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Summary

This thesis researches the benefit of classifying heart arrhythmias using shape-based fea-
tures from Electrocardiograms (ECGs). We explore this by developing an interpretive heart-
beat classification system for identifying heart arrhythmias based on shapelet transforma-
tion of the ECG data.

This study is a continuation of our previous semester project in which we analyzed the Aal-
borg University Electrocardiograms (AAU-ECG) data set, containing ECG records labeled
with heart arrhythmias, using shape-based cluster analysis. We evaluated the clustering
using the cluster homogeneity as the quality measure with regards to the heart arrhythmia
labels. The results showed that shape-based clustering, on average, could not produce
homogeneous clusters. However, we observed a tendency of different leads being good in-
dicators of different heart arrhythmias based on their shape. We leverage this knowledge
and use all the ECG leads to train the shapelet based classification system.

This master thesis builds upon work done by researchers in the field of shapelet classifica-
tion. Ye and Keogh are the authors of the original shapelet paper [1] in which they describe
shapelets as a subsequence that can define class membership. Later work by Lines et al.
[2] presents the Binary Shapelet Transform (BST) method of transforming the data into a
feature vector of distances to shapelets which enables the use of a wider range of classifiers
in conjunction with shapelets. We use the BST method to extract shapelets from the data
and use them for the transformation. The paper [3] by Rakthanmanon and Keogh intro-
duces Fast Shapelets Search (FSS); an upfront pre-filtering of the shapelet search space by
selecting the top k best shapelets based on a heuristic quality measure. We apply the FSS
method and evaluate what the tradeoffs are when using FSS compared to the standard full
evaluation of the shapelet candidates.

Our heartbeat classification system consists of the following steps; preprocessing, shapelet
extraction, shapelet transformation and classification. The preprocessing step reduces the
dimensionality of the ECG time series, correct each ECG for baseline wander and applies
noise filtering. Then the BST method is used to extract shapelets from a subset of the
data set which are then used to transform the data into a feature vector before classifica-
tion. Finally, we train a heterogeneous ensemble of classifiers on the transformed data. We
test our method by applying it on the AAU-ECG and Massachusetts Institute of Technol-
ogy – Beth Israel Hospital (MIT-BIH) data sets that both contain heart arrhythmia labeled
records. The MIT-BIH is often used by researchers to compare their classification meth-
ods. We use the MIT-BIH data set to compare our approach to previous work within ECG
classification. The AAU-ECG data contains records from Danish patients who underwent
ECG recordings at the Copenhagen General Practitioners Laboratory from 2001 to 2015.
The Marquette™ 12SL™ ECG analysis program (Marquette) system digitally manages the
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AAU-ECG records. The AAU-ECG record contains both heart arrhythmia labels produced
by Marquette as well as corrections of these labels made by a doctor reviewing them.

Following the above-mentioned motivations, we define three research questions. The first
research question concerns the performance of our approach applied to the AAU-ECG
data set. We train our classifier using the doctor’s labels as the ground truth and com-
pare the performance of our model against the predictions of the Marquette system. This
comparison is one of the fundamental contributions as the Marquette system relies on
knowledge-based predefined descriptors of heart arrhythmias, whereas our approach only
uses shapelet learned from the ECG waveform. The results show that we on average can-
not outperform the Marquette classification system. However, we outperform the system
on four diagnoses which are related to left ventricular hypertrophy arrhythmias.

Our second research question concerns the comparison of the performance of our ap-
proach on the MIT-BIH data set to ECG classification methods from previous work us-
ing the inter-patient scheme. The results demonstrate that our approach has comparable
or better performance on three out of the four heartbeat classes, namely normal, ectopic
and fusion beats but worse on the supraventricular beats. The normal, ectopic and fu-
sion heartbeat types can be discriminated by studying a single heartbeat; however, the
supraventricular heartbeats requires temporal features of the previous heartbeat to be de-
tected. We do not include these temporal features as our feature vector only contains in-
formation from a single heartbeat.

Finally, the last research question concerns the performance of using heuristic approxima-
tion techniques. We compare the FSS heuristic method to the standard exhaustive search
method applied on the MIT-BIH data set. This evaluation shows that the quality of the
produced shapelets appears to increase linearly as a function of the heuristic pre-selection
size. The run time analysis of the method shows that when using 10% for the heuristic pre-
selection size, the shapelet extraction is more than one order of magnitude faster and three
times faster when using a ratio of 50%. We propose a novel window constraint method and
compare it against the state-of-the-art distance method. We find that the window method
improves run time and accuracy.

We conclude that the shapelet based classification approach on ECG data shows promise
as it performs comparably or better for heart arrhythmias reflected in the morphology of
a single heartbeat than previous work within ECG classification. We also conclude that
the approach can, in fact, identify some heartbeat types better than the descriptor based
approach leveraged by Marquette.
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Abstract:

We propose an automatic and interpretive heartbeat
classification approach for identifying heart arrhyth-
mias based on learned shapelets from annotated elec-
trocardiograms (ECG).

The heartbeat classification approach consists
of ECG signal preprocessing, shapelet extraction,
shapelet transformation, and classification. The pre-
processing step involves removal of baseline wander,
noise filtering and dimension reduction of the multi-
lead ECG signals. The binary shapelet transform is
used to extract discriminative subsequences from the
ECG, which are used to transform the ECG data into
feature vectors. Finally, we train a heterogeneous en-
semble of classifiers on the shapelet transformed data
set.

We evaluate the performance of the approach on
two data sets. The MIT-BIH data set for compari-
son with previous work within ECG classification fol-
lowing the inter-patient scheme and the AAMI rec-
ommendations. As well as AAU-ECG, a real-world
multi-labeled ECG data set consisting of 413,151 ECG
records where the performance is tested against the
industry-leading knowledge-based Marquette 12SL
ECG analysis program (Marquette).

The MIT-BIH experiments show that shapelets im-
proves the recall metric of normal and ventricular
ectopic heartbeats as well as the precision of fusion
beats. In addition, our approach achieves the high-
est global performance for the four classes with an
overall accuracy of 94.3%. For the AAU-ECG data
set, the knowledge-based Marquette, in general, sur-
passes the performance of the learn-based shapelet
approach. However, our approach has good discrimi-
nation power for right and left bundle branch block,
associated with significant cardiovascular mortality,
and outperforms Marquette on four diagnoses related
to left ventricular hypertrophy. xxxxxxxxxx
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Introduction

The Electrocardiogram (ECG) is a recording of the heart’s electrical activity and is used by
cardiologists to diagnose heart arrhythmias. Heart arrhythmias are a group of conditions
in which the heartbeat is irregular, too fast or too slow and are reflected in the morphol-
ogy of the ECG as abnormal heart activity. Heart arrhythmias are a significant threat and
are a subgroup of the cardiovascular diseases which are the most common causes of death
worldwide [4]. Due to the high mortality rate of heart diseases early and precise discrimi-
nation of heart arrhythmias is vital for detecting heart diseases and choosing appropriate
treatment for patients.

Medical experts in clinical settings commonly use knowledge-based systems that use pre-
defined rules and feature descriptors to assist in heart arrhythmia diagnosis of patients [5].
We want to explore what valuable information emerge purely from the ECG waveform to
avoid the potential bias from said rules and feature descriptors. A recent promising Time
Series Classification (TSC) approach that satisfies this criterion is shapelet based classifi-
cation [2]. Shapelets are subsequences derived from time series that are defined by their
ability to define class membership. Shapelets are learned from labeled training data and
do not place any assumptions or restrictions on the structure of the data.

In medical applications, interpretability and the decision process behind the diagnosis
given to a patient are of high priority. Health-care practitioners prefer methods where they
can understand the contributions of specific features leading to a diagnosis [6, p. 1721].
Shapelets offer a new method for medical practitioners to interpret the correlation be-
tween diagnoses and the patterns on the ECG that discriminate the diagnoses.

In collaboration with the Faculty of Medicine at Aalborg University, we are granted access
to a data set provided by the Danish health-care system comprised of 974,333 ECG records.
Each record is labeled with multiple diagnosis statements by the Marquette™ 12SL™ ECG
analysis program (Marquette) [5] followed by a review and potential correction by a doctor.
The ECG data contained in the records consist of 12 leads represented as time series mak-
ing each ECG record multivariate. The data set includes almost 10,000 times the number
of unique patients than the Massachusetts Institute of Technology – Beth Israel Hospital
(MIT-BIH) data set [7] commonly used in the ECG literature.

Inspired by the recent surge in the success of using shapelets for TSC [8], we propose a
method of transforming the multi-labeled, multi-class and multivariate Aalborg University
Electrocardiograms (AAU-ECG) data set using shapelet transformation whereby a hetero-
geneous ensemble of classifiers is trained and evaluated on the transformed data set. The
main objective of this master thesis is to address the question of how well shapelet trans-
formed ECG data sets using an ensemble of classifiers can predict diagnoses from ECG
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waveforms. Based on the above motivations we construct the three following research
questions to guide the project:

– Can the shapelet transformation classification more accurately predict the doctor’s di-
agnosis compared to the knowledge-based Marquette 12SL ECG analysis program?

– Can the shapelet transformation classification approach outperform previous work
within heartbeat classification using electrocardiograms?

– What are the trade-offs between the run time and shapelet quality when using shapelet
heuristic approximating techniques?

To explore the questions stated above, we conduct shapelet transformation of the AAU-
ECG data set before the classification and compare the results against the Marquette pre-
dicted statements. Secondly, we compare our proposed method performance with state-
of-the-art multivariate time series classification algorithms and previous work within ECG
classification on the MIT-BIH arrhythmia data set following the inter-patient scheme. Fi-
nally, we explore how the shapelet candidate approximation heuristic called Fast Shapelets
Search (FSS) affects the classification result, by gradually increasing heuristically approxi-
mated search space on the MIT-BIH data set. The main contributions of the report are the
following:

• An approach that uses Binary Shapelet Transform (BST) with an heterogeneous en-
semble of classifier for a real-word, multi-labeled, multi-class and multivariate ECG
data set which after filtering consisting of 413,151 12-lead ECGs records each at-
tached with a subset of 87 unique diagnosis statements.

• We propose a novel and domain-specific window constraint optimization of the dis-
tance calculation for the BST.

• We evaluate our approach against the, currently in medical practice used, knowledge-
based analysis program Marquette on the AAU-ECG data set.

• An evaluation of our approach compared to previous work within ECG classification
following the inter-patient scheme and Association for the Advancement of Medical
Instrumentation (AAMI) recommendations, as well as state-of-the-art multivariate
TSC algorithms on the MIT-BIH data set.

• We explore what the trade-offs are between shapelet quality and runtime using the
FSS to extract the shapelet candidates in the BST algorithm.

We find that our approach achieves comparable or improved results compared to previous
work within ECG classification following the inter-patient scheme on the MIT-BIH data set
for three out of four classes. The performance of our approach improves the recall of iden-
tifying normal (99.4%) and ventricular ectopic heartbeats (86.6%) as well as the precision
of fusion beats (50.7%). Also, our approach achieves the highest global performance for
the four classes with an overall accuracy of 94.3%. The limitation of the proposed method
on the MIT-BIH data set is the low recall (1.31%) of identifying supraventricular ectopic
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heartbeats where the discriminatory feature for this heartbeat type is not reflected in the
morphology of a single heartbeat.

We find that the learn-based shapelet approach on the AAU-ECG data set, on average, is
surpassed in performance by the knowledge-based Marquette analysis program. How-
ever, we improve the recall of identifying diagnosis statements related to left ventricular
hypertrophy arrhythmias compared to Marquette with an increase of respectively 14.5%,
9.17%, 29.5% and 62.4%. Also, our approach achieves good discriminating power on bun-
dle branch block arrhythmias.

We also find that our window constraint optimization for the ECG domain reduces the
run-time of our approach by a factor of three while achieving improved accuracy. We find
that while the FSS heuristic improves the runtime complexity of the shapelet extraction
algorithm, it also reduces the overall accuracy of the MIT-BIH data set from 94.3% to 91.0%.

This master thesis is structured as follows; in Chapter 1 we present the required back-
ground knowledge of the ECG and the AAU-ECG data set. Next, in Chapter 2 we describe
the related work in regards to time series and ECG classification. We elaborate on our ap-
proach to performing shapelet-based classification in Chapter 3. In Chapter 4 we present
our conducted experiments, evaluate the results, and interesting shapelets are analyzed.
We discuss some of our choices made throughout the project in Chapter 5. Finally, we
conclude on our project and propose future work in Chapter 6.
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1 Background

In this chapter, relevant background knowledge of the domain is presented as well as no-
tational definitions. We describe basic knowledge regarding Electrocardiograms (ECGs)
in Section 1.1 and present the Aalborg University Electrocardiograms (AAU-ECG) data set
in Section 1.2. Finally we briefly demonstrate the rule-based system Marquette™ 12SL™
ECG analysis program (Marquette) in Section 1.3 and notational definitions in Section 1.4.

1.1 The Electrocardiogram

The ECG is a recording of the heart’s electrical activity over a period. The measurement is
done by strategic placement of electrodes on the patient’s skin that measure the electrical
changes in polarisation that occurs as the heart contracts and relaxes. The contraction
causes depolarization, and the subsequent relaxation causes repolarization of the tissue.
These changes in polarisation are what can be seen as waves on the ECG [9, p. 3].

Figure 1.1 depicts a section of an ECG containing a heartbeat. The figure has annotations
symbolizing the waves P, Q, R, S and T together with important intervals, for instance, the
ST Segment.

Figure 1.1: The ECG of a heartbeat. Source:
Ref. [10]

Figure 1.2: A heart with annotated cham-
bers. Source: Ref. [11]

The depiction of a heart, seen in Figure 1.2, has two sections blue and red. The blue part
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of the heart takes in oxygen-depleted blood and pumps it into the lungs to be oxygenated,
and the red section pumps oxygenated blood into the body. We will now briefly explain
what phenomena of the beating heart that causes the most important waves and intervals
seen in Figure 1.1 based on [9, p. 25-31]. The P wave represents depolarization of the right
and left atrium tissue. Stimulation of the right atrium pumps oxygen-depleted blood into
the right ventricle and stimulation of the left atrium pumps oxygen-rich blood into the
left ventricle. The PR Interval represents the duration of the time blood pumps into the
ventricles and the PR Segment is the time in between atrium and ventricle depolarization.
The QRS Complex is made up of three waves Q, R, and S which is the duration of time in
which the right and left ventricles to depolarize. This depolarization contracts the ventri-
cles pumping the oxygen-depleted blood into the lungs and the oxygen-rich blood around
the body. The T wave represents repolarization of the ventricles which makes them relax
allowing the influx of new blood. The QT Interval is the total time it takes for the ventricles
first to depolarize and then repolarize. The ST Interval is the duration of time between de-
polarization and repolarization of the ventricles. Methods of classifying heartbeats often
use features such as the waves and intervals as input to supervised learning methods [7, p.
150].

1.1.1 The 12-lead ECG

The heart is a complex 3-dimensional organ, which makes it difficult to measure its electri-
cal charges adequately [12, p. 37]. The 12-lead ECG configuration solves this by measuring
the overall magnitude of the hearts electrical potential from 12 different angles.

Figure 1.3: The 12 leads and the angle at which they view the heart. Source: Ref. [9, p. 24].

The measurement creates 12 different ECG readings also called leads as seen in Figure 1.3.
These 12 leads are derived from 10 electrodes strategically placed on the surface of the
body [12, p. 37-45]. The six blue electrodes on the chest view the heart in the horizontal
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plane, and each produces their own lead, for example, electrode V1 produces lead V1. The
placement makes them particularly good at recording the polarity changes that occur in
the ventricular tissue of the heart.

The remaining four electrodes produce the last six red leads as seen in Figure 1.3. The
four electrodes are placed on the limbs, one on each, such that they view the heart in the
vertical plane. The electrode on the right leg acts as ground and is not included in the
ECG recording [12, p. 38-39]. The remaining three electrodes creates the basis for the three
standard limb leads I, II and III as well as the three augmented limb leads aVF, aVR and
aVL. The leads can further be grouped by the angle at which they measure the heart:

• Lateral leads: I, aVL, V5 and V6 as they measure the side or lateral part of the heart.

• Inferior leads: II, III and aVF measures the heart from below or posteriorly.

• Septal leads: V1 and V2 measures the heart’s inner area or the area opposite the
lateral leads.

• Anterior leads: V3 and V4 measures the front or anterior part of the heart.

• Lead aVR: Are not part of any of the groups, but it can be argued that it measures the
inner part of the heart.

In practice, and in the AAU-ECG data set we have acquired, the 12-lead ECG only need
measurements from two of the three standard limb electrodes, as all limb leads can be de-
rived from just two electrodes using Einthoven’s triangle [12, p. 40]. This practice complies
with the recommendations of the American Heart Association [13, p. 1313-1314].

1.2 The AAU-ECG Data Set

We have, in collaboration with the Faculty of Medicine at Aalborg University, acquired ac-
cess to a study population comprised of patients who underwent ECG recordings at the
Copenhagen General Practitioners’ Laboratory at the request of their general practitioners
from 2001 to 2015. We will from now on refer to this data set as AAU-ECG. The ECGs were
digitally recorded and analyzed using the Marquette. The study population consists of
974,333 ECG records and a total of 450,232 unique patients where 55% has been recorded
once, 21% twice, 11% three times and 13% has four or more records.

The ECG record contains information that uniquely identifies the record, descriptive state-
ments about the record analysis result, the ECG data in the form of leads modeled as time
series as well as features such as patients’ heart rate. The information that identifies a
given record is the patient’s ID and the date it was recorded. The patient ID is a sequence
of numbers that uniquely identifies that patient in the data set and together with the date
it uniquely identifies a single record. The dates are anonymized as they are shifted some
unknown amount in time such that the time intervals between records are kept consis-
tent. The statements on the records are assigned by the Marquette, where some of these
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1.2. The AAU-ECG Data Set Aalborg University

statements represent heart arrhythmias. We will be using the statements defining the heart
arrhythmias to represent labels in our classification problem. The ECG data, on the record,
come in the form of eight leads namely: I, II, V1, V2, V3, V4, V5, and V6. The lead data is
recorded with a standard 12 lead ECG measurement procedure explained in Section 1.1.1.
We use Einthoven’s triangle to calculate the remaining four leads III, aVF, aVL and aVR.
The leads are time series that has a raw and a median component. The raw lead is a result
of a 10-second measurement sampled at 500 Hertz, resulting in 5,000 data points and the
median lead created by the Marquette using the raw lead. What follows is a description of
the median leads and diagnosis statements.

1.2.1 The Median

The median lead is a smaller time series representation of a raw lead that contains a single
heartbeat with 600 data points. Marquette, in short, creates a median lead by first seg-
menting the raw lead into individual heartbeats and then calculates the median lead as
the average of these heartbeats. We present a median in Figure 1.4 from lead II, refer to
Appendix B to see examples of all the median leads. We will train the classification model
using these medians as per recommendation by our domain expert Claus Graff [14].

0 50 100 150 200 250 300 350 400 450 500 550
−200
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400
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Figure 1.4: An example of a median for lead II where waves are marked.

We now present a short description of the Median lead creation process that we base on
the Marquette manual [5]. The first step in the process is to examine each of the 12 leads
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to determine a representation of the QRS complex. The algorithm determines the QRS
complex representation by sliding across the 12 raw lead’s data, and once it matches a
specific criterion, a QRS complex has been detected, and it is then saved as a template,
one for each lead [5, p. 3-6].

The template is used to find matching QRS complexes in the given lead. If another QRS
complex is detected which do not match the previous template, a new template is created
and used for later template matching. This process continues for the full length of the raw
leads. Following this, the algorithm determines what heartbeat contains the most infor-
mation, which can be any heartbeat with at least three matching QRS complexes.

This heartbeat is referenced as a primary beat. The creation of the median lead’s QRS com-
plex uses the median values of all the beats matching the primary beat. The rest of the me-
dian is created in a similar fashion using the beats matching the primary beat and the QRS
complex as a base. The creation process of the median includes various steps for noise
reduction like the application of high and low pass filters on the data. The algorithm aligns
each median such that the beginning of the Q wave has an amplitude of 0 on the y-axis.

1.2.2 The Statements

The Marquette system automatically generates a list of statements for each record it anal-
yses. These statements are manually verified by a doctor on the AAU-ECG data set, and
any changes in what the doctor assess to be the correct statements are added to a list of
diagnoses separate from the diagnose statements predicted by the Marquette system.

The statements are organized into groups, and they vary in their application. For instance,
the group Technical Problems cover statements about technical problems that occurred
during the recording of the ECG whereas the group Rhythm is a type of heart arrhythmia.

The statements groups in the data set can be seen in Table 1.1. The frequency count is
made based on the statements assigned by the doctor. The Marquette system have six
heart arrhythmia groups each with their own set of heart arrhythmia statements. We have
marked these groups with bold in the table. There are two types of heart arrhythmia state-
ments, modifier, and regular statements. Regular statements refer to a single heart ar-
rhythmia diagnosis while the modifiers are attached to regular statements to tweak their
meaning. These modifier statements are included in Table 1.1 whereas following tables
will not include them. We will limit our analysis to the regular statements as per recom-
mendation by Claus Graff [14].

We will classify heart arrhythmias, and we will therefore only include records with state-
ments from any of the groups marked with bold. Further, we have excluded records that
have a Technical Problem statement because such a statement implies that a problem oc-
curred during the ECG recording which likely ruins its value to us. We will use the me-
dian leads as the basis for our classification analysis, following advice by Claus Graff [14].
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Statements

Groups Unique Total

Rhythm 69 1,225,657
Infarction 13 221,385
QRS Axis and Voltage 9 113,060
Intraventricular Conduction 16 104,392
Repolarization Abnormalities 46 173,265
Chamber Hypertrophy or Enlargement 18 285,424
Names 5 55
ECG Classification 4 970,719
Technical Problems 3 1165
Miscellaneous 10 315,970

Total 193 3,411,092

Table 1.1: Statement distribution of the entire data set.

This decision necessitates that we delimit the considered heart arrhythmia groups by ex-
cluding the Rhythm group. The Rhythm group is the largest of the diagnosis groups, but
this arrhythmia diagnosis is based on an examination of the dynamic differences between
multiple heartbeats. This dynamic is not reflected in the median leads, and we will, there-
fore, exclude this statement group. The remaining five heart arrhythmia groups comprises
statements that should be detectable by analyzing the median leads.

Statements

Groups Unique Total

Infarction 11 112,409
QRS Axis and Voltage 9 113,060
Repolarization Abnormalities 40 173,265
Intraventricular Conduction 14 103,652
Chamber Hypertrophy or Enlargement 13 266,622

Total 87 750,237

Table 1.2: Heart arrhythmia statement groups excluding modifier statements.

The statement groups we will use is shown in Table 1.2. The statements do not include
modifiers as they are not a diagnosis but additional information on the ECG. The data set
is multi-labeled which means that records can have any number of statements attached
to them from the five statement groups. The data set now consists of 413,151 ECG records
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with a total of 211,391 patients where 60% has been recorded once, 20% twice, 9% three
times and 11% have four or more records. We show a list of every statement along with their
description and frequency count in Appendix A and a histogram in Appendix C. Statement
542 belonging to the group Chamber Hypertrophy or Enlargement is the most numerous
statement in the data set. We also note that the statement group Repolarization Abnor-
malities is made up of many statements, but many of these occur quite infrequently in the
data set. The statements with low total frequency could prove to be problematic as it is
hard to draw any substantial conclusions when the available data is low.

One of the research goals of this master thesis is to compare our prediction performance
vs. the Marquette predictions. We analyze how often the Marquette and the doctor agrees
on diagnoses, disagrees, as well as in what cases the doctor adds or removes a statement.
We have identified the five cases that might occur, (I) the diagnoses are identical, (II) there
are no statements in common, (III) the doctor adds a statement, (IV) the doctor removes a
statement or (V) the doctor and machine agree partially on some of the diagnoses.

We list the cases in Table 1.3 and the frequency they occur in the AAU-ECG. These numbers
show that the doctor makes changes on about 50% of the records which inspires some
confidence regarding our research question stating whether or not we can perform better
than the machine predictions. In the following section, we will describe the rule-based
analysis program used to predict the diagnosis statements for the AAU-ECG data set, to
help the doctors assigning a diagnosis statement to each ECG record.

Type Occurrences % of total

(I) Same 224,131 50%
(II) Changed 48,110 11%
(III) Added 92,731 20%
(IV) Removed 49,225 11%
(V) Partial 33,354 8%

Table 1.3: The types of disagreement and agreement between the Marquette and doctor predictions.

1.3 Marquette 12SL ECG Analysis Program

The knowledge-based Marquette system is a computerized ECG analysis program that of-
fers means of recording, analyzing and presenting 12-lead ECGs to medical practitioners.
The records in the AAU-ECG data set are all created and analyzed by the Marquette system.

The Marquette labels ECG records using a rule-based system with a tree-like structure that
relies on feature descriptors of heart arrhythmia to classify the ECG records. The system
can detect rhythm and morphology abnormalities in the ECG. Rhythm abnormalities oc-
cur across several heartbeats, whereas the morphology abnormalities are local to a single

10



1.4. Classification Notation Aalborg University

heartbeat. We will not include rhythm based abnormalities detection descriptors as they
are not detectable by analyzing the median.

Figure 1.5: Feature descriptor related to the diagnosis of Right Bundle Branch Block (RBBB (440)).
Source: Ref. [5, c. 6 p. 7]

.

Figure 1.6: Rule governing the diagnosis of RBBB (440). Source: Ref. [5, c. 6 p. 7]

.

In Figure 1.5 and Figure 1.6, we show the descriptors related to the RBBB (440) arrhythmia.
The picture shows that a positive and wide QRS complex, as well as a wide R wave, must be
present in lead V1. Additionally, any of the lateral leads I, aVL, V5 and V6 must contain a
wide S wave. The Figure 1.6 shows how the system will suppress the analysis of statement
380 RAD and 382 RSAD and will instead test for the presence of Voltage criteria for left
ventricular hypertrophy (LVH (540)) when the RBBB (440) feature descriptors are present.
This example is relatively simple in comparison to for instance the ST segment elevation
diagnosis that has two whole pages of rules [5, c. 6, p. 15-16]. For interested readers, we
refer to [5, chapters 6-8] for the major categories of the Marquette statement rules. We will
now introduce some notational definitions which we will use throughout the remainder of
the report.

1.4 Classification Notation

The objective of classification is to construct a classifier using labeled instances that map
unseen instances to a label. The classifier is evaluated based on its ability to generalize
from the train instances to correctly predict new instances. We use this section to describe

11



Heartbeat Classification of Electrocardiograms Chapter 1. Background

the commonly used notation throughout the report, where an extended version of the no-
tation can be seen in Table 1.4.

We denote a time series data set of n observation as X = {T1,T2, · · · ,Tn}, where each time
series has a dimensionality of m is denoted as T = {t1, t2, · · · , tm}. The observations are
labeled with a subset Y of the total label set L containing discrete values.

We redefine the notation for the data set to also include the time series and their associated
labels, X = {(T1,Y1), (T2,Y2), · · · , (Tn ,Yn)}. The data set X is split into two disjoint set a train-
and a test data set. A classifier e is trained on the train set whereas the test set is used
to evaluate how well the classifier e has learned the relationship between samples and
class labels. Multiple classifiers can be combined to form ensembles of classifiers. We
denote the ensemble classifier as, E = {e1,e2, ...,e f } where f is number of classifiers in the
ensemble.

Parameter Description Extra

T A time series. T = {t1, t2, · · · , tm}

|T |, m The dimensions of a time series.

C Set of classes in the data set. C = {c1,c2, · · · ,cd }

|C |, d Amount of classes in the data set.

Yx A subset of predicted labels of the time series Tx . Yx ⊆C

X A data set of time series. X = {(T1,Y1), (T2,Y2), · · · , (Tn ,Yn)}

|X |, n Amount of observations in the data set.

E Set of classifiers or an ensemble. E = {e1,e2, · · · ,e f }

|E |, f Amount of classifiers.

S Set of shapelets. S = {s1, s2, · · · , sg }

|S|, g Amount of shapelets. in S

sx
A continuous subsequence of a time series,
a shapelet or shapelet candidate.

sx ⊆ Tx

w The window used for the Windowed constraint 0 < w < 0.5 · |T |
k The maximum number of shapelets to find

Table 1.4: Lookup table of the notation used in this report.
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2 Related Work

In this chapter, we review the literature in the domain of time series classification with a
focus on classification of ECGs. The content of the chapter mostly reflect the challenges
that arise when classifying the AAU-ECG data set. These challenges are addressed in Sec-
tion 2.1 regarding time series classification, where the challenge of handling multiple leads
and labels are seen in Section 2.1.1 and Section 2.1.2 respectively. The shapelet-based clas-
sification of time series in Section 2.2 and the classification of ECGs in Section 2.3.

2.1 Time Series Classification

A large experimental analysis of 18 state-of-the-art Time Series Classification (TSC) algo-
rithms was conducted by Bagnall et al. in [8]. The experiments were evaluated on the UCR
TSC archive [15] consisting of 85 data sets with time series from different domains. The
result of their experiments shows that only nine of the proposed algorithms were signifi-
cantly more accurate than the benchmark classifiers, the 1-Nearest Neighbor (1-NN) using
Dynamic Time Warping (DTW) and Rotation Forest (RotF). One of the most successful al-
gorithms within the study where the transformation of data sets with Shapelet Transform
(ST) [16] after which the Heterogeneous Ensembles of Standard Classification Algorithms
(HESCA) [17] where used for classification. Within the ECG problem domain, the shapelet-
based approaches achieved the best performance on the ECG data sets compared to Vec-
tor, Interval, Elastic, Dictionary and The Collective of Transformation-Based Ensembles
(COTE) [18] based algorithms. The study only considered univariate TSC problems and
their primary concern was accuracy. The best performing algorithm, COTE, where hugely
computationally intensive making it unsuitable for large data sets.

2.1.1 Multivariate Time Series Classification

A time series is multivariate when it consists of two or more signals or channels. In the
ECG domain, each channel of an ECG is called a lead. The aim of Multivariate Time Series
Classification (MTSC) is to classify observations, using information using multiple chan-
nels.

Three MTSC algorithms adopting the ST where proposed by Bostrom and Bagnall in [19],
the algorithms are:
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1. Independent shapelet: Univariate shapelets are found on a channel and evaluated
against the same channel in another time series.

2. Multidimensional dependent shapelet: The multivariate shapelet spans across all
time series channels, and is evaluated by sliding it across a time series.

3. Multidimensional independent shapelet: A multivariate shapelet, but the mini-
mum distance between a time series and a shapelet is found independently for each
channel.

Each of the three distance calculation methods results in multiple distances across the
channels, which are concatenated into a single feature vector as it achieved better results
than using the distances as multivariate features. Of their three proposed algorithms, only
the multidimensional dependent shapelet was not significantly worse than the baselines
of three multivariate 1-NN DTW classifiers used in the paper. The three ST-based algo-
rithms were restrained to only search for shapelet for one hour, and accordingly, did not
process the whole data like the DTW-based algorithms.

The 1-NN classifier using the distance method DTW, has been shown to be a good classifier
regarding univariate time series classifications [8]. Shokooshi-Yekta et al. mentioned in
[20] two modification to the distance method, which allowed this classifier to be applied
to multivariate time series. Given two observations A and B , the independent DTW applies
the DTW algorithm on each channels individual, and add the distance scores together, as
seen in Equation (2.1) on time series of two channels subscripted with a 0 or a 1. The
dependent DTW, seen in Equation (2.2), is similar to the original DTW algorithm with the
differences of using the cumulative distance across all the channels at each data point.

DT WI = DT W (A0,B0)+DT W (A1,B1) (2.1)

DT WD = DT W ({A0, A1}, {B0,B1})) (2.2)

As it was shown in [20] that DTWI and DTWD significantly outperforms each other on dif-
ferent data sets. They proposed a scheme to dynamically choose, on an instance base,
which of DTWI or DTWD did the correct classification using a DTW-based 1-NN classifier.
This scheme was dubbed DTWA and it uses a score-based approach together with a thresh-
old learned on the train data, to decide which prediction of DTWI or DTWD to use. In ECG
research, the multivariate classification problem is common, as ECG records often include
multiple channels that each depict the heart’s activity from different angles. Chazal et al.
proposed a method for incorporating the information of two leads in [21]. They extracted
the same features from each channel and used them as input to two Linear Discriminants
(LDs). To combine the results from the two classifiers, the Unweighted Bayesian Product
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[22] is used as seen in Equation (2.3).

P̂ (c|x) =
∏|E |

e=1 Pe (c|x)∑|C |
i=1

∏|E |
e=1 Pe (Ci |x)

(2.3)

where: c = a class,
x = an observation,
E = set of classifiers,
C = set of classes.
Pe (c|x) = estimated posterior probability of the eth classifier

To classify a given observation x, the final posterior probability P̂ (c|x) between each class
c and the observation x is calculated, and the observation is assigned to the class with the
highest score.

2.1.2 Multi-labeled Classification

In a multi-labeled classification problem, each observation can have multiple labels, in
contrast to the one-to-one relation between labels and observations of single-labeled prob-
lems. We will use the extensive experimental comparison of multi-label methods that was
conducted by Madjarov et al. in [23] as a basis for this section. Madjaroc et al. arrange the
methods into three groups:

Problem Transformation Methods: Transforming the problem from multi-labeled into
one or more single-labeled problems or regression problems, allowing standard clas-
sification methods to be used.

Algorithm Adaption Methods: Either adapt or extend existing classification models to han-
dle a multi-labeled problem.

Ensemble Methods: The method, proposed in [23], involves building an ensemble of clas-
sifiers using either the methods of problem transformation or algorithm adaptions.

Madjaroc et al. experimented with a total of 12 multi-learning methods with a distribution
of three algorithm adaptation, five problem transformations, and four ensemble methods
[23]. The two best-performing methods were the random forest ensemble of predictive
clustering trees [24] and the problem transformation HOMER [25]. Each tree in the ran-
dom forest ensemble makes a multi-label prediction of an observation’s labels, where a
voting scheme decides the final result. The HOMER method is a label power-set method,
which tries to combine set of labels into a single label. It uses a divide-and-conquer style
to split the multi-label set into smaller problems, where a classifier is constructed at each
node.
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An interesting result from [23] is that one of the most straightforward problem transforma-
tions, binary relevance, was the third best performing method. It uses a one-vs-all strategy,
converting the multi-label problem into a single-label binary problem for each unique la-
bels in the label set.

2.1.3 Ensemble-based Classification

Within TSC it has been shown that an ensemble classifier scheme can improve accuracy
[18]. An ensemble is a collection of classifiers which are combined to produce a single
prediction. The key idea of ensemble construction is that the ensemble should be diverse
[26]. Diversity can be achieved by building an ensemble using classifiers from different
families of algorithms called heterogeneous ensembles or by changing the training data or
training scheme for an ensemble of classifiers from the same family of algorithms called
homogeneous ensembles.

The classifier typically used in conjunction with ST is HESCA [17, 18, 27]. HESCA is a het-
erogeneous ensemble of eight diverse classifiers from different families being probabilis-
tic, tree-based and kernel-based models. The eight classifiers of HESCA can be seen in
Table 2.1 with each classifiers parameter settings as specified in [8].

Algorithm Type of Model Parameters CV

Bayesian Network Probabilistic
C4.5 Decision Tree Tree
K-Nearest Neighbour Kernel Initial K = 100 10 Folds
Naive Bayes Probabilistic
Random Forest Tree 500 Trees
Rotation Forest Tree 20 Trees
Support Vector Machine Linear Kernel
Support Vector Machine Quadratic Kernel

Table 2.1: Table of the classifiers and parameters employed in the Heterogeneous Ensembles of Stan-
dard Classification Algorithms with settings from [8]. CV: Cross Validation

In [17], Large et al. identified 11 homogeneous ensembles and showed that Random Forest
(RandF) and RotF are not significantly worse then HESCA however for the remaining nine
homogeneous classifiers HESCA where significantly more accurate. They concluded that
it is better to ensemble different classifiers from different families of algorithms then using
extra computational time on tuning a single classifier.
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2.2 Shapelets

Shapelet-based classifiers have in recent years been shown to produce promising results
in the time series classification domain [8]. Ye and Keogh first introduced the shapelet
concept in [1] as a new data mining primitive. The authors describe shapelets as sub-
sequences derived from a set of time series, each of which is selected based on its power to
define class membership. They are phase independent, meaning that shapelets can occur
at any point in a time series [8]. A time series is classified by the presence or absence of
one or more shapelets somewhere in the time series.

In the first papers that describe the shapelet classification method, shapelets were tightly
coupled with a Decision Tree (DT) classifier [1, 3, 28]. Later work, by Hills et al. in [2], de-
couples the shapelet extraction method from the classification process using the proposed
transformation scheme called ST. The ST method transforms the data into a feature vec-
tor using the minimum distance between shapelets and each time series. This decoupling
means that the transformed data is free to be used as input to any classifier unlike previous
shapelet classification methods [1, 3, 28]. Bostrom and Bagnall propose the state of the art
ST-based algorithm Binary Shapelet Transform (BST) in [16]. The BST enforce an equal
distribution of shapelets for each class. This method makes it more suitable for multiclass
classification problems, as classes that are associated with low-quality shapelets are still
ensured to have the same number of shapelets as any other class.

Shapelets has another attractive feature in addition to producing good classification re-
sults; they enable a new way of interpreting the classification results. Shapelets allows
direct interpretation of the correlation between a classification result and an input sample
by studying the shapelets for the class.

The downside of using a shapelet based classification approach is its high computational
complexity. The complexity of the shapelet extraction algorithm is O(n2m4) [3], where n
is the amount of time series and m length of the time series. This downside has moti-
vated much research into improving the run time of the shapelet search algorithm [1, 3,
16, 28]. Methods of reducing the number of distance calculations performed using early
abandoning of distance calculations is used in [1, 16]. Ye and Keogh [1] present a way
to prune shapelet candidates, an upper bound of the shapelet quality is calculated, and
the shapelet is pruned if this bound cannot possibly exceed the quality of the best-so-far
shapelet. These optimizations make the average run time faster on most data sets, but the
worst case run time remains the same. Mueen et al. in [28] achieve a reduction in time
complexity to O(n2m3) by caching statistics regarding the distance calculation, hence,
trading memory for computational speed. Rakthanmanon and Keogh [3] propose the Fast
Shapelets Search (FSS) method that reduces the worst case complexity by decreasing the
shapelet candidate search space. The technique prefilters the candidate shapelet search
space by selecting the top k best shapelets based on a heuristic quality measure. The FSS
algorithm has a time complexity of O(n2km2), where k is the number of top shapelets to
prefilter based on the heuristic quality measure.
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The quality of a shapelet is defined by the quality measure used. The most commonly
used quality measure is information gain [1, 3, 28]. The quality measure quantifies the
information gained by splitting the data set into two disjoint data sets using the minimum
distance from a shapelet to all time series and an optimal splitting point.

An alternative quality measure is presented in [2], which is based on a hypothesis test con-
cerning how the distribution of distances from the shapelet to all the time series of the
same class differs. The authors used the F-statistic of a fixed effect Analysis of Variance
(ANOVA) but mentioned that they could have used other alternative approaches [2]. For
an overview and some more information of the shapelet-based related work mentioned in
this section, see the Table 2.2.

Paper Preprocess Pruning Speedup
Quality
Measure

Classifier

Ye and Keogh [1] None
Distance,
Candidates.

Information gain
Shapelet-based
DT.

Mueen et al. [28] None
Distance,
Candidates.

Cache
statistics.

Information gain
Shapelet-based
DT.

Rakthanmanon
and Keogh [3]

None
Distance,
Candidates.

Distance,
Candidates.

Information gain
Shapelet-based
DT.

Lines et al. [2] ST
Distance,
Candidates.

Information gain,
or F-statistic.

HESCA

Bostrom
and Bagnal [16]

BST
Distance,
Candidates.

Change distance
evaluate order.

Not mentioned HESCA

Table 2.2: Overview of the shapelet-based related work.

2.3 ECG Classification

The following text and Section 2.3.1 are modified versions from our previous work [29].
ECG classification is a subset of TSC with a large research field [7, 30], where the focus is
to diagnostice each individual hearbeat in a ECG signal. The classification of ECG-based
heartbeat methods tries to identify heart diseases by detecting abnormalities in the electri-
cal signal produced by the heart [30]. Luz et al. have in [7] surveyed ECG-based heartbeat
classification for arrhythmia detection. This section are based on their findings along with
our own investigating of existing studies in the literature.

Luz et al. divide the steps involved in ECG classification into: Preprocessing of the ECG
signal, heartbeat segmentation techniques, feature extraction, and classification. Prepro-
cessing of the ECG signal consist of noise reduction of the measured electrical signal into
a digital form whereafter different normalization techniques often are used. Examples of
contamination of the ECG signal are power line interference and baseline wandering. A
common method to correct for the wandering baseline is to isolate it using two median fil-
ters and subtract it from the original ECG [7, 21, 31]. Afterward, the power line interference
and high-frequency noise can be removed with a low-pass filter [21]. Additionally wavelet
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transform [32] and nonlinear Bayesian filters [33] have shown good results in noise reduc-
tion while preserving the ECG signal properties. The z-normalization with zero mean and
with a standard deviation of one are a commonly used normalization [30].

Heartbeat segmentation techniques are concerned with the segmentation of a heartbeat
in the ECG signal relative to detected fiducial points like the R peaks or QRS complexes.
To increase the accuracy of the heartbeat segmentation, some algorithms furthermore in-
cludes the detection of P wave and T wave associated with the heartbeats [7]. Adaptive
detection threshold techniques are widely used for identifying fiducial points as a result
of their simplicity and reasonable results [7], and was used in [34, 35]. Other approaches
of heartbeat segmentation presented in the literature utilize neural network [36], wavelet
transform [37] or filter banks [38].

An essential activity in the classification of ECGs is to extract the relevant features from the
segmented heartbeats, such as the amplitude and time intervals of the different waves and
complexes [39]. Examples of features which can be extracted from a segmented heartbeat
are the P wave, QRS width and QT interval, which can be seen in Figure 1.1. One of the
most commonly used features is the cardiac rhythm, measured as the RR interval; the time
between two heartbeats’ R peaks [7].

We will now explore ECG databases used in previous work and how they are used for heart-
beat classification.

2.3.1 Electrocardiogram Databases

Various databases contain cardiac cycles are freely available for ECG arrhythmia classifi-
cation. The Massachusetts Institute of Technology – Beth Israel Hospital (MIT-BIH) Ar-
rhythmia Database [40] is widely used within ECG classification publications. The data
set is recommended by the Association for the Advancement of Medical Instrumentation
(AAMI) [41] for creating reproducible and comparable experiments. The MIT-BIH arrhyth-
mia data set consists of 48 records each with a duration of 30 minutes and a sample rate of
360 Hz. Each record consists of two ECG leads: Lead A, which for a majority of the records
is a modification of lead II, and lead B that is one of the modified leads V1, V2, V4 or V5.
Each heartbeat is independently labeled by at least two cardiologists such that, each heart-
beat belongs to one of 15 possible beat types. Table 2.3 shows a comparison between the
MIT-BIH and the AAU-ECG data set acquired from the public health sector in Denmark.

Database Records Leads Sample rate Duration Attached

MIT-BIH [40] 48 ECG II and V1 360 Hz 30 min 15 beat annotations

AAU-ECG 974,333 ECG
I, II, V1, V2, V3,
V4, V5 and V6

500 Hz 10 sec
12 median leads for each record
193 statements

Table 2.3: Comparison of the MIT-BIH data set recommended by AAMI together with our AAU-ECG
data set.
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By the AAMI recommendation, the 15 beat types of MIT-BIH are divided into the following
five groups: Normal beat (N), supraventricular ectopic beat (S), ventricular ectopic beat
(V), fusion beats between diagnosis from the V and the N group (F) and unknown beat
type (Q). The mapping from the 15 original heartbeat types to the five superclasses for
arrhythmias are shown in Table 2.4.

Group
Symbol

Group Description
Original
Symbol

Original Description

N
Any heartbeat not categorized
as SVEB, VEB or Q

L
N
R
e
j

Left bundle branch block beat
Normal beat
Right bundle branch block beat
Atrial escape beat
Nodal (junctional) escape beat

S Supraventricular ectopic beat (SVEB)

A
J
S
a

Atrial premature beat
Nodal (junctional) premature beat
Supraventricular premature beat
Aberrated atrial premature beat

V Ventricular ectopic beat (VEB)
E
V

Ventricular escape beat
Premature ventricular contraction

F Fusion beat F Fusion of ventricular and normal beat

Q Unknown beat
P
U
f

Paced beat
Unclassifiable beat
Fusion of paced and normal beat

Table 2.4: The grouping of diagnosis recommended by the AAMI standard.

2.3.2 Inter-patient Scheme

Within ECG classification, there are two schemes for evaluating arrhythmia classification
models [21]; the intra-patient scheme where heartbeats from the same patient are allowed
during both the training and test phase opposed by the inter-patient scheme where heart-
beats from the same person cannot be used for both test and training. By not mixing the
heartbeats in the train and test phase, a more realistic evaluation of the performance of a
classification model can be conducted as the evaluation is not biased. The bias occurs in
the intra-patient scheme as a result of the classification models tends to learn the partic-
ularities of the individual patient’s heartbeats during training, which have been shown to
give close to 100% accuracy on the MIT-BIH data set [42–44]. However when the proposed
methods were evaluated with the inter-patient scheme the performances of the accuracy
dropped up to 22.4% [30].

In a realistic scenario where the classification model would be used in a clinical setting,
the model should be trained and tested on different patients to learn the discriminative
features of the different arrhythmia, instead of learning a given patients heartbeats. In
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Figure 2.1 four different patients’ heartbeat for lead A and lead B, separated by the dashed
lines, are displayed for the N and the V group. The heartbeats in each group have been
annotated as the same beat type despite their differences, which illustrates the complexity
of the inter-patient scheme.

(a) Normal Beats (N) (b) Ventricular Ectopic Beats (V)

Figure 2.1: Illustration of heartbeats from different patients diagnosed with the same beat type. Four
different patients’ lead A and lead B for both the beat group N and V are displayed.

To report unbiased results aligned with a clinical point of view and for literature compari-
son, it is recommended by Luz et al. in [30] to follow the AAMI specifications on the MIT-
BIH data set with the inter-patient division scheme proposed by Chazal et al. in [21] which
can be seen in Table 2.5. The DS1 set is used for training the classification model, and the
DS2 set is used for evaluation of the performance.

Data Set Name Record Number

DS1 - Train {101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230}
DS2 - Test {100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234}

Table 2.5: The division of the MIT-BIH data set records following the inter-patient scheme proposed
by Chazal et al. [21].

2.3.3 Automatic Heartbeat Classification

We present the literature of ECG classification which follows the AAMI recommendations
and adhere to the inter-patient scheme. An overview and further information of the clas-
sifiers mentioned in this section can be found in Table 2.6.

Chazal et al. [21] was an advocate of the inter-patient scheme, and they proposed the
most commonly used inter-patient data set split on the MIT-BIH data set. Following we
will present previous work within ECG classification following the inter-patient scheme.
The best results obtained from Chazal et al. was achieved by extracting two feature sets
containing the same 26 features from the two leads of the MIT-BIH data set and used as

21



Heartbeat Classification of Electrocardiograms Chapter 2. Related Work

input to two weighted LD classifiers. The feature sets contained features like RR-intervals,
heartbeat intervals and the morphology of the ECG.

Another weighted LD classifier approach was presented by Llamedo et al. in [45]. They
used a sequential floating feature selection algorithm to find the combinations of features,
from a more extensive feature set, and the parameter for the classifier model which opti-
mized either the recall or the precision of the classification on the MIT-BIH data set. With
the use of only eight features, they were able to outperform Chazal et al. on the V class and
have comparable performance on the three remaining classes on the MIT-BIH data set.

A one-versus-one classification scheme was proposed by Zhang et al. in [31], where 6 one-
versus-one L2 regularized Support Vector Machines (SVMs) was build on the four classes
of the MIT-BIH data set, excluding the Q class. To handle the imbalances of the data set,
the geometric mean between the predicted sensitivities of the negative and positive class
are used. The predictions from the six classifiers were combined into a single prediction
using a majority voting scheme.

Chen et al. [46] proposed a new feature extracting methods, by applying a random pro-
jection matrix on each heartbeat, transforming it into a 30×300 matrix. This matrix had
each column normalized, and the discrete cosine transformation was applied to each row
to represent the matrix as 30 features. These features were used in classification together
with three features of weighted RR intervals. A SVM with a radial basis function kernel was
used in the classification of the features, where the parameters to the kernel were learned
through 10-fold cross validation on the train set. They tested both the intra-patient and
inter-patient scheme, where they achieved a Overall Accuracy (ACC) of 98.46% and 93.1%
respectively on the MIT-BIH data set. This further illustrates the importance of not follow-
ing the intra-patient scheme, as it leads to optimistic results and might not be realistic in
real-world practice when the classifiers are trained and tested on different patients.

Authors Features # Features Preprocessing Classifiers

Chazal et al. [21]
Inter-beat intervals,
heartbeat intervals,
and morphology.

26
Remove baseline wander,
and low freq. filter

Weighted LDs

Llamedo et al. [45]

Inter-beat intervals,
heartbeat intervals,
2-D CVG loop,
and discrete wavelet transform.

8 Discrete wavelet transform Weighted LDs

Zhang et al. [31]
Inter-beat intervals,
heartbeat intervals,
and morphology.

46
Remove baseline wander,
and low freq. filter

SVMs

Chen et al. [46]
Weighted inter-beat intervals,
and random projection matrix.

33
Remove baseline wander,
and band-pass filter.

SVM

Table 2.6: The ECG classifiers which follows the AAMI recomendatiosn and adhere to the inter-
patient scheme.
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3 Methodology

We will now present an overview of our methodology. The Figure 3.1 shows the different
steps of our methodology each of which we explain in greater detail in the following sec-
tions.

Data

Preprocessing

Shapelet
Train Data

Train data Test data

Transformed
Train data

Transformed
Test data

Shapelets
Extracted

Classifier
Model1

Classifier
Modeln

Classifier
Ensemble

Evaluate
Classifier

. . .

Figure 3.1: The steps of our methodology.

Two data sets are used in this project: The AAU-ECG data set and the MIT-BIH arrhythmia
data set [40] described in Section 1.2 and Section 2.3.1 respectively.

The data preprocessing step contains various methods we apply to the raw data to prepare
it for shapelet extraction, transformation, and later classification. We apply heartbeat seg-
mentation, noise reduction and baseline wander removal methods to the MIT-BIH data
set and use the Piecewise Aggregate Approximation (PAA) algorithm on both data sets to
reduce the dimensionality of the time series [47]. The preprocessing steps are explained in
details in Section 3.2.

The second step splits each data set into two disjoint data sets: A train- and a test data set
used in the classification. To handle the multi-labeled AAU-ECG data set we transform it
into multiple binary data sets. We present the data split step in Section 3.1.
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In the following step we use a modified version of the BST algorithm from [16] to extract
shapelets on a smaller subset of the train data, the Shapelet Train Data from Figure 3.1. The
BST uses the extracted shapelet to transform the train- and test data set. The transforma-
tion creates a new feature vector for each time series using the minimum distance between
the time series and all the extracted shapelets. The BST algorithm and our modifications
to it are explained in Section 3.3.1.

The final step is classification, in which we use the feature vectors to train the HESCA en-
semble classifier. The HESCA ensemble contains a diverse set of classifiers and employs
a weighting scheme that is learned from the results of each classifier model and applied
as the final classifier. Finally, we evaluate the trained classifier using the transformed test
data set and four statistic indices, described in Section 3.5: Accuracy, precision, recall and
false positive rate. The classification step is detailed in Section 3.4.

3.1 Data Sets

We classify the MIT-BIH and AAU-ECG data sets both of which contain arrhythmia labeled
ECG time series. The AAU-ECG dataset is described in Section 1.2. The MIT-BIH data set
is widely used in the ECG classification literature [48] and is unique since it consist of beat
types for each of the five groups recommended by AAMI [7].

The MIT-BIH Arrhythmia data set consist of a total of 48 ECG records from 47 different pa-
tients. As described in Section 2.3.1 each record is multivariate and consists of two leads
with a duration of 30 minutes giving a total of approximately 100,000 heartbeats. Heart-
beats are labeled by two independent cardiologists such that each heartbeat is annotated
with a single label from one of 15 possible types of heartbeat labels. We follow the AAMI
recommendations which exclude four of the 48 records from the data set due to paced
beats [49].

Figure 3.2: Comparison of a AAU-ECG record and a MIT-BIH record.

Figure 3.2 illustrates an ECG record for, respectively, the AAU-ECG data set with multi-
labeled diagnosis statements and 12 leads compared to the MIT-BIH data set with single
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label and two leads. The AAU-ECG data set contains 87 classes whereas the MIT-BIH con-
tains four different classes.

Following the inter-patient scheme proposed in [21] to allow unbiased literature compar-
ison we divide the 44 ECG records from the MIT-BIH data set into the training set (DS1)
and the testing set (DS2) each consisting of 22 records as shown in Table 3.1. We discard
the Q class as the class is marginally represented in the data set due to the AAMI recom-
mendation of discarding paced beats. The Q class is represented in the data set with only
7 and 8 heartbeats in the train and test data set, respectively, and of no help for further
classification purposes [50, 51]

Dataset Name N S V F Q # Beats # Records

DS1 - Train 45,644 943 3,788 415 8 50,998 22
DS2 - Test 44,221 1,837 3,220 388 7 49,666 22

Total 89,865 2,780 7,008 803 15 100,664 44

Table 3.1: Distribution of the classes in MIT-BIH data split.

The AAU-ECG and MIT-BIH data set are partitioned into a training and a test set. For AAU-
ECG 70% of the data are used for training and 30% for testing. For the MIT-BIH data set, we
follow the standard train test split presented in [21] where roughly 50% of the data are used
for training and 50% for testing. We perform shapelet extraction by using a fraction of the
ECG records taken exclusively from the training set for both the AAU-ECG and MIT-BIH
data sets. We use random sampling to extract an equal amount of records of each class to
extract the shapelets from.

3.1.1 Binary Data Set Transformation

As the AAU-ECG data set is a multi-labeled data set, we need to be able to train a classifier
on such a problem. We have chosen to adapt our data to the classifier using a problem
transformation method called binary relevance [23]. With this transformation, we can use
the same classifier on both the AAU-ECG and the MIT-BIH data set. We use the binary
relevance method as it is compatible with the BST method, due to its simplicity and it has
shown promising results in the experimental comparison of multi-label methods [23].

The binary relevance method follows a one-vs-all approach, where |E | binary classifier
is built for each unique class in the data set. In this setting, a single class is used as the
positive class where the remaining classes are grouped into the negative class. Hence, we
have a binary classification problem for each of the classes in the AAU-ECG data set. The
AAU-ECG data set is also multi-labeled. We handle this multi-labeled aspect by treating
each record having the given class in its label set as a positive sample and the remaining
records are used as negative samples.
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Preprocessed
AAU ECG

Train Data Set
- 70% random sampled.

Test Data Set
- 30% random sampled.

Binary Train Data
- 50% positive class,

- 50% negative class.

Binary Test Data
- Random sampled.

Figure 3.3: The binary relevance method for data transformation used for each class in the AAU-ECG
data set.

A problem that occurs as a result of applying the binary relevance transformation method
is that the distribution of the negative and positive observations in the train set gets skewed
as we combine many classes into the negative class. We solve this problem by balancing
the train set. We change the distribution of the train data set to consist of 50% observation
from the positive class, and then randomly sample the remaining 50% negative observa-
tions from the other classes. The Figure 3.3 illustrate how we create the binary train and
test set for a class in the AAU-ECG data set. We create the binary test set by randomly
sampling observations from the test data set and then assigning the classified class as the
positive class, where the remaining classes are combined into a single negative class.

3.1.2 Selection of Diagnoses

The BST algorithm we use to extract shapelets has a rather high time complexity of O(n2m4).
To accommodate for this, we reduce the dimensionality m of each observation n using the
PAA algorithm. For AAU-ECG we also reduce the number of observations used to extracts
shapelets by limiting our focus to a subset of the 87 total classes in the data set.

The diagnosis selection is made in collaboration with associate professor Claus Graff [14],
and they are listed in Table 3.2. The selection of diagnoses fall into four diagnosis groups
Intraventricular Conduction (IC), Chamber Hypertrophy or Enlargement (CHE), Infarction
(INF) and Repolarization Abnormalities (RA). From a medical point of view, these groups
are critical as IC and INF carry a high risk of death, and they are all interrelated. The diag-
noses of IC and INF are often preceded by diagnoses from CHE and RA. For example, di-
agnoses in the arrhythmia group RA are most often caused by ischemia, which is when an
inadequate amount of blood is supplied to parts of the heart, leading to oxygen-deprived
tissue. If untreated, ischemia may eventually lead to the death of the oxygen-deprived area
in which case the diagnosis is then classified as an infarct (INF) diagnosis [14]. Infarct di-
agnoses are among the heart diseases that carry the highest mortality risk and as such the
early detection and treatment of the preceding ischemia diagnosis is vital [14].

26



3.2. Preprocessing Aalborg University

Group Name Description Count

IC

RBBB (440) Right bundle branch block 25,532
IRBBB (445) Incomplete right bundle branch block 20,780
LBBB (460) Left bundle branch block 13,283
ILBBB (465) Incomplete left bundle branch block 2,638

CHE

LVH (540) Voltage criteria for left ventricular hypertrophy 729
LVH2 (541) Left ventricular hypertrophy 20,766
QRSV (542) Minimal voltage criteria for LVH 73,314
LVH3 (548) Moderate voltage criteria for LVH 11,599

INF

SMI (700) Septal infarct 21,310
AMI (740) Anterior infarct 24,146
LMI (760) Lateral infarct 3,682
IMI (780) Inferior infarct 47,987
IPMI (801) Inferior-posterior infarct 823
ASMI (810) Anteroseptal infarct 8,845
ALMI (820) Anterolateral infarct 2,079

RA

NST (900) Nonspecific ST abnormality 43,550
NT (1140) Nonspecific T wave abnormality 27,801
NSTT (1141) Nonspecific ST and T wave abnormality 22,152
LNGQT (1143) Prolonged QT 18827
AT (1150) T wave abnormality, consider anterior ischemia 3,844
LT (1160) T wave abnormality, consider lateral ischemia 11,387
IT (1170) T wave abnormality, consider inferior ischemia 7,532
ALT (1180) T wave abnormality, consider anterolateral ischemia 4,078

Table 3.2: The 23 selected diagnoses of the AAU-ECG data set.

3.2 Preprocessing

In this section, we present the preprocessing and segmentation steps applied to the AAU-
ECG and MIT-BIH data sets. We do apply the preprocessing to the data before we do
shapelet extraction and subsequent transformation. First, we remove low- and high-frequency
noise from the ECG records in the MIT-BIH data set followed by a segmentation of each
heartbeat. We do not apply these steps to the AAU-ECG data set as the median, described
here Section 1.2, only contains a single heartbeat and the Marquette system applies noise
filtering when creating the median. Finally, the dimensionality reduction method PAA is
applied on both data sets to reduce the dimensionality of the time series.

The noise contamination mainly comes from three sources [52]; power line interference,
frequency waves less than 1 Hz and high-frequency noise. The power line interference
referred to as 50/60-Hz buzz and high-frequency noise, typically caused by muscle activity,
cause small disturbances in the ECG signal. The frequency waves less then 1 Hz causing
baseline wander is an occurrence that happens due to patient respiration.
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To eliminate the high and low frequency noise of the ECG signals in the MIT-BIH data
set we apply Butterworth Bandpass Filter (BPF) [53]. We chose this method for its high
performance and simplicity compared to more complex filters [53]. The leads are filtered
with a fifth order BPF with a low-frequency cutoff of 0.05 Hz and a high-frequency cutoff
of 150 Hz as a first step to remove baseline wander and muscle activity. We also apply
two median filters to remove low-frequency baseline wander [21]. First, each ECG signal is
processed with a median filter of 200 ms width to remove the QRS and P waves followed by
a median filter of 600 ms width to remove the T waves. We then extract the baseline wander
signal from the output of the second median filter. Finally, we subtract the baseline wander
signal from the original signal. The result is a signal free from baseline wander an example
of which can be seen in Figure 3.4 where the filters are applied to lead V1.

Figure 3.4: Example of filtering a subsection of the raw lead V1 signal from the MIT-BIH database for
removing baseline wander and high frequency noise.

For the heartbeat segmentation of the ECG signals, the labeled R peaks by the cardiologist
found in the annotations files of the MIT-BIH data base are used. A left and a right window
are calculated for the current R peak by taking half of the distance from the preceding and
succeeding R peak, respectively, to the current R peak.
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3.2.1 Piecewise Aggregate Approximation

The BST, explained in Section 3.3.1, is a computationally expensive algorithm, where es-
pecially the time series dimensionality affect its runtime. Hence, to give the BST a greater
number of time series from which to extract shapelets, the dimensions of each ECG is re-
duced before applying the BST algorithm. We use the PAA dimension reduction algorithm
[47] which can handle time series of an arbitrary length and does a good job of maintaining
the shape of the original time series.

Figure 3.5: A median lead II before and after reducing the dimensions by a factor of 4 using PAA.

A positive side effect of using PAA on ECG signals is that the nature of its calculations
smooths the time series. This effect is beneficial as it mitigates some of the electrical noise,
that the noise filtering did not remove, from the ECG as seen in Figure 3.5. This noise may
cause problems during the later shapelet generation, as it can have a significant impact on
the z-normalization of a somewhat level candidate shapelet in the BST.

The PAA algorithm reduces the dimensions of a time series T by first partitioning it into b
disjoint and equal sized subsequences, also called buckets. Then the mean value of each
subsequence is used as a new dimension in the new time series: T = t1, · · · , tb , where 1 <
b < m and m is the length of the original time series. The kth subsequence is calculated as
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seen in Equation (3.1) [47].

tk = b

|T |

|T |
b∑

i=start
ti , where start = |T |

b
(k −1)+1 (3.1)

We reduce the dimensions of all our ECGs by a factor of 4, hence, we have a dimensionality
of b = 600

4 = 150 on the AAU-ECG data set. The effect of reducing the dimensions from 600
to 150 can be seen in Figure 3.5.

3.3 Shapelet Transformation

We will now elaborate on the shapelet extraction, and subsequent transformation of the
data sets using them. The method is often called shapelet transformation, but the majority
of the algorithm deals with the extraction of shapelets. Our shapelet transformation ap-
proach is based on the BST algorithm from [16] with some modifications to improve run
time and enable it to handle multivariate data.

3.3.1 Binary Shapelet Transform

We transform our data using a modified version of the state of the art ST-based algorithm,
the BST algorithm, before we use it as input to our classifier. We choose to use a BST as it
has been shown to achieve promising results on ECG-based data sets [8] and BST together
with the HESCA ensemble was the best performing shapelet-based algorithm in a recent
large experimental analysis of state of the art univariate TSC algorithms [8]. The BST al-
gorithm has also been shown to perform better on multi-class problems compared to the
original ST algorithm [16]. The BST is used to both extract the shapelets from the shapelet
data set and transform the train- and test data sets seen in Figure 3.1. The algorithm can
be seen in Algorithm 3.1, where two main steps are essential: The extraction of shapelets
on Line 2 and the transformation of the data into feature vectors using the minimum dis-
tances from a time series to each shapelet on Line 6.
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Algorithm 3.1 binaryShapeletTransform(X , mi n ∈Z, max ∈Z, numSh ∈Z)

Input: X : A list of time series,
mi n: Min shapelet length,
max: Max shapelet length,
numSh: number of shapelets to use for transformation.

Output: The binary shapelet transformed data set.

1: # find the best shapelets with lengths between mi n and max.
2: S = bi nar yShapeletSelect i on(X ,mi n,max,numSh)
3: f eatur eV ector s = [|X |][|S|];
4: for i = 0 to |X | do
5: for j = 0 to |S| do
6: f eatur eV ector s

[
i
][

j
]= mi nDi st (X .g et (i ),S.g et ( j ));

7: end for
8: end for
9: return f eatur eV ector s;

The algorithm is similar to the original ST algorithm [2]. However, it requires that each
class contribute with an equal amount of shapelets and it uses a more efficient distance
method in both extracting the shapelets, and the transformation further explained in Sec-
tion 3.3.3. The equal distribution of shapelet between the classes is advantageous, as we
have many classes, represented as diagnosis statements, and the number of ECGs per class
is unbalanced, why some classes could otherwise produce more shapelets then others.

The selection of shapelets from Algorithm 3.1 on Line 2 can be seen in Algorithm 3.2. For
each time series T , all possible shapelet candidates between mi n and max length are
found on Line 6. Using the minimum distance from a shapelet to all the time series to-
gether with the classes these time series belong to, the quality of a shapelet is calculated
on Line 11. Information gain or F-statistics are the most commonly used quality mea-
sures. The number of shapelets to find numSh is taken equally from each class in the loop
on Line 21, where shapelets with a higher quality score are prioritized.

31



Heartbeat Classification of Electrocardiograms Chapter 3. Methodology

Algorithm 3.2 binaryShapeletSelection(X , mi n ∈Z, max ∈Z, numSh ∈Z)

Input: X : A list of time series,
mi n: Min shapelet length,
max: Max shapelet length,
numSh: number of shapelets to extract.

Output: A list of the numSh highest quality shapelets with an equal distribution of classes.

1: shapel et M ap = {}; # key = class, value = list of shapelets.
2: topK Shapel et s = {};
3: for all T in X do
4: S = {};
5: # get shapelet candidates in data set T with length mi n to max.
6: candLi st = shapel etC andi d ates(T,mi n,max);
7: for all s in candLi st do
8: # find min dists between candidate s and each series in X .
9: Ds = mi nDi st s(s, X );

10: # calc quality of shapelet s using distances.
11: qual i t y = calcQuali t y (s,Ds , X ) ;
12: s.setQual i t y(qual i t y);
13: S.add(s);
14: end for
15: # remove candidates that are similar to candidates of higher quality.
16: S = r emoveSel f Si mi l ar (S)
17: cl ass = T.g etC l ass();
18: shapel et M ap.g et (cl ass).add(S);
19: end for
20: numC l asses = |X .cl asses()|;
21: for all ke y in shapel et M ap do
22: temp = sor tB yQuali t y(shapel et M ap.g et (ke y)); # sort quality descending

23: topK Shapel et s.add
(
temp.subl i st

(
0, numSh

numC l asses

))
;

24: end for
25: return topK Shapel et s;

The BST algorithm is computationally expensive, with a time complexity of O(n2m4), where
n is the number of observations and m is the dimensionality of each time series. This com-
plexity makes it unfeasible to apply it on large data sets like ours. The complexity analysis
of the algorithm is presented in Section 3.6.

In the literature, speed up improvements for ST and most shapelet-based algorithms can
be divided into two categories: (I) Improve the time it takes to find the minimum distance
between a shapelet and a time series (Algorithm 3.2 Line 9 and Algorithm 3.1 Line 6),
(II) reduce the amount of shapelet candidates evaluated (Algorithm 3.2 Line 6). We use
the state-of-the-art minimum distance improved online subsequence distance used in the
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standard BST [16] together with a novel windowed constraint on the distance subsequence
calculations. Further details about our distance method are provided in Section 3.3.3 and
Section 3.3.4 respectively. To find the candidate shapelets in Algorithm 3.2 Line 6, we pro-
posed to use the heuristic shapelet search which we name FSS from the Fast Shapelet clas-
sifier introduced in [3]. The FSS approximate a smaller subset of good shapelet candidates,
instead of exhaustively evaluating all shapelet candidates as done in the original ST [2] and
BST [16]. More details regarding the FSS can be found in Section 3.3.5.

3.3.2 Measuring The Quality of a Shapelet

The shapelet extraction approach in the original shapelet paper [1] used information gain
to asses the quality of a shapelet. In [54] Hills et al. evaluated three alternative similarity
measures in the context of shapelet transformed data and concluded that the F-statistic
should be the default measure of choice as the F-statistic were significantly faster and more
accurate than information gain in their experimental results on synthetic data sets. How-
ever in [2] Lines et al. concluded that information gain slightly outperforms the F-statistic.
Hence, we will use both the information gain and the F-statistic to measure the quality of
a shapelet.

The information gain, in the setting of shapelets, evaluate how much information is gained
by using a splitting strategy to divide data set into two using the shapelet and the minimum
distance from the shapelet to all the time series. It uses the entropy of a data set X con-
taining two classes A and B , which can be seen in Equation (3.2).

I (X ) =−p(A)log (p(A))−p(B)l og (p(B)) (3.2)

where p(A) is the portion of objects in class A and p(B) is the portion of objects in class B .
We use a 1-vs-all strategy, where the class the shapelet candidate originate from is the A
class and the B class is the negative class containing all the remaining classes.

A splitting strategy divides X into two disjoint subsets, X1 and X2. The information re-
maining in the entire data set after splitting is defined by the weighted average entropy, Î ,
of each subset. The total entropy of X after splitting is shown in Equation (3.3).

Î (X ) = |X1|
|X | I (X1)+ |X2|

|X | I (X2) (3.3)

Given a splitting strategy sp which divides X into to subsets X1 and X2 the information
gained for the given split is difined in Equation (3.4).

IG(sp) = I (X )− Î (X ) (3.4)

In our case, the splitting strategy is defined as the tuple sp =< s,γ>, where a shapelet s is
used to calculate the minimum distance between all time series and a distance threshold γ
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is used to split the time series based on their distance to the shapelet. The information gain
used as a quality measure of a shapelet s is the optimization problem of finding the split of
all possible splits Γ that achieves the highest information gain as seen in Equation (3.5).

M axIG(s) = max
γ∈Γ

IG(< s,γ>) (3.5)

Lines et al. was the first to propose the use of the F-statistic as a quality measure for
shapelets [2]. The F-statistic is original a statistical hypothesis test, but Lines et al. only
used the F-value to see how the distribution of different classes’ distances between time
series and a shapelet differs. The intuition is that a good shapelet should be close to other
time series of the same class and far from time series of different classes.

To asses the list of distances from all time series to a shapelet Ds = {d1,d2 · · · ,dn}, we first
group time series of the same class together, where Di is the group for the ith class. The
first step in calculating the F-value is to find the average model variability MSM . We take
the sum of squares of the model SSM , also known as the sum of squares between groups,
and average it by the number of values that are free to vary, the degree of freedom DFM for
the model seen in Equation (3.6).

MSM = SSM

DFM
=

(∑|C |
i=1 ni

(
D̄i − D̄

)2
)

|C |−1
(3.6)

, where D̄ is the mean of all the distances in D , the mean of the group Di is D̄i and ni is the
amount of distances in group Di .

The next step is to find the average residual variability MSR , which is the average error or
variation within each group. This is done by the residual sum of squares or sum of squares
within group SSR and average by the residual degree of freedom DFR .

MSR = SSR

DFR
=

(∑|C |
i=1

∑
d j∈Di

(
d j − D̄i

)2
)

n −|C | (3.7)

Then the F-values is a ratio of how good the model is compared to how much error there
is.

F −value = MSM

MSR
(3.8)

A high-quality shapelet has high F-value, meaning it has a high average variation of the
distance between the different group of classes and a low variation of distances within
the classes. In our case, we are doing this binary for the class of the shapelet like in the
information gain.
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3.3.3 Improved Online Subsequence Distance

The improved online subsequence distance measurement was proposed as the distance
method used in BST [16] and is an improved version of the distance measure used in the
original shapelet paper [1]. It improves the likelihood for early abandoning the distance
calculations between a shapelet and a subsequence of a time series, by trying to find a good
match to the shapelet early. The distance method used three optimizations to improve the
original distance method used with ST from [2]:

1. New evaluation order between a shapelet and a time series

2. Reorder the distance evaluation order between a subsequence and shapelet.

3. Caching repeating calculation.

The improved online distance method changes the way it slides across a time series by
starting the distance calculation from the time a shapelet was found and alternating mov-
ing one step to the right and one step to the left of the start position. The reason is that
there is a high chance that a good match to a shapelet is within its vicinity. The effect of
changing the start position can be seen in Figure 3.6. In the case of Figure 3.6, more dis-
tance calculation are being early abandoned, the orange part, when starting at the time
a shapelet was found seen in Figure 3.6b, compared to previous method used in the ST
algorithm [2] seen in Figure 3.6a.

(a) Euclidean distance early abandon.
(b) Early abandon using improved online subse-
quence distance.

Figure 3.6: The difference in early distance abandons by starting at time 0 and slide across the time
series (a), and start at the time the shapelet was found and alternating move a step to the right or left
from that position (b). Source: Ref. [16]

Another optimization used, is to reorder the evaluation order between a shapelet and a
subsequence, by calculating the distance between the highest valued points first, as they
tend to result in more substantial differences and makes the pruning happen earlier.

The last improvement is to cache the previous accumulating sum and squared sum of a
time series’ subsequence. The sums are updated by only calculating the sums at the last
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and first positions of each new subsequence after each step in sliding across the time se-
ries, by subtracting the previous sum and add the new. These two sums are used to approx-
imate the standard derivation for the local z-normalization of subsequences when sliding
across the time series. As the sliding window are only moving a single step at a time, most
of the repeating calculation of the same sum and the squared sum can be reused.

3.3.4 Windowed Constrained Optimization

When working with heartbeat classification of ECG medians, we can use the knowledge
that they contain a single heartbeat thus all phenomena like p-waves should appear only
once. Leveraging this knowledge, we can ensure that an abnormality found at one place
in the median waveform should, if present, be found in the same vicinity on other time
series.

With this in mind, we can reduce the search area by only performing distances calculations
on a window surrounding the shapelet candidate. We define the window w as a fraction
of the whole time series, where w ∈ [0,0.5]. The window defines how much of the time
series we are evaluating left of the start position and right of the end position of where
the shapelet was found. The length of the windows to one of the sides are defined as τ =
mw . The windowed constraint is the function W (T, |s|, p,τ) seen in Equation (3.9). The
function takes a time series T = {t0, t1, . . . , tm−1}, the length of the shapelet |s|, the position
the shapelet was found p, and the length of the window τ as parameters and returns a
subsequences of a length at most 2τ+|s| enclosing the shapelet.

W (T, |s|, p,τ) =


{tp−τ, tp−τ+1, . . . , tp , . . . , tp+|s|+τ−1, tp+|s|+τ}, if p−τ>0 and p+|s|+τ<m

{t0, . . . , tp , . . . , tp+|s|+τ−1, tp+|s|+τ}, if p−τ≤0 and p+|s|+τ<m

{tp−τ, tp−τ+1, . . . , tp , . . . , tm−1}, if p−τ>0 and p+|s|+τ≥m

{t0, . . . , tp , . . . , tm−1}, if p−τ≤0 and p+|s|+τ≥m

(3.9)

There are four cases in Equation (3.9):

1. The window of length τ is extracted at each side of the shapelet candidate.

2. There are enough samples to the right but not enough to the left of tp , then take what
remains.

3. There are enough samples to the left but not enough to the right of tp+|s|, then take
what remains.

4. The window cannot be extracted from either side, and we take the remaining from
both sides.

Using the windowed constrained optimization, the last case can only occur on problems
were the window and max length of the shapelet does not satisfy 2τ+ |s| < m. When it is
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satisfied, a time series of length |T ′| = 2τ+|s| is compared to the shapelet in the worst case
(1) and in the best case when the shapelet is found at the start or end of the time series
only a length of |T ′| = τ+|s| is compared.

3.3.5 Fast Shapelets Search

The FSS is the shapelet extracting method used in the Fast Shapelet classifier proposed by
Rakthanmanon and Keogh in [3]. It uses a fast heuristic scoring system to find a subset of
good shapelet candidates and only uses these for the later shapelet evaluation. The algo-
rithm is centered around transforming each shapelet candidate, by applying the Symbolic
Aggregate Approximation (SAX) algorithm [55], into a string representation. We refer to
this string representation as a SAX word or simply a word. As a measure of shapelet can-
didate quality, a shapelet candidate’s discriminating power is defined by how often other
candidates from same classes have the same SAX word versus the word of candidates from
different classes. The pseudo code for the FSS algorithm is seen in Algorithm 3.3. For all
length of shapelet candidates a saxLi st is created in Line 3. The list contains the SAX
words of all shapelet candidates from the data set X having the given length len.

Algorithm 3.3 FSS(X , mi n ∈Z, max ∈Z, i ter ∈Z, topK ∈Z)

Input: X : A list of time series,
mi n: Min shapelet length,
max: Max shapelet length,
i ter : number of random projection iterations,
topK : number of shapelet candidates to use at each length.

Output: Returns the shapelet candidates with the topK best SAX scores.

1: scor eLi st = {};
2: for len = mi n to max do
3: saxLi st =Cr eateSaxLi st (X , len);
4: for i = 1 to i ter do
5: f r eqCount = RandPr o j ect i on(saxLi st , X );
6: scor eLi st =Upd ateScor e(scor eLi st , f r eqCount );
7: end for
8: end for
9: scor eLi st = sor tB yScor e(scor eLi st ); # sort scores descending.

10: scor eLi st = scor eLi st .subLi st (0, topK );
11: # find the candidates of the topK best scores.
12: return f i ndC andi d ates(scor eLi st );

The algorithm has two steps for creating a SAX word: First, it reduces the dimensional-
ity of the subsequence using PAA after which it transforms the time series into a sym-
bolic representation. The symbolic representation is made using an alphabet of symbols
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A = {α1,α2, . . . ,αh}, where the symbols are equally distributed across the h symbols using
cutoff values from the Gaussian curve of the normalized time series’ values. Data points
that are between two cutoff values are assigned the same symbol. These cutoff values that
splits a normalized Gaussian curve into h equal sizes can be found in a lookup table, like
the one used in [55]. The selection of the alphabet cardinality h, also called card size, is a
balancing act between how accurate the candidate shapelets are represented as SAX words
versus the amount of the memory they take up. We choose seven as the card size as it the
highest cardinality we can express using three bits per symbol, where the "000" bit se-
quence is omitted because of implementation details. Further, we will not include the PAA
step of the SAX algorithm as we apply this dimension reduction to the entire data set al-
ready.

When the saxLi st has been created, the next step is to score the shapelet candidates. Each
shapelet candidates can be directly scored using the collision between the words in the
saxLi st , however, Rakthanmanon and Keogh mentioned that doing may cause false dis-
missals [3]. This problem occurs when two almost identical subsequences are assigned to
similar but slightly different SAX words as one or more of their values are barely at each
side of the cutoff values. The algorithm handles this problem by applying random projec-
tion, see Line 5. The random projection masks different parts of the SAX words in each
iteration of the loop at Line 2, and the collisions between identical SAX words together
with their classes are kept track of by a collision table. The algorithm updates the scores of
discriminating power using this collision table on Line 6. The score is based on how often
the word collides with a word of the same class versus the number of collisions with words
from other classes. The intuition is that a good shapelet candidate for a class has a similar
SAX word compared to others from the same class and is dissimilar to SAX words from the
other classes. After making the random projection and updating the scores i ter times, the
topK highest scoring shapelet candidates are selected and returned for shapelet evalua-
tion. Rakthanmanon and Keogh conclude that the i ter parameter which determines the
number of iterations of random projection to conduct does not affect the accuracy of their
classifier above 10 or so iterations [3], hence, we will use the value of 10 as they do.

The Algorithm 3.3 is slightly altered from the approach used in [3], as they took the topK
candidates from each length. Our approach in Algorithm 3.3, on the other hand, does not
care that there are equal amounts of shapelet candidates from each length, we want the
best shapelet candidates regardless of the length. This fact also entails that our topK pa-
rameter needs to be higher than the one used in [3], as we extract the shapelet candidates
outside of the for the loop at Line 2.

3.3.6 Extension to Multivariate Time Series

The BST algorithm is by definition an algorithm for univariate time series, but our AAU-
ECG data set is multivariate. Bostrom and Bagnall present three methods, described here
Section 2.1.1, that when applied would make BST able to handle multivariate data [19].
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The activity of the heart is reflected in the waveform of the ECG at roughly the same time
on each lead. The propagation of the electrical signal that innervates the heart, causing
it to contract, is recorded using lead at different angles which causes the leads to mea-
sure activity at slightly different times. There are, however, some diagnoses like RBBB
(440) and Left Bundle Branch Block (LBBB (460)) that obstructs the electrical propagation
through parts of the heart tissue, making some lead detect the electricity much later than
others. Because of this, the distance method used between a shapelet and a time series
across multiple channels cannot be strictly dependent in time like the multivariate depen-
dent shapelet method proposed in [19]. On the other hand, the multivariate independent
shapelet method from [19], combined with our window constraint, gives us the needed
flexibility across the leads, which is why we have chosen to use it. With this new method,
we now have a distance from each lead between the shapelet and a time series.

The multivariate independent shapelet method is only the second-best performer out of
the three methods[19]. However, none of the tested data sets were ECG-based, and they
imposed an artificial time limit of one hour to extract shapelets. Further, the as explained
above we believe that the independent method in conjunction with the window constraint
is well suited for ECG data.

Bostrom and Bagnall evaluate concatenating the shapelet distances into a single dimen-
sional feature vector against ensemble trained each lead’s distances. They found that the
concatenation method performed best across multiple classifiers [19]. As we have 12 leads
in the AAU-ECG data set, the concatenation method would increase the dimensionality
of our feature vector from the shapelet transformation by a factor of 12. This increase in
the feature vector dimensionality would have a significant effect on the run time of train-
ing the classifier. We could overcome this by drastically limiting the number of shapelets
to produce shorter distances vectors. However, we have instead chosen to combine the
12 distances vectors from the leads into a single average distance, which allows us to use
more shapelets in shapelet transformation of the time series.

3.4 Classification

The BST algorithm in the previous step, described in Section 3.3, transforms the multivari-
ate time series into a univariate feature vector that can be classified by standard classifiers.
We will now briefly present the classifier we have elected to use and our reasons for choos-
ing it.

The classifier typically used in conjunction with ST is the heterogeneous ensemble HESCA
that is made up of 8 different classifier models [17, 18, 27]. The HESCA together with ST
was the best performing classifier using shapelet in the review of time series classification
methods [8], which is why we have chosen to use it as the classifier. We will use a reduced
version of the HESCA ensemble, only including the four best performing classifiers on our
data sets. The reason is that we have seen that it improves the classification performance
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on our data sets, and it improves the run time of the ensemble. The classifiers used in
HESCA are listed in Table 3.3, where two of the classifiers themselves are ensemble classi-
fiers of decision trees and the two others are kernel based classifiers.

We use the original implementation of the HESCA ensemble from the UEA & UCR Time
Series Classification Repository [15], where the classifiers are implemented in the Waikato
Environment for Knowledge Analysis (WEKA) Java library [56].

Algorithm Type Parameters

Random Forest Tree 500 Trees
Rotation Forest Tree 10 Trees
Support Vector Machine Linear Kernel
Support Vector Machine Quadratic Kernel

Table 3.3: Table of the classifiers and parameters employed in our version of the Heterogeneous En-
sembles of Standard Classification Algorithm.

We will not include the support vector machine with a quadratic kernel when we train the
binary classification problems of the AAU-ECG dataset. This decision is based on our ex-
perience of this model eliciting poor run time when training on a few problems that are
hard to classify. The WEKA library implements the quadratic kernel support vector ma-
chine using the Sequential minimal optimization which is an algorithm that solves large
quadratic problems by breaking the problem into a series of smaller problems. The algo-
rithm has high run time when it struggles to break the problem into smaller problems [57]
which is likely what happens on the hard to classify problems.

3.5 Evaluation Metric

We follow the AAMI metric evaluation recommendations when we evaluate test result of
the classifier models. The recommendations specify the usage of four statistical indices,
recall, precision, false positive rate (FPR) and ACC for the whole data set. Recall and preci-
sion are also sometimes referred to as sensitivity and positive predictivity respectively. The
four statistical indices are derived from true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) as specified in Equations (3.10) to (3.13). TP is the number of
samples that are correctly predicted, and FN is the number of samples that are not pre-
dicted as a given class but should have been. TN is the number of samples that the model
correctly classifies as not belonging to a given class and FP is the number of samples incor-
rectly classified as belonging to a given class [58]. When working with a single-labeled and
multi-class problem, a one-vs-all approach can be adopted. In this manner, the four values
can be calculated for a class using a confusion matrix as seen for the class B in Figure 3.7
as follows:
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TP: The intersection between the predicted class and the actual class, the diagonal of the
matrix.

FP: The sum of the predicted class’ column excluded the TP.

FN: The sum of the actual class’ row excluded the TP.

TN: The sum of the remaining cells.

A B C D

A TNB FPB TNB TNB

B FNB TPB FNB FNB

C TNB FPB TNB TNB

D TNB FPB TNB TNB

Predicted class

A
ct

u
al

cl
as

s

Figure 3.7: A confusion matrix of four classes where the TP, TN, FP and FN are seen for the class B.

Recall measures the proportion of correctly classified samples of a class.

Recall(c) = T Pc

T Pc +F Nc
(3.10)

Precision is the fraction of correctly classified samples of a class out of all the samples
predicted for that class:

Precision(c) = T Pc

T Pc +F Pc
(3.11)

FPR is the ratio of the incorrectly classified samples of a class over the total number of
samples not classified as the class:

FPR(c) = F Pc

T Nc +F Pc
(3.12)

ACC measures the fraction of samples correctly classified divided by the total number of
samples:

ACC =
∑

c∈C T Pc

T P +T N +F P +F N
, where C is the set of Classes in the data set. (3.13)

As both the AAU-ECG and especially the MIT-BIH data set are very imbalanced, the ma-
jority class will massively distort the ACC result. Thus most emphasis should be placed
on the recall, precision, and FPR measures when we compare the methods used to do the
ECG classification.
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3.5.1 Multi-labeled Evaluation

To asses how well the Marquette performs compared to the doctors on the AAU-ECG data
set, we need to handle multi-labeled data. One way of doing so is to change the way we
count the TP, TN, FP, and FN. Given that the ith record have a set of predicted labels Ŷi

and a set of truth labels Yi , a class c’s values can be computed as seen in Equations (3.14)
to (3.17).

TP_Multi(c) =
n∑

i=1

{
1, if c ∈ Ŷi ∧ c ∈ Yi

0, otherwise
(3.14)

FP_Multi(c) =
n∑

i=1

{
1, if c ∈ Ŷi ∧ c ∉ Yi

0, otherwise
(3.15)

FN_Multi(c) =
n∑

i=1

{
1, if c ∉ Ŷi ∧ c ∈ Yi

0, otherwise
(3.16)

TN_Multi(c) =
n∑

i=1

{
1, if c ∉ Ŷi ∧ c ∉ Yi

0, otherwise
(3.17)

With these new definitions, we can to use the statistical indices from Section 3.5 on the
multi-labeled data from AAU-ECG.

3.6 Complexity Analysis

We will now analyze the time complexity of some of the important parts of our approach.
The important parts are:

1. Dimension reduction of the data using PAA.

2. Extracting shapelets.

3. Transform data using shapelets.

4. Build the ensemble classifier.

5. Evaluate the ensemble classifier.

6. Classify using the baseline 1-NNDT W .

The Table 3.4 shows the runtime complexity of the algorithms used in the steps mentioned
above as well as explaining the notation used, and Figure 3.8 illustrates the overview of how
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Raw Data

Preprocessing
PAA = O(nm)

Extract Shapelets
BST =O(n2m4)

BSTF SS =O(n2km2)

Shapelet Transform
BST = BSTF SS =O(|S|nm2)

Classify 1-NNDT W

O(|X1||X2|mb)

Build HESCA Ensemble
O(|E |h(np2 +p3)+|E |nm2)

Figure 3.8: The overview of some of the algorithms used and their complexity.

we incorporate these algorithms in our approach. We will now further elaborate on these
algorithms and their complexity.

The dimension reduction step of a single time series of length m using PAA can be done
in a single parse across the time series in O(m) time. Hence, transforming all n time series
takes only O(nm) time.

The extraction of shapelets is computationally expensive. Even with the different pruning
methods, like the improved online subsequence distance described in Section 3.3.3, the
runtime complexity does not improve compared to the brute force method of exhaustively
evaluating all possible shapelet candidates. There is a total of O(m2) possible shapelet can-
didates from a single time series Line 6, resulting in O(nm2) total shapelet candidates to
evaluate. The distance from a shapelet to all other time series on Line 9 takes O(nm2) time,
which gives a final time complexity of O(n2m4) for the brute force- and the BST algorithm
to extract all the shapelet candidates.

Once the shapelets have been extracted, we use them to transform the data set into dis-
tance feature vectors. The transformation calculates the cross product of the minimum
distances between the shapelets and every time series in the data set. The minimum dis-
tance between a shapelet and a time series in Algorithm 3.1 at Line 6 has a time complexity
of O(m2) time, which gives a final time complexity of O(|S|nm2) from the cross product of
the |S| shapelets and n time series.

Testing and training an ensemble is upper bounded by the slowest classifier used, which
in our case is the ensemble classifier RotF [59]. In the training phase, the RotF generates E
classifiers each built on a rotation feature space of the original data set. The rotation fea-
ture space is created by multiplying the data set with a sparse rotation matrix. The rotation
matrix is constructed by randomly splitting the feature vector into h disjoint subsequences
and then applying Principal Component Analysis (PCA) on 75% of the features resulting in
a length of p = m·0.75

h . The complexity of this construction is upper bounded by the num-
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ber of splits h and the time it takes to apply PCA on each split. The application of PCA
computes a covariance matrix in O(np2) time and the eigen-value decomposition is ap-
plied to that matrix in O(p3) time [60]. The run time complexity of applying PCA on the
h subsequences is O(h(np2 +p3)), which is faster than applying PCA on the whole feature
vector of length m.

The E classifiers used in our RotF ensemble are all C4.5 decision trees [61]. The C4.5
decision tree has a build time complexity of O(nm2) [62] and building |E | of such clas-
sifiers gives O(|E |nm2). This makes the final run time complexity of the RotF classifier
O(|E |h(np2+p3)+|E |nm2). We omit analzing the time complexity of evaluation the HESCA
classifiers as none of the has a high evaluation time.

The baselines 1-NN algorithms, on the other hand, does almost all of the work in the clas-
sification step. The algorithm classifies a data set by calculating the cross product of dis-
tances between the train and test set. The time complexity of the standard DTW algorithm
is O(m2) [63], then the total complexity is O(|X1||X2|m2) classifying a train set X1 and a
test set X2. We use an implementation of the DTW algorithm from the WEKA java library
that uses a constrained warping path, the Sakoe-Chiba band, which reduces the complex-
ity of the DTW algorithm to O(mb)), where b is the maximum warping the warping path
are allowed to do.

Method Complexity Parameters

PAA dimension
reduction.

O(nm)
n : Number of time series in the data set,
m : Dimensionality of the time series.

BST extracting
of shapelets.

O(n2m4)

BSTF SS extracting
of shapelets.

O(n2km2) k : Number of shapelet candidates used.

Shapelet transform O(|S|nm2) |S| : Number of shapelet used.

Built HESCA
O(|E |h(np2 +p3)+

|E |nm2)

|E | : Number of classifiers,
h : Number of feature subsets,
p : Length of each feature subsets for PCA.

Classify 1-NNDT W O(|X1||X2|mb))
|X1| Size of the train data,
|X2| Size of the test data,
b : Sakoe-Chiba band size for DTW.

Table 3.4: The worst case complexity of the different algorithm used in our approach.

Given that our data sets, described in Section 3.1, has a large number of observations n and
the dimension m is reduced in length using PAA, we can deduce that the real bottleneck is
the extraction of shapelets from the data set. This bottleneck is also the reason that we have
focused on improving the run time of the BST algorithm described in Section 3.3.1. One
thing to notice is that the extracted shapelets can be reused to test different configurations
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of classifiers and data sets used for classification.

Changing the shapelet search algorithm to the heuristic FSS described in Section 3.3.5
gives us the most substantial improvement in run time of our changes to the BST algo-
rithm. The FSS heuristic reduces the number of shapelet candidates by pre-selecting the k
best scoring candidates based on a collision-score. The slowest part of calculating this
score is transforming all the shapelet candidates into the string representation of SAX
words. The algorithm needs to parse through the m dimensions of all time series for each
shapelet length l = max −mi n. This finally gives a complexity of O(nml ).

After the score has been calculated, the best scoring k shapelets are used for further eval-
uation, and this means that only O(nk) candidate shapelets are evaluated where k << m2.
The worst-case complexity of evaluating k candidates shapelets is O(n2km2). As m is al-
ways greater than l , the time complexity of evaluating the shapelets dominates the time
complexity of scoring all the shapelet candidates.

We improve the evaluation of each shapelet candidate by using the improved online sub-
sequence distance algorithm mentioned in Section 3.3.3 together with the windowed con-
straint in Section 3.3.4. These two methods do not improve the worst case complexity of
the BST algorithm as no pruning may happen and a window taking up the whole time se-
ries can be used. However, in most cases, most distances calculations are abandoned and
a window smaller than the time series is used, which speed up the average run time of the
algorithm.

We calculate a more precise complexity, given that the number of shapelet candidates is
constrained by the mi n and max candidate lengths, the total amount of shapelet candi-
dates is reduced from O(nm2) to O(nlm). Furthermore, we reduce the length of a time
series using the windowed constraint. This gives a new max time series length q = 2mw +
max, where q ≤ m. This shorted length leads to an improvement from O(nm2) to O(nmq)
time for evaluating the distance between a shapelet and a time series. Using these opti-
mizations, the BST now has a time complexity of O(n2m2l q) and BSTF SS a time complex-
ity of O(n2kmq).

Summary

We have in this chapter presented our approach to applying shapelet-based classification
to the AAU-ECG and MIT-BIH data sets. For the preprocessing of the data mentioned in
Section 3.2, standard noise reduction filters have been applied and the PAA algorithm is
used to reduce the dimensions of the data to increase the speed up of the shapelet trans-
form. The binary relevance method has been adopted to transform the AAU-ECG data set
into a binary classification problem for each class, where we are focusing on 23 of essen-
tial classes in the data set. We will extract interpretative shapelets from the train data set
using the state-of-the-art shapelet transformation BST from Section 3.3, together with two
heuristics to speed up the otherwise slow algorithm. Finally, we have chosen in Section 3.4
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to use a reduced version of the HESCA ensemble as our classifier for this project. We will
follow the performance metrics recommended by AAMI: Accuracy, recall, and precision.

We also presented the performance metrics we use to evaluate the classification results in
Section 3.5 and presented the time complexities of central algorithms used our approach
in Section 3.6.
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4 Experiments & Results

In this chapter, we report the experimental analysis conducted on the MIT-BIH and AAU-
ECG data set following our methodology. We start by describing the experimental settings
for the two data sets. We then report the results for the MIT-BIH data set compared with
state-of-the-art methods followed by the results from the AAU-ECG where we compare
the BST to the Marquette 12SL ECG analysis program. The MIT-BIH data set are evaluated
with the metrics recommended by the AAMI standard, where we for the AAU-ECG data
set report precision and recall. Finally, we present a qualitative evaluation of shapelets
extracted from the AAU-ECG data set.

4.1 Preliminary Experiments

We highlight some of our preliminary experiments in this section. We use these experi-
ments to find optimal values for parameters used in the main shapelet-transform and clas-
sification experiments. We first perform an experiment that compares the performance of
basing our classification analysis on multiple leads versus single leads Section 4.1.1. Next,
perform an experiment that finds the optimal size of the window constraint parameter w
Section 4.1.2.

4.1.1 Performance of Single-lead Compared to Multi-lead

We want to test if including multiple leads in the analysis improves the accuracy compared
to only using a single lead. Within ECG classification lead II is the most used single lead
for diagnosing heart diseases [7]. To evaluate the performance of single-lead compared
multi-lead, we conduct a preliminary experiment on the MIT-BIH data set. For the experi-
ment, we use the 200 best shapelets from each class with a length between 10 and 50. The
constrained window w is set to 0.05. For the single lead configuration, we use the MIT-BIH
lead A which corresponds to lead II in a 12 lead ECG configuration. For the multi-lead
configuration, we use both MIT-BIH lead A and B.

In Table 4.1 the AAMI performance metrics for the experiment are shown. The results
demonstrate that the information from two leads enhances the classification performance
of all classes except the S class. However, the low amount of samples of the S class together
with the very low recall makes the difference in precision a result of few correctly classified
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Method ACC
N S V F

Pre Rec FPR Pre Rec FPR Pre Rec FPR Pre Rec FPR

BST Single-Lead 90.4 94.4 95.1 46.8 28.6 1.74 0.17 60.4 87.0 4.18 2.25 2.06 0.77
BST Multi-Lead 93.4 95.2 98.1 42.1 10.6 2.01 0.67 83.2 87.6 1.29 40.8 36.10 0.44

Table 4.1: AAMI performance comparison of single lead versus multi-lead. The MIT-BIH lead A rep-
resenting the lead II were used for the single-lead. For multi-lead MIT-BIH lead A and B where used.
The bold numbers represent the best score of the two methods.

samples. As the performance seems to be better using the information from multiple leads,
we will in the following experiments use all leads.

4.1.2 Analysis of Windowed Constraint

We want to estimate the optimal size of the window size w of the window constraint. The
window size is defined as a ratio of the time series. To do this, we conduct a preliminary
experiment on the MIT-BIH data set. We conduct experiments by varying the size of the
w as apply BST after which we measure the effect of the window using the classification
performance. We extract the 100 best shapelets from each class with a length between
10 and 50. We use the overall test accuracy and Macro F1 score from the classification
to evaluate the performance of the parameter w as well as the run time of the shapelet
extracting step. The macro average F1 score is more robust measure than the accuracy
against the class imbalance of the MIT-BIH data set and can be seen in Equation (4.1). It
is the average across all the classes’ harmonic mean of precision and recall. The windows
size w is specified as a percentage of the time series.

F1macr o = 1

|C |
∑
c∈C

2 · precisionc · recallc

precisionc + recallc
≡ 1

|C |
∑
c∈C

2 · t pc

2 · t pc + f pc + f pc
(4.1)

In Figure 4.2 the highest test accuracy (94.3%) and second highest macro F1 score (54.3%)
is achieved with a window size of 5% and a run time for the shapelet extraction taking
4525 seconds seen in Figure 4.1. At a window size of 30% the second highest test accu-
racy (94.1%) and third highest macro F1 score (54.1%) is achieved, but with an increase of
the shapelet extraction run time to 8983 seconds. The accuracy when using no window is
91.6% and the run time is 12656 seconds. Another thing worthy of note is that the run time
is not linear as a function of the window size. This is because increasing the window size
also makes the distance pruning more effective which leads to lower improvement overall
from the window.
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Figure 4.1: The run time of the shapelet extraction with varying lengths of window w as a percentage
of the total length of the time series.
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Figure 4.2: The overall classification accuracy (left graph) and Macro F1 score (right graph) for the
MIT-BIH test data set as a function of the size of window w.

4.2 Experimental Settings

For the experimental analysis of the MIT-BIH data set we follow the inter-patient scheme
presented in Section 3.1. We use the reduced HESCA settings for classification described
in Section 3.4. For the shapelet transformation, the 200 best shapelets from each class are
extracted with a minimum length of 10 and maximum length of 50. We set the windowed
parameter w from Section 3.3.4 to 0.05 based on our findings in Section 4.1.2. For the
BSTF SS , we reduce the shapelet candidates evaluated with 50%, which results in a reduc-
tion in the runtime of the algorithm by more than half of the full BST.

In addition to comparing our approach with previous work within ECG classification, we
also include the DTWD and DTWI to examine our approach in relation to state-of-the-
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art multivariate TSC algorithms. DTWD and DTWI are described in Section 2.1.1. The
1-NN DTW-based algorithms were not able to classify the MIT-BIH inter-patient scheme
data set within a time limit of one week, because of the high computational complexity
of the algorithm as described in Section 3.6. To reduce the classification time the test set
DS2 was reduced by approximately 1

5 to 10,000 randomly selected heartbeats leading to
50,998 ·10,000 distance comparisons between heartbeats. The Sakoe-Chiba band, b, were
used in combination with the DTW and specified to 10% of the length of the time series.
In Table 4.2 the parameters used for the MIT-BIH experiment can be seen.

Algorithm Train / Test Parameter Description

BST 50,998/49,666

w = 0.05,
numSh = 200 · |C |,
mi n = 10,
max = 50.

Window size,
Num shapelets extracted,
Min shapelet len,
Max shapelet len.

BSTF SS 50,998/49,666

w = 0.05,
numSh = 200 · |C |,
mi n = 10,
max = 50,
topK = 50%.

Window size,
Num shapelets extracted,
Min shapelet len,
Max shapelet len,
shapelet candidate ratio.

DTWI 50,998/10,000 b = 0.1 Sakoe-Chiba band.

DTWD 50,998/10,000 b = 0.1 Sakoe-Chiba band.

Table 4.2: The experimental settings for the MIT-BIH data set.

For the AAU-ECG data set we evaluate the BST against the predictions of the Marquette.
To cope with the multiple diagnosis statements on each ECG records the binary relevance
method is used to train 23 independently binary ensemble classifiers, one for each diagno-
sis statement. For each of the 23 binary classification problems of the AAU-ECG data set,
we construct an individual train and test set consisting of two classes; the class in ques-
tion and all other class represented as a single class referred to as the positive and negative
class, respectively. We use random sampling to partition 70% of the AAU-ECG data set into
an overall train set and 30% to an overall test set. For each of the binary classifiers, we use a
subset of the overall train data set where we randomly select instances of the positive class
representing 50% of the binary train set. For the remaining 50% representing the negative
class we randomly selected from the other classes following the distribution of the overall
train data set.

We use an upper limit of max 20,000 records in the binary train data set to be able to clas-
sify each of the 23 problems within a time limit of one day. The binary test data set like-
wise have a limit of 20,000 records. For the binary test data set we randomly select 20,000
records from the overall test data set following the distribution and creates the positive and
negative class. 12 out of the 23 diagnosis statements was represented by less than 10,000
records in the overall train data set. In these cases, we extracted all the records for the given
statement and then random sampled the same amount of the remaining classes. The eval-
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uated was still performed on a test set of 20,000 random sampled records like the other
classes. For the shapelet transformation, we extract the 50 best shapelets from each of the
23 classes where the length of the shapelet can be between 10 and 50 samples. The ST
was conducted using the shapelets from the 23 classes as it was seen to give higher perfor-
mance then only using shapelet from the class in question. Table 4.3 shows the parameters
used at the AAU-ECG experiments.

Match Algorithm Train / Test Parameter Description

Precision BST 20,000 / 20,000

w = 0.25,
numSh = 50 · |C |,
mi n = 10,
max = 50.

Window size,
Num shapelets extracted,
Min shapelet len,
Max shapelet len.

Recall BST 20,000 / 20,000

w = 0.25,
numSh = 50 · |C |,
mi n = 10,
max = 50.

Window size,
Num shapelets extracted,
Min shapelet len,
Max shapelet len.

Table 4.3: The experimental settings for the AAU-ECG data set.

In the experiments, we adjust the confidence threshold of the HESCA ensemble for each
diagnosis statement in the classification phase to respectively match the precision and the
recall of the Marquette. These experiments are performed once for each of our 23 diagno-
sis statements that are in focus of this report. If our approach has a higher metric in both
experiments of a diagnosis statement, our approach can be said to have outperformed the
Marquette on that diagnosis statement.

4.3 Results

We now present the results of our experiments. The result of the MIT-BIH and AAU-ECG
classification are found in Section 4.3.1 and Section 4.3.2 respectively. The results for both
data sets are followed by a quantitative evaluation of the results and the AAU-ECG evalua-
tion also contains a qualitative evaluation of interesting shapelets.

4.3.1 MIT-BIH Classification

We present the results from the MIT-BIH experiments, the BST and BSTF SS along with
the results of the state-of-the-art multivariate time series classification algorithms DTWI

and DTWD In addition we report the results from previous work within ECG classification
following the inter-patient scheme. Information about the algorithms used by the previous
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work can be found in Section 2.3.3. In Table 4.4 we report the overall accuracy, precision,
recall and FPR following the AAMI recommendations.

Method ACC
N S V F

Pre Rec FPR Pre Rec FPR Pre Rec FPR Pre Rec FPR

BST 94.3 94.7 99.4 46.1 49.0 1.31 0.05 91.5 86.6 0.58 50.7 19.8 0.16
BSTF SS 91.0 92.7 97.9 64.3 11.9 2.72 0.08 69.6 58.6 1.86 0.49 0.26 0.34
DTWI 88.4 95.9 92.6 37.8 24.4 12.8 1.70 51.5 84.0 5.60 3.00 7.40 1.80
DTWD 87.7 97.0 90.1 25.5 78.8 53.3 0.60 44.5 80.8 7.10 6.00 27.9 3.30
Chazal et al. [21] 81.9 99.2 86.9 6.00 38.5 75.9 4.60 81.9 77.7 1.20 8.60 89.4 7.50
Zhang et al. [31] 88.3 98.9 88.9 7.16 35.9 79.1 6.05 92.8 85.5 0.46 13.7 93.8 0.46
Llamedo et al. [45] 78.0 99.5 77.6 3.32 41.3 76.5 4.17 87.9 82.9 0.79 4.23 95.4 10.2
Chen et al. [46] 93.1 95.4 98.4 37.4 38.4 29.5 1.90 85.1 70.8 0.90 NaN NaN NaN

Table 4.4: Comparison of the proposed methods, state-of-the-art multivariate time series classifi-
cation algorithms and previous work following the AAMI recommendations and the inter-patient
scheme in %.

Table 4.5 displays the confusion matrixes of our experiments obtained by the BST and
BSTF SS on the DS2 test set. We also present the confusion matrices for the DTWI and
DTWD on the reduced DS2 test set with 10,000 heartbeats in total.

Predicted

N S V F

A
ct

u
al

N 43949 19 204 49
S 1786 24 27 0
V 398 6 2790 26
F 284 0 27 77

(a) BST 49,666 heartbeats.

Predicted

N S V F

A
ct

u
al

N 43292 26 703 200
S 1810 5 21 1
V 1318 11 1887 4
F 288 0 99 1

(b) BSTF SS 49,666 heartbeats.

Predicted

N S V F

A
ct

u
al

N 8262 126 426 110
S 236 49 51 47
V 74 22 525 4
F 42 4 17 5

(c) DTWI 10,000 heartbeats.

Predicted

N S V F

A
ct

u
al

N 8046 27 606 246
S 149 204 16 14
V 64 21 505 34
F 36 7 6 19

(d) DTWD 10,000 heartbeats.

Table 4.5: The confusion matrices of our results on the MIT-BIH DS2 test set.

Table 4.4 shows the results of our approach compared to the results of previous work fol-
lowing the inter-patient scheme described in Section 2.3.3. The BST algorithm achieves
the highest ACC of 94.3% followed by the algorithm proposed by Chen et al. at 93.1% and
BSTF SS at 91.0%.

The precision, recall, and FPR for class N of the BST algorithm are similar to the results
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reported by Chen et al. The high performance of the N class in terms of recall and preci-
sion for both BST and Chen et al. is the main contributor to the high ACC as the N class
represents 89% of the heartbeats in the test set.

The BST achieves the highest recall class V but with slightly lower precision than Zhang et
al. The BST algorithm also achieves the highest precision of 50.7% on the F class and the
lowest FPR of 0.16%. The previous work seems incapable of separating the F class from the
two larger classes N and V resulting in a high FP error, hence the low precision. This fact
might be because the F class contains heartbeats that are a fusion of the two classes N and
V, making it similar to both of these classes. The algorithm from previous work, excluding
Chen et al., has a higher recall on the F class than our proposed method.

Our approach has a low recall on class S compared to the results in previous work. The S
class is related to heartbeats where different parts of the heart contracts prematurely. De-
termining whether or not a ECG contains premature waves requires knowledge of the prior
heartbeats which is only reflected in the rhythm of an ECG. This information is not present
in our approach, as we only use the distance from individual heartbeats to shapelets as fea-
tures and do not use features from other heartbeats. However, the DTWD baseline is one
of the best performing algorithms for this class, with the highest precision of 78.8% and
a recall of 53.3%. According to Associate Professor Claus Graff, the S class heartbeats are
identical to the N class heartbeats. This fact affirms what we see in Table 4.5, where the
BST algorithm predicts the heartbeats of the S class as the N class in 97.2% of the cases. An
example of a premature beat from the S class can be seen in Figure 4.3

Figure 4.3: Example of a premature beat from the MIT-BIH data set. The illustrated signal is a filtered
and dimension reduced sub sequence from Record 209 Lead A.

In general, we can see that our BST method performs comparably or better than previous
work from the ECG literature on three out of the four classes and achieves the highest ACC
of all the proposed methods on the MIT-BIH data set. The BSTF SS and the 1-NN-based
approaches are outperformed by the full shapelet search BST algorithm on the MIT-BIH
data set, except for the S class where the 1-NN algorithms perform better.
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4.3.2 AAU-ECG Classification

The result of each AAU-ECG classification experiment is shown in Table 4.6, where the
results are structured as follows:

1. The first row is the Marquette’s scores.

2. The second row is the confidence threshold of our ensemble tuned towards match-
ing the precision of Marquette.

3. The third row is the same as the second row, just with the confidence threshold tuned
towards the recall.

See for example diagnosis Incomplete right bundle branch block (IRBBB (445)) where Mar-
quette has 83.52% precision and 86.17% recall whereas our model achieves a precision of
83.56% and 12.53% recall when we tune the confidence threshold to match the precision
of Marquette. When we tune the threshold to match the recall of Marquette our model has
precision 36.70% and recall 87.27%. We mark the cases where we outperform Marquette
as bold numbers.

Method
440 445 460 465 540 541 542 548

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

Marquette 95.96 97.90 83.52 86.17 90.46 93.89 49.79 70.32 1.44 60.49 33.56 54.34 40.99 30.13 11.58 25.67
Match Pre 95.43 79.69 83.56 12.53 90.44 87.54 28.57 3.39 2.95 75.00 33.61 63.51 41.00 59.61 11.52 88.08
Match Rec 83.09 96.03 36.70 87.27 87.13 93.95 7.07 66.10 3.96 62.50 38.74 54.64 49.22 32.81 28.73 25.50

Method
700 740 760 780 801 810 820 900

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

Marquette 77.58 87.19 79.59 86.91 62.21 85.33 81.71 88.41 68.53 82.02 79.14 89.08 68.10 85.86 69.94 50.02
Match Pre 66.67 1.51 81.82 1.57 62.50 5.62 81.36 15.47 50.00 11.11 62.50 2.42 68.75 22.92 70.00 35.20
Match Rec 23.97 87.15 22.93 86.61 9.94 88.76 47.56 88.59 3.48 83.33 18.02 90.34 18.98 85.42 65.69 50.28

Method
1140 1141 1143 1150 1160 1170 1180

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

Marquette 50.76 85.87 56.57 72.03 51.72 45.49 73.74 84.21 38.91 84.06 58.68 75.86 62.19 86.34
Match Pre 51.16 50.14 56.78 12.50 51.75 13.75 72.73 8.70 38.96 30.82 50.00 1.67 63.16 0.12
Match Rec 32.67 86.08 27.18 72.01 33.28 45.45 12.91 84.78 23.14 84.25 17.98 76.11 18.14 86.00

Table 4.6: The results of comparing our proposed method with the Marquette predictions on the 23
diagnoses in % with the doctors’ final diagnosis as the ground truth. The row "Marquette" is the 12SL
predictions. "Match Pre" and "Match Rec" is our results when adjusting the threshold to match the
12SL precision or recall, respectively.

Our model and Marquette both perform well on RBBB (440) and LBBB (460) diagnoses.
These diagnoses are associated with increased cardiovascular risk [64] which is linked to
high mortality. For the four statements 540, 541, 542 and 548 our method achieves better
precision and recall than Marquette. Statement 541 is Left Ventricular Hypertrophy (LVH2
(541)) which indicates an increased mass of the heart’s left ventricle and often occurs as a
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reaction to cardiovascular disease or high blood pressure [65]. Statement 540, 542, 548 are
different voltage criteria for LVH2 (541). The four statements combined represents 21.4%
of the statements of the 23 diagnoses where statement 540 is the smallest representing
only 0.14%. Our model’s performance on statement 542 and 548 is considerably better
than Marquette with an increase of recall of 29,5% and 62,4%, respectively. Furthermore,
the precision of the two statements is 8.23% and 17.2% which higher than Marquette.

For Nonspecific ST Abnormality (NST (900)) the proposed method achieves a precision of
65.69% compared to 69.95% for Marquette. However, the Marquette achieves 14.8% higher
recall compare to our model. For the remaining 16 diagnosis statements, the Marquette
approach surpasses our model.

4.4 Qualitative Evaluation of AAU Results

The results we report in Section 4.3 show that classification based on shapelet transform
can produce promising results. One of the key benefits of using shapelets, however, is that
they offer a new way of interpreting the result of classification. Most classification methods
act as a black box in regards to interpreting the correlation between an input sample and
the classified label, whereas the shapelet-based approach is directly interpretive by study-
ing the shapelets for the given class. To display this interpretability, we present an analysis
of the shapelets found for a selected set of key diagnosis statements. The analysis is based
on a comparison of the descriptors and rules the Marquette uses, as well as a reference to
what the literature deems as the important discriminatory factors of a diagnosis.

We will analyze shapelets for RBBB (440), Anterior infarct (AMI (740)) and the four state-
ments related to Left Ventricular Hypertrophy, namely LVH (540), LVH2 (541), Minimal
voltage criteria for LVH, may be normal variant (QRSV (542)) and Moderate voltage criteria
for LVH, may be normal variant (LVH3 (548)). We chose RBBB (440) as we achieve good
discriminating power for the statement, the Left Ventricular Hypertrophy statements as we
outperform Marquette on these classes and AMI (740) as our performance is low com-
pared to Marquette. The figures shown throughout this section will be a selection of the
leads which contains the phenomena that discriminate the particular diagnosis according
to the Marquette descriptors and the medical literature. We present the shapelets by over-
laying the best shapelets from a given class on top of the time series where the shapelet
with most discriminatory power was found. Finally, we only show the best 20 out of a total
of 50 shapelets found on the AAU-ECG data set. We refer to Appendix D for the full 12-lead
configuration and their shapelets from the statements highlighted in this section.

4.4.1 Right Bundle Branch Block

The first shapelets we analyze are the ones for RBBB (440), shown on Figure 4.4, which
displays lead I on the left and lead V1 on the right. RBBB (440) is characterized by a M
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Figure 4.4: RBBB (440) shapelets from lead I and V1 zoomed on the QRS complex.

shaped QRS complex in leads V1-3, which is caused by a delayed R wave due to the right
bundle block delaying the contraction of the right ventricle [66]. The V1 figure shows the
secondary R wave marked as R’. Marquette uses descriptors on lead V1 as well as the lateral
leads, namely I, aVL, V5 and V6, to discriminate the RBBB (440). The descriptors for lead V1
are a wide R wave and a positive wide QRS complex [5, p. 6-8]. The Figure 4.4 shows that the
shapelets found on lead V1 match the V1 descriptors quite well, as they are all concentrated
around the R’ wave. The Marquette descriptor for the lateral leads is a wide and slurred S
wave [5, p. 6-8] which also matches where the shapelets on lead I are concentrated. Refer
to Appendix D to confirm the same tendency on the other leads and without zooming on
the area of interest.

4.4.2 Left Ventricular Hypertrophy

The next shapelets we analyze are for the statements in the Left Ventricular Hypertrophy
group. The Marquette system differentiates between ECG records that meet a voltage cri-
teria of the QRS complex and records that exhibit other abnormalities that are associated
with left ventricular hypertrophy.

The amplitude evaluation is measured on the QRS complex which, if matched correctly,
leads to LVH (540), QRSV (542) or LVH3 (548) depending on the severity of the amplitude.
The amplitude criteria evaluation uses the the aVL, V1 and V5 leads, where we shows the
leads aVL and V1 for each of the statements in Figures 4.5 to 4.7. After Marquette has
analyzed the amplitude criteria it analyzes ECG for additional abnormalities on the lateral
leads which, if matched correctly, results in a LVH2 (541) diagnosis.

The Amplitude Criteria

The Marquette system measures the amplitude of the QRS complex against age-dependent
thresholds [5, p. 6-10]. A patient’s age is a significant factor that affects the morphology and
the amplitude of the QRS complex. In Section 5.2 we discuss what factors, like the patient
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age, are considered when diagnosing heart arrhythmias. The Marquette system makes a
choice between which of the three voltage criteria statements to select based on a point
scoring system. The scoring is based on the number of lead QRS complexes exceed the
threshold.
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Figure 4.5: QRSV (542) shapelets from lead aVL and V1 zoomed on the QRS complex and the T wave.

If the score is between one and two, a low voltage score, the Marquette system adds the
minimal voltage criteria statement with the acronym QRSV (542). The two leads, aVL and
V1, left and right in Figure 4.5 shows that are found around the T wave and ST segments,
instead of around the QRS complex that the Marquette descriptors use. The fact that we
outperform the Marquette system on this diagnosis suggests that the morphology of the T
wave and ST segments might have more discriminatory power.
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Figure 4.6: LVH3 (548) shapelets from lead aVL and V1 zoomed on the QRS complex.

Scores between three and four are used when the amplitude exceeds the threshold to a
greater extent which makes Marquette assign the moderate voltage criteria diagnosis with
the acronym LVH3 (548). In case the score is five or greater the system uses Voltage cri-
teria for left ventricular hypertrophy with label LVH (540). Figure 4.6 shows the shapelets
for LVH3 (548) are found in part on the QRS complex as well as around the P wave. This
placement indicates that the part of the ECG leading up to the QRS complex carries dis-
criminatory power regarding for LVH3 (548). The shapelets for LVH (540) in Figure 4.7
covers the entire sequence of the ECG from the P wave to the T wave. Again, it appears
to be the case that parts of the ECG surrounding the QRS complex carries discriminatory
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Figure 4.7: LVH (540) shapelets from lead aVL and V1 zoomed on the QRS complex.

power for left ventricular hypertrophy related diagnosis.

The Morphology Criteria
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Figure 4.8: LVH2 (541) shapelets from lead aVL and V5 zoomed on the ST segment and the T wave

The Marquette descriptors that characterize diagnosis LVH2 (541) are a depression or a
downwards slope of the ST segment in the lateral leads and a wide R wave in lead V5 [5,
p. 6-10,6-11]. On the left figure of Figure 4.8, it can be seen that the shapelets found on
the lateral lead aVL are concentrated around the T wave while also covering most of the
ST segment. The morphology of the shapelets that we find on the ST segment does slope
downwards matching the Marquette descriptor. The shapelets we find on lead V5 does not
fit the Marquette descriptors as they are all found around the T wave. The concentration of
the shapelets, for both leads, around the T wave and ST segment suggests that this carries a
discriminatory power that is more meaningful than what the Marquette analysis program
uses.

Edhouse et al. in [67] characterize LVH2 (541) by having the presence of a left ventricular
strain pattern. The pattern is characterized by ST depression and T wave inversion in leads
I, aVL, V5-6, ST segment elevation in V1-3 which looking at Figure D.4 fits where some of
the shapelets are found.
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4.4.3 Anterior Infarction

The final shapelets we present are for AMI (740), a diagnosis for which the classification
performance is low. Some of the descriptors Marquette uses for AMI (740) has to do with
the amplitude of the R wave of the V1-6 chest leads. The leftmost chest lead V1 will under
normal circumstances produces a small R wave and a large S wave, whereas for the right-
most chest lead V6 this phenomenon is inverted such that the R wave is large and the S
is small. This inversion of the waves is a continuum or a progression that happens from
chest lead V1 to V6. The R wave progression is illustrated in Figure 4.9 and shows that an
abnormal progression can be see in a regression of the R wave amplitude from lead V2 to
V3 as well as V3 to V4.

Figure 4.9: The normal and abnormal progression of the R wave. Source: Ref. [68]
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Figure 4.10: AMI (740) shapelets from lead V2-5 zoomed on the QRS complex and the T wave.
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The Marquette specific descriptors for diagnosis AMI (740) are large Q waves by amplitude
or duration in leads V3-4, a poor R wave progression in leads V2-4 or an actual regression
in the amplitude of R also in the V2-4 leads [5, p. 6-12]. The Figure 4.10 illustrates the
shapelets we find for this diagnosis on leads V2-5. Figure 4.10 shows that the shapelets are
concentrated around the T wave. The position of the shapelets most likely causes the quite
poor classification. The shapelets would be expected to be found around the QRS com-
plex to capture the R wave progression changes as well as significant Q waves. Capturing
an abnormal R wave progression is possible with the shapelet transform approach how-
ever it relies on classifiers that can handle multivariate correlation and not treat them as
independent inputs. The HESCA ensemble used in this report, explained here Section 3.4,
excludes classifiers that cannot handle dependent features like the Naive-Bayes [69, p. 265]
and the k-nearest-neighbor [70, p. 5].

4.5 Quality of the Fast Shapelet Search

We conduct two tests to quantify what the trade-off is between the quality of the shapelets
produced and the run time of FSS compared to the full shapelet search. First, we test what
effect tweaking the topK parameter has on the shapelet quality. We then test the run time
execution of the two algorithms in Section 4.5.1. Both experiments are conducted using
the MIT-BIH data set.
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Figure 4.11: The box plots of the distribution of shapelets’ quality scores found using different ratio
of the total shapelet candidates for the parameter topK in the FSS algorithm.

We use the F-statistic and information gain shapelet quality measures in the first experi-
ment, where the results can be seen as a box plot of the distribution of found shapelets’
quality measure in Figure 4.11a and Figure 4.11b, respectively. We use 200 training in-
stances for each class in the MIT-BIH data set, resulting in a total of 800 training observa-
tions and 800 extracted shapelets. The circles on the box plots represent outliers, where a
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value v is considered an outlier if v >Q3+1.5 ·(Q3−Q1) or v <Q1−1.5 ·(Q3−Q1). The Q1
and Q3 is the lower and upper bound of the box respectively, which encapsulate 50% if the
data.

Ideally, the FSS algorithm would find the majority of the best shapelets at a low ratio like
0.1 of the total shapelet candidates where a higher ratio would only improve the quality by
a small amount. However, as seen in Figure 4.11, this does not happen, as the distribution
keeps getting markedly better as a function of the ratio. Hence, the FSS algorithm improves
the run time of the shapelet extraction at the expense of finding lower quality shapelets. In
both Figure 4.11a and Figure 4.11b it seems that most of the best shapelet are found around
a ratio of 0.8 after which the quality plateaus.

4.5.1 Runtime Analysis of Fast Shapelet Search

In Section 3.6 the complexity of the full shapelet search, and the FSS was found to be
O(n2m4) and O(n2km2) respectively, where k is the number of shapelet candidates used.
We now perform run time experiments to see the actual time difference between using the
full shapelet search and the FSS on different amount of training data. These experiments
were performed in a Java environment on a shared server with following specifications:

• OS: x86_64 Ubuntu 16.04

• CPU: 8x Intel(R) Xeon(R) CPU E5420 @ 2.50GHz with 12M L2 Cache.

• Memory: 8x 4GB DDR2, HYNIX HYMP151F72CP4N3-Y5, clock = 667Mhz.

To our knowledge, the server was not used by others while we ran the test, but because
it is a shared server, we cannot guarantee this. As such, the result of these experiments
should be seen as a guide to the run time of the two algorithms. The parameters used for
the experiments are the F-statistic quality measure, a shapelet length of range 10 to 50 and
a window size w = 0.25. The results of the tests are plotting in Figure 4.12 and the discrete
values can be seen in Table 4.7. As the run time of the full shapelet search exceeded a day
at 1200+ trainings observation, we stopped the experiment.

The slope of the plots in Figure 4.12 increases when more training data is used. This in-
crease occurs because more shapelet candidates need to be evaluated and each shapelet
candidate is evaluated against more time series. As one might expect, the FSS algorithm
seems to scale quadratically as a function of the number of observations which confirms
the complexity of FSS O(n2km2), where n is the number of observations, k is the number
of heuristically preselected shapelet candidates and m is the dimensionality of the obser-
vations.

We would expect FSS0.5 to be about twice as fast as the full shapelet search as the number
of shapelet candidates is halved. This is, however, not the case as Figure 4.12 shows that
it is, in fact, more than three times as fast. One possible reason for this could be that FSS
evaluate high-quality shapelets early, making the pruning of candidates more efficient.
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Search
# of Train Observations

200 400 800 1000 1200 1400

FULL 2171 8436 18770 33467 N/A N/A
FSS0.1 216 673 1341 2325 3608 5239
FSS0.2 344 1103 2198 3738 5767 8634
FSS0.3 482 1551 3081 5305 8322 12032
FSS0.4 619 1999 4174 7091 11119 16406
FSS0.5 746 2501 5136 9131 14275 20806

Table 4.7: The seconds it takes to extract shapelets for the full shapelet search and the FSS with dif-
ferent topK and different amount of training observations. The FSS0.1 means FSS using 10% of the
shapelet candidates.
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Figure 4.12: A plot of the time it takes FSS with different ratios and the full shapelet search with
varying amount of train data.

4.5.2 Summary

We have in this chapter presented the experimental settings, the results of the experiments
performed on the MIT-BIH and AAU-ECG and evaluated the results quantitatively and
qualitatively. The BST approach performs as well or better than state-of-the-art classifi-
cation algorithms following the inter-patient scheme except for the supraventricular ec-
topic heartbeats which discriminating characteristic is not reflected in the morphology
of a single heartbeat. The qualitative evaluation of the AAU-ECG data set demonstrates
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that the shapelets we find for RBBB (440) matches the descriptors used by Marquette. The
shapelets we find the for left ventricular hypertrophy heartbeats are interesting as we out-
perform the Marquette classification and they also differ from the descriptors it uses. Fi-
nally, we conduct a quality measure and run time analysis of the fast shapelet search algo-
rithm, which shows that a high ratio of the total shapelets candidates is required to obtain
good quality shapelets.
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5 Discussion

We will in this chapter discuss some of the choices and findings made throughout the
project. We discuss the impact of using a single heartbeat for the transformation and clas-
sification, diagnosis influential factors such as age and heart rate and the potential bias in
the AAU-ECG data set.

5.1 Shapelet Transform as Features

We have described how the ST algorithms transform ECG records into feature vectors of
distances and the results in Section 4.3.1 demonstrates that it outperforms or is compara-
ble with previous work within the classification of ECGs. The features extracted from the
BST are well suited to diagnose heart arrhythmias reflected in the morphology of a single
heartbeat. However, some diagnoses are only reflected in the morphology across multi-
ple heartbeats like for instance the S class from the MIT-BIH data set. In these cases, the
classifier does not have the needed information to classify these diagnoses accurately.

A standard way of accommodating for this, found in the literature, is to add extra fea-
tures in the form of inter-beat interval features [21, 31, 45, 46], that extends across mul-
tiple heartbeats. Such features could be the RR-intervals from the current heartbeat to the
previous and the next heartbeat.

We z-normalize shapelets to accommodate for differences that exist between ECGs and
between patients. The normalization preserves the shape of the shapelet but removes in-
formation about the absolute amplitude. This fact might prove troublesome as some ar-
rhythmias might require this information to be diagnosed accurately. For instance, the
Marquette system classifies left ventricular hypertrophy arrhythmias using the real ampli-
tude of the ECG as well as age-dependent criteria [5, p. 6-9]. However, the shapelet based
transformation and classification seem capable of identifying amplitude related diagno-
sis statements without the absolute amplitude value. If further experiments show similar
results the age-dependent feature that Marquette relies on could be replaced with a sim-
plified model.
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5.2 Diagnosis Influential Factors

The goal of this report is to explore how well a shape-based classification of ECGs can
differentiate between classes of heart arrhythmias. Since we do shape-based classification,
we intentionally ignore non-shape based factors that are normally important factors to
consider when diagnosing heart arrhythmias. These factors are for example patient age
and gender, taken medicine as well as blood pressure, body mass index (BMI), diabetes,
and so on. [14]. These factors can influence the classification in two ways; it may change
the prevalence of a diagnosis or diagnoses in general, or it may change the morphology of
the ECG. According to associate professor Claus Graff [14] the most influential factor is the
age of the patient, which is why we base the following discussion on what effect the age of
a patient has on the ECG morphology as well as the prevalence diagnoses.

Rupali Khane et al. [71] explore the effects advancing age has on the prevalence heart ar-
rhythmias. The authors study a population of patients between ages 54-74. To examine
the causal connection between heart arrhythmia’s and advancing ages, the authors sep-
arate the patients into groups based on ages after which they analyze the prevalence of
heart arrhythmias like LVH (540) and RBBB (440). Rupali Kane et al. found that the preva-
lence of ECG arrhythmias is highly correlated with advancing age. The authors came to
this conclusion by doing a hypothesis test to measure the statistic significance of the age
which resulted in a p-value of 0.001. The inclusion of the factors such as the age would
likely improve the classification performance. However, if we include such factors as part
of the input to the classification model, we would no longer do purely shape-based classi-
fication of the ECGs. Still, if the goal is to achieve the highest classification performance,
including such features could make a difference.

The age factor might also influence the morphology of the ECG in addition to increas-
ing the prevalence of heart arrhythmias. Bachman et al. explore this connection in [72].
The authors examine the connection by studying the morphology changes that appear by
comparing ECGs made ten years apart for the same patients. The authors examine the am-
plitude changes of the R,S,T waves, the duration changes of the PR segment, QRS complex
duration and the QT duration as well as the frontal plane axis. They measure the statistical
differences by performing a paired t-test, where they find that all variables have changed
significantly with a statistical significance of p < 0.001. We can use this knowledge to in-
corporate age as part of our classification without changing the focus from a shape based
classification by separating the shapelets into groups based on age segments. For instance,
we could assign the shapelets extracted from a ECG of a patient aged 25 to the 20-30 aged
shapelet segment group. Then we would train a classifier for each shapelet age segment
and only use the given classifier that matches a new patient’s age. We could use the same
method of segmenting shapelets for each of the factors mentioned like gender, BMI, but
this requires knowledge of whether or not these factors actually influence the morphology
of the ECG and not just the prevalence of heart arrhythmias.
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5.3 Heart Rate Influence on the ECG

The patient heart rate affects the morphology of the ECG. This fact presents a problem in
general regarding classification of ECGs and in our case, as the extracted shapelets might
not be representative for all patients due to the morphological changes caused by the heart
rate.

To see the effect of the heart rate on the ECG, one could study segments that are used to
diagnose heart arrhythmias like the duration of the QT interval or the QRS complex. We
can do this because the AAU-ECG data set contains information about the patient heart
rate as well as the duration of these segments. In Figure 5.1 we show the median interval
durations where the x-axis represents segments of heart rates and the y-axis is the duration
of either the QT, PR or the QRS intervals. The Figure 5.1 shows that only the QT duration
changes as a function of the heart rate.

40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140
Heart Rate

0

100

200

300

400

Du
ra
tio

n

Segment Durations
QT
PR
QRS

Figure 5.1: The median QT, PR and QRS durations in intervals of heart rates from the AAU-ECG data
set.

The changes in QT segment duration should mainly affect the diagnoses in the RA group
as they are all detected by studying phenomena around the QT segment [5, p. 6-22;6-25].
To handle this problem we could ensure that the shapelets extracted for diagnoses that
affect the QT are divided into portions or "bins" based on the heart rate. This divisions
or "binning" would enable us to use shapelets that are extracted from patient ECGs that
match the heart rate of the patient being diagnosed.
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5.4 Biased AAU-ECG Data Set

Our experiments in Section 4.3.2, regarding our approach against the Marquette system’s
predictions, is biased in favor of the Marquette system. The bias occurs as a result of the
doctor’s knowledge of the Marquette system’s prediction when deciding the labels for an
ECG, which might change their mind on which diagnosis statement the ECG should have
compared to not knowing the predictions. The doctors also need to do an active action to
change the predictions of the Marquette system, which might result in fewer changes from
the doctor’s side.

For an unbiased experiment, we would need a new data set of doctor labeled ECGs, where
the doctor did not know the Marquette’s predictions when assigning labels to the ECGs.
Then, with access to the Marquette system, we could test if our approach or the Marquette
performed better on this new data set.
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6 Conclusion

We presented our approach to performing shapelet transformation and classification on a
large multi-labeled ECG data set in Chapter 3, based on the idea that patients with same
diagnosis statements would have similarities in their ECG waveforms. Experiments were
performed on the MIT-BIH arrhythmia data set to compare our approach to previous work
within ECG classification as well as the AAU-ECG data set consisting of 413,151 ECG records
distributed on 211,391 patients after filtering, each attached with a subset of 87 diagnosis
statements.

In the introduction, we derived a set of research questions based on the assumption that
patients with the same diagnosis statements have shape similarities in their waveforms.
We now reflect on these questions using the insight and results gained from our experi-
ments.

• Can the shapelet transformation classification approach outperform previous
work within heartbeat classification using electrocardiograms? The results of the
experiments on the MIT-BIH data set in Section 4.3.1 demonstrate that our approach
performs as well or better than previous work within ECG classification following
the inter-patient scheme for the normal beats, ventricular ectopic beats, and fusion
beats. Our approach achieves an improvement compared to the previously reported
results as well as state-of-the-art multivariate time series classification algorithms
with an overall accuracy of 94.3%, recall of 99.4% and 86.6% for the N and V class
as well as the highest precision and lowest FPR for the F class of 50.7% and 0.16%,
respectively. The main limitation of the proposed method on the MIT-BIH data set
is the low recall, 1.31% for identifying supraventricular ectopic beats.

• Can the shapelet transformation classification more accurately predict the doc-
tor’s diagnosis compared to the knowledge-based Marquette 12SL ECG analysis
program: The results in Section 4.3.2 shows that the shapelet-based approach, on
average, cannot surpass the knowledge-based Marquette 12SL analysis program with
regards to the performance metrics, precision, and recall. As discussed in Section 5.4
the performance of Marquette on the AAU-ECG data set can be biased towards Mar-
quette. The performance of our approach on statements, 540, 541, 542, and 548 re-
lated to left ventricular hypertrophy outperforms Marquette. Especially statement
542 and 548 with a recall increase of 29.5% and 62.4% as well as a precision in-
crease of 8.23% and 17.2%. For the diagnosis statements right and left bundle branch
block, 440 and 460, the proposed method have a good discrimination power. As the
shapelets are learned from labeled training data medical practitioners can use our

68



6.1. Future Work Aalborg University

findings for left ventricular hypertrophy as well as right and left bundle branch block
to interpret the shapelets that discriminate the six diagnosis statements.

• What are the trade-offs between the run time and shapelet quality when using
shapelet heuristic approximating techniques: The preliminary experiments from
Section 4.5 shows that using the FSS algorithm to extract shapelets is more than
one order of magnitude faster than the full shapelet search when using 10% of the
shapelet candidates and three time as fast when using 50% of the candidates. The
quality of the shapelets found using FSS seems to be proportional to the ratio of
shapelet candidates used, where 10% produced poor quality shapelets and 80% pro-
duced comparable results to full search. This result indicates that the performance
of FSS is very dependent on the number of shapelet candidates used. The prelim-
inary experiments of the window optimization show that our best performing win-
dow size is 5% and it achieves a higher accuracy of 94.3% compared to 91.6% when
using no window. We achieve this performance increase while improving the run
time from 12,656 to 5,425 seconds.

We conclude that the shapelet transform approach to classifying ECG data sets shows
promising results as it performs comparably or better then previous work within ECG clas-
sification for heart arrhythmias reflected in the morphology of a single heartbeat. We also
conclude that the learning-based approach can identify a subset of heartbeat types better
than the knowledge-based approach leveraged by the Marquette 12SL ECG analysis pro-
gram.

6.1 Future Work

In this section, we present improvements and new ideas for future work based on the in-
sight we have gained regarding the shapelet-based transformation and classification.

6.1.1 Domain-Specific Knowledge

The focus of this research is to explore what information emerges from analyzing the ECG
waveform. To explore this, we use a shapelet transformation and classification approach
to classify ECG heart arrhythmia data sets.

The results of our analysis show promising; however, there are still some diagnosis types
that prove troublesome for our approach like the supraventricular ectopic heartbeats in
the MIT-BIH data set. The S class requires temporal features of previous heartbeats to
classify the current heartbeat reliably.

In Section 5.2, we list some of the essential factors that medical professionals consider
when they diagnose a patient with heart arrhythmia. We show that especially the age fac-
tor is exceedingly essential both regarding affecting changes in ECG morphology and the
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prevalence of heart arrhythmias as the age increases. We could mix these factors with the
current shapelet transform features merely by appending them to the feature vector, or we
could keep them separate from the shape features by training individual HESCA classifiers.
The second option would allow us to run these classifiers in parallel and analyze what di-
agnoses the domain-specific factors accurately classify and maybe combine them into a
meta-classifier that leverage the strengths of both approaches.

6.1.2 Lead-based Ensemble

In our current approach, we extract shapelets from all the leads of the ECG, and the leads
are all equally important in the classification stage. This fact has the advantage, that infor-
mation across the leads are available in the shapelet extraction process. However, when
looking into the ECG literature, the doctors and researcher use only a subset of the leads
for most of the diagnosis.

Patri et al. in [73] used an alternative way of handling multivariate data, where the shapelets
were extracted from each lead individually, and a classifier was trained on each lead. An
ensemble scheme was used to combine the classifiers with a weighting scheme learned on
the train data to decide the importance of the different channels for each class. By apply-
ing this method, only shapelets from the lead(s) which are best at discerning each class
would be used. This scheme is arguably more interpretative than our current method, as
each shapelet are found on a single lead, and the weighting scheme itself could be used to
check the importance of a lead for a given diagnosis.

However, with this method, the information across leads in the shapelet extraction is lost.
This might lower the classification performance on diagnoses where leads are dependent
on each other.
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A Statements

This appendix lists all the diagnostic statements present in the data set. The table is sorted
by the statement number. We use the following group abbreviations:

• INF - Infarction

• QAV - QRS Axis and Voltage

• IC - Intraventricular Conduction

• RA - Repolarization Abnormalities

• CHE - Chamber Hypertrophy and Enlargement

Stmt Text Group Count

300 Ventricular pre-excitation, WPW pattern type A IC 111
302 Ventricular pre-excitation, WPW pattern type B IC 121
304 Wolff-Parkinson-White IC 321
307 Dextrocardia QAV 3
350 Right atrial enlargement CHE 4918
360 Left atrial enlargement CHE 15598
369 Biatrial enlargement CHE 1083
372 Left axis deviation QAV 66,255
380 Rightward axis QAV 10837
383 Right axis deviation QAV 1152
384 Right superior axis deviation QAV 931
390 Indeterminate axis QAV 468
391 Northwest axis QAV 3
410 Low voltage QRS QAV 30699
411 Pulmonary disease pattern QAV 2712
435 Brugade pattern type 1 RA 35
440 Right bundle branch block IC 25532
442 Right bundle branch block -or- Right ventricular hypertrophy IC 4
445 Incomplete right bundle branch block IC 20780
450 RSR’ or QR pattern in V1 suggests right ventricular conduction delay IC 1994
460 Left bundle branch block IC 13283
465 Incomplete left bundle branch block IC 2638
470 Left anterior fascicular block IC 19756
471 Left posterior fascicular block IC 661
480 *** Bifascicular block *** IC 4880
482 Nonspecific intraventricular block IC 5639
487 Nonspecific intraventricular conduction delay IC 7932
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Stmt Text Group Count

520 Right ventricular hypertrophy CHE 1109
530 R in aVL CHE 39497
531 sokolow-Lyon CHE 31635
533 Cornell product CHE 60392
534 Romhilt-Estes CHE 5612
540 Voltage criteria for left ventricular hypertrophy CHE 729
541 Left ventricular hypertrophy CHE 20766
542 Minimal voltage criteria for LVH, may be normal variant CHE 73314
548 Moderate voltage criteria for LVH, may be normal variant CHE 11599
570 Biventricular hypertrophy CHE 370
700 Septal infarct INF 21310
740 Anterior infarct INF 24146
760 Lateral infarct INF 3682
780 Inferior infarct INF 47987
801 Inferior-posterior infarct INF 823
802 Posterior infarct INF 109
803 Larger R/S ratio in V1, consider early transition or posterior infarct INF 1679
806 Consider right ventricular involvement in acute inferior infarct INF 336
810 Anteroseptal infarct INF 8845
820 Anterolateral infarct INF 2079
821 ** ** ACUTE MI / STEMI ** ** INF 1413
900 Nonspecific ST abnormality RA 43550
901 Acute pericarditis RA 37
902 ST elevation, consider early repolarization, pericarditis, or injury RA 528
903 ST elevation, probably due to early repolarization RA 1303
930 Anterior injury pattern RA 57
940 Lateral injury pattern RA 63
950 Inferior injury pattern RA 45
961 Anterolateral injury pattern RA 7
962 Inferolateral injury pattern RA 2
963 ST elevation, consider inferior injury or acute infarct RA 189
964 ST elevation, consider anterior injury or acute infarct RA 320
965 ST elevation, consider lateral injury or acute infarct RA 60
966 ST elevation, consider anterolateral injury or acute infarct RA 71
967 ST elevation, consider inferolateral injury or acute infarct RA 31
1000 Early repolarization RA 1820
1001 Junctional ST depression, probably normal RA 1128
1002 Junctional ST depression, probably abnormal RA 71
1024 ST depression, consider subendocardial injury RA 750
1040 Marked ST abnormality, possible septal subendocardial injury RA 16
1050 Marked ST abnormality, possible anterior subendocardial injury RA 304
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Stmt Text Group Count

1060 Marked ST abnormality, possible lateral subendocardial injury RA 447
1070 Marked ST abnormality, possible inferior subendocardial injury RA 660
1071 Marked ST abnormality, possible inferolateral subendocardial injury RA 103
1080 Marked ST abnormality, possible anteroseptal subendocardial injury RA 38
1081 Marked ST abnormality, possible anterolateral subendocardial injury RA 220
1140 Nonspecific T wave abnormality RA 27801
1141 Nonspecific ST and T wave abnormality RA 22152
1142 Abnormal QRS-T angle, consider primary T wave abnormality RA 3491
1143 Prolonged QT RA 18827
1145 T wave abnormality, consider inferolateral ischemia RA 2551
1150 T wave abnormality, consider anterior ischemia RA 3844
1151 Marked T wave abnormality, consider anterior ischemia RA 18
1160 T wave abnormality, consider lateral ischemia RA 11387
1161 Marked T wave abnormality, consider lateral ischemia RA 102
1170 T wave abnormality, consider inferior ischemia RA 7532
1171 Marked T wave abnormality, consider inferior ischemia RA 24
1172 Marked T wave abnormality, consider inferolateral ischemia RA 108
1180 T wave abnormality, consider anterolateral ischemia RA 4078
1181 Marked T wave abnormality, consider anterolateral ischemia RA 726
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B An ECG

This appendix section presents an example of the leads for a random ECG The leads are
shown as sub figures, where the left column contains the limb leads I, II and III and the
augmented leads aVL, aVF and aVR and the right column has the precordial leads V1-6.
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Figure B.1: An example of the leads on a ECG
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C Histogram

Appendix C illustrates the distribution of our diagnosis statements in the data set. There
is only shown the 76 remaining diagnosis statements after we have performed the filtering
mentioned in Section 1.2.2.
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D Shapelets

This appendix presents examples of shapelets of few select diagnosis statements generated
from the AAU-ECG dataset. The shapelets we display are from the using the full shapelet
search method and using information-gain as the shapelet quality measure. We order the
pictures as subplots each belonging to a particular lead for example aVL. The left column
on shapelet picture contains the limb leads I, II and III and the augmented leads aVL, aVF
and aVR and the right column has the precordial leads V1, V2 and so on. We show the 20
best shapelets for each diagnosis statement.

We show shapelets for the following diagnosis statements:

• 440 - Right Bundle Branch Block

• 542 - Minimal Voltage criteria for Left Ventricular Hypertrophy

• 548 - Moderate Voltage criteria for Left Ventricular Hypertrophy

• 540 - Voltage criteria for Left Ventricular Hypertrophy

• 541 - Left Ventricular Hypertrophy

• 740 - Anterior infarct
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Figure D.1: Shapelets for Right Bundle Branch Block (440)
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Figure D.2: Shapelets for Minimal voltage criteria for LVH, may be normal variant (542)
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Figure D.3: Shapelets for Moderate voltage criteria for LVH, may be normal variant (548)
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Figure D.4: Shapelets for Voltage criteria for left ventricular hypertrophy (540)
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Figure D.5: Shapelets for Left Ventricular Hypertrophy (541)
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Figure D.6: Shapelets for Anterior infarct (740)
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