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Synopsis:
The purpose of this report is to determine whether Ibuprofen has any beneficial effect, wrt. recovery
of wrist functions, on patients having been through surgery to correct a Colles fracture. The patients
have been treated with either Ibuprofen or a placebo drug. At three timepoints after the surgery,
measurements of how far the patients are able to bend and rotate their injured wrist have been
recorded. If Ibuprofen does have a beneficial effect, we should be able to see, that the patients, who
were given Ibuprofen, faster regain full mobility of the injured wrist than the patients, who were given
a placebo drug.

To determine whether there is a difference between treatment groups, I will use three approaches.
First, I will use ANOVA and multivariate ANOVA. This approach is a little too simple to say anything
final about the relationship between the treatment groups, but it does give some idea of whether
there might be a difference in the groups. Next, I will use linear mixed effects models (LMMs). The
treatment may have an effect on the measurements, but how well the patients are able to bend and
rotate their wrist may also be influenced by themselves, by some genetic effect. Without having to
actually specify any genetic markers, the LMM takes these individual effects into account by allowing
for random effects in the setup of the model. With the LMM, it is also possible to account for any
kind of correlation between observations on the same subject. In order to use the LMM, a handful of
assumptions about the model needs to be satisfied. Lastly, I will use generalized estimating equations
models (GEE-models). This approach resembles the LMM and it also allows for specification of
correlation between observations on the same subject. An advantage of the GEE-model is that there
are no model assumptions to be met. A disadvantage is, that it is not possible to specify random effects.

The results from both ANOVA, multivariate ANOVA, the LMMs and the GEE-models are all unanimous;
there is no difference in the treatment groups, i.e. Ibuprofen has no significant beneficial effect.
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Referat

I denne rapport undersøges det om indtagelse af Ibuprofen forbedrer helningsprocessen for patienter
opereret for Colles fraktur. Med helningsproces menes der, hvor hurtigt de genvinder mobilitet af den
skadede hånd. Patienterne er inddelt i tre grupper ift. den medicin, de har taget i ugen efter operationen.
På tre tidspunkter i løbet af det første år efter operationen, er der målt i grader, hvor meget patienterne
kan bøje og rotere den skadede hånd. Samme målinger er lavet på den ikke-skadede hånd for at have et
mål for, hvor meget hænderne normalt bør kunne bøjes og roteres.

For at undersøge om der er forskel i målingerne på de tre patientgrupper, udføres først både en ANOVA
test og en multivariat ANOVA test. Disse test er blot med for at give en indikation af, om der er forskel på
grupperne.

Dernæst beskrives teori om lineære mixed modeller. Det er muligt, at raten for patienternes helningspro-
ces er påvirket af deres gener. Det anvendte datasæt indeholder ingen genetiske variable, så det er ikke
muligt at opstille en almindelige lineær model, hvori der indgår variable for diverse gener for på den
måde at tage højde for evt. genetisk indflydelse. Vha. den lineære mixed model kan vi dog tage højde
for, at helningsprocessen kan være påvirket af ikke-målte faktorer via random effects. Vi er nødt til at tage
højde for, at målingerne hen over tiden for hver patient kan være korrelerede på en eller anden måde.
Dermed er det nødvendigt at anvende en model, der kan indkorporere diverse former for korrelation
mellem målingerne. I den almindelige lineære model antages samtlige målinger at være uafhængige.
Den lineære mixed model tillader en række af forskellige korrelationsstrukturer.

Slutteligt beskrives teori om generaliserede estimationsligninger (GEE-modeller). Denne tilgang minder
lidt om lineære mixed modeller i den forstand, at de er anvendelige i tilfælde med korreleret GLM-agtigt
data. Fordelen ved GEE-modeller er, at man ikke behøver gøre sig antagelser om fordelingen af hverken
data eller fejlledene, hvilket er nødvendigt, hvis man anvender lineære mixed modeller. En ulempe er
dog, at man ikke kan specificere random effects. Vha. random effects kan man komme helt ned og
sige noget om de patient-specifikke effekts. I GEE-modeller kan vi "kun” undersøge den gennemsnitlige
effekt i grupperne. Da vi ikke er interesserede i at følge hver enkelt patient for at finde den bedste be-
handling for ham/hende, men istedet gerne vil vide om den allerede anvendte behandling generelt har
medført en forskel i helningsprocesserne blandt grupperne, så giver det ganske god mening at anvende
en GEE-model.

Resultaterne fra både ANOVA, multivariat ANOVA, den lineære mixed model og GEE-modellen peger alle
på, at der ingen forskel er på patientgrupperne. Dermed har indtagelse af Ibuprofen ingen signifikant
indflydelse på helningsprocessen.
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Preface

I have been given a data set with patients all of whom had suffered a Colles fracture. All received the
same type of corrective surgery and, subsequently, were placed in one of three groups according to
treatment. Some were given Ibuprofen for the pain while others were treated with a placebo drug. The
objective is to find out whether there is a difference between the patients treated with Ibuprofen and the
patients treated with a placebo drug wrt. how well and how fast they regain mobility of the injured hand
in the course of a year after surgery. If the type of treatment plays no role in the patients’ recovery, then
the costs of treatment can be reduced as no pain medicin needs to be prescribed. It is suspected that
Ibuprofen may cause bone deterioration, which is another reason to want to find out whether patients
do just as well without the drug wrt. recovery of wrist functions. The hypotheses to be tested are

• H main
0 : There is no difference wrt. recovery of wrist functions between the treatment groups.

• H main
A : Patients treated with Ibuprofen have a better rate of recovery than the other patients.

I will be working with a lot of hypotheses during the report. To distinguish these, I am adding appropri-
ate superscripts. I should also note, that when I say a hypothesis is true, what I really mean is, that there
is no evidence to reject it. Three different types of movement of the injured hand have been recorded.
This means that each patients’ response is multivariate. Furthermore, these recordings were made at
three different timepoints after the surgery. This means that we have not just one response per patient
per type of movement, but instead have a vector of responses for each patient, i.e. we have repeated
measurements. While the responses between patients certainly are independent, the entries within each
vector of responses may very well be correlated. An ordinary linear model or a generalized linear model
cannot handle responses being correlated, and as such a different approach is needed. One approach is
to use analysis of variance in which the means of each group of patients are compared. This approach,
however, does not allow for comparison across timepoints. Another approach is the mixed model, which
is essentially just a linear model with random effects added into the linear predictors. The idea is that
the dependence between observations within and between groups are effected by some latent variables.
The mixed model allows for a wide range of correlation patterns. A third approach is to use quasi like-
lihood and generalized estimating equations. When using quasi likelihood, no assumptions about the
distribution of the observations are needed; specifying the mean and variance is all that is required. In
order to estimate the unknown parameters, the generalized estimating equations are used, in which the
correlation structure of the observations is specified. I will use all three approaches.

The theory behind each of the three approaches are described in seperate chapters. Each of these chap-
ters are followed by a chapter in which the data is analysed in R using the theory just described. Each of
these chapters end with a conclusion as to whether H main

0 is rejected or not based on the analysis.

Notation and other helpful information

All calculations and figures are made in the statistical software program R. References to R-code will be
written in a certain font such as geeglm().

To save myself a lot of repeated coding, I have made three functions that do just about everything I
need in my analysis with the three approaches. These functions are called superANOVA(), superLMM()
and superGEE(). Depending on which of the three approaches, I am working with, these functions do
anything from testing model assumptions to plotting residuals and calculating standard errors. The in-
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terested reader can find the source code for these functions in the chapters, where they are used.

References to various literature are noted in brackets [ ], e.g. [9].

For a smoother read, some of the theoretical calculations and results are omitted from the pages, where
they are used. These calculations/results will be listed in Appendix A. All references to the appendix will
be denoted by e.g. A.3; this is a reference to the 3rd result in Appendix A. Appendix B contains additional
theory. The reader may use this to acquaint or re-acquaint themselves with some of the theory other-
wise left out of the chapters. References to Appendix B is denoted by e.g. B.3.

All vectors or matrices are noted in bold letters. Vectors are always in small letters, and matrices are
always in capital letters. Random variables are noted in non-bold capital letters. Random vectors are
noted in bold capital letters, like matrices. It should be clear from context which is which. If nothing
else is specified, all vectors will be column vectors, i.e.

x =

x1
...

xn

= [
x1, . . . , xn

] ∈Rn×1.

A row vector will be denoted as a transposed column vector, e.g. xT = [
x1 . . . xn

] ∈R1×n .

Let In×n = I ∈Rn×n denote the identity matrix, and let 1n = [1, . . . ,1] ∈Rn×1 denote a vector of all 1s.

At times during calculations in the report, I will refer to other equations in the calculations themselves.
These references will be noted above =, ≤, ∝ and the likes. For example

ab
(4.1)= c.

Here, I am using equation 1 from Chapter 4 in order to show than ab can be written as c.

A diagonal matrix is noted by

A =

a1
. . .

an

= diag{ai }i=1,...,n .

An entry in a matrix may be denoted by A j ,k . This is the element in the j th row and kth column in A.

The determinant of a matrix is noted by |A|.

All examples ends with a square, ä.

At times, I will digress from whatever theory is being described to make a comment about my data. To
avoid having to write "Wrt. my data...” too many times, I use a "!” to stress that I am making a comment
about my data.
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1 | Description of data

The data consists of 83 patients, whom have all suffered a Colles fracture (broken bone in the wrist). All
have received the same surgery from the same surgeon. They have all been treated by the same medical
team, and all data on the patients have been recorded by the same people. In other words, all patients
have received the same kind of treatment all through the experiment, apart from the type of drug they
have been treated with. The patients were randomized into three groups and had to take medicine the
first seven days after surgery. Group 1 took a placebo drug, group 2 took Ibuprofen for three days and
a placebo drug for the next four days and group 3 took Ibuprofen. There are 28 patients in group 1
and group 2, and 27 patients in group 3. Three pairs of movement of the wrist were recorded on each
patient at 6 weeks, 3 months and one year after the surgery. The movements are pronation and supina-
tion (rotating hand), extension and flexion (bending hand forward and backward) and ulnar and radial
("waving” hand from side to side). The same movements have been recorded on the uninjured hand,
though only once.

I received three datasets; one with the measurements in degrees of the uninjured hand, one with the
measurements in degrees of the injured hand, and one that describes in percentages how close the
ranges of movement of the injured hand is to the ranges of the uninjured hand. By "range”, I mean
the degrees from, for instance, the hand bending as far forward as possible to the hand bending as far
backward as possible. I will be working only with the dataset with measurements given in percentages.
I have gathered all these measurements in a new dataset, I call Wrist. Below are the first nine rows of
Wrist:

1 > head ( Wrist , 9 )
2 subject ps ef ur time group
3 1 id01 72.22222 36.000000 40.00000 0 1
4 2 id01 86.11111 68.000000 80.00000 7 1
5 3 id01 94.44444 68.000000 50.00000 46 1
6 4 id02 91.17647 47.058824 37.50000 0 1
7 5 id02 91.17647 76.470588 62.50000 7 1
8 6 id02 97.05882 76.470588 100.00000 46 1
9 7 id03 68.57143 4.166667 22.22222 0 1

10 8 id03 94.28571 79.166667 77.77778 7 1
11 9 id03 97.14286 91.666667 100.00000 46 1

The first column, subject, contains an id identifying each patient. The second column, ps, are all the
measurements for the ranges in percentages of pronation and supination, which I will henceforth just
call the pro/sup-movement. There are three measurements of the pro/sup-movement for each patient;
one taken at 6 weeks after surgery (1st timepoint), one taken 3 months after surgery (2nd timepoint)
and one taken one year after surgery (3rd timepoint), and they are listed in that order. The same goes
for the ex/flex- and uln/rad-movements (the columns ef and ur). The fifth column, time, indicate at
what timepoint the measurement was taken. In order to indicate that the time between timepoints is
not equidistant, I have decided not to code the timepoints as "1”, "2”, "3”, which would have been an
obvious way of coding the timepoints. Instead, I have coded the timepoints so they show how many
(approximately) weeks have passed since the first timepoint. For the 2nd timepoint, approximately 7



1 Description of data 4

weeks have passed. This is calculated by estimating how many weeks are in three months:

52 weeks in a year

12 months in a year
≈ 4.333 weeks per month

⇓
4.333 ·3 = 13 weeks in three months.

Then the initial 6 weeks until the 1st timepoint must be subtracted, which gives 7 weeks between the
1st and 2nd timepoint. Between the 1st and 3rd timepoint, 46 weeks have passed, which is calculated
simply by 52−6 = 46 weeks. The last column, group, indicate which of the three treatment groups, the
patient belongs to, either "1”, "2” or "3”.

Just to get an initial idea of whether there might be a difference in the responses from the treatment
groups, I have made Figure 1. This figure shows for each type of movement, how well in percentages
the injured hand on average per group performs in comparison to the uninjured hand on average per
group. There are no obvious differences between the groups. Only in the first plot do group 3 seem to
do a little better.
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Figure 1: Each line represent the average percentage of normal range of the pro/sup-, ex/flex- and uln/rad-
movements for each group.

Figure 2 show boxplots of the ranges of movement at the different timepoints. If H main
0 is true, we might

expect to see, that the median for group 3 is larger than for the other two groups. This is actually the case
in the majority of the boxplots, but the differences in the medians are only very small.
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Figure 2: Boxplots of the percentage of normal range of the movements at different timepoints.

A quick and very simple way of getting an idea of the results, we may encounter later on, is to set up
a linear model for each type of movement and compare it to an equivalent linear model without the
group-term. For comparison, I use anova()1, which tests the hypothesis2

H anova
0 : the models are not significantly different.

The relationship between the types of movement and the covariates, group and time, is not linear, but,
having investigated this further, linearity can in this case be achieved by adding a squared term of the
timepoints to the models. Below are the results from comparing each of the linear models with their
reduced counterparts:

1 > anova (lm( ps ~ time + I ( time^2) , data = Wrist ) ,
2 + lm( ps ~ group + time + I ( time^2) , data = Wrist ) ) $"Pr( >F) " [ 2 ]
3 [ 1 ] 0.06431
4
5 > anova (lm( ur ~ time + I ( time^2) , data = Wrist ) ,
6 + lm( ur ~ group + time + I ( time^2) , data = Wrist ) ) $"Pr( >F) " [ 2 ]
7 [ 1 ] 0.57625
8

1See B.1.
2H anova

0 is equavalent to H anova1
0 in B.1.
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9 > anova (lm( ef ~ time + I ( time^2) , data = Wrist ) ,
10 + lm( ef ~ group + time + I ( time^2) , data = Wrist ) ) $"Pr( >F) " [ 2 ]
11 [ 1 ] 0.05631

With a significance level of 0.05, each of these p-values indicate that the group-term is insignificant to
the models, although for the pro/sup- and ex/flex-movement, we are not far from rejecting H anova

0 . The
linear model is a little too simple to model the types of movement properly, but it does give some idea
of the relevance of the treatment groups.

To get a clearer indication of whether there might be a difference between the groups, I will now move
on to my first idea of testing H main

0 . In Chapter 2, the theory behind analysis of variance is explained and
in Chapter 3, I test to see if H main

0 should be rejected when using analysis of variance.



2 | Analysis of variance

In order to determine whether there is a difference in the responses from a study where subjects are
seperated into groups, one can perform a test to compare the group means. Analysis of variance (ANOVA
for short) is a method for multiple comparisons, meaning two or more groups can be compared. In
ANOVA, the variation within the samples and the variation between the samples are used to detect dif-
ferences in the means. In a one-way ANOVA, the objective is to compare means of two or more samples,
where groups are formed according to levels in one factor (hence one-way ANOVA).

The ANOVA is also known as the univariate ANOVA, as it assumes a univariate response. An exten-
sion of the univariate ANOVA is the multivariate ANOVA (MANOVA), which assumes a multivariate re-
sponse. Both ANOVA and MANOVA are methods for comparing group means, however, neither ANOVA
nor MANOVA allows us to compare group means across timepoints.

! It may seem, as I have a multivariate response for each patient in my data, that only MANOVA
is of interest, but I shall use both ANOVA and MANOVA to cement my conclusion about whether
treatment plays a significant role in the patients’ recovery. With ANOVA, I will just have to test each
type of movement seperately.

A group can be several things. If a study consisted of recording some patients’ blood pressure, say, once
a month for a year, then each patient can be thought of as forming a group (or sample). In this case, the
response for each patient is a vector. A study could also consist of the scores from some test distributed
to, say, 7th graders. In this case, we only have one response per subject in the study. A possible choice
for groups could be boys and girls. An observation, yi j , can then either be an observation on the i th
subject at the j th timepoint, or an observation on the j th subject in the i th group. In the following, yi j

is thought of as the observation on subject j in the i th group, but it need not be.

2.1 ANOVA

This section is based on [1] and [2].

In the univariate case, we have g independent samples (or groups)

y1 =
[

y11, y12, . . . , y1n1

]
y2 =

[
y21, y22, . . . , y2n2

]
...

yg = [
yg 1, yg 2, . . . , yg ng

]
.

Here, ni is the number of subjects in group i . The assumptions of the ANOVA are that Yi j
iid.∼ N

(
µi ,σ2

)
.

That is, each group has an individual mean, µi , all groups have a common variance, σ2, the data is
Gaussian, and all subjects are independent. If n1 = n2 = . . . = ng , we call it a balanced design, and
unbalanced otherwise. An advantage of ANOVA over MANOVA, is that ANOVA can handle unbalanced
data. In the following, a balanced design, i.e. ni = n for i = 1, . . . , g , is assumed.

! With three treatment groups, I have y1, y2 and y3 with n1 = n2 = 28 and n3 = 27 for each type
of movement. Hence, I have an unbalanced design. For the sake of simplicity, I focus on a bal-
anced design when describing the theory of ANOVA. It is also worth noting, that when performing
ANOVA in R, the function aov(), that I will be using, can actually handle an unbalanced design.
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The hypotheses to be tested are

H ANOVA
0 :µ1 =µ2 = . . . =µg

H ANOVA
A :µi 6=µ j for at least one i 6= j .

That is, we want to test whether all groups have the same mean. We do this by investigating the vari-
ances. The independent estimators of the variances for each sample are

s2
i =

1

n −1

n∑
j=1

(
yi j − ȳi ·

)2 , i = 1, . . . , g (2.1)

with ȳi · = 1
n

∑n
j=1 yi j being the sample mean for group i . Having a balanced design means we can define

an average variance for each group, i.e. the within-group variance:

s2
w = 1

g

g∑
i=1

s2
i = 1

g (n −1)

g∑
i=1

n∑
j=1

(
yi j − ȳi ·

)2 .

If H ANOVA
0 is true, we can regard the sample means as being Ȳi · ∼ N

(
µ, σ

2

n

)
. This leads to an overall

average of the variance across groups, i.e. the between-group variance:

s2
b = n

g −1

g∑
i=1

(
ȳi ·− ȳ··

)2 = 1

g −1

g∑
i=1

n∑
j=1

(
ȳi ·− ȳ··

)2 ,

with ȳ·· = 1
g

∑g
i=1 ȳi · = 1

g n

∑g
i=1

∑n
j=1 yi j being the total sample mean. We have that s2

w always is an un-

biased estimator of σ2, but s2
b is only an unbiased estimator if H ANOVA

0 is true (see A.1). If H ANOVA
A is

true, then E
[
s2

b

] > σ2. We only have that E
[
s2

b

] = E
[
s2

w

]
when H ANOVA

0 is true, and so H ANOVA
0 should be

rejected if s2
b is significantly larger than s2

w , i.e. if the ratio s2
b/s2

w is larger than 1 as it would indicate a
significant difference between the groups.

A disadvantage of ANOVA is that it assumes that the correlation is the same for any pair of observations
within a group. The MANOVA makes no assumptions about the correlation between observations.

2.1.1 Sphericity

This subsection is based on [2] and [3].

In this subsection, data is assumed to be longitudinal, that is, yi j is now the observation for subject
i at the j th timepoint. When conducting ANOVA for repeated measurements, sphericity is assumed.
Sphericity refers to the variances of all pairwise differences between variables being equal. That is,

Var
[
Yi j −Yi k

]= Var
[
Yi j

]+Var[Yi k ]−2Cov
[
Yi j ,Yi k

]= c, ∀ j ,k

where c is a constant. In other words, sphericity assumes that

Var
[
Yi j

]= Var[Yi k ] , ∀k

Cov
[
Yi j ,Yi k

]= a, ∀k 6= j

where a is a constant. This structure is know as compound symmetry or exchangeability (more on that
in Section 4.3). For longitudinal data, sphericity is often unrealistic, as variances tend to increase with
time, i.e. Var

[
Yi j

]< Var[Yi k ] when j < k.
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! As Wrist consists of several measurements on patients recorded over time, it is likely, that
sphericity does not hold for my data.

The assumption of sphericity must be met to avoid an increase in Type I Errors3. Say we had a study
in which we observed the weight (kg) of some patients at three seperate timepoints. We could have the
following data set, where e.g. T1 stands for the 1st timepoint:

Patient T1 T2 T3 T1 − T2 T1 − T3 T2 − T3
1 64 65 69 -1 -5 -4
2 71 74 74 -3 -3 0
3 72 72 73 -10 -11 1
4 56 55 57 1 -1 -2
5 62 66 65 -4 -3 1

Variance: 17.3 14.8 4.7

Let

σ2
T 1−T 2 = 17.3, σ2

T 1−T 3 = 14.8 and σ2
T 2−T 3 = 4.7

be the variances for the three differences. The null-hypothesis of sphericity in a case with just three
groups (A, B and C) is

H sphericity
0 :σ2

A−B =σ2
A−C =σ2

B−C ,

the validity of which is tested via an F -test4. In the example with the weight of the patients, we would
expect not have sphericity as σ2

T 1−T 2 6= σ2
T 1−T 3 6= σ2

T 2−T 3. As mentioned, violations of sphericity lead to
an increase in Type I Errors. When testing the model assumptions, e.g. the normality assumption, if any
of these assumptions are not met, it could be a result of the variances of the differences between groups
not being (sufficiently) equal. Hence, it is important to test for sphericity.

2.2 MANOVA

This section is based on [4] and [5].

In the multivariate case, we still have g independent samples, but now each observation has a 3rd sub-
script representing one of the p variables. That is, yi j k is the observation on the kth variable from the j th
subject in group i . In the univariate case, each observation on a subject were one-dimensional because
there were just that one variable. Now each observation on a subject is p-dimensional; one observation
per variable, i.e. the observation on subject j in group i is

yi j =


yi j 1

yi j 2
...

yi j p

 .

To have a balanced design in the multivariate case, we no longer need the group sizes to be equal. In-
stead, we need all the yi j ’s to be p-dimensional.

3A Type I Error is when you reject a true hypothesis (false positive). We have that P (making an error) = α, where α is the
significance level, often 0.05.

4See B.2
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! In the MANOVA setup, I have a balanced design, as I have three variables per patient and no
missing values.

The assumptions of the MANOVA are that all data in group i have a common meanµi =
[
µi 1,µi 2, . . . ,µi p

]
,

and a common covariance matrix, Σ. It is also assumed, that yi j is independent of yi k whenever k 6= j ,
and that the data is multivariate normal. The hypotheses to be tested are

H MANOVA
0 :µ1 =µ2 = . . . =µg

H MANOVA
A :µi k 6=µ j k for at least one i 6= j and at least one variable k.

We reject H MANOVA
0 if even just one pair of group means differ on just one variable. Unlike ANOVA, in

MANOVA the covariance structure is not restricted to variances being equal and covariances being con-
stant. Hence, MANOVA may actually be used in a repeated measurements setup, where the ANOVA fails
due to lack of sphericity.

The sample mean for group i is

ȳi · =
1

ni

ni∑
j=1

yi j =


1

ni

∑ni
j=1 yi j 1

...
1

ni

∑ni
j=1 yi j p

 =

 ȳi ·1
...

ȳi ·p

 ,

where ȳi ·k is the sample mean for the kth variable in group i . The total sample mean is

ȳ·· =
1

N

g∑
i=1

ni∑
j=1

yi j =


1
N

∑g
i=1

∑ni
j=1 yi j 1

...
1
N

∑g
i=1

∑ni
j=1 yi j p

 =

 ȳ··1
...

ȳ··p

 ,

where ȳ··k is the total mean for variable k.

In the multivariate case, we have something called the total sum of squares and cross product matrix, T.
The total sum of squares is a cross product matrix:

T =
g∑

i=1

ni∑
j=1

(yi j − ȳ··)(yi j − ȳ··)
T

This is a p × p-matrix. In T, we are looking at differences in the observations yi j and the total sample
mean. We may split this matrix into a sum of matrices:

T =
g∑

i=1

ni∑
j=1

(yi j − ȳ··)(yi j − ȳ··)
T

A.2=
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T +

g∑
i=1

ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)
T = E+H,

where E is called the error sum of squares and cross product and H is called the hypothesis sum of squares
and cross product. The matrix T forms a covariance matrix for total variability; E is the covariance for the
errors (or residuals) and H is the covariance for the hypothesis. For k = l ,

Ek,l =
g∑

i=1

ni∑
j=1

(yi j k − ȳi ·k )(yi j k − ȳi ·k )
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and

Hk,l =
g∑

i=1
(ȳi ·k − ȳ··k )(ȳi ·k − ȳ··k )

measures the within- and between-group variation, respectively, for the kth variable. For k 6= l , Ek,l and
Hk,l both measures the dependence between variables k and l , but Ek,l does it after taking into account
the groups and Hk,l does it across groups. These matrices are of particular interest. In MANOVA, we
are essentially testing the hypothesis, that H = E, which means we would want HE−1 ≈ Ip×p . Notice the
similarities between E and s2

w from the univariate case, and between H and s2
b . In the univariate case,

when E
[
s2

w

] = E
[
s2

b

]
, we would accept H ANOVA

0 . It then makes sense, that in the multivariate case, we
want HE−1 ≈ Ip×p .

When a grouping factor has more than two levels, a single test statistic cannot detect all types of depar-
tures from H MANOVA

0 . Hence, several different test statistics are used. Let λi denote the i th eigenvalue5

of HE−1. The most popular test statistics for MANOVA are

• Hotelling-Lawley trace given by

ΛHL = tr
{

HE−1}= p∑
i=1

λi .

If H is large relative to E, thenΛHL will be a large value. If the sum of the eigenvalues is large, then
we won’t have HE−1 ≈ Ip×p . Thus, H MANOVA

0 is rejected whenΛHL is large.

• Pillai trace given by

ΛP = tr
{

H(H+E)−1} A.3=
p∑

i=1

λi

1+λi
.

If H is large relative to E, thenΛP will be a large value. Thus, H MANOVA
0 is rejected whenΛP is large.

• Wilk’s lambda given by

ΛW = |E|
|E+H|

A.3=
p∏

i=1

1

1+λi
.

If H is large relative to E, then the denominator will be large relative to the numerator. Hence,
H MANOVA

0 is rejected ifΛW ≈ 0.

• Roy’s greatest root given by
max{λi }.

If H is large relative to E, then λi will be a large value. Thus, H MANOVA
0 is rejected when λi is large.

We do not want H to be large relative to E. Once again we can draw parallels to the univariate case. If
E

[
s2

b

]> E
[
s2

w

]
, then we would reject H ANOVA

0 . In the same way, if H > E, we reject H MANOVA
0 .

2.3 The ANOVA model

This section is based on [6].

I will end this chapter by explaining how ANOVA is connected to mixed models. In the simple one-way
ANOVA, we may express observations as

yi j =βi +εi j , i = 1, . . . ,m, j = 1, . . . ,ni (2.2)

5See B.3
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with m being the number of subjects, ni being the number of observations for the i th subject, and the
errors εi j being iid. with zero mean and constant variance. The parameters β = [β1, . . . ,βm] are fixed,
which means that observations for the i th subject are all basically the same (only the small error term,
εi j , seperates them), i.e. E

[
Yi j

]=βi , ∀ j . It makes sense then, that the hypothesis to be tested in ANOVA
is

H ANOVA
0 :β1 = . . . =βm ,

It is expressed slightly differently than before, but we are still testing that the means of all subjects/-
groups are the same.

Equation (2.2) is called the ANOVA model. Gathering all observations in an N×1 vector, with N =∑m
i=1 ni ,

we can see that the ANOVA model is a special case of a linear regression

y = Xβ+ε,

where

y =



y11
...

y1n1

y21
...

y2n2
...
...

ym1
...

ymnm



∈RN×1, X =



1 0 · · · · · · 0
...

... · · · · · · ...
1 0 · · · · · · 0
0 1 · · · · · · 0
...

... · · · · · · ...
0 1 · · · · · · 0
...

... · · · · · · ...
...

... · · · · · · ...
0 0 · · · · · · 1
...

... · · · · · · ...
0 0 · · · · · · 1



∈RN×m , β=


β1

β2
...
βm

 ∈Rm×1, ε=



ε11
...

ε1n1

ε21
...

ε2n2
...
...

εm1
...

εmnm



∈RN×1.

The ANOVA model is in fact a fixed effect model. It is called fixed because the parameters are fixed. If the
parameters, βi , instead were assumed to be random and iid. with a common variance, then we would
have the variance component model (VARCOMP model for short):

yi j =β+ui +εi j ,

where βi = β+ui , and ui is called a random effect. The VARCOMP model is a random effects model.
Combining the ANOVA model and the VARCOMP model results in a mixed model, which will be dis-
cussed in Chapter 4.



3 | Results of using ANOVA and MANOVA on the data

Performing the ANOVA and MANOVA tests in R is fairly simple. But before we can get into it, we must
make sure, that the assumptions about Gaussian and homoscedastic data holds.

3.1 Testing assumptions

The assumptions will be tested seperately for each timepoint and for each type of movement. That is
a total of 27 samples when the data is seperated further into groups. To test the assumptions, I use
superANOVA(test = "assumption").

Normality assumption

The normality assumption is assessed both visually and via a test (both implemented in superANOVA()).
I will start with the visual assessment. Figure 3 shows three of the 27 Q-Q plots and histograms used
for detecting normality. The points needs to follow the straight red line and most of the points must
lie withing the 95%-confidence interval. The majority of the Q-Q plots resembles the leftmost, which
means that the majority of the samples may be considered Gaussian judging from the Q-Q plots. The
rightmost Q-Q plot in Figure 3 is the only one of the 27, that looks as if the sample is not Gaussian.
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Figure 3: 1st row: Q-Q plots with 95%-confidence intervals (red punctured lines). The first two plots are of the
uln/rad movement for group 1 at the 1st and 3rd timepoints, respectively. Last plot is of the ex/flex-movement for
group 3 at the 3rd timepoint. 2nd row: Histograms with density curves of the same.

Wrt. the histograms, the majority resembles either the 2nd or the 3rd. Generally, I find there is no clear
connection between the Q-Q plots and the histograms; if the Q-Q plot looks good, the histogram does
not, and vice versa.
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Next, I will perform a Shapiro-Wilk test6 with shapiro.test(). The null-hypothesis in this test is

H shapiro
0 : sample is from a normally distributed population,

i.e. the sample given as input is Gaussian. All the p-values from performing the Shapiro-Wilk test on all
the 27 sample are gathered in the following output:

1 > superANOVA( t e s t = "assumption" ) $shapiro
2 ps . week ps . month ps . year ur . week ur . month ur . year ef . week ef . month ef . year
3 gr . 1 0.83614 0.00081 3.7422e−06 0.38844 0.79319 0.00981 0.25980 0.54905 0.23157
4 gr . 2 0.15199 0.02526 6.0753e−06 0.67586 0.50036 0.00521 0.18377 0.15872 0.10294
5 gr . 3 0.23995 0.00283 8.1111e−04 0.01153 0.41630 0.00328 0.43686 0.32926 0.00056

The Shapiro-Wilk test rejects H shapiro
0 for just less than half the samples. Some of these too low p-values

could be a result of a Type I Error. The probability of making a Type I Error increases as the number of
tests increases:

P (making at least 1 error in m tests) = 1− (1−α)m = 1− (1−0.05)27 ≈ 0.75.

With a probability of 75%, certainly some of the too low p-values could be a result of a Type I Error, but
it could also just be that not all the samples are Gaussian. According to several sources, the ANOVA test
is not very sensitive to moderate deviations from normality. Hence, we may continue with the ANOVA
test. But, just to be on the safe side, I will also perform a Kruskal-Wallis test7, which is an alternative to
the ANOVA test for the situation with non-normal data.

The breaches of normality could be due to breaches of sphericity. I will now test if this could be true.
First, I calculated the differences between observations at the three timepoints. Then I calculated the
variances of these differences. I do this for ps, ur and ef. The results are shown below:

1 > superANOVA( t e s t = "assumption" ) $var . d i f f
2 t1−t2 t1−t3 t2−t3
3 ps 219.26 345.53 71.65
4 ur 328.36 412.91 316.96
5 ef 208.57 296.88 240.76

The rows in the output are the variances of ps, ur and ef for the differences in observations between
timepoints 1 and 2, 1 and 3, and 2 and 3. We see that there is a difference in the variances (more so
for ps), but are these differences big enough, that we cannot say they are approximately equal and
thus satisfy sphericity? To answer this, we use Mauchy’s test for sphericity. Here, one can either use
mauchly.test() or Anova(). The set up in mauchly.test() is quite complicated and requires both a
transformation matrix and a projection matrix. The easier choice is to extract the result of the Mauchly’s
test in the summary of Anova(). In doing so, I get the following p-values:

1 > superANOVA( t e s t = "assumption" ) $ s p h e r i c i t y
2 ps ur ef
3 [ 1 , ] 4.907e−15 0.29816 0.16826

The p-values for ur and ef are above 0.05, meaning sphericity is satisfied for these two types of move-
ment. For ps, the p-value is well below 0.05, meaning sphericity is not satisfied. These results seem

6See B.4.
7See B.5.
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reasonable as there is a greater difference in the variances for ps, according to superANOVA(test =
"assumption")$var.diff, than there is for the other two types of movement. When sphericity fails,
there are ways to make adjustments in order to achieve sphericity. I could try to make adjustments, but
to me it seems reasonable that we do not have complete sphericity, as I believe the covariance structure
used in ANOVA may not be the most fitting for my data, as it is longitudinal.

Homoscedasticity assumption

The homoscedasticity assumption is first assessed by calculating the variances for each sample:

1 > superANOVA( t e s t = "assumption" ) $varSample
2 ps . week ps . month ps . year ur . week ur . month ur . year ef . week ef . month ef . year
3 gr . 1 365.89 144.25 84.36 152.65 362.75 407.92 127.50 132.36 102.44
4 gr . 2 390.05 154.90 84.44 253.14 406.50 212.50 319.69 443.08 238.74
5 gr . 3 279.78 57.68 18.32 202.52 258.38 327.23 170.19 245.07 280.13

To achieve homoscedasticity, the ranges in each column cannot be too large. In the column for ef.month,
we find the largest range, but is it too big? To answer this, I will perform two tests; a Bartlett test8,
bartlett.test(), and a Levene’s test9, leveneTest(), which tests the null-hypothesis that

H bartlett
0 = H levene

0 : variances across samples are equal,

i.e. σ2
1 =σ2

2 =σ2
3 =σ2 for groups 1, 2, and 3. The following output shows the p-values from these tests:

1 > superANOVA( t e s t = "assumption" ) $BartLeve
2 ps . week ps . month ps . year ur . week ur . month ur . year ef . week ef . month ef . year
3 Bart 0.67737 0.03212 0.00034 0.43156 0.50058 0.24661 0.04870 0.00922 0.03258
4 Leve 0.74429 0.15922 0.35857 0.63868 0.64556 0.62689 0.15330 0.00119 0.58765

The Levene’s test accepts H levene
0 , except for ef.month. The Bartlett test rejects H bartlett

0 in about half the
tests. The Bartlett test is sensitive to violations of normality, which may explain those low p-values.

Because H levene
0 was rejected for ef.month, I will expect ANOVA to also reject H ANOVA

0 for this sample.
Wrt. the normality assumption, I find the results inconclusive, and will therefore rely on both the ANOVA
test and the Kruskal-Wallis test in the following section.

3.2 Analysis using aov()

Whether data is balanced or unbalanced plays no role in the setup in R when using the aov-function to
perform the ANOVA test. The function tests H ANOVA

0 , i.e. µ1 =µ2 =µ3 for groups 1, 2 and 3. The input in
aov() is a linear model, for instance

aov(ps[which(time == 0)] ∼ group[which(time == 0)], data = Wrist).

Afterwards, the summary() is used to extract the p-value telling us whether or not H ANOVA
0 has been

rejected. The Kruskal-Wallis test is performed with kruskal.test(), which is set up the same way as
aov(), but we may extract the p-value directly from kruskal.test(). In Kruskal-Wallis, we investigate
the median of the groups instead of the means, and the null-hypothesis is

H kruskal
0 : the medians of all the groups are equal.

8See B.6.
9See B.7.
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The p-values from summary(aov()) and kruskal.test() are shown in the following output:

1 > superANOVA( t e s t = "anova" )
2 ps . week ps . month ps . year ef . week ef . month ef . year ur . week ur . month ur . year
3 aov 0.29704 0.12560 0.52692 0.17276 0.43184 0.44481 0.25237 0.18101 0.65978
4 kruskal 0.14800 0.21032 0.96337 0.22180 0.32195 0.22175 0.34471 0.24098 0.67808

Neither the ANOVA test nor the Kruskal-Wallis test rejects their respective null-hypotheses for any of the
types of movement at the three timepoints. But with breaches of the normality assumption (and thus
breaches with sphericity), a better test might be the MANOVA test, which I will now move on to.

3.3 Analysis using manova()

The function manova() is used for performing MANOVA in R. With manova(), we get one p-value per
timepoint indicating whether H MANOVA

0 should be rejected. This means that we no longer have to test
the three types of movemet individually, like in aov(); the manova-function takes into account that
the responses are multivariate. The setup is almost the same as in aov(), only now all three types of
movement are tested together, for instance

manova(cbind(ps[which(time == 0)],
ef[which(time == 0)],
ur[which(time == 0)]) ∼ group[which(time == 0)], data = Wrist).

Through summary(manova(), test = "Pillai"), we get the p-value from having used the test statis-
tic of the Pillai trace. We can change test to whichever test from Section 2.2, we want. This is all imple-
mented in superANOVA(), and the results are shown below:

1 > superANOVA( t e s t = "manova" )
2 week month year
3 Hotelling−Lawley 0.42032 0.17653 0.53641
4 P i l l a i 0.40507 0.17406 0.52835
5 Wilks 0.41264 0.17522 0.53232
6 Roy 0.27634 0.06509 0.24271

With no p-values below 0.05, we have no reason to reject H MANOVA
0 at any of the timepoints.

3.4 Conclusion

From these initial tests on the data, I conclude that there is no evidence to reject H main
0 . These tests are

very simple and do not take into account measurement on the same patient possibly being correlated
in some way. In the next chapter, Chapter 4, I will present a different way of modelleing the data, that
allows for different specfications of the relationship between observations on the same subject.

3.5 Source code: superANOVA()

1 superANOVA = function ( test , plot = NULL) {
2 cols = c ( "ps . week" , "ps . month" , "ps . year " , "ur . week" , "ur . month" , "ur . year " , " ef . week" , " ef .

month" , " ef . year " )
3 TOM = l i s t ( Wrist$ps , Wrist$ur , Wrist$ ef )
4
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5 i f ( t e s t == "assumption" ) {
6 ## Homoscedastic
7 varSample = matrix ( 0 , ncol = 3 , nrow = 9)
8 rownames( varSample ) = cols ; colnames ( varSample ) = c ( " gr . 1 " , " gr . 2 " , " gr . 3 " )
9 n = 1

10 for ( i in 1 : 3 ) {
11 for ( j in c ( 0 , 7 , 4 6 ) ) {
12 varSample [n , ] = tapply (TOM[ [ i ] ] [ which ( Wrist$time == j ) ] , Wrist$group [ which ( Wrist$time ==

j ) ] , var )
13 n = n+1
14 }
15 }
16 varSample = t ( varSample )
17
18 BartLeve = matrix ( 0 , ncol = 9 , nrow = 2) ; colnames ( BartLeve ) = colnames ( varSample )
19 rownames( BartLeve ) = c ( " Bart " , "Leve" )
20 nn = 1
21 for ( i in 1 : 3 ) {
22 for ( j in c ( 0 , 7 , 4 6 ) ) {
23 BartLeve [ 1 ,nn] = b a r t l e t t . t e s t (TOM[ [ i ] ] [ which ( Wrist$time == j ) ] , Wrist$group [ which ( Wrist

$time == j ) ] ) $p . value
24 BartLeve [ 2 ,nn] = car : : leveneTest (TOM[ [ i ] ] [ which ( Wrist$time == j ) ] , Wrist$group [ which (

Wrist$time == j ) ] ) $"Pr( >F) " [ 1 ]
25 nn = nn + 1
26 }
27 }
28
29 ## Normality
30 i f ( ! i s . null ( plot ) ) {
31 par (mar = c ( 4 . 5 , 4 . 5 , 2 , 1 ) , mfrow = c ( 3 , 9 ) )
32 for ( i in 1 : 3 ) {
33 for ( j in c ( 0 , 7 , 4 6 ) ) {
34 for ( k in 1 : 3 ) {
35 i f ( plot == "qq" ) {
36 car : : qqp(TOM[ [ i ] ] [ which ( Wrist$time == j & Wrist$group == k ) ] , "norm" , main = paste

( "M" , i , "T" , j , "G" , k ) , ylab = "% of normal range" )
37 }
38 else i f ( plot == " h i s t " ) {
39 h i s t (TOM[ [ i ] ] [ which ( Wrist$time == j & Wrist$group == k ) ] , 20 , probabi l i ty = T ,

main = paste ( "M" , i , "T" , j , "G" , k ) , xlab = "% of normal range" )
40 l i n e s ( density (TOM[ [ i ] ] [ which ( Wrist$time == j & Wrist$group == k ) ] ) , col = 2)
41 }
42 }
43 }
44 }
45 }
46 shapiro = matrix ( 0 , nrow = 3 , ncol = 9) ; colnames ( shapiro ) = cols ; rownames( shapiro ) = c ( " gr

. 1 " , " gr . 2 " , " gr . 3 " )
47 s = 1
48 for ( i in 1 : 3 ) {
49 for ( j in c ( 0 , 7 , 4 6 ) ) {
50 for ( k in 1 : 3 ) {
51 shapiro [ k , s ] = shapiro . t e s t (TOM[ [ i ] ] [ which ( Wrist$time== j & Wrist$group==k ) ] ) $p . value
52 }
53 s = s + 1
54 }
55 }
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56 ## S p h e r i c i t y
57 X1 = t ( matrix ( Wrist$ps , ncol = 83) ) ; X2 = t ( matrix ( Wrist$ur , ncol = 83) ) ; X3 = t ( matrix (

Wrist$ef , ncol = 83) )
58 Xps = cbind (X1 , X1 [ , 1 ] − X1 [ , 2 ] , X1 [ , 1 ] − X1 [ , 3 ] , X1 [ , 2 ] − X1 [ , 3 ] )
59 Xur = cbind (X2 , X2 [ , 1 ] − X2 [ , 2 ] , X2 [ , 1 ] − X2 [ , 3 ] , X2 [ , 2 ] − X2 [ , 3 ] )
60 Xef = cbind (X3 , X3 [ , 1 ] − X3 [ , 2 ] , X3 [ , 1 ] − X3 [ , 3 ] , X3 [ , 2 ] − X3 [ , 3 ] )
61 var . d i f f = rbind ( c ( var ( Xps [ , 4 ] ) , var ( Xps [ , 5 ] ) , var ( Xps [ , 6 ] ) ) ,
62 c ( var ( Xur [ , 4 ] ) , var ( Xur [ , 5 ] ) , var ( Xur [ , 6 ] ) ) ,
63 c ( var ( Xef [ , 4 ] ) , var ( Xef [ , 5 ] ) , var ( Xef [ , 6 ] ) ) )
64 colnames ( var . d i f f ) = c ( " t1−t2 " , " t1−t3 " , " t2−t3 " ) ; rownames( var . d i f f ) = c ( "ps" , "ur" , " ef " )
65
66 Mps = lm( Xps [ , 1 : 3 ] ~ 1) ; Mur = lm( Xur [ , 1 : 3 ] ~ 1) ; Mef = lm( Xef [ , 1 : 3 ] ~ 1)
67 design = factor ( c ( " t1 " , " t2 " , " t3 " ) )
68 options ( contrasts=c ( " contr .sum" , " contr . poly " ) )
69 Rps = car : : Anova (Mps, idata = data . frame ( design ) , idesign = ~design , type = " I I I " )
70 Rur = car : : Anova (Mur, idata = data . frame ( design ) , idesign = ~design , type = " I I I " )
71 Ref = car : : Anova (Mef , idata = data . frame ( design ) , idesign = ~design , type = " I I I " )
72 s p h e r i c i t y = matrix ( c (summary( Rps , mult ivariate = F) $ s p h e r i c i t y . t e s t s [ 2 ] ,
73 summary( Rur , mult ivariate = F) $ s p h e r i c i t y . t e s t s [ 2 ] ,
74 summary( Ref , mult ivariate = F) $ s p h e r i c i t y . t e s t s [ 2 ] ) ,
75 ncol = 3 , nrow = 1) ; colnames ( s p h e r i c i t y ) = c ( "ps" , "ur" , " ef " )
76
77 out = l i s t ( varSample = varSample , BartLeve = BartLeve , shapiro = shapiro , var . d i f f = var .

d i f f , s p h e r i c i t y = s p h e r i c i t y ) ; out
78 }
79 else i f ( t e s t == "anova" ) {
80 p = c ( ) ; kw = c ( )
81 m = matrix ( 0 , ncol = 9 , nrow = 2) ; colnames (m) = cols ; rownames(m) = c ( "aov" , " kruskal " )
82 for ( i in 2 : 4 ) {
83 for ( t in c ( 0 , 7 , 4 6 ) ) {
84 mod = aov ( Wrist [ , i ] [ which ( time == t ) ] ~ group [ which ( time == t ) ] , data = Wrist )
85 p = c (p , summary(mod) [ [ 1 ] ] [ [ "Pr( >F) " ] ] [ [ 1 ] ] )
86 kw = c (kw, kruskal . t e s t ( Wrist [ , i ] [ which ( time == t ) ] ~ group [ which ( time == t ) ] , data =

Wrist ) $p . value )
87 }
88 }
89 m[ 1 , ] = p ; m[ 2 , ] = kw; m
90 }
91 else i f ( t e s t == "manova" ) {
92 m = matrix ( 0 , ncol = 3 , nrow = 4)
93 n = 1
94 for ( t in c ( 0 , 7 , 4 6 ) ) {
95 p = c ( )
96 mod = manova( cbind ( ps [ which ( time == t ) ] , ef [ which ( time == t ) ] , ur [ which ( time == t ) ] ) ~

group [ which ( time == t ) ] , data = Wrist )
97 p = c (p , summary(mod, t e s t = " Hotelling−Lawley" ) $ s t a t s [ 1 , 6 ] )
98 p = c (p , summary(mod, t e s t = " P i l l a i " ) $ s t a t s [ 1 , 6 ] )
99 p = c (p , summary(mod, t e s t = " Wilks " ) $ s t a t s [ 1 , 6 ] )

100 p = c (p , summary(mod, t e s t = "Roy" ) $ s t a t s [ 1 , 6 ] )
101 m[ , n] = p
102 n = n + 1
103 }
104 rownames(m) = c ( " Hotelling−Lawley" , " P i l l a i " , " Wilks " , "Roy" )
105 colnames (m) = c ( "week" , "month" , " year " )
106 print (m)
107 }
108 }



4 | Mixed models

Mixed effects models, or just mixed models, are a class of models used for analyzing data with repeated
measurements. I will distinguish between clustered data and longitudinal data. In clustered data, the
repeated measurements accur from having several measurements within each cluster. Each cluster can
be thought of as forming a group. In longitudinal data, the repeated measurements accur from having
several measurements on each subject. Each subject can be thought of as forming a group. This means
that, like in Chapter 2, the observation yi j is either the j th measurement in group i (clustered data), or
the measurement of subject i at the j th timepoint (longitudinal data). In the mixed model, it is assumed
that the conditions within each group are the same, but may vary between groups.

Clustered data can be exemplified as data from a medical experiment, where patients are grouped ac-
courding to the type of medicine, they are treated with. Each patient has a response to the medicine (e.g.
cured/not cured). The data then consists of these responses. The goal may be to determine whether
there is a significant difference in the responses from the groups.

! In this sense, one could view my data as clustered data, seeing as patients have been randomized
into groups according to the three types of treatment.

Longitudinal data can be exemplified as data from a medical experiment, where a response from each
patient in the experiment is recorded, say, once a month. Each patient thus have a vector of responses
creating a time series for each patient. The goal could be to determine whether or not there is a differ-
ence between the men and the women in the experiment.

! My data can be viewed as longitudinal and will be modelled as such. Each patient have three
3-dimensional vectors of responses for each type of movement. Each patient then have three time
series. Figure 4 shows the three time series for a random patient in Wrist.
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Figure 4: Time series of the progression of wrist function (measured in degrees) for a random patient in Wrist.
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Whether or not the design is balanced depends on the type of data. For clustered data, ni is the number
of observations in the i th group. So if ni = n, ∀i , i.e. if all groups are of equal size, the design is balanced.
For longitudinal data, ni is the number of observations for the i th subject. So if ni = n, ∀i , i.e. if we have
equal number of observations per subject, the design is balanced. It is of interest to have a balanced
design, as it simplifies parameter estimation for the model.

! The treatment groups in my data are not of equal size, but since the data is longitudinal data,
and there is 3 measurements per patient per type of movement, the design is balanced.

I will now move on to explaining the structure of the mixed model.

4.1 Setting up the mixed model

This section is based on [6].

Why can we not just use a simple classical model

yi =µ+xiβ+εi , i = 1, . . . , N (4.1)

with N being the number of subjects, and where the error terms, εi , are independent and identically
distributed with zero mean and constant variance σ2? Suppose one wanted to test the vocabulary of all
students of ages 13 to 16 in a specific school. A test is destributed to these students, and their scores are
recorded. Let xi be the age of student i , and let yi be the i th students’ score on the test. Then (xi , yi ) is a
sample of observations collected on ages and scores, and µ is the overall average of scores. We can then
use OLS to estimate µ and β:

(µ̂, β̂) = argmin
µ,β∈R

N∑
i=1

(
yi −µ−xiβ

)2 . (4.2)

The model (4.1) assumes that the variation in scores is the same no matter the students’ ages. Thus
minimizing Equation (4.2) does not take into account the possible within-age correlation. It is possible
that the older the student, the higher the score, i.e. there may be a correlation between the scores of
students of the same age (see A.4). Although the OLS-estimates are unbiased, accounting for the within-
age correlation may give us more efficient estimates of µ and β. Thus it would be more appropriate to
assume that each age group has its own age-specific scores:

yi j =µi +xT
i β+εi j , i = 1,2,3,4, j = 1, . . . ,ni . (4.3)

The notation has changed a bit now. The yi j is the score of the j th student in group i , with a total of ni

students in group i , where each group represents one of the four age groups. The xi is a vector that is
zero in all entries except for the i th entry indicating that this subject belongs to group i . The β is then a
vector with entries giving the weight of belonging to each group. The β is called a fixed effect as it is the
same for all subjects. The µi is an age-specific average of scores. The assumption is still that the εi j ’s are
identically distributed with zero mean and constant variance σ2. The assumption of the mixed model is
that the intercepts, µi , are random and can be expressed as

µi =µ+ui , (4.4)

where µ is the overall average of scores (just like in Equation (4.1)) and ui is a random effect (the devi-
ation of the i th groups’ average score from the overall average score). With "µ” we are assuming that
the students are representative of 13-16 year olds, but we are still allowing for age-specific variation with
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"ui ”. Equation (4.3) is actually a special mixed model known as a random intercept model (more on that
type of model in Section 4.6). Combining Equation (4.3) and (4.4) leads to the linear mixed model

yi j =µ+xT
i β+ui +εi j , (4.5)

where ui and εi j are independent. Let Var[Ui ] = σ2
u , ∀i , and Var

[
εi j

] = σ2. In the mixed model, we
then have two sources of variation; σ2

u , the variation between age-groups, and σ2, the variation within
age-groups. The parameter β is a fixed effect, which means it is constant for all ages. The parameter ui

is an age-specific effect, which means it is the same within the groups, but varies between the groups.

Using Equation (4.5), the model for all scores can be written as

y11
...

y1n1

y21
...

y2n2

y31
...

y3n3

y41
...

y4n4



=



1 1 0 0 0
...

...
...

...
...

1 1 0 0 0
1 0 1 0 0
...

...
...

...
...

1 0 1 0 0
1 0 0 1 0
...

...
...

...
...

1 0 0 1 0
1 0 0 0 1
...

...
...

...
...

1 0 0 0 1




µ

β1

β2

β3

β4

+



1 0 0 0
...

...
...

...
1 0 0 0
0 1 0 0
...

...
...

...
0 1 0 0
0 0 1 0
...

...
...

...
0 0 1 0
0 0 0 1
...

...
...

...
0 0 0 1




u1

u2

u3

u4

+



ε11
...

ε1n1

ε21
...

ε2n2

ε31
...

ε3n3

ε41
...

ε4n4


⇓

y1
y2
y3
y4

=


X1

X2

X3

X4

β+


1n1

1n2

1n3

1n4

u+


ε1

ε2

ε3

ε4


⇓

y = Xβ+Zu+ε.

Let Vi denote the covariance matrix of yi . The more efficient estimates of µ and the βi ’s, now gathered
in β, are found as

β̂= argmin
β∈R5×1

4∑
i=1

(yi −Xiβ)T V−1
i (yi −Xiβ),

which gives a generalized least squares estimate. These estimates now account for the variation both
within and between age-groups.

In the example, I mentioned the words "fixed” and "random” effects. It is important to understand the
difference between the two. A fixed effect is a variable whose levels are of particular interest. In other
words, we are interested in what effect the levels in the factor have on some outcome. It is explained very
well in [7] how to understand the difference between random and fixed effects: Say you want to toast
some bread. You want to test the quality of the toasted bread from baking the bread at three different
temperatures. Temperature is then of particular interest, and is then a fixed effect. To test these tem-
peratures, we select four slices of bread from each of six batches of bread. The slices of bread represent



4 Mixed models 22

a sample from a larger population and thus form a random variable. Hence, the factor describing what
batch a slice comes from will be a random factor.

! We are interested in what effect the treatment has on the patients. The groups are then of partic-
ular interest, hence, group is a fixed effect. The time between observations is not equidistant (the
distance is the same for all patients, though). It is possible that these distances between observa-
tions affects how observations are correlated for each patient. Hence, also time is a fixed effect. It
is likely that every patient has some kind of individual influence on the model, something which
cannot be controlled (unlike type of medicine, which can be controlled). To include this as a ran-
dom effect in the model, I must specify for each measurement which patient this measurement
comes from. For this, I use subject as the random effect.

4.1.1 The linear mixed effects model

This subsection is based on [8].

In the following, I will assume a balanced design, i.e. ni = n,∀i . Let m be the total number of groups
and let N =∑m

i=1 n = mn. The linear mixed model is defined as follows:

Definition 4.1 (Linear mixed model) The linear mixed model is given as

y = Xβ+Zu+ε, (4.6)

where X and Z are known matrices, ε ∼ NN (0,R) and U ∼ Nqm (0,G) are independent, and G and R
may depend on some unknown variance parametersϕ. The parameters β and u are called the fixed
and random effects, respectively.

In Equation (4.6), we have that

y =

 y1
...

ym

 ∈RN×1, with yi ∈Rn×1,∀i , X =

 X1
...

Xm

 ∈RN×p , with Xi ∈Rn×p ,∀i , β=

β1
...
βp

 ∈Rp×1,

Z = diag{Zi }i=1,...,m ∈RN×qm , with Zi ∈Rn×q ,∀i , u =

 u1
...

um

 ∈Rqm×1, with ui ∈Rq×1

ε=

ε1
...
εm

 ∈RN×1, with εi ∈Rn×1,∀i ,

where q is the number of random effects, and

Cov[U] = G = diag{G0} ∈Rqm×qm , with G0 = Cov[Ui ] ,∀i ,

Cov[ε] = R = diag{Ri }i=1,...,m ∈RN×N .

The model (4.6) has marginal distribution

Y A.8∼ NN
(
Xβ,ZGZT +R

)= NN
(
Xβ,V

)
,
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where V = ZGZT +R, and where we may write V = V(ϕ) when the covariance depends on ϕ. Notice, in
the mixed model, how the fixed effects are used to model the mean of Y, while the random effects are
used to shape to covariance of Y. The model can be written as a so-called two level heirarchical model

Y | U = u ∼ NN
(
Xβ+Zu,R

)
(4.7)

U ∼ Nqm (0,G) . (4.8)

Letting µ(β,u) = E[Y | U = u] = Xβ+Zu, we may term µ(β,u) the mean function of y conditioned on the
outcome of the random effect, and we may write the model (4.6) as y = µ(β,u)+ε. The model (4.6) is
called the linear mixed effects model (LMM for short) as µ(β,u) is linear in β. It is also possible to have
a non-linear mixed model

g
(
µ(β,u)

)= Xβ+Zu,

where the link function, g (·), is a function such that g
(
µ(β,u)

)
is linear in β. The link function specifies

how the mean depends on the covariates. Every type of distribution from the exponential family has a
certain link function. For Gaussian data, g (·) is just the identity. I shall work only with the linear model.

4.2 Estimation and prediction of effects

This section and subsections are based on [8] and [9].

Unknown parameters such as β must be estimated. Seeing as u is random, and we predict rather than
estimate random variables and vectors, u must be predicted, thus explaining the name of this section.

From the marginal distribution, we know that Y ∼ NN
(
Xβ,V(ϕ)

)
. The likelihood and log-likelihood func-

tions are then

L(β,ϕ;y) = 1
p

2π
N
|V(ϕ)|− 1

2 exp

(
−1

2
(y−Xβ)T V(ϕ)−1(y−Xβ)

)
(4.9)

`(β,ϕ;y) ≡−1

2
log(|V(ϕ)|)− 1

2
(y−Xβ)T V(ϕ)−1(y−Xβ). (4.10)

Maximizing `(β,ϕ;y) wrt. the parameters is dependent on whether V is known. We then have two
procedures for estimating β and predicting u; a rather simple one for when V is known (Subsection
4.2.1), and a slightly more comprehensive one for when V = V(ϕ) (Subsection 4.2.2). In Section 4.3, I will
show a little more precisely how these expressions come to look once a specific structure for V is given.

4.2.1 Known covariance

Expression for β̂

Assuming V is known, β is found by solving ∂
∂β`(β;y) = 0, which gives the MLE

β̂
A.5= (

XT V−1X
)−1

XT V−1y. (4.11)

Expression for û

Suppose we want to predict a random variable X as much as possible by a constant c. Then what we
want to do is to minimize E

[
(X − c)2

]
:

E
[
(X − c)2] A.6= Var[X ]+ (E[X ]− c)2.
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This expression is clearly minimized when c = E[X ], and thus E[X ] is the best predictor for X . If we
observe a random variable Z , then we can improve our prediction of X by conditioning on Z . That is,
in the same way that E[X ] was the best predictor for X when we did not know Z , E[X | Z = z] is now the
best predictor of the unknown X , when Z is observed. And so, having observed y, u has a conditional
multivariate distribution10 and is predicted by

û = E
[
U | Y = y

] = 0+GZT V−1(y−Xβ) = GZT V−1(y−Xβ) (4.12)

as (
Y
U

)
∼ NN+qm

([
Xβ
0

]
,

[
V ZG

GZT G

])
.

Equation (4.12) is called the best linear unbiased predictor (BLUP for short) of u, where β is replaced by
β̂. It is called linear as it is a linear function of y. It is unbiased by the Law of Total Expectation:

E
[
Û

]= E
[
E

[
U | Y = y

]] = E[U] .

The BLUP replaces the random effects, u, by their conditional means, û, given the data. We can then
make predictions on y by

ŷ = Xβ̂+Zû.

4.2.2 Unknown covariance

Expression for β̂

Assume R and G are known up to the unknownϕ in the marginal model, where V(ϕ) = ZG(ϕ)ZT +R(ϕ).
We must now estimate β andϕ.

Maximizing `(β,ϕ;y) (Equation (4.10)) wrt. β for fixedϕ gives

β̂(ϕ) = (
XT V(ϕ)−1X

)−1
XT V(ϕ)−1y. (4.13)

The estimate is dependent on ϕ, which must be found. This is done by profile likelihood. The profile
log-likelihood forϕ is

`p(ϕ) = `(
β̂(ϕ),ϕ;y

) ≡ −1

2
log

(|V(ϕ)|)− 1

2

(
y−Xβ̂(ϕ)

)T
V(ϕ)−1 (

y−Xβ̂(ϕ)
)

. (4.14)

Solving ∂
∂ϕ`p(ϕ) = 0 gives the maximum likelihood estimate ϕ̂ML, which is a biased estimate. To get an

unbiased estimate, we can instead use the restricted maximum likelihood method (REML-method for
short). Here, we will need the marginal log-likelihood to estimateϕ:

`R(ϕ) = log

(∫
L(β,ϕ;y) dβ

)
A.9= `p(ϕ)− 1

2
log

(|XT V(ϕ)−1X|) (4.15)

Maximizing `R(ϕ) wrt. ϕ gives the restricted maximum likelihood estimate, ϕ̂R.

Expression for û

As in the case where V is known, we can predict u by Equation (4.12). Only now we have to insert G(ϕ̂R),
V(ϕ̂R) and β̂(ϕ̂R):

û(ϕ̂R) = G(ϕ̂R)ZT V(ϕ̂R)−1(y−Xβ̂(ϕ̂R)).
10See B.8.
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Simultaneous estimation

Notice that β̂ and û are dependent on ϕ̂R, which is dependent on β̂. This complicates parameter estima-
tion. The solution is to do simultaneous estimation. The joint density for (Y,U) is a so-called hierarchical
likelihood comprised of the pdf’s of the two level heirarchical model, Equations (4.7) and (4.8):

f (y,u;β,ϕ) = fy|u(y;β,ϕ) fu(u;ϕ)

=
(

1
p

2π
N
|R(ϕ)|− 1

2 exp

(
−1

2
(y−Xβ−Zu)T R(ϕ)−1(y−Xβ−Zu)

))
(

1p
2π

qm |G(ϕ)|− 1
2 exp

(
−1

2
uT G(ϕ)−1u

))
The joint log-likelihood is thus

`(β,ϕ;u,y) ≡− 1

2

(
log(|R(ϕ)|)− (y−Xβ−Zu)T R(ϕ)−1(y−Xβ−Zu) log(|G(ϕ)|)−uT G(ϕ)−1u

)
(4.16)

and the score functions wrt. β and u are

Sβ(β,ϕ;u,y) = ∂

∂β
`(β,ϕ;u,y) = XT R(ϕ)−1(y−Xβ−Zu) (4.17)

Su(β,ϕ;u,y) = ∂

∂u
`(β,ϕ;u,y)

A.7= ZT R(ϕ)−1 (
y−Xβ−Zu

)−G(ϕ)−1u. (4.18)

Putting both Equation (4.18) and (4.17) equal to 0, we obtain the mixed model equations (MME for short):[
XT R(ϕ)−1X XT R(ϕ)−1Z
ZT R(ϕ)−1X ZT R(ϕ)−1Z+G(ϕ)−1

][
β

u

]
=

[
XT R(ϕ)−1y
ZT R(ϕ)−1y

]
. (4.19)

Solving the MME can be set up as an algorithm:

Algorithm 4.2 (Algorithm for solving the MME) mellemrum

i. Initialize β, e.g. by β̂= (XT X)−1XT y.

ii. Using β̂, find ϕ̂R by maximizing `R(ϕ).

iii. Calculate an adjusted observation y(ϕ̂R)adj = y−Xβ̂(ϕ̂R), and predict u from a random effects
model y(ϕ̂R)adj = Zu+ε by(

ZT R(ϕ̂R)−1Z+G(ϕ̂R)−1)u = ZT R(ϕ̂R)−1y(ϕ̂R)adj.

iv. Recalculate the adjusted observation y(ϕ̂R)adj = y−Zû(ϕ̂R), and estimate β from a fixed effects
model y(ϕ̂R)adj = Xβ+ε by

XT R(ϕ̂R)−1Xβ= XT R(ϕ̂R)−1y(ϕ̂R)adj.

Repeat step ii. and iv. until convergence.

Information about the effect of the choice of initial β̂, and whether Algorithm 4.2 is garanteed to con-
verge, is scarce. I have included a word on this in my discussion, Chapter 9.
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The MLE, β̂, is asymptotically Np
(
β, I(β)−1

)
-distributed, where I(β) is the Fisher information matrix, i.e.

β̂ is both unbiased (because E
[
β̂

] = β) and efficient (because Cov
[
β̂

]
is equal to the Cramer-Rao lower

bound, I(β)−1), and it is a consistent estimator of βmeaning β̂
N→∞−−−−→β. This holds no matter the struc-

ture of V (see Section 4.3 for structures of V).

We find ϕ̂R by maximizing `R(ϕ) wrt. ϕ. But the assumptions made on the relationship between sub-
jects and within each subject, affects what ϕ consists of. This, of course, also affects the expressions for
β̂, û, G, R, and V. In Section 4.3, I go through this in more details.

4.3 Covariance structure

This section is based on [7].

As just mentioned in the prior section, the assumptions made on the relationship between and within
subjects affects the expressions for β̂, û, G, R, and V. One assumption could be that no subjects are
correlated. Another could be that there is no correlation between pairs of observation within a subject.
If the assumption is, that observations within a subject are correlated, then how exactly shall we assume
they are correlated? All these assumptions lead to different expressions for β̂, û, G, R, and V. In this
section, I will shortly present some of the most popular choices for covariance structure of Y. I will pro-
ceed to calculate the expressions for β̂, û, G, R, and V for one of these choices (Subsection 4.3.1), and
afterwards, I will show in detail how to estimate ϕ (Subsection 4.3.2). For ease of notation, I shall omit
"(ϕ)” in the following.

The structure of Cov[Y] can be expressed in several ways. Some choices11 are

• independence: Here it is assumed that Corr
[
Yi j ,Yi l

]= 0, whenever j 6= l . That is, observations on
the same subject are all uncorrelated,

• exchangeability: Here it is assumed that Corr
[
Yi j ,Yi l

] = ρ, ∀ j 6= l and ∀i for some constant ρ.
That is, the correlation between observations for a subject are the same no matter the time that
has passed between observations,

• autoregression: Here it is assumed that Corr
[
Yi j ,Yi l

] = ρ| j−l |, |ρ| < 1. That is, the correlation de-
creases as more time passes between observation, and

• unstructured: Here it is assumed that all observations for a subject are indeed correlated, but it
is not specified exactly how they are correlated, meaning that Corr

[
Yi j ,Yi l

] = ρ j ,l . In the other
cases, there is a specific structure to the correlation. That does not apply in this latter case, hence
the covariance structure is termed unstructured.

For longitudinal data, the first-order autoregressive covariance structure is very popular, and the reason
for this is obvious; it is certainly conceivable that Corr[Yi 1,Yi 2] > Corr

[
Yi 1,Yi ni

]
, for instance.

I will focus on the case probably most relevant to my data; autoregressive structure. Before doing so, I
am making a lot of assumptions, which will simplify my calculations. These assumptions may not be
entirely relevant to my data, but as a way of better understanding the workings behind estimation of ϕ,
I find these assumptions permissible. I will be using a lot of diagonal block-matrices, where notation
using direct product12 (or Kronecker product) comes in very handy. The assumptions are:

11Information about the covariance structures is based on [2].
12See B.9.
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• There is only one random factor, meaning that Z = Im×m ⊗1n .

• There is also only one fixed factor, meaning that X = 1m ⊗ In×n .

• The Y | Ui = ui ’s are independent and have the same covariance matrix, R0, meaning that R =
Im×m ⊗R0.

• The yi ’s all have the same variance, V0, meaning that V = Im×m ⊗V0.

• There is no correlation between subjects. Let Corr
[
Ui ,U j

] = ρu = 0, ∀i 6= j , and let σ2
u = Var[Ui ],

∀i . Thus G = Cov[U] has σ2
u on the diagonal, and σ2

uρu on the off-diagonal. With ρu = 0, we have

G =σ2
u

(
(1−ρu)Im×m +ρuJm×m

) = σ2
u ((1−0)Im×m +0 · Jm×m) = σ2

uIm×m , (4.20)

where Jm×m denotes an m ×m matrix consisting of all 1s.

With all these assumptions, the covariance of Y is then

V = ZGZT +R = (Im×m ⊗1n)(G⊗1)(Im×m ⊗1T
n )+ Im×m ⊗R0 = G⊗ Jn×n + Im×m ⊗R0

(4.20)= σ2
uIm×m ⊗ Jn×n + Im×m ⊗R0 = Im×m ⊗ (

σ2
uJn×n +R0

)
. (4.21)

The prediction of u thus becomes

û
(4.12)= GZT V−1(y−Xβ̂)

A.10= 1

r0 + 1
σ2

u

(
Im×m ⊗1T

n R−1
0

)
(y−Xβ̂) (4.22)

with r0 denoting the sum of all entries in R−1
0 , that is, r0 = 1T

n R−1
0 1n .

This gives

ûi = 1

r0 + 1
σ2

u

1T
n R−1

0 (yi − β̂). (4.23)

If the number of observations on each subject is not very large, inverting R0 should cause no grief.

And finally, with these assumption β̂ is actually independent ofϕ:

β̂= (XT V−1X)−1XT V−1y
A.11=

 ȳ·1
...

ȳ·n

 . (4.24)

We can now proceed concentrating only on û.

4.3.1 Expressing ûi using autoregressive structure

In this subsection, I will calculate the expression for ûi when assuming autoregressive structure. Here,
the assumption is that the correlation between observations for a subject decreases as more time passes
between them. Thus

R0 =σ2


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 . . . 1

 = σ2A, |ρ| < 1
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with

R−1
0 = 1

σ2
A−1 = 1

σ2(1−ρ2)



1 −ρ 0 . . . 0 0
−ρ 1+ρ2 −ρ . . . 0 0
0 −ρ 1+ρ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1+ρ2 −ρ
0 0 0 . . . −ρ 1


.

This gives

r0 = 1

σ2(1−ρ2)

(
2(1−ρ)+ (n −2)(ρ2 −2ρ+1)

) = 1

σ2(1−ρ2)

(
2(1−ρ)+ (n −2)(1−ρ)2)

= (1−ρ)(2+ (n −2)(1−ρ))

σ2(1−ρ2)
.

and

1T
n R−1

0 (yi − β̂)
A.12= 1−ρ

σ2(1−ρ2)

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)
,

which gives

ûi
(4.23)= 1

(1−ρ)(2+(n−2)(1−ρ))
σ2(1−ρ2)

+ 1
σ2

u

· 1−ρ
σ2(1−ρ2)

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)

A.13=
σ2

u

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)
σ2(1+ρ)+σ2

u(n −ρ(n −2))
.

Note that ρ(yi 1 − ȳ·1 + yi n − ȳ·n) represents end-effects as the first and last diagonal elements in R−1
0 are

different from the other diagonal elements. We now have an expression for ûi . All we need now, is to
plug in the estimates for the unknown parameters σ2, σ2

u and ρ.

4.3.2 Estimating σ2, σ2
u and ρ

This section is based on [7].

Retrieving the log-likelihood

`
(
β̂,ϕ;y

)≡−1

2
log(|V|)− 1

2

(
y−Xβ̂

)T
V−1 (

y−Xβ̂
)

,

let us focus on just one of the unknown parameters inϕ. Let ϕ denote such a parameter. Let Sϕ
(
β̂,ϕ;y

)
be the score function wrt. ϕ:

Sϕ
(
β̂,ϕ;y

)= ∂

∂ϕ
`

(
β̂,ϕ;y

) = −1

2
|V−1|∂|V|

∂ϕ
− 1

2

(
y−Xβ̂

)T ∂V−1

∂ϕ

(
y−Xβ̂

)
=−1

2
tr

{
V−1 ∂V

∂ϕ

}
− 1

2

(
y−Xβ̂

)T ∂V−1

∂ϕ

(
y−Xβ̂

)
=−1

2
mtr

{
V−1

0
∂V0

∂ϕ

}
− 1

2

(
y−Xβ̂

)T ∂V−1

∂ϕ

(
y−Xβ̂

)
.
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The 3rd equality comes from a rule about the derivative of the determinant of a matrix13. The maximum
likelihood equations for ϕ thus becomes

mtr

{
V−1

0
∂V0

∂ϕ

}
=−(y−Xβ̂)T ∂V−1

∂ϕ
(y−Xβ̂). (4.25)

Let LHS(ϕ) denote the left-hand side of Equation (4.25), and let RHS(ϕ) denote the right-hand side.
The objective is now to solve

LHS(ϕ) = RHS(ϕ)

letting ϕ play the part of σ2, σ2
u and ρ in turn.

ϕ=σ2
u

Let ϕ=σ2
u . From A.14, the estimating equation for σ2

u is

LHS(σ2
u) = RHS(σ2

u)

⇓
m

r0

r0σ
2
u +1

= (y−Xβ̂)T 1

(r0σ
2
u +1)2

(
Im×m ⊗R−1

0 1n1T
n R−1

0

)
(y−Xβ̂).

ϕ=σ2

Let ϕ = σ2. Differentiating V0 = σ2
uJn×n +R0 = σ2

uJn×n +σ2A wrt. σ2 is just A. The inverse of V0 has σ2
u

featured in its expression meaning σ2
u should also be featured in LHS(σ2). However, according to [7],

V−1
0 = (σ2A)−1, and thus

LHS(σ2) = mtr

{
V−1

0
∂V0

∂σ2

}
A.15= 1

σ2
mn.

I see no reason as to whyσ2
uJn×n should vanish from V0. I have included a word on this in my discussion,

Chapter 9. Defining δi j = yi j − ȳ· j , we have

RHS(σ2)
A.15= 1

σ4(1−ρ2)

m∑
i=1

(
(1+ρ2)

n∑
j=1

δ2
i j −ρ2(δ2

i 1 +δ2
i n)−2ρ

n∑
j=2

δi , j−1δi j

)
.

Finally, accepting LHS(σ2) from [7], the estimating equation for σ2 is

LHS(σ2) = RHS(σ2)

⇓
1

σ2
mn = 1

σ4(1−ρ2)

m∑
i=1

(
(1+ρ2)

n∑
j=1

δ2
i j −ρ2(δ2

i 1 +δ2
i n)−2ρ

n∑
j=2

δi , j−1δi j

)
.

ϕ=ρ
Let ϕ= ρ. Lastly, we must now solve LHS(ρ) = RHS(ρ). From A.16, the estimating equation for ρ is

LHS(ρ) = RHS(ρ)

⇓
ρ

1−ρ2
2m(n −1) = 1

σ2(1−ρ2)2

m∑
i=1

(
4ρ

n∑
j=1

δ2
i j −2ρ(δ2

i 1 +δ2
i n)−2(1+ρ2)

n∑
j=2

δi , j−1δi j

)
.

13See B.10.
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One might have noticed that the solution to σ̂2
u is dependent on R0, meaning it is dependent on σ2 and

ρ, and that the solution to σ̂2 is dependent on ρ, and vice versa. Thus, ρ̂, σ̂2 and σ̂2
u must be solved

numerically.

I have now described how to estimate ϕ in the case of autoregressive covariance structure. Finding the
best covariance structure can at times be difficult. Without having to make any assumptions on the
relationship between and within subjects, one could always just use the unstructured covariance. When
Corr

[
Yi j ,Yi l

]= ρ j ,l , then Cov
[
Yi j ,Yi l

]=σ2ρ j ,l . The within-subject covariance is then

R0 =σ2


1 ρ1,2 ρ1,3 · · · ρ1,n

ρ2,1 1 ρ2,3 · · · ρ2,n

ρ3,1 ρ3,2 1 · · · ρ3,n
...

...
...

. . .
...

ρn,1 ρn,2 ρn,3 · · · 1

 .

It is worth mentioning that with this type of covariance structure, in addition to estimating σ2
u and σ2,

one will also have to estimate ni (ni−1)
2 parameters for the correlations ρi , j . One should be careful using

the unstructured covariance, as a large number of parameters can lead to unstable estimates.

! As ni = 3, ∀i , only 3·(3−1)
2 = 3 correlation parameters must be estimated, thus it should create no

problems using the unstructured covariance wrt. my data.

4.4 Kenward-Roger approximation

This section is based on [11].

In order to find out whether there is any difference between the treatment groups, we must do inference
aboutβ. This can be done in a few ways, for instance by using a likelihood ratio test14 or a Wald test15. In
the likelihood ratio test (or LRT for short), we compare a likelihood function, L, with a reduced version
of the same likelihood, L0, in which the group-term is excluded. Let X and β be the design matrix and
set of coefficients in L, and let X0 and β0 be the reduced design matrix and reduced set of coefficients in
L0. We want to test the hypothesis

H KR1
0 : y = X0β0 +Zu+ε.

This is tested via the test statistic
T = 2

(
log(L)− log(L0)

)
,

which under H KR1
0 will be asymptotically χ2

d -distributed.

In the Wald test, we test the hypothesis
H KR2

0 : Kβ=β0

where K ∈ Rd×p is a matrix such that E[Y] = Xβ∧Kβ= 0 is equivalent to E[Y] = X0β0. It is tested via the
test statistic

W = (β̂−β0)T KT (
KT (XT V(ϕ̂)−1X)−1K

)−1
K(β̂−β0)

with (XT V(ϕ̂)−1X)−1 being the covariance of β̂. Under H KR2
0 , W will also be asymptoticallyχ2

d -distributed.

14See B.11
15See B.12.
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For small sample sizes, the approximation of the asymptotical distributions of T or W under the null-
hypotheses can be poor, which may lead to misleading conclusions. It would be preferable to have a
test statistic that does not have an asymptotical distribution, but rather approximates some distribu-
tion. For instance, by using a specific modification of W , we can get a test statistic that approximates
an F -distribution. For some models, this new test statistic even has an exact F -distribution under H KR2

0 .
In order to find an F -distributed test statistic, let F = 1

d W be a scaled test statistic with an asymptotical
1
dχ

2
d -distribution. We can modify F by approximating its distribution by an F -distribution. The idea is

to match the moments of F with those of an F (d ,m)-distributed random variable, where m is the de-
nominator degrees of freedom. In addition to m, we also derive a scaling factor, λ, which is multiplied
to F . Both λ and m are unknown. To find them, we set up a system of equations in which we match the
moments of F with those of an F (d ,m)-distributed random variable. The moments of F are approxi-
mated by a first order Taylor expansion of F . Let E∗ and V ∗ denote these approximations for the mean
and variance, respectively. Then the system of equations, we want to solve is

E[λF ] ≈λE∗ = E[F (d ,m)] = m

m −2

Var[λF ] ≈λ2V ∗ = Var[F (d ,m)] = 2m2(d +m −2)

d(m −2)2(m −4)
,

where E[F (d ,m)] and Var[F (d ,m)] are the moments of an F (d ,m)-distributed random variable. Once
we have λ̂ and m̂, we have approximations of the moments of F , that resemble those from an F -distribu-
tion. Hence, we have achieved our goal of finding an F -distributited test statistic. Or rather, under H KR2

0 ,
we have that λF ∼ F (d ,m). This approach is known as the Kenward-Roger approximation.

4.5 Fitted values of the LMM

This section is based on [8].

In [8] they say, that it is not really clear what the fitted values are in an LMM. In the simple classical
model, Equation (4.1), if yi is assumed Gaussian, then Yi ∼ N

(
xiβ,σ2

)
. Having observed nothing else,

the best prediction of yi will be µ̂i = xi β̂, having estimated the coefficient β. This means that the fitted
value for yi is just the individual mean µ̂i . The fitted values of the LMM are a little more complicated.
To see this, let us assume we have a balanced random effects model

yi j =µ+ui +εi j , i = 1, . . . ,n

Ui
iid.∼ N

(
0,σ2

u

)
,

εi j
iid.∼ N

(
0,σ2) ,

Yi j ∼ N
(
µ,σ2

u +σ2) ,

where ui and εi j are independent. If we let µi =µ+ui so that yi j =µi +εi j , we have the hierchical model

Yi j |µi ∼ N
(
µi ,σ2) ,

where µi
iid.∼ N

(
µ,σ2

u

)
. Once µi have been estimated, we get the best prediction for the i th subject as

ŷi j = E
[
Yi j | µ̂i

]= µ̂i , where

µ̂i
A.17=

(
1− σ2

u

σ2
u + σ2

n

)
µ+ σ2

u

σ2
u + σ2

n

ȳi ·.

So, the fitted value ŷi j is not just the individual mean, like in simple model, but a weighted average
between the overall mean, µ, and the group average, ȳi ·.
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Example 1 In this example, I will set up a random effects model. The purpose of the example is to show
how the fitted values differ from the sample mean. I will be using a subset, dat, of the data set ant111b
from the package DAAG:

1 > head ( dat , 8)
2 s i t e harvwt
3 1 DBAN 5.160
4 2 LFAN 2.930
5 3 NSAN 1.730
6 4 ORAN 6.790
7 5 OVAN 3.255
8 6 TEAN 2.650
9 7 WEAN 5.040

10 8 WLAN 2.020

On different islands in the Carribean, the harvest weight for different sites have been measured. Differ-
ent types of treatment have been used, and each site is seperated into four plots. Hence, there is four
measurements per site. In this example, we are only interested in the harvest weight, as we are setting
up a random effects model, and will thus not be considering that the weight could be influenced by the
island or the treatment, as these would be fixed effects. As such, the subset dat only consists of the vari-
ables harvwt (the harvest weight) and site (the site), which has 8 levels.

The random effects model have two sources of variation; σ2
u , the variation between sites, and σ2, the

variation within sites. Figure 5 shows that there is great variation between sites, and the variations within
sites are a lot smaller.

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN
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Figure 5: Boxplot of the variation of harvest weight within each site.

For the model, I am using the exchangeable covariance structure, hence I am assuming the correlation
between plots in each site is the same. The model is:
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1 Model = lme ( f ixed = harvwt ~ 1 , random = ~ 1 | s i t e , correlat ion = corCompSymm( form = ~ 1 | s i t e ) ,
data = dat )

In Chapter 5, I go into a few more details about the functions in R for modelling an LMM. As I have no
fixed effects, I only write "∼ 1” for the fixed-argument. For the random-argument, I use site as this is
the random effect. With corCompSymm(), I specify, I want to use the exchangeable covariance structure.

First, I extract σ̂2
u and σ̂2:

1 > VarCorr (Model)
2 s i t e = pdLogChol ( 1 )
3 Variance StdDev
4 ( Intercept ) 2.3677325 1.5387438
5 Residual 0.5775378 0.7599591

We see that σ̂2
u = 2.3677325 and σ̂2 = 0.5775378, confirming the suspicion from Figure 5, that σ̂2

u > σ̂2.

Next, I look at the residuals to make sure the model is sensible. Figure 6 shows no unwanted patterns in
the residuals. One thing to notice is the size of the residuals. The range of harvwt is [1.490,7.365]. The
residuals’ range is [−1.546,1.434]. The residuals are quite big compared to the values of harvwt. This,
however, does not mean that Model is a bad model; it is very common for mixed models to have large
residuals, because the residuals are a little different from those of, say, a general linear model. This is
due to the more complicated nature of the fitted values of the LMM.
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Figure 6: Plot of the residuals vs. the fitted values of Model.

Lastly, I compare the sample means and the fitted values. As we have no fixed effects in the model to
distinguish between the plots, the fitted values for each plot on a site, are the same:
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1 > s p l i t (Model$ f i t t e d [ , 2 ] , dat$ s i t e )
2 $DBAN
3 1 9 17 25
4 4.850901 4.850901 4.850901 4.850901
5
6 $LFAN
7 2 10 18 26
8 4.21234 4.21234 4.21234 4.21234
9

10 $NSAN
11 3 11 19 27
12 2.216544 2.216544 2.216544 2.216544
13
14 $ORAN
15 4 12 20 28
16 6.764226 6.764226 6.764226 6.764226
17
18 $OVAN
19 5 13 21 29
20 4.801418 4.801418 4.801418 4.801418
21
22 $TEAN
23 6 14 22 30
24 3.108408 3.108408 3.108408 3.108408
25
26 $WEAN
27 7 15 23 31
28 5.455295 5.455295 5.455295 5.455295
29
30 $WLAN
31 8 16 24 32
32 2.924616 2.924616 2.924616 2.924616

Hence, when we take the mean of the fitted values for each site, the mean is exactly the same as the fitted
value. Below are the fitted values for each site (fit) and the means of harvwt at each site (means). The
data frame shows the difference in the sample means and the fitted values:

1 > f i t = sapply ( s p l i t (Model$ f i t t e d [ , 2 ] , dat$ s i t e ) , mean)
2 > means = sapply ( s p l i t ( dat$harvwt , dat$ s i t e ) , mean)
3 > data . frame (mean = means , f i t t e d = f i t )
4 mean f i t t e d
5 DBAN 4.88500 4.850901
6 LFAN 4.20750 4.212340
7 NSAN 2.09000 2.216544
8 ORAN 6.91500 6.764226
9 OVAN 4.83250 4.801418

10 TEAN 3.03625 3.108408
11 WEAN 5.52625 5.455295
12 WLAN 2.84125 2.924616

So, the fitted values in an LMM is not just the sample means, and hence, as [8] hinted at, they are more
difficult to understand.

ä
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4.6 The LMM with random intercepts and slopes

This section is based on [2] and [10].

The LMM with random intercepts is a special LMM. The idea of the random intercepts model (RIM for
short) is, that it is not always sensible to assume, that subjects have the same initial levels. The RIM
allows for the influence of each subject on their repeated measurements. From the vocabulary-test ex-
ample, we know that the most simple16 LMM is given as

yi j =µ+xi jβ+ui +εi j .

Obviously, here we have a common initial level for all subjects, given by µ. Inserting µi =µ+ui back into
the equation, we get the RIM

yi j =µi +xi jβ+εi j , (4.26)

where yi j is the j th observation for the i th subject. The ui is, as before, the intercept-deviation for
subject i from the average intercept µ. Equation (4.26) indicates that subject i ’s response at the j th
timepoint is influenced by the subject’s initial level. We still have the assumption that Ui ∼ N

(
0,σ2

u

)
and

εi j ∼ N
(
0,σ2

)
, and that ui and εi j are independent.

In the RIM, the variance of each measurement is

Var
[
Yi j

]= Var
[
Ui +εi j

] = σ2
u +σ2.

This is also called the total residual variance, as ui + εi j is called the total residuals. The covariance
between the total residuals at two timepoints, j and k, from the same subject is

Cov
[
Yi j ,Yi k

]= Cov
[
Ui +εi j ,Ui +εi k

] A.18= σ2
u , j 6= k.

The correlation is then

Corr
[
Yi j ,Yi k

]= Corr
[
Ui +εi j ,Ui +εi k

] = σ2
u

σ2
u +σ2

, j 6= k.

This correlation is known as compound symmetry. It gives the ratio of the individual variance, σ2
u , to

the total variance, σ2
u +σ2. Because the correlation is constant, we say that the RIM has exchangeable

correlation structure.

As visible by Var
[
Yi j

]
and Cov

[
Yi j ,Yi k

]
, the RIM constrains the variance of each measurement to be

the same and the covariance between any pair of measurements (for the same subject, of course) to be
equal. There are certainly cases where this constraint is unrealistic. For longitudinal data, one can easily
imagine that measurements taken further apart will be less correlated than those taken close to each
other in time. Consequently, Cov

[
Yi j ,Yi k

]=σ2
u will not match the observed covariance pattern. A way

to deal with this is to allow for heterogeneous slopes. With the slope being just β, we have that in the
RIM it is assumed that the rate of change across time is the same for all subjects. This may not always
be a fair assumption. We can extend the RIM by also allowing for subject-specific slopes. This is the
random intercepts and slopes model (RISM for short), and it is given by

yi j =µi +xi jβ+xi j bi +εi j = µi +xi j b̃i +εi j (4.27)

16"Simple” as in there is only one fixed and one random effect. The RIM, however, is not restricted to having only one fixed
effect, but it must have only one random.
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with b̃i = β+bi . The bi is the slope-deviation for subject i from the average slope β. It is assumed that
bi ∼ N

(
0,σ2

b

)
, and that also bi and εi j are independent. Let σub denote the covariance of ui and bi . The

random-effects covariance matrix is

Σ=
[
σ2

u σub

σub σ2
b

]
.

Being a covariance matrix, one must make sure Σ is positive semi-definit. The total residual is now
ui +xi j bi +εi j , and

Var
[
Yi j

]= Var
[
Ui +xi j bi +εi j

]
= Var[Ui ]+Var

[
xi j bi

]+Var
[
εi j

]+2Cov
[
Ui , xi j bi

]+2Cov
[
Ui ,εi j

]+2Cov
[
xi j bi ,εi j

]
=σ2

u +x2
i jσ

2
b +σ2 +2xi jσub .

We see that the variance of a measurement now depends on the timepoint at which it was taken. This is
apparent by the subscribt j . The covariance becomes

Cov
[
Yi j ,Yi k

]= Cov
[
Ui +xi j bi +εi j ,Ui +xi k bi +εi k

] A.19= σ2
u +xi j xi kσ

2
b + (xi j +xi k )σub .

The covariance is no longer the same for any pair of measurements on a subject.

The variance terms indicate how much heterogeneity there is in the population; σ2
u indicates the spread

around the population intercept, and σ2
b indicates the spread around the population slope, and σub

indicate to what degree ui and bi co-vary. For instance, σub > 0 suggests that subjects with higher initial
values (than the population average) also have higher slopes, and the opposite if σub < 0.

! If there indeed is a difference in how well patients recover according to the type of treatment,
then it certainly makes sense to use a RIM or RISM; it would seem likely that patients in group 3
would have a higher intercept and/or a steeper positive slope than patients in, say, group 1.

I will now move on to performing an analysis on my data using mixed models.
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In this chapter, I go through the results of modelling my respons variables with LMMs as described
in Chapter 4. In Chapter 3, I could not definetly determine the distribution of the samples as being
Gaussian. I have investigated this further, and by visual inspection, I find the Gaussian distribution the
most fitting (despite the Shapiro-Wilk test rejecting all samples as being Gaussian in Chapter 3). Hence,
I will continue under the assumption, that my data is in fact Gaussian. I will model the three types of
movement seperately. I will start the analysis by modelling the pro/sup-movement. I will do this in
as many details, I feel is needed. Afterwards, I will perform the analysis of the uln/rad- and ex/flex-
movements, but in much less details. I will be using different types of covariance structures, and I will
compare the results to see which covariance structure is most realistic for the data.

5.1 Analysis using correlation = corCAR1()

First thing I must decide is which function in R to use. The packages nmle and lme4 both have functions
for mixed models. I find the function lme() from the nlme-package the best of all my choices17.
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Figure 7: In this plot only the measurements of pro/sup in percentages are used. Each graph represents a group. Each
line in each graph represents the time series for a patient in that group.

Next thing I must decide is whether I should use a RIM or a RISM. This is easily decided by simply plot-
ting the time series of ps for every patient. Figure 7 shows that patients do indeed have very different
intercepts, and the lines also do not seem to prescribe to one common slope. The figure also shows that
the intercepts for group 3 are not higher than those of the other two groups, and the slopes of group 3
does not look steeper than the slopes of the other two groups. Hence, I do not see what I might expect

17Other functions in the packages either could not fit models with random effects, only allowed for the exchangeable struc-
ture, or were for a non-linear fit. Hence, I found lme() the best of my choices as it does not have these restrictions.
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to see, if there really was a difference in the treatment groups. Either way, I will set up both a RIM and
a RISM, and use anova() to see which model, I should use. Remember, anova() tests the hypothesis,
that there is no significant difference in the models given as input.

In setting up the models, I have to specify the covariance structure through the argument correlation
in lme(). In accordance with the four types of covariance structure discussed in Section 4.3, I have listed
how they are specified in lme():

• Independence: correlation defaults to the independence structure when nothing is specified.

• Exchangeable: As explained in Section 4.6, the exchangeable structure is also known as compound
symmetry, hence correlation = corCompSymm() is for the exchangeable structure.

• Autoregression: There are two choices for an autoregressive structure of order 1; correlation =
corAR1() and correlation = corCAR1(). Only with corCAR1() can I account for having non-
equidistant timepoints.

• Unstructured: With correlation = corSymm(), no structure is imposed on the correlation ma-
trix.

As I find it reasonable to use the autoregressive structure for my data, I will start my analysis with
corCAR1(). I will set up three models with this autoregressive structure, and I will refer to these models
as the "ar”-models and will be adding ".ar” to their names in R. As I am setting up linear models, I must
make sure the relationship between the dependent and the independent variables is linear. I already
investigated this in Chapter 1, and came to the conclusion, that I needed a squared term of time. Below,
I have set up two models; a RIM and a RISM:

1 ps . rim . ar = lme ( ps ~ time + I ( time^2) + group , random = ~ 1 | subject , data = Wrist , method = "REML
" , correlat ion = corCAR1 ( form = ~ time | subject ) , control = lmeControl ( opt = "optim" ,
msMaxIter = 60) )

2 ps . rism . ar = update ( ps . rim , random = ~1+time | subject )

Adding time to the random-argument is what creates the random slopes. For the correlation-argument,
I need to specify that time should be used when calculating the correlations and that observations with
different levels in subject are uncorrelated. Hence, corCAR1(form = ∼time|subject). With this co-
variance structure, I needed a few extra iterations than the default 50 to reach convergence. Hence, the
control-argument. Below the result of the test is shown:

1 > anova ( ps . rim . ar , ps . rism . ar )
2 Model df AIC BIC logLik Test L . Ratio p−value
3 ps . rim . ar 1 8 1973.976 2001.953 −978.9880
4 ps . rism . ar 2 10 1936.519 1971.491 −958.2597 1 vs 2 41.45667 <.0001

The anova-function takes either one or multiple inputs. In Appendix B, I have explained how the func-
tion works and what it tests in those situations. The test above shows that the RISM is prefered with a
p-value below 0.0001. Thus I continue my analysis of the pro/sup-movement with a RISM.

Going forward, I will start by taking a look at the estimated coefficients. I will confirm that V0, R0 and Σ
are positive semi-definit. I will test whether group is relevant to the model, and then end the analysis by
checking that the model assumptions are satisfied.
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The RISM for my data looks like

yi j =µ+ time jβtime + time2
jβtime2 + 1[group 2]βgr2 + 1[group 3]βgr3 + time j bi +ui +εi j ,

where time j ∈ {0,7,46} is the timepoints and

1[group m] =
{

1, patients belongs to group m

0, otherwise
for m = 2,3.

Their corresponding coefficients are βtime, βtime2 , βgr2 and βgr3, respectively. This is just an extention of
the RISM, Equation (4.27), in Section 4.6. The fixed effects are extracted form ps.rism.ar by:

1 > ps . rism . ar$ c o e f f i c i e n t s $ f ixed
2 ( Intercept ) time I ( time^2) group2 group3
3 61.893866 4.145904 −0.075069 −0.286157 2.704198

This means that

µ= 61.89387, βtime = 4.14590, βtime2 =−0.075070, βgr2 =−0.28616, βgr3 = 2.70420.

The random effects are extracted by (here only the eight first patients):

1 > ps . rism . ar$ c o e f f i c i e n t s $random$subject
2 ( Intercept ) time
3 id01 4.252543 −0.0753924
4 id02 14.964132 −0.2611401
5 id03 6.033762 −0.0995685
6 id04 −8.695947 0.1725030
7 id05 2.738471 −0.0227380
8 id06 −0.096404 −0.0089380
9 id07 −20.615433 0.2857262

10 id08 2.673071 −0.0452410

The "(Intercept)”-column is the ui ’s and the "time”-column is the bi ’s. The fitted value for the 1st
patient (who belongs to group 1) at the 2nd time point is then

ŷ12 = 61.89387+7 ·4.14590+72 · (−0.07507)+0 · (−0.28616)+0 ·2.70420+7 · (−0.075392)+4.25254

= 90.96162.

We can check this result against the result from R:

1 > f i t t e d ( ps . rism . ar ) [ 2 ]
2 id01
3 90.96162

I must now check that all the covariance matrices, V0, R0 and Σ, are positive semi-definite. They are
extracted through the function getVarCov(), which is implemented in my function superLMM(). The
result for ps.rism.ar is:

1 > superLMM( ps . rism . ar ) $vcov
2 V0 R0 Sigma
3 [ 1 , ] TRUE TRUE TRUE

They are all positive semi-definit.
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Finally, is group significant to the model? I will answer this via three tests. The first test is anova()
with the model as input. It tests whether each of the terms in the formula of the model are significant.
The second test is also anova(), but with two inputs; the model and the corresponding null-model. It
compares the models via an LRT. When I use the term "null-model” in this chapter, I mean a model
without the group-term. The last test is performed by the function intervals(), which gives the 95%-
confidence intervals for the parameter estimates. If 0 is contained in an interval, then we can accept
that βi = 0. The results of the three tests, in the order mentioned, for ps.rism.ar are:

1 > superLMM( ps . rism . ar ) $group
2 $anova1
3 p−value
4 ( Intercept ) 0.00000
5 time 0.00000
6 I ( time^2) 0.00000
7 group 0.36011
8
9 $anova2

10 [ 1 ] 0.28728
11
12 $ i n t e r v a l s
13 lower est . upper
14 ( Intercept ) 57.65469 61.89387 66.13304
15 time 3.71112 4.14590 4.58068
16 I ( time^2) −0.08393 −0.07507 −0.06621
17 group2 −4.79709 −0.28616 4.22478
18 group3 −1.84831 2.70420 7.25671

We see that both of the anova-tests say that group is insignificant to the model, and that we can set
βgr.2 =βgr.3 = 0.

Checking model assumptions

Before these results can be accepted, I must check that the model assumptions are satisfied. The as-
sumptions were that

i. the random effects are independent, homoscedastic and Gaussian,

ii. the errors are independent, homoscedastic and Gaussian, and

iii. explanatory variables are related linearly to the response.

Wrt. to the 3rd assumption, I believe, I have already have the explanatory variables in their correct form,
as I have included a squared term of time. I cannot test if group should be transformed as it is a factor
and it would make no sense to, say, take the logarithm of group. Hence, I will concern myself with only
the first two assumptions.

To test assumption i. and ii., I have to supply superLMM() with the argument ass, which is either 1
or 2, respectively. When setting ass = 1, if the input model is a RIM, nothing else needs to be put into
superLMM(). The function then makes three plots; a plot of the random intercepts vs. patient index, a Q-
Q plot and a histogram of the intercepts. It also outputs the p-values from performing a Bartlett test and
Levene’s test for homoscedasticity and the p-value from performing a Shapiro-Wilk test for normality.
If the input model is a RISM, superLMM() also needs the argument is specified, which is either "I" or
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"S" for random intercepts or slopes, respectively. If is = "I", the function makes the same plots and
tests of the intercepts as just described. If is = "S", the function makes the same plots and tests as just
described, but for the random slopes instead. Below are the results from ps.rism.ar when setting is
= "I", and Figure 8 shows the three plots:

1 > superLMM( ps . rism . ar , ass = 1 , i s = " I " )
2 Bart Leve Shap
3 p−value 0.17719 0.20025 0.11581

All the p-values are above 0.05, so according to the tests, assumption i. is satisfied for the random in-
tercepts. The Q-Q plots in Figure 8 agrees with the Shapiro-Wilk test. The histograms, however, do not
look as good as expected from the nice Q-Q plots. The top plot in Figure 8 shows no unwanted patterns
in the intercepts, which agrees with the tests.
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Figure 8: 1st row: Intercepts vs. patient index. The red, yellow and green dots are for groups 1, 2 and 3, respectively.
2nd row: Q-Q plot and histogram with density curve of the random intercepts.

Next, we must test the random slopes. The results are:

1 > superLMM( ps . rism . ar , ass = 1 , i s = "S" )
2 Bart Leve Shap
3 p−value 0.23366 0.30335 0.12843
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Assumption i. is satisfied for the random slopes, according to the tests. Figure 9 looks just about the
same as Figure 8; no patterns in the top plot, a Q-Q plot, that agrees with the Shapiro-Wilk test and a
histogram, that does not look as good as expected.
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Figure 9: 1st row: Slopes vs. patient index. The red, yellow and green dots are for groups 1, 2 and 3, respectively. 2nd
row: Q-Q plot and histogram with density curve of the random slopes.

When setting ass = 2, superLMM() makes the three plots in Figure 10, and it gives the p-values from
performing a Bartlett test and Levene’s test on the residuals to test for homoscedasticity, and the p-value
from performing a Shapiro-Wilk test for normality. When performing a Bartlett test and Levene’s test to
confirm the homoscedastic variance of the residuals, I get conflicting results:

1 > superLMM( ps . rism . ar , ass = 2)
2 Bart Leve Shap
3 p−value 0.00031 0.82783 7.498e−07

To investigate these results further, I use the top plot in Figure 10, which deserves an explanation: it is
intended for detecting patterns in the residuals for each patient. The vector of residuals has 3·83 entries,
that is, three residuals per patient (one for each timepoint). These are connected by a colored line (red,
yellow or green for group 1, 2 or 3, respectively). An unwanted pattern that could show heteroscedas-
ticity could be if the sets of residuals for each patient were increasing or forming a "U”-shape. In Figure
10, I see both increasing sets and "U”-shapes, but I also see many other shapes and, most importantly,
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no obvious reacurring patterns. Hence, I agree with the Levene’s test. The Shapiro-Wilk test says that
the normality assumption has been violated. The Levene’s test is not as sensitive as the Bartlett test wrt.
violations of normality.
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Figure 10: 1st row: Residuals plotted against their index. Each colored line represent the residuals for a patient (red,
yellow or green for group 1, 2 or 3, respectively). 2nd row: Q-Q plot and histogram with density curve of the residuals.

The result of the Shapiro-Wilk test is a little surprising. As both the intercepts and the slopes were ac-
cepted as being Gaussian despite the not so pretty histograms, I find it strange that the residuals are
not Gaussian, when their histogram (see Figure 10) much more looks like something from a Gaussian
sample (in fact, if you simulate a Gaussian sample, it is not difficult to get a result that easily resembles
both the Q-Q plot and histogram in Figure 10). Perhaps these confusing results are due to of the small
sample size.

I am sufficiently satisfied, that assumption i. and ii. have been satisfied. I end the analysis of the
pro/sup-movement by concluding that the treatment plays no role in the patients’ recovery of the in-
jured hand wrt. the pro/sup-movement.

The analysis of the ex/flex- and uln/rad-movements will not be as extensive as the analysis of the pro/-
sup movement. I will, in much less details,

• choose a model,



5 Results of modelling data with LMMs 44

• determine whether V0, R0 and Σ (or G in the case of a RIM) are positive semi-definit,

• test whether group is relevant to the model, and

• test model assumptions i. and ii.

Analysing ur

As before, I start by testing whether I need a RIM, ur.rim.ar, or a RISM, ur.rism.ar, both set up exactly
like the models for ps. In this case anova() gives a p-value indicating, that the RIM is prefered:

1 > anova ( ur . rim . ar , ur . rism . ar ) $"p−value " [ 2 ]
2 [ 1 ] 0.41452

Since the RIM is prefered, if there indeed is a difference in the treatment groups, I would expect the
intercepts for group 3 to be higher than the intercepts for the other two groups. Figure 11 shows that
this is not the case. It also shows that we do have random intercepts, but it is not entirely evident that
we do not need random slopes. Out of curiosity, I checked to see how small the estimates of the random
slopes were, and they were not as small as I had thought they would be.
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Figure 11: In this plot only the measurements of uln/rad in percentages are used. Each graph represents a group.
Each line in each graph represents the time series for a patient in that group.

To see if I really should use ur.rim.ar over ur.rism.ar, I have compared the estimated slopes with
those from ps.rism.ar. Let bur

i and bps
i denote these estimated slopes. Figure 12 shows bps

i and bur
i ,

and we do see that the range of bps
i is bigger than that of bur

i , but I am not convinced that I should accept
that bps

i ≈ 0. Therefore, I will be using ur.rism.ar in my analysis. If bps
i really is just zero, then I will be

adding a zero-term to the model, which will make no difference. Hence, I can proceed with ur.rism.ar.
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Figure 12: The estimates slopes in ur.rism.ar and ps.rism.ar.

Below are the results from superLMM() (I will not be showing any of the plots from superLMM()):

1 > superLMM( ur . rism . ar )
2 $vcov
3 V0 R0 Sigma
4 [ 1 , ] TRUE TRUE TRUE
5
6 $group$anova1
7 p−value
8 ( Intercept ) 0.00000
9 time 0.00000

10 I ( time^2) 0.00000
11 group 0.72217
12
13 $group$anova2
14 [ 1 ] 0.7101
15
16 $group$ i n t e r v a l s
17 lower est . upper
18 ( Intercept ) 28.45686 33.81199 39.16713
19 time 5.46868 6.10641 6.74413
20 I ( time^2) −0.11872 −0.10566 −0.09260
21 group2 −6.90004 0.07710 7.05424
22 group3 −4.51892 2.52253 9.56398
23
24 > superLMM( ur . rism . ar , ass = 1 , i s = " I " )
25 Bart Leve Shap
26 p−value 0.57259 0.49011 0.82730
27
28 > superLMM( ur . rism . ar , ass = 1 , i s = "S" )
29 Bart Leve Shap
30 p−value 0.40876 0.50730 0.00340
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31
32 > superLMM( ur . rism . ar , ass = 2)
33 Bart Leve Shap
34 p−value 0.32225 0.99941 0.30036

All of the covariance matrices are positive semi-definit, and group is irrelevant to the model. All assump-
tions are satisfied, apart from the estimated random slopes being Gaussian (the Q-Q plot and histogram
of the slopes looks very similar to those in Figure 10). I am not too concerned with violations of the
normality assumption as long as the homoscedasticity assumption is not violated.

In summation: Modelling the uln/rad-movement with a RISM gives positive semi-definite covariance
matrices, all tests agree that group is irrelevant to the model, and the model assumptions are satisfied. I
conclude that the treatment plays no role in the patients’ recovery of the injured hand wrt. the uln/rad-
movement.

Analysing ef

Just like in the analysis of the uln/rad-movement, anova() tells me I should use a RIM for the ex/flex-
movement. Once again, I see no indication in Figure 13 that there is a difference in the intercepts wrt.
the groups. I have investigated the range of the estimated slopes, and once again I am not convinced
that the slopes are all the same. I have also compared the slopes with those from ps.rism.ar, and I find
that bef

i resembles bur
i in Figure 12. Hence, I will perform my analysis with a RISM, ef.rism.ar.

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
20

40
60

80
10

0
12

0
14

0 Group 1

 

P
er

ce
nt

ag
e 

of
 n

or
m

al
 r

an
ge

6 weeks 3 months 1 year

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
20

40
60

80
10

0
12

0
14

0 Group 2

Time after surgery

 

6 weeks 3 months 1 year

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
20

40
60

80
10

0
12

0
14

0 Group 3

 

 

6 weeks 3 months 1 year

Figure 13: In this plot only the measurements of ex/flex in percentages are used. Each graph represents a group. Each
line in each graph represents the time series for a patient in that group.

Below are the results from superLMM() (I will not be showing any of the plots from superLMM()):
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1 > superLMM( ef . rism . ar )
2 $vcov
3 V0 R0 Sigma
4 [ 1 , ] TRUE TRUE TRUE
5
6 $group$anova1
7
8 p−value
9 ( Intercept ) 0.00000

10 time 0.00000
11 I ( time^2) 0.00000
12 group 0.24374
13
14 $group$anova2
15 [ 1 ] 0.23174
16
17 $group$ i n t e r v a l s
18 lower est . upper
19 ( Intercept ) 18.50728 23.45852 28.40975
20 time 6.41496 6.92821 7.44147
21 I ( time^2) −0.13132 −0.12083 −0.11033
22 group2 −1.29168 5.06211 11.41590
23 group3 −2.20206 4.21030 10.62265
24
25 > superLMM( ef . rism . ar , ass = 1 , i s = " I " )
26 Bart Leve Shap
27 p−value 0.00326 0.00161 0.87110
28
29 > superLMM( ef . rism . ar , ass = 1 , i s = "S" )
30 Bart Leve Shap
31 p−value 0.32826 0.41292 0.95484
32
33 > superLMM( ef . rism . ar , ass = 2)
34 Bart Leve Shap
35 p−value 0.12205 0.99584 0.01414

All of the covariance matrices are positive semi-definit, and group is irrelevant to the model. All as-
sumptions are satisfied, apart from intercepts being homoscedastic and the residuals being Gaussian. I
have checked the Q-Q plot and histogram of the residuals (not shown here), and I see no reason not to
assume the residuals are (asymptotically) Gaussian. The intercepts, according to both the Bartlett test
and Levene’s test, are heteroscedastic. The top plot in Figure 14 shows no particular patterns in the in-
tercepts indicating heteroscedasticity, but we do see a bigger spread in the intercepts for the patients in
group 2, than in the other two groups. This is confirmed by the bottom plot. Perhaps this is what results
in the low p-values. As I see no unwanted patterns in the top plot, I am causious in accepting the results
from the Bartlett and Levene’s test.

In summation: Modelling the ex/flex-movement with a RISM gives positive semi-definite covariance
matrices, all tests agree that group is irrelevant to the model, and the model assumptions were (almost
all) satisfied. I conclude that the treatment plays no role in the patients’ recovery of the injured hand
wrt. any of the three types of movement.
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Figure 14: 1st row: Intercepts vs. patient index. The red, yellow and green dots are for groups 1, 2 and 3, respectively.
2nd row: Boxplots of the intercepts for each group.

5.2 Analysis using correlation = corSymm()

So far I have assumed an autoregressive covariance structure would be the most fitting. Of my choices,
the only other realistic covariance structure, is the unstructured one, I believe. In this section, I will set
up the models with correlation = corSymm(), which gives the unstructured covariance, to see if the
models with this structure fits the data better. The models are:

1 ps . rism . un = lme ( ps ~ time + I ( time^2) + group , random = ~1+time | subject , data = Wrist , method =
"REML" , correlat ion = corSymm( form = ~ 1 | subject ) , control = lmeControl ( opt = "optim" ,

msMaxIter = 60) )
2 ur . rim . un = lme ( ur ~ time + I ( time^2) + group , random = ~ 1 | subject , data = Wrist , method = "REML

" , correlat ion = corSymm( form = ~ 1 | subject ) )
3 ef . rim . un = lme ( ef ~ time + I ( time^2) + group , random = ~ 1 | subject , data = Wrist , method = "REML

" , correlat ion = corSymm( form = ~ 1 | subject ) )

I have added "un” to the names of the models for "unstructured”. This time I am relying on the results
when anova() tells me I need a RIM for the uln/rad- and ef/flex-movements. Figure 15 shows that the
estimated slopes for the RISMs of the "un”-models for the uln/rad- and ef/flex-movements are all very
close to zero.
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Figure 15: The estimated slopes in the RISMs of pro/sup, uln/rad and ex/flex.

This first thing to do is to make sure it even makes sense to use correlation = corSymm(), by

• determining whether V0, R0 and Σ (or G) are positive semi-definite,

• testing whether group is relevant to the model, and

• testing model assumptions i. and ii..

The results are gathered in Table 1, 2 and 3. Table 1 shows that all covariance matrices are positive semi-
definit.

Table 1: This table contains the results of using superLMM()$vcov on the "un”-models.

superLMM()$vcov
ps.rism.un ur.rim.un ef.rim.un

V0 TRUE TRUE TRUE
R0 TRUE TRUE TRUE
Σ TRUE TRUE TRUE

In Table 2, we see that group is irrelevant to all the "un”-models. I have not included the results for µ,
βtime and βtime2 as they are of less interest (they are significant to the models, though).

Table 2: The row for $anova1 are the p-values for group. The row for $anova2 are the p-values from the comparison
of the model and the null-model. The rows for $intervals are the 95%-confidence intervals for βgr.2 and βgr.3.

superLMM()$group
ps.rism.un ur.rim.un ef.rim.un

$anova1 0.58401 0.89186 0.19036

$anova2 0.58044 0.89146 0.17924

$intervals βgr.2 ∈ [−3.12,5.68] βgr.2 ∈ [−6.55,6.99] βgr.2 ∈ [−0.73,11.61]
βgr.3 ∈ [−2.13,6.76] βgr.3 ∈ [−5.31,8.36] βgr.3 ∈ [−1.99,10.46]
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In Table 3, we see that almost all model assumptions are satisfied. When testing for normality of ûi , b̂i

and εi j in ps.rism.un, I get that none of them are Gaussian according to the Shapiro-Wilk test. Both the
Q-Q plots and histograms of ûi and b̂i (not shown here) seem to agree with this, but I see no reason not
assume that εi j is Gaussian (plots also not shown here) or homoscedastic. Once again, I am contributing
the low p-values from the Bartlett test to violations of normality.

Table 3: Whether it is ass=1,is="I", or ass=1,is="S" or ass=2, there are three rows. The first row are the p-
values from the Bartlett test of the either the intercepts, slopes or residuals. The second row are the p-values from the
Levene’s test, and the third row are the p-values from the Shapiro-Wilk test.

superLMM(ass = c(1, 2), is = c("I", "S"))
ps.rism.un ur.rim.un ef.rim.un

ass = 1, is = "I" 0.19678 0.80862 0.00403
0.44824 0.87102 0.01261
0.00183 0.69126 0.29960

ass = 1, is = "S" 0.18322
0.59453
0.00016

ass = 2 0.00000 0.21954 0.20516
0.88786 0.99646 0.99925
0.00001 0.16510 0.12081

Just like with ef.rism.ar, I also have problem wrt. homoscedasticity of the intercepts for ef.rim.un.
The plots of the intercepts for ef.rim.un looks just about the same as Figure 14, which leaves me with
no final conclusion as to whether I should accept the p-values from the Bartlett and Levenes’s tests.

All in all, if I accept the results from superLMM()$group despite some problems with both the normality
and homoscedasticity assumptions, I find that the treatment plays no role in the patients’ recovery of
the injured hand wrt. any of the three types of movement.

5.3 Analysis using correlation = NULL

I want to test my assumption that measurements on a patient must be correlated. For longitudinal data,
it rarely makes sense to use the independence structure (for this, one uses correlation = NULL) as
there will usually be some kind of correlation between measurements on the same subject. I have set up
three models with independence structure ("in”-models); ps.rism.in, ur.rism.in and ef.rism.in,
that is, three RISMs. I will not go through the analysis of these model here, but I have checked that
they satisfy almost all model assumptions (with a few problems wrt. the normality of the residuals, and
the homoscedasticity assumption for the intercepts of ef.rism.in), that the covariance matrices are
positive semi-definit and that the conclusion about group is the same (i.e. group is irrelevant to the
model). Having set up these models, I am now able to test whether my assumption about correlated
measurements is correct.

5.4 Comparison of the "ar”-, "un”- and the "in”-models

To find out which covariance structure fits data best, I will now compare the three sets of models. In
order to compare models with different covariance structure, they must both be either RIMs or RISMs.
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If one is a RIM and the other is a RISM, anova() cannot perform an LRT and give a p-value, but only
give the AIC and the value of the maximized (restricted) log-likelihoods. Of course, one could compare
the AICs, and then conclude that the model with the smallest AIC is the better one. But, as mentioned in
Appendix B, how big does the difference in AIC have to be before we can say that the models are differ-
ent? To answer this, we will need the p-value from the test anova() performs. As it will not make a worse
model when adding the slopes to the RIM, I will instead be comparing ur.rism.ar with ur.rism.un (I
have, of course, checked that this RISM satisfy all model assumptions, that the covariance matrices are
positive semi-definit and that the conclusion about group is the same). The same goes for the models
for the ex/flex-movement. The p-values from comparing the sets of models with anova() are gathered
in the matrix, modcomp.anova, below:

1 > modcomp. anova
2 ps ur ef
3 ar vs . in 0.41816 0.96648 0.91340
4 ar vs . un 0.00000 0.06602 0.12450
5 in vs . un 0.00000 0.14244 0.24263

The columns represent the different types of movement, and the row indicate which type of models
have been compared. The results show that there is no significant difference in the three types of mod-
els. Only for the pro/sup-movement is there a slight advantage of the "un”-models. This means that for
the most part, the "in”-models are just as suitable for the data as the "ar”- and "un”-models.

I have not looked at the correlations, ρ̂, yet, but I must assume they are very close to zero. First, I will
extract ρ̂ from the "ar”-models:

1 > superLMM( ps . rism . ar ) $cor . param
2 Phi
3 0.053
4
5 > superLMM( ur . rism . ar ) $cor . param
6 Phi
7 0.197
8
9 > superLMM( ef . rism . ar ) $cor . param

10 Phi
11 0.198

As |ρ| ∈ [0,1], these ρ̂’s are sufficiently low, that the results from modcomp.anova seem reasonable.

Next, I will extract ρ̂1,2, ρ̂1,3 and ρ̂2,3 from the "un”-models:

1 > superLMM( ps . rism . un) $cor . param
2 Correlation :
3 1 2
4 2 −0.533
5 3 −0.107 0.897
6
7 > superLMM( ur . rim . un) $cor . param
8 Correlation :
9 1 2

10 2 0.047
11 3 −0.326 0.147
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12
13 > superLMM( ef . rim . un) $cor . param
14 Correlation :
15 1 2
16 2 0.096
17 3 −0.483 −0.038

For ps.rism.un, we have that ρ̂1,2 = −0.533 and ρ̂2,3 = 0.897. These correlations agrees with anova()
saying this model is prefered over ps.rism.in. For ur.rim.un, ρ̂1,3 = −326 and for ef.rim.un, ρ̂1,3 =
−0.483. These correlations may be a little high compared to the results in modcomp.anova. I have in-
cluded a note on this in my discussion, Chapter 9.

Kenward-Roger approximation

So far my conclusions about the relevance of the group-term, is that group is insignificant to the models.
I want to do a final test about the relevance. So far I have used anova() for comparison of the full
models and their corresponding null-models. The function anova() bases its comparison on an LRT.
As mentioned in Section 4.4, the test statistic for the LRT has an asymptotic distribution under the null-
hypothesis, but for small sample sizes the approximation of this distribution may be poor. Hence, we
would rather use a test, where the test statistic is approximately F -distributed under the null-hypothesis.
The solution is to use the function KRmodcomp() from the pbkrtest-package. This function performs an
F -test with the Kenward-Roger approximation. In order to use KRmodcomp(), the models must be fitted
with the lmer-function, which only has the exchangeable covariance structure implemented. Hence,
in order to use the Kenward-Roger approximation, I must make sure that a model with exchangeable
covariance structure is realistic for my data. I will not show any of the results from using exchangeable
covariance structure in lme(), but I have set up models with this structure (the "ex”-models), and I
found that they resemble all the previous models. Hence, the "ex”-models are just as good any of the
other models. I can now move on to setting up the models with lmer(). The models are:

1 ps . lmer . rism = lmer ( ps ~ group + time + I ( time^2) + ( time | subject ) , data = Wrist , REML = T)
2 ur . lmer . rim = lmer ( ur ~ group + time + I ( time^2) + ( 1 | subject ) , data = Wrist , REML = T)
3 ef . lmer . rim = lmer ( ef ~ group + time + I ( time^2) + ( 1 | subject ) , data = Wrist , REML = T)

For the random effects, I specify either "(time|subject)” or "(1|subject)” for a RISM or a RIM, re-
spectively. I will test the relevance of group both with anova() and KRmodcomp() to see how big the
differences are between the results of the two functions. The results are:

1 > anova ( update ( ps . lmer . rism , . ~.−group ) , ps . lmer . rism ) $"Pr( >Chisq ) " [ 2 ]
2 [ 1 ] 0.34885
3 > KRmodcomp( largeModel=ps . lmer . rism , smallModel=update ( ps . lmer . rism , . ~.−group ) ) $ t e s t $p . value [ 1 ]
4 [ 1 ] 0.36675
5
6 > anova ( update ( ur . lmer . rim , . ~.−group ) , ur . lmer . rim ) $"Pr( >Chisq ) " [ 2 ]
7 [ 1 ] 0.72841
8 > KRmodcomp( largeModel=ur . lmer . rim , smallModel=update ( ur . lmer . rim , . ~.−group ) ) $ t e s t $p . value [ 1 ]
9 [ 1 ] 0.7368

10
11 > anova ( update ( ef . lmer . rim , . ~.−group ) , ef . lmer . rim ) $"Pr( >Chisq ) " [ 2 ]
12 [ 1 ] 0.21381
13 > KRmodcomp( largeModel=ef . lmer . rim , smallModel=update ( ef . lmer . rim , . ~.−group ) ) $ t e s t $p . value [ 1 ]
14 [ 1 ] 0.22607
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All tests agree, that group is insignificant to the models. Furthermore, notice that the p-values from
anova() are very similar to the p-values from KRmodcomp(). This tells us, that we can trust the results
from anova() even though they are based on asymptotic results.

5.5 Conclusion

No matter the covariance structure, there were problems wrt. the normality assumption of either the
random intercepts, slopes or the residuals, and some problems wrt. the homoscedasticity assumption
for the models of the ex/flex-movement. Assuming these problems could be solved from having a much
larger sample to analyse, I end this chapter with the conclusion that there is no evidence to reject H main

0 .
But perhaps it would be better to use a model that does not require having to satisfy any assumptions.
In the following chapter, I present a way to do this by using generalized estimating equations, and in
Chapter 7, the results of this approach are presented.

5.6 Source code: superLMM()

1 superLMM = function (mod, ass = NULL, i s = NULL) {
2 par (mar = c ( 4 . 5 , 4 . 5 , 2 , 1 ) , lwd = 2 , cex . lab = 2 , cex . axis = 1 . 5 , cex . main = 2)
3
4 ## P o s i t i v e semi−d e f i n i t
5 V0 = getVarCov (mod, type = " marginal " , individual = 1)$id01
6 R0 = getVarCov (mod, type = " conditional " , individual = 1)$id01
7 Sigma = getVarCov (mod, type = "random . e f f e c t s " )
8 c l i s t = l i s t (V0 , R0 , Sigma )
9 psd = c ( )

10 for ( i in 1 : 3 ) {
11 i f ( matrixcalc : : i s . symmetric . matrix ( c l i s t [ [ i ] ] ) ) { psd [ i ] = matrixcalc : : i s . p o s i t i v e . semi .

d e f i n i t e ( c l i s t [ [ i ] ] ) }
12 else i f ( ! matrixcalc : : i s . symmetric . matrix ( c l i s t [ [ i ] ] ) ) {
13 X = ( t ( c l i s t [ [ i ] ] ) + c l i s t [ [ i ] ] ) / 2
14 psd [ i ] = matrixcalc : : i s . p o s i t i v e . semi . d e f i n i t e (X)
15 }
16 }
17 m. vcov = matrix ( psd , ncol = 3) ; colnames (m. vcov ) = c ( "V0" , "R0" , "Sigma" )
18
19 ## Relevance of " group "
20 a1 = matrix ( c ( anova (mod) $"p−value " ) , ncol = 1 , nrow = 4)
21 rownames( a1 ) = rownames( anova (mod) ) ; colnames ( a1 ) = "p−value "
22 a2 = anova ( update (mod, . ~.−group , method = "ML" ) , update (mod, method = "ML" ) ) $"p−value " [ 2 ]
23 i n t = i n t e r v a l s (mod, which = " f ixed " ) [ 1 ] $ f ixed [ , 1 : 3 ]
24
25 ## Association parameters
26 cor . param = mod$modelStruct$corStruct
27
28 ## Assumptions
29 ass . matrix = matrix ( c ( 0 , 0 , 0 ) , ncol = 3)
30 colnames ( ass . matrix ) = c ( " Bart " , "Leve" , "Shap" ) ; rownames( ass . matrix ) = "p−value "
31 rism = dim(mod$ c o e f f i c i e n t s $random$subject ) [ 2 ]
32 i f ( ! i s . null ( ass ) ) {
33 i f ( ass == 1) {
34 i f ( ( rism == 1) | | ( rism == 2 && i s == " I " ) ) {
35 layout ( matrix ( c ( 1 , 1 , 2 , 3 ) , 2 , 2 , byrow = T) )
36 col = c ( rep (2 ,28) , rep ( "goldenrod1" , 28) , rep ( " chartreuse4 " , 27) )
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37 plot (mod$ c o e f f i c i e n t s $random$subject [ , 1 ] , col = col , cex = 0 . 5 , ylab = " Intercepts " ,
xlab = " Patient index " )

38 car : : qqp(mod$ c o e f f i c i e n t s $random$subject [ , 1 ] , ylab = " Intercepts " , xlab = "Norm
quantiles " , main = " " , cex = 0 . 5 )

39 h i s t (mod$ c o e f f i c i e n t s $random$subject [ , 1 ] , probabi l i ty = T , 50 , xlab = " Intercepts " , main
= " " )

40 l i n e s ( density (mod$ c o e f f i c i e n t s $random$subject [ , 1 ] ) , lwd = lwd , col = 2)
41
42 ass . matrix [ 1 , ] = c ( b a r t l e t t . t e s t (mod$ c o e f f i c i e n t s $random$subject [ , 1 ] , Wrist$group [ which (

Wrist$time==0) ] ) $p . value ,
43 car : : leveneTest (mod$ c o e f f i c i e n t s $random$subject [ , 1 ] , Wrist$group [

which ( Wrist$time==0) ] ) $"Pr( >F) " [ 1 ] ,
44 shapiro . t e s t (mod$ c o e f f i c i e n t s $random$subject [ , 1 ] ) $p . value )
45 }
46 i f ( rism == 2) {
47 i f ( i s == "S" ) {
48 layout ( matrix ( c ( 1 , 1 , 2 , 3 ) , 2 , 2 , byrow = T) )
49 col = c ( rep (2 ,28) , rep ( "goldenrod1" , 28) , rep ( " chartreuse4 " , 27) )
50 plot (mod$ c o e f f i c i e n t s $random$subject [ , 2 ] , col = col , cex = 0 . 5 , ylab = " Slopes " , xlab

= " Patient index " )
51 car : : qqp(mod$ c o e f f i c i e n t s $random$subject [ , 2 ] , ylab = " Slopes " , xlab = "Norm quantiles "

, main = " " , cex = 0 . 5 )
52 h i s t (mod$ c o e f f i c i e n t s $random$subject [ , 2 ] , probabi l i ty = T , 50 , xlab = " Slopes " , main =

" " )
53 l i n e s ( density (mod$ c o e f f i c i e n t s $random$subject [ , 2 ] ) , lwd = lwd , col = 2)
54
55 ass . matrix [ 1 , ] = c ( b a r t l e t t . t e s t (mod$ c o e f f i c i e n t s $random$subject [ , 2 ] , Wrist$group [

which ( Wrist$time==0) ] ) $p . value ,
56 car : : leveneTest (mod$ c o e f f i c i e n t s $random$subject [ , 2 ] , Wrist$group [

which ( Wrist$time==0) ] ) $"Pr( >F) " [ 1 ] ,
57 shapiro . t e s t (mod$ c o e f f i c i e n t s $random$subject [ , 2 ] ) $p . value )
58 }
59 }
60 }
61
62 i f ( ass == 2) {
63 layout ( matrix ( c ( 1 , 1 , 2 , 3 ) , 2 , 2 , byrow = T) )
64 col2 = c ( rep (2 ,3 * 28) , rep ( "goldenrod1" ,3 * 28) , rep ( " chartreuse4 " ,3 * 27) )
65 plot (mod$residuals [ , 2 ] , ylab = " Residuals " , main = " " , cex = 0 . 5 )
66 for ( i in seq (1 ,249 ,3) ) { l i n e s ( c ( i : ( i +2) ) ,mod$residuals [ i : ( i +2) , 2 ] , col = col2 [ i ] ) }
67 car : : qqp(mod$residuals [ , 2 ] , ylab = " Residuals " , xlab = "Norm quantiles " , main = " " , cex =

0 . 5 )
68 h i s t (mod$residuals [ , 2 ] , probabi l i ty = T , 50 , xlab = " Residuals " , main = " " )
69 l i n e s ( density (mod$residuals [ , 2 ] ) , col = 2)
70
71 ass . matrix [ 1 , ] = c ( b a r t l e t t . t e s t (mod$residuals [ , 2 ] , Wrist$subject ) $p . value ,
72 car : : leveneTest (mod$residuals [ , 2 ] , Wrist$subject ) $"Pr( >F) " [ 1 ] ,
73 shapiro . t e s t (mod$residuals [ , 2 ] ) $p . value )
74 }
75 }
76
77 i f ( i s . null ( ass ) ) { out = l i s t ( vcov = m. vcov , group = l i s t ( anova1 = a1 , anova2 = a2 , i n t e r v a l s =

i n t ) , cor . param = cor . param) ; out }
78 else
79 print ( ass . matrix )
80 }
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Generalized estimating equations models (GEE models for short) are an extension of the generalized
linear models (GLMs for short). GLMs are fixed effects models, which assumes all observations are in-
dependent of each other. Hence, GLMs are not suited for longitudinal data in most cases. Extending
the GLM by specifying a correlation structure among observations on the same subject, we get the GEE
model. The correlation structure is equivalent to R0 in the LMM. In Chapter 2, when testing the as-
sumptions on the data, I had problems identifying the data as Gaussian. In Chapter 4, I worked under
the assumption, that the data was Gaussian as it seemed the most fitting distribution. Perhaps it would
be better not to make any such assumptions. An advantage of the GEE model over the LMM is that it
uses quasi-likelihood. This means that the full likelihood of the data is not specified, hence no assump-
tions on the distribution of the data are necessary.

To understand the setup in the GEE model, it is useful to review GLMs. I will therefore start this chapter
off with a quick run-through of the GLM before presenting the GEE model.

6.1 Generalized linear models

This section is based on [2], [7] and [12].

The GLM is an extension of the general linear model (LM for short). For a specific link function and vari-
ance function, the GLM reduces to an LM. The assumptions in the LM are, that the response is Gaussian,
the relationship between the response and the covariates is linear, and the variance of the response does
not depend on the mean. In the GLM, the response does not have to be Gaussian. It just has to have a
distribution from the exponential family. The most popular distributions in the exponential family are
the Gaussian, Binomial, Poisson and Gamma distributions. And the variance is actually a function of
the mean. No matter the distribution, the density of the response can be written in the following form:

Definition 6.1 (Density for the exponential (dispersion) family) Let Y = [
Y1 · · · YN

]T
be a ran-

dom vector, where the Yi ’s are iid. with a distribution from the exponential family. The marginal
densities are then

f (yi ;θi ,φ) = h
(
yi ,φ

)
exp

(
yiθi −b(θi )

φ

)
, (6.1)

where φ is called the dispersion parameter, which may be known or unknown, θ is called the canon-
ical parameter, and h(·) and b(·) are functions that depend on the distribution.

Example 2 shows how the density from a Binomially distributed random variable can be written in the
form (6.1).

Example 2 In this example, I will show how a probability mass function (the discrete equivalent of the
density function) can be written in the form (6.1). Let X be a Binomially distributed random variable,
i.e. X ∼ Bi n(n,π). The probability mass function for X is defined as

p(x) =
(

n

x

)
πx(1−π)n−x , x = 0,1, . . . ,n.

We can ignore the subscripts in Equation (6.1), as X is a univariate random variable.
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Rewritting p(x), it becomes

p(x) =
(

n

x

)
exp

(
log

(
πx(1−π)n−x)) =

(
n

x

)
exp

(
x logπ+ (n −x) log(1−π)

)
=

(
n

x

)
exp

(
x

(
log(π)− log(1−π)

)+n log(1−π)
) =

(
n

x

)
exp

(
x log

( π

1−π
)
+n log(1−π)

)
= h(x)exp(xθ−b(θ)) ,

where h(x) = (n
x

)
, θ = log

(
π

1−π
)
, b(θ) =−n log(1−π), and where φ is ignored as φ= 1 for this distribution.

ä

Linear predictor, link function and variance function

Three things are needed in specifying the GLM; the linear predictor, the link function and the variance
function. The linear predictor, ηi , is a linear combination of the covariates

ηi = xT
i β,

where xi is the vector of explanatory variables for subject i . The linear predictor is independent of the
distribution of the data. Let µi = E[Yi ]. The link function, g (·), is

g (µi ) = ηi .

Thus, the mean value is not a linear combination of the covariates (like we have with the general linear
model), but instead it is assumed that the mean value is a function of the linear predictor, i.e.

µi = g (ηi )−1 = g (xT
i β)−1.

Both µi and ηi are functions ofβ, and one ought to write µi (β) and ηi (β) to emphasize this. For the ease
of notation, I will not do that. Each distribution has its own canonical link function shown below:

Distribution Gaussian Binomial Poisson Gamma
g (µi ) µi logit(π) log(µi ) 1

µi

The link function specifies how the covariates relate to the mean of the response. When working with,
say, Gaussian data one is not restricted to only using g (µi ) = µi . One can choose which ever link func-
tion that seems suitable for the data. Hence, the link function cannot be thought of as being dependent
on the distribution of the data.

To find the variance function, we will need the mean and variance of Yi :

E[Yi ] =µi
A.20= b′(θi ) and Var[Yi ]

A.20= φb′′(θi ).

Isolating θi in the expression of E[Yi ], we get

θi = b′(µi )−1. (6.2)

Inserting this into Var[Yi ], we see how the variance becomes a function of the mean:

Var[Yi ] =φb′′ (b′(µi )−1)=φV (µi ), (6.3)
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where V (µi ) is the variance function. Each distribution has its own variance function shown below:

Distribution Gaussian Binomial Poisson Gamma
V (µi ) 1 π(1−π) µi µ2

i

The choice of variance function specifies the distribution of the data. This means that, unlike g (·), one
does not have the freedom of choice. The GLM reduces to an LM if V (µi ) = 1 and g (µi ) = µi . The
dispersion parameter accounts for any excess variation not included by V (·). For instance, for a random
variable X ∼ N

(
µ,σ2

)
, as V (µ) = 1, this means that φ must be σ2 to account for the variation in X .

Example 3 In this example, I will show, that E[Yi ] = b′(θi ) and Var[Yi ] = φb′′(θi ) agrees with the mean
and variance of the random variable from Example 2. For X ∼ Bi n(n,π), the mean and variance are
E[X ] = nπ and Var[X ] = nπ(1−π). In Example 2, b(θ) =−n log(1−π) and θ = log

(
π

1−π
)
. In order to take

the derivative of b(·) wrt. θ, I will need to write b(·) with θ featured in its expression. I will do this by
isolation π in the expression for θ:

θ = log
( π

1−π
)

⇔ π

1−π = exp(θ) ⇔ π= exp(θ)−πexp(θ) ⇔ π
(
1+exp(θ)

)= exp(θ)

⇔ π= exp(θ)

1+exp(θ)
.

I will now show that b′(θ) = E[X ]:

b′(θ) =− d

dθ
n log

(
1− exp(θ)

1+exp(θ)

)
= − d

dθ
n log

(
1

1+exp(θ)

)
= d

dθ
n log

(
1+exp(θ)

)
= n

1

1+exp(θ)
exp(θ) = nπ = E[X ] .

Next, I will show that b′′(θ) = Var[X ]:

b′′(θ) = d

dθ
b′(θ) = d

dθ
n

exp(θ)

1+exp(θ)
= n

exp(θ)
(
1+exp(θ)

)−exp(θ)2(
1+exp(θ)

)2

= n
exp(θ)

1+exp(θ)

(
1+exp(θ)

1+exp(θ)
− exp(θ)

1+exp(θ)

)
= nπ(1−π) = Var[X ] .

ä

Estimating equations

Having specified the linear predictor, the link function, and the variance function, one can estimate the
coefficients,β, by solving an estimating equation. Let `i and Si be the log-likelihood and score function,
respectively, of Equation (6.1) for the i th subject. By the chain rule, we have that

Si = ∂`i

∂µi
= ∂`i

∂θi
× ∂θi

∂µi

A.21= yi −b′(θi )

φV (µi )
. (6.4)

Thus
∂`i

∂β j
= ∂`i

∂µi
× ∂µi

∂β j

(6.4)= yi −b′(θi )

φV (µi )
× ∂µi

∂β j
.
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The estimating equations thus becomes

S(β) =
N∑

i=1

∂`i

∂β
=

N∑
i=1

(
∂µi

∂β

)T yi −b′(θi )

φV (µi )
=

N∑
i=1

(
∂µi

∂β

)T

Var[Yi ]−1 (yi −µi ) = 0. (6.5)

Note that S(β) was derived using the density of the data. If the distribition is unknown, the density can-
not be defined, and if the distribution does not belong to the exponential family, the likelihood function
cannot be defined by Equation (6.1). Thus, the GLM fails as a possible approach for modelling the data.

I will now present a different approach of estimating β, that does not need the density or knowledge of
the distribution of the data. Instead of Si , we will define a function that satisfy all the same properties as
Si , i.e.

E[Si ] = 0 and Var[Si ] =−E

[
∂Si

∂µi

]
.

Let that function be
qi = q(µi , yi ) = yi −µi

φV (µi )
.

It is shown in A.22, that qi satisfy the properties. As for the expression for qi , it is chosen because it is
equal to the expression for Si (Equation (6.4)) with the important distinction that b′(θi ) requires knowl-
edge of the distribution of yi in order to be calculated, whereas µi in qi does not. As qi mimics a proper
score function, the integral of qi will mimic a proper log-likelihood. The log quasi-likelihood function
for subject i is thus defined as

Qi =Q(µi , yi ) =
∫ µi

yi

yi − ti

φV (ti )
d ti .

The log quasi-likelihood for all subjects is

Q =Q(µ,y) =
N∑

i=1
Qi =

N∑
i=1

∫ µi

yi

yi − ti

φV (ti )
d ti .

Differentiating Qi wrt. µi of course just gives qi . As g (µi ) = xT
i β does not depend on a specific distribu-

tion, we can differentiate Qi wrt. β:

∂Qi

∂β
= ∂Qi

∂µi
× ∂µi

∂β
= yi −µi

φV (µi )
× ∂µi

∂β
.

We now get new estimating equations (also called maximum quasi-likelihood equations):

S(β) = ∂Q

∂β
=

N∑
i=1

∂Qi

∂β
=

N∑
i=1

yi −µi

φV (µi )
× ∂µi

∂β
=

N∑
i=1

(
∂µi

∂β

)T

Var[Yi ]−1 (yi −µi ) = 0. (6.6)

Equations (6.5) and (6.6) may look identical, but they are not in the sense that they are derived in differ-
ent ways. Equation (6.5) can only be derived when the density is know and the distribution belongs to
the exponential family. Equation (6.6) can be derived regardless of the distribution of data or whether
the density is known; we only need to specify how the mean depend on the covariates through the link
function, and how the variance variates as a function of the mean, i.e. the variance function, in order to
estimate β. Solution of Equation (6.6) are called quasi-likelihood estimates.
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6.2 GEE models

This section is based on [2], [12] and [13].

In a data set with more than one observation per subject, it would be very likely that observations on
the same subject are somehow correlated. Nothing in the specification of the GLM takes this into ac-
count. Hence, a GLM with multiple responses per subject will only be a sensible model in the case, that
no observations on the same subject are correlated. The GEE model18 is an extension of the GLM that
does take into account observations on the same subject possibly being correlated. The GEE model uses
a quasi-likelihood approach and thus does not require a specification of the underlying distribution of
the response. The setup resembles the GLM, only now we have a multidimensional response per sub-
ject instead of a univariate response, and in addition to the linear predictor, the link function and the
variance function, we also have to specify a correlation structure.

Let yi be the vector of responses from the i th subject, where the response, yi j , is taken at timepoint j .
The linear predictor, link function and variance function are

ηi j = xT
i jβ,

g (µi j ) = ηi j ,

Var
[
Yi j

]=φV (µi j ), (6.7)

where xi j is the vector of covariates for subject i at timepoint j . Additionally, the correlation structure of
the repeated measurements must be specified. It is assumed that the number of timepoints is fixed. Let
that number be n. Subjects do not need to have been measured at all n timepoints, but for the sake of
simplicity (and because it is the case with my data), I will assume they were. The correlation matrix for
subject i is denoted by Ri , and it is assumed it depends on a vector of association parameters, a, hence
we write Ri (a). Just like in the LMM, we have that all subjects have the same covariance matrix, hence
we can write Ri (a) = R0(a). The association parameters are the same for all subjects. The correlation
structure can be expressed in several ways that the reader may recognize from Section 4.3:

• Independence: R0(a) = In×n . This rarely makes sense for longitudinal data, however.

• Exchangeable: R0(a) j k = ρ j k =
{

1, j = k

a, j 6= k
.

• Autoregression: R0(a) j k = ρ j k = a| j−k|, a ∈]0,1[. This is usually the most popular choice for longi-
tudinal data.

• Unstructured: R0(a) j k = ρ j k = a j k . This is the most efficient choice when n is a small number.

Other choices are also available. Note, that if R0(a) = In×n , the GEE models assumes that there is no
within-subject correlation and thus reduces to a GLM.

6.2.1 GEE estimation of parameters

Let Ai = diag
{√

V (µi j )
}

j=1,...,n . The covariance matrix for yi is defined as

Vi (a) =φAi R0(a)Ai . (6.8)

18The term "model” is used a little loosely when speaking of the GEE model. As it uses a quasi-likelihood and not a proper
likelihood, we do not actually have any model. Nevertheless, for simplicity, I will call it a model.
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The coefficients β are estimated by solving the estimating equations

S(β) =
N∑

i=1

∂µT
i

∂β
Vi (a)−1(yi −µi ) = 0. (6.9)

In order to solve Equation (6.9), we must find Vi (a), meaning we must find a and φ. These parameters
are unknown and must be estimated.

Finding a

Let

r j k = (Yi j −µi j )(Yi k −µi k )

φ
√

V (µi j )V (µi k )
, ∀i

which is a function of β and has mean

E
[
r j k

] A.23= ρ j k = Corr
[
Yi j ,Yi k

]
.

Gathered in one vector, we have r = [
r12,r13, . . . ,rn−1,n

] ∈R n(n−1)
2 ×1. Let

ρ(a) = E[r] = [
ρ12,ρ13, . . . ,ρn−1,n

]
,

which is a function of a because ρ j k is a function of a. Then a is estimated by the estimating equations

∂ρ(a)

∂a
W−1 (

r−ρ(a)
)= 0, (6.10)

where W is the covariance matrix for r, typically specified as diag
{
Var

[
r j k

]}
. Notice how the form of this

estimating equation is the same as in Equation (6.9); a product between the derivative of the mean, the
covariance function and the raw residuals.

Findingφ

Isolating φ in Equation (6.7), we get

φ
(6.7)= Var

[
Yi j

]
V (µi j )

= E
[
(Yi j −µi j )2

]
V (µi j )

.

When µi j is estimated, we can insert it to get an estimate of φ. But, the estimate for φ must hold for all
observations. Hence, if we calculate the Pearson residuals

εi j =
yi j − µ̂i j√

Vi (â) j j
,

and sum over these corrected for the degrees of freedom, we get the estimate of φ

φ̂= 1

N −p

N∑
i=1

n∑
j=1

ε2
i j . (6.11)

Solving Equation (6.9) wrt. βmeans that β̂ is dependent on the current estimate of a. As r is a function of
β, â is dependent on the current estimate of β. This means that the GEE estimator of β is found through
an iterative algorithm:
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Algorithm 6.2 (Algorithm for the GEE estimator) mellemrum

i. Initialize β̂, e.g. as the coefficients from a GLM.

ii. Using β̂, estimate R0(a) by inserting â estimated from solving Equation (6.10), and estimate φ
by Equation (6.11).

iii. Using â and φ̂, estimate Vi (a) by Equation (6.8).

iv. Using Vi (â), estimate β by solving Equation (6.9).

Repeat step ii.-iv. until convergence.

I want to know whether or not it is a garantee, that Algorithm 6.2 converges, and if different initial β̂’s
will lead to the same final GEE estimator. Unfortunately, I have found no sources that says anything
about this matter, so perhaps it is simply unknown. The function geeglm() from the geepack-package
is one of the functions one might use for correlated GLM-type data, such as Wrist. I have looked at
the source code for geeglm() thinking that if non-convergence was a possibility, then it must be imple-
mented in the function, that the iterations should stop when reaching a certain limit. No such thing was
implemented. This leads me to think, that convergence is always garanteed, but I cannot be sure. In
geeglm(), it is implemented that the initial β̂ is the coefficients from modelling the data with a GLM,
just like step i. in Algorithm 6.2. I believe that the initial β̂ is chosen like this as it will lower the num-
ber of iterations, because the coefficients from the GLM usually are not that far from the GEE estimator.
Coincidentally, unrelated to this report, I have coded a function called my_gee() in R based on this algo-
rithm. The function, my_gee(), was intended as a homemade version of geeglm(). I will now, through
an example, argue that my_gee(), and thus Algorithm 6.2, always returns the same GEE estimator no
matter the initial β̂.

Example 4 The data set I will be using is Orthodont from the nlme-package. It consists of 27 boys and
girls. At the ages 8, 10, 12 and 14, the change in an orthodontic measurement (distance from pituitary to
pterygomaxillary fissure) have been recorded. The data consists of four variables; distance, age, Sex
and Subject. Below, the first eight rows of the data are shown:

1 > head ( Orthodont , 8)
2 distance age Subject Sex
3 1 26.0 8 M01 Male
4 2 25.0 10 M01 Male
5 3 29.0 12 M01 Male
6 4 31.0 14 M01 Male
7 5 21.5 8 M02 Male
8 6 22.5 10 M02 Male
9 7 23.0 12 M02 Male

10 8 26.5 14 M02 Male

I will now model the response, distance, with both geeglm() and my_gee(). Through the argument
init.beta in my_gee(), I specify nine different initial β̂’s to see what GEE estimator it will result in and
how many iterations are used. The initial β̂’s will be vectors where all entries are equal to init.beta. In
my_gee() only g (µi ) = µi and V (µi ) = 1 is implemented, and init.beta is per default the coefficients
from a GLM, just like in geeglm(). The nine values of init.beta are

ib = c(NULL, -5000, -777, -0.3, 0, 0.00005, 4, 100, 1234, 5678),
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where NULL is the default setting. I have made a for-loop that runs through these values and gathers
the GEE estimators in a matrix, coefs, together with the number of iterations used. The model with
geeglm() and the models with my_gee() are shown below, where ib takes the nine values one at a time:

1 m. geeglm = geeglm ( distance ~ age + Sex , id = Subject , data = Orthodont , family = " gaussian " ,
c o r s t r = " unstructured " )

2 m.my_gee = my_gee ( distance ~ age + Sex , id = Orthodont$Subject , data = Orthodont , c o r s t r = "
unstructured " , i n i t . beta = ib [ i ] )

Below, in coefs, the GEE estimators are listed in the order mentioned above. This means that the first
row in coefs is the GEE estimator, we get when initializing β̂ with the coefficients from a GLM. This
estimator is not perfectly equal to that of m.geeglm, but the differences are very small. We see that even
with very big differences in the initial β̂’s, the GEE estimator is always the same. Only the number of
iterations change. Thus, I believe that Algorithm 6.2 always returns the same GEE estimator no matter
the initial β̂.

1 > m. geeglm$ c o e f f i c i e n t s
2 ( Intercept ) age SexFemale
3 17.696016 0.6597990 −2.2232260
4
5 > coefs
6 ib ( Intercept ) age SexFemale i t e r a t i o n s
7 [ 1 , ] NULL 17.59809 0.6691337 −2.255985 13
8 [ 2 , ] −777.00000 17.59809 0.6691337 −2.255985 13
9 [ 3 , ] −0.30000 17.59809 0.6691337 −2.255985 12

10 [ 4 , ] 0.00000 17.59809 0.6691337 −2.255985 12
11 [ 5 , ] 0.00005 17.59809 0.6691337 −2.255985 12
12 [ 6 , ] 4.00000 17.59809 0.6691337 −2.255985 12
13 [ 7 , ] 100.00000 17.59809 0.6691337 −2.255985 13
14 [ 8 , ] 1234.00000 17.59809 0.6691337 −2.255985 13
15 [ 9 , ] 5678.00000 17.59809 0.6691337 −2.255985 13

ä

Much like the maximum likelihood estimator from Chapter 4, the GEE estimator, β̂, is asymptotically
Np

(
β, I(β)−1

)
-distributed, where

I(β)−1 =−E

[
∂

∂βT
S(β)

]
=

N∑
i=1

∂µT
i

∂β
Vi (a)−1 ∂µi

∂βT
. (6.12)

Upon convergence, we would like to interpret on the effects related to the groups. Ideally, we would set
up some models and then do comparisons using LRTs. But as β̂ are estimates obtained using quasi-
likelihood, and not the usual likelihood, no LRTs can be performed. Luckily, we can still do a Wald test
to determine whether β̂i = 0. Thus we rely on inference aboutβ. Regardless of whether Vi (a) is specified
correctly, β̂ will be a consistent estimator of β. Hence, whether or not β̂ is consistent cannot be used
as an argument to choose one correlation structure over an other. Instead, we can look at the standard
errors for β̂. For this, we will need the covariance of β̂. The standard errors are the squared diagonal
elements in the covariance matrix. There are two ways to estimate Cov

[
β̂

]
:

• The model based estimate:
Cov

[
β̂

]
M

(6.12)= I(β).
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If the mean value and correlation structure are specified correctly, then Cov
[
β̂

]
M is a consistent es-

timator of Cov
[
β̂

]
. The model based estimate yields a close approximation of the standard errors

of β̂ provided Vi (a) is a close approximation of the true underlying covariance.

• The empirical estimate:

Cov
[
β̂

]
E = I(β)

(
N∑

i=1

∂µT
i

∂β
Vi (â)−1Cov[Yi ]Vi (â)−1 ∂µi

∂βT

)
I(β).

Even if the correlation structure is misspecified, Cov
[
β̂

]
E is a consistent estimator of Cov

[
β̂

]
. The

empirical estimate is also known as the "robust” estimate because it is always consistent and be-
cause it yields correct standard errors of β̂ for large sample sizes, despite Vi (a) being misspecified.

Clearly, if Cov[Yi ] is specified correctly, so that Cov[Yi ] = Vi (a), then Cov
[
β̂

]
E = Cov

[
β̂

]
M. This means,

that when testing different covariance structures, the one that fits data best, will be the one that reduces
the difference between Cov

[
β̂

]
E and Cov

[
β̂

]
M. In practice, Cov[Yi ] is replaced by (yi − µ̂i )(yi − µ̂i )T .

The GLM does not take into account that observations may be correlated. But how much exactly does
that influence the model? And how big does the difference between Cov

[
β̂

]
M and Cov

[
β̂

]
E have to be

for it to be obvious, that the chosen covariance structure is unrealistic for the data? I will try to answer
these questions in Example 5.

Example 5 The example is based on the data set respitory from the package HSAUR2. I will be using a
subset of respitory in which I have made a few changes. The new data set is called resp and consists
of 444 observations on 111 patients (4 observations per patient). The patients were observed for their
respitory status, which was either "poor” or "good”. Below are the first 10 rows of the data:

1 > head ( resp , 10)
2 centre group gender age month subject baseline status
3 112 1 placebo female 46 1 1 poor 0
4 223 1 placebo female 46 2 1 poor 0
5 334 1 placebo female 46 3 1 poor 0
6 445 1 placebo female 46 4 1 poor 0
7 113 1 placebo female 28 1 2 poor 0
8 224 1 placebo female 28 2 2 poor 0
9 335 1 placebo female 28 3 2 poor 0

10 446 1 placebo female 28 4 2 poor 0
11 114 1 treatment female 23 1 3 good 1
12 225 1 treatment female 23 2 3 good 1

The data consists of 8 variables:

• baseline: the patients’ status at the start of the study,

• month: once a month in the next four following months, their respitory status was registered. This
variable indicates which month, we are at,

• status: the patients’ current status coded as "0” for "poor” and "1” for "good”,

• centre: the centre they were treated at, either 1 or 2,

• group: the patients were randomized into two treatment groups and were given either a placebo
or treatment drug,
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• gender: selfexplanatory,

• age: their age at the time the observation was registered ranging from 11 to 68 years, and

• subject: a factor identifying each patient.

The response variable is binary, so I will be using the link and variance function from the Binomial dis-
tribution. I will set up a GLM and two GEE models; one with independence and one with unstructured
correlation structure. I will fit a logistic regression model to the data using glm(), and I will set up the
GEE models with the function geeglm() from the package geepack. The setup of the geeglm-function
is fairly selfexplanatory as it resembles glm(). Only a few extra arguments are specified:

1 resp . glm = glm( status ~ centre + group + gender + baseline + age , family = "binomial " , data =
resp )

2 resp . gee1 = geeglm ( status ~ centre + group + gender + baseline + age , family = "binomial " ,
c o r s t r = "independence" , scale . f i x = T , id = subject , data = resp )

3 resp . gee2 = geeglm ( status ~ centre + group + gender + baseline + age , family = "binomial " ,
c o r s t r = " unstructured " , scale . f i x = T , id = subject , data = resp )

Through the argument corstr, the correlation structure is specified, and the argument id is needed to
seperate the observations according to subjects when estimating Vi (a), for instance. Through scale.fix,
I tell the function whether φ should be estimated or fixed at the value 1. Only when there might be a
problem with overdispersion, do I want to estimate φ. That is not the case here, though:

1 > tapply ( resp$status , interaction ( resp$group , resp$month) , mean)
2 placebo . 1 treatment . 1 placebo . 2 treatment . 2 placebo . 3 treatment . 3 placebo . 4 treatment . 4
3 0.49123 0.68519 0.38596 0.70370 0.45614 0.72222 0.43860 0.62963
4
5 > tapply ( resp$status , interaction ( resp$group , resp$month) , var )
6 placebo . 1 treatment . 1 placebo . 2 treatment . 2 placebo . 3 treatment . 3 placebo . 4 treatment . 4
7 0.25439 0.21978 0.24123 0.21244 0.25251 0.20440 0.25063 0.23760

The very first column

placebo.1

0.49123

shows that the mean for the placebo-group at the 1st timepoint is 0.49123. In these outputs, we see that
there is not much difference between the means and variances of status at each of the timepoints for
the treatment groups. Hence, I fix φ at 1.

I have extracted the standard errors from all three models and gathered them in the matrix below for
easy comparison:

1 > SEmatrix
2 glm gee1 .M gee1 . E d i f f . 1 gee2 .M gee2 . E d i f f . 2
3 ( Intercept ) 0.33765 0.33728 0.46033 −0.12305 0.47994 0.46128 0.01866
4 centre2 0.23957 0.23930 0.35682 −0.11752 0.33960 0.35480 −0.01520
5 grouptreatment 0.23684 0.23658 0.35078 −0.11420 0.33596 0.34945 −0.01349
6 gendermale 0.29467 0.29435 0.44320 −0.14886 0.41794 0.44365 −0.02571
7 baselinegood 0.24129 0.24102 0.35005 −0.10903 0.34337 0.34804 −0.00467
8 age 0.00886 0.00885 0.01300 −0.00415 0.01258 0.01291 −0.00033
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First column is the standard errors of resp.glm. The next three columns are the model based standard
errors, the empirical standard errors and the difference between these, respectively, for resp.gee1. The
last three columns are the same, but for resp.gee2.

As mentioned earlier, the GLM is just a GEE model with independence correlation structure, so it may
seem strange that glm and gee1.M are not identical. This is due to the algorithm geeglm() uses during
estimation. Had I used the function gee() from the package gee, I would have got identical results.
However, glm and gee1.M are close enough, that we may proceed with geeglm(). Looking only at glm,
there is no way to tell whether the model is a good fit for the data. It is a bit easier for the GEE models
as we can compare the model based and the empirical standard errors, in order to conclude whether
the model is any good. In the columns diff.1 and diff.2, it is clear that unstructured correlations
structure is more realistic for the data, as diff.2 < diff.1 by about a factor of 10 per variable in the
models. To further underline resp.gee2 being the better model, the estimated association parameters,
â, show that there indeed is a correlation between observations on the same subject19:

1 > resp . gee2$geese$alpha
2 alpha . 1 : 2 alpha . 1 : 3 alpha . 1 : 4 alpha . 2 : 3 alpha . 2 : 4 alpha . 3 : 4
3 0.328 0.208 0.298 0.439 0.363 0.399

The correlations are not extremely high, but they are certainly not 0 either. In conclusion, in this exam-
ple, we have seen that the GLM is an insufficient model, when the responses are multidimensionel. And
we have seen how to use the standard errors to choose the more fitting correlation structure for the data.

ä

6.3 GEE vs. LMM

This section is based on [13].

In the GEE model, we estimateβ, so that we can say something about the population-averaged effect. In
the LMM, we furthermore estimate the ui ’s, which enables us to "dig a little deeper” and say something
about the subject-specific effects.

! We want to know the effect of the treatment on each of the patients, and we want to use this to
determine whether there is a difference in the treatment groups. In that sense, we should use an
LMM as we are interested in the subject-specific effects. But we could also formulate the goal of
this report a little differently, so that it makes sense to use a GEE model. Stated in a different way,
we want to know how well the patients react to Ibuprofen wrt. wrist mobility. We want to know
the population-averaged effect of the treatment groups. This allows us to compare the groups.

The GEE model can only take into account one source of clustering. If the vocabulary test-example
from Chapter 4 had been extended to including several schools with several classes, we would also have
to take into account the within-school and within-class correlation. This is no problem for the LMM
as it would account for these extra sources of variation by having a random effect for each source. We
cannot do that in the GEE model as no random effects are specified in the model. It is only through the
correlation, R0(a), where the within-subject association among repeated measurements is incorporated,
that we account for the population-averaged effects. So, a disadvantage of the GEE model is that we
cannot use it if we have more than one source of random effects. And, obviously, if we are interested in
the subject-specific effects, the GEE model is no good.

19Some literature usesα instead of a, which is why "alpha” is in the output from R.
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An advantage of the GEE model is that, as mentioned, even if the correlation is misspecified, both β̂ and
Cov

[
β̂

]
E are still consistent estimators. The fact that the GEE model provides two covariance matrices

for β̂ is helpful when choosing the better model according to covariance structure. Another advantage
of the GEE model is, as mentioned also, that no assumptions on the distribution of the data is needed.
Wrt. the residuals, there is no assumption of them being Gaussian with zero mean, but it does improve
efficiency of β̂ if this holds. Actually, if the mean and variance of the response is correctly specified, the
residuals will be Gaussian with zero mean.



7 | Results of modelling data with GEEs

In this chapter, I go through the results of modelling the response variables with GEE models as de-
scribed in Chapter 6. The setup of this chapter is the same as in Chapter 5; first I will choose a function
to set up models. Then I will perform the analysis with the autoregressive, the unstructured and the
independence correlation structure, respectively, and I will end the analysis with a comparison of the
three sets of models to see which correlations structure is most realistic for the data. I will end the chap-
ter with a conclusion of whether there is any significant difference between the treatment groups.

Choosing a function and a model

The packages geepack, gee and geeM offer the functions geeglm(), gee() and geem, respectively, for
creating a GEE model. The setup in the functions is nearly identical, and having tested these functions
on my data, I find I get all the same results. The only differences are what is displayed in some of the
outputs, for instance, the output of summary() is a little different for each of the functions. Hence, it
makes no difference which function I choose, and as such, I will choose geeglm().

Next, I must decide whether φ should be estimated freely or fixed at 1. For this, I find the means and
variances across the groups at the three timepoints for each type of movement:

1 > tapply ( Wrist$ps , interaction ( Wrist$group , Wrist$time ) , mean)
2 1.0 2.0 3.0 1.7 2.7 3.7 1.46 2.46 3.46
3 58.416 63.620 66.118 86.940 85.728 91.516 94.210 93.554 95.914
4
5 > tapply ( Wrist$ps , interaction ( Wrist$group , Wrist$time ) , var )
6 1.0 2.0 3.0 1.7 2.7 3.7 1.46 2.46 3.46
7 365.89 390.05 279.78 144.25 154.90 57.68 84.36 84.44 18.32
8
9 > tapply ( Wrist$ur , interaction ( Wrist$group , Wrist$time ) , mean)

10 1.0 2.0 3.0 1.7 2.7 3.7 1.46 2.46 3.46
11 31.952 38.166 33.828 71.238 68.222 77.403 93.860 89.605 92.491
12
13 > tapply ( Wrist$ur , interaction ( Wrist$group , Wrist$time ) , var )
14 1.0 2.0 3.0 1.7 2.7 3.7 1.46 2.46 3.46
15 152.65 253.14 202.52 362.75 406.50 258.38 407.92 212.50 327.23
16
17 > tapply ( Wrist$ef , interaction ( Wrist$group , Wrist$time ) , mean)
18 1.0 2.0 3.0 1.7 2.7 3.7 1.46 2.46 3.46
19 22.426 29.311 27.920 66.028 69.634 71.771 87.150 92.058 89.478
20
21 > tapply ( Wrist$ef , interaction ( Wrist$group , Wrist$time ) , var )
22 1.0 2.0 3.0 1.7 2.7 3.7 1.46 2.46 3.46
23 127.50 319.69 170.19 132.36 443.08 245.07 102.44 238.74 280.13

The output of tapply() needs a quick explanation. The first column in the first tapply()

1.0

58.416

tells us, that the mean of ps for group 1 at the first timepoint (coded as 0) is 58.416. Hence, the first row
in the output refers to the groups (either 1, 2 or 3) at the timepoints (either 0, 7, or 46), and the second
row is the mean for that group at that timepoint. Clearly, there is a difference between the means and the
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variances, which means that overdispersion could be a problem, and hence φ must be estimated freely.
This is done by setting scale.fix = FALSE, which is the default setting in geeglm(), and as such, I will
just omit this argument in my models.

In Chapter 5, I reasoned that I should include a squared term of time in the model in order to achieve
linearity between the response and the covariates. This time I will also include a squared term in the
models, which means the link function is just the identity, i.e. g (µi ) = µi = xT

i β. In geeglm() this is
expressed by family = gaussian(link = "identity"), in which I also specify the variance function
as belonging to the Gaussian family20. Like in Chapter 5, I will begin my analysis using autoregressive
covariance structure. The models are set up as follows (here only the model for ps is shown):

1 ps . gee . ar = geeglm ( ps ~ time + I ( time^2) + group , id = subject , data = Wrist , c o r s t r = " ar1 " ,
family = gaussian ( link = " i d e n t i t y " ) )

The models for the uln/rad- and ex/flex-movements, ur.gee.ar and ef.gee.ar, are set up the ex-
act same way only with ur and ef instead of ps. The autoregressive covariance structure is specified
through corstr = "ar1". In the GEE model no random effects are specified, although one could view
the argument id as being somewhat equivalent to the random-argument in lme().

7.1 Analysis using corstr = "ar1"

I will start off by making sure the models (henceforth termed the "ar”-models) are not overdispersed.
They should not be, as φ have not been set to any fixed value. To check for overdispersion, we compare
the estimated dispersion (extracted from summary()) with what it ought to be according to the formula
in Algorithm 6.2:

1

N −p

N∑
i=1

n∑
j=1

ε2
i j .

These two dispersions can be extracted from my function superGEE() by superGEE()$dispersion.
For easy comparison of all the models, I have gathered these two values of φ̂ in a simple matrix, where
the rows refer to the estimates form either the summary or the formula:

1 > phi . ar
2 ps . gee . ar ur . gee . ar ef . gee . ar
3 summary 171.80 284.11 221.46
4 formula 175.32 289.93 226.00

I deem these differences small enough that none of the "ar”-models are overdispersed.

Only two things need to be tested; whether group is relevant to the models and whether the residuals are
homoscedastic. As it would improve efficiency in the sense, that the mean and variance of the response
will have been correctly specified, if the residuals are Gaussian with zero mean, I will also be testing this.
To test the relevance of the treatment groups, I am using three Wald tests, all of which is implemented
in superGEE(). The first Wald test is performed by anova() with just one input (the model, we want to
test). This test tests the hypotheses

H0,1 : β̂time = 0, H0,2 : β̂time2 = 0, H0,3 : β̂group = 0.

The second test is also performed by anova(), but with two inputs; the model, we want to test, and the
20I have tested other choices for the variance function, but only the one from the Gaussian family gave sensible results.
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corresponding null-model. Just like in Chapter 5, I am using the term "null-model” to mean a model
without the group-term and otherwise identical to the corresponding full model. This test is just the
usual comparison of two models, only compared using a Wald statistic instead of AIC. The third test is
the result of using the function esticon() on the model. This function also performs a Wald test, but
tests the hypotheses that

H0,1 : β̂time = 0, H0,2 : β̂time2 = 0, H0,3 : β̂gr.2 = 0, H0,4 : β̂gr.3 = 0,

and it also gives the 95%-confidence intervals for the estimated coefficients. Remember, if zero is con-
tained in the interval, we can accept that the corresponding coefficient is zero. The results of the three
Wald tests are:

1 > superGEE ( ps . gee . ar ) $group
2 $anova1
3 p−value
4 time 0.00000
5 I ( time^2) 0.00000
6 group 0.14380
7
8 $anova2
9 [ 1 ] 0.14380

10
11 $esticon
12 p−value lower upper
13 ( Intercept ) 0.00000 55.62940 65.63713
14 time 0.00000 3.62623 4.66557
15 I ( time^2) 0.00000 −0.08473 −0.06541
16 group2 0.60576 −4.33137 7.42813
17 group3 0.05838 −0.16581 9.51960

The third p-value from $anova1 and the p-value from $anova2 seem to be the same. Had I included
more decimals, we would see, that they are very close, but not equal21 (this goes for all the models in
this chapter). The output shows that group is irrelevant to ps.gee.ar. The same goes for the models
ur.gee.ar and ef.gee.ar as seen in Table 4. In the table, I am including the p-values and confidence
intervals for group only, as these results are of most interest.

Table 4: Results of using superGEE()$group on the "ar”-models. The row for $anova1 are the p-values for group.
The row for $anova2 are the p-values from the comparison of the model and the corresponding null-model. The
rows for $esticon are the 95%-confidence intervals for β̂gr.2 and β̂gr.3, and the p-values for these coefficients.

superGEE()$group
ur.gee.ar ef.gee.ar

$anova1 0.88083 0.09464

$anova2 0.88083 0.09464

$esticon β̂gr.2 ∈ [−6.64,6.93], 0.96712 β̂gr.2 ∈ [−0.61,11.53], 0.07793
β̂gr.3 ∈ [−5.03,8.02], 0.65431 β̂gr.3 ∈ [−0.72,9.24], 0.09379

The results from superGEE()$group are unanimous; group is irrelevant to the models.

21I thought perhaps the p-values from $anova1 was a result of anova() one by one removing time, I(time)ô2 and group
from the model, and then comparing the reduced model with ps.gee.ar. Upon investigation, I found that that is not so.
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Testing ps.gee.ar for homoscedasticity, I get the plots in Figure 16 and the following p-values:

1 > superGEE ( ps . gee . ar , t e s t = "homo" )
2 Bart Leve
3 0.00020 0.98368
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Figure 16: Top: Boxplots of each patients’ residuals. Bottom: Residuals vs. their index numbers. In both plots, red,
yellow and green represent group 1, 2 and 3, respectively.

The top plot in Figure 16 is intended for detecting patterns in the residuals between the groups. It shows
that there is a slightly smaller spread in the residuals from group 3, but otherwise no obvious patterns
that seperate the groups. An unwanted pattern that could show non-homoscedasticity could perhaps
be, that the boxplots for, say, group 1 all tended to have maximum values far from the median. The bot-
tom plot is intended for detecting patterns in the residuals for each patient. This plot was explained in
Chapter 5 (just before Figure 10), where an unwanted pattern could perhaps be each patient’s residuals
forming a "U”-shape. The plot shows no obvious trend in each patient’s residuals. I see no reason not to
assume homoscedasticity, eventhough the Bartlett test disagrees with the Levene’s test. This is likely do
to the residuals not being Gaussian, which we see when testing for normality by

1 > superGEE ( ps . gee . ar , t e s t = "norm" )
2 Shap
3 1.463e−08

Figure 17 shows that, although being centered around zero, the residuals are not Gaussian according to
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the Q-Q plot. The histogram agrees less with the Shapiro-Wilk test. We cannot rule out that they may
be asymptotically Gaussian. For ur.gee.ar and ef.gee.ar, the residuals are homoscedastic, and the
plots from are similar to Figure 16 (although for ef.gee.ar, it is groups 1 that has the smallest spread).
Neither of the models have Gaussian residuals. The Q-Q plots for the models look a lot better than the
one in Figure 17, but the histograms are not nearly as good as the one for ps.gee.ar. The problems with
normality could be due to the autoregressive structure not being the most fitting for the data.
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Figure 17: Left: Q-Q plot of the residuals. Right: Histogram of the residuals with density curve (red line).

7.2 Analysis using corstr = "unstructured"

The models ps.gee.un, ur.gee.un and ef.gee.un are set up exactly like the "ar”-models, only with
corstr = "unstructured" used instead. I will refer to these models as the "un”-models. Once again,
I am starting off by confirming that they are not overdispersed. Next, I move on to testing the relevance
of group. The results from superGEE()$group are shown in Table 5. These results show that group is
irrelevant to the "un”-models.

Table 5: Results of using superGEE()$group on the "un”-models. The row for $anova1 are the p-values for group.
The row for $anova2 are the p-values from the comparison of the model and the corresponding null-model. The
rows for $esticon are the 95%-confidence intervals for β̂gr.2 and β̂gr.3, and the p-values for these coefficients.

superGEE()$group
ur.gee.un ur.gee.un ef.gee.un

$anova1 0.14861 0.91882 0.09131

$anova2 0.14861 0.91882 0.09131

$esticon β̂gr.2 ∈ [−4.20,7.19], 0.60772 β̂gr.2 ∈ [−6.16,7.21], 0.87798 β̂gr.2 ∈ [−0.39,11.54], 0.06688
β̂gr.3 ∈ [−0.21,9.13], 0.06102 β̂gr.3 ∈ [−5.09,7.45], 0.68496 β̂gr.3 ∈ [−0.87,9.14], 0.10514

I will not show the results from using superGEE(test = c("homo", "norm")) on the "un”-models as
they are identical to the results from the "ar”-models.
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7.3 Analysis using corstr = "independence"

The last set of models are the "in”-models, i.e. models with corstr = "independence". These models
are also not overdispersed, and Table 6 shows that group is not relevant to these models either.

Table 6: Results of using superGEE()$group on the "in”-models. The row for $anova1 are the p-values for group.
The row for $anova2 are the p-values from the comparison of the model and the corresponding null-model. The
rows for $esticon are the 95%-confidence intervals for β̂gr.2 and β̂gr.3, and the p-values for these coefficients.

GsuperGEE()$group
ur.gee.in ur.gee.in ef.gee.in

$anova1 0.11750 0.70523 0.10997

$anova2 0.11750 0.70523 0.10997

$esticon β̂gr.2 ∈ [−4.72,6.94], 0.70844 β̂gr.2 ∈ [−7.42,6.71], 0.92204 β̂gr.2 ∈ [−1.25,11.51], 0.11476
β̂gr.3 ∈ [−0.06,9.38], 0.05312 β̂gr.3 ∈ [−4.46,8.90], 0.51407 β̂gr.3 ∈ [−0.54,9.58], 0.08008

I will not show the results from using superGEE(test = c("homo", "norm")) on the "in”-models as
they are, just like the "un”-models, identical to the results from the "ar”-models. I have included a com-
ment on this in my discussion as I find it a bit odd.

I will now move on to comparing the models in order to find which set of models has the most appro-
priate covariance structure.

7.4 Comparison of the "ar”-, "un”- and the "in”-models

When comparing models with different covariance structure, we must look at the standard errors of β̂.
The empirical standard errors are the squared diagonal elements in Cov

[
β̂

]
E, and the model based stan-

dard errors are the squared diagonal elements in Cov
[
β̂

]
M. After extracting the covariances, superGEE()

calculates the empirical and the model based standard errors. Then these are subtracted from each
other. Let δ denote these differences. Remember, the model with the smallest δ, is the one with the
most fitting covariance structure. With superGEE()$delta, the standard errors are extracted. For easy
comparison, I have gathered all the δ’s for each type of model in three matrices, where the rows show δ

for the "ar”-, "un”- and "in”-models, respectively. Below are the matrices for ps, ur and ef:

1 > modcomp. delta . ps
2 ( Intercept ) time I ( time^2) group1 group2
3 ar 0.57015 0.02071 6.701e−05 0.04145 0.17369
4 un 0.57073 0.07712 1.129e−03 0.00975 0.13253
5 in 0.57171 −0.07375 −2.024e−03 0.39562 0.53857
6
7 > modcomp. delta . ur
8 ( Intercept ) time I ( time^2) group1 group2
9 ar −0.28777 0.01279 3.298e−04 −0.00979 −0.02823

10 un −0.29281 −0.01028 −1.526e−06 −0.03167 −0.03596
11 in −0.27818 −0.10745 −2.333e−03 0.53881 0.53854
12
13 > modcomp. delta . ef
14 ( Intercept ) time I ( time^2) group1 group2
15 ar −0.08670 −0.00123 7.735e−05 −0.31712 0.21123
16 un −0.08676 0.01566 4.467e−04 −0.31835 0.19314
17 in −0.08632 −0.12311 −2.607e−03 0.22063 0.78670
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In general, the "ar”- and "un”-models have the smallest δ’s, but the differences between the three sets
of models for each type of movement are not at all as obvious as they were in Example 5. Hence, there
is no clear indication of either of the covariance structures being more fitting than the others. This very
much agrees with the results from the LMMs from Chapter 5.

With these results, it is interesting to see what the association parameters, a, have been estimated to be.
I would expect â to be small so as to resemble the independence structure as, according to the standard
errors, the "in”-models are about as fitting as the "ar”- and "un”-models. Below is â for the "ar”-models:

1 > superGEE ( ps . gee . ar ) $ass . param
2 alpha
3 0.474
4
5 > superGEE ( ur . gee . ar ) $ass . param
6 alpha
7 0.471
8
9 > superGEE ( ef . gee . ar ) $ass . param

10 alpha
11 0.528

For the "un”-models, â is

1 > superGEE ( ps . gee . un) $ass . param
2 alpha . 1 : 2 alpha . 1 : 3 alpha . 2 : 3
3 0.689 0.166 0.315
4
5 > superGEE ( ur . gee . un) $ass . param
6 alpha . 1 : 2 alpha . 1 : 3 alpha . 2 : 3
7 0.388 0.180 0.594
8
9 > superGEE ( ef . gee . un) $ass . param

10 alpha . 1 : 2 alpha . 1 : 3 alpha . 2 : 3
11 0.585 0.237 0.514

These estimated values of the association parameter are larger than what I would have expected, when
comparing to â from Example 5, where there was a clear difference between the "in”- and the "un”-
model. These intra-subject correlations seem to contradict the results from comparing the standard
errors. I have included a comment on this in my discussion, Chapter 9.

7.5 Conclusion

Whether an autoregressive, unstructured or independence correlation structure is used, group is not
significant to the model for either of the three types of movement. And there seem to only be little
difference in the models with these correlation structures with a very slight advantage to the "ar”- and
"un”-models.

With that, I end this chapter by seeing no reason to reject H main
0 , just like in Chapter 5.

7.6 Source code: superGEE()
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1 superGEE = function (mod, t e s t = NULL) {
2 cex . legend = 1 . 5 ; lwd = 2 ; cex . lab = 2 ; cex . axis = 1 . 5 ; cex . main = 2 ; mar = c ( 4 . 5 , 4 . 5 , 2 , 1 )
3
4 ## Residuals
5 i f ( ! i s . null ( t e s t ) ) {
6 i f ( t e s t == "homo" ) {
7 par (mar=mar, mfrow=c ( 2 , 1 ) , lwd=lwd , cex . lab=cex . lab , cex . axis=cex . axis , cex . main=cex . main)
8 col = c ( rep (2 ,28) , rep ( "goldenrod1" ,28) , rep ( " chartreuse4 " ,27) )
9 plot (mod$residuals ~ Wrist$subject , col=col , ylab=" Residuals " , xlab=" Subject " , cex =0.5)

10
11 col2 = c ( rep (2 ,3 * 28) , rep ( "goldenrod1" ,3 * 28) , rep ( " chartreuse4 " ,3 * 27) )
12 plot (mod$residuals , ylab = " Residuals " , cex = 0 . 5 )
13 for ( i in seq (1 ,3 * 83 ,3) ) { l i n e s ( c ( i : ( i +2) ) , mod$residuals [ i : ( i +2) ] , col = col2 [ i ] ) }
14 res . t e s t = c ( " Bart "= b a r t l e t t . t e s t (mod$residuals , Wrist$subject ) $p . value ,
15 "Leve"=car : : leveneTest ( as . vector (mod$residuals ) , Wrist$subject ) $"Pr( >F) " [ 1 ] )
16 }
17
18 i f ( t e s t == "norm" ) {
19 par (mar=mar, mfrow=c ( 1 , 2 ) , lwd=lwd , cex . lab=cex . lab , cex . axis=cex . axis , cex . main=cex . main)
20 car : : qqp(mod$residuals , ylab=" Residuals " , xlab="Norm quantiles " , main=" " , cex =0.5)
21 h i s t (mod$residuals , probabi l i ty = T , 50 , xlab = " Residuals " , main = " " )
22 l i n e s ( density (mod$residuals ) , col = 2)
23 res . t e s t = c ( "Shap" = shapiro . t e s t (mod$residuals ) $p . value )
24 }
25 }
26
27 ## Relevance of " group "
28 w1 = matrix ( anova (mod) $"P( > | Chi | ) " , ncol =1 , nrow=3)
29 rownames(w1) = rownames( anova (mod) ) ; colnames (w1) = "p−value "
30 w2 = anova ( update (mod, . ~.−group ) , mod) $"P( > | Chi | ) "
31 w3 = matrix ( c (doBy : : esticon . geeglm (mod, diag ( 5 ) ) $"Pr ( > |X^ 2 | ) " ,
32 doBy : : esticon . geeglm (mod, diag ( 5 ) ) $"Lower" ,
33 doBy : : esticon . geeglm (mod, diag ( 5 ) ) $"Upper" ) ,
34 ncol = 3 , nrow = length (mod$ c o e f f i c i e n t s ) )
35 rownames(w3) = names(mod$ c o e f f i c i e n t s ) ; colnames (w3) = c ( "p−value " , " lower " , "upper" )
36
37 ## Standard e r r o r s
38 se . e = sqrt ( diag (mod$geese$vbeta ) ) ; se .m = sqrt ( diag (mod$geese$vbeta . naiv ) )
39 m = matrix ( 0 , ncol = length ( se . e ) , nrow = 1) ; colnames (m) = names(mod$ c o e f f i c i e n t s )
40 m[ 1 , ] = se . e − se .m
41
42 ## Association parameter
43 ass . param = mod$geese$alpha
44
45 ## Dispersion
46 phi .summary = summary(mod) $dispersion$" Estimate "
47 phi . formula = sum( residuals (mod) ^2) / df . residual (mod)
48
49 i f ( i s . null ( t e s t ) ) {
50 out = l i s t ( group = l i s t ( anova1 = w1, anova2 = w2, esticon = w3) , delta = m,
51 dispersion = l i s t ( phi .summary = phi .summary, phi . formula = phi . formula ) ,
52 ass . param = ass . param) ; out
53 }
54 else i f ( ! i s . null ( t e s t ) ) { print ( res . t e s t ) }
55 }



8 | A different setup

It is not unthinkable, that a patients ability to, say, rotate their wrist affects their ability to bend the
wrist. Instead of creating a model for each type of movement (henceforth termed a longitudinal model),
perhaps a better model would be a model for each timepoint, where the response for each patient is a
vector with the measurements for each type of movement at the specific timepoint (henceforth termed
a clustered model). In this chapter, I go through the analysis of my data with clustered models. In Chap-
ters 5 and 7, there were problem wrt. homoscedasticity and normality of either the random effects or
the residuals. Perhaps the clustered models will give less problems with the model assumptions of the
LMMs.

Some rearranging of Wrist is needed for the clustered models. The results of which are shown below:

1 > head ( Wrist2 , 9 )
2 subject t1 t2 t3 tom group
3 1 id01 72.222222 86.11111 94.44444 ps 1
4 2 id01 36.000000 68.00000 68.00000 ef 1
5 3 id01 40.000000 80.00000 50.00000 ur 1
6 4 id02 91.176471 91.17647 97.05882 ps 1
7 5 id02 47.058824 76.47059 76.47059 ef 1
8 6 id02 37.500000 62.50000 100.00000 ur 1
9 7 id03 68.571429 94.28571 97.14286 ps 1

10 8 id03 4.166667 79.16667 91.66667 ef 1
11 9 id03 22.222222 77.77778 100.00000 ur 1

The data set is called Wrist2. Just like Wrist, it has a column with id’s identifying each patient, and a
column indicating which group the patient belongs to. Instead of a column with measurements per type
of movement, Wrist2 has a column with measurements per timepoint (columns t1, t2 and t3 for the
1st, 2nd and 3rd timepoint). The column tom indicates what type of movement is measured in each row.

8.1 Clustered LMMs

Before I can set up my LMMs, I must make sure the new response variables, t1, t2 and t3, are Gaussian
and linear in group and tom. Figure 18 shows that we may accept t1 and t2 being Gaussian as suffi-
ciently many points fall within the 95%-confidence interval. Wrt. t3, I have investigated its distribution
further, and the most fitting is the Gaussian. Because of the problems with the distribution of t3, in the
next section, Section 8.2, I will set up clustered GEE models.

The relationship between the new response variables and group and tom is only linear for some patients.
Neither group nor tom can be transformed as they are both factors, and after having tested several tran-
formations of the responses, I found no single transformation for either of the responses that resulted
in a linear relationship for all patients. Here one has the choice of either continuing under the assump-
tion, that the relationships are all sufficiently linear, or one can work with a non-linear mixed model
(NLMM for short). In the NLMM, we have that E[Yi ] = f (Xi ,β), which means that the mean of the set
of responses for subject i is now a function of Xi and β. In order to use a NLMM, we have to know ex-
actly how this function is given. With no apparent guesses as to what f (·, ·) may be, I will not attempt
to work with the NLMM. Instead, I will assume the relationships are all sufficiently linear, and then try
to see if using clustered models results in fewer problems, wrt. meeting model assumptions, than the
longitudinal models.
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Figure 18: Q-Q plots of t1, t2 and t3, respectively, with 95%-confidence intervals (red punctures lines).

I will only use models with unstructured covariances in the main analysis. Later, I will set up models
with independence structure to see, if we may assume no correlation between types of movement. The
models are:

1 t1 .lmm = lme ( t1 ~ tom + group , random = ~ 1 | subject , data = Wrist2 , method = "REML" , correlat ion
= corSymm( form = ~ 1 | subject ) )

2 t2 .lmm = lme ( t2 ~ tom + group , random = ~ 1 | subject , data = Wrist2 , method = "REML" , correlat ion
= corSymm( form = ~ 1 | subject ) )

3 t3 .lmm = lme ( t3 ~ tom + group , random = ~ 1 | subject , data = Wrist2 , method = "REML" , correlat ion
= corSymm( form = ~ 1 | subject ) )

In order to use superLMM(), a few changes are needed, such as no longer needing the is-argument,
and other small changes. These changes are implemented in a new function, superLMM2(), which is
identical to the original function, apart from these small changes. Table 7 shows that all covariance
matrices are positive semi-definit.

Table 7: This table contains the results of using superLMM2()$vcov on the clustered models.

superLMM2()$vcov
t1.lmm t2.lmm t3.lmm

V0 TRUE TRUE TRUE

R0 TRUE TRUE TRUE

Σ TRUE TRUE TRUE
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Table 8 shows that group is irrelevant to the models.

Table 8: The row for $anova1 are the p-values for group. The row for $anova2 are the p-values from the comparison
of the model and the null-model. The rows for $intervals are the 95%-confidence intervals for βgr.2 and βgr.3.

superLMM2()$group
t1.lmm t2.lmm t3.lmm

$anova1 0.18362 0.16467 0.99949

$anova2 0.17245 0.15515 0.88540

$intervals βgr.2 ∈ [−0.94,12.91] βgr.2 ∈ [−7.69,6.17] βgr.2 ∈ [−5.85,4.59]
βgr.3 ∈ [−1.83,12.15] βgr.3 ∈ [−1.55,12.44] βgr.3 ∈ [−4.61,5.93]

Table 9 shows that all model assumptions are satisfied apart from the intercepts and residuals of t3.lmm
being Gaussian.

Table 9: For both ass=1 (the intercepts) and ass=2 (the residuals), there are three rows. The first row are the p-values
from the Bartlett test. The second row are the p-values from the Levene’s test, and the third row are the p-values from
the Shapiro-Wilk test.

superLMM2(ass = c(1, 2))
t1.lmm t2.lmm t3.lmm

ass = 1 0.29629 0.26388 0.77327
0.14325 0.15739 0.54648
0.97867 0.17024 0.00057

ass = 2 0.35055 0.60650 0.00000
0.99783 0.99993 0.93671
0.52707 0.40914 0.00000
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Figure 19: Q-Q plot and histogram with density curve of the residuals of t3.lmm.



8 A different setup 78

Once again, the Q-Q plot and histogram of the residuals, seem to disagree on the distribution (see Figure
19). From the histogram, I would consider the residuals Gaussian, but not from the Q-Q plot. But, most
importantly, there are no violations of the homoscedasticity assumptions. Likewise for the intercepts.

I have now confirmed that the clustered models give less problems wrt. satisfying model assumptions,
than the longitudinal models. Table 8 shows that the conclusion about the relevance of the treatment
groups have, as suspected, not changed. I will now confirm this using Kenward-Rogers approxima-
tion. As before, I set up models using lmer(). I am allowed to use this function despite it only having
the exchangeable structure implemented. Just like with the longitudinal models, I have also here, in
addition to t1.lmm, t2.lmm and t3.lmm, set up the equivalent "in”- and "ex”-models and tested with
anova(), that there is no significant difference in either of the models no matter the covariance struc-
ture. This time the correlation parameters seemed more fitting with the numerically largest correlation
for all the "un”-models being 0.253, and the numerically largest for all the "ex”-models being 0.0014.
Thus with clustered LMMs, we have results from anova() and the estimated correlation parameters,
that are much more in agreement with each other than they were for the longitudinal models. And we
may assume no correlation between different types of movement. Table 10 shows the p-values from us-
ing both KRmodcomp() and anova() on the "ex”-models made with lmer(). These results confirm that
H main

0 cannot be rejected.

Table 10: The p-values from KRmodcomp() and anova()with the full "ex”-models of t1, t2 and t3, respectively, and
their corresponding null-models as input.

t1 t2 t3
KRmodcomp() 0.16719 0.20460 0.92591

anova() 0.15634 0.19278 0.92324

8.2 Clustered GEE models

In Figure 18, we saw that the assumption of t3 being Gaussian may not be correct. Therefore, in this
section, I show the results from modelling t1, t2 and t3 with GEE models releaving me from making
any assumptions about the distribution of the response variables.

As in Section 8.1, I will only set up models with unstructured covariances in the main analysis, and I
will use models with independence structure to see if we may assume no correlation between types of
movement. The models are:

1 t1 . gee = geeglm ( t1 ~ tom + group , id = subject , data = Wrist2 , c o r s t r = " unstructured " , family =
gaussian ( link = " i d e n t i t y " ) )

2 t2 . gee = geeglm ( t2 ~ tom + group , id = subject , data = Wrist2 , c o r s t r = " unstructured " , family =
gaussian ( link = " i d e n t i t y " ) )

3 t3 . gee = geeglm ( t3 ~ tom + group , id = subject , data = Wrist2 , c o r s t r = " unstructured " , family =
gaussian ( link = " i d e n t i t y " ) )

After replacing Wrist$group with Wrist2$group in superGEE(), giving me the almost identical func-
tion superGEE2(), I can now analyse the models.

Table 11 shows that the residuals are homoscedastic and almost all are Gaussian. Just like for the clus-
tered LMM for t3, the residuals of t3.gee are not Gaussian according to the Shapiro-Wilk test, and once
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again, the Q-Q plot and histogram seem to disagree with each other. These plots are not shown here,
but they are very similar to Figure 19.

Table 11: The rows for test="homo" are the p-values of the Bartlett and Levene’s test, respectively, and the row for
test="norm" are the p-values of the Shapiro-Wilk test.

superGEE2(test = c("homo", "norm"))
t1.gee t2.gee t3.gee

test = "homo" 0.35055 0.60650 0.00000
0.99783 0.99993 0.93671

test = "norm" 0.10500 0.24098 0.00000

Next, I will test if there is any difference between t1.gee, t2.gee and t3.gee and their corresponding
"in”-models. Like in Section 7.4, I letδ denote the differences in the model based and empirical standard
errors. I have gathered the δ’s in matrices for t1, t2 and t3 shown below:

1 > modcomp. delta . t1
2 ( Intercept ) tomef tomur group2 group3
3 un 0.05496 0.15883 0.14182 0.12770 −0.36816
4 in 0.42541 −0.57795 −0.43274 1.06641 0.56826
5
6 > modcomp. delta . t2
7 ( Intercept ) tomef tomur group2 group3
8 un −0.33969 −0.34815 −0.09747 0.05030 −0.51969
9 in 0.15816 −0.93454 −0.68378 1.32349 0.74645

10
11 > modcomp. delta . t3
12 ( Intercept ) tomef tomur group2 group3
13 un −0.42868 −0.39995 −0.03886 −0.14085 −0.03231
14 in −0.23999 −0.58775 −0.13083 0.30161 0.49650

We see that the δ’s for the "un”-models tend to be smaller than those of the "in”-models, indicating that
there is correlation between the different types of movement. The sizes of â (see below) seems much
more fitting for these model, than they were for the longitudinal GEE-models in Chapter 7.

1 > superGEE2 ( t1 . gee ) $ass . param
2 alpha . 1 : 2 alpha . 1 : 3 alpha . 2 : 3
3 0.515 0.418 0.442
4
5 > superGEE2 ( t2 . gee ) $ass . param
6 alpha . 1 : 2 alpha . 1 : 3 alpha . 2 : 3
7 0.429 0.429 0.850
8
9 > superGEE2 ( t3 . gee ) $ass . param

10 alpha . 1 : 2 alpha . 1 : 3 alpha . 2 : 3
11 0.168 0.084 0.371

Wtih clustered GEE models, we now have that the results from the δ’s and the â’s that are in much more
agreement with each other, than they were for the longitudinal models.

Finally, Table 12 shows group is irreleant to the models.
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Table 12: The row for $anova1 are the p-values for group. The row for $anova2 are the p-values from the compar-
ison of the model and the null-model. The rows for $esticon are the 95%-confidence intervals for βgr.2 and βgr.3,
and the p-values for these coefficients.

superGEE2()$group
t1.gee t2.gee t3.gee

$anova1 0.12889 0.10514 0.88910

$anova2 0.12889 0.10514 0.88910

$esticon βgr.2 ∈ [−0.70,12.88], 0.07862 βgr.2 ∈ [−7.25,6.44], 0.90737 βgr.2 ∈ [−4.96,4.36], 0.90040
βgr.3 ∈ [−0.98,10.77], 0.10261 βgr.3 ∈ [−0.47,11.10], 0.07198 βgr.3 ∈ [−4.06,5.78], 0.73099

8.3 Conclusion

No matter if we use longitudinal or clustered models, whether we use ANOVA, MANOVA, LMMs or GEE
models, there are no tests that indicate, Ibuprofen should have any significant beneficial effect on the
recovery of wrist functions, and thus I conclude, that H main

0 cannot be rejected.
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In this chapter, I present points for discussion. The points are presented in chronological order accord-
ing to the sections in the report, where they appear, and are therefore not given in order of importance.

Subsection 4.2.2: Algorithm 4.2

Despite vigorous searching, I have not been able to find any sources either confirming or disproving
that Algorithm 4.2 always converges, and that different choices for initial β̂ could result in different final
β̂’s. The source, [8], from which I have based this algorithm, mentions nothing about the subject. From
having a look at the source code for lme(), I cannot tell for sure if the function is based on Algorithm
4.2, but I must assume it is based on a similar algorithm. Hence, my questions about Algorithm 4.2
may be answered through looking at the source code for lme(). In the source code, I looked to see if a
break is implemented in case convergence has not been reached within, say, 5000 iterations, meaning
that convergence is probably not going to happen. I found nothing of the sort. However, the argument
MaxIter in lme() is used for allowing for more iterations in order to reach convergence. There is no
upper limit to MaxIter (here, I am assuming an upper limit would mean, that if convergence has not
been reach with this number of iterations, then convergence is not going to happen at all), which can
mean one of two things: either no upper limit is needed as convergence will always happen for big
enough MaxIter or it is assumed that the user knows that if the function has not converged even with,
say, MaxIter = 5000, then the user should take that as a sign, that the function will not converge. Wrt.
the choice for initial β̂, I believe it is chosen as (XT X)−1XT y because it lowers the number of iterations
needed to reach convergence, just like how the initial β̂ is chosen in Algorithm 6.2.

Subsection 4.3.2: Forϕ=σ2, we can set V0 =σ2A

There is no (logical) explanation in [7] as to why V0 can be written as σ2A when there is no correlation
between subjects and autocorrelation within subjects. As

V0 =σ2
uJn×n ⊗R0 = σ2

uJn×n ⊗σ2A

only if σ2
u = 0 would V0 reduce to σ2A, but σ2

u is not zero. In A.14, we see that σ2
u does not vanish

when deriving V−1
0 . I have chosen to derive the estimating equations for σ2

u , σ2 and ρ in the case with
autoregressive structure. I see that in [7], had I chosen a different structure, then σ2

u would not have
been overlooked when deriving the estimating equation for σ2. So either σ2

u was somehow forgotten in
deriving the estimating equation for σ2 or it was left out on purpose, and the explanation for this was
either neglected or thought of as being so obvious, that the authors decided not to include it.

Section 5.4: Model comparison

When comparing the "ar”-, "un”- and "in”-models, I found that only for ps was the "un”-model prefered
over the other two. But if I looked at the correlation parameters for all the "un”-models, it would seem
the "un”-models for ur and ef probably also should have been prefered over the "in”-models because
of the high correlations. But perhaps these correlation were not high at all. When testing whether β̂i

could be set equal to zero, I used the function intervals(), which gave an interval for β̂i . If zero was
contained in the interval, we may set β̂i = 0. It would have been nice with such a test for the correlation
parameters, so that if, say, ρ̂1,2 < c, for some limit c, we may set ρ̂1,2 = 0.
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An upside to these slightly confusing results is, that it allows me to use Kenward-Rogers approximation.
For the Kenward-Rogers approximation, I must use a function in R which only has the exchangeable
structure implemented. This is no problem, as there is no significant difference in any of my models no
matter the covariance structure.

Section 7.3: Identical residuals

With the GEE models, I get identical residuals for both the "ar”-, "un”- and "in”-models for ps, and
likewise for ur and ef. This is despite having different R0, â, β̂ (not shown in the report), and so on
in these models, and it does not stem from a coding error in superGEE(). Investigating this further, I
looked at the residuals for the GEE models in Example 5 (the respitory-data) where I had an "in”- and
an "un”-model. Here, I also got identical residuals. Therefore, I believe these odd identical residuals are
not odd at all.

Section 7.4: Large association parameters

The estimated association parameters were a lot bigger than I would have expected. When looking at
δ for all three type of models for one type of movement (modcomp.delta.ps, for instance), δ tended
to either be a little smaller for the "ar”- and "un”-models or about the same as the "in”-model. Hence,
I would expect â to be small (although not zero). I cannot say how small, I would have expected it to
be, but certainly not larger than 0.5. Or perhaps, these are very reasonable results. I am basing my
concern on the large â’s on the results from Example 5. In this example, there was a clear difference in
the "in”- and "un”-models when looking at their corresponding δ. All entries in δ for the "un”-model
was smaller by about a factor 10 than the corresponding entries in δ for the "in”-model. This resulted
in â ∈ [0.209,0.439]. In the models for my data, instead of needing all entries in δ for either the "ar”-
or "un”-model to be smaller than those in δ for the "in”-model, perhaps the large â is a result of some
entries inδ for either the "ar”- or "un”-model being more than a factor 10 smaller than the corresponding
entry in δ for the "in”-model. So, despite some of the entries in the different δ’s being almost equal, the
fact that other entries differ quite some, may be enough to say that the "in”-models are actually less
fitting, and thus justifying the large â’s.

Chapter 8: Longitudinal vs. clustered models

When using clustered models instead of longitudinal models, I got results from comparing the "in”-
and "un”-models that were much more in agreement with the estimated correlations between types of
movement. This leads me to think, that when testing for the relevance of the treatment groups, the
better set of models for this task, may be the clustered models. One concern I have, though, is the
problems with linearity. In the longitudinal models, I just had to add a squared term of time to have
linearity. Although I did have linearity for some patients in the clustered setup, for some patients this
was certainly not so.

Other issues

I believe it is possible that how well and fast a patient recover wrist functions can be related to whether
the injured hand is their dominant hand or not. After surgery, if the hand is stiff and sore, you might just
choose not to use it if it is your non-dominant hand. Hence, the hand will stay stiff for a longer time,
because it is not being used. If instead the injured hand is the dominant hand, you might just use it
anyway despite it being stiff and sore simply because it is your instinct. Hence, the wrist will get more
"exercise” and will loosen up faster. It is interesting what the results would be, had I been able to include
an indicator in my models of whether the injured hand was the dominant one or not.



Appendix A

This appendix contains calculations and results used in the report.
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i

)−n

(
σ2

n
+µ2

i

))
= 1

g (n −1)

g∑
i=1

(
nσ2 +nµ2

i −σ2 −nµ2
i

)
= 1

g (n −1)
gσ2(n −1) = 1

g

g∑
i=1

σ2 =σ2.

The between-group variance, s2
b , is only an unbiased estimator of σ2 if µi =µ, ∀i :

E
[
s2

b

]= n

g −1
E

[
g∑

i=1

(
Ȳi ·− Ȳ··

)2

]
= n

g −1

g∑
i=1

(
Var

[
Ȳi ·

]+E
[
Ȳi ·

]−Var
[
Ȳ··

]−E
[
Ȳ··

])

= n

g −1

g∑
i=1

(
σ2

n
+µ− 1

g 2
g
σ2

n
− 1

g
gµ

)
= n

g −1

g∑
i=1

σ2
(

1

n
− 1

nk

)

= n

g −1
gσ2

(
g −1

nk

)
= σ2.

To get from the 1st to the 2nd equality, I used the approach from E
[
s2

w

]
when going from the 2nd to

8th equality. Clearly, if µi 6=µ for some i , then E
[
s2

b

] 6=σ2.
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A. 2 The total sum of squares and cross product matrix, T, can be written as a sum of

E =
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T

and

H =
g∑

i=1
ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)

T :

T =
g∑

i=1

ni∑
j=1

(yi j − ȳ··)(yi j − ȳ··)
T =

g∑
i=1

ni∑
j=1

(
(yi j − ȳi ·)+ (ȳi ·− ȳ··)

)(
(yi j − ȳi ·)+ (ȳi ·− ȳ··)

)T

=
g∑

i=1

ni∑
j=1

(
(yi j − ȳi ·)(yi j − ȳi ·)

T +2(yi j − ȳi ·)(ȳi ·− ȳ··)
T + (ȳi ·− ȳ··)(ȳi ·− ȳ··)

T
)

=
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T +

g∑
i=1

ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)
T +2

g∑
i=1

ni∑
j=1

(yi j − ȳi ·)(ȳi ·− ȳ··)
T

=
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T +

g∑
i=1

ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)
T +2

g∑
i=1

ni∑
j=1

(
yi j ȳT

i ·−yi j ȳT
·· − ȳi ·ȳ

T
i ·+ ȳi ·ȳ

T
··
)

=
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T +

g∑
i=1

ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)
T +2

g∑
i=1

ni∑
j=1

(
yi j ȳT

i ·−yi j ȳT
··
)

−2
g∑

i=1

(
ni ȳi ·ȳ

T
i ·+ni ȳi ·ȳ

T
··
)

=
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T +

g∑
i=1

ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)
T +2

g∑
i=1

ni∑
j=1

(
yi j ȳT

i ·−yi j ȳT
··
)

−2
g∑

i=1

(
ni∑

j=1
yi j ȳT

i ·+
ni∑

j=1
yi j ȳT

··

)

=
g∑

i=1

ni∑
j=1

(yi j − ȳi ·)(yi j − ȳi ·)
T +

g∑
i=1

ni (ȳi ·− ȳ··)(ȳi ·− ȳ··)
T = E+H.

A. 3 Let λ be an eigenvalue of HE−1 = A with v as the corresponding eigenvector. Then Av = λv. Let
B = A+ Ip×p . Then

Bv = (
A+ Ip×p

)
v = Av+ Ip×p v = λv+v = (λ+1)v.

This means that λ+1 is an eigenvalue of B. In Appendix B (see B.4), it is explained that the deter-
minant of a matrix equals the product of the eigenvalues. Using this and the fact that |Ip×p | = 1, we
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get

ΛW = |E|
|H+E| = |E||E−1|

|H+E||E−1| = |Ip×p |
|A+ Ip×p |

= |A+ Ip×p |−1 = |B|−1 =
p∏

i=1

1

1+λi
.

Let C = A(A+ Ip×p )−1 = AB−1. Then

Cv = AB−1v = A(λ+1)−1v = 1

λ+1
Av = λ

λ+1
v.

This means that λ
λ+1 is an eigenvalue of C. In Appendix B (B.4), it is explained that the trace of a matrix

equals the sum of the eigenvalues. Using this and the trace is invariant under cyclic permutations,
we get

ΛP = tr
{

H(H+E)−1} = tr
{

H(H+E)−1EE−1}
= tr

{
E−1H(H+E)−1 (

E−1)−1
}

= tr
{

A(HE−1 +EE−1)−1}
= tr

{
A(A+ Ip×p )−1} = tr {C} =

p∑
i=1

λi

1+λi
.

A. 4 Let Var[Ui ] =σ2
u , ∀i , and Var

[
εi j

]=σ2, ∀ j , and remember that ui and εi j are idependent, and
the εi j s are mutually independent. Observations within groups are correlated:

Corr
[
Yi j ,Yi l

]= Cov
[
Yi j ,Yi l

]√
Var

[
Yi j

]
Var[Yi l ]

=
1
2

(
Var

[
Yi j +Yi l

]−Var
[
Yi j

]−Var[Yi l ]
)√

Var
[
Yi j

]
Var[Yi l ]

=
1
2

(
Var

[
Yi j +Yi l

]− (
σ2

u +σ2
)− (

σ2
u +σ2

))√(
σ2

u +σ2
)(
σ2

u +σ2
) =

1
2 Var

[
Yi j +Yi l

]− (
σ2

u +σ2
)

σ2
u +σ2

=
1
2 Var

[
2µ+ (xi j +xi l )β+2Ui +εi j +εi l

]−σ2
u −σ2

σ2
u +σ2

= 2Var[Ui ]+ 1
2 Var

[
εi j +εi l

]−σ2
u −σ2

σ2
u +σ2

=
1
2σ

2 + 1
2σ

2 −σ2 +σ2
u

σ2
u +σ2

= σ2
u

σ2
u +σ2

.

In the 2nd equality, Var[X +Y ] = Var[X ]+Var[Y ]+2Cov[X ,Y ] is used to change the numerator.

As Cov[X ,Y ] = 0 when X and Y are independent, obviously Corr
[
Yi j ,Ykl

]= 0 when i 6= k, i.e. when
Yi j and Ykl are observations from different groups.
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A. 5 The score function wrt. β is

Sβ(β;y) = ∂

∂β
`(β;y)

(4.10)= −1

2

∂

∂β
(y−Xβ)T V−1(y−Xβ) = −1

2

∂

∂β

(
yV−1y−2yT V−1Xβ+βT XT V−1Xβ

)
= ∂

∂β

(
yT V−1Xβ− 1

2
βT XT V−1Xβ

)
= (

yT V−1X
)T − (

βT XT V−1X
)T = XT V−1y−XT V−1Xβ.

MLE of β is then

Sβ(β;y) = 0 ⇔ XT V−1y−XT V−1Xβ= 0 ⇔ β̂= (
XT V−1X

)−1
XT V−1y.

A. 6 If we want to predict the random variable X as much as possible by a constant c, the best pre-
dictor for X will be c = E[X ]:

E
[
(X − c)2]= E

[
(X −E[X ]+E[X ]− c)2] = E

[
(X −E[X ])2]+2(E[X ]− c)E[X −E[X ]]+ (E[X ]− c)2

= E
[
(X −E[X ])2]+ (E[X ]− c)2 = Var[X ]+ (E[X ]− c)2.

A. 7 In order to find u, we must solve Su(β,ϕ;u,y) = 0, where the score function is given as

∂

∂u
`(β,ϕ,u;y) =−1

2

∂

∂u

(
log(|R(ϕ)|)+ (y−Xβ−Zu)T R(ϕ)−1(y−Xβ−Zu)+ log(|G(ϕ)|)+uT G(ϕ)−1u

)

=−1

2

∂

∂u

(
(y−Xβ−Zu)T R(ϕ)−1(y−Xβ−Zu)+uT G(ϕ)−1u

)
=−1

2

∂

∂u

(
yT R(ϕ)−1y+βT XT R(ϕ)−1Xβ+uT ZT R(ϕ)−1Zu−2yT R(ϕ)−1Xβ

−2yT R(ϕ)−1Zu−2βT XT R(ϕ)−1Zu+uT G(ϕ)−1u
)

=−1

2

∂

∂u

(
uT ZT R(ϕ)−1Zu−2yT R(ϕ)−1Zu+2βT XT R(ϕ)−1Zu+uT G(ϕ)−1u

)
=−(

uT ZT R(ϕ)−1Z
)T + (

yT R(ϕ)−1Z
)T − (

βT XT R(ϕ)−1Z
)T −G(ϕ)−1u

= ZT R(ϕ)−1 (
y−Xβ−Zu

)−G(ϕ)−1u.

A. 8 We have that U ∼ Nm (0,G) and ε∼ NN (0,R), and u and ε are independent. Thus

Var[Y] = Var
[
Xβ+ZU+ε] = ZVar[U]ZT +Var[ε] = ZGZT +R.
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A. 9 In the following are the calculations showing that the restricted log-likelihood can be written as
`p(ϕ)− 1

2 log
(|XT V(ϕ)−1X|). Let

A(ϕ) = XT V(ϕ)−1X (1)

B(ϕ) = A(ϕ)−1XT V(ϕ)−1. (2)

The term inside exp(·) in L(β,ϕ;y) (Equation (4.9)) can be rewritten as

(y−Xβ)T V(ϕ)−1(y−Xβ) = yT V(ϕ)−1y+βT XT V(ϕ)−1Xβ−2yT V(ϕ)−1Xβ

= yT V(ϕ)−1y+βT A(ϕ)β−2yT V(ϕ)−1Xβ

= yT V(ϕ)−1y+βT A(ϕ)β−2yT V(ϕ)−1Xβ+yT V(ϕ)−1XA(ϕ)−1XT V(ϕ)−1y

−yT V(ϕ)−1XA(ϕ)−1XT V(ϕ)−1y

= (
βT −yT V(ϕ)−1XA(ϕ)−1)(A(ϕ)β−XT V(ϕ)−1y

)+yT V(ϕ)−1y

−yT V(ϕ)−1XA(ϕ)−1XT V(ϕ)−1y

= (
βT −yT V(ϕ)−1XA(ϕ)−1)A(ϕ)

(
β−A(ϕ)−1XT V(ϕ)−1y

)+yT V(ϕ)−1y

−yT V(ϕ)−1XA(ϕ)−1XT V(ϕ)−1y

= (
β−A(ϕ)XT V(ϕ)−1y

)T
A(ϕ)

(
β−A(ϕ)−1XT V(ϕ)−1y

)+yT V(ϕ)−1y

−yT (
A(ϕ)−1XT V(ϕ)−1)T

A(ϕ)
(
A(ϕ)−1XT V(ϕ)−1)y

= (
β−B(ϕ)y

)T A(ϕ)
(
β−B(ϕ)y

)+yT V(ϕ)−1y−yT B(ϕ)T A(ϕ)B(ϕ)y. (3)

Notice, that β̂(ϕ) (Equation (4.13)) can be expressed as

β̂(ϕ)
(1)= A(ϕ)−1XT V(ϕ)−1y

(2)= B(ϕ)y (4)

and so, the last two terms in Equation (3) can be written as

yT V(ϕ)−1y−yT B(ϕ)T A(ϕ)B(ϕ)y = yT V(ϕ)−1y+yT B(ϕ)T A(ϕ)B(ϕ)y−2yT B(ϕ)T A(ϕ)B(ϕ)y
(4)= yT V(ϕ)−1y+ β̂(ϕ)T A(ϕ)β̂(ϕ)−2yT B(ϕ)T A(ϕ)β̂(ϕ)
(2)= yT V(ϕ)−1y+ β̂(ϕ)T A(ϕ)β̂(ϕ)−2yT V(ϕ)−1XA(ϕ)−1A(ϕ)β̂(ϕ)
(1)= yT V(ϕ)−1y+ β̂(ϕ)T XT V(ϕ)−1Xβ̂(ϕ)−2yT V(ϕ)−1Xβ̂(ϕ)

= (y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ)). (5)

Using Equations (3) and (5), the term inside exp(·) is then

(y−Xβ)T V(ϕ)−1(y−Xβ) = (
β−B(ϕ)y

)T A(ϕ)
(
β−B(ϕ)y

)+ (y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ)). (6)
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Thus we get∫
L(β,ϕ;y) dβ

(4.9)=
∫ (

1
p

2π
N
|V(ϕ)|− 1

2 exp

(
−1

2
(y−Xβ)T V(ϕ)−1(y−Xβ)

))
dβ

(6)=
∫

1
p

2π
N
|V(ϕ)|− 1

2

·exp

(
−1

2

((
β−B(ϕ)y

)T A(ϕ)
(
β−B(ϕ)y

)+ (y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ))
))

dβ

= 1
p

2π
N
|V(ϕ)|− 1

2 exp

(
−1

2
(y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ))

)
·
∫

exp

(
−1

2

(
β−B(ϕ)y

)T A(ϕ)
(
β−B(ϕ)y

))
dβ

= 1
p

2π
N
|V(ϕ)|− 1

2 exp

(
−1

2
(y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ))

)
·p2π

N |A(ϕ)|− 1
2

∫
1

p
2π

N
|A(ϕ)| 1

2 exp

(
−1

2

(
β−B(ϕ)y

)T A(ϕ)
(
β−B(ϕ)y

))
dβ

= 1
p

2π
N
|V(ϕ)|− 1

2 exp

(
−1

2
(y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ))

)
·p2π

N |A(ϕ)|− 1
2 . (7)

The last equation deserves a short explanation: In the second to last equation, I multiplied by 1,
so that the term in the integral became a likelihood function. In fact, the term in the integral has
the form of a multivariate normal density with β as the variable. Integrating the density wrt. β is of
course just 1, giving the last equation.

Letting the squared roots cancel each other out, the restricted log-likelihood thus becomes

`R(ϕ)
(4.15),(7)≡ −1

2
log

(|V(ϕ)|)− 1

2
(y−Xβ̂(ϕ))T V(ϕ)−1(y−Xβ̂(ϕ))− 1

2
log

(|A(ϕ)|)
(4.14)= `p(ϕ)− 1

2
log

(|A(ϕ)|) (1)= `p(ϕ)− 1

2
log

(|XT V(ϕ)−1X|) .

A. 10 The BLUP of u, when G =σ2
uIm×m , Z = Im×m ⊗1T

n and V = Im×m ⊗ (
σ2

uJn×n +R0
)
:

û
(4.12)= GZT V−1(y−Xβ̂)

(4.20),(4.21)= σ2
uIm×m(Im×m ⊗1T

n )
(
Im×m ⊗ (

σ2
uJn×n +R0

))−1
(y−Xβ̂)

=σ2
u(Im×m ⊗1)(Im×m ⊗1T

n )
(
Im×m ⊗ (

σ2
uJn×n +R0

)−1
)

(y−Xβ̂)

=σ2
u

(
Im×m ⊗1T

n

(
σ2

uJn×n +R0
)−1

)
(y−Xβ̂) = σ2

u

(
Im×m ⊗1T

n
1

σ2
u

(
Jn×n + 1

σ2
u

R0

)−1)
(y−Xβ̂)

=
(

Im×m ⊗1T
n

(
1n1T

n + 1

σ2
u

R0

)−1)
(y−Xβ̂) =

(
Im×m ⊗1T

n R−1
0

(
1T

n R−1
0 1n + 1

σ2
u

)−1)
(y−Xβ̂)

= 1

r0 + 1
σ2

u

(
Im×m ⊗1T

n R−1
0

)
(y−Xβ̂),

remembering that r0 = 1T
n R−1

0 1n .
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A. 11 The estimate of β is independent ofϕ:

β̂= (XT V−1X)−1XT V−1y

= (
(1m ⊗ In×n)T (Im×m ⊗V0)−1(1m ⊗ In×n)

)−1
(1m ⊗ In×n)T (Im×m ⊗V0)−1y

= (
(1T

m ⊗ In×n)(Im×m ⊗V−1
0 )(1m ⊗ In×n)

)−1
(1T

m ⊗ In×n)(Im×m ⊗V−1
0 )y

= (
1T

mIm×m1m ⊗ In×nV−1
0 In×n

)−1
(1T

mIm×m ⊗ In×nV−1
0 )y

= (
mV−1

0

)−1
(1T

m ⊗V−1
0 )y = 1

m
(1⊗V0)(1T

m ⊗V−1
0 )y = 1

m
(1T

m ⊗ In×n)y

= 1

m

[
In×n In×n · · · In×n

][
y1 y2 · · · ym

]T

= 1

m


1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 · · · 0 1 · · · 0
...

...
. . .

... · · · ...
...

. . .
...

0 0 · · · 1 · · · 0 0 · · · 1

[
y11 · · · y1n · · · · · · ym1 · · · ymn

]T

= 1

m


∑m

i=1 yi 1
...∑m

i=1 yi n

 =

 ȳ·1
...

ȳ·n

 .

A. 12 The expression of the term 1T
n R−1

0 (yi − β̂) for the autoregressive covariance structure:

1T
n R−1

0 (yi − β̂) = 1

σ2(1−ρ2)


1−ρ

(1−ρ)2

...
(1−ρ)2

1−ρ



T 
yi 1 − ȳ·1
yi 2 − ȳ·2

...
yi ,n−1 − ȳ·n−1

yi n − ȳ·n



= 1

σ2(1−ρ2)


(1−ρ)2 +ρ(1−ρ)

(1−ρ)2

...
(1−ρ)2

(1−ρ)2 +ρ(1−ρ)



T 
yi 1 − ȳ·1
yi 2 − ȳ·2

...
yi ,n−1 − ȳ·n−1

yi n − ȳ·n



= 1

σ2(1−ρ2)

(
(1−ρ)2

n∑
j=1

(
yi j − ȳi ·

)+ρ(1−ρ)(yi 1 − ȳ·1 + yi n − ȳ·n)

)

= 1−ρ
σ2(1−ρ2)

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)
.
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A. 13 The expression of ûi for the autoregressive covariance structure:

ûi
(4.23)= 1

(1−ρ)(2+(n−2)(1−ρ))
σ2(1−ρ2)

+ 1
σ2

u

· 1−ρ
σ2(1−ρ2)

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)
= 1−ρ

(1−ρ)(2+ (n −2)(1−ρ))+ σ2(1−ρ2)
σ2

u

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)

=
(1−ρ)

σ2
u

1−ρ(
(1−ρ)(2+ (n −2)(1−ρ))+ σ2(1−ρ2)

σ2
u

)
σ2

u
1−ρ

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)

= σ2
u

σ2
u(2+ (n −2)(1−ρ))+ σ2(1−ρ2)

1−ρ

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)

=
σ2

u

(
(1−ρ)n(ȳi ·− ȳ··)+ρ(yi 1 − ȳ·1 + yi n − ȳ·n)

)
σ2(1+ρ)+σ2

u(n −ρ(n −2))
.

A. 14 We have, that V0 =σ2
uJn×n +R0, and we must find V−1

0 :

V0 =σ2
uJn×n +R0 ⇔ In×n =σ2

uJn×nV−1
0 +R0V−1

0 ⇔ R0V−1
0 = In×n −σ2

uJn×nV−1
0

⇔ V−1
0 = R−1

0 −σ2
uR−1

0 Jn×nV−1
0 = R−1

0 −σ2
uR−1

0 Jn×n
(
σ2

uJn×n +R0
)−1

= R−1
0 −R−1

0 Jn×n

(
Jn×n + 1

σ2
u

R0

)−1

= R−1
0 −R−1

0 Jn×nR−1
0

(
1T

n R−1
0 1n + 1

σ2
u

)−1

= R−1
0 − 1

r0 + 1
σ2

u

R−1
0 Jn×nR−1

0 = R−1
0 − 1

r0 + 1
σ2

u

R−1
0 1n1T

n R−1
0 , (8)

remembering that r0 = 1T
n R−1

0 1n . Thus for ϕ=σ2
u , LHS(ϕ) and RHS(ϕ) becomes

LHS(σ2
u)

(4.25)= mtr

{
V−1

0
∂V0

∂σ2
u

}
= mtr

{
V−1

0
∂

∂σ2
u

(σ2
uJn×n +R0)

}
= mtr

{
V−1

0 Jn×n
} = m1T

n V−1
0 1n

(8)= m1T
n

R−1
0 − 1

r0 + 1
σ2

u

R−1
0 1n1T

n R−1
0

1n = m

1T
n R−1

0 1n − 1

r0 + 1
σ2

u

1T
n R−1

0 1n1T
n R−1

0 1n


= m

r0 − 1

r0 + 1
σ2

u

r 2
0

 = mr0

1− r0

r0 + 1
σ2

u

 = mr0

r0 + 1
σ2

u
− r0

r0 + 1
σ2

u

 = m
r0

r0σ
2
u +1

and

RHS(σ2
u)

(4.25)= −(y−Xβ̂)T ∂V−1

∂σ2
u

(y−Xβ̂) =−(y−Xβ̂)T ∂

∂σ2
u

Im×m ⊗
R−1

0 − 1

r0 + 1
σ2

u

R−1
0 1n1T

n R−1
0

 (y−Xβ̂)

= (y−Xβ̂)T ∂

∂σ2
u

1

r0 + 1
σ2

u

(
Im×m ⊗R−1

0 1n1T
n R−1

0

)
(y−Xβ̂)

= (y−Xβ̂)T ∂

∂σ2
u

σ2
u

r0σ
2
u +1

(
Im×m ⊗R−1

0 1n1T
n R−1

0

)
(y−Xβ̂)

= (y−Xβ̂)T 1

(r0σ
2
u +1)2

(
Im×m ⊗R−1

0 1n1T
n R−1

0

)
(y−Xβ̂).
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A. 15 For ϕ=σ2, assuming that V0 =σ2A is correct, LHS(ϕ) and RHS(ϕ) becomes

LHS(σ2) = mtr

{
V−1

0
∂V0

∂σ2

}
= mtr

{
1

σ2
A−1 ∂

∂σ2
σ2A

}
= mtr

{
1

σ2
A−1A

}
= m

1

σ2
tr{In×n} = 1

σ2
mn

and with V−1 = Im×m ⊗ 1
σ2 A−1, we get

RHS(σ2) =−(y−Xβ̂)T ∂V−1

∂σ2
(y−Xβ̂)

= 1

σ4
(y−Xβ̂)T (

Im×m ⊗A−1) (y−Xβ̂)

= 1

σ4

m∑
i=1

(yi − β̂)T A−1(yi − β̂)

= 1

σ4

m∑
i=1


yi 1 − ȳ·1
yi 2 − ȳ·2

...
yi n − ȳ·n


T

A−1


yi 1 − ȳ·1
yi 2 − ȳ·2

...
yi n − ȳ·n



= 1

σ4(1−ρ2)

m∑
i=1



δi 1

δi 2

δi 3
...

δi ,n−1

δi n



T 

1 −ρ 0 . . . 0 0
−ρ 1+ρ2 −ρ . . . 0 0
0 −ρ 1+ρ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1+ρ2 −ρ
0 0 0 . . . −ρ 1





δi 1

δi 2

δi 3
...

δi ,n−1

δi n



= 1

σ4(1−ρ2)

m∑
i=1



δi 1

δi 2

δi 3
...

δi ,n−1

δi n



T 

δi 1 −ρδi 2

−ρδi 1 + (1+ρ2)δi 2 −ρδi 3

−ρδi 2 + (1+ρ2)δi 3 −ρδi 4
...

−ρδi ,n−2 + (1+ρ2)δi ,n−1 −ρδi n

−ρδi ,n−1 +δi n


= 1

σ4(1−ρ2)

m∑
i=1

(
δi 1(δi 1 −ρδi 2)+δi 2(−ρδi 1 + (1+ρ2)δi 2 −ρδi 3)

+δi 3(−ρδi 2 + (1+ρ2)δi 3 −ρδi 4)+ . . .+δi ,n−1(−ρδi ,n−2 + (1+ρ2)δi ,n−1 −ρδi n)

+δi n(−ρδi ,n−1 +δi n)
)

= 1

σ4(1−ρ2)

m∑
i=1

(
δ2

i 1 +δ2
i n −2ρ

n∑
j=2

δi , j−1δi j + (1+ρ2)
n−1∑
j=2

δ2
i j

)
= 1

σ4(1−ρ2)

m∑
i=1

(
(1+ρ2)

n∑
j=1

δ2
i j −ρ2(δ2

i 1 +δ2
i n)−2ρ

n∑
j=2

δi , j−1δi j

)
.
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A. 16 For ϕ= ρ, LHS(ϕ) and RHS(ϕ) becomes

LHS(ρ) = mtr

{
V−1

0
∂V0

∂ρ

}
= mtr

{
1

σ2
A−1 ∂

∂ρ
σ2A

}

= mtr

{
A−1 ∂

∂ρ
A
}

= − ρ

1−ρ2
2m(n −1).

Here, I skip the calculation of A−1 ∂
∂ρA, as it is quite comprehensive, and relying on the result in [7].

And

RHS(ρ) =−(y−Xβ̂)T ∂V−1

∂ρ
(y−Xβ̂)

=−(y−Xβ̂)T
(

1

σ2
Im×m ⊗ ∂

∂ρ
A−1

)
(y−Xβ̂)

= 1

σ2

m∑
i=1





δi 1

δi 2

δi 3
...

δi ,n−1

δi n



T

∂

∂ρ
A−1



δi 1

δi 2

δi 3
...

δi ,n−1

δi n




= 1

σ2(1−ρ2)2

m∑
i=1





δi 1

δi 2

δi 3
...

δi ,n−1

δi n



T 

2ρ −(1+ρ2) 0 . . . 0 0
−(1+ρ2) 4ρ −(1+ρ2) . . . 0 0

0 −(1+ρ2) 4ρ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 4ρ −(1+ρ2)
0 0 0 . . . −(1+ρ2) 2ρ





δi 1

δi 2

δi 3
...

δi ,n−1

δi n




=− 1

σ2(1−ρ2)2

m∑
i=1

(
4ρ

n∑
j=1

δ2
i j −2ρ(δ2

i 1 +δ2
i n)−2(1+ρ2)

n∑
j=2

δi , j−1δi j

)
.

The last equation comes from the expression of RHS(σ2). The calculations in RHS(ρ) are the same
as in RHS(σ2), only − 1

σ4 A−1 is replaced by 1
σ2

∂
∂ρ

A−1.

A. 17 The estimate of µi is a weighted average between the overall mean, µ, and the group average
observation, ȳi ·. We have, that

Var
[
Ȳi ·

]= Var

[
1

n

n∑
j=1

Yi j

]
= Var

[
1

n

n∑
j=1

µi

]
+Var

[
1

n

n∑
j=1

εi j

]
= Var

[
1

n
nµi

]
+ 1

n2

n∑
j=1

Var
[
εi j

]

= Var
[
µi

]+ 1

n2
nVar

[
εi j

]=σ2
u + σ2

n
,
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and

E
[
Ȳi ·

]= E

[
1

n

n∑
j=1

Yi j

]
= E

[
1

n

n∑
j=1

µi

]
+E

[
1

n

n∑
j=1

εi j

]

= E

[
1

n
nµi

]
+ 1

n

n∑
j=1

E
[
εi j

] = E
[
µi

] = µ.

This means that the best prediction of the group average mean is found by conditioning on what we
already know, i.e. ȳi ·:

µ̂i = E
[
µi | Ȳi ·

] = E
[
µi

]+Cov
[
µi , Ȳi ·

] 1

Var
[
Ȳi ·

] (
ȳi ·−E

[
Ȳi ·

])
=µ+ (

E
[
µi Ȳi ·

]−E
[
µi

]
E

[
Ȳi ·

]) 1

σ2
u + σ2

n

(
ȳi ·−µ

)

=µ+
(

E

[
µi

1

n

n∑
j=1

(µi +εi j )

]
−µ2

)
1

σ2
u + σ2

n

(
ȳi ·−µ

)

=µ+
(

E
[
µ2

i

]−E

[
1

n

n∑
j=1

µiεi j

]
−µ2

)
1

σ2
u + σ2

n

(
ȳi ·−µ

)

=µ+
(
σ2

u +µ2 − 1

n

n∑
j=1

E
[
µi

]
E

[
εi j

]−µ2

)
1

σ2
u + σ2

n

(
ȳi ·−µ

)

=µ+ σ2
u

σ2
u + σ2

n

(
ȳi ·−µ

) =
(

1− σ2
u

σ2
u + σ2

n

)
µ+ σ2

u

σ2
u + σ2

n

ȳi ·.

A. 18 We have, that Ui ∼ N
(
0,σ2

u

)
. The covariance between the total residuals at two timepoint is

just the variance of the random intercepts:

Cov
[
Yi j ,Yi k

]= Cov
[
Ui +εi j ,Ui +εi k

]
= E

[
(Ui +εi j )(Ui +εi k )

]−E
[
Ui +εi j

]
E[Ui +εi k ]

= E
[
U 2

i

]+E
[
εi j εi k

]+E[Uiεi k ]+E[Uiεi k ]−0

=σ2
u .
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A. 19 The covariance of the total residual is

Cov
[
Yi j ,Yi k

]= Cov
[
Ui +xi j bi +εi j ,Ui +xi k bi +εi k

]
= E

[
(Ui +xi j bi +εi j )(Ui +xi k bi +εi k )

]−E
[
Ui +xi j bi +εi j

]
E[Ui +xi k bi +εi k ]

= E
[
U 2

i

]+xi j xi k E
[
b2

i

]+E
[
εi j εi k

]+ (xi j +xi k )E[Ui bi ]+E
[
Ui (εi j +εi k )

]
+xi j E[biεi k ]+xi k E

[
biεi j

]−0

=σ2
u +xi j xi kσ

2
b + (xi j +xi k )E[Ui bi ]

=σ2
u +xi j xi kσ

2
b + (xi j +xi k )

(
Cov[Ui ,bi ]+E[Ui ]E[bi ]

)
=σ2

u +xi j xi kσ
2
b + (xi j +xi k )σub .

A. 20 When a random variable, Yi , has a distribution from the exponential family, the mean value of
Yi can be expressed as b′(θi ). To show this, we use the fact that the mean of a random variable, X , is
defined as E[X ] = ∫

x f (x) d x:

d

dθi

∫
f (yi ;θi ,φ) d yi =

∫
d

dθi
f (yi ;θi ,φ, ) d yi

(6.1)=
∫

h
(
yi ,φ

) d

dθi
exp

(
yiθi −b(θi )

φ

)
d yi

=
∫

h
(
yi ,φ

)
exp

(
yiθi −b(θi )

φ

)(
yi −b′(θi )

φ

)
d yi

= 1

φ

∫ (
yi f (yi ;θi ,φ)−b′(θi ) f (yi ;θi ,φ)

)
d yi (9)

= 1

φ

(∫
yi f (yi ;θi ,φ) d yi −b′(θi )

∫
f (yi ;θi ,φ) d yi

)
(10)

= 1

φ

(
E[Yi ]−b′(θi )

)
= 0

m
E[Yi ] = b′(θi ).

The variance of Yi can be expressed as φb′′(θi ). To show this, we use the fact that the variance of a
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random variable, X , is defined as Var[X ] = E
[
(X −E[X ])2

]= E
[

X 2
]−E[X ]2:

d 2

dθ2
i

∫
f (yi ;θi ,φ) d yi =

∫
d 2

dθ2
i

f (yi ;θi ,φ) d yi

(10)= 1

φ

(∫
yi

d

dθi
f (yi ;θi ,φ) d yi −

∫
d

dθi
b′(θi ) f (yi ;θi ,φ) d yi

)
(9)= 1

φ

[
1

φi

∫
yi

(
yi f (yi ;θi ,φ)−b′(θi ) f (yi ;θi ,φ)

)
d yi

−
∫ (

b′′(θi ) f (yi ;θi ,φ)+b′(θi )
d

dθi
f (yi ;θi ,φ)

)
d yi

]

= 1

φ2

(
E

[
Y 2

i

]−b′(θi )
)− 1

φ
b′′(θi )

∫
f (yi ;θi ,φ) d yi

− 1

φ
b′(θ)

∫
d

dθi
f (yi ;θi ,φ) d yi

= 1

φ2

(
E

[
Y 2

i

]−b′(θi )
)− 1

φ
b′′(θi )− 1

φ
b′(θi )

(
1

φ

(
E[Yi ]−b′(θi )

))

= 1

φ2

(
E

[
Y 2

i

]−E[Yi ]
)− 1

φ
b′′(θi )− 1

φ
b′(θi )

(
1

φ
(E[Yi ]−E[Yi ])

)

= 1

φ2 (Var[Yi ])− 1

φ
b′′(θi )

= 0

m
Var[Yi ] =φb′′(θi ).

A. 21 Remember, that µi = b′(θi ), θi = b′(µi )−1 and V (µi ) = b′′ (b′(µi )−1
)
. Thus the score function is

∂`i

∂µi
= ∂`i

∂θi
× ∂θi

∂µi

(6.1)= yi −b′(θi )

φ
×

(
∂µi

∂θi

)−1

= yi −b′(θi )

φ
×

(
∂b′(θi )

∂θi

)−1

= yi −b′(θi )

φ
× (

b′′(θi )
)−1

= yi −b′(θi )

φ
× 1

b′′(b′(µi )−1)

= yi −b′(θi )

φ
× 1

V (µi )
.
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A. 22 The function qi satisfies the properties E
[
qi

]= 0 and Var
[
qi

]=−E
[
∂qi
∂µi

]
, meaning it mimics a

proper score function:

E
[
qi

]= E[Yi ]−µi

φV (µi )
= 0

Var
[
qi

]= Var
[
Yi −µi

]
φ2V (µi )2

= φV (µi )

φ2V (µi )2
= 1

φV (µi )

−E

[
∂qi

∂µi

]
=−E

[
Yi

φ

∂

∂µi

1

V (µi )
− 1

φ

∂

∂µi

µi

V (µi )

]
=−E

[
−Yi

φ

V ′(µi )

V (µi )2
− 1

φ

V (µi )−µi V ′(µi )

V (µi )2

]

=−E

[−Yi V ′(µi )−V (µi )+µi V ′(µi )

φV (µi )2

]
=−

(−E[Yi ]V ′(µi )−V (µi )+µi V ′(µi )

φV (µi )2

)

= V (µi )

φV (µi )2
= 1

φV (µi )
.

A. 23 The mean value of r j k is just the correlation ρ j k :

E
[
r j k

]= E
[
(Yi j −µi j )(Yi k −µi k )

]
φ

√
V (µi j )V (µi k )

= Cov
[
Yi j ,Yi k

]√
φ2V (µi j )V (µi k )

= Cov
[
Yi j ,Yi k

]√
Var

[
Yi j

]
Var[Yi k ]

= Corr
[
Yi j ,Yi k

]= ρ j k .



Appendix B

This appendix contains additional theory that may be helpful for the reader.

B. 1 (The anova-function in R) When giving anova() two inputs, the function performs a compar-
ison of the models, which must be nested. The comparison is based on AIC (Akaike’s Information
Criterion). AIC is given as

AIC = 2p −2log(L̂),

where p is the number of parameters in the model and L̂ is the maximum value of the likelihood
function for the model. When given an increasing input, log(·) is an increasing function. For a fixed p,
AIC will decrease as log(L) increases. And AIC will be at its minimum when log(L) is at its maximum,
i.e. when L = L̂. As the objective is always, that we want L maximized, the objective of the AIC is
to have it minimized. When comparing two models with, say, AICmodel1 and AICmodel2, the better
model will be the one with the smallest AIC . But how big does the difference in AIC have to be for us
to say that AICmodel1 6= AICmodel2? For this, anova() also provides a p-values. The hypothesis tested
in anova() is

H anova1
0 : The AIC of the models are the same.

For a p-value below the level α, H anova1
0 is rejected.

When giving anova() just one input, the function tests whether the model terms are significant, i.e.
whether the estimated coefficients are significant. The hypothesis is

H anova2
0 :β1, . . . ,βp are significant.

The test statistic is

F = N −k

k −1
·

∑k
i=1 ni (ȳi ·− ȳ··)2∑k

i=1

∑ni
j=1(yi j − ȳi ·)2

,

where k is the number of samples, ni is the size of sample i , N = ∑k
i=1 ni , yi j is the observation of

the j th subject in the i th sample, ȳi · is the sample mean for the i th sample, and ȳ·· is the overall
mean. The test statistic is approximately F -distributed with k −1 and N −k degrees of freedom, and
H anova2

0 is rejected if F > F (α,k −1, N −k) for a chosen level α.

Based on https://en.wikipedia.org/wiki/F-test.

B. 2 (F -test) An F -test is not one particular test, but rather any statistical test in which the test
statistic follows an F -distribution under H0. Examples of F -tests are given in B.4, B.6 and B.7.
The F -test is sensitive to non-normality. When doing analysis of variance, the assumption of
homoscedasticity is more easily violated, when the normality assumption is violated.

Based on https://en.wikipedia.org/wiki/Mauchly%27s_sphericity_test.

https://en.wikipedia.org/wiki/F
test
https://en.wikipedia.org/wiki/Mauchly%27s_sphericity_test
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B. 3 (Eigenvalues) An eigenvalue is a scalar, that satisfies Av = λv for a matrix A, where v is called
the corresponding eigenvector.

Let λi for i = 1, . . . ,n be the eigenvalues (including multiplicity) of A ∈Rn×n . Then

tr{A} =
n∑

i=1
λi and |A| =

n∏
i=1

λi .

Eigenvalues can also be thought of as roots as they are the solutions to the characteristic polynomial
|A−λIn×n |.
Based on https://en.wikipedia.org/wiki/Determinant#Relation_to_eigenvalues_and_trace.

B. 4 (Shapiro-Wilk test) The Shapiro-Wilk test tests the hypothesis

H shapiro
0 : sample is from a normally distributed population.

The test statistic is

W =
(∑n

i=1 ai y(i )
)2∑n

i=1

(
yi − ȳ

)2 ,

where data is arranged in ascending order with y(i ) being the i th smallest observation in the sample,
ȳ is the sample mean and 

a1

a2
...

an

= mT V −1(
mT V −1V −1m

) 1
2

with m = E[Yi ] iid.∼ N (0,1) and V being the covariance matrix of the y(i )s. A p-value lower than the
chosen level αmeans H0 is rejected. The p-value is found in a table using the sample size, n, and the
calculated test statistic, W .

Based on https://en.m.wikipedia.org/wiki/Shapiro–Wilk_test.

B. 5 (Kruskal-Wallis) When the assumption of Gaussian samples fail, one can use the Kruskal-Wallis
test as an alternative to the one-way ANOVA. This test makes no assumptions about the distribution
of the samples. It tests the hypothesis

H kruskal
0 : the medians of all the groups are equal.

The test works by first arranging all the values in all the samples by rank. Let ri j denote the rank of
the observation yi j . The test statistic is

K = (N −1)

∑g
i=1 ni (r̄i ·− r̄ )2∑k

i=1

∑ni
j=1

(
r̄i j − r̄

)2 ,

where r̄i · = ∑ni
j=1 ri j is the average rank for observations in group i , r̄ = N+1

2 is the average of all the
ranks, N is the total number of observation and ni is the number of observations in group i . The

https://en.wikipedia.org/wiki/Determinant#Relation_to_eigenvalues_and_trace
https://en.m.wikipedia.org/wiki/Shapiro
Wilk_test
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test statistic is approximately χ2-distributed with g −1 degrees of freedom, and H kruskal
0 is rejected if

K >χ2
g−1,α for a chosen level α.

Based on https://en.wikipedia.org/wiki/Kruskal–Wallis_one–way_analysis_of_variance.

B. 6 (Bartlett test) The Bartlett test tests the hypothesis

H bartlett
0 : variances across samples are equal.

The test statistic is

χ2 =
(N −k) log

(
s2

p

)
−∑k

i=1 (ni −1)log
(
s2

p

)
1+ 1

3(k−1)

(∑k
i=1

1
ni−1 − 1

N−k

) ,

where k is the number of samples, ni is the size of sample i , N = ∑k
i=1 ni , and s2

p = 1
N−k

∑k
i=1 s2

i with

s2
i being the i th sample variance. The test statistic is approximately χ2-distributed with k−1 degrees

of freedom, and H0 is rejected if χ2 >χ2
k−1,α for a chosen level α.

Based on https://en.wikipedia.org/wiki/Bartlett%27s_test.

B. 7 (Levene’s test) The Levene’s test tests the same hypothesis as the Bartlett test, but does so using
the F -distribution. The test statistic is

F = N −k

k −1
·

∑k
i=1 ni (zi ·− z··)2∑k

i=1

∑ni
j=1(zi j − zi ·)2

,

where k is the number of samples, ni is the size of sample i , N = ∑k
i=1 ni , zi j = |yi j − ȳi ·| with yi j

being the observation of the j th subject in the i th sample and ȳi · is the sample mean for the i th
sample, zi · = 1

ni

∑ni
j=1 zi j and z·· = 1

N

∑k
i=1

∑ni
j=1 zi j . The test statistic is approximately F -distributed

with k −1 and N −k degrees of freedom, and H levene
0 is rejected if F > F (α,k −1, N −k) for a chosen

level α.

Based on https://en.m.wikipedia.org/wiki/Levene%27s_test.

B. 8 (Conditional multivariate distribution) For(
X1

X2

)
∼ Nn+m

([
µ1
µ2

]
,

[
Σ1 Σ12

Σ21 Σ2

])
we have that X1 | X2 = x2 ∼ Nn

(
µ1 +Σ21Σ

−1
2 (x2 −µ2),Σ1 −Σ21Σ

−1
2 Σ12

)
.

https://en.wikipedia.org/wiki/Kruskal
Wallis_one
way_analysis_of_variance
https://en.wikipedia.org/wiki/Bartlett%27s_test
https://en.m.wikipedia.org/wiki/Levene%27s_test
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B. 9 (Direct product) Below are all the rules for direct product used in this report.

Direct product: For A ∈Rn×m and B ∈Rs×t , the direct product is

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . a1nmB

 ∈Rns×mt .

Direct sum: For matrices A j ∈Rn j×m j , the direct sum is

J⊗
j=1

A j = A1 ⊗A2 ⊗·· ·⊗AJ .

Sum: The sum of two direct sums for matrices A j ∈Rn j×m j and B j ∈Rn j×m j is(
J⊗

j=1
A j

)
+

(
J⊗

j=1
B j

)
=

J⊗
j=1

(A j +B j ).

Product: The product of two direct sums for matrices A j ∈Rn j×m j and B j ∈Rm j×k j is(
J⊗

j=1
A j

)(
J⊗

j=1
B j

)
=

J⊗
j=1

(A j B j ).

Transpose: The transpose of the direct product of matrices A ∈Rn×m , B ∈Rk×l , and C ∈Rs×t is

(A⊗B⊗C)T = AT ⊗BT ⊗CT

Inverse: The inverse of the direct product of matrices A ∈Rn×m and B ∈Rs×t is

(A⊗B)−1 = A−1 ⊗B−1

Commutative law: For a constant c and a matrix A ∈Rn×m , we have

c ⊗A = A⊗ c = cA.

Distributive law: For matrices A ∈Rn×m , B ∈Rn×m , and C ∈Rs×t , we have

(A+B)⊗C = (A⊗C)+ (B⊗C)

C⊗ (A+B) = (C⊗A)+ (C⊗B).

Based on https://en.wikipedia.org/wiki/Kronecker_product.

B. 10 (Derivative of determinant) For a square matrix A dependent on t , we have

d

d t
|A(t )| = |A(t )|tr

{
A(t )−1 d

d t
A(t )

}
.

Based on https://en.wikipedia.org/wiki/Jacobi%27s_formula.

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Jacobi%27s_formula
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B. 11 (Likelihood ratio test) Let θ̂ be the maximum likelihood estimate of the parameter θ ∈ Rp×1.
We want to test the hypothesis

H LRT
0 : θ = θ0,

where θ0 is a proposed value of θ. To test H LRT
0 , we look at the ratio between the likelihood with the

proposed value, L(θ0), and the likelihood with the estimated value, L(θ̂), i.e. we look at L(θ0)/L(θ̂).
If this ratio is very small, then the data with θ̂ is more plausible than the data with θ0, which means
H LRT

0 is rejected. More precisely, the likelihood ratio test statistic is given by

−2LR =−2
(
`(θ0)−`(θ̂)

)
and H LRT

0 is rejected if −2LR >χ2
p,α for a chosen level α.

Based on https://en.m.wikipedia.org/wiki/Likelihood-ratio_test.

B. 12 (Wald test) Assume that θ̂ is a consistent estimate of the parameter θ ∈Rp×1. Then

θ̂ ∼ Np
(
θ, I (θ)−1) ,

assymptotically, where I (θ) is the information matrix. The standard error of θ̂i is σ̂i =
√

Var
[
θ̂
]

i i .
The Wald statistic is

Wi =
θ̂i −θi ,0

σ̂i
,

where θi ,0 is the proposed value of θi . Under

H wald
0 : θi = θi ,0

Wi will be approximately N (0,1)-distributed. It is not uncommon to write the statistic as

W 2
i =

(
θ̂i −θi ,0

)2

σ̂2
i

,

which under H wald
0 is χ2-distributed with 1 degree of freedom. We reject H wald

0 if Wi > χ2
1,α for a

chosen level α.

Based on https://en.m.wikipedia.org/wiki/Wald_test.

mellemrum
mellemrum
mellemrum
mellemrum
mellemrum
mellemrum
mellemrum
mellemrum
mellemrum
mellemrum

https://en.m.wikipedia.org/wiki/Likelihood
ratio_test
https://en.m.wikipedia.org/wiki/Wald_test


102

mellemrum

mellemrum
mellemrum
mellemrum
mellemrum
mellemrum



References

[1] Author(s): P. Olofsson & M. Andersson
Title: Probability, Statistics, and Stochastic Processes, 2nd Ed., chapter 7
Publisher: Wiley
Year: 2012

[2] Author(s): D. Hedeker & R. D. Gibbons
Title: Longitudinal Data Analysis, chapters 2, 4, 6 and 8
Publisher: Wiley
Year: 2006

[3] Author(s): A. Field, University of Sussex,
Title: A Bluffer’s Guide to ... Sphericity,
Year: 2017

[4] Author(s): The Pennsylvania State University,
www:.https://onlinecourses.science.psu.edu/stat505/node/159, chapters 8.2 and 8.3
Year: 2018

[5] Author(s): G. Carey, University of Colorado, Boulder,
www:.http://ibgwww.colorado.edu/∼carey/p7291dir/handouts/manova1.pdf
Year: 1998

[6] Author(s): E. Demidenko
Title: Mixed Models: Theory and Applications, chapters 1 and 2
Publisher: Wiley
Year: 2004

[7] Author(s): C. E. McCullogh & S. R. Searle
Title: Generalized, Linear, and Mixed Models, chapters 5 and 7
Publisher: Wiley
Year: 2001

[8] Author(s): H. Madsen & P. Thyregod
Title: Introduction to General and Generalized Linear Models, chapter 5
Publisher: CRC Press
Year: 2011

[9] Author(s): C. Czado (Technische Universität München)
www:.http://www2.stat.duke.edu/∼sayan/Sta613/2017/lec/LMM.pdf
Year: 2017

[10] Author(s): B. S. Everitt & T. Hothorn
Title: A Handbook of Statistical Analysis Using R, chapter 12
Publisher: CRC Press
Year: 2010

https://onlinecourses.science.psu.edu/stat505/node/159
http://ibgwww.colorado.edu/
carey/p7291dir/handouts/manova1.pdf
http://www2.stat.duke.edu/
sayan/Sta613/2017/lec/LMM.pdf


104

[11] Author(s): U. Halekoh & S. Højsgaard
Title: A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed
Models – the R Package pbkrtest,
Publisher: American Statistical Association
Year: 2014

[12] Author(s): M. A. Islam & R. I. Chowdhury
Title: Analysis of Repeated Measures Data, chapters 11 and 12
Publisher: Springer
Year: 2017

[13] Author(s): G. Fitzmaurice, M. Davidian, G. Verbeke & G. Molenberghs
Title: Longitudinal Data Analysis, chapter 3
Publisher: CRC Press
Year: 2009


	Preface
	Notation and other helpful information
	Acknowledgements
	Description of data
	Analysis of variance
	ANOVA
	Sphericity

	MANOVA
	The ANOVA model

	Results of using ANOVA and MANOVA on the data
	Testing assumptions
	Analysis using aov()
	Analysis using manova()
	Conclusion
	Source code: superANOVA()

	Mixed models
	Setting up the mixed model
	The linear mixed effects model

	 Estimation and prediction of effects
	Known covariance
	Unknown covariance

	Covariance structure
	Expressing i using autoregressive structure
	Estimating 2, u2 and 

	Kenward-Roger approximation
	Fitted values of the LMM
	The LMM with random intercepts and slopes

	Results of modelling data with LMMs
	Analysis using correlation = corCAR1()
	Analysis using correlation = corSymm()
	Analysis using correlation = NULL
	Comparison of the "ar''-, "un''- and the "in''-models
	Conclusion
	Source code: superLMM()

	Generalized Estimating Equations
	Generalized linear models
	GEE models
	GEE estimation of parameters

	GEE vs. LMM

	Results of modelling data with GEEs
	Analysis using corstr = "ar1"
	Analysis using corstr = "unstructured"
	Analysis using corstr = "independence"
	Comparison of the "ar''-, "un''- and the "in''-models
	Conclusion
	Source code: superGEE()

	A different setup
	Clustered LMMs
	Clustered GEE models
	Conclusion

	Discussion
	Appendix A
	Appendix B
	Literature

