts

very well in the low population areas with around 15 - 80 population per cell. However,

it starts to underestimate again at around 80 population per cell, which gets worse in the
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range from 100 - 300 population per cell indicated by the blue colour being above the

purple overlap. From 300 and onwards it catches up to the historical data again, which

indicates that the model is actually overestimating. This is also pointed out by the red

colour rising above the purple in the 800 - 2000 population per cell range. In general the

model performs well in its estimation and the di�erence in the distribution is only around

1000 cells at its largest di�erence.

Figure 9.1: Denmark - Cumulative comparison

However, the cumulative only says something about the overall distribution. It does not

say how well the trained model can predict the cell values spatially, as it only gives an

overall picture of the relationship between the number of cells and their values. Figure

9.2 exempli�es how well the model predicts spatially by illustrating, how much it is over-

or under predicting the value in a given cell in four major cities in Denmark. The map

shows that the model both over- and underestimates the values compared to the historical

2015 data. In lesser populated areas outside of the major cities it predicts the values quite

well, where the cells tend to be gray. However, the majority of cells in the cities tend to

be green, meaning that the prediction is overestimating in these cells, which corresponds

well with the �ndings from the previous plots. Showing that the model has a tendency to

over predict in more populated areas.
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Figure 9.2: Areas in major cities with over- and underprediction

The comparison between the prediction values and the historical data for France in 2015

shows that the model is predicting the total population better, and is o� by 30,732 people,

as shown in table 9.4. The mean absolute error of 1.08, which resembles the value from

the cost function, indicates that the prediction in general on average is o� by 1.08 per cell.

The mean and standard deviation of the di�erence between the prediction and historical

data, shows that the mean is negative 2,54. This means that the model in general is

underestimating by a small fraction and the standard deviation is slightly smaller at 29.81,

indicating that the data values have less variance than Denmark.

France Predicted Population
Di�erence in
Population

Mean Absolute Error Mean Population Di�erence Standard Deviation of Di�erence

Prediction 64,364,168
30,732 1.08 -2.54 29.81

Historical 64,394,900

Table 9.4: France - population di�erence between predicted 2015 and historical 2015

Examining the data shown in �gure 9.3 also indicates that the model for France is

underestimating slightly in the lower values between 0 and 15 population per cell, but

is estimating very well in the 15 - 110 population per cell range. It then starts to

underestimate, indicated by the blue colour in �gure 9.3 above the purple overlap becoming

thicker. It starts to overestimate again in the 350 - 1000 population per cell range, where

the blue color becomes thinner, but does not quite catch up to the historical distribution.

In general the model performs quite well in its estimation of the distribution per cell value,

where the di�erence in distribution is only around 6500 cells at its largest di�erence.
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Figure 9.3: France - Cumulative comparison

Examining the distribution for four major French cities in �gure 9.4 it is clear, that the

French model seem to not over- or underpredict as much as the Danish model in cities,

indicated by more cells being gray. It is, however, still moving towards the green, meaning

that it over predicts the cell values a bit compared to the historical 2015 data in more

populated areas.

Figure 9.4: Areas in major cities with over- and underprediction
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Looking ahead and into the future predictions two scenarios have been run on PopNet.

One for France and one for Denmark, on the period from 2020 to 2100 in a ten year interval

based on the IIASA SSP2 population scenarios (cf. section 4). These will be evaluated to

assess the CNNs ability to predict long term spatial population distribution and uncover

insights into strengths and weaknesses, as well as getting a thorough assessment of the

way the model works. This could be both on country scale trends, related to interesting

local or city wide developments, or other changes that warrant further investigation. The

immediate result of the scenarios are nine country wide TIFF images for both Denmark

and France, where each iteration is aimed to achieve a population number close to that

of the SSP2 scenario for the respective year. These predictions for the future population

distribution and their numbers for Denmark and France, can be seen from table 9.5 and

table 9.6 respectively.

While they do not hit the precise numbers of the projection made by IIASA for the SSP2

they are all within ±0.3 percent of the value predicted for the year in question. These

results were achieved by adjusting the input population value in the architecture, for

each year until the output �t. This was done as the population value input is not fully

understood by the model as the maximum population value when run, but does have an

impact that control the output. As such the input population value in the architecture

was not actual SSP2 values for each period but the output achieved was. Getting values

closer to the SSP2 scenario could likely have been achieved, but as the results were within

±0.3 percent they were deemed precise enough. This is because the uncertainty cannot be

eliminated completely anyway, as the model is based on projected numbers and trained on

data that already provide a certain degree of uncertainty (cf. chapter 4).

Year 2020 2030 2040 2050 2060 2070 2080 2090 2100
SSP2 population 5,806,000 6,087,000 6,338,000 6,574,000 6,825,000 7,047,000 7,225,000 7,354,000 7,426,000
PopNet population 5,831,093 6,064,529 6,366,482 6,580,994 6,829,117 7,036,016 7,227,473 7,372,575 7,449,710
Di�erence -25,093 22,471 -28,482 -6,994 -4,117 10,984 -2,473 -18,575 -23,710
Percentage di�erence -0.43% 0.37% -0.45% -0.11% -0.06% 0.16% -0.03% -0.25% -0.32%
Avg. di�erence 15,878

Table 9.5: Denmark - population projection overview

Year 2020 2030 2040 2050 2060 2070 2080 2090 2100
SSP2 population 66,609,124 70,324,320 73,707,429 76,503,876 78,866,247 80,865,224 82,440,492 83,226,046 82,969,660
PopNet population 66,567,282 70,273,243 73,784,940 76,680,008 78,818,427 80,687,394 82,652,028 83,510,848 82,767,475
Di�erence -41,842 -51,077 77,511 176,132 -47,820 -177,830 211,536 284,802 -202,185
Percentage di�erence -0.06% -0.07% 0.11% 0.23% -0.06% -0.22% 0.26% 0.34% -0.24%
Avg. di�erence 141,193

Table 9.6: France - population projection overview

When looking through the individual years some di�erences between the two trained

models can be observed, this can be seen from table 9.7 and 9.8. The Danish model and

prediction is more volatile and varies greater in terms of lowest and highest values within

each 10 year period where the prediction for France seems to be more stable. Where

the maximum value of France stays around 3100 to 3700 over the 80 year time span the

maximum values observed on the results from Denmark vary 4300 over 8700 and ending

back at 5700 in the last iteration for the year 2100. The same tendency can be seen in the

minimum values where the France predictions are stable around -1 and the predictions for

Denmark vary from -30 to -81. The number of cells with a negative value larger than -1 is

very low and seem to disappear or change place from iteration to iteration which suggests
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that the occurrence of negative cells is likely a by-product of the chunk cost function the

model have learned to use as a way to balance the population sum.

Denmark
Year 2020 2030 2040 2050 2060 2070 2080 2090 2100
Min. population value: -30 -44 -70 -65 -41 -43 -46 -81 -70
Max. population value: 4352 4767 5367 6568 7575 8687 7360 6455 5707

Table 9.7: Denmark - Minimum and maximum population values

France
Year 2020 2030 2040 2050 2060 2070 2080 2090 2100
Min. population value: -1 -1 -1 -1 -1 -1 -2 0 -1
Max. population value: 3124 3333 3487 3578 3644 3674 3698 3674 3580

Table 9.8: France - Minimum and maximum population values

9.1 Country Evaluation

Getting close to the target values that are provided by the SSP2 projections and closely

mimicking historical development is a good �rst indication that the model can make

somewhat realistic predictions. However, we need to analyse the predictions more closely to

determine how people are distributed and evaluate whether that distribution is reasonable.

Examining the development from 2015 to 2100 for Denmark, that is shown in �gure 9.5,

gives insight on how the distribution of the cells have changed. Cells with zero population

are not shown on the �gure as they distort the visualization.

Figure 9.5: Population development in Denmark from 2015 to 2100
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From the loss of cells in the 1 - 50 population category it is apparent, that the model has a

strong tendency to depopulate rural cells. This trend can also be seen in the categories 51

- 100 and 101 - 250, however not quite as strong. This tells us that the model has picked

up on the urbanization pattern in Denmark from the historic data. Especially larger cities

become more dense, while also expanding the spatial extents as can be seen from the

increase of cells in the two last categories.

France has some of the same tendencies as can be seen from �gure 9.6. Nonetheless, the

urbanization is not nearly as strong and while Denmark loses cells in the categories 51 -

100 and 101 - 250 France actually gains cells. This is interesting, as it shows us that the

neural network does in fact evolve di�erently from country to country even when build

with the same architecture.

Figure 9.6: Population development in France from 2015 to 2100

Figure 9.7 and 9.8 stresses the fact that it is indeed the large cities that accounts for most

of the population increase, as the latitudes representing Copenhagen, Paris and other cities

spikes the most from 2015 to 2100. In addition the maximum population value of a given

cell increases over the years, as given by table 9.7 and 9.8, which further indicates that the

cities are predicted to become more dense.
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Figure 9.7: Latitude population development in Denmark from 2015 to 2100

Figure 9.8: Latitude population development in France from 2015 to 2100
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In addition, longitude also shows the same trend as shown on �gure 9.7. However, this also

appears to show a slight shifting in the population towards west from 2015 to 2100. This

is especially clear when looking at the zoomed in subplot. This issue will be investigated

further in the next section that analyse the local trends.

Figure 9.9: Longitude population in Denmark for 2015 and 2100

9.2 Local Trends

Looking closer at the population distribution predictions made by PopNet it is possible to

get a more detailed view of the predicted changes over time. The most a�ected places are

the largest cities, which in the countries the model was tested on is Paris and Copenhagen.

The changes and interesting insights that can be gained by evaluating on a local scale is

however not limited to these two cities and as such other examples will be presented as

well.

To help make the model, its logic and choices become more transparent the relevant

ancillary data is visualized as well. From this, certain patterns or lack thereof can be

seen as the model is trained and run on all of these simultaneously. As such, all of them

could have potential impact on the predicted spatial distribution. When looking at the

visualization of Paris � France, respectively, the ancillary data in �gure 9.10 and the

PopNet population distribution prediction in �gure 9.11, one can see a consistent growth

in the city across each ten-year period of time.
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When looking at the change across the 2020 to 2100-timespan, an increasing spread of

population can be observed from the city centre and out towards the suburban areas around

the inner city. The city suburbs do however also seem to spread from local population

centres into their own surrounding areas.
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Figure 9.10: Ancillary data in the area around Paris
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Figure 9.11: PopNet predicted population distribution of Paris

At �rst sight there is no clear tendencies to the pattern in relation to the ancillary data

layers. As can be seen from the ancillary layers visualized in �gure 9.10, many of the layers

have either a high degree of uniformity or cover. There is only a few spots of water as
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rivers such as the Seine is not part of the input data layers as the source for inland water

only takes lakes into account (cf. section 5.4). This could however likely have provided

a more detailed water feature even though the Seine river can be seen in the population

data as a less populated line of pixels snaking through the city centre, but this stem from

the GHS data input.

Both the train station layer and the road layer are almost universally present within the

area and as such show no real patterns of impact on the local population distribution here.

Assessing the di�erence between each ten year period, as seen from �gure 9.12, it is clear

that even though the chunks are shifted between each iteration of the model a pattern can

still be observed based on the chunk implementation of the population increase. Another

interesting development can be observed in the last predicted maps for 2090 and 2100.

Here we see population fall slightly in some of the highly populated areas but rising in less

populated areas. The occurrence of this development corresponds with the stagnation and

decrease of overall population projected between 2080 and 2100 covered in table 9.6. As

such, the model does handle decrease of population but also contentiously disperses the

population within a chunk toward a more even distribution.
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Figure 9.12: Population change of Paris between 2020 and 2100

When looking further at the Paris area some interesting things related to the Corine layer

can be seen. If we look closer at the airports we can see that they become increasingly

covered by population. The airport areas are part of the Corine ancillary data and should
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thereby be distinguishable to the model. This process of population development can

be seen on the area surrounding Orly aiport which can be seen in �gure 9.13 where the

majority of the Corine cover shows the airport extends.

Figure 9.13: Population prediction and input data around Orly Airport

As we can see from the maps of the Corine cover and the 2100 PopNet distribution it does

become gradually more covered by population, compared to the 2015 GHS data. This

happens even though it does have lower population values compared to some surrounding

development. The interesting point here, is that not only is the airport not considered

a place where people do not live - but seeing the 2015 GHS population data, we can see

that this already have people living there, which is likely contributing to why population

is distributed there.

A note to this is that the airport cover is melted together with both industry and forest

cover from the Corine layer. This is likely also one reason why the model sees it as

susceptible to population development. These layers are likely to have seen population

developments during the period from 1975-2015 on which it is trained. Looking towards

the real world there is also no saying that an airport cannot be closed down and the area

used for di�erent purposes. This has been seen before with for example Tempelhof airport

in the centre of Berlin [The Guardian, 2015].

Nonetheless this should not be a general tendency and it highlights that the model inherits

uncertainties from the input data, which in this case is the GHS data created from census

data and built-up areas identi�ed from satellite imagery (cf. section 5).
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Another interesting concept that revolves around the Corine ancillary data layer is the

case of forests. Seen in �gure 9.14 is the Saint-Germain-en-Laye Forest that lies on the

north-eastern outskirts of Paris. Looking at this as an example of the forests covered by

the Corine layer in general we can see that the population development does encroach on

the forest over time but that in the case of larger forest areas the process is slow.

Figure 9.14: Population prediction and input data around the forest of Saint-Germain-en-
Laye

Looking at the details it seems that the population development happens from the gaps

within the Corine layer that highlights the centre forest but in the 2100 map one can see

that the model has also created areas within the Corine layer but even these seem to have

grown from already populated cells. As such it is uncertain whether the model is capable of

identifying suitable areas separately from already developed areas or is limited to moving

population to neighboring cells.

Whether or not this development is likely in the real world, is harder to tell. The model is

trained on relatively few data layers and it is possible that some of the forest or nature areas

could be protected by laws or regulations that are unlikely to change even over extended

periods of time.

When looking closer at areas that lie adjacent to water, di�erent tendencies become clear.

The water value is an e�cient feature and the model understands that population does

not live in tiles containing 100 percent water. That the model should clearly recognize

water tiles, is supported by the choices made in the data preparation section, where the

distance to roads layer is also set to 100 on water cells, which is the normalized maximum
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value for that ancillary data layer (cf. section 7).

What is also interesting is that the population on the local scale seem to shift towards

west. This tendency was also previously mentioned in section 9.1. Here it becomes even

more clear, as can be seen in �gure 9.15, because the shift moves population into the water

tiles which does not occur under any other circumstances.

Figure 9.15: Population prediction and input data of Marseille city

The shift is subtle and occurs gradually over the periods or iterations of the model and

only moves one or two pixels over the total period. However, one or two pixels still equals

a shift of between 250-500 meters which is a lot on a local scale.

This shift also happens when the model is trained on Denmark which points toward it

being a general problem that might relate to core functions of the CNN and possibly the

chunk cost function, the speci�c reason is however currently unknown.

Outside of the observed shift, the general predicted population distribution of Marseille

seem to follow the same tendencies as Paris with a general increase and spread of population

from the city centre.

Looking at the Danish model and outputs, several di�erences can be seen on a local scale.

First of all Copenhagen as illustrated in �gure 9.16 and 9.17 below, have a more central

development with higher population growth in the centre, and compared to Paris, less

urban expansion outwards from the city centre.
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Figure 9.16: Ancillary data in the area around Copenhagen
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Figure 9.17: PopNet predicted population distribution of Copenhagen

If compared with the visualization of the French capital Paris in �gure 9.11, it is also clear

that tendencies observed in section 9.1 can be seen here. There is a clear tendency that

the model trained on France spread the population over a larger area where the model
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trained on Denmark increase inner city cell values of especially Copenhagen. One reason

why this could be the case could be due the large amount of water around the centre of

Copenhagen that limits the possibilities of the model to expand outwards as e�ective as

for example Paris that does not have this restriction.

Another reason why, could be a di�erence in the models as they are trained on the di�erent

data sets of Denmark and France from which we can see there is a variation as previously

covered.

This di�erence can also be seen in the population change between each period compared

to the maps of Paris showing the same thing. As �gure 9.18 shows, the variation within

the individual chunks vary more between areas. This local variation di�erence between

Copenhagen and Paris could be the result of the input GHS data, being of di�erent spatial

quality. While all cells in the GHS layer are 250 × 250 meters, the population value

contained in these are based on census blocks which vary in spatial size. A possible result

of this, is that the GHS populaion data for Paris in the input data, is evenly distributed

across the individual census blocks. For Copenhagen, this e�ect can also be seen but on

a smaller scale, likely due to smaller census districts that thereby distribute data more

precisely and spatially varying in the GHS grid.
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Figure 9.18: Population change of Copenhagen between 2020 and 2100

Another curious thing is how certain areas avoid population increases all through the

period even though as just stated certain cells have massive increases. From �gure 9.19

an example of this can be seen, the map shows the area of Utterlev-mose which is a park,
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lake and marsh area in the north-eastern part of Copenhagen.

Figure 9.19: Population prediction and input data around Utterslev-mose

Here a development can be seen that highlights the area around the green space even

clearer than the 2015 GHS pop layer does initially. While some part of the change can

be explained by the occurrence of water in the south-eastern part of the marsh the model

itself seemingly recognizes a pattern that makes this identi�able. This could potentially

be the sparse population in the GHS layers it is trained on, but no obvious explanation

can be seen from the ancillary data. It is as can be seen from �gure 9.17 a development

that occurs at multiple locations in Copenhagen and tends to be on parks, cemeteries or

other likewise places - although none as clear as the example of Utterslev-mose.

When looking at population distribution outside of the large cities we can see a tendency of

depopulation in the rural areas. Especially the smallest townships and singular populated

pixels with no neighbours seem to have values relocated into the larger towns and cities.

Figure 9.20 highlights an example of such a development in Northern Jutland where it can

be seen that larger towns and cities grow while the smaller townships grow smaller and

less populated over time.
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Figure 9.20: Population prediction overlayed distance to roads ancillary data

What �gure 9.20 also shows, is a map of the normalized distance to roads. This shows

that the distance to roads value seem to have an e�ect as populated pixels with high

distance to road values seem to be almost completely removed over the 85 year time span.

This tendency could however also be caused simply by the larger towns and cities which

then happen to lie within areas with less distance to roads. Thus making it seem like

the development happens due to the distance factor rather than simply due to population

gravitating towards larger cities. One thing that seems to point toward this is that the

populated cells along the roads which can be seen in the 2015 GHS population distribution

in �gure 9.20, also become heavily depopulated when comparing to the 2100 PopNet

prediction.

When looking into the ancillary data layers of number of train stations within 20 kilometers

and the pixel slope percentage we can see that they seem to have an e�ect. For the

slope layer the only place this can be seen is in the mountainous regions of France where

population decreases in the pixels with high slope values. It is however hard to ascertain

whether this phenomenon happens because of the slope values themselves or due to the

urbanization pattern that decreases population outside of towns and cities. When looking

at the average population on the pixels for France that have a value above zero categorized

by slope value, visualized in �gure 9.21, it can be seen that the values all increase over

time. The only cells that do not seem to follow a similar pattern are the pixels with a

value representing 10 degrees or more slope. These seem to start increasing in population

more rapidly from 2040 and onwards but this tendency coincides with the beginning of

the shifting cells that occur towards the left. Given the low amount of cells with a slope

value above 10 only a few populated shifting to have a large impact on the average. The

same tendency could likely be occurring within the other categories as well, but this have
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a smaller impact on those as there are more cells as well as higher population. Looking

at the average in 2015 however, both the category of 5 to 10 degrees and 10 degree plus

are close to each other. This could point toward that the values of 10 degree plus are

recognizable by the model as impactful, but that values below a threshold of 10 are to a

lesser degree.

Figure 9.21: Average population per cell with more than zero population of France,
categorized by slope

Looking at the train station layer the values seem to align as population increase occur in

areas covered by train stations. But whether this happens because of the station pixel value

or because stations are logically placed within areas that already have high population is

hard to say. As such, we see that there seems to be a correlation between the trains stations

and population. We did however already know this, as it was one of the reasons why the

train stations was implemented as a support for the model to identify high population

areas.

Overall we can thereby see that the model itself can project change that is relatively close

to that which have occurred from the year 2000 to 2015 when looking at the numbers. The

model is also capable of projecting future population projections within ±0,3 percent of

the population numbers projected by the IIASA SSP2 scenario. The models of Denmark

and France vary in how much population is moved towards the larger cities but both
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models have a tendency of moving rural population to nearby towns. When looking closer

at the spatial distribution however the model still have a number of challenges. One of

these is an overall tendency that population values seem to shift slightly toward left in the

TIFF images. Another is that population does not respect a number of boundaries and

that ancillary layers have varying amounts of in�uence. This is likely caused by various

elements from how the CNN architecture works to input data quality as well as input data

values. Even with these challenges, the model does clearly identify patterns of population

distribution and successfully projects a future scenario based a controllable population

input.

This answers How well does the model predict future population distribution? and partially

What knowledge can be gained from the results, experiments and tests?. The �ndings will

be further elaborated in the next chapter where a few experiments are conducted to further

investigate the models performance, challenges and limits.
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This chapter tests the models' capabilities and limitations in terms of how they react to

altering of data to usability of models on di�erent countries than they have been trained

on. The limitations will be discussed in regards to possible improvements that could

be implemented. This supports the answering of the sixth sub-research question; What

knowledge can be gained from the results, experiments and tests?.

10.1 Alteration of Data

There are several interesting aspects of altering the input data, as it allows for simulating

di�erent scenarios. One is �ooding a city, which we have tried to understand how the model

reacts. To simulate the �ooding we have placed a lake in the middle of Copenhagen, as

shown in �gure 10.1.

Figure 10.1: Area of lake placed in Copenhagen

Running the model on this data produces a similar result to the original output, which

can be seen from �gure 10.2 that compares the population distribution within the shown

area. This result is unexpected as water should be uninhabitable, and therefore move the

population gradually if not at once. The fact that it does not move the population is �rst

of all a sign that population has a bigger weight and impact in the model than that of
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water, and thus that water only have little in�uence. However, the in�uence it does have

is expected as the experiments population distribution has slightly less people than the

original. Secondly, the model has not encountered a situation with such vast amount of

water and population in the same cells in the training, which probably means that the

model goes back to default and relies mostly on the population feature.

Figure 10.2: Population development distributions around the scenario area for original
and lake scenario

Another scenario created is the addition of a road, that is missing in the original data, at

Ørestaden on Amager. The area, where the road is added is shown in �gure 10.3.
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Figure 10.3: Area of road placed Ørestaden Amager

The impact of the road can be seen from the population distribution comparison of the

area in �gure 10.4, that shows increasing population values. This clearly indicates that

roads, and features other than the population do have an impact on the prediction which

was uncertain from the evaluation chapter.

Figure 10.4: Population development distributions around the scenario area for original
and road scenario
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Looking at �gure 10.5, shows the original scenario versus the road scenario. From

examining those maps it is evident that a rise in population happens around the new road,

which stresses the fact that the road feature does indeed have an impact. In addition, this

could be used to incorporate potential and planned future projects to examine e�ects on

population. However, as was shown in the lake scenario, the neural network needs to have

encountered a similar situation before it makes sense

Figure 10.5: Spatial population distribution around the scenario area for original and road
scenario

The scenarios illustrate how future political plans manually can be incorporated in the

model, and how they impact it. However, the changes that can be made are limited to the

input data layers and does not necessarily have the intended e�ect, as can be seen from the

lake scenario. Thereby, these scenarios touches upon a �aw in the model, that is related

to the choice and limitation of data. All the layers chosen are spatial features that exist

in the physical world, and despite research showing correlation between the layers and

population, as documented in chapter 5, they represent only six features to predict such

a complex concept. So despite our model showing promising results, as shown from the

previous chapter, there are improvements to be made. Some suggestions for improvements

are explored below.

As mentioned the model only uses physical spatial features like water, roads etc. but does

not capitalise on other data like �nancial or societal statistics, that has shown to have an

impact on health, education and thereby population patterns [Bloom et al., 2008]. One

could argue that some of those factors are already implemented in the SSP2 projection

number and thus indirectly in the neural network. However, we believe that inputting
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these values spatially, could let the neural network �nd patterns and correlations to the

spatial population distribution.

Using ancillary data with the same temporal resolution, as the population data, would

allow the model to capture local nuances that was not possible with constant data. This has

not been an option in this project, as we simply have not been able to obtain the historical

data, but as more data is gathered and stored it will likely be feasible to implement in the

future.

Another step to make, is including historical political plans for the training ranging from

infrastructure, residence, nature, industry to culture projects and potentially others. This

will make the model aware of the changes that are happening to population in relation

to such projects and thus be able to add existing plans after training to directly impact

the predictions towards political desired or expected goals. While this will be doable for

developed countries, especially with projects like INSPIRE, it would probably be hard

to implement for developing countries, that do not have much historical data [Directive,

2007].

In regards to planning, it is unlikely that there exist plans up to the year 2100. To deal

with this issue, it could be a possibility to give the model �exibility to predict development

in the ancillary layers (recreational areas, roads, lakes etc.). This could for example come

to fruition in new built up areas, where the model could �nd patterns that simulate a new

park being established. Despite the inherent uncertainty in such predictions, they may

show to be more plausible than using static ancillary layers.

10.2 Model Usage

Using a model trained on one country on another will give an understanding of how general

the model can be. To research this idea further, we have used the model trained on France

to predict the spatial population distribution for Denmark in 2015. The population and

MAE is derived from all values and the �gures only uses value above or eqal to one, for

the same reason as given in the evaluation chapter 9.

Comparing the di�erence between the predicted and the historical population distribution

in 2015, shows that the French model is predicting the total population well and is o� by

4537 people compared to the historical population data for Denmark in 2015. The mean

absolute error of 1.08, indicates that the prediction in general on average is o� by 1.08 per

cell. The mean is negative 2.54 and the standard deviation is 29.81. This is exactly the

same results that the French model produced previously on France. This indicates that

the French model produces the same distribution on Denmark that it did on France, and

the same results can be expected to be seen in the evaluation �gures.

Denmark - French Model Predicted Population
Di�erence in
Population

Mean Absolute Error Mean Population Di�erence Standard Deviation of Di�erence

Prediction 5,664,460
4537 1.08 -2.54 29.81

Historical 5,668,997

Table 10.1: Denmark - comparison of prediction and actual population data in 2015 using
the French model
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Examining the distribution in �gure 10.6, shows that it is predicting fewer cells in the 0 - 20

population range than the historical data, but is closer to the historical 2015 distribution

in the 20 - 500 range than the Danish model used on Denmark. In the 500+ population

range it resembles the Danish model used on Denmark, where it overestimates seen by the

red color rising above the purple overlap. The French model is again predicting a max

population value of around 2900, where the historical data has a max value of 3700.

Figure 10.6: Denmark - Cumulative comparison of prediction and historical population
distribution in 2015 using the French model

Overall the French model performs well when used on Denmark and is closer to the

historical distribution in 2015 than the Danish model, where it predicts closer to the

historical data values for 2015 in the 80 - 500 people range per cell.

This resemblance between the experiment and the results of the Danish model presented

in chapter 9 can also be seen from the distribution in the four major cities shown in

�gure 10.7. It over- and underestimates the values in respectively di�erent areas, It does,

however, give the impression that the French model is a little bit closer to the historical

values overall.
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Figure 10.7: Denmark - Areas with over- and underprediction in 2015 using the French
model

With insight on how the French model performed on Denmark for the historical data, we

will now evaluate how it predicts the future spatial population in Denmark. The model

trained on Denmark showed volatility, as the maximum population for a cell rose to above

8.000 from 3.700, as shown in table 9.7. The French trained model had a steady and

seemingly more realistic increase in maximum population. Interesting enough, when using

this model on Denmark we get a decreasing maximum population up until 2080, where it

starts rising again as can be seen in table 10.2.

Denmark - French model

Year 2020 2030 2040 2050 2060 2070 2080 2090 2100

Min. population value -1 0 0 0 0 0 0 -1 0

Max. population value 3128 2868 2431 2201 2260 2242 2267 2323 2454

Table 10.2: Denmark - Minimum and maximum population values (French model)

This di�erent behavior in maximum cell-value makes the results of the models quite

di�erent, as can be seen from the violin plot of Copenhagen represented in �gure 10.8.

The maximum values are obvious on this �gure, but it is also worth noticing that the

French model tends to be more conservative related to raising individual cell population

values. This means that it tends to spread the population rather than gathering it, as

can also be seen from �gure 10.9 of Copenhagen. Here, it is obvious that the model

distinguishes itself from the "�nger" development plan of Copenhagen, unlike the Danish
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model, due to its expansive behaviour [Erhvervsstyrelsen, 2017]. This can be seen as the

French model �lls the gaps between the "�ngers" with population rather than retaining

them.

Figure 10.8: Population development in Copenhagen with the Danish and French model.
Cells with zero population are omitted.

104



10.2. Model Usage Aalborg Universitet

Figure 10.9: Copenhagen spatial population predictions to 2100 with the model trained
on France

So while the results are di�erent and have �aws, neither are inherently wrong predictions.

The French model is more stable, but does not take the local nuances in Denmark into

105



Aalborg Universitet 10. Experiments

consideration, as can be seen from the "�ngers" of Copenhagen and their development.

However, we believe that training the Danish model, which has been trained considerably

less than the French, for longer will make it more stable and thereby possibly better than

the French model, when predicting Danish spatial population distribution. Thereby, we

believe that training and using a model on the same country will be best practice.

The observations however tells us that using a model trained on one country to predict a

di�erent, but similar country, is not necessarily poor. From this observation, we believe

that the neural network can bene�t from training on multiple countries at once, and

potentially use and strengthen patterns based on di�erent countries. This will give more

data for the model to train on and thereby more variety, making the neural network less

likely to encounter situations it has not seen before, as happened in the lake scenario.

Implementing such a feature will require to input categorical data into the CNN. This

could be layers representing the cells' municipality, country and region, so that the neural

network can �nd out which countries and regions are similar. There are several ways

of embedding the categorical data to make it feasible for a neural network, we believe

hashing or one hot encoding are the most promising, as those have proven useful in a

machine learning context [Pentreath, 2017]. Implementation of this would in theory make

it possible to train on the whole world and make a very complex, but possibly a very good

predictor, for future spatial population distributions.

The next chapter will discuss the �ndings in the report and �nalize the answer to the sixth

sub-research question.
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The use of a CNN throughout this project has shown its ability to recognize geographical

patterns and use these to predict future spatial population distributions. The projection

of future spatial population distributions have already been investigated by Keÿler and

Marcotullio [2017] and Jones and O'Neill [2016] who have used geosimulation to create

realistic spatial population distributions. However, this approach depends on manually

created ruleset that are repeated for every year of iteration. This gives the model

limitations, as it becomes too simple and uniform to obtain nuances in di�erent local

communities. At the same time the approach is in�exible in terms of having multiple data

features decide the most optimal placement of the population.

Spatial distributions created with geosimulations are useful at indicating major population

trends. Those trends can be used to tackle global, regional and national issues arising with

massive population growth combined with for example climate change that makes the

world, and especially developing countries, vulnerable to hazards. However, the limitations

that were previously mentioned make it inconvenient for decisions and analysis at a local

scale, as the quality is not good enough. While our results are not necessarily of better

quality, the approach itself is promising, as it eliminates the limitations of geosimulations.

The choice for an optimal cell for population is evaluated on multiple features through

hidden layers that does indeed represent a complexity that can be representative at a local

scale. In addition, it allows for taking in an arbitrary number of features to obtain patterns

from historical data without the need to create rules based on the context between them.

This means that political plans and economy among others can have direct impact on the

spatial population distribution and thereby create realistic scenarios on a local scale.

However, this approach has some of the same limitations that other neural networks have

been reported to have. Training a neural network requires a lot of data, and because of

the complexity of predicting spatial population distributions means more data the better

[Banko and Brill, 2001; Gupta, 2017]. We have been limited by the historic data as only

1975, 1990, 2000 and 2015 have been available. This is arguably too few years to establish

a strong foundation for predictions and the temporal resolution even varies, but as more

data is created and becomes available the less of an issue this becomes. This paradoxically

stresses the fact that developing countries, that arguably need knowledge of future spatial

population distributions the most, will have a harder time obtaining a good one with

our approach, because they tend to have sparse amount data. Another issue is that the

model inherits data �aws, which the data used in this project have plenty of, from sharp

population edges between censuses, population distributed onto airports to small towns

having absurd amount of people within them. This is a common issue in machine learning

and in this case it means that the neural network thinks that above mentioned scenarios
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are realistic and thus can distribute population based on those false assumptions [Kellher,

2016; Dietterich and Kong, 1995].

Furthermore, the complexity that neural networks bring comes at a price. Thousands of

weights and biases adapted to the label through back-propagation are forming the �nal

model, and there is no reasoning behind those beside minimizing the cost function. This

means that it is extremely hard to understand the speci�c weights and biases essentially

making the model a black box. Hereby we do not have control over what it emphasizes

other than the inputs and labels used to train on, unlike geosimulations, where every action

is controlled by rules. As a consequence we have not found a way to make actual thresholds

for the total, minimum and maximum cell population, which makes the result vary a bit

from the SSP2 population projection.

Despite the �aws that the CNN has, we believe that it has more potential to produce

accurate future spatial population distributions, than that of geosimulations. In this

project we have produced realistic results, and there are still improvements to be made.

Collecting more and better data would improve the neural network's predictions and

�nding patterns across borders using categorical data could potentially lead to massive

improvements. Complimentary to this the architecture of PopNet is narrow with only

three convolutions and two dense layers, and it has been adjusted based on a practical

methodology. This means that we have had to test hyperparameters for di�erent

architectures with limiting hardware resources. Besides, we do not know whether there is

a theoretical approach that could help designing a better architecture. To further improve

the CNN it is also possible to feed the chunks to the CNN with surroundings and overlap

as suggested in the testing section, which should give the CNN better awareness of the

area in which the chunk is placed in (cf. section 8.4).

In relation to the discussion of pros and cons in the geosimulation- and CNN-approach to

predict future spatial population distribution, we believe a combination of the two could

be worth investigating. Create a ruleset of moves and let a CNN decide which move is

the most appropriate in a given situation. This way we can track what moves can and are

made and thereby control the model, thus avoiding it becoming a black box. The CNN

will still rely on multiple data features to make the decision complex enough to capture

local nuances. As a bonus this approach is a categorisation problem rather than regression

problem. Categorization problems in relation to CNNs have much more research allocated

to it than regression problems, which can be utilized in designing the architecture for a

CNN to make decisions.

Doing this and using CNN however, does not remove the underlying challenge of attempting

to use recognition software to initially recognize and learn to identify and place population

in relation to geographical features. If this is compared to what CNNs are usually used

for, which is recognizing the content of an image, for example a horse. This is a thing that

are bound by obvious rules as it is a physical object de�ned by its nature. A horse consists

of a body, a head, four legs and there is no doubt that there is a pattern of what a horse

looks like. The logic and patterns of where people choose to live are far harder to identify

as these consist of complex mechanics, not only related to measurable variables such as

economics or geography, but to emotions and human behaviour as well. At the very least

this establishes the fact that more types of data can likely improve the model and help
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identify where population should be distributed in the future even though this likely would

require extensive tests of the in�uence of each variable to ensure proper weighting. As such

it does not mean that observable patterns of population distribution and change, as this

report and CNN is based on, do not exist. It does however open a discussion about the

concepts of correlation and causality between the data used for projecting future spatial

population distribution, as the CNN model is blind to the di�erence between the two.

We see this in e�ect in relation to the weights the model gives to each layers as seen from

the evaluation of the results data. These all point toward the main attribute in our data

is existing population rather than the ancillary data of slope, distance to roads or train

stations etc. This is however not necessarily because there is a direct causality between

high population and increasing population although one can hardly deny that there might

be to some degree. A more likely explanation is that there is a clear correlation between

existing population and future population as seen in the data from 1975 to 2015. It does

seem unlikely though that this should be the de�ning explanation to population increase

or decrease in a certain area, in complete disregard for other circumstances. The point

of this is that a key thing is that the CNN and machine learning itself still needs a large

degree of human control as it cannot distinguish between important causal concepts in the

data and data that happen to correlate well. This has to be done with a more qualitative

and thorough approach. In this report we relied on the research and experience of others

to establish a foundation of ancillary data to use as our input data, but this might be

even more important when using a CNN as we have less control with the interpretation

of the data. Our �ndings also point toward that this has to be considered heavily in the

preparation of the data as can be seen from the experiment with water cover (cf. section

10.1). The models ability to deal with the simulated �ood or water rise exempli�ed by

creating a lake in the centre of Copenhagen did not work as expected. While the situation

is constructed it should have provoked a sudden shift of population which our model did

not do. In this case a causal relationship between water cover and population which is

logical to us, should have been clear to the model as correlation, because correlation should

exist between the two datasets provided for training the model. This highlights that not

only the right data have to be chosen but these also have to be adjusted properly in regard

to normalization as this has an impact on how the CNN relates them. In relation to the

population value however this was as previously covered not possible to normalize as it

would ruin the output prediction. The e�ects of this skewer should however theoretically

lessen if trained over a longer time as the CNN should adjust the weights over time.

As such CNNs open up new possibilities for projecting future spatial population

distribution by being able to take large amounts of data and analyse it in order to determine

relationships between layers of data, identify unique local variances and applying them to

a real world context. It does however also arguably increase the necessary background

work needed to assure that the data input into the model is both meaningful, �awless and

adjusted correctly as the model will automatically interpret this data and inherit its �aws

and errors.

Chapter 9, 10 and this chapter thereby answers the sixth research question of What

knowledge can be gained from the results, experiments and tests? which leads to the next

chapter containing the conclusion.

109





Conclusion 12
Population growth represents a challenge to humanity, as to how resources are allocated and

where people will and should live. The global population growth is expected to continue up

until 2070 according to the IIASA medium population projection scenario, SSP2. This is

especially true for developing countries with high population growth and likely challenges

with both climate and economy, and predicting where people will settle in such countries

can help drive a knowledge-based decision-making process to cope with the issues. The

best results on predicting spatial population distributions have previously been done with

geosimulations, but this project shows that CNNs can be used as an alternative through

training on historic data to �nd population patterns.

Historic data for spatially distributed population has shown to be sparse despite multiple

available datasets. Common to the datasets is that they all have several �aws. From

low spatial and temporal resolution, inaccurate placement of population to limited spatial

and temporal coverage. The dataset from GHSL was deemed best for the purpose of this

project, and was accompanied with ancillary data from Copernicus, SEDAC, EEA and

OpenDataSoft. The ancillary data covers water and Corine coverage, slope, roads and

train stations that all have causality or correlation to population. Using this data in a

CNN requires extensive processing from handling of big TIFF-�les, spatial operations to

creation of chunks from the �nal input grid to resemble images.

For the architecture of the CNN a sample network called PopNet was built. This consists

of three convolutional and two dense layers, a relatively shallow neural network compared

to the domain of image recognition. Nonetheless, we �nd it to be able to identify realistic

patterns, at least on a national scale, and project future spatial population distribution

scenarios. From the creation and evaluation of PopNet a number of tendencies and

challenges could be seen. PopNet was able to predict the historic growth from 2000 to 2015,

although with notable deviations, and was capable of producing population predictions

within ±0,3 percent of the SSP2 scenario. However, it was unable to precisely hit the

projected population numbers both historic and projected. A general shift of population

towards the geographical west were observed in the results. In addition, it was found that

the input data, both in regard to quality and preparation of values, had a large impact on

how the CNN recognized and predicted future spatial population distribution. Arguably

even more important compared to previous geosimulation techniques as the process and

logic of the CNN is not directly programmable.

The �ndings- and creation of PopNet thereby addresses the research question; How can a

convolutional neural network be used to project future spatial population distribution and

what results can be achieved?. In addition there are various improvements that could be
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made with the training data as well as the neural network architecture itself. Among those

are making the model more aware of its surroundings, training on multiple countries to

get more data while also establishing links and similarities between them and including

other ancillary data like economy and political plans. Those alterations could improve the

quality of the model so it will be able to make realistic predictions on a local scale.
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This section introduces future work that could be looked further into, related to the �ndings

and conclusions of this report.

We have throughout the results and evaluation seen a pattern of population data shifting

towards the geographical west, over each iteration of applying the model. This could

be investigated further as to why it occurs and whether it happens, as we hypothesise,

due to the core working of Tensor�ow, the CNN or convoluational layers in general, or a

combination of these and our own chunk cost function implementation.

Further improvement and testing of the existing nerual network architecture and resulting

models could also be done. Changing the hyperparameters and training for longer time

could potentially improve the models. This is because a deeper or wider network should

improve the ability of the CNN to precisely recognize and identify patterns, but requires

necessary hardware as these improvement are, as covered in the architecture and testing

chapters, computationally intense. In relation to the architecture, it would also be

interesting to investigate whether the model could be made to use an overlap between

chunks or in another way, make the model, take the surroundings of a given chunk, into

account. The reason for doing so, is as pointed out in the testing chapter 8.4, that the

model have problems predicting smooth, natural values along borders between chunks.

Another possible improvement is adjusting the values of implemented data and adding

further data. Doing so, adding for example spatial economic information, could in itself

improve the CNN's ability to identify population distribution patterns. Another potential

that could be further investigated, is the possibility of implementing categorical data.

Adding categorical data could potentially teach the model to identify and work with

di�erent geographical divisions such as countries, municipalities of local city plans in a

practical way. The e�ect of such an implementation could mean that you could train data

on more than one country at a time and thereby gain more data that the model itself can

use to �nd patterns across uniquely identi�able geographic areas. Thereby it should be able

to uniquely identify patterns found in a municipality in Denmark as something special to

this municipal ID, but also know that this municipality is more related to another Danish

municipality, than a French municipality for example, as Danish municipalities could share

the same category of country being Denmark.

As shown in the experiment conducted in the experiment section, that tested the e�ects

of implementing a lake in the data, located in the middle of Copenhagen, the model does

currently respond as intended to certain geographical changes. This could be further

improved and tested in relation to if the model can be trained to understand the e�ect

of environmental changes, for example by implementing constructed scenarios into the
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training data. Using the example of a �ooded Copenhagen, it should be possible for the

model to recognize this pattern by training it on a scenario where a city is depopulated

according to an increase of the water cover ancillary data value. If this is possible, the model

could possibly be trained to react accordingly to spread of dessert, increasing temperatures

or rising water levels in the same way.

The cover of PopNet is currently limited to Europe because of the coherence and cover

of the ancillary data. It could however be interesting to look further into the possible

di�erences that countries from di�erent parts of the world have, what patterns the model

would recognize and how both results and model would compare. The models trained

for Denmark and France tested and evaluated in this report are di�erent from each other

which is likely a product of the patterns recognized from the historical data. Further

investigation of this will however require more coherent global datasets or a number of

identical local datasets.
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