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Abstract

We describe Prex, a tool for analyzing MPLS networks leveraging an
automata theoretic approach. While we base our approach on previous
works, we extend their approaches in a multitude of ways. We introduce a
method of constructing queries based on regular expressions which permits
the user to write highly complex queries, and implement a method of
verifying these queries on the networks. We benchmark our tool and
compare it with another recognized tool. We perform a case study on a
large scale in production MPLS network, and use our tool verify certain
interesting properties in their network.
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Summary
We include this summary since it is a formal requirement by Aalborg University.
In Section 1 on the following page we introduce the background and related
work. First we provide the reader with a thorough amount of background
information about Multiprotocol Label Switching (MPLS), and MPLS fast
reroute. Then we introduce Segment Routing (SR), which is an emerging
technology within networking. SR is interesting to us since it can be deployed on
top of an existing MPLS infrastructure with no changes to the data-plane. We
present a large amount of related work to show the cutting edge of the current
knowledge within this field.

We then define our central working problem, and an overview of how were
planning to solve it. We then list our contributions in the paper.

In Section 2 on page 12 we introduce our MPLS network model and related
definitions. First we model the MPLS operations, and the MPLS network. We
then define the set of valid headers and the header rewrite function. Here we
also define our query language and traces through the network, and from these
construct the main problem we aim to solve in this paper. To give the reader
a further understanding of our network model we give a network example, and
relate it to all the other concepts defined in this section.

In Section 3 on page 17 we introduce the reader to the automata theory we
use for our approach. This includes both well known results and novel results.
First we define the non-deterministic finite automata (NFA) and the pushdown
automata (PDA). Here we introduce the novel concept of augmented pushdown
construction, which computes an NFA and a PDA in lockstep. We show how we
construct the over- and under-approximating PDAs for a given MPLS network.

In Section 4 on page 30 we present two generic optimizations to reduce
the size of a PDA such that reachability analysis can be performed in less
time and using less memory. The first optimization removes a large amount
of transitions from the PDAs, in particular when no-op behavior occurs. The
second optimization utilized a swap-push operation to reduce the number of
transitions in the PDa when the same behavior is desired for all labels, this is
used for optimizing the generation of headers.

In Section 5 on page 35 we present how the final PDA is constructed. That
is, the PDA which combines all the theory we have and is finally sent to the
PDA reachability analysis tool we are utilizing.

Lastly in Section 6 on page 36 we compare the performance of Prex with a
recognized tool from the related work. In addition to this, we perform a case
study of a real world network provided by NORDUnet.
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1 Introduction
In conventional Internet Protocol (IP) network[1, 2], each router needs to
analyze each packets header, and find the longest prefix match for the
destination IP in its routing tables, from that it can forward the packet to
another router. However, for some network types, avoiding the cost of a longest
prefix match, and at the same time gaining more control over the traffic flow
in the network, is desired. This is one of the core improvements given by
Multiprotocol Label Switching (MPLS)[2].

1.1 Background
1.1.1 Multiprotocol Label Switching (MPLS)

In MPLS networks, the ingress router analyzes the packet, and decides its path
through the MPLS network. How this path is chosen, and which factors are
considered, are up to the implementation. From here it will choose a path for
it to take through the network. In MPLS this is achieved by adding a header
to each packet, this header is a stack of “label stack entries” each of which is
32 bits. The MPLS label is the most significant, and takes up 20 bits of the 32
bits.

The label is what each router in the network has to analyze before it can
forward the packet, according to its MPLS routing table. Before forwarding
the packet, the router will typically replace the label with another one in an
operation called: swap. This forms the basis for Label Switched Paths (LSPs),
which are tunnels through the MPLS network. The ingress router selects an
LSP for the packet by pushing an initial label to the label stack, this initial
label will be swapped to different labels by each hop in the LSP, and finally it
will be popped by the egress router. This forwarding scheme is simple and fast
in practice. For MPLS to function it requires precise configuration, significantly
the LSPs needs to be determined, for this task it is common to use a method
such as Resource Reservation Protocol - Traffic Engineering (RSVP-TE)[3].

MPLS Fast Reroute During normal operation of a network, it is expected
that occasionally parts of said network, such as a link, will fail. Since packet loss
and lack of connectivity during such events are undesired MPLS has fast reroute
features. The purpose of fast reroute is to route traffic around failed elements,
in this paper we will focus on failed links. Adding fast reroute functionality
for link-protection to an MPLS network, is done through the use of backup
tunnels. A backup tunnel is an LSP which has the same source and destination
as the original link, when such a backup tunnel exists one can consider the
link protected. When the source to a link detects the failure, it will reroute
through the backup tunnel. It does so by pushing a label onto the stack, which
corresponds to the LSP of the backup tunnel for the link. This operation can
be performed recursively if multiple links fail at the same time. This feature is
also sometimes known as MPLS local protection[4], since it does not consider
the entire topology when rerouting.

To further understand this, consider the following example as shown in Fig. 1.
Here the dotted blue line is the normal LSP from in on r1 to out on r7. The
link between r2 and r3 is broken, and marked as dashed in the figure. r2 will
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then utilize the MPLS fast reroute feature, to use the backup tunnel protecting
the broken link. In this example the tunnel does via r5 and r6 to its original
destination of r3, then the backup tunnel is completed and the original LSP is
active again.

r1 r2 r3

r4 r5 r6

r7

in

out

LSP

Backup

Figure 1: MPLS Fast Reroute example.

1.1.2 Segment Routing

Segment Routing (SR) is part of the source packet routing paradigm of
networking[5, 6]. The Source Packet Routing in Networking (SPRING)
paradigm gives additional control to network operators compared to traditional
shortest-path based methods, wrt. traffic engineering, load-balancing etc.[7]

Segments In SR this control is exposed through a list of instructions for each
packet, called segments, hence the name Segment Routing. Only one of the
segments is active at any one time, this segment is called the “Active Segment”.
A segment is an instruction for the router to forward such as: 1. forward
the packet along a precomputed (often shortest) path to some destination,
2. forward the packet through a specific interface, and 3. deliver the packet
to a specific router or set of routers, such as a firewall.

Segments are often referred to by their Segment Identifier (SID), and the
two terms are occasionally used interchangeably even though it may overlook a
translation between the two.

Interior Gateway Protocol Segments Each SR-node advertises its prefixes
and adjacencies to the Segment Routing Domain, which is the set of nodes
participating in the network. This is used by a link-state Interior Gateway
Protocol (IGP) protocol to enable expression of any path through the network.
There are three proposals for link-state IGP with SR: 1. Intermediate System
to Intermediate Systems (IS-IS)[8], 2. Open Shortest Path First (OSPF)[9], and
3. Open Shortest Path First version 3 (OSPFv3)[10].

IGP-Prefix segments identifies a specific path in the SR domain. That
is, any packet with its active segment as a IGP-Prefix segment, will follow
a path predetermined by an algorithm. In the standard draft[6] two such
algorithms are provided: 1. Shortest Path, and 2. Strict Shortest Path. The
key difference is that with the shortest path algorithm, local policies may
override the predetermined path. An IGP-Node segment simply describes a
node, e.g. router, in the network. An IGP-Anycast segment instructs the
packet forwarding to the closest node in the anycast set. An anycast set is a
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predetermined set of nodes in the network. An IGP-Adjacency segment instructs
a node to use a specific link or a set of links, which could be load-balanced by
the node. Furthermore a node can advertise a weight for each link in a set
of links, with Adjacency segments, this weight can be used for load-balancing
through parallel adjacencies.

1.1.3 Operations in SR

To implement these instructions the routers in a SR network have three
operations closely resembling the ones found in MPLS.

• PUSH: Insert a segment on top of the segment list as a new active segment,
• NEXT: Remove the active segment (since it has been completed), and
• CONTINUE: Do not change the segment list.
SR is currently under standardization[6] as an RFC under Internet

Engineering Task Force (IETF).
The SR standard draft proposes two architectures to implement SR on:

1. MPLS called Segment Routing over MPLS (SR-MPLS), and 2. Internet
Protocol version 6 (IPv6) called Segment Routing over IPv6 (SRv6). This paper
focuses on MPLS and SR-MPLS.

r1 r2 r3

r4 r5 r6

r7

in

out

Figure 2: Segment Routing network, with route-trace. The colored lines each
represents a segment.

Position Type Content Style on figure
1st Node r2
2nd Adjacency r2-r5
3rd Node r7

Table 1: Segment List at the start of routing.
Active Segment

R Type Con. Op Comment
r1 Node r2 CONT Forward to r2 via link r1-r2
r2 Node r2 NEXT Remove AS, since AS is reached
r2 Adj r2-r5 NEXT Remove AS, forward via r2-r5
r5 Node r7 CONT Forward to r6 via link r5-r6
r6 Node r7 CONT Forward to r7 via link r6-r7
r7 Node r7 NEXT Remove AS, since AS is reached
r7 N/A N/A None, routing is complete

Table 2: Trace of actions taken during the routing, under normal SR operation.

Example of Segment Routing in action In order to give a more intuitive
sense of how SR works, we present the following example. In Fig. 2 we present
a SR network of 7 routers, named r1 through r7. In the example we have some
traffic entering r1 with the destination of r7.
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With some traffic engineering constraints in mind r1 constructs a list of
segments to lead the traffic to r7. First it adds a node segment with the SID
of r2, i.e. the first active segment. Then it adds an adjacency segment, which
specifies the link from r2 to r5. Lastly it adds a node segment for r7, which is
the final destination. The segment list can more easily be visualized as a table:

When the packet is forwarded through the network, it will follow the
sequence of events given in Table 2. In the table we have the router which
is operating on the packet. Then we have the active segment, which is two
parts: firstly which type of segment it is, and secondly what the content of the
segment is. Lastly we have what action the router performs, both regarding the
segment list and where to send the packet.

1.1.4 Segment Routing Fast Reroute

SR comes with a native Fast Reroute (FRR) technology which relies on Toplogy-
Independent Loop-Free-Alternate (TI-LFA) [11]. TI-LFA is similar to its
namesake remote Loop-Free-Alternate (rLFA), although where rLFA leverages
Label Distribution Protocol (LDP), TI-LFA leverages SR [12]. Leveraging
LDP does not grant 100 % topology coverage to rLFA, on the other hand
leveraging SR as TI-LFA does grants 100 % topology coverage due to enhanced
Traffic Engineering (TE) capabilities through segments. We use the definiton
of topology coverage from [13] which means that 100 % topology covers means
that reachability is always preserved unless a network bisection occurs, by links
failing. Furthermore TI-LFA also guarantees path optimality, something that
RSVP-TE does not.

In case of a link failure RSVP-TE FRR would use an established detour LSP
set to merge with the original LSP downstream, such as the next-hop router
[14]. Such an approach may produce inefficient paths, e.g., by causing congestion
due to not considering bandwidth reservations, or by creating a needlessly long
path to reach the next-hop router. TI-LFA would create an alternate post-
convergence path, using SR segments to reach a node from where the IGP path
does not traverse the failed link, from that link the IGP route would be followed,
rather than attempt to follow the original path as is the case with RSVP-TE.

Per the SR standard, the introduction of SR to an MPLS network does not
cause any change in the MPLS data-plane[15]. Per the TI-LFA standard, TI-
LFA prepares data-plane switch-overs activated on failure in similar fashion to
RSVP-TE [12]. As such, while the FRR switch-over paths would be different,
they would still exist in the same fashion as with RSVP-TE and therefore
introduce no real change to the MPLS data-plane. Furthermore introducing
TI-LFA is by no means a requirement, the FRR handling can remain the same
if so desired, TI-LFA simply leverages SR for benefits, and is recommended by
Cisco [11].

It should be noted that TI-LFA only handles a single link failed, and would
the require re-convergence before being able to handle another one. However
there are attempts to generalize it to multiple link failures, such as [16].

Example of TI-LFA To get a more practical understanding of how TI-LFA
works, consider the example from prevously in Fig. 1, where we provided an
example of MPLS FRR link-protection. This has the disadvantage of not being a
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shortest path, therefore it can cause more congestion than necessary. Under TI-
LFA other solutions are possible, significantly it will typically provide a shortest
path from the point of failure to the original destination. An example of this is
given in Fig. 3.

r1 r2 r3

r4 r5 r6

r7

in

out

LSP

Backup

Figure 3: TI-LFA Fast Reroute example.

1.1.5 Segment Routing with MPLS data plane

SR-MPLS can be deployed using existing MPLS hardware and infrastructure.
SR is designed in such a way that many of its concepts maps to MPLS. In
practice each segment becomes a label stack entry, and the segment list becomes
the label stack from MPLS. The active segment is the top of stack. The SR
operations also translates into MPLS:

• PUSH becomes PUSH,
• NEXT becomes POP, and
• CONTINUE becomes SWAP with the same label, essentially NO-OP.

1.2 Related Work
1.2.1 Network Verification

Typically network verification tools are given some configuration (either control
or data plane) and one or more properties to check.

FSR [17] is oriented towards the goal of verifying if proposed constraints
on routing policy convergence, it uses RapidNet [18] as a distributed
implementation, and the Yices[19] SMT solver to analyze safety results. FSR is
only applicable for Border Gateway Protocol (BGP) and therefore it does not
compare with our tool which is oriented towards MPLS

Batfish [20] takes the control plane and a specific scenario (e.g. a failure
scenario) as input, and derives a data plane, which it uses to analyze for a broad
range of properties. However it requires the network operator to enumerate all
failure scenario combination, and their approach does not support MPLS.

1.2.2 Network Configuration Synthesis

In contrast to verification of existing configurations are synthesis of new ones,
which often aims to be correct by construction. Tools that do this are referred
to as synthesis tools, the network operator provides the tool with a specification
of rules that the configuration must adhere to, and the tool then generates a
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Features/Tools Prex NetKAT HSA VeriFlow Anteater SyNET
Protocol Support (SR-)MPLS OpenFlow Agnostic OpenFlowa Agnostic OSPF & BGP

Modeling Approach Automata
Theoretic Algorithmic Geometric Trie-graphs SAT problems N/A

Complexity Polynomial PSPACE O(R1R2)b NP-Complete NP-Complete N/A
Static X X X χ X X
Reachability Queries X X X X X χ
Forward Loop Queries X X X X X χ
Reachability under Failure X N/A X N/A χ N/A
Unlimited Header Size X N/A χ χ N/A N/A
Synthesis χ χ χ χ χ X
Practical Performance N/A X[27] Xc Xd Xe X[26]
Waypointing X X X X χ X
Language Python & C OCaml Python & C Python C++ & Ruby Python

aWith the execption of packet transformation protocols like MPLS
bFor reachability. R1 = Union of wildcard expressions, R2 = Number of transfer function

rules. While not exponential this ends up being a very high polynomial scale, based on the
results in Section 6

cTests on Standford University’s backbone Network showed a performance of 151 seconds
for model generation with reachability queries averaging 13 seconds and loop queries averaging
18.6 seconds per port.

dReachability queries performed in 75.39 ms on the same network which Header Space
Analysis (HSA) performs them in 578.39 ms

eapproximately 30 minutes on a network with 384 nodes

Table 3: Comparsion of related tools.

network configuration. Synthesis is a significantly different approach to the
problem resulting in no meaningful comparisons to Prex.

Propane [21, 22] and Propane/AT [23] is a language and compiler for
synthesizing BGP router configurations, based on a high level policy which they
guarantee to implement under all possible failures. Centrally they are interested
in keeping private traffic from leaking to non trusted parties.

NetComplete [24] aims to assist operators in modifying existing network-
wide configurations, to accommodate changes in routing policies, their core
selling point is that it allows “holes” in the configurations, which it can then
“autocomplete”. Central to their approach is counter-example guided inductive
synthesis[25] which gives them significant speedups (> 600×) relative to their
competitor SyNET[26]. They do not support MPLS, but they plan to add
support for it.

SyNET[26] aims to provide a provide a functioning network configuration
for networks using multiple interacting protocols, namely Open Shortest Path
First (OSPF) and BGP. To create a configuration SyNET takes a network
specification, a network topology, and a set of requirements. SyNET[26] was
created under the assumption that most networks are not Software Defined
Network (SDN) and as such requires each router to be configured individually.
This is reflected in the output where a configuration for each router is given,
both the input and output is given in stratified Datalog.

1.3 Verification Tools
The surge of interest in SDNs have brought with it the development of various
SDN verification tools. Despite all the tools falling into the same category, SDN
verification tools, they exhibit some significant differences. NetKAT, VeriFlow,
HSA, and Anteater are all such verification tools [28, 27, 29, 30]. The tool
developed in this paper is no different, sharing in the goals of a SDN verification
tool, but doing so with a different approach. In Table 3 we compare the central
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points in five verification tools, with our own tool: Prex.

NetKAT focuses on static verification of the network configuration and
supports checking for failures in terms of reachability and forwarding loops,
with a support for waypointing. NetKAT[27] sets itself apart from our, and
other tools, particularly in its approach to modeling and expressing the network.
NetKAT is based on Kleene Algebra with Tests (KAT), an algebraic system
based on Kleene Algebra (KA), the algebra used for regular expressions[31, 32,
27]. This in conjunction with other mathematical concepts, leads to NetKAT
expressing the network and its relations through what they call NetKAT
expressions, rather than encode the topology and policy as a logical structure.
NetKAT uses NetKAT expressions for both encoding of networks and to express
queries. This is similar to our tool in that regular expressions are used as the
basis for queries.

Header Space Analysis is similarly to NetKAT a static verification tool. As
the name suggests, this tool is focused on utilizing the headers of packets for the
verification. HSA[29], in terms of failures, covers reachability, forwarding loops,
traffic isolation and leakage. Unlike NetKAT, HSA uses a logical modeling
approach, generating a geometric model from the packet headers and the
network configuration. In order to model this the headers are bounded, and
their protocol-specific meanings are ignored such that the tool can be protocol
agnostic. The tool developed in this paper removes the restriction on headers
by being unbounded in size. This tool is similar in that it focuses on headers,
and is a static verification tool, but the approach used is distinctly different
from ours.

VeriFlow unlike both our and the other mentioned tools, VeriFlow[28] focuses
on being able to detect bugs as they occur, if not prevent them all together.
This tool is effectively added to the networks configuration and acting as a
layer between the network and the SDN controller. VeriFlow works by verifying
subsets of the network that would be effected by an update packet from the SDN
controller. VeriFlow models data-plane information as boolean expressions and
uses an SAT solver algorithm to check for failures. SAT is an NP-Complete
problem, as such SAT solvers generally use heuristics and approximations in
order to perform closer to polynomial time, as is the case for the SAT solvers
used by VeriFlow and Anteater. Checking only subsets of the network at a time,
lowers VeriFlow’s influence on the network performance, [28] shows this to cause
approximately 15 % increase in latency.

Anteater in terms of approach, Anteater[30] is similar to VeriFlow in that
it converts the data plane information to boolean functions and uses a SAT
solver to check whether the invariants are violated. In terms of goal, Anteater
is more similar to HSA, in that it is a static tool used to analyze an already
existing configuration, similar also to our tool. Anteater focusing mainly on
algorithms to detect reachability, forwarding loops, and packet loss as invariants;
and modeling packets to support multiple protocols. The remaining parts of the
tool, code generation, SAT solving, linking, and optimization is left to off-the-
shelf solutions. In [30] no theoretical complexity analysis is made, although a
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number of tests are performed. The data implies that the SAT solver used is
of quadratic complexity, i.e. it finds heuristics in quadratic time. However,
the SAT solving part of ranges from being approximately 10 - 30 % of the
complete runtime depending on the invariant being checked for. The results
are on a single network with a particular topology and hierarchical network
complexity, as a result the runtime may be specific to the single network, as the
paper also mentions that Anteater’s runtime depends on the network topology
and complexity. Anteater is capable of finding multiple kinds of issues such
as forwarding loops, packet loss, and inconsistencies in the Access Control List
(ACL) rules. While no complexity outside of the SAT solving is provided, it
is mentioned that Anteater took about half an hour to check static properties
in a network of 384 nodes. In terms of approach there are no real similarities
between Anteater and our tool.

While the tools have clear differences, they all serve the same purpose,
reachability and forward loop detection of networks. Both a static and a more
involved process is used, as well as logical and algebraic modeling, yet none of the
tools mention link failures, or handling thereof. To the best of our knowledge,
this is not something the aforementioned tools have concerned themselves with,
and is the primary focus of the tool developed in this paper. The tools also
mention little in regard to performance that is easily comparable, merely results
on specific use cases. HSA and VeriFlow does share one such use case, leading
to some comparison; according to [28] VeriFlow outperforms HSA, at least in
the case of finding reachability problems on the specific use case of Standford
University’s backbone network.

1.4 Problem & Overview
This section provides the problem which we will aim to solves, as well as provide
an overview of how our solution will work.

Problem 1 (Query Satisfiability Problem). Given a network topology, the
routing tables thereof, and a query, does there exists a trace through the network
which satisfies the query?

The exact definitions of network topology, routing tables and query will be
given later in the paper.

1.4.1 Overview of solution

The input to our method is a network topology and routing tables, either in
the form of our XML format or data from a set of Juniper routers, and a
query. Figure 4 gives an overview of the steps we take to determine if the
query either is satisfied or not. In Section 2.1 on page 12 we introduce our
MPLS network model, and related definitions. We then introduce a number of
concepts regarding pushdown and non-deterministic finite automata.

Then we encode our network model as a Pushdown Automaton (PDA) such
that we can query on it. The queries consist of four parts:

• A regular expression specifying the language of the initial header,
• A regular expression specifying the language of the path through the

network,
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Bespoke XML Juniper

Query
In Definition 7

Header
Destructing NFA

In Section 3.3

Header
Constructing NFA

In Section 3.3

Path NFA
In Section 3.3

Header
Destructing PDA
In Definition 12

Header
Constructing PDA
In Definition 13

Path Augmented
PDA

In Definition 11

Network
Modeling PDA
In Section 3.5

MPLS-Model
In Section 2.1

Topology

Routing Tables

ISIS database

Forwarding Tables

Final PDA
In Definition 16 Moped ?

True

False

Figure 4: Flowchart of how we solve the problem.

• A regular expression specifying the language of the final header,
• The maximum number of failed links.
The initial header and final header regular expressions are each converted to

first an Nondeterministic Finite Automaton (NFA) and then to a PDA. The path
query is converted to an NFA, which is used to augmented the PDA constructed
based on the network model. The three PDAs are combined into a single PDA
which we give to a PDA reachability tool called Moped [33]. Moped will then
either provide a trace through the pushdown which witnesses the query, or says
that no such witness exist.

1.5 Our Contribution
This paper presents a tool which is capable of running reachability queries,
written as regular expressions, on MPLS networks in failure scenarios. We
base ourselves on a key insight from Schmid and Srba [34] which describe how
to emulate an MPLS network using prefix rewrite systems, specifically PDA.
While our model of MPLS networks are based on their we extend it to be closer
to actual implementations of MPLS, specifically Junipers [35]. We do this by
incorporating the ability to perform multiple operations based on the top of
stack label, and non-determinism to support traffic engineering in routing.

We introduce a novel method for combining an NFA, made from the query,
and PDA into a single PDA which then simulates them running in lockstep.
This method is used to restrict the paths through the PDA which emulates
the MPLS behavior. Furthermore our query can restrict the initial and final
headers of a packet trace through the network. To increase the performance of
our tool, we introduce an optimization we call “top of stack reduction”, which
safely calculates which labels can be at the top of stack in a given state of the
PDA, this greatly reduces the amount of transitions in the PDA.

Lastly we perform a case-study on a real world network provided by
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NORDUnet, in addition to comparing ourselves with a well known tool in
networking.

2 Formal Network Model
In this section we present our formal definitions of MPLS networks, routing
tables, and network traces. These modify and extend the network definitions
presented by Schmid and Srba [34] in order to reflect our tool and SR enabled
networks. We will explain the differences from the approach of Schmid and Srba
in Section 2.3.

2.1 Networks Model
Definition 1 (MPLS Operations). Let L be a nonempty, finite set of labels
used in the MPLS-headers of the network. Each hop in the MPLS network can
then apply a number of the following operations to the label stack:

Op = {swap(`) | ` ∈ L} ∪ {push(`) | ` ∈ L} ∪ {pop}

Definition 2 (MPLS Network). We formally define a MPLS network model as
N = (V, I, L,E, τ) where

• V is a finite set of routers,
• I is the finite set of all interfaces in the network, there exists a finite set

for each router v ∈ V : Iv, which contains the interfaces on said router,
the union of all interfaces on each router in the network is exactly equal
to the set of all interfaces I =

⋃
v∈V Iv, and we assume that all interfaces

are unique to a router: ∀v, v′ ∈ V, v 6= v′ =⇒ Iv ∩ Iv′ = ∅,
• L = M ]M⊥ ] LIP is the set of the label stack entries, where M is the

set of MPLS labels, M⊥ = {`⊥ | ` ∈ M} is the set of MPLS labels, with
the bottom of stack bit set, and LIP is a set of labels which are used to
set the initial stack, based on IP routing information.

• E is the set of links between interfaces, expressed as pairs of connected
interfaces E ⊆ I × I. Any interface can only be connected to one
other interface, and any link (out, in) ∈ E has a corresponding entry
(in, out) ∈ E. Formally:

– (out, in) ∈ E =⇒ (in, out) ∈ E,
– (out, in), (out′, in) ∈ E =⇒ out = out′, and
– (out, in), (out, in′) ∈ E =⇒ in = in′.

• τ : I × L → (2I×Op∗
)
∗ is the global routing table, the image of τ is

a sequence of sets, the routing is a non-deterministic choice between the
members of each set, and the order in the sequence determines which set to
route from, the lowest index set in the sequence has the highest priority,
if the output is the empty sequence, then the packet is dropped. An
additional restriction is that for any input interface, the output interface
much be in the same router, that is ∀(out, ops) ∈

⋃
O∈τ(in,`) O : out ∈ Iv

if and only if in ∈ Iv.
Links in the network may fail, throughout the paper we use F ⊆ E as the
set of failed links. Moreover the interface in are said to be active, if and only
if it is connected to another interface, and the link is not failed. Formally
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∃in′ ∈ I, (in, in′) ∈ E \ F . Note that we allow loopback interfaces, which are
connected to themselves, in ∈ I, (in, in) ∈ E.

MPLS networks often tunnel traffic containing some underlying header. We
model these underlying, non MPLS, headers by the ` ∈ LIP labels. Additionally,
MPLS labels have a stacking bit, which we model by enforcing that only certain
labels ` ∈ M⊥ can be at the bottom of the MPLS stack. A common model
convention is to have M⊥ = {`⊥ | ` ∈ M}. The structure of a valid header in
our model is illustrated in Fig. 5, where a label is an element on the set at the
corresponding level.

...
M

M⊥

LIP

Figure 5: The structure of a valid header.

Definition 3 (Valid Headers). We define a set of valid headers H ⊆ L∗. A
valid header is either a member of LIP or it consists of a member of LIP as
the bottom of the stack, then a single member of M⊥ followed by 0 to more
members of M :

H = {` | ` ∈ LIP } ∪ {αM `M⊥`LIP | αM ∈M∗, `M⊥ ∈M⊥, `LIP ∈ LIP }

The operations defined in Definition 1 operate on the header switching out
labels with each other, pushing new labels, and removing old labels from the
top of the stack. Throughout all of these operations, we want to ensure that
our header remains valid h ∈ H.

Definition 4 (Header Rewrite Function). We define the partial header rewrite
function, H : H × Op∗ ↪→ H, for all valid packet header transformations for a
given network N = (V, I, L,E, τ), ops, ops′ ∈ Op∗, ` ∈ L, and h ∈ H as:

H(`h, ops) =



` ◦ h if ops = ε ∧ ` ∈ L,

H(`′h, ops′) if ops = swap(`′) ◦ ops′ ∧ `, `′ ∈M,

H(`′h, ops′) if ops = swap(`′) ◦ ops′ ∧ `, `′ ∈M⊥,

H(`′h, ops′) if ops = swap(`′) ◦ ops′ ∧ `, `′ ∈ LIP ,

H(`′`h, ops′) if ops = push(`′) ◦ ops′ ∧ ` ∈ LIP ∧ `′ ∈M⊥,

H(`′`h, ops′) if ops = push(`′) ◦ ops′ ∧ ` ∈M⊥ ∪M ∧ `′ ∈M,

H(h, ops′) if ops = pop ◦ ops′ ∧ ` ∈M ∪M⊥,

undefined otherwise.

To give a concrete example, consider the alphabet, L = {10, 20, 30, 40},
where M = ∅, M⊥ = {20, 30}, and LIP = {10, 40}, and the header 20 ◦ 10 ∈ H.
Then H(20 ◦ 10, pop ◦ swap(40) ◦ push(30)) = 30 ◦ 40. This calculation is also
shown in Table 4 where each row corrosponds to a call to the header rewrite
function.
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Header Operations remaining
20 ◦ 10 pop ◦ swap(40) ◦ push(30)
10 swap(40) ◦ push(30)
40 push(30)
30 ◦ 40 ε

Table 4: Example of MPLS Operations applied to a header

Fact 1. The set of valid headers H is partially closed under the header rewrite
function H. That is, applying the header rewrite function to a valid header
h ∈ H and some operation chain ops ∈ Op∗ will map to some h′ ∈ H or be
undefined:

∀h ∈ H, ∀ops ∈ Op∗ : H(h, ops) ∈ H

As such, the header rewrite function preserves the validity of a header.

2.2 Traces
Informally a trace through the network is the path a packet, starting at some
interface on a router with some header, takes through the network, before
arriving at some destination interface of a router with a different header.

Let the set of interfaces in a traffic engineering group O be defined as
I(O) = {in | (in, ops) ∈ O}, A traffic engineering group O is then said to
be active if and only if for all in ∈ I(O) and in′ ∈ I, (in, in′) /∈ F .

We can now define the set of active rules over a sequence of traffic engineering
groups, as mapped to by τ , as A(R) = {(in, ops) ∈ Oj | ∀in′ : (in, in′) /∈ F},
where R = O0O1 . . . On, and j is the lowest index where Oj is active.

Definition 5 (A network trace). We define a trace through a network, N =
(V, I, L,E, τ), with the set of failed links F ⊆ E, given a packet header of h1

starting at in1, as a finite sequence of pairs:

(in1, h1),

(in2, h2),

...
(inn, hn)

where (in1, ops) ∈
⋃

O∈τ(in,`) O for `h′ = h0 and some in ∈ I let h1 =

H(h0, ops). Furthermore, for all 1 ≤ i ≤ n − 1, let (ini+1, ops) ∈ A(τ(ini, `))
where `h′ = hi, and hi+1 = H(hi, ops).

Additionally, we define the set of all such valid traces in a given network
N = (V, I, L,E, τ) with the set of failed links F as the set of valid traces called
T F
N .

2.3 Novelty in Network Model
As previously noted, we base our MPLS network model on one presented by
Schmid and Srba in [34], however there are several modifications and extensions
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performed to it. Our model allows multiple links between the same routers,
such that they can fail on an individual basis. Our model supports multiple
operations performed by the routing function on the same incoming header,
based on the top of stack label. Our header rewrite function ensures that only
valid formed MPLS label stacks are permitted. Our routing table function is
non-deterministic, which allows TE behavior like load-balancing to occur.

All these changes are motivated by real world MPLS networks, in particular
by Juniper[35].

2.4 Query Language
In this section we present our query language syntax based on regular
expressions.

The queries consist of four parts:
• A regular expression specifying the language of the initial header,
• A regular expression specifying the language of the path through the

network,
• A regular expression specifying the language of the final header,
• The maximum number of failed links.

Definition 6 (Regular Expression for Querying). A regular expression for
querying in our language is defined over some alphabet Σ and the symbols
it contains s ∈ Σ, we write the class of regular expressions over an alphabet Σ
as: Reg(Σ).

a ::= s | . | [s...sn] | [^s...sn] | a∗ | a+ | a? | a1a2 | a1'|'a2
where the symbols represent the following:

s is a symbol in Σ,
. is a wildcard,

[s...sn] is a set of symbols belonging to the alphabet Σ,
[^s...sn] is the negated set of symbols belonging to the alphabet Σ,

a∗ is an arbitrary number of a,
a+ is at least one a,
a? is 0 or 1 a,

a1a2 is a concatenation of a1 and a2, and
a1 | a2 is a1 or a2.

Definition 7 (Query). A query for some network N = (V, I, L,E, τ) has the
following syntax:

' < ' a ' > ' b ' < ' c ' > 'k

where a, c ∈ Reg(L) and b ∈ Reg(V ) are regular expressions as defined in
Definition 6 over the alphabets L and V respectively, and k is the maximum
number of link failures.
Definition 8 (Trace Satisfying Query). A trace t = (in1, h1), (in2, h2), . . . ,
(inn, hn) with F as the set of failed links in the network N = (V, I, L,E, τ)
satisfies a query q =< a > b < c > k, and |F | ≤ k, if and only if:

h1 ∈ L(a),

hn ∈ L(c),

in1in2 . . . inn ∈ L(b).
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From the the following problem naturally follows:

Problem 2 (Query Satisfiability Problem). Given a network N = (V, I, L,E, τ)
and a query q, is there a valid trace in the network t ∈ T F

N where |F | ≤ k that
satisfies q?

2.5 Network Example
To demonstrate our network model, and related functions, we provide the
following example network, N = (V, I, L,E, τ), where

• V = {v1, v2, v3, v4, v5, v6},
• I = {vin1

1 , vv21 , vv3
1 , vin2

2 , vv12 , vv4
2 , vv13 , vv43 , vv53 , vv24 , vv34 , vv64 , vv35 , vv65 , vout15 } ∪

{vv4
6 , vout26 },

• L = M ]M⊥ ] LIP where
– M⊥ = {10, 11, 20, 21, 30, 31, 32, 40, 41},
– M = {101, 102, 201, 202, 211, 212, 221, 222}, and
– LIP = {ipout1 , ipout2},

• E ⊇ {(vv21 , vv12 ), (vv31 , vv13 ), (vv42 , vv24 ), (vv43 , vv34 ), (vv53 , vv35 ), (vv64 , vv46 )} ∪
{(vv65 , vv56 )}, with additional tuples to satisfy Definition 2,

• τ is defined using the table in Table 5. Instead of the sequence returned
by τ we give each rule a priority, lowest number indicating the highest
priority, such that the number in the priority column is equal to the index
in the sequence returned by τ , all priorities over 1 are fast failover rules.

The network is shown in Fig. 6 on page 18.
In the network we present four example LSPs , going from in1 and in2 to

out1 and out2. The LSP from in1 to out1 could be witnessed by a packet with
the following trace:

(vin1
1 , ipout1), (v

v1
3 , 10 ◦ ipout1), (v

v3
5 , 11 ◦ ipout1), (v

out1
5 , ipout1).

This trace follows rules of lines: 2, 10, and 22, in Table 5, the last tuple in the
trace is the result after line 22.

The LSP from in1 to out2 takes the path: v1, v3, v4, v6. From vin2
2 to vout15

there is: v2, v4, v3, v5, and from vin2
2 to vout26 there is: v2, v4, v6.

In the network two links are protected: (v1, v3) and (v4, v6). To protect
these, for each LSP going through the link needs a backup LSP. For the case
of (v1, v3) this path is v1, v2, v4, v3, and for (v4, v6) the path is v4, v3, v5, v6. In
the routing table these are shown as having a lower priority than the normal
LSPs. Moreover they utilize multiple operations when the FRR occurs, one is
to push the backup LSP and one is to perform the action which would normally
happen.

Consider the following query:

q1 =< . > v1 .∗ v6 < . > 2

Which means: Does there exist a trace through N , where starting at v1 with a
single label on the stack, through an arbitrary number of arbitrary routers in
the network, to v6 where only one label is on the stack, with a maximum of two
link failures. The trace:

(vin1
1 , ipout2), (v

v1
3 , 20 ◦ ipout2), (v

v3
4 , 21 ◦ ipout2), (v

v4
6 , 22 ◦ ipout2), (v

out2
6 , ipout2).
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with F = ∅ satisfies q1, since all the conditions in Definition 8 are met by the
trace. The network is shown in Fig. 6, with the trace satisfying q1 shown as the
blue path.

3 Formal Language Preliminaries
In this section we introduce the formal language preliminaries required for our
approach.

3.1 Automata
This work is primarily interested in the two classes of automata, NFAs and
PDAs. Since they will be important for the understanding, we will spend some
space defining them.

Definition 9 (Non-deterministic Finite Automata). A Nondeterministic Finite
Automaton (NFA) is a 5-tuple N = (S,Σ, δ, s0, sf ), where:

• S is a finite set of locations,
• Σ is a finite input alphabet,
• δ : S × (Σ ∪ {ε})→ 2S is the transition function,
• s0 ∈ S is the initial location, and
• sf ∈ S is the accepting location.

The computation of an NFA can be viewed as a series of configurations
(s, w) ∈ C(N) = S × Σ∗, where s is the current location and w is the
remaining input. As the NFA computes it will follow transitions to different
locations, while removing the symbol from the input. Thereby entering a new
configuration (s′, w′) ∈ C(N).

We introduce the infix arrow notation →δ⊆ C(N) × C(N) to symbolize
emergent behaviour of the transition function δ as follows:

(s, w)→δ (s′, w) if s′ ∈ δ(s, ε)

(s, aw)→δ (s′, w) if s′ ∈ δ(s, a)

for any w ∈ Σ∗ and a ∈ Σ. We will denote the transitive reflexive closure of the
infix arrow as →∗

δ .
A string from the alphabet w ∈ Σ∗ is accepted by N if and only if there exists

a series of configurations going from the initial to the final location, while reading
exactly w. Formally (s0, w) →∗

δ (sf , ε). The set of all such strings w accepted
by N is the language of N , formally: L(N) = {w ∈ Σ∗ | (s0, w)→∗

δ (sf , ε)}.

3.1.1 NFA Example

We will examine an NFA N = (S,Σ, δ, s0, sf ) defined by the following
components:

• S = {1, 2, 3, 4, 5, 6},
• Σ = {q0, q1, q2, q3, q5, qf},
• δ is defined by the graph in Fig. 7 where a transition from s ∈ S to s′ ∈ S

annotated by a ∈ Σ means that s′ ∈ δ(s, a),
• s0 = 1,
• sf = 6.
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v1

v2

v3

v4

v5

v6

in1

in2

out1

out2

Figure 6: Nexa with the four LSPs shown.

1 Router In Iv Label Prio Out Iv Operation
2 v1 vin1

1 ipout1 1 vv31 push(10)
3 vin1

1 ipout2 1 vv31 push(20)
4 vin1

1 ipout1 2 vv21 push(10) ◦ push(101)
5 vin1

1 ipout2 2 vv21 push(20) ◦ push(201)

6 v2 vin2
2 ipout1 1 vv42 push(30)

7 vin2
2 ipout2 1 vv42 push(40)

8 vv12 101 1 vv42 swap(102)
9 vv12 201 1 vv42 swap(202)

10 v3 vv13 10 1 vv53 swap(11)
11 vv13 20 1 vv43 swap(21)
12 vv43 31 1 vv53 swap(32)
13 vv43 211 1 vv53 swap(212)
14 vv43 221 1 vv53 swap(222)
15 v4 vv34 21 1 vv64 swap(22)
16 vv24 30 1 vv34 swap(31)
17 vv24 40 1 vv64 swap(41)
18 vv24 102 1 vv34 pop
19 vv24 202 1 vv34 pop
20 vv34 21 2 vv34 swap(22) ◦ push(211)
21 vv24 40 2 vv34 swap(41) ◦ push(221)

22 v5 vv35 11 1 vout15 pop
23 vv35 31 1 vout15 pop
24 vv35 222 1 vv65 pop
25 vv35 212 1 vv65 pop

26 v6 vv46 22 1 vout26 pop
27 vv46 41 1 vout26 pop

Table 5: Routing table for Nexa with (v1, v3) and (v4, v6) protected.
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Figure 7: A simple NFA.

To provide an example of how a computation in an NFA works, consider
the following example. Given q0q5q5qf as input to N , we can get the following
transitions:

(1, q0q5q5qf )→δ (2, q5q5qf )→δ (4, q5q5qf )→δ (4, q5qf )→δ (5, qf )→δ (6, ε).

Since 6 is the final location of N , the string q0q5q5qf is accepted, therefore
q0q5q5qf ∈ L(N).

An MPLS network maps very closely to PDA. A PDA has, much like the
NFA a set of states, with transitions between them. The pushdowns examined
in this paper do not have an input tape, but they will have the pushdowns
defining feature, a stack to which the pushdown can read and write. The stack
of a pushdown closely mirrors the stack of an MPLS network.

Definition 10 (Pushdown Automata). A PDA is a 5-tuple P = (Q,Γ, λ, q0, qf )
where:

• Q is a finite set of locations,
• Γ is a finite stack alphabet,
• λ : Q × Γ → 2Q×Γ∗ is the transition function. Where all sets in the

co-domain are finite,
• q0 ∈ Q is the initial location, and
• qf ∈ Q is the final location.

A computation of a PDA can, like that of an NFA, be viewed as a series
of configurations, expressed as 2-tuples (q, h) ∈ C(P ) = Q × Γ∗. The main
difference being that where the NFA is only allowed to read from the symbol at
the start of a word, the PDA can read from, push to, and swap from the top of
its stack, essentially rewriting the prefix of the word in the stack.

We define the infix arrow notation →λ⊆ C(P ) × C(P ) to, like that of
the NFA, describe emergent behaviour of the transition function λ as follows:
(q, `h) →λ (q′, αh) if (q′, α) ∈ λ(q, `), for all ` ∈ Γ and h ∈ Γ∗. We will denote
the transitive reflexive closure of the infix arrow as →∗

λ.
Notice that λ always takes exactly one symbol from the stack. Throughout

this paper, ⊥ will be used as a bottom of stack symbol, signifying the stack
being empty. Since a pushdown removing the bottom of stack symbol would
have no symbol to map with λ, it would effectively halt, we will not be popping
the bottom of stack symbol.
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3.1.2 PDA example

As an example consider the PDA P = (Q,Γ, λ, q0, qf ):
• Q = {q0, q1, q2, q3, q4, q5, qf},
• Γ = {10, 11, 20,⊥},
• λ is defined by the figure Fig. 8, an edge from location q to q′ annotated

with `→ α means that (q′, α) ∈ λ(q, `), edges without any annotation are
rules of the form (q′, `) ∈ λ(q, `) for all applicable ` ∈ Γ,

• q0 = q0, and
• qf = qf .

q0 q3 q4
10→ 20 ◦ 10

q1 q2
10→ 11

q5
20→ ε

20→ ε

qf

Figure 8: An example PDA

Consider the initial configuration (q0, 10◦⊥) which can reach qf in two ways:
• (q0, 10 ◦ ⊥)→λ (q1, 10 ◦ ⊥)→λ (q2, 11 ◦ ⊥)→λ (qf , 11 ◦ ⊥), and
• (q0, 10 ◦ ⊥)→λ (q3, 10 ◦ ⊥)→λ (q4, 20 ◦ 10 ◦ ⊥)→λ (qf , 20 ◦ 10 ◦ ⊥).
The initial configuration (q0, 20 ◦ 20 ◦ ⊥) can also reach qf in two ways:
• (q0, 20 ◦ 20 ◦ ⊥)→λ (q5, 20 ◦ ⊥)→λ (qf , 20 ◦ ⊥), and
• (q0, 20 ◦ 20 ◦ ⊥)→λ (q5, 20 ◦ ⊥)→λ (q5,⊥)→λ (qf ,⊥).

3.2 Augmented Pushdown Construction
In this section we define our method of restricting the traces through a PDA to
those accepted by an accompanying NFA.

Definition 11 (Augmented Pushdown). Given a PDA P = (Q,Γ, λ, q0, qf )
and an NFA N = (S,Σ, δ, s0, sf ) where Σ ⊆ Q, we can construct the pushdown
P ′ = (Q′,Γ′, λ′, q′0, q

′
f ) that computes the two automata in lockstep. This

new pushdown P ′ will progress the original pushdown P iff N can read the
destination location, while progressing N iff the transition is taken. Automaton
N can therefore be thought of as a query on the path of P . The elements of the
new augmented pushdown P ′ is defined as follows:

• Q′ = (Q×S)∪ ({start}×S) is the finite set of locations, with each either
representing the current location of both automata, or the unique start
location,

• Γ′ = Γ is the finite stack alphabet,
• λ′ : Q′ × Γ′ → 2Q

′×Γ′∗ is the transition function,
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• q′0 = (start, s0) is the initial location, and
• q′f = (qf , sf ) is the final location.

where start /∈ Q is a new location acting as the initial location in P and allowing
N to match the original initial location.

The transition function λ′ drives the computation according to both original
transition functions λ and δ as follows:

a) P ′ contains the rule:

((q, s′), `) ∈ λ′((q, s), `)

for every (q, s), (q, s′) ∈ Q′ and ` ∈ Γ′ such that s′ ∈ δ(s, ε)
b) P ′ contains the rule:

((q′, s′), α) ∈ λ′((q, s), `)

for every (q, s), (q′, s′) ∈ Q′, ` ∈ Γ′, and α ∈ Γ′∗ such that s′ ∈ δ(s, q′) and
(q′, α) ∈ λ(q, `)

c) P ′ contains the rule:

((q0, s
′), `) ∈ λ′((start, s), `)

for every s, s′ ∈ S and ` ∈ Γ′ such that s′ ∈ δ(s, q0)

Rule a) encodes N taking an epsilon transition, which neither affects the
configuration of P , nor the stack of P ′. rule b) is the main computational part.
It encodes that if N has a transition that reads q′ from s to s′, and P has a
transition from q to q′ that rewrites the single symbol ` into the prefix α. Then
P ′ must have a transition that progress both and modifies the stack. Analogous
to rule b), rule c) starts off the computation by matching the original initial
location in P .

Theorem 1. Given a PDA P = (Q,Γ, λ, q0, qf ), a NFA N = (S,Q, δ, s0, sf ),
and an initial header h0 ∈ Γ∗, there exists a path through the pushdown
(q0, h0) →λ (q1, h1) →λ · · · →λ (qn−1, hn−1) →λ (qf , hn) such that
q0q1 . . . qn−1qf ∈ L(N) if and only if:

((start, s0), h0)→∗
λ′ ((qf , sf ), hn).

Proof. To prove Theorem 1 we will prove the stronger claim that (q0, h0) →λ

(q1, h1)→λ · · · →λ (qn, hn) and (s0, q0q1 . . . qn)→∗
δ (sn, ε) if and only if

((start, s0), h0)→∗
λ′ ((qn, sn), hn).

Theorem 1 then naturally follows.
Assume a trace (q0, h0) →λ (q1, h1) →λ · · · →λ (qn, hn) in P such that

(s0, q0q1 . . . qn) →∗
δ (s′, ε). We want to show that there exists a corresponding

trace ((start, s0), h0)→∗
λ′ ((qn, s

′), hn) in P ′.
Base Case (n = 0): By at most |S| applications of rule a) followed by a

single application of rule c) we can get the trace ((start, s0), h0) →λ′

((start, s1), h0)→λ′ · · · →λ′ ((start, sj), h0)→λ′ ((q0, sj+1), h0). By then,
another at most |S| applications of rule a) can yield ((q0, sj+1), h0) →λ′

((q0, sj+2), h0)→λ′ · · · →λ′ ((q0, s
′), h0).
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Inductive Step: Assume a trace in P (q0, h0)→λ (q1, h1)→λ · · · →λ (qn, hn)
such that (s0, q0q1 . . . qn) →∗

δ (s′, ε) by the induction hypothesis P ′ will
have a trace ((start, s0), h0) →∗

λ′ ((qn, s
′), hn). Now assume another step

in P , (qn, hn) →λ (qn+1, hn+1) such that (s′, qn+1) →∗
δ (s′′, ε). We can

capture this step by applying rule a) at most |S| times followed by rule b)
yielding the trace ((qn, s

′), hn)→∗
λ′ ((qn+1, s

′′), hn+1).
Contrapositively, Assume a trace in P ′:

((start, s0), h0)→λ′ ((start, s10), h0)→λ′ · · · →λ′ ((start, sl00 ), h0)

→λ′ ((q0, s1), h0)→λ′ ((q0, s
1
1), h0)→λ′ · · · →λ′ ((q0, s

l1
1 ), h0)

→λ′ ((q1, s2), h1)→λ′ ((q1, s
1
2), h1)→λ′ · · · →λ′ ((q1, s

l2
2 ), h1)

...

→λ′ ((qn, sn+1), hn)→λ′ ((qn, s
1
n+1), hn)→λ′ · · · →λ′ ((qn, s

ln+1

n+1 ), hn)

(1)

We want to show that there exists a corresponding trace (q0, h0)→λ (q1, h1)→λ

· · · →λ (qn, hn) in P such that (s0, q0q1 . . . qn)→∗
δ (s

ln+1

n+1 , ε).
Base Case (n = 0): The sub-trace ((start, s0), h0) →∗

λ′ ((start, sl00 ), h0) can
only exist from rule a), which implies (s0, w) →∗

δ (sl00 , w). The single
step ((start, sl00 ), h0) →λ′ ((q0, s1), h0) can only come from rule c), which
implies that (sl00 , q0w

′) →δ (s1, w
′). Finally, rule a) is again required for

the last sub-trace, implying (s1, w
′)→∗

δ (sl11 , w
′).

Inductive Case: Assume a trace in P ′ like that in Eq. (1). By the
induction hypothesis, there exists a corresponding trace (q0, h0) →λ

(q1, h1) →λ · · · →λ (qn, hn) in P such that (s0, q0q1 . . . qnw) →∗
δ

(s
ln+1

n+1 , w). Now assume a next step in P ′, the trace ((qn, s
ln+1

n+1 ), hn) →λ′

((qn+1, sn+2), hn+1)→λ′ ((qn+1, s
1
n+2), hn+1)→λ · · · ((qn+1, s

ln+2

n+2 ), hn+1).
The first sub-step implies, through rule b), that (qn, hn)→λ (qn+1, hn+1)

and (s
ln+1

n+1 , qn+1w
′) →δ (sn+2, w

′). Subsequently, the remaining steps,
because of rule a), imply that (sn+2, w

′)→δ (s
ln+2

n+2 , w
′).

3.2.1 Augmented Pushdown Example

For an example we will examine an augmented pushdown constructed from the
previously explored examples of an NFA in Section 3.1 and a PDA in Section 3.1.
Observe that these fulfil the requirements to construct an augmented pushdown,
namely Σ ⊆ Q. The elements of the constructed augmented pushdown
P ′ = (Q′,Γ′, λ′, q′0 , q′f ) is as follows:

• Q′ =


(q0, 1), (q1, 1), . . . , (qf , 1),

(q0, 2), (q1, 2), . . . , (qf , 2),

...
(q0, 6)(q1, 6), . . . , (qf , 6)

 ∪ {(start, 1), (start, 2), . . . , (start, 6)}
• Γ′ = {10, 11, 20},
• λ′ is defined by Fig. 9,
• q′0 = (start, 1), and
• q′f = (qf , 6).
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(a) NFA from NFA Example.

q0 q3 q4
10→ 20 ◦ 10

q1 q2
10→ 11

q5
20→ ε

20→ ε

qf

(b) PDA from PDA example.

(start, 1) (q0, 2) (q0, 4)

(q1, 3) (q2, 5)

(q5, 5) (qf , 6)

(q5, 4)

10→ 11

20→ ε

20
→

ε

20→ ε

Figure 9: λ′ constructed from Fig. 9a and Fig. 9b
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In the original PDA P , from Section 3.1.2, there existed two computations
starting at q0 ending at the final location qf with 10 as the starting stack, and
ending with either 11 or 20 ◦ 10. In the augmented PDA P ′ there only exists
one computation starting with the configuration ((start, 1), 10) that ends in the
final location (qf , 6). This computation is as follows:

((start, 1), 10)→λ′ ((q0, 1), 10)→λ′ ((q0, 2), 10)→λ′

((q1, 3), 10)→λ′ ((q2, 5), 11)→λ′ ((qf , 6), 11).

This trace corresponds to the following trace through P :

(q0, 10)→λ (q1, 10)→λ (q2, 11)→λ (qf , 11).

In lock step with the following trace through the NFA N from Section 3.1.1:

(1, q0q1q2qf )→δ (2, q1q2qf )→δ (3, q2qf )→δ (5, qf )→δ (6, ε).

3.3 Regex to NFA
To compactly describe an NFA we will use regular expressions.

A regular expression, R, defines a specific search pattern, all strings included
in said pattern creates the language L(R)[32]. From Kleene’s theorem [32] we
know that the same language can also be defined as a language recognized by
an automaton. Additionally, from Thompson’s Construction we know that it is
possible to create an NFA from a regular expression, the runtime for which is
linear in the size of the regular expression[36].

Theorem 2. [36] Given a regular expression R we can, in linear time, construct
an equivalent NFA N = (S,Σ, δ, s0, sf ) such that:

L(N) = L(R).

The reverse of a string w, in this paper denoted wR, is defined by the property
that if w = w0w1 . . . wn then wR = wnwn−1 . . . w0. The reverse of a language L
can also be defined as LR = {wR | w ∈ L}. We can construct the reverse NFA
NR in linear time.

Theorem 3. [37] Given an NFA N = (S,Σ, δ, s0, sf ), we can construct an
NFA NR recognizing the reverse language LR(N).

We extend the ∈ notation to cover symbols in strings. As such, a ∈ w will
mean a ∈ {wi | 0 ≤ i ≤ n}, where w = w0w1 . . . wn.

3.4 Converting an NFA to a PDA
We will now describe our method of converting an NFA into a PDA that either
reads a string h ∈ L(N) from the stack, or places one string h ∈ L(N) on the
stack.

Intuitively converting an NFA N = (S,Σ, δ, s0, sf ) into a PDA P =
(Q,Γ, λ, q0, qf ) reading all strings w ∈ L(N) from the stack, such that
(q0, w⊥)→λ (qf ,⊥) is trivial. Such a PDA will simply remove a label when the
NFA would read it and swap the top of stack label `′ ∈ Γ with itself when N
has an epsilon transition.
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Definition 12 (Destructing PDA). Given an NFA N = (Q,Σ, δ, q0, qf ), the
corresponding destructing PDA Pd = (Q,Γ, λ, q0, qf ) is defined as follows:
Notice that Q, q0, and qf are same in both Pc and N , leaving only Γ and the
transition function λ in need of a new definition:

• Γ = Σ ∪ {⊥},
• λ is the transition function defined below,
a) Pd has the rule:

(q′, ε) ∈ λ(q, `)

for every q, q′ ∈ Q and ` ∈ Σ, such that q′ ∈ δ(q, `).
b) Pd has the rule:

(q′, `) ∈ λ(q, `)

for every q, q′ ∈ Q and ` ∈ Γ, such that q′ ∈ δ(q, ε).

Theorem 4. Given an NFA N = (Q,Σ, δ, q0, qf ), the constructed PDA
Pd = (Q,Γ, λ, q0, qf ), satisfies (q0, h)→∗

δ (qf , ε) if and only if

(q0, h⊥)→∗
λ (qf ,⊥).

Lemma 1. To prove Theorem 4 we will prove the stronger claim that that
(q0, h) →n

δ (q′, h′) if and only if (q0, h⊥) →n
λ (q′, h′⊥). From there the above

theorem naturally follows.

Proof. We will prove the above lemma by induction on the length, n, of the
trace.

Assuming a trace (q0, h) →n
δ (q′, h′) in N , we will show that there exists a

trace (q0, h⊥)→n
λ (q′, h′⊥) in P .

Base Case (n = 0): The base case is trivially true.
Inductive case: Assume a trace (q0, h) →n

δ (q′, h′) in N , by the induction
hypothesis there is a trace (q0, h⊥) →n

λ (q′, h′⊥). Assume an extra step
in N , (q′, h′)→δ (q′′, h′′). If `h′′ = h′ this step can be captured by rule a)
and the trace (q′, `h′′⊥)→λ (q′′, h′′⊥). Alternatively, if h′ = h′′, the step
can be captured by rule b) by the trace (q′, h′′⊥)→λ (q′′, h′′⊥).

For the contraposition, Assume a trace (q0, h⊥) →n
λ (q′, h′⊥) in P , we will

show that there exists a trace (q0, h)→n
δ (q′, h′) in N .

Base Case (n = 0): The base case is trivially true.
Inductive case: Assume a trace (q0, h⊥)→n

λ (q′, h′⊥) in N , by the induction
hypothesis there is a trace (q0, h)→n

δ (q′, h′). Assume an extra step in N ,
(q′, h′⊥) →λ (q′′, h′′⊥). If `h′′ = h′ this step can only come from rule a),
in which case (q′, `h′′) →δ (q′′, h′′). Otherwise, if h′ = h′′, the step is a
result of rule b), and (q′, h′′)→δ (q′′, h′′).

We are also interested in the opposite construction, taking an NFA N and
creating a PDA P that can reach qf with all stack words h ∈ L(N). Intuitively,
this is possible by thinking about the NFA writing to the input tape when it
would otherwise read, except that produces reversed strings. To counteract this
reversal we first need to reverse the NFA, as discussed in Theorem 3. From this
new Writing Reversed NFA construction of the PDA is similar to Definition 12.
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Definition 13 (Constructing PDA). Given an NFA N = (Q,Σ, δ, s0, sf ), we
define the Constructing pushdown Pc = (Q,Γ, λ, q0, qf ). The first step is to
reverse N , yielding NR = (Q,Σ, δR, q0, qf ), we then construct Pc from NR:

• Γ = Σ ∪ {⊥},
• λ is the transition function defined below,

Notice that Q, q0, and qf are the same in Pc and NR. The direct construction
yields the following the following definition of λ:

a) Pc has the rule:

(q′, `′`) ∈ λ(q, `)

for every q, q′ ∈ Q, ` ∈ Γ and `′ ∈ Σ, such that q′ ∈ δR(q, `′).
b) Pc has the rule:

(q′, `) ∈ λ(q, `)

for every q, q′ ∈ Q and ` ∈ Γ, such that q′ ∈ δR(q, ε).
Informally, the first rule a) λ pushes the label `′ when δ reads l, rule b) λ does
not modify the stack when δ reads ε.

Theorem 5. Given an NFA N = (Q,Σ, δ, q0, qf ), the constructed Constructing
PDA Pc = (Q,Γ, λ, q0, qf ) satisfied (s0, h)→∗

δ (sf , ε) if and only if

(q0,⊥)→∗
λ (qf , h⊥).

The proof of Theorem 5 is similar to that of Theorem 4.

3.5 Encoding MPLS Reachability Into PDAs
We show how to encode the MPLS network model presented earlier, into an
PDA, such that we can perform reachability analysis on it. Since the naive
approach to computing the exact network reachability under failures, in which
you enumerate all failure cases, grows exponentially in the number of failed
links, we will instead show how to over-approximate the reachability.

3.5.1 Over-approximation

Intuitively we encode the network as follows:
• The location of the pushdown, with the exception of the initial and final

locations q0 and qf , are in the form of triples: (out, ops), where out ∈ I is
the outgoing interface, ops ∈ Op∗ is the remaining operations.

• The stack of the pushdown will exactly be the MPLS label stack, and any
stack in the pushdown will also be a valid header.

In order to support multiple operations internally in the routers, we include
the pending operations, ops, as part of the locations. When ops = ε there are
no remaining operations to perform on the packet, and the next transition will
be to what is logically another router. We expect that there being only a single
operation to be the most common occurrence, but multi-operation is crucial,
for fast-failover for example.

We observe that an mpls interface can, according to the Definition 2 rule
for E only be connected to one other interface. An outgoing interface out
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can therefore uniquely identify the incoming interface in it is connected to,
(out, in) ∈ E. For this reason, we do not include locations for incoming interface,
but rather connect outgoing interfaces out to the ones the corresponding
incoming interface in can send to.

There exists a finite set of possible operation sequences and subsequences
for the τ for any network, this set is denoted as Ops.

The following conversion rules were initially given by Schmid and Srba [34],
but heavily adapted to the MPLS model presented inSection 2.1.

Given an MPLS network N = (V, I, L,E, τ) and a maximum number
of link failures k such that 0 ≤ k ≤ |E|, we define the pushdown system
P (N) = (Q,Γ, λ, q0, qf ) as:

• Q = {(out, ops) | out ∈ I, ops ∈ Ops} ∪ {q0, qf},
• Γ = L,
• λ is defined in terms of its rules below,
• q0 = q0, and
• qf = qf .
Recall that the routing function τ maps an interface and a label to a string of

traffic engineering groups τ(in, `) = O0O1 . . . On, which are themselves sets of
interface operation chain pairs Oc = {(in1

c , ops
1
c), (in

2
c , ops

2
c), . . . , (in

lc
c , ops

lc
c )}

for all 0 ≤ c ≤ n. The failure aware routing function is defined as τk(in, `) =⋃i
j=0 Oj , such that i the smallest index where:∣∣∣∣∣∣∣∣∣∣∣



in1
1, in

2
1, . . . , in

l1
1 ,

in1
2, in

2
2, . . . , in

l2
2 ,

...
in1

i , in
2
i , . . . , in

li
i ,



∣∣∣∣∣∣∣∣∣∣∣
> k

a) P (N) contains the rule

((out′, ops), `) ∈ λ((out, ε), `)

for every ` ∈ Γ, (out′, ops) ∈ τk(in, `), and the in such that (in, out) ∈ E.
b) P (N) contains the rule

((out, ops′), `′) ∈ λ((out, ops), `)

if ops = swap(`′) ◦ ops′ and (`, `′ ∈M ∨ `, `′ ∈M⊥ ∨ `, `′ ∈ LIP ),
c) P (N) contains the rule

((out, ops′), `′`) ∈ λ((out, ops), `)

if ops = push(`′)◦ops′ and ((` ∈M∪M⊥∧`′ ∈M)∨(` ∈ LIP ∧`′ ∈M⊥)),
d) P (N) contains the rule

((out, ops′), ε) ∈ λ((out, ops), `)

if pop ◦ ops′ and ` ∈M ∪M⊥.
e) P (N) contains the rule

((out, ops), `) ∈ λ(q0, `)

for every in ∈ I, ` ∈ L, and (out, ops) ∈
⋃

O∈τ(in,`) O
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f) P (N) contains the rule

(qf , `) ∈ λ((out, ε), `)

for every out ∈ I and `inL.
Rule a) connects the routers and also implements the routing tables. This is

necessary in our construction since we have do not have locations in the PDA,
which represent the incoming interfaces. Therefore the outgoing interfaces of one
router needs to connect to the outgoing interfaces with the remaining operations
of the other router. Here we use the minimum between the number of failover
rules and function C to limit the number of failover rules to the ones allowed
with the given k.

Rules b) to d) implements the header rewrite function from Definition 4.
Specifically rule b) implements the swapping behavior, rule c) implements the
pushing behavior, and rule d) implements the popping behavior. Moreover only
the same cases as the header rewrite functions are added to the pushdown.

In rule e) we connect the initial location of the pushdown to every logical
incoming interface of the pushdown i.e. everywhere a multi-operation begins.
Lastly in rule f) we connect everywhere the ops part of the location is ε to qf ,
the final location in the pushdown.

Theorem 6. Given an MPLS network model N = (V, I, L,E, τ) and
a maximum number of link failures k, we can construct the over-
approximating PDA P (N) for k, such that there is a trace in the network
(in0, h0), (in1, h1), . . . (inn, hn) ∈ T F

N and |F | ≤ k only if:

(q0, h0)→∗
λ (qf , hn).

Proof. To prove Theorem 6 we will prove the stronger claim that a trace in the
network (in0, h

l0
0 ), (in1, h

l1
1 ), . . . , (inn, h

ln
n ) ∈ T F

N and |F | ≤ k will imply a trace
in P (N):

(q0, h0)

→λ ((in0, ops
0
0), h

0
0)→λ

((in0, ops
1
0), h

1
0)→λ · · · →λ ((in0, ops

l0−1
0 ), hl0−1

0 )→λ ((in0, ε), h
l0
0 )

→λ ((in1, ops
0
1), h

0
1)→λ

((in1, ops
1
1), h

1
1)→λ · · · →λ ((in1, ops

l1−1
1 ), hl1−1

1 )→λ (in1, ε, h
l1
1 )

...
→λ ((in1, ops

0
n), h

0
n)→λ

((inn, ops
1
n), h

1
n)→λ · · · →λ ((inn, ops

ln−1
n ), hln−1

n )→λ (inn, ε, h
ln
n )

(2)

We will prove this by induction in n.
Base case (n = 0): The base case can be captured by an application of rule e)

to simulate the initial application of the routing function from Definition 5,
followed by l0 applications of rules b) to d) to simulate the header rewrite
function.

Inductive case: Assume a trace in the network (in0, h0), (in1, h1), . . . ,
(inn, hn), by the induction hypothesis there’s a trace like Eq. (2). Now
assume another tuple in the network trace (inn+1, hn+1), this step can be
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captured by an application of rule a) simulating a link and the routing
function, followed by ln+1 applications of rules b) to d) to simulate the
header rewrite function.

To align the final location with that of Theorem 6, an application of rule f)
do.

There are several cases where the over-approximation contains behavior
which is not in the MPLS model.
Too many fail-over rules taken : In the over-approximating PDA we allow

there to be up-to k failures in each routing, this means that in a trace from
it, there might have been taken a greater number of fast-failover rules than
k, thus the PDA considers more links failed than k.

A previously considered failed interface is used : The over-approximating
PDA does not save information about which links have previously failed.
This can cause issues since if a fail-over rule is taken at some router v
and then later in the packet routing v is visited again, then it can take an
interface which was previously considered failed.

3.6 Under-approximation
The MPLS to PDA encoding shown above over-approximates the reachability
of the N . Making it unsuitable for answering queries where a yes answer is
desirable, since all yes queries are in fact a maybe.

We can modify the conversion process to instead under-approximate the
reachability, turning a no answer into a maybe, but making a yes certain in the
process. The intuition of the under-approximation method is that it’s possible
to add a variable i to all the states in the pushdown which encodes how many
links have previously failed during this trace. As long as i ≤ |F |, the problem,
Section 3.5.1, of globally failing more links than allowed is resolved.

The problem of traveling through a link previously marked broken is more
difficult. Perfectly eliminating the problem requires enumerating all failures,
which won’t be bounded by a polynomial. Instead, we restrict the trace by
imposing that any trace (in0, h0), (in1, h1), . . . , (inn, hn) where ∃0 ≤ i, j ≤
n, v ∈ V : i 6= j and ini, inj ∈ Iv is deemed inconclusive, a property which
can quickly be checked on a trace.

The MPLS network model to PDA conversion can be modified such that it
is an under-approximation, Pu(N) which is usable in some scenarios.

Recall the failure aware routing function, τ . For under-approximation,
we define a new routing function π : I × L → Z × (2I×Op∗

). Where
τ(in, `) = O0O1 . . . On such that Oc = {(in0

c , ops
0
c), (in

1
c , ops

1
c), . . . , (in

lc
c , in

lc
c )}

for all 0 ≤ n ≤ k, the routing function π maps an interface and a label to the set
of tuples containing the number of failures and the TE group, let the number
of failures at index i be

fi =



in0
0, in

1
0, . . . in

l0
0 ,

in0
1, in

1
1, . . . in

l1
1 ,

...

in0
i−1, in

1
i−1, . . . in

li−1

i−1 ,
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then πk(in, `) = {(fi, Oi) | 0 ≤ i ≤ n, fi ≤ k}
The rules defined in Section 3.5.1 are modified as follows: rule a) is changed

to
a) Pu(N) contains the rule

((out′, ops, i+ j), `) ∈ λ((out, ε, i), `)

for every 0 ≤ i ≤ k− j, ` ∈ Γ, and (j, (out′, ops)) ∈ πk(in, `) where in ∈ I
such that (in, out) ∈ E.

Rule a) is the only rule responsible for increasing i, and also makes sure that
only rules which are applicable, i.e. i+j ≤ k are added to the pushdown Pu(N).
rules b) to d) just forward the i part of the triple, rule e) will set i = 0, and
rule f) for forwards for all 0 ≤ i ≤ k.

Theorem 7. Given an MPLS network model N = (V, I, L,E, τ) and a
maximum number of link failures k, we can construct the under-approximating
PDA Pu(N) for k, such that there is an acyclic trace in the network
(in0, h0), (in1, h1), . . . , (inn, hn) ∈ T F

N where |F | ≤ k and @0 ≤ i, j ≤ n, v ∈
V : i 6= j and ini, inj ∈ Iv if:

(q0, h0)→∗
λ (qf , hn)

4 Optimizations
After implementing the previously described methods, we hit several
performance bottlenecks once we used non-trivial sized networks. In this section
we document some of the optimization we have performed, to reduce the running
time and memory requirement of our program.

4.1 Top of Stack reduction
The PDAs constructed in Sections 3.2, 3.4 and 3.5 contain many superfluous
transitions. That is, transitions that read symbols from the stack that can not be
at the top in a given location. Mathematically, these transitions will not pose
a problem, but computationally they waste memory better spent solving the
problem. As a real world example, consider a PDA P with 7000 labels and 88000
locations. When combined with an NFA containing a single epsilon transition,
the resulting augmented PDA P ′ will contain at least 7000 ∗ 88000 = 616 ∗ 106
transitions. Even at a size of 4 bytes per transition, such a transition system
would take up > 2.4 GiB. In practice, transitions take up much more than 4
bytes.

The PDAs examined in this paper all contain a large number of transitions
that either push or swap, and relatively few that pop. A property which makes
it possible to closely estimate the set of symbols that can be at the top of the
stack, by only looking at the transitions directly connected to the location.

Let the set of symbols that can be at the top of the stack in a state q be
denoted T̄ [q]. The intuition is that a symbol `′ can only be at the top of the
stack at a location `′ ∈ T̄ [q′] if some transition (q′, α) ∈ λ(q, `) lead it there
where α = `′α′ if |α| ≥ 1 or if it was already under the top of stack if |α| = 0.
Calculating what is under the top of stack can be an expensive operation, so
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20→
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10
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10→ 10

E6
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E7

Figure 10: PDA with top of stack annotated
T q0 q1 q2 q3 q4

T0 {20} ∅ ∅ ∅ ∅
T1 {20} {20} {10} ∅ ∅
T2 {20} {20} {10} {10, 20, 30} ∅
T3 {20} {20} {10} {10, 20, 30} {10}
T4 {20} {20} {10} {10, 20, 30} {10}

Table 6: Value of Tn after n iterations.

we can naively overestimate it to be the entire alphabet Γ. We will call our
over-estimation T . An example of a pushdown annotated with T below each
location can be found in Fig. 10.

To find the possible top of stack symbols in every location is a slightly tricky
task, since the set of non-superfluous incoming transitions for every location
depends on the top of stack of the previous locations. The dependency graph
will most likely contain cycles, meaning there is no single serializable way to
process the nodes once and get a correct answer.

Instead we observe that marking a rule as non-superfluous will only ever
result in other rules also being non-superfluous. In other words, adding a label
to T [q] for some q, can not cause T [q′] to shrink. The problem is therefore
to compute the minimum fixed point of the inner for loop which maps current
estimate of T [q] for every location, to a new estimate of T [q] for every location.

The function find_tops in Algorithm 1 finds the smallest fixed point of
function the inner for loop. The associative array returned is our final T for all
q.

4.1.1 Usage

Definition 14 (Trimmed pushdown). By examining the T [q] of locations in
a pushdown in relation to an `t, we can eliminate some of the superfluous
transitions. We will call the operation trimming for `, and denote it T (P, `).
Formally, the result of trimming a pushdown P = (Q,Γ, λ, q0, qf ) for `t
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1 Function find_tops(P , `)
Input : A PDA P = (Q,Γ, λ, q0, qf ),

An initial label `
Result: The minimum fixed point T .

2 Eall ← {(q, `, q′, α) | (q′, α) ∈ λ(q, `)};
3 for q ∈ Q do
4 T0[q]← ∅;
5 end
6 T0[q0]← {`};
7 n← 0;
8 repeat
9 n← n+ 1;

10 Tn ← Tn−1;
11 for (q, `, q′, α) ∈ Eall do
12 if ` ∈ Tn[q] then
13 if |α| ≥ 1 then
14 Tn[q

′]← Tn[q
′] ∪ {head(α)};

15 else
16 Tn[q

′]← Tn[q
′] ∪ Γ;

17 end

18 end
19 end
20 until Tn = Tn−1;
21 return Tn;
22 end

Algorithm 1: find_tops(P , `) find the minimal fixed point of T for a given
initial label l.
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is T (P, `t) = (Q,Γ, λ′, q0, qf ). Notice that the conversion only affects the
transition function λ. The new trimmed transition function λ′ contains all rules
(q′, α) ∈ λ′(q, `) where (q′, α) ∈ λ(q, `) and ` ∈ T [q] where T = find_tops(P, `t).

Theorem 8. Given a PDA P = (Q,Γ, λ, q0, qf ) and an initial label `t we
construct the trimmed PDA T (P, `t) = (Q,Γ, λ′, q0, qf ), satisfying there exists
a trace (q0, `tw0) →λ (q1, w1) →λ · · · →λ (qn, wn) in P if and only if the same
trace (q0, `tw0)→λ′ (q1, w1)→λ′ · · · →λ′ (qn, wn) exists in T (P, `t).

To prove Theorem 8, we will prove the claim of Lemma 2. Theorem 8 is
then trivially true as well.

Lemma 2. Given a PDA P = (Q,Γ, λ, q0, qf ) and an initial label `t the
algorithm find_tops, at step n, has a T such that:

∀n : (q0, `tw)→n
λ′ (q, `w′) =⇒ ` ∈ Tn[q].

Proof. We will prove the above lemma by induction in n.
Base case (n = 0): Line 6 in Algorithm 1 adds `t to T0.
Inductive case: Assume that Lemma 2 holds for n, we will show that it must

hold for n + 1. The existence of a trace (q0, `tw) →n+1
λ′ (q′, `′w′) implies

that (q0, `tw) →n
λ′ (q, `w′) →λ′ (q′, αw). Therefore by the induction

hypothesis Tn[q] must include the source symbol `, meaning that Line 12
will be true. From here there are two cases, which Line 13 detects. Either
α is a string of symbol from which the head is the new top of stack. In
that case, Line 14 adds the head(α) to Tn+1[q

′]. Otherwise, α = ε and
the new top of stack will be what was below `. Since we do not know
what was below ` Line 16 adds everything to Tn+1[q

′], guaranteeing that
anything that could be below ` is there. The loop on Line 11 makes sure
this is done for all transitions.

4.1.2 Example

In Table 6 we can see the progression of T after n iterations of the expansion
function, here called Tn, running on the pushdown from Fig. 10. Before the
first iteration of the inner for loop Line 11, we have to add the initial label to
T0[q0]. During the first iteration, the inner for loop identifies that E1 and E2

are reachable, and adds the head of their respective stack modifications 20 and
10 to the respective destination locations, T1[q1] and T1[q2], note here that E7

is not reachable since 10 /∈ T0[q0] as pr. Line 12. The next iteration we discover
that E3 and E4 are now reachable. For E3 we again add the head symbol,
30, to destination T2[q3], but E4 is different. Since it pops a label, the stack
modification is of length 0, and therefore hits Line 16 which adds the entire
alphabet to T2[q3]. Through another iteration 10 is added to T3[q4]. T is now
at a fixed point, and the iteration can end. For find_tops to realize that it is a
fixed point, it runs another iteration in which nothing is done. Since T3 = T4,
find_tops knows that it has reached a fixed point, and returns T4.

4.2 Wildcard Optimization
Recall that a PDA P constructed by Definition 13 never reads from the stack.
In our model of a pushdown from Definition 10 the transition function λ must
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always read one symbol. To emulate the behaviour of not reading the stack, P
contains |Γ| transitions for every transitions in N .

To combat explosion of the PDA we will introduce the Optimized
Constructing PDA. The key intuition is that our pushdown model makes it
possible to rewrite the previous top label while pushing, we call this operation
Push-Replace and it’s represented by a rule like (q′, `′`′′) ∈ λ(q, `) where `′′ 6= `.
If we add a unique wildcard symbol at the top of the stack, we can read that
in λ, and use the Push-Replace operation to replace the old wildcard a symbol
while pushing a new wildcard.

Definition 15 (Optimized Constructing PDA). Given an NFA N =
(S,Σ, δ, s0, sf ), the corresponding optimized constructing PDA Po =
(Q,Γ, λ, q0, qf ) is defined as follows:

• Q = S ∪{q0, qf}, where q0 and qf are unique start and end locations such
that q0, qf /∈ S.

• Γ = Σ ∪ {⊥, ∗} where ∗ is the unique wildcard symbol such that ∗ /∈ Σ,
• λ is the transition function defined below,
• q0 = q0,
• qf = qf ,

The transition function is defined as follows:
a) Po will have the rule:

(s0, ∗⊥) ∈ λ(q0,⊥),

b) Po will have the rule:

(qf , ε) ∈ λ(sf , ∗),

c) Po will have the rule:

(q′, ∗`) ∈ λ(q, ∗),

for every q, q′ ∈ Q and ` ∈ Σ such that q′ ∈ δR(q, `).
d) Po will have the rule:

(q′, ∗) ∈ λ(q, ∗),

for every q, q′ ∈ Q such that q′ ∈ δR(q, ε).

Rule a) pushes the wildcard label ∗ to the top of the stack, where it will
remain for until the final location is reached, where rule b) will remove it.
During the computation, the pushdown closely matches the behaviour of N ,
rule c) will replace the old wildcard with the new label `, while pushing a new
wildcard to the top of the stack. Rule d) will just emulate the pushdown epsilon
rule, maintaining the stack.

Theorem 9. Given an NFA N = (S,Σ, δ, s0, sf ), we can construct a PDA
P = (Q,Γ, λ, q0, qf ) such that (s0, h0)→∗

δ (sf , ε) if and only if

(q0,⊥)→∗
λ (qf , h0⊥)

The proof of Theorem 9 is similar to that of Theorem 5, with the exception
that rule a) pushes the wildcard, which stays on the top of the stack for the
whole computation, and rule b) pops the wildcard as the final step, revealing
the built stack w.
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5 Constructing the Final PDA
This section will explain how we combine all the previously developed pieces
into a single PDA to solve Problem 2.

For an overview of how the combination works see Fig. 11.
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Figure 11: Flowchart of the construction leading to the final PDA.

The construction of this final PDA takes 3 input ingredients:
1. Topology-,
2. routing tables, and
3. a query.
The topology T and routing tables R together make up an instance of the

MPLS-model from Section 2.1, which is converted into a PDA encoding the full
reachability by following the rules in Section 3.5.

Likewise, the query language from Section 2.4 consisting of four parts,
three regular expressions and the maximum number of link failures: 1. header
construction, 2. path query, 3. header destruction, and 4. the maximum number
of link failures. The first three of these are converted into separate NFAs, per
the rules in Section 3.3. The header NFAs, Items 1 and 3 are converted into
corresponding PDAs, using the method shown in Section 3.4, and the path NFA
is combined with the network modeling PDA using our augmented pushdown
construction as shown in Section 3.2.

Finally, we concatenate these three PDAs leaving us with the final PDA,
first running through the header construction PDA to make a valid header,
then through the path PDA to make sure this header can make it through the
network with a valid path, and finally through the destruction PDA to ensure
the resulting header is also acceptable.

Definition 16 (Final PDA). Given the header constructing and destructing
PDAs P con = (Qcon,Γcon, λcon, qcon0 , qconf ) and P des = (Qdes,Γdes, λdes, qdes0 , qdesf ),
and the path augmented network PDA P aug = (Qaug,Γaug, λaug, qaug0 , qaugf ),
the final PDA P f = (Qf ,Γf , λf , qf0 , q

f
f ) can be constructed as follows:
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• Qf = Qcon ]Qdes ]Qaug,
• Γf = Γcon ∪ Γdes ∪ Γaug

• λf is defined below,
• qf0 = qcon0 , and
• qff = qdesf .
The transition function λf is defined as follows:

a) P ′ contains the rule

(q′, α) ∈ λf (q, `),

for all (q′, α) ∈ λcon(q, `) ∪ λdes(q, `) ∪ λaug(q, `),
b) P ′ contains the rule

(qaug0 , `) ∈ λf (qconf , `),

c) P ′ contains the rule

(qdes0 , `) ∈ λf (qaugf , `).

Rule a) adds all rules from P con, P des, and P aug. Rule b) adds the rule
connecting the end of P con to the start of P aug. Rule c) connects the end
of P aug to the start of P des.

Theorem 10. Given a topology T , routing tables R, and a query q = ' < 'a ' >
'b ' < 'c ' > 'k, the constructed PDA P f = (Qf ,Γf , λf , qf0 , q

f
f ) has the property

that if there exists some trace in the network (in0, h0), (in1, h1), . . . , (inn, hn)
such that h0 ∈ L(a), hn ∈ L(c), and in0in1 . . . inn ∈ L(b) for a |F | ≤ k there is
a trace in P :

(qf0 ,⊥)→∗
λ (qff ,⊥).

6 Tool Comparison
In order to show that our approach works in practice as well as in theory,
we compare our implementation to that of another recognized theory and an
implementation thereof. To compare against we have chosen HSA, the reasoning
for which is described in Section 6.1 We run these tests on a synthetic network
which we can scale, described in Section 6.2, to ensure full control of the network.
Additionally we also test Prex on NORDUnet’s network, showing that our
theory and implementation is viable in real world scenarios. We would have
liked to perform similar tests with HSA, however this tool does not scale to
such large industrial networks, which is described further in Section 6.4. The
results from our tests show that Prex does indeed scale better than HSA, and
is useful for real world cases, where HSA is not applicable.

6.1 Choosing Header Space Analysis
In Section 1.3 we presented a variety of tools and their various attributes. Based
on the information presented in Table 3, we decided that NetKAT and HSA were
the tools best suited for comparison.
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NetKAT is part of the Frenetic language suite, for which the focus seems
to be more so on providing a language and tool for creating correct network
configurations, more so than verifying existing ones. We contacted professors
Dexter Kozen and Nate Foster, authors of the NetKAT papers, who confirmed
that an implementation of the verification NetKAT system exists, although not
suitable for public consumption.

The other suitable option was HSA, which is available at a public repository1

referenced in the paper, this is not as mature as NetKAT, and abandoned
development years ago, leaving it stale. As a result the choice is between two
stale tools, given that NetKAT has since then diverged from verification, and
since it is not suited for public consumption, we choose HSA as the tool destined
for comparison.

6.2 Synthetic Networks
In order to show how both HSA and Prex scales with various attributes, we
construct a synthetic network which we can consistently grow. To grow the
size of the network we nest this base network into itself. That is, we insert a
copy of the original network in the place of a link in the nested network. In our
synthetic network the base network is injected in place of the links (v2, v3) and
(v2, v4). This is illustrated in Fig. 12b.

The names of the routers in the sub-networks are mangled to make sure that
they are unique. As we scale up the size we perform this nesting recursively
i.e. we also inject the base network into the sub-networks. The resulting scaled
network ends up containing routers equal to the following formula:

|routersn| =
n∑

i=0

9 ∗ 2i

The ingress rules to the nested network are simply forwarding, as a result
the maximum label stack does not increase through the nested networks. The
scaling affects only the number of routers, thereby increasing the total number
of rules, and the length of paths going through edges (v2, v3) and (v2, v4). The
number of rules scales the number of routers as follows:

|rulesn| =
|routersn|

9
× |rules0|

where |rulesn| is the number of rules at nesting depth n and |routersn| is the
number of routers at nesting depth n. The lengths of paths going through
(v2, v3) and (v2, v4) are increased with at least 5 hops per nesting level,
depending on the route taken through the nested network.

6.3 Multiprotocol Label Switching in Header Space
Analysis

HSA has two versions, the original python version which was written alongside
the paper[29], and an optimised version created in C, the C version being solely
for running queries, and not creating the files required to do so. The wiki

1https://bitbucket.org/peymank/hassel-public/wiki/Home
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Figure 12: Our base network for building synthetic networks, and one level of
nesting.

mentions that the python code is out-dated and only the Cisco IOS parser is
needed, this parses the output of 5 Cisco IOS commands to transfer function
(TF) files, the files used by HSA. The python code also contain parsers for XML
and Juniper, however like the majority of the repository, this does not actually
work, only the Cisco parser in relation to the networks from Stanford University,
used in the HSA paper for testing and evaluation, works.

6.3.1 Header Space Analysis transfer function

The output from the parsers are in a file format created for HSA, these are
known as transfer function files (tf). These files contain all the routing rules for
the given router, with 4 fields being the most relevant, in_ports, out_ports,
match, and rewrite. in_ports And out_ports designate a specific port on the
router, these are equal to what we refer to as interfaces in our model and theory.
match and rewrite contain header representations, match for which headers are
accepted, equivalent to the accepted label in MPLS, and rewrite representing
how the header should look when exiting the router, representing the push, pop
and swap functions in MPLS.

By design HSA is protocol agnostic, as such headers are simply read as a
sequence of bits, it is our job to designate how many bits the header should
read, i.e. how much of the header is required in order to do routing. A label
in MPLS contains 32 bits of information, as a result the headers we encode in
the TF files must be contain 32 ∗ML bits where ML is maximum height of the
MPLS label stack.

HSA uses three values to present the headers: x, 0, 1 where x means wildcard,
i.e. 0 or 1. An example of a header with ML = 3 is shown in Table 7, for this
example labels are presented as containing only 8 bits. The example shows how
we encode headers as a stack, we reserve a label with the value of only 0 as an
empty label field. A full wildcard header presents that any label can occupy
the location, this is how we present something that is not top of stack, i.e. we
should not discard a header based on anything below the top of stack. Label 2
presents the label containing the binary representation 00001010.

With an understanding of how the headers look, let us have a look at an
example of how a rule in the TF format looks, compared to how they look in
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Header
Label 3 Label 2 Label 1
00000000 00001010 xxxxxxxx

Table 7: Example of how HSA sees a header with labels containing only 8 bits
rather than 32.

Router In Iv Label Prio Out Iv Operation
v3 vv13 10 1 vv53 swap(11)

Table 8: Snippet of the routing table Table 5 on page 18

our routing table shown in Table 5 on page 18, Table 8 is a snippet of a rule in
that table. It the four fields of relevance would be translated as follows:

in_ports The interface vv13 is converted to a numerical value as ports must
be presented as such. Each router has a unique index in the multiple of
100,000, as such being on router 3 the port may have the value 300,001.

out_ports Similar to in_port vv53 is translated to port 300,005.
match The match value would be a constructed header where the accepted

label is the only label not constructed of all 0’s or all x’s. For label 10 this
may look like 00000000, 00001010, xxxxxxxx, again we use an 8 bit label
for the sake of readability, the commas separate labels.

rewrite The rewrite value defines how the output header should look, this
value can also be empty in case of forwarding rules where the header is
unchanged. For the example we have chosen the operation is swap(11)
which would create the rewrite header 00000000, 00001011, xxxxxxxx.

The files created by our parser are missing a few data points, specifically
inverse values, which are additional header values. In the paper [29],
these are mentioned as being used for infinite loop detection, however an
inspection of HSA-C implementation shows that these values are ignored in
the implementation. As a result, despite missing those data points our parser
produces equivalent output to that of the Cisco IOS parser in terms of HSA
functionality.

6.3.2 Header Space Analysis Scaling

In developing a parser to the HSA format, some impactful differences in terms
of data were encountered.

With HSA disregarding the meaning of headers, it also disregards the
concept of the label stack used in MPLS, as a result, each rule presented in Prex,
must be represented in HSA multiple times, to express the possible locations
on the stack. In HSA the length of the header, i.e. the maximum number of
labels on the stack for MPLS, is decided when creating the data representation.
For each rule in Prex R, there must be rules equivalent to the max number of
labels ML in the HSA representation. Looking at the example shown in Table 7
we see that the label is onyl matches at a signel position. In order to present
that at this location the label 00001010 is accepted, there must exist a rule
for each possible location, i.e. as label 3, label 2 and label 1, which equals 3
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rules for a header of size 3. The number of rules can therefore be calculated as
R2 = |R| ∗ML, this R2 refers to that presented in Table 3, which is a scaling
factor for reachability queries in HSA.

While unable to perform verification of the full NORDUnet network, the
parser can still generate data as TF files, and in doing so, we see the effect of
this scaling factor in terms of rules. At the lowest possible header length, i.e. 1
label, the router containing the most in NORDUnet’s network has 101,430 rules
including fast failover rules. At 1 label the network does not work, if instead
we use a more reasonable max header, like 4, the HSA data representation now
has 405,720 rules in its config file for this singular router, which as predicted
is perfectly linear in scale. If considering SR larger label stacks may be used,
e.g. 16 which in turn scales to 1,622,880 rules for a single router, where as it
remains 101,430 rules in Prex’s representation.

As mentioned the number of rules impacts the reachability runtime which is
mentioned in HSA’s paper, however, our tests also show that it has a significant
impact on the space complexity as well.

6.3.3 Header Space Analysis Under Failure

A core selling point for our approach is that it does not scale exponentially with
failures. While not mentioned in the HSA paper [29], this can be expressed.
The naive approach is to enumerate all failure combination with up to k link
failures, for each k this creates

(
n
k

)
networks, where n is the number of links.

Alternatively, since HSA allows us to encode non-determinism, we can simply
add all the fail-over rules to the network, this is the approach we use. In this
approach k represents the maximum number of fail over rule a single router can
have, i.e. how many links at a single location may fail. This is essentially the
same approach we present in Section 3.5.1 on page 26, and in similar fashion it
causes the output to be an over approximation. Unlike our approach however,
HSA’s output contains every single trace that was found, meaning that in post-
processing of the data we can remove all the over-approximated traces. This
can be done by subsequently removing any trace using the link or links that
are supposed to have failed. This allows for some smarter improvements to the
naive case, and while this would improve the actual runtime, reducing the over-
approximation would still be

(
n
k

)
worst case. As such, we can determine that

HSA is indeed exponential in its scaling with queries under failures.

6.4 Header Space Analysis Limits by Implementation
Going from looking at the data and theory presented in the HSA paper [29],
to working with the implementation referred to in the same paper, a variety of
limits by implementation were discovered.

The implementation has next to no comments, documentation or explanation
what so ever, and in multiple areas uses magic numbers, presumably tied closely
to the fact that it is designed for Stanford University’s network. This is clear
throughout the implementation, but strongly in areas where arbitrary limits are
imposed by the implementation.

The most significant such limit, is that the HSA-C implementation cannot
handle networks larger than 31 routers, due to how the threads are handled
in the implementation. Another such limitation is caused by an unexplained
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constant named MAX_APP, which is set to 10240. Other such implementation
specific handling has caused multiple issues while working with HSA, in essence
the implementation is developed and optimised so heavily towards Stanford
University’s network, that without changes it is practically useless in any other
industrial, or even synthetic case. These limits are so severe that after weeks
of work we still can’t get the HSA-C implementation to verify NORDUnet’s
network.

In order to use the HSA-C implementation as a system capable of testing
other networks, we altered the code to change the two aforementioned
limitations. The limitation of 31 routers is caused by the implementation using
a regular C unsigned int in combination with bit-shifting, as a boolean array
to handle threads waiting, as a result having more than 31 routers causes a
deadlock of threads waiting on a mutex. Changing this value to a uint64_t
allows for 63 routers, however in order to go beyond that, a major rework of
the HSA-C implementation would be required. We sent an email regarding this
to the authors of the code, professors Michael Chang and Peyman Kazemian,
to confirm that being the case, however they have not responded. As for the
MAX_APP value, simply increasing it sufficiently stops it from limiting reachability
queries. Given that NORDUnet’s configuration contains 69 routers, we are still
unable to query their full network with HSA, however, these changes does allow
for larger synthetic networks.

6.5 Header Space Analysis Test Results
In order to test HSA’s performance all tests are run on the compute cluster
MCC at AAU2.

All the data is generated by running the same query on the synthetic
networks described in Section 6.2. At nesting level 2, the network contains
63 routers, the maximum number of routers that HSA can handle with our
modifications. The networks at nesting level 0 and 1 are also used, they contain
9 and 27 routers respectively. Additionally we also scale header size, i.e. the
label stack depth, from 1 through 16. The last value we change is k, with
each increase in k, a number of fail-over rules are added to the network, we
scale this from 0-3, any number higher than 3 would have no effect as it is
the maximum number of protection roles encoded in the synthetic network.
Combining these factors we reach 192 different networks to run our query on.
We run the same query for all the tests, can we from a specific interface on
v1 reach the a specific interface on v7. Each query was allowed 250 GiB, the
following plots has certain data points missing this is caused by two things. The
query exceeded the memory limit, on the plots these are the values that would
go out of frame. The other reason is when values are missing at the beginning,
these queries are almost instant, using only a few thousand microseconds.

Figures Fig. 13a and Fig. 13b show 3 graphs presenting the relationship
between max header size, time and memory usage. The three graphs represent
the different nesting levels used for the test, Nesting 1, Nesting 2, and Nesting
3. Both plots depict similarly scaling graphs showing that the run time and
memory usage both scale at the same rate. For all three graphs we see the spike
in resources required start around 5, 6 and 7 respectively. For networks with

2https://sites.google.com/site/mccaau/
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Figure 13: Log scale plot showing the relation between header (x-axis) and
another variable for header sizes 1 through 16 with entries for the different
nesting factors.

header size 1, 2 and 3 we see very low values, and they are even omitted from
Fig. 13b. This is due to no paths existing at such low headers, HSA detects
that the input router cannot be exited and terminates, this takes a few thousand
microseconds and is thus omitted from the time plot. Scaling the header only
adds more rules to the network, where as adding a nesting level adds both rules
and routers, thereby forcing longer paths, i.e. more hops, as well as more rules.
From the plots we can see that these two increases are not equivalent, thus
confirming that the complexity of the network introduced by additional routers,
also affects the point to point reachability queries in HSA.
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Figure 14: Log scale plot showing the relation between header and another
variable for header sizes 1 through 16 with entries for the different k factors
with 0 nesting.

Figures Fig. 14b and Fig. 14a show similar relations, however rather than
the graphs presenting the difference in nesting level, they show the impact of
changing k. From the plots we can see that even at nesting level zero, that is
just nine routers with even < 10 rules per router at max header size of one,
the tests run out of resources at max header 12 when adding failure rules for
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two or three failures. In contrast, remember that the larger of NORDUnet’s
routers have 100,000 rules at max header one, and networks realistically need
at least a header size of four to work, which would be ~400,000 rules. On top
of that, NORDUnet’s network contains 69 routers, rather than 9. Given our
resource use, and that our largest synthetic network contains only a fragment of
the rules NORDUnet’s does, yet runs out of resources at maximum header size
five, it seems unlikely that HSA would be able to verify any significant queries
on NORDUnet’s network.
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Figure 15: Plot showing the relation between k and another variable for header
sizes 10 through 13 with nesting 0.

The figures Fig. 15a and Fig. 15b goes to show how unpredictable the impact
of changing k is. The impact of changing k will be different from network to
network as it adds the number of protection configured in the network. In
essence there could exist a protection rule for every single link, which would
double the number of rules, or there could be no protection rules in which
case changing k has no effect at all. The figures also show that each change
to k is irregular, looking at the graphs we see a significantly higher change in
going from one to two, than from zero to one or two to three, this further goes
to emphasize the unpredictable impact changing k has on resources required
for arbitrary networks, given that our three networks contains duplicate rules,
changing k has similar but scaled effects.

6.6 Header Space Analysis Conclusion
In conclusion HSA, does not seem to scale exponentially in terms of reachability
queries. The data reads as polynomially scaling, albeit a very large polynomial.
This is also true for k, but as mentioned this is due to us doing it as on over-
approximation when scaling k, the alternative would be to either create an
exponential amount of networks, or spend an exponential amount of time on
post-processing. When using the over-approximation HSA scales unpredictably
on k, as it adds an arbitrary number of rules, based on the network configuration.
The most impactful scaling factors are the number of rules, which is what we
expected from the paper and working with the data, the length of traces, i.e.
rules must be applied to reach the destination, and the number of traces.
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Prex
HSA K: 0 K: 1 K: 2 K: 3

Rules: 23 0.087
0.001

0.097
0.001

0.093
0.003

0.095
0.003

Rules: 69 0.253
0.005

0.217
0.01

0.234
0.01

0.218
0.06

Rules: 161 0.495
0.04

0.534
0.06

0.493
0.24

0.473
0.27

Rules: 345 1.067
N/A

0.991
N/A

1.009
N/A

1.037
N/A

Table 9: Prex and HSA comparison table for runtime in seconds

Prex
HSA K: 0 K: 1 K: 2 K: 3

Rules: 23 32.86
1.69

32.48
1.73

32.70
2.03

32.93
2.04

Rules: 69 35.63
2.31

35.69
2.43

35.63
4.39

35.68
5.62

Rules: 161 41.18
4.28

39.79
4.79

41.32
14.74

40.98
16.72

Rules: 345 52.86
N/A

50.42
N/A

50.58
N/A

53.06
N/A

Table 10: Prex and HSA comparison table for memory usage in MiB

6.7 Prex Benchmark
In this section we present a benchmark our tool Prex. We show how it performs
with respect to the query size, the number of routers to be matched by the path
query, the maximum number of allowed failures, k, and the size of the network.

6.7.1 Setup

The files containing the network topology and routing configuration are buffered
in memory. This isolates the benchmark from the performance of the secondary
storage.

As our base network we use the network from Fig. 12a. The queries we run
on the network has a randomly generated path query. We generate this path
query by randomly selecting the specified amount of routers from the network.
For each configuration we run several randomly generated queries select the
median, to avoid any outliers to either side.

The queries are as follows:
• The query for scaling the query size

< .∗ > r0.
∗r1 . . . rq < .∗ > 0

where q is the query size, for all q ∈ 50, 100, . . . , 400.
• The query for scaling the maximum number of failures
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< .∗ > r0.
∗r1 . . . r10k

where for all k where 0 <= k < 10
• The query for increasing the nesting level

< .∗ > r0.
∗r1 . . . r10 < .∗ > 0

6.7.2 Results

Figure 16a on the following page shows the number of transitions scales linearly
in the size of the query, Figs. 16b and 16c shows that the same is true for the
total execution time and the peak memory consumption.

Figure 16e is interesting since it shows that number of transitions plateaus
as k saturates all protection rules, notice that the change in size is small (y-axis
is not starting at 0), therefore we also do not notice this in Figs. 16d and 16f.

Figure 17a on page 47 shows the linear scaling of transitions wrt. the size of
the network, Figs. 17b and 17c validate our belief that the verification is done
in polynomial time.

Rules Query Size Transitions Compile (s) Verify (s) Total Peak RSS (KiB)
713 10 145614 18.014 4.527 22.541 349560
713 20 307364 42.611 20.276 62.887 683536
713 30 469025 59.074 21.048 80.122 1021168
713 40 630639 87.236 82.671 169.907 1359628
713 50 792502 103.967 97.551 201.518 1678192
713 60 954166 133 96.723 229.723 2031776
713 70 1115731 138.922 66.017 204.939 2359936
713 80 1277525 168.464 91.178 259.642 2738092
713 90 1439252 196.335 322.44 518.775 3073576
713 100 1600783 210.139 335.298 545.437 3469760

Table 11: Scaling query size

Rules k Transitions Compile (s) Verify (s) Total Peak RSS (KiB)
713 0 145627 18.588 4.397 22.985 348992
713 1 146462 19.409 4.704 24.113 352684
713 2 147651 17.779 3.159 20.938 350584
713 3 148428 18.595 3.165 21.76 345392
713 4 148428 17.765 3.343 21.108 344132
713 5 148450 19.281 3.616 22.897 343280
713 6 148415 17.802 3.246 21.048 343100
713 7 148411 18.894 3.42 22.314 344424
713 8 148444 17.7 3.403 21.103 347116
713 9 148422 19.269 3.44 22.709 345972

Table 12: Scaling k
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Rules Nesting Level Transitions Compile (s) Verify (s) Total Peak RSS (KiB)
23 1 14623 1.652 0.155 1.807 64116
69 2 33273 3.767 0.451 4.218 108052

161 3 70771 8.812 1.008 9.82 186660
345 4 145579 18.491 4.469 22.96 348044
713 5 295395 35.912 14.505 50.417 657556
1449 6 594905 82.305 62.294 144.599 1321940
5865 7 1193945 152.269 175.392 327.661 2633852
11753 8 2392053 339.391 504.287 843.678 5319116
23529 9 4788193 788.851 1848.959 2637.81 10573728
47081 10 9580486 1814.961 6493.782 8308.743 20883120

Table 13: Scaling Nesting Level

6.8 A Case Study on the NORDUnet MPLS Network
In this section we present a case study we performed on the NORDUnet MPLS
network. We present our encoding of their router forwarding tables in our
network model. We apply our tool on the network, and show how real questions
from NORDUnet can be expressed in our query language, and test how our tool
performs under this real-world workload.

All the queries in this section, were run on the AAU MCC cluster[38]. This
is a high-performance compute-cluster, with 1TB of RAM per compute node.
Running the experiments on the cluster allows us to run many queries in parallel,
and have sufficient RAM for very complex queries.

6.8.1 Setup

The NORDUnet MPLS network consists primarily of routers from Juniper,
running JunOS. As such we only encode the forwarding tables from their Juniper
routers in our network model. The format is documented in depth at [39], here
we focus on documenting how we encode the non-obvious parts of the JunOS
forwarding tables.

In addition to the forwarding tables, we also use the Intermediate System to
Intermediate Systems (IS-IS) database for each router for adjacency information
to get information on the network topology. To extract the information from the
routers, the following commands needs to be run on each router in the network:

• show route forwarding-table family mpls extensive | display xml
• show isis adjacency detail | display xml
Discrepancies and resolutions between our network model and JunOS
• JunOS only matches on the incoming top label. In our network model we

match on the incoming interface as well as the incoming top label. This
is resolved by adding the forwarding entries for all interfaces.

• JunOS uses a weight coefficient for rules matching the same label. The
meaning of the weight is the priority of the rule, with lower weight being
higher priority. The active rule with the lowest weight receives all the
traffic. The ordering defined by the weight coefficients is what we use for
our sequence of rule sets.

• JunOS supports balancing traffic between multiple rules matching the
same label, having the same weight. We do not support balancing and
encode these rules as a traffic engineering group.
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6.8.2 Network Reachability

As a part of our case study on the NORDUnet MPLS network we performed
reachability queries between all pairs of routers in the network. The queries
took the form:

< .∗. > from .∗ to < .∗. > k, for 0 <= k <= 1

asking whether we can start in ’from’ with any header, go through any number
of routers, and leave ’to’ with any header. The Tables 14 and 15 structured such
that, the row is the starting router and the column is the destination router.
Hence the cell 1,2 is the answer to the query:

< .∗. > ch-gva .∗ de-ffm < .∗. > k, for 0 <= k <= 1

The queries were run with the over-approximation, which means that ’YES’
is inconclusive and ’NO’ means there is no trace in the network satisfying the
query.

We found that the network seems strongly connected, as only ’NO’
conclusively means that no trace exists. This seems contradictory when we
consider all the ’NO’ entries in the tables. These ’NO’ entries are caused and
explained, a lack of forwarding entries in the forwarding tables of the routers, or
because the router is connected to the rest of the network through a non-Juniper
router, from which we do not have forwarding tables.

Running the queries we saw a large variance in the running time and peak
memory use. The total execution time varied between 30 minutes and 90
minutes, and peak memory usage varied between 12GB and 25GB. This is
caused by random variations in the intermediary format passed to Moped, and
how Moped analyses the pushdown.

6.8.3 Queries on the NORDUnet Network

After discussion with NORDUnet, we came up with some properties they would
like tested on their network. We describe these informally and present queries,
in our query language see Section 2.4 on page 15, checking for these properties.

1. Avoid a router or, set of routers, unless they are the destination.
NORDUnet were interested in this as they have some locations with lower
capacity links. Due to the lower capacity they want to avoid sending traffic
over these links unless it has to, i.e. it is destined to the location.

2. Ensure correct behaviour of service labels.
In many instances, NORDUnet use a service label which is used by the last
hop router to determine the packets destination outside the NORDUnet
network. NORDUnet want to verify that packets with service labels
always arrive at their intended destination.

3. Verify behaviour of node-link protection.
JunOS supports node-link protection which protects an LSP bypassing
an entire router in the path. This is more extensive than the commonly
used link protection, which merely bypasses a link. NORDUnet want to
verify this behaviour and investigate how configuring this high-level setting
causes the underlying forwarding tables to change.

The above queries can be expressed in our query language as follows:
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Table 14: NORDUnet Network Reachability for k=0
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Table 15: NORDUnet Network Reachability for k=1
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1. Avoid router

< . ∗ . > [^routerToAvoid] .∗ routerToAvoid .∗ [^routerToAvoid] < . > 1

2. Avoid egress

< 80001. > ingressRouter [^egressRouter]∗ < . > 1

3. LSP node-link protect

< 200000. > upstream [^protectedRouter]∗ nextNextHop < . ∗ . > 1

The dot present in all 3 queries’ constructing and destructing query parts,
represent a label in LIP , that is, a non-MPLS label. If this is the only
label, the header contains no MPLS labels. The first query can be read as:
Allowing up to 1 failure; Can we enter with any header in any router, that
is NOT ’routerToAvoid’, and going through any number of routers, reach
’routertoAvoid’, then, going through any number of routers, leave any router
which is not ’routerToAvoid’, with an empty header. This query can be used
to test for the first property. If it answers ’NO’ in the over-approximation
we cannot leave ’routerToAvoid’, and subsequently leave another router with a
header containing no MPLS labels.

The second query can be read as: Allowing up to 1 failure; Can we enter
’ingressRouter’ with a header containing ’80001’ as the only MPLS label, go
through any number of routers, which are not ’egressRouter’, at any point leaving
one with a header containing no MPLS labels. If this query answers ’NO’ in
the over-approximation, we know that only the destined ’egressRouter’ can pop
the service label ’80001’, In short, the query asks if a router, which is not
’egressRouter’, can pop label ’80001’. This property require a great deal of
knowledge of the network of the LSP allocations in the network. The operator
asking the query must determine the service label in question, as well as the
two routers it is used between.

The second query can be read as: Allowing up to 1 failure; Can we enter
’upstream’ with a header containing ’200000’ as the only MPLS label, going
through any number of routers, not ’protectedRouter’, reach ’nextNextHop’ and
leave it with any header. This query must answer ’YES’ in the under-
approximation to confirm the property. To perform this query, the operator
must inspect the LSP, which they protected, to determine the label at the top of
the header received by the ’upstream’ immediately before the ’protectedRouter’
in the LSP.

6.8.4 Running the Queries

Of the 3 properties which NORDUnet expressed interest in, we elected to test
for the first property in 3 cases mentioned by them.

• Avoid routing through is-rey and is-rey2
• Avoid routing through no-usi
• Avoud routing through hk-chw
The first query is a bit different because it needs to avoid a set, we shall

state it here:

< . ∗ . > [^is-rey is-rey2] .∗ [is-rey is-rey2] .∗ [^is-rey is-rey2] < . > 1

52



Table 16: Avoid query results

Answer Peak RSS (KiB) Total Execution Time (s) Transitions
is-rey YES 25126592 3433.31 68364566
no-usi NO 37010336 3418.29 68526634
hk-chw NO 37086284 3427.89 68463198

Notice that the middle part is a set, instead of a single router.
Table 16 shows the results of the queries. As the queries were run with the

overapproximation, the ’YES’ answer for ’is-rey’ is inconclusive.
What is obvious from Table 14 is that we have an empty forwarding table for
’no-usi’, which means the ’NO’ result is not applicable. However we include the
result as it shows the performance of our tool is affected by the answer and the
total network size.
For ’hk-chk’ the ’NO’ is likely applicable as Table 14 shows that it is possibly
reachable.

Through this case study on the NORDUnet MPLS network, we have shown
that our query language can be used to express properties, motivated by network
engineers, for a real, running network. We have shown that our tool can be
applied to this real-world network, and argue through this that Prex can be
applied to other real-world networks.

7 Conclusion
Our paper presents the tool Prex, a tool for performing reachability queries on
prefix rewriting networks. By expanding the MPLS network model presented
by Schmid and Srba [34], we create a more general model capable of expressing
features of MPLS networks closely inspired by commercial implementations, e.g.
multi-operation support and non-determinism. Based on this model we leverage
automata theory to convert a query expressed as a regular expression into a
single PDA, which can be used as input to Moped, the pushdown model checker
we utilize. The intermediary steps between receiving a query and the final
pushdown includes several optimizations which drastically reduces the number
of transitions we need to explore. These optimizations help make the tool viable
for performing reachability queries on large industrial networks actually used in
the industry, as the results from tests on NORDUnet’s network show. Our
experiments suggest that the runtime of Prex is polynomial in the size of the
network.

Furthermore we compared Prex to another recognized theory and tool,
HSA. We showed that while the theory for HSA may be sound, the tool that
implements it scales very poorly with the label stack, and is simply unable to
model larger industrial networks, like that of NORDUnet’s. This is in contrast
to Prex which is unaffected by the label stack size, and indeed is able to perform
queries on NORDUnet’s network.

There is still work to be done on Prex, most particularly expanding it with
an under-approximation approach, in order to reduce the uncertainty from the
over-approximation queries. We believe there is still much work to be done
with this framework, but we believe that our work has shown the viability of
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this methodology. Additional unexplored approaches to improving the method
and tool are also mentioned in Section 7.1.

7.1 Future Work
7.1.1 Wildcard Transitions in Pushdown Solver

For our tool we use Moped, version 1.2 by Schwoon [33], to analyze the
reachability in the final PDA. A common occurrence in our NFAs are epsilon
transitions, when we construct the augmented PDA, it requires us to enumerate
all the labels which can be at the top of stack. We tried to minimize this
set of possible labels with our optimizations in Section 4.1, however if Moped
supported wildcard transitions, we could avoid having to generate a lot of
transitions in our final PDA.

In essence we would like the ability to form rules in the pushdown that acts
as follows in a single transition in the PDA:

(q′, α) ∈ λ′(q, ∗)

where |α| ≤ 2 and α = ` ◦ ∗, for some ` ∈ Γ, or α = ∗, or α = ε.
Transitions added by rule a) on page 21 as part of the Augmented Pushdown

Construction are an example of some that could reduced. Since these add |Γ|
transitions for every ε-transition in the NFA.

7.1.2 CEGAR

We would like to implement the CEGAR technique of “Counterexample-guided
abstraction refinement for symbolic model checking”[40] to our approach. We
would apply it to minimize the alphabet of the pushdown, as the time it takes to
verify reachability scales with the number of transitions, and a smaller alphabet
will often result in fewer transitions.

7.1.3 Synthesis of Network configuration

Given a network topology and some high level goals, i.e. where to have
connectivity, a minimum number of fast-reroute paths, etc. One could use the
tool developed in this paper in combination with other approaches to perform
synthesis of a routing table. The general way this would work is that the high
level goals would be transformed into a set of queries for the tool, then generate
some routing table and use our tool check if all the queries are satisfied, otherwise
try again.

7.1.4 Further Top of Stack Set Reduction

We think that it is possible to perform further improvements to our Top of
Stack reduction in Section 4.1 on page 30. Specifically it might be possible to
reduce the size of T [q] when a pop occurs. In Line 16 on page 32 we potentially
over-approximate the labels which can be at the top of the stack following a
pop.

For example in Fig. 10 and Table 6 we evaluate T4[q3] = {10, 20, 30} with
20 as the initial header starting at q0. T4[q3] = {10, 20, 30} since E4 pops
the stack, and this adds the entire Γ. This is an over-approximation, since 10
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cannot be at the top of the stack at q3, when 20 is the initial header. We
imagine that one could keep track of what can be under the top of stack, by
keeping another set of labels at each location in the PDA. Then include the
computation of this in the find_tops and expand_top functions, and only
terminating when they also reach a fixed point. Also changing Line 16 on
page 32 to be T [q′]← T [q′]∪U [q], where U is the set of what can be under the
top of stack, such that the information about what could be under the top of
stack at the previous location, is included in the possible top of stack labels of
q′.
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