

AN INTERACTIVE
VISUALIZATION TOOL FOR

POPULATION SIMULATIONS
Master Thesis

Sarah Sophie Lafaire

JUNE 8, 2018
AALBORG UNIVERSITY COPENHAGEN

Master of Science (MSc) in Technology, Surveying, Planning and Land Management / Geoinformatics

Copyright © 2011. Denne rapport og vedlagte materiale må ikke offentliggøres uden forfatter og vejleders skriftlige accept.

Study program and semester:

Geoinformatic, 4th semester

Project title:

An interactive visualization tool for population simulations

Project period:

19.01.2018-08.06.2018

Semester topic:
Master thesis

Supervisor:
Carsten Keßler

Attendees:

Sarah Sophie Lafaire

Number of pages: 64

Number of appendix: 11

Abstract:

As the urbanization of the world is increasing, it is

important to know, where people are exactly going to

live. Simulations can help gaining knowledge about

which cities are going to increase and which might

even vanish. These simulations are very large in size,

which makes it hard to process. This thesis found

different solutions to develop an interactive

visualization tool, that is capable of large datasets.

Two Python libraries were tested, and two web

servers were compared. Additionally, visualization

conventions were researched and applied. It was

found that the Python libraries were not suited for

these very large datasets. Therefore, the two server

solutions were compared on a usability level and on a

performance level. The comparison showed that

GeoServer is a user-friendly server but slower in the

presentation of rasters than MapServer.

Aalborg University Copenhagen
A.C. Meyers Vænge 15

2450 Copenhagen SV

Secretary: Janni Rise Frellsen
Tel: (+45) 99 40 25 35

Email: jrl@plan.aau.dk

E-mail: jrl@plan.aau.dk

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | III

Contents

List of Code .. V

List of Figures ... V

List of Tables ... VI

Abbreviations .. VI

1 Introduction.. 1

1.1 Problem statement .. 1

1.2 Research question ... 2

1.3 Report structure .. 2

2 Background... 3

2.1 FLOW and population simulations .. 3

2.2 Visualization conventions .. 4

2.2.1 Data visualization and Cartography .. 4

2.2.2 Conventions ... 6

2.2.3 Visualization processes .. 7

2.2.4 Color .. 9

3 Tools and Related work ... 10

3.1 Python ... 11

3.1.1 NumPy ... 11

3.1.2 GDAL .. 11

3.2 Bokeh ... 12

3.3 Folium .. 12

3.4 QGIS and QGIS Standalone app ... 13

3.5 Server... 13

3.5.1 GeoServer .. 14

3.5.2 MapServer ... 15

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | IV

3.6 OpenLayers .. 16

3.7 Comparison tools... 16

4 Development of the tool ... 16

4.1 Reference version .. 16

4.2 First trial versions .. 17

4.2.1 Folium .. 18

4.2.2 Bokeh ... 19

4.2.3 Tiles .. 20

4.3 Final tool .. 20

4.3.1 GeoServer .. 21

4.3.2 MapServer ... 33

5 Comparison and Results .. 39

5.1 Visualization with Python .. 39

5.2 Map layout .. 39

5.3 Comparison of GeoServer with MapServer ... 40

6 Conclusion .. 50

7 Bibliography ... 52

Appendix ... 57

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | V

List of Code

Code 1 Folium: getting raster with NumPy ... 18

Code 2 Folium: Creating the map .. 19

Code 3 Bokeh: Creating the map ... 19

Code 4 GeoServer: SLD style NamedLayer .. 28

Code 5 GeoServer: SLD Style: FeatureTypeStyle ... 29

Code 6 GeoServer: OpenLayers library ... 30

Code 7 GeoServer: OpenLayers overview map style .. 30

Code 8 GeoServer: OpenLayers map element .. 31

Code 9 GeoServer: OpenLayers overview script ... 31

Code 10 GeoServer: OpenLayers - map layers .. 32

Code 11 GeoServer: OpenLayers map script ... 32

Code 12 MapServer: Mapfile: map object .. 33

Code 13 MapServer: Mapfile: WEB object .. 34

Code 14 MapServer: Mapfile: LAYER object ... 34

Code 15 MapServer: Mapfile: CLASS object .. 35

Code 16 MapServer: Mapfile: LEGEND and SCALEBAR objects .. 35

Code 17 MapServer: template .. 36

Code 18 MapServer: template map and scalebar ... 36

Code 19 MapServer: template zoom .. 37

Code 20 MapServer: template legend .. 37

Code 21 MapServer: OpenLayers legend element .. 37

Code 22 MapServer: OpenLayers map opject ... 38

List of Figures

Figure 1 QGIS - preview ... 17

Figure 2 GeoServer: Workspace .. 21

Figure 3 GeoServer: Raster Data Source ... 22

Figure 4 GeoServer: Edit Layer: Data .. 23

Figure 5 GeoServer: Edit Layer: Publishing ... 24

Figure 6 GeoServer: Edit Layer: Tile cache .. 25

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | VI

Figure 7 GeoServer: WMS Metadata .. 25

Figure 8 GeoServer: WMS: Resource consumption limits .. 26

Figure 9 GeoServer: Style Editor ... 27

Figure 10 GeoServer: Style Editor validation ... 28

Figure 11 GeoServer web administration: Layer Preview ... 42

Figure 12 GeoServer Preview .. 42

Figure 13 MapServer Preview ... 43

Figure 14 GeoServer Network Performance ... 45

Figure 15 MapServer Network Performance .. 46

Figure 16 Zoom to Cairo and Faiyum Oasis ... 48

List of Tables

Table 1 Visual variables after Bertin (1981, p. 187) .. 8

Table 2 Runtime with Bokeh ... 20

Table 3 Comparison of GeoServer and MapServer ... 40

Table 4 Soft-level comparison GeoServer vs. MapServer ... 44

Table 5 Loading times GeoServer vs. MapServer .. 47

Table 6 Time after zoom comparison .. 49

Abbreviations

API Application Programming Interface

B.C. Before Christ

Chrome DevTools Chrome Developer Tools

CGI Common Gateway Interface

CIESIN Center for International Earth Science Information Network

CITE Compliance and Interoperability Testing Initiative

DD Decimal Degrees

DOM Document Object Model

EPSG European Petroleum Survey Group

EU European Union

GB Giga Byte

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | VII

GDAL Geospatial Data Abstraction Library

GeoTIFF Georeferenced Tagged Image File Format

GIS Geographic Information System

GRUMP Global Rural Urban Mapping Project

HEX hexadecimal

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

KB Kilo Byte

MB Mega Byte

MS4W Map Server For Windows

OGC Open Geospatial Consortium

OSGeo Open Source Geospatial Foundation

OSM Open Street Map

OWS Open Web Service

RAM Random-Access Memory

RGB Red Green Blue

SLD Styled Layer Descriptor

TTFB Time To First Byte

UN DESA United Nations Department of Economic and Social Affairs

URI Uniform Resource Identifier

URL Uniform Resource Locator

WCS Web Coverage Service

WFS Web Feature Service

WGS World Geodetic System

WMS Web Map Service

WMTS Web Map Tile Service

XML Extensible Markup Language

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 1

1 Introduction

It is common knowledge that the world population is constantly growing, and the number will most likely

cross the 8 billion mark in 2025. At the state of this report, there are over 7,6 billion people living on Earth.

Over half of the population lives in urban areas, in 2014 it was 54 percent. According to the United Nations

Department of Economic and Social Affairs (UN DESA) this number will rise to approximately 66.4 percent

in the year 2050. Not only are there more people living in urban areas because the overall population is

increasing, but the statistics show that the number of people residing in rural areas will decline, while the

population in urban areas will grow (UN DESA, 2014). These numbers show that urban areas are growing.

Simulations about estimated populations per country until 2100 exist and are easily accessible through

various websites (worldometers.info; worldpopulationhistory.org; worldpopulationreview.com), though

most of them are based on the World Population Prospect: The 2017 Revision published by UN DESA

(2017).

However, the question where those people are going to live is more difficult to predict as many factors are

involved. The charts that can be found online show estimated numbers for each country and it is also

possible to find percentages of the distribution between rural and urban areas. But it is harder to find out

which cities might grow and on the other hand where will cities decline and maybe even vanish, i.e. where

exactly do people live. Simulations can support an effective understanding of possible changes and lead to

predictions. These predictions are important for future decision-making processes. To make decisions

concerning policies and about the distribution of resources, such as water, food and energy, it is of great

importance to know more about the future developments of population distributions and growth of cities.

To gain knowledge and access the information from the simulations, these need to be visualized.

1.1 Problem statement

To visualize the simulations several issues have to be dealt with. The biggest issue when it comes to

simulations that span the entire world, is the size of the dataset. Not only is there a lot of information that

needs to be displayed all at once but also the file sizes need to be processed in a user-friendly timespan.

To deal with the limited space an interactive map can help with a pan and zoom function. But to process

very large rasters with interactivity, a powerful tool is needed. The aim of this project is to develop an

interactive visualization tool that can handle large file sizes and makes it possible to interact with the end

product. Another aspect of the visualization process is the styling of layers, which should be easily

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 2

adjustable to match new simulation outcomes. The tool has been developed for the use case of population

simulations, but it is also adaptable for other large rasters. Another application for example could be the

visualization of remote sensing data, which is likewise large in file size.

1.2 Research question

The following questions will be answered in this thesis:

How can an interactive tool improve the visualization of population simulations and what standards need

to be met?

1. What are the visualization conventions that population simulations should follow?

2. Which tools already exist and what can they do?

3. How do these tools compare?

4. Can these tools be adapted for further development?

The research questions are built around the exploration of eligible tools to create a visualization, which

will be based on a literature review. It will be researched which tools already exist and if they are capable

of handling large datasets. The research will also include the invention of appropriate comparison

methods. The comparison will be based on processing time and workflow of the final tool.

1.3 Report structure

To answer the research questions, the background to the population simulations is given in chapter 2.1.

Here the project FLOW is described and the simulations behind the raster used in this project are

explained. To give an introduction into map making and data visualizations a brief theory background is

given in chapter 2.2. This also explains conventions in a visualization context and point out the importance

of color. Thereafter, tools and related work are described in chapter 3. Here different libraries are

explained, followed by a server solution, which is explained in more detail, considering the two chosen

servers. The development of the visualization tool is described in chapter 4, where a first trial version was

tested and afterwards two servers implemented. In chapter 5 the two servers are compared and finally a

conclusion is drawn in chapter 6.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 3

2 Background

2.1 FLOW and population simulations

There are different simulations of future population deployment, for this thesis the one from Keßler and

Marcotullio (2017) was chosen, as this visualization tool has the aim to help with further projects such as

“Global flows of migrants and their impact on North European Welfare States (FLOW)” at Aalborg

University.

FLOW is an interdisciplinary research project combining the Technical Faculty of IT and Design with the

Faculties of Social Sciences and Humanities, under the theme “Denmark and the global flows of the future”

(“FLOW,” 2018). The aim of the project is to find out more about migration flows, in particular those

connected to climate change, and their effect on the developed Northern European welfare states. Besides

those migration scenarios, application-oriented research will be done to find solutions for socioeconomic

and sociocultural integration of immigrants. The project has started in Spring 2018, with a duration of 36

month (ibid.).

“A Geosimulation for the Future Spatial Distribution of the Global Population” was implemented by Keßler

and Marcotullio (2017) and is the base for this project. The simulations are using the Python programming

language throughout the entire process. The simulations are based on a 1x1 kilometer grid at the equator

and calculate an approximate population number for each 1 square kilometer. The present number of

urban and rural population distribution originates from the Global Rural Urban Mapping Project (GRUMP)

and is based on a 1 square kilometer raster cell (CIESIN et al., 2011). The predictions come from UN DESA,

these global population prospects deliver population numbers until 2100 and distinguish rural and urban

areas by country (UN DESA 2015). As GRUMP overestimates urban areas, they were combined with the

European Space Agency’s Global Land Cover Map. They have a higher resolution of 300 meters and are

more accurately in terms of defining urban areas. After down sampling them to GRUMP’s resolution they

were overlaid and the areas that were marked as urban areas in the GRUMP raster file but not classified

as such in the other one, were marked as suburban areas. Each of these layers fill up approximately 3 GB

in uncompressed format. To make it processable each layer was split to smaller rasters, each containing

the datasets for one country and after computation they were stitched back together.

The simulation is based on a few repeating steps. After generating a copy of the urban/suburban/rural

layer from the previous iteration, the projected population numbers for urban and rural areas were

retrieved from the UN DESA dataset. The numbers from the copy were randomly added or removed from

the urban and rural areas to match the UN DESA predictions. When population numbers became too high

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 4

they were pushed into neighboring cells and change the area to fit the country-specific threshold for each

class. After that, the new numbers for rural/suburban/urban areas were compared to match with the

UN DESA predictions again. These steps are done for every ten years until 2100 and for every country. The

countries are stitched together to make two global rasters in the Georeferenced Tagged Image File Format

(GeoTIFF) for every ten-year interval. One showing the population number of each cell and one showing

the distribution of rural/suburban/urban areas. One of these GeoTIFFs is approximately 500 MB big in

compressed form, so even visualizing one raster at a time needs a powerful visualization tool.

2.2 Visualization conventions

With an ever-growing number of datasets, the need to come up with ways to display more complex and

difficult data, other than in tables, is on hand. In this chapter, a brief history of data visualization and

cartography is given, followed by a short explanation about what data visualization is and what issues

come with it. This leads to visualization conventions, that can make it easier to find the right visualization

methods. The different aspects of data representation that are related to maps are also described and a

focus is laid on the right choice for colors.

2.2.1 Data visualization and Cartography

The history of data visualizations is going back to the very first tables of star positions and the first idea of

coordinates came from ancient Egyptians as early as 200 B.C. In a brief history of data, Friendly (2008)

describes the development of data visualizations, beginning from ancient Egypt to new formations of

graphical display accompanied by first studies about statistics and probability theory in the 1600s.

Although, early cartographic maps and statistics were used for their own purposes, it took until the

17th century to combine the two (Tufte, 2015). Always lead by new technological developments, such as

color printing, the base for modern day visualization was made during that time (Friendly, 2008). One of

the early and worth mentioning mapping of patterns was done by Dr. John Snow, who mapped deaths by

cholera on a map of London in 1854. He found out that the most cholera depths occurred close to specific

street water pumps, which than were found to be the source of the disease and were decontaminated to

stop the epidemy (Snow, 1855). This is an early example of using maps to reveal more information, then

can be seen by simply looking at the numeric data. Other methods of displaying statistics, as we know

them today, such as pie charts, line graphs, histograms and scatter plots took until the 1900s to develop

(Friendly, 2008). However, Tufte says that maps are the most powerful method of displaying statistical

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 5

information when it comes to very large datasets. Only with a map can millions of data points be shown

on a very small space (Tufte, 2015). This is especially important to notice, when approximately eighty

percent of all digital data is geospatially referenced (MacEachren & Kraak, 2001).

Today it is easier than ever to access data. There is a lot of open source data on the internet, besides many

others do the United States (with over 280.000 datasets at the state of this report) and the European Union

have open data pages (data.europa.eu, 2018; data.gov, 2018). The data is freely available and often

downloadable in different formats, to fit all kinds of needs. With this huge amount of data, it is more

important than ever to think about proper visualizations to access the information of the data and turn it

into knowledge. But, to find a suitable visualization it must be explained what data visualization is.

Visualization is a process where numerous people, amongst others including the people who want to have

the visualization and the ones making it, make several choices e.g. about the data structure and the design

(Kennedy et al., 2016). To make this visualization process systematically, spatial data is transformed into a

visual display. For this display to be scientific, it should follow certain cartographic design methods to make

it systematic, reproducible, and transparent as well as follow certain aesthetics (Garlandini & Fabrikant,

2009).

The choices that comprise cartographic design and aesthetics have a political and historical background,

even though they are not always intentionally implemented in the result (Kennedy et al., 2016). But they

have an effect and can also be used for political interests and must therefore be dealt with. Monmonier

(1996) already claimed that maps can be used to tell lies. Different perspectives and representations can

be achieved through specific projections, where either country borders are distorted, or their size is shown

larger than the actual size, hence a more powerful appearance (Kennedy et al., 2016). With the same data

many different maps can be made.

These negative and critical perspectives on data visualizations are in contrast with the view of visualization

designers, who claim to ‘do good with data’. This statement is the main statement of the visualization firm

Periscopic that want to gain transparency and public awareness through their work (Periscopic, 2018).

Even though Monmonier addresses mapmakers that are lying with maps, he also argues that it is needed

to not tell the whole truth, which is similar to telling lies (Monmonier, 2005). It is an important part of map

making to distort reality, in order to be able to focus on relevant relationships (Monmonier, 1996). The

process of creating maps is a process of selecting and generalizing data, to show only the most important

information (Mose & Strüver, 2009).

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 6

These diverse ways of seeing visualizations make it clear that maps should be both read and made with

care, and attention should be paid to possible misleading visualizations.

2.2.2 Conventions

In the map making process, numerous conventions can help achieving a properly made map and help

avoiding misleading visualizations. What conventions are – regarding visualizations – must be clarified, and

examples of some conventions are given to understand and work with them.

 “A convention is a symbolic or social practice that is shared, readily understood and widely accepted by

members of a cultural group” (Kennedy et al., 2016). Often symbols and practices are intuitively used, due

to their common appearance. There are different conventions, the most important ones, that are

connected to map making are explained in the following.

Some intuitive design principles have become internationally accepted conventions, such as “light is less–

dark is more” (Garlandini & Fabrikant, 2009). Studies show, that yellow to red colors are identified as warm

colors whereas blue-green colors are seen as cold colors (Moreland, 2009). These can be translated into

blue colors as low values and red color as high values, according to temperatures. Therefore, they are

easily understood and even without a legend an idea of the values is given. Other conventions come from

the 18th century topographic maps, especially the use of color, where for example water is rendered in

blue, while forests have a dark green color (Kraak & Ormeling, 2010). These concepts are widely accepted

and often intuitively followed.

When these conventions are followed, visualizations can be seen as professional and well made, as they

align with the user’s expectations of a professional map. This professionality on the other hand can give

quality and also objectivity to the representation (Kennedy et al., 2016). On the contrary, when these

conventions are not followed, it must be clearly stated in an easily understandable legend, that other

colors or color scales are used than usual, to avoid misleading information.

Conventions can likewise help in showing more information. Spence (2014) explains it with a magnification

map, that shows a world map with the population density determining the size of the country

representation. The usual and conventional map with a conventional extend and center of the map is

generally known. This makes it possible to display the countries not in their original size but according to

their population density and through that showing more information. The color was then used to show a

percentage of population increase (Spence, 2014). This is meant to show that conventions are not only

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 7

helpful to make a standardized map but also to filter out distracting information and represent more

relevant information.

Conventions are also used for interactivity. For example is a text in blue and possibly underlined an

indicator for an interaction. Another sign of interaction, that became a convention is the change of the

cursor appearance on a mouse-over (Spence, 2014). These conventions are meant to point out, that they

help to reduce the cognitive effort in understanding and interacting with the map. This surplus of cognitive

effort can than be used to perceive other, more relevant information.

2.2.3 Visualization processes

During the visualization process of a map, three basic attributes are essential to understand: the scale, the

projection and symbolization (Monmonier, 1996). They will be described in their importance below.

Representing reality mostly comes hand in hand with a much smaller map and therefore a scale is needed

to show how much smaller the map exactly is. This is done with a map scale, which defines the ratio

between a distance on the map and the corresponding distance in reality (Kraak & Ormeling, 2010). There

are essentially three ways to state the scale of a map: in a simple description, such as “one inch to the

mile”, as a ratio or as a graph (Monmonier, 1996). Monmonier (1996) argues that graphs are the safest

way of showing the map scale, as there is no need to have a good understanding of distances. This is

needed when representing the scale in a sentence, such as “one centimeter represents 500 meters”. Also,

a ratio map, like 1:50.000, needs some sense of distances and arithmetic understanding. A graph on the

other hand shows the relation simply on the map, and another advantage is, that it stays accurate even

when the map gets reduced in size, without a change of the scale (Monmonier, 1996).

As already mentioned earlier, mapping comes hand in hand with some sort of distortion of the real world.

This is due to the fact, that a three-dimensional ellipsoid is presented on a two-dimensional plane (Kraak

& Ormeling, 2010). There are different ways of achieving this transformation, but all of these projections

have distortions and neither of them is perfect. Which type of projection should be used, depends on the

project and area that needs to be displayed on a plane. Each projection focuses on some of the distorting

factors, that can be area sizes, shapes and distances.

A conformal map shows every angel on the map equal to the angels on the ellipsoid, consequently the

shape is the same. The compromise is the distortion of size, that can lead to misperception of country

sizes, especially at high latitudes (Bertin, 1974). A true to size projection with equal-area proportions on

the other hand has quite distorted shapes. Another type of projection is equidistant, which stays true in

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 8

distances. All projections have either a point or a line of zero distortion and further away from this the

distortion increases (Kraak & Ormeling, 2010). This line or point of zero distortion, also called tangential

point or line, can be moved to overlap with the area to be mapped, so that this area gets the least

distortion. However, this works only for a small area and not for a map of the entire world.

The third essential part in map making following Monmonier (1996) are symbols. He defines six different

variables, that align with the visual variables from Bertin (1981). Bertin structures symbols into visual

variables with different perceptions. He defines six as retinal variables to define the appearance of symbols

and two planar variables. The latter define the dimension of the plane, which determines the location on

the X and Y axis. The other visual variables are size and value as ordered variables; texture, color,

orientation and shape as differential variables. They are all shown in the following table.

Table 1 Visual variables after Bertin (1981, p. 187)

Planar Variables

Y-Position

 X-Position

Position

Ordered Variables

Size

Value

Differential Variables

Texture

Color

Orientation

Shape

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 9

Symbol size is an obvious characteristic, that the user will automatically translate into differences in

numbers (Kraak & Ormeling, 2010). The same occurs to values, where the conventions of less is light and

dark is more applies, thus making these two variables ordered variables with some ranking implied. Size is

especially good in representing amounts or counts, whereas value is better for rates or intensity

(Monmonier, 1996). For qualitative differences symbols in varying shapes, textures and hues are best for

differentiation. Orientation can be used to represent movements, such as is wind directions or migration

streams (ibid.).

After clarifying these concepts, it is easier to apply them to the needs of a project. It should point out, that

it is important to know the purpose of the project. Who is the audience or user of the map? What kind of

data will be used? And what area should be mapped? These questions must be answered in order to

ensure an efficient visualization.

2.2.4 Color

Another important part of visualization is turning data into colors. This can be done in many ways and

plays a key role in visualizations. Color is widely left to conventions and these colors are merely

differentiated in their simple use, as in blue for water and green for forests (Nowell, 1997). But an

appropriate use of color is important for data representations. The right use of color makes the content

easily understandable and allows interrelationships and patterns to be recognized. On the contrary, a

careless use can obscure those patterns (Brewer, 1994).

When talking about colors, a few concepts must be understood. The type of data is important to choose

between different color schemes. These color schemes can then be adjusted within the three perceptual

dimensions of color: hue, lightness and saturation. Hue is the name of the color, such as red, blue or green.

These are also commonly referred to as colors but Brewer(1994) argues that a color is a composition of

hue, lightness and saturation. Lightness can also be called value and shows the brightness or darkness.

Whereas, saturation can be seen as the amount of hue in a color (Brewer, 1994). It is also known as

chroma, an example for saturation would be a grayish red compared to a pure red.

Data can be de organized in two main classes: qualitative and quantitative data. Qualitative data is data

that is not ordered nor has a ranking, for example nominal or categorial data. Here it is advisable to use a

qualitative color scheme, where the primary differences are in the choice of hues, with constant lightness

and saturation (Brewer, 1994). A color scheme based on lightness could imply an order, such as light is less

and dark is more. An online tool for selecting colors is colorbrewer2.org (ColorBrewer, 2018). It supplies

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 10

three different color schemes within qualitative and quantitative data. Besides qualitative color schemes

the website offers two color schemes that fit quantitative data (Harrower & Brewer, 2003). Quantitative

data has an order or is ranked and can also be continuous. With this kind of data, lightness is the main

differentiator. A diverging color scheme has two essential color components on both ends of the range.

They transition from one color on the one side, over an unsaturated or light color in the middle to the

second main color on the other side (Moreland, 2009). Here an equal emphasis is on the mid-range and

the critical values to both sides. These low and high extremes are represented in dark colors and have

contrasting hues (Brewer, 1994). The last color scheme also serves qualitative data, especially ordered

data. In this color scheme the data, hence the color scale is progressing from low to high. Lightness is

dominantly defining this scheme and the conventional, light represents low values and dark high values,

is mostly used. In some cases, such as dark backgrounds, the emphasis could be on light values for high

numbers and must be clearly stated in the legend.

Population numbers come as quantitative data, with areas of zero population at its lowest and high

population numbers in very dense urban areas. Therefore, a sequential color scheme is fitting.

3 Tools and Related work

To find a suited interactive visualization tool, research was done looking for existing solutions and related

work. Important was, that the outcome was an interactive visualization tool. There are some libraries and

frameworks that can be used for his project. It must be tested if they are suitable to visualize these large

datasets too. Performance plays a very important role in the project due to the very large datasets, which

need a lot of processing power. Besides the interactivity and handling of big data, the tool should be run

using the Python programming language. Python is the preferred language, as it is already known, and the

population simulations are also written in Python, so the workflow is seamless.

The first research was done with a simple google search for interactive visualization tools using Python.

During the first process a few libraries were taken out of consideration after looking into they’re

documentation. As this tool is also meant to be used after the end of this project, a sustainable solution

must be found. Therefore, small libraries that were developed only recently or not supported from well-

known organizations, were excluded. The documentation was also a big part of the decision making and a

poor documentation of how to use the library was also an excluding factor. After this first research two

libraries sounded promising and were therefore considered as a feasible option and further research was

done. These libraries are described below, and other used software is explained.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 11

3.1 Python

Python is a widely used programming language, due to its interoperability, as it runs on many different

operating systems. It is an interpreted1, object-oriented2 programming language that is also interactive3

(Langtangen, 2009). It has a very clear syntax which enables programming for short and long scripts.

Python has a vast variety of additional libraries for different purposes and can easily be extended.

However, it can also be used on its own, as it has a large built-in library (Python Software Foundation,

2018b). Python is an open source programming language that is managed, protected and advanced by

the non-profit corporation Python Software Foundation (Python Software Foundation, 2018c).

In this project the Python version 2.7.5 was used within the PyCharm Integrated Development

Environment (IDE) from JetBrains. This IDE was used, because of its intelligent code completion and on-

the-fly error checking (JetBrains, 2018). It was also used in previous projects and therefore already known

and comfortable with it. To install and manage python packages, the Anaconda Distribution was used

(Anaconda, 2018).

3.1.1 NumPy

NumPy is a library for the Python programming language. It is a package for scientific computation of large

n-dimensional array objects. It comes with a large number of mathematic functions and can be used as an

multi-dimensional container of generic-data (NumPy, 2018). NumPy arrays are high-level data structures

that can contain compound data, instead of only one data type. This is useful for x- and y-coordinates

stored as floating-point numbers. It is also very efficient when processing large data sets, as it does not

need to copy all the data in the memory (Van Der Walt, Colbert, & Varoquaux, 2011).

3.1.2 GDAL

GDAL stands for Geospatial Data Abstraction Library and is a translator library for vector and raster data.

It is an open source library licensed under the Open Source Geospatial Foundation4 (OSGeo) and is

1 New code can be generated while the script is running
2 bundels properties with behaviors or attributes into objects
3 Running a command and immediately shows the result
4 The Foundation (OSGeo) is an independent not-for-profit organization to support the needs of an open source
geospatial community (OSGeo, 2018a)

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 12

compiled of two libraries. OGR1 Simple Features Library holds source of the vector data while GDAL designs

the raster part. However they have become more integrated, and will be completely folded into each other

in the future, meaning that GDAL will hold both sources of vector and raster data (OSGeo, 2018c). It

supports a vast amount of data formats, for both raster and vector. In this project the handling of GeoTIFFs

is of importance and supported by GDAL. GDAL is written in C++ but has several language bindings,

including one for Python. But it also comes with command line utilities for data translation and processing

(GDAL, 2018). In this project GDAL is used in both a Python script and using the command line.

3.2 Bokeh
One of the libraries that was considered feasible to use as a visualization tool is the Python library Bokeh.

It is an interactive visualization library that uses web browsers for their presentation. It is especially useful

when it comes to very large datasets and combines this power with high-performance interactivity (Bokeh,

2018b). Bokeh comes in two interface levels. One is bokeh.model which is a low level interface, and mainly

for developers with special needs for a finer control over the composition of Bokeh plots and widgets.

However, there is an higher level interface, bokeh.plotting, that handles the assembling of Bokeh models

automatically (Bokeh, 2018a). For this project the bokeh.plotting interface was used.

3.3 Folium
Folium is a library for Python that uses the Leaflet.js library for visualizations on a map. Leaflet.js is an open

source library for interactive web maps, that uses JavaScript. It stands out through its lightweight and

simplicity with high performance and usability (Leaflet, 2018).

Folium takes advantage of those abilities and combines them with the data handling strength of Python.

The data is manipulated in Python and afterwards visualized on a leaflet map through Folium. The output

map is a browser-based map by leaflet. Folium is the tool that calls the leaflet map in python (Folium,

2018).

1 “OGR used to stand for OpenGIS Simple Features Reference Implementation. However, since OGR is not fully
compliant with the OpenGIS Simple Feature specification and is not approved as a reference implementation of the
spec the name was changed to OGR Simple Features Library. The only meaning of OGR in this name is historical.”
(OSGeo, 2018b)

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 13

3.4 QGIS and QGIS Standalone app

Another option that was considered is a standalone app based on the QGIS application programming

interface (API). QGIS is an open source geographic information system (GIS), that is also part of OSGeo. It

is widely used, because it is not only open source but it also runs on Linux, Unix, Windows and Mac OSX

operating systems (QGIS, 2018a).

QGIS supports scripting in the Python language. There are different ways to make use of it, it is usable

within QGIS in a python console and to create and use python plugins. It can also be used to make

standalone apps. Those will work without the need to open QGIS and are therefore faster apps for specific

tasks. In order to use the standalone script, the QGIS resources have to be initialized in the python script.

This can lead to some errors, as the Python path must be set in the system environment to the correct

Python installation (QGIS, 2018b). This differs from operating system to operating system and also the way

QGIS and Python were installed make a difference. It was tested with an installation of QGIS 2.18.3 and

Python 2.7.5 with various tutorials but due to a lack of time it was not possible to dive deeper into

advanced system environment settings and therefore other solutions were considered.

3.5 Server

A web server is a program that uses Hypertext Transfer Protocol (HTTP) to serve content. A browser is

used to contact the web server in form of a Uniform Resource Locators (URL) request. The server looks

through its own file system for a valid file that the request points to, it is often a .html page but can also

be an image or a .xml file. If the file exists and the browser is configured to display the file type, it will be

rendered in the browser, otherwise it will be open for a download (Boundless, 2018).

There are different web services for different purposes and web mapping server are specialized web

server. They function in the same way but with a focus on geographic information. Within web mapping

services there are also different specifications, but they follow the same standards implemented and

developed by the Open Geospatial Consortium (OGC). OGC is an international not profit organization with

the purpose of making quality standards for a global geospatial community, that are freely available and

open to everyone (OpenGeospatial, 2018). The most common open web services for geographic

information are described below.

Web Map Server (WMS) is the one that is used for this project. A WMS is rendering maps as images to

provide them over a simple HTTP interface (OGC, 2006). There are three operations that can be invoked:

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 14

one returns a geographically well-defined map, one returns metadata, and a third optional one returns

information about particular features. These operations can be requested and defined via URLs(ibid.). The

URL defines what information, and in which extend the information is shown on the map. The operations

for a WMS are GetCapabilties, GetMap and GetFeatureInfo, whereas the latter is optional. With

GetCapabilities an Extensible Markup Language (XML) containing metadata is responded and can usually

be downloaded (OGC, 2006). The GetMap request returns the requested map according to the requested

parameters. GetFeatureInfo is used to retrieve more information about the map, for example when

clicking on the map the pixel value should be shown. For this kind of information, a GetFeatureInfo must

be used and implemented (ibid.).

With a WMS it is also possible to overlay maps and adjust the transparency to produce composite maps.

A Web Map Service publishes and produces maps rather than accessing specific data. The geographic

information is classified as “Layers” and can be styled with predefined “Styles” (ibid.).

Web Feature Services (WFS) on the other hand can change the way geographic information is created and

modified on the internet (OGC, 2010a). It provides the capability to access geospatial features and also

perform operations such as creating, updating or deleting features from the data store (OGC, 2016). Other

web servers are Web Coverage Service (WCS), that is especially useful for multi-dimensional coverage

data, for example terrain models (OGC, 2012). Besides these three main web services, there is also a Web

Map Tile Service (WMTS) that focuses on high performance services for scalable cartographic maps. The

OGC WMTS is inspired by the OSGeo Tile Map Service Specification and has a complementary approach to

a WMS. While WMS focuses on flexible custom map styles, WMTS concentrates on static data such as base

maps and their scalability, here the bounding box and scales have been bind to discrete tiles (OGC, 2010b).

The main two servers for geographic imagery are GeoServer and MapServer which will be described in

their specifics in the following, the development will be explained in chapter 4 and a comparison of both

is done in chapter 5.

3.5.1 GeoServer

GeoServer is a free and open source web server that uses the open standards from the Open Geospatial

Consortium as described above. It is a Java Enterprise (J2EE) web application that enables the user to

publish, edit and process geographical data (Deoliveria, 2018). GeoServer can share data from many spatial

data sources and is designed for interoperability. GeoServer works with a browser-based web

administration interface to define all server settings (GeoServer, 2018a). These include settings of image

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 15

processing, like memory usage, tiling and handling caches. Server settings can be made globally, meaning

all Open Web Services (OWS) publish all layers configured on the server. WFS publishes all vector layers

(feature types), WCS publishes all coverage layers and WMS can publish all. For security reasons the client

can be limited to only have access to selected layers, this can be done with a virtual service, which is a

view of the global service (GeoServer, 2018c). The layers that are shared over the server can be styled

using the markup language Style Layer Descriptor (SLD) in a separate style file (Iacovella & Youngblood,

2013). It is an XML-based markup language with the extension .sld in GeoServer that is supported from

OGC (OGC, 2007). It can be edited within the editor in GeoServer or better in a preferred text editor and

then copy it into the editor, as web administration sessions can expire and what was done, can get deleted.

Within the web administration interface, the layers have a preview, that will be shown in the comparison

section, with a simple OpenLayers viewer. For more advanced stylings OpenLayers can be used separately.

The version that was used for this project is the 2.13.0 stable release and downloaded from the

geoserver.org (2018a) website.

3.5.2 MapServer

MapServer is also a free and open source web server. It is written in C and is one of the founding projects

of the OSGeo foundation and supports numerous OGC standards (MapServer, 2018a). MapServer can be

used in two different ways, as a Common Gateway Interface (CGI) or with a MapScript. For this project,

the CGI program was used, because it is easy to set up and straight forward to use (Kropla, 2005).

When used as a CGI program, it receives requests and returns responses in the form of e.g. images or

maps. When requested the CGI program first reads the mapfile, with all configurations about the map and

layers, then it draws the map. The next step is to read the hypertext markup language (HTML) template

files that are indicated in the mapfile. This is used to specify the layers that should be rendered or the

zoom level. Then the values in the template are substituted with the actual renderings and send to the

web server, which forwards it to the browser (Kropla, 2005). One mapfile configures one server but can

have numerous templates, for different purposes. For a simple zoom function only one template is enough

(MapServer, 2018c).

MapServer with all its components was installed with MapServer For Windows (MS4W), which sets it up

for windows (McKenna & Gateway Geomatics, 2018).

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 16

3.6 OpenLayers

The visualization was then done in OpenLayers. OpenLayers is an open source JavaScript library and comes

with a good documentation and many examples and tutorials. It is made to show dynamic maps and

embed them into web pages. It can display maps from different sources and handles vector and tiled layers

(OpenLayers.org, 2018). It can use different web servers as map sources, amongst them GeoServer and

MapServer. OpenLayers also works well with the OGC standards and the WMS can be implemented. It is

easy to adapt for custom web pages, which is especially useful when the visualizations should be published.

The version that was used in this project is the newest version 4.6.5.

3.7 Comparison tools

To be able to adequately compare the different libraries and servers, two tools were used. To test the

processing time of a python script, the module timeit was used. Timeit has a command line interface and

is also callable within a script. To be independent from other interfering operations that could slow down

the runtime timeit repeats the same steps a given number of times and prints out the average of the

results (Python Software Foundation, 2018a).

For testing the server performances on an objective level, the Google Chrome development tools

(DevTools) were used. After opening the Google Chrome browser DevTools opens when pressing control

+ shift + i (for mac: command + option + i). Besides the many uses of DevTools, for this comparison only

the network and performance panels were used. With the network panel the user learns about the loading

times of a page (Basques & Chrome DevTools, 2018a). In the performance panel the runtime and

interaction of the page can be tested and monitored (Basques & Chrome DevTools, 2018b).

4 Development of the tool
4.1 Reference version

As a benchmark for the visualization tool the former process is described. This is meant to serve as a

comparison and to evaluate possible improvements that come with a separate visualization tool.

The former process was to load the GeoTIFF in a GIS-software such as QGIS or ArcGIS and then process it

from there. This included loading the full GIS software and loading the file into it. A predefined layer style

could be added, so that the manual styling can be dropped. The raster could be shown within the program

interface. It was tested in QGIS and a screenshot can be seen in figure 1.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 17

Figure 1 QGIS - preview

It can be seen, that it is possible to add an overview panel and a scale to the screen. The pan and zoom

function work smoothly and the raster loads quickly. However, this is not an ideal setting for the

presentation of results and the map should be exported as a static pdf file or an image and then be

embedded in a presentation. Here an interaction is not possible anymore.

4.2 First trial versions

Before the programming and final solution can be made, a trial and example version was tested. The trial

version should be a very simple version of the final tool, to see if the frameworks are eligible for further

development. After testing this first attempt, further examination was done and two server versions were

developed, and in the following chapter tested against each other.

The trial version should have a simple viewer with a zoom function. This is crucial for the final tool to work

smoothly and therefore also included in the first attempt. The zoom function will also be used as an

indicator of the performance of the interactive visualization tool in the end. If it is too time consuming to

smoothly zoom in, it does not fit the criteria for the needed tool.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 18

As the main issue with the visualization is the size of the data, the first trial version is as simple as possible,

to find out if the libraries and servers can handle the data and test their usability. As the final version

should be able to handle the entire dataset of 378 MB but also be able to run on a standard computer

without too much trouble, a lightweight computer was used. The computer that was used throughout the

process is a Lenovo laptop E31 with 4 GB RAM and 64-bit windows operating system. It has an intel core

i3-5005U processor with 2.00 GHz.

The testing process included testing of the script with a smaller GeoTIFF. To see how the libraries can

handle the file sizes, the original one – of the entire world – was clipped to different sized GeoTIFFs. This

was meant to show that the script and the library is working and technically correctly set up. The smallest

one, approximately clipped around Denmark, has 1.09 MB. One clipped around the European Union (EU)

is larger with 82.4 MB and two different clips around Australia were made: one with a file size of 218 MB

and a bigger one, closer to the original size with 295 MB. These clips where simply clipped from the original

378 MB population GeoTIFF in QGIS using the raster extraction tool. The process for each library and the

results from it are explained below. The complete scripts can be found in the appendix in the order they

are described here.

4.2.1 Folium

The first trial was done with folium. It was installed through Anaconda and used with the PyCharm IDE.

Folium is a plotting library that can plot data on leaflet maps, for the visualization of raster data the GDAL

and NumPy libraries were used. The GeoTIFF was opened with GDAL (line 8), the raster band extracted

(line 9) and read as a NumPy array (line 10).

8
9
10

src = gdal.Open('PopDK.tif', gdal.GA_Update)
band = src.GetRasterBand(1)
imarray = np.array(band.ReadAsArray())

Code 1 Folium: getting raster with NumPy

Then a map object was created with the starting zoom level of 3 in line 13. The NumPy array was then

added to the map with the folium.plugins.ImageOverlay command (line 15-20) and the map was saved

as a html file to be opened in a browser (line 23).

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 19

13
14
15
16
17
18
19
20
21
22
23

map= folium.Map(zoom_start=3)

folium.plugins.ImageOverlay(
 image=imarray,
 bounds=[[-180, -60], [180, 85]],
 colormap=lambda x: (1, 0, 0, x),
 origin='lower',
).add_to(map)

#Save html
map.save('folium_test.html')

Code 2 Folium: Creating the map

During the running process with the original file size the computer crashed and turned itself off. To

pinpoint the issue and to clarify if the library and the script worked, a small GeoTIFF was used. It showed

that it worked well with the 1.09 MB GeoTIFF of Denmark. A larger raster with the size 82.4 MB took

3,5 minutes run time. As this is only a fraction of the actual size, the library folium was not considered as

an applicable package for this type of project.

4.2.2 Bokeh

The first trial with the Python library Bokeh also used the large 378 MB GeoTIFF. Here it worked better

than with the folium library, but a memory error occurred during the process. The script was then again

tested with the smallest raster of Denmark and the run time was very short and the browser opened

immediately afterwards showing the raster.

The GeoTIFF was opened with GDAL and read as a NumPy array in the same way as with folium, which can

be seen in code snippet 2. The entire Bokeh script is in the Appendix including the timeit statements used

to measure the time. In Bokeh an output file was created as a html document in line 11. In line 13 the

image gets turned around, as Bokeh would otherwise show it upside down. A figure is created with the

coordinates as axes (line 14), it displays the previously created NumPy arrays in the figure (line 15, 16) and

afterwards it is saved (line 17).

11
12
13
14
15
16
17

output_file(r"C:/master/imageDK.html")

imarray = imarray[::-1]
p = figure(x_range=(-180,180), y_range=(-60,85))
p.image_rgba(image=[imarray], x=[-180], y=[-60], dw=[360], dh=[145],
dilate=False)
save(p)

Code 3 Bokeh: Creating the map

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 20

The script was run with all different raster sizes to see how large they can be without difficulties. It was

distinguished between the running time of the code, measured with the Python module timeit, and the

following loading time in the browser, measured with a simple clock timer. The following table (2) shows

the different results.

Table 2 Runtime with Bokeh

Country GeoTIFF Size Timeit (seconds) Loading time (mm:ss)

DK 1.09 MB 3.08 00:01

EU 82.4 MB 113.75 00:30

AUS 218 MB 345.14 00:50

AUS 295 MB 479.68 01:16

It can be seen, that the largest file size, which is still smaller than the original one, already took almost

eight minutes (479.68 seconds) to process the raster and over a minute to load completely in the browser.

This is better than with Folium, but not perfect for a smooth visualization.

4.2.3 Tiles

Another option that was considered, was splitting the image up in tiles. For this purpose, the GDAL tool

gdal2tiles.py was used. To generate the tiles for 8 zoom levels, it took one hour and eighteen minutes

to receive the tiles. A styling after the tiles are created is not possible, which means for a new styling new

tiles must be created again. This process takes too long, especially when considering, that a change over

time should be presented and there are different GeoTIFFs for different years. Therefore, this solution was

dropped as not applicable due to a too long processing time.

4.3 Final tool

After the direct visualization with the help of Python libraries failed, a server solution was considered. How

a server works is explained in chapter 3.5 and the two servers that were implemented in this project are

also described in that chapter. In the following the setup of the two servers is described. At first GeoServer

will be explained, including the adding and organization of data and the WMS settings. Afterwards, the

layer styling is explained for GeoServer, followed by the explanation of the OpenLayers implementation.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 21

Thereafter, the MapServer configuration within the mapfile is explained, followed by the templating HTML

file. In the end the OpenLayers document for MapServer is explained, where it defers from GeoServer.

4.3.1 GeoServer

After installing GeoServer on the computer, the GeoServer web administration page can be accessed

through this URL in the browser: http://localhost:8080/geoserver/web/

The web administration has numerous settings for all kinds of use cases. In the following, only the relevant

ones are explained. With GeoServer, there are default values that do not need to be changed, but maybe

activated to adjust the server to the user’s needs. For example, access can be limited, or memory usage

can be limited. For this project, nothing was limited and most of the settings where kept with the default

values.

Figure 2 GeoServer: Workspace

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 22

Data in GeoServer is organized in workspaces, stores and layers, as can be seen on the left side of the

screenshot above (Figure 2). A workspace organizes the items stored in it, for this project a new workspace

was created called “master”, and the configuration can be seen above in the screenshot. A namespace

Uniform Resource Identifier (URI) is given and the workspace is set to default. On the right side the services

that the workspace should provide can be checked, here only the WMS is needed. With the settings

enabled locally, opposed to global, the settings apply to only this workspace. Afterwards contact

information can be given.

To add data, a new data store must be created within a workspace. The screenshot below shows the

editing of a raster data source, but the window looks the same when a new store is added. When adding

a new store the data type can be selected from a broad range of vector and raster data. A descriptive name

must be given, and the path to the file must be set with a connection URL as shown below.

Figure 3 GeoServer: Raster Data Source

The data store is then used to publish layers. Here a name and further description of the layer can be given

in the basic resource info part, as shown below.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 23

Figure 4 GeoServer: Edit Layer: Data

Further information about the layer is set in the Data panel of the layer editor. Here the coordinate

reference system is set to the data native one, in this case the system with the European Petroleum Survey

Group (EPSG) code: 4326. There it can also be reprojected if needed. The bounding box can be computed

from the data or set manually, in this case it was computed automatically. Afterwards, coverage

information can be given, and a suggested tile size is declared. In the information about the band, details

are given with a definition of the null value.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 24

In the publishing panel, the interpolation method is set. The nearest neighbor method was chosen, as this

ensures that the image values stay the same, and the rendering is fast. Other options are bilinear

interpolation with linear weighting, which gives more influence to the closer input cells, and bicubic which

is used to smoothen continuous data (GeoServer, 2018e). Additionally, the native format is set to GeoTIFF

and the layer style is chosen with a preview of the legend.

Furthermore, there is a “Dimensions” panel, where time and elevation data can be enabled if the data has

it. The last panel manages the tile cache for this layer. It is set to create a cached layer and tile cache for

the layer. Additionally, metatiling factors are defined, here the default settings are used and also the tile

image formats are left to the default.

Figure 5 GeoServer: Edit Layer: Publishing

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 25

Figure 6 GeoServer: Edit Layer: Tile cache

These settings are all layer or workspace settings, but the WMS must also be set up on its own. The default

settings were kept and are explained briefly in the following.

Figure 7 GeoServer: WMS Metadata

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 26

The service metadata for the WMS must be enabled in order to process requests the explanations are

found in GeoServer (2018d). Strict Compliance and Interoperability Testing Initiative (CITE) enforces strict

OGC conformance and is not selected. Required for the server to work is a given online resource, which

defines the top-level HTTP URL of the server. Followed by a title and an abstract and the declaration, that

no fees are imposed for the use of the server and no access constraints are imposed. Not in the screenshots

shown are the options, that where not used and left blank, but they will be listed shortly. Keywords can

be implemented, for better searching. Additionally, information about the root layer can be made, if left

blank the WMS service information are used. An interpolation method can also be set globally for the

WMS, in this case the interpolation method is also set in the layer options. Advanced projection handling

and continuous map wrapping is enabled by default. These options help with good looking maps in areas

at the edge of the projections and make a continuous map visualization possible (GeoServer, 2018e).

Figure 8 GeoServer: WMS: Resource consumption limits

The resources that a request uses can be limited in the WMS settings, here the default settings were used

and can be seen in the screenshot above.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 27

SLD style

To style the layer, GeoServer has an inbuild style editor, using the Styled Layer Descriptor (SLD) language,

which can be seen in figure 9.

Figure 9 GeoServer: Style Editor

With the “Publishing” panel different layers from other workspaces can be associated with this style too.

With the top label “Layer Preview” the style can be edited and the change can be seen immediately on the

layer. The last panel “Layer Attributes” shows special attributes for the selected layer, e.g. the band and

null values of the raster. Under the first, “Data” panel, default styles can be chosen in the Style content, to

make sure the SLD file has the right settings. The screenshot below (figure 19) shows the Style Editor with

the raster style. It can be seen, that there is a validate function at the bottom to see if there are errors in

the document, that would hinder the style from working.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 28

Figure 10 GeoServer: Style Editor validation

The SLD document must always start with the lines 1-7 as shown in the screenshot above. It consists of a

declaration of the XML and SLD version. The entire SLD document can be found in the appendix and parts

of it are described below. After the first crucial declarations, the style is defined with a <NamedLayer>

beginning with line 9, where rules are defined for one single layer. This also includes a title (line 13) and a

little description of the raster (line 14, 15).

8
9
10
11
12
13
14
15

<!-- a Named Layer is the basic building block of an SLD document -->
 <NamedLayer>
 <Name>default_raster</Name>
 <UserStyle>
 <!-- Styles can have names, titles and abstracts -->
 <Title>Default Raster</Title>
 <Abstract>A sample style that draws a raster, good for displaying

imagery</Abstract>

Code 4 GeoServer: SLD style NamedLayer

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 29

After that, the <FeatureTypeStyle> starts (line 18), where the rules for rendering are implemented. In

the first part the opacity is set to 1.0 (line 21-24) which means that the layer is not transparent at all.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 <!-- FeatureTypeStyles describe how to render different features -->
 <!-- A FeatureTypeStyle for rendering rasters -->
 <FeatureTypeStyle>
 <Rule>
 <Name>rule1</Name>
 <Title>Opaque Raster</Title>
 <Abstract>A raster with 100% opacity</Abstract>
 <RasterSymbolizer>
 <Opacity>1.0</Opacity>
 <ColorMap>
 <ColorMapEntry color="#000000" quantity="-500" label="nodata"

opacity="0.0" />
 <ColorMapEntry color="#ffffb2" quantity="0" label="0" />
 <ColorMapEntry color="#fed976" quantity="100" label="100"/>
 <ColorMapEntry color="#feb24c" quantity="500" label="500" />
 <ColorMapEntry color="#fd8d3c" quantity="1000" label="1000" />
 <ColorMapEntry color="#f03b20" quantity="2000" label="2000" />
 <ColorMapEntry color="#bd0026" quantity="5000" label="5000" />

 </ColorMap>
 </RasterSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Code 5 GeoServer: SLD Style: FeatureTypeStyle

From line 25 the <ColorMap> is defined, where the pixel value is set with quantity and a color is given for

every pixel that has the same or a smaller value than in the entry. The first applying rule is used, hence the

importance of the order. The labels will be shown in the legend, that can be seen in the screenshot of the

Style Editor (Figure 9). The colors that are used are hexadecimal (HEX) colors generated with the online

tool ColorBrewer (2018).

OpenLayers

To style the visualization and be more flexible in how it should be presented, the OpenLayers library was

used. To test the servers, a very simple page was created, it should have a pan and zoom function, as well

as a legend and a scale but also an overview map to have a reference when the map is zoomed in. How

this was done is explained in the following and the entire script can be found in the appendix.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 30

1
2
3
4
5

6

7

8

<!DOCTYPE html>
<html>
 <head>
 <title>Tiled WMS</title>
 <link rel="stylesheet" href="https://openlayers.org/en/v4.6.5/

css/ol.css" type="text/css">
 <!-- The line below is only needed for old environments like

Internet Explorer and Android 4.x -->

<script src="https://cdn.polyfill.io/v2/polyfill.min.js?

features=requestAnimationFrame,
Element.prototype.classList,URL"></script>

 <script src="https://openlayers.org/en/v4.6.5/build/ol.js"></script>

Code 6 GeoServer: OpenLayers library

In the beginning, the JavaScript library must be included, which is loaded directly from openlayers.org (line

5). For older browsers and other environments another script should be included (line 7). A title to the

page is given in line 4.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

<style>
 .ol-custom-overviewmap,
 .ol-custom-overviewmap.ol-uncollapsible {
 bottom: auto;
 left: auto;
 right: 0;
 top: 0;
 }

 .ol-custom-overviewmap:not(.ol-collapsed) {
 border: 1px solid black;
 }

 .ol-custom-overviewmap .ol-overviewmap-map {
 border: none;
 width: 300px;
 }

 .ol-custom-overviewmap .ol-overviewmap-box {
 border: 2px solid red;
 }

 .ol-custom-overviewmap:not(.ol-collapsed) button{
 bottom: auto;
 left: auto;
 right: 1px;
 top: 1px;
 }

</style>

Code 7 GeoServer: OpenLayers overview map style

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 31

In the style part in the header of the script, the overview map is styled. The overview map is adapted from

the OpenLayers Custom Overview Map Example (OpenLayers, 2018). Here the button is styled in all use

stages, e.g. collapsed or not collapsed. The overview is set to be in the top right corner of the page (line

12-15). In an open form it has a solid black border (line 18, 19), with a width of 300 pixel (line 24). The

extent of the actual map is shown as a red box on top of the overview map (line 27-28). And in the end the

button to collapse or open the overview is defined (line 31-35).

42
43
44

45

<div id="map" class="map"></div>
 <div id="legend">
 <img src="http://localhost:8080/geoserver/wms?

REQUEST=GetLegendGraphic&
VERSION=1.0.0&FORMAT=image/png&WIDTH=20&
HEIGHT=20&LAYER=master:Pop_correct10&
legend_options=layout:vertical">

 </div>

Code 8 GeoServer: OpenLayers map element

The map is contained in the <div> element within the <body> of the HTML document (line 42). The legend

is also within a <div> element and has the identifier “legend” (line 43). It is called through a

GetLegendGraphic request via the URL (line 44, split up for readability). The URL consist of the server

access, followed by the request type, the version 1.0.0 and the format in which the legend should be

returned, as well as the width and height. Afterwards the layer is defined for which the legend should be

created, and a direction of the display is also added.

47
48
49
50
51
52
53
54
55
56
57
58

 var overviewMapControl = new ol.control.OverviewMap({

 className: 'ol-overviewmap ol-custom-overviewmap',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 collapseLabel: '\u00BB',
 label: '\u00AB',
 collapsed: false
 });

Code 9 GeoServer: OpenLayers overview script

In code snippet 9 the overviewMapControl object is defined. With the class names that relate to the style

as explained in code snippet 7. Here a map is put into the collapsible overview, this is done by adding a

new layer (line 50, 51) and setting the source to Open Street Map, as this is where the map is coming from

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 32

(line 52). Line 55 and 56 define the sign of the collapse button, for the collapsed and opened form and it

is set to be opened when loading the page (line 57).

61
62
63
64
65
66
67
68
69
70
71
72
73

var layers = [

 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 new ol.layer.Tile({
 preload: Infinity,
 source: new ol.source.TileWMS({
 url: 'http://localhost:8080/geoserver/master/wms',
 params: {'LAYERS': 'master:Pop_correct10'},
 serverType: 'geoserver'
 })
 })
];

Code 10 GeoServer: OpenLayers - map layers

In the next part, the layers are defined. The base map is the same as in the overview map (line 62, 63).

Afterwards the new WMS layer is added as a tile layer (line 65) with a preload, so the tiles already preload

when zooming in (line 66). The source is set to ol.source.TileWMS and then clarified with the URL

pointing to the server (line 68). Afterwards the layer is defined in line 69 and the server set to ‘geoserver’

in line 70.

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

var map = new ol.Map({
 controls: ol.control.defaults().extend([
 overviewMapControl,
 new ol.control.ScaleLine({
 units: 'metric'
 })
]),
 layers: layers,
 target: 'map',
 view: new ol.View({
 center: [2269873, 5087648],
 zoom: 2

 })
 });

Code 11 GeoServer: OpenLayers map script

 After the layers are defined, the map is created in line 74. In the beginning all controls are added to the

map object (line 65-78), where the units of the sale are defined in line 78. The layers that the map is made

of are added in line 81. With the target attribute the map is attached to the <div> object with the identifier

‘map’ (line 82). Afterwards, the view of the map is set with a defined center and zoom level (line 84, 85).

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 33

4.3.2 MapServer

As explained in chapter 3.5.2 MapServer is configured through a mapfile with the extension .map. The

mapfile for the WMS is explained below and can also be found in the appendix.

Mapfile

The mapfile consist mainly of three elements, the map, the web and the layer object. The map object

defines the server and includes all other objects in it. It starts with the MAP and is closed at the end of the

mapfile with END. In the code 12 below, the beginning of the mapfile is shown with the required settings

for the MAP object.

1
2
3
4
5
6
7
8
9
10
11
12
13

MAP
 NAME "testMap"
 IMAGETYPE png8
 STATUS ON
 SIZE 4320 1740
 EXTENT -180 -90 180 90
 UNITS DD
 SHAPEPATH "../data"
 IMAGECOLOR 189 201 225
 # This is the output PROJECTION definition
 PROJECTION
 "init=epsg:4326"
 END

Code 12 MapServer: Mapfile: map object

A name is given to the mapfile (line 2) and afterwards the image type set to Portable Network Graphic

(PNG) 8, as this only supports 256 colors, hence smaller in size. With the status (line 4) the mapfile can

easily be turned on and off, this is also used for every layer (see code 14, line 39). If the status is set to

default, the layers are always sent to the client (MapServer, 2018b). The size is set to the size and the

extent to the full extent of the original GeoTIFF, in decimal degrees (DD) (line 5-7). The shape path leads

to the data folder in the root directory, where the GeoTIFF is stored. The image color in line 9 sets the

background color of the map, this comes into account, when the mapfile preview is used. The color is

defined in red, green, blue (RGB) color code and set to a light blue. The last part of the actual MAP object is

the projection, which is defined as an object and therefore also has an END (line 11-13). The projection in

the MAP object is the projection of the output, as opposed to the projection the original data has.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 34

15
16
17
18
19
20
21
22
23
24
25
26

WEB
 TEMPLATE 'test1.html'
 IMAGEPATH "/ms4w/tmp/ms_tmp/"
 IMAGEURL "/ms_tmp/"
 METADATA
 "wms_title" "WMS Demo Server for MapServer"
 "wms_onlineresource" "http://127.0.0.1/cgi-

bin/mapserv.exe?map=wms.map&"
 "wms_srs" "EPSG:4326"
 "wms_enable_request" "*"
 END
END # WEB

Code 13 MapServer: Mapfile: WEB object

To make the interactive and to configure the WMS a WEB object is needed. It is placed within the MAP object

and ends with an END statement. As explained in chapter 3.5.2 MapServer uses templating and the WEB

object links to the HTML template (line 16), which will be explained later. To store temporary files and

images a path to a writable directory and the URL that directs the browser to the path is set in line 17 and

18. For a WMS metadata is required. This includes a title and a URL which will be used to access the server

(line 20-22). Additionally, the projection is defined again (line 23), in this case it is not mandatory, as the

layer has the same projection as the top-level map projection, however it is recommended. The last part

is the enabling of requests, in this case all requests are enabled with an asterisk.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44

LAYER
 NAME "pop"
 METADATA
 "wms_title" "World population"
 "wms_srs" "EPSG:4326"
 "gml_include_items" "all"
 "gml_featureid" "ID"
 "wms_enable_request" "*"
 END # METADATA
 TEMPLATE "layertmp.html" # required for GetFeatureInfo requests
 TYPE raster
 STATUS ON
 DATA "Pop_correct10.tiff"
 # PROJECTION objects within the LAYER object define the input
 # projection--this is the native projection of your data.
 PROJECTION
 "init=epsg:4326"
 END

Code 14 MapServer: Mapfile: LAYER object

The code snippet above shows the LAYER object. It starts with an individual name (line 29), that will also

be used in a GetMap request. The metadata is similar to the metadata in the WEB object but additionally

has some features that are required for GetFeatureInfo requests (line 33, 34, 37). The layer template is

similar to a map template, which is explained further down, therefore and because it is not needed for the

purpose of this project it is not explained again but can be found in the appendix. Afterwards, the type of

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 35

the layer is set to raster (line 38) and the status turned on to be able to return it to the browser (line 39).

The data is defined in line 40 followed by the projection that the data has.

46
47
48
49
50
51
52

93

 CLASS
 NAME "0-100"
 EXPRESSION ([pixel] >= 0 and [pixel] < 100)
 STYLE
 COLOR '#ffffb2'
 END
 END

…
END # LAYER

Code 15 MapServer: Mapfile: CLASS object

The layer style is organized in CLASS objects. These classes have a name (line 47) which will be shown in a

legend. A definition of the class is given with pixel values (line 48) and followed by a style object defining

the color (line 49-51). The colors are the same as used for GeoServer and are also generated with

ColorBrewer (2018). Here the order of the classes is important, as the first matching expression will be

rendered. After all classes are described the LAYER object is closed in line 93.

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

LEGEND
 KEYSIZE 12 12
 LABEL
 TYPE BITMAP
 SIZE MEDIUM
 COLOR 0 0 89
 END
 STATUS ON
 END # legend

 SCALEBAR
 IMAGECOLOR 255 255 255
 LABEL
 COLOR 0 0 0
 SIZE TINY
 END
 STYLE 1
 SIZE 100 2
 COLOR 0 0 0
 UNITS KILOMETERS
 INTERVALS 2
 TRANSPARENT FALSE
 STATUS ON
 END # Scalebar
END # MAP

Code 16 MapServer: Mapfile: LEGEND and SCALEBAR objects

Also included in the MAP object are the LEGEND (line 95-103) and SCALEBAR (line 105-118) objects. Here the

sizes are defined in line 96 and 112. The labels are defined in their size and color and type in lines 97-101

and 107-110. To be able to access the legend and the scalebar, their status is turned on (line 102, 117).

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 36

The scalebar is also customized with units set to kilometers (line 114) with two intervals (line 115) and not

made transparent (116). Both objects are closed again in line 103 and 118. In the end the entire MAP object,

hence mapfile is also closed with the END statement (line 119).

HTML template

For generating an interactive preview, an HTML file for templating must be created. The template used for

this project was adapted from an example template from MapServer (MapServer, 2018c). It is explained

briefly in the following and can also be found in the appendix.

1

...

10
11
12
13
14
15
16
17
18
19
20
21
22

<!-- MapServer Template -->

 ...

 <!-- The central form the application is based on. -->
 <form namer="mapserv" method="GET" action="/cgi-bin/mapserv.exe">

 <!-- CGI MapServer applications are server stateless in principle,
 all information must be "stored" in the client. This includes
 some basic settings as below.
 The example is based on the pan and zoom test suite:
 http://maps.dnr.state.mn.us/mapserver_demos/tests36/ -->
 <input type="hidden" name="map" value="[map]">
 <input type="hidden" name="imgext" value="[mapext]">
 <input type="hidden" name="imgxy" value="[center]">
 <input type="hidden" name="layer" value="pop">
 <input type="hidden" name="mode" value="browse">

Code 17 MapServer: template

For the MapServer to recognize the HTML document as a template, it needs line 1 on the top of the

document. In the beginning the document defines the CGI program to the location of the mapserv.exe file,

with the name “mapserv” (line 11). The central part of templating is, that the information is stored in the

client and mapserv replaces it with information. That allows information from the user to be send to

mapserv and passed back again. In line 18 to 22 these variables are defined with a name and the value

that should be returned.

24
25
26
27
28
29
30
31
32
33
34
35

 <!-- A table for minimal page formatting. -->
 <table border=0 cellpadding=5>
 <tr>
 <!-- First column: Map and scale bar -->
 <td align=center>
 <!-- The map -->
 <input type="image" name="img" src="[img]"
 style="border:0;width:1000;height:600">

 <!-- The scale bar-->

 </td>

Code 18 MapServer: template map and scalebar

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 37

As with the templating the preview is organized, the templating part is followed by some styling of the

preview. It creates a table (line 25) with the map and the scale bar in the first column (line 28-35).

37
38
39
40
41
42
42
43
44
45
46

 <!-- Second column: Zoom direction, Legend and Reference -->
 <td valign=top>
 <!-- Zoom direction -->
 Map Controls

 Set your zoom option:

 <select name="zoom" size="1">
 <option value="2" [zoom_2_select]> Zoom in 2 times
 <option value="1" [zoom_1_select]> Recenter Map
 <option value="-2" [zoom_-2_select]> Zoom out 2 times
 </select>

Code 19 MapServer: template zoom

The second column of the table consists of zoom functions shown above (code 19) and the legend, shown

below (code 20). Here a drop-down menu is created for the map controls and value given to the

operations. In this case there are two zoom options, one to zoom in two levels (line 42), and another one

to zoom out two levels (line 44). Additionally, a re-center function is given in line 43.

48
49
50

<!-- Legend -->
 Legend

Code 20 MapServer: template legend

OpenLayers

To have the same interactive map as with GeoServer, OpenLayers was used to visualize the map via a web

map server. As GeoServer and MapServer will be compared, the layouts of the pages are the same.

Therefore, only the parts where the script differs, is explained below. The entire HTML document can be

found in the appendix.

44
45

46

<div id="legend">
 <img src="http://127.0.0.1/cgi-bin/mapserv.exe?map=/ms4w/apps/pop/htdocs/

interact.map&SERVICE=WMS&VERSION=1.1.1&layer=pop&
REQUEST=getlegendgraphic&FORMAT=image/png">

</div>

Code 21 MapServer: OpenLayers legend element

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 38

The Legend is included as an image called with a GetLegendGraphic request via an URL (line 45, split up

for readability). Here the URL directs the request to the CGI folder of the MapServer program and the

mapfile. Then the service is set to WMS, the version to 1.1.1 and the correct layer for which the legend

should be made stated. The request is described and the format in which the legend should be returned

written in the end.

64
65
66
67

68
69
70
71

new ol.layer.Tile({
 preload: Infinity,
 source: new ol.source.TileWMS({
 url: 'http://127.0.0.1/cgi-bin/mapserv.exe?

map=/ms4w/apps/pop/htdocs/interact.map',
 serverType: 'mapserver',
 params: {'LAYERS': 'pop'}
 })

 })
];

Code 22 MapServer: OpenLayers map opject

Here the layer is also added as a tile layer with the ol.layer.Tile command (line 64) and the preload of

the tiles is also set like it was done in GeoServer (line 65). The source also starts in the same way, with

ol.source.TileWMS (line 66). The URL is then set to the URL pointing to the mapfile (line 67, split up for

readability). This is followed by the server type in line 68 and the definition of the layer, which in this case

is ‘pop’ (line 69).

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 39

5 Comparison and Results

5.1 Visualization with Python

The initial idea of the project was to create an interactive visualization tool using the Python language, as

this would fit with the simulation process. Therefore, different libraries were tested for their efficiency.

Both libraries, Bokeh and Folium, had problems with the file size of the raster. While Folium could only

handle very small rasters, Bokeh was a bit more powerful but also took a very long time to process the

raster. For smaller files these two libraries would be good solutions due to their straight forward use and

a good documentation. They are also not predominantly made for raster visualization but more for

processing data and creating rasters out of it. Therefore, they are not suitable for the purpose of this

project.

5.2 Map layout

After the first idea of visualizing the raster with a Python library did not work, two server solutions were

implemented. The servers that were used are GeoServer and MapServer and they will be described and

compared in the next stage. However, the map layout that was used and implemented using the

OpenLayers library is the same for both. The data comes in the World Geodetic System (WGS 84)

projection and is displayed as such.

The scale that is used is a standard graphic scale from OpenLayers and placed at the bottom left corner.

Additionally, there is a legend showing the used color scheme with the population numbers. As this is the

only variable that is displayed on the map there are no other map symbols.

The data of the simulations is quantitative data, the with population numbers for each cell, therefore a

color scheme fitting quantitative data was used. As there is no emphasis in the mid-range or the critical

values at the end of the range, hence making it suitable for a diverging scheme, a sequential color scheme

was used. With the conventional use of light colors for low values and dark colors for higher values the

importance of urban areas is enhanced. They are shown in a dark red. The color codes were created with

ColorBrewer (2018), where a sequential color scheme with six classes was selected with a multi-hue. This

means that not only the lightness of one color is changed but also the hue. Low values were represented

in a bright yellow and high values in a dark red.

To meet the challenge of representing the entire world, a zoom function was implemented. This makes it

possible to zoom into places of interest, e.g. to identify the urban extents of specific cities. The

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 40

accompanied loss of information, such as an overall location, is addressed with an overview map, which

shows the extend of the current view on a world map.

5.3 Comparison of GeoServer with MapServer

The second attempt to interactively visualize the raster was through a map server. The two servers

GeoServer and MapServer were tested against each other. In the following similarities and differences are

drawn. The comparison happens on two levels. One on a soft and more subjective level where the ease of

use is compared. Here, especially the set-up of the server and a first preview will be compared. On a more

objective level, the performances are compared. This is done by using the Google Chrome Developer Tools

(DevTools).

There are no hard facts that would exclude one of the servers from the beginning. They both implement

most used open web services following the OGC standards. In this project, only the WMS was used, and

this is supported by both servers. Both are also very well documented and examples and tutorials can be

found for the two (GeoServer, 2018b; MapServer, Nacionales, & McKenna, 2017). As GeoServer is

supported, and MapServer even part of OSGeo, they can be seen as steady services, as they are officially

supported. This is good for a sustainable solution, that will also be supported in the future.

General differences can be seen in the following table (3) and are explained below.

Table 3 Comparison of GeoServer and MapServer

 GeoServer MapServer

Administration Web interface Mapfile

Services One OWS for all users One mapfile for one server

Styling Separate, predefined SLD file Happens in the mapfile

Loading of raster In web administration tool as layer Define as layer in mapfile

Preview - Simple OpenLayers

preview in web

administration

- little customizable options

- already included zoom

- mapfile alone only static

preview without zoom

- interaction through html

template file

- with html file customizable

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 41

GeoServer has a web interface administration, where the setup of the Open Web Server (OWS) is

organized for all users and workspaces. However, differences can be made when global settings are

disabled. These settings define how the OWS work, if the global settings are disabled only a number of

selected layers are visible to the client. This can be important when having multiple layers for different use

cases and users.

MapServer on the other hand handles the administration via a mapfile, where one mapfile defines one

server. There is no web administration that has every setting listed and the user chooses between the

differences via a drop-down list or ticking boxes as it is the case with GeoServer. This makes the start to

use MapServer more complicated compared to GeoServer. The mapfile must be set up in a specific way,

which can be copied to some extent from tutorials MapServer supplies. But it has a steeper learning curve

to begin with.

When it comes to the styling of layers, the two servers are also different. GeoServer uses a style-editor

embedded in the web administration page. With this editor, the appearance of the geospatial data can be

changed using different formats. However, the default without using extensions is the Styled Layer

Descriptor (SLD). These styles are saved and can be applied to the layers. MapServer uses different classes

within the layer object of the mapfile for styling. When several layers should have the same style, it is more

convenient to achieve in GeoServer, as the predefined style can simply be selected from a drop-down

menu. In MapServer the classes and style objects can be copied and pasted under the new layer object.

This is also easy, but can lead to errors, as copy mistakes can happen.

The process of adding data to the server is also contrasting. In GeoServer, this is again achieved through

the web administration page and in MapServer through the mapfile. In both servers, the data has to be

added into the root data directory of the server. In GeoServer that is the geoserver/data_dir/data folder

as this is the root GeoServer data directory, which can be accessed through the web administration page.

In MapServer it is located in the ms4w/apps folder. If added to the directory of GeoServer, it must be set

up in the web administration page. A new folder can be added as a workspace and data is published as

layers in a new data store. In MapServer on the other hand, it only has to be added to the data folder in

the root directory and then added as a new layer object in the mapfile. Once the concept of a mapfile is

understood, this is a faster way to publish a static map.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 42

However, the next step is to preview the layer, this is easy in GeoServer in the Layer Preview, where the

layer can be viewed with an OpenLayers format by simply clicking on the layer as shown in the figure (11)

below.

Figure 11 GeoServer web administration: Layer Preview

Figure 12 shows a screenshot of such a preview, zoomed into Cairo. It can be seen, that there is a zoom

function using buttons, but also zooming with a mouse scroll is possible. Additionally, a scale is provided

in the bottom left corner and the coordinates of the mouse hover in the bottom right corner. When a pixel

is clicked, the value of it is shown below the preview. This is all automatically provided by GeoServer using

OpenLayers.

Figure 12 GeoServer Preview

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 43

MapServer also uses OpenLayers as a preview. However, this is more difficult when an interactive preview

is wanted. The static map can be shown in a browser using the URL to the mapfile and setting the mode

to map:

http://localhost/cgi-bin/mapserv.exe?map=/ms4w/apps/pop/htdocs/
interact.map&layer=states&mode=map

To make it more interactive, the mode must be set to browse and a html file must be created, as explained

in chapter 4.3.2. The result can be seen in the figure (13) below.

Figure 13 MapServer Preview

The advantages of GeoServer are in the ready to use preview, that works smoothly without further

settings. However, the interactive browse mode from MapServer can be modified to fit the individual

needs of the viewer. Once the html file is set up and the concept is understood, it can be customized to

some degree. Nevertheless, there are some disadvantages with the interactivity from MapServer. The pan

and zoom function, that work intuitively in GeoServer preview, can here only be controlled with a drop-

down menu and clicking on the map, as shown in figure 13 above. This is to some extend inconvenient, as

the zoom level must be chosen and if the user wants to pan, the recenter function must be chosen before

clicking on the map again, but objectively the same pan and zoom results can be achieved. Once again,

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 44

MapServer has more set ups and is less intuitively to use. In the long run however, it can be more

effectively used than GeoServer when fully understood. To conclude the comparison on a user-friendly

level, GeoServer has more advantages when it comes to inexperienced users, as it is easy to use even

without previous knowledge. MapServer has a steeper learning curve and a number of concepts must be

understood before it can be used. Additionally, parameters can easily be overseen, because everything

must be set up by the user. After the first obstacles, MapServer can be more customizable in the preview

and adding of new layers is also faster than in GeoServer.

Table 4 Soft-level comparison GeoServer vs. MapServer

 GeoServer MapServer

user friendly + easy understandable

 web administration

+ good for beginners

- more complicated mapfile

- steep learning curve for beginners

Styling + easy applicable for new layers,

 but extra SLD

+ directly in mapfile

Loading of raster - set up in stores and layers + simple, in mapfile

Preview + ready to use

+ working zoom

- not customizable

- extra templating needed

- zoom not intuitively

+ little customizable

The table above summarizes the pros and cons of both servers. It can be seen, that in most cases GeoServer

is easier to use and faster to understand. However, MapServer has some advantages in controlling the

server within the mapfile, rather than multiple windows and check boxes that need to be checked in

GeoServer. Concluding, GeoServer is the better choice for beginners and users, that prefer administrative

web interfaces over written code files.

Besides these soft levels of individual use and preferences, performance differences must be compared

too. The DevTools outcome was evaluated following the guidance and documentation from (Basques &

Chrome DevTools, 2018a, 2018b).

To prevent Google Chrome extensions to add noise and distractions to the result, both servers were tested

in the incognito mode. To have a clear image of a first-time user, the cache is disabled, as shown in the

screenshot below, which shows the network performance from GeoServer.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 45

Figure 14 GeoServer Network Performance

The screenshot shows the time it takes to request and then respond from the server, for each item of the

page. The waterfall diagram on the right shows the loading times split up into the subtasks. It can be seen,

that the tiles from GeoServer have a longer waiting time to first byte (TTFB) shown in green and a much

shorter time for downloading the content, shown in blue. Especially, when compared to the tiles requested

from OpenStreetMap (OSM), for the base map, where it is the other way around. This means that the

request spends a longer time waiting for GeoServer to receive the first byte than for OSM. The blue bar

indicates a longer time for the request for OSM than GeoServer to be downloaded.

A similar but less extreme event happens with MapServer, this is shown on the screenshot below.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 46

Figure 15 MapServer Network Performance

At the bottom of the screen the finishing time can be seen. In this case it took 2.49 seconds for the

MapServer page to be fully loaded. It also shows that there are 31 requests, with one tile being one

request, with a total size of 266 KB transferred. The DOMContentLoaded time states the time it takes for

the initial HTML document to completely load, without any images. The load time is the time that it takes

to load the full page in terms of the HTML document and images but not the WMS requested tiles. Besides

being stated at the bottom of the screen, the DOMContentLoaded (blue) and load (red) event are shown

with lines in the overview at the top. Especially in the screenshot from GeoServer, they are separated from

each other, as the events happen with a little time difference. As these measurements vary every time the

page is reloaded, they were written down and an average taken for both GeoServer and MapServer. The

results can be seen in Table (5) below.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 47

Table 5 Loading times GeoServer vs. MapServer

GeoServer MapServer
Finish
(in s)

DOMContentLoaded
(in ms)

Load
(in ms)

Finish
(in s)

DOMContentLoaded
(in ms)

Load
(in ms)

 4,98 432 434 2,45 651 652
 5,20 669 718 2,19 362 366
 5,08 374 378 2,37 742 743
 5,42 361 363 2,52 754 755
 4,76 384 389 2,37 608 610
 5,26 733 736 2,22 421 422
 4,82 342 343 2,27 437 442
 5,05 346 347 2,22 455 456
 4,94 611 615 2,21 394 396
 5,31 621 623 2,14 477 478

Average:

 5,08 487,30 494,60 2,30 530,10 532,00

Already after ten trials, it is noticeable that the time for the Document Object Model (DOM) plus the

images to load take longer with MapServer. The whole page with all tiles loaded on the other hand takes

twice as long with GeoServer than with MapServer. But this is what the user will notice. The page is already

loaded and can be used, but the whole picture is not there yet, which can appear as not finished for the

user. Even though it takes longer for Mapfile to load the initial parts, it appears faster to the user and is

therefore considered the better choice, when it comes to network performances.

Another important part is the performance during the use. This is determined by the speed of loading tiles

when zooming in and out, as well as panning. To be able to compare those, the Chrome DevTools were

used again. This time the performance as opposed to the network was analyzed.

To be able to compare these soft use values, a standard procedure was implemented, and the results

compared. The page was fully loaded before the recording of the performance with DevTools was started.

Then, it was zoomed into Cairo, as it can easily be seen without zoom. The mouse will stay on the same

spot and then zooming in, using the mouse scroll, until a 50-kilometer scale is reached. In the performance

window of DevTools screenshots were captured to be able to tell when the desired zoom level was reached

and when the pixels where fully loaded.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 48

Figure 16 Zoom to Cairo and Faiyum Oasis

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 49

As the center of the map loads faster than the outsides, the south of Cairo, where the Faiyum Oasis

alongside the Nile is, was the breakpoint. The time was measured until the oasis was fully loaded.

The loading time of the base map was ignored in this case as the focus is on the raster itself. However, it

can be seen in the screenshots above, that the base map from OSM did not load in the time the raster

loaded.

Table 6 Time after zoom comparison

MapServer GeoServer

5.85 s 14.12 s

1.06 s 15.92 s

1.36 s 28.24 s

6.02 s 20,92 s

11.68 s 50.97 s

Average:

5,19 s 26,03 s

It can be seen that the loading times after zooming vary. Nevertheless, is it clear that there is a difference

between the two servers. While the average time after the zoom using MapServer is approximately five

seconds, GeoServer has an average of 26 seconds. Which leads to better performance for MapServer, in

both loading the page from the start as well as in using it.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 50

6 Conclusion

In this chapter conclusions are drawn, based on the research questions in chapter 1.2:

How can an interactive tool improve the visualization of population simulations and what standards need

to be met?

1. What are the visualization conventions that population simulations should follow?

2. Which tools already exist and what can they do?

3. How do these tools compare?

4. Can these tools be adapted for further development?

The improvements of an extra visualization tool over a standard GIS software are clearly in the

presentation and publishing functions that come with a sperate tool. Even though the styling and

interaction in QGIS are fast and easy to handle, they are not suitable for properly presenting the results. A

solution that has a publishing service and can be embedded within a web page, makes the user and viewer

of the raster independent from possible installations of programs.

Visualization conventions are not only an important part of a map making process but are also relevant in

understanding maps. Conventions can help users to understand a map and then interpret the displayed

information faster. This applies to population simulations in the same way, as the numbers are

represented on a map. Conventional practices concerning color were implemented in the visualization

process. However, a more profound examination and analyzation of the data could improve the outcome.

An exploration of urbanization and population density in urban areas could lead to a more precise

classification. So far, only the type of data and a fitting color scheme was considered. The break points in

the color scheme were chosen based on previous visualizations of the same data (Keßler & Marcotullio,

2017). Here, further study could highly improve the usability of the visualizations for population

simulations.

The focus of this project was not only on visualizing population numbers but also on showing large datasets

with an interaction. This can also be adapted for other large datasets. Some Python libraries exist, that can

visualize very those, however the focus on these libraries is the rasterization itself, i.e. turning large

datasets into rasters. A customizable visualization tool to only visualize rasters and to be able to style them

is harder to find, but the libraries that were found could be adapted to do so, which was done in chapter

4.1. But thereupon the raster size exceeded their capabilities, hence making them unsuitable.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 51

Compared to a Python library, where adjustments would be made within the Python code, a server

solution has more configurations. The first composition of a server is more time consuming and requires

more settings. However, the solution of a web server has some advantages. Especially when considering

a bigger project behind the simulations with possible publishing aims. Servers make it easy to publish the

data and also make it available over web pages. With the implementation of an OpenLayers map, the basis

was already made.

The disadvantages of a web server were weighed against the advantages, and the possibilities for further

development were favored. So that the two servers GeoServer and MapServeer were tested. Both servers

were not as fast, as the view in QGIS but considering the benefits of a server, this was accepted.

Performance wise, MapServer was found to be the faster solution in loading the raster as well as in

interaction with it. GeoServer however is a good choice for beginners, as the setup in the web

administration interface is easy to understand. However, when other datasets are used the result could

be different. A common issue with spatial data are reprojections, which were not tested with the servers

and could affect the performance.

Further development can be done in many ways, as the outcome of this thesis is far from being a fully

deployed tool. The selection of colors and especially the breakpoints, needs further research. Additionally,

the web page can be optimized in various forms. This could include multiple layers to be able to show

simulations for future years and a function to click on the map and receive information about the exact

population number in that cell would be advantages. Besides these layout changes, the servers are not yet

online accessible, which should be changed in the future. This is accompanied by security issues, that need

to be addressed in the server configurations as well.

Finally, a solution was found that is capable of the raster sizes and lets the user interact with the output

and styles are easily applicable. Nonetheless, further research must be done in various directions to be

able to use it for presentation and publishing purposes.

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 52

7 Bibliography

Anaconda. (2018). Home - Anaconda. Retrieved June 1, 2018, from https://www.anaconda.com/

Basques, K., & Chrome DevTools. (2018a). Get Started with Analyzing Network Performance in Chrome
DevTools | Tools for Web Developers | Google Developers. Retrieved May 23, 2018, from
https://developers.google.com/web/tools/chrome-devtools/network-performance/

Basques, K., & Chrome DevTools. (2018b). Get Started With Analyzing Runtime Performance | Tools for
Web Developers | Google Developers. Retrieved May 23, 2018, from
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/

Bertin, J. (1974). Graphische Semiologie. Diagramme, Netze, Karten. (G. Jensch, D. Schade, & 2010,
Trans.) (2nd french). Berlin, Boston: De Gruyter.

Bertin, J. (1981). Graphics and Graphic Information Processing. (W. J. Berg & P. Scott, Trans.). Berlin, New
York: De Gruyter. https://doi.org/10.1515/9783110854688

Bokeh. (2018a). Defining Key Concepts — Bokeh 0.12.16 documentation. Retrieved May 31, 2018, from
http://bokeh.pydata.org/en/0.12.16/docs/user_guide/concepts.html

Bokeh. (2018b). Welcome to Bokeh — Bokeh 0.12.13 documentation. Retrieved January 29, 2018, from
https://bokeh.pydata.org/en/latest/

Boundless. (2018). Boundless : Introduction to GeoServer : 3. Overview. Retrieved May 25, 2018, from
http://workshops.boundlessgeo.com/geoserver-intro/overview/index.html

Brewer, C. A. (1994). Color Use Guidelines for Mapping and Visualization. Modern Cartography Series,
2(C), 123–147. https://doi.org/10.1016/B978-0-08-042415-6.50014-4

CIESIN - Center for International Earth Science Information Network, Columbia University, &
International Food Policy Research Institute. (2011). Global Rural-Urban Mapping Project, Version 1
(GRUMPv1): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications
Center (SEDAC). Retrieved from http://dx.doi.org/10.7927/H4VT1Q1H

ColorBrewer. (2018). ColorBrewer 2.0: Color Advice for Maps. Retrieved June 3, 2018, from
http://colorbrewer2.org/#type=sequential&scheme=YlOrRd&n=5

data.europa.eu. (2018). Data | European Union Open Data Portal. Retrieved May 29, 2018, from
http://data.europa.eu/euodp/en/data/

data.gov. (2018). Datasets - Data.gov. Retrieved May 29, 2018, from https://catalog.data.gov/dataset

Deoliveria, J. (2018). GeoServer: A Geospatial Server for Everyone - Geospatial World. Retrieved May 25,
2018, from https://www.geospatialworld.net/article/geoserver-a-geospatial-server-for-everyone/

FLOW. (2018). Retrieved April 30, 2018, from
http://www.strategi.aau.dk/Forskning/Tværvidenskabelige+forskningsprojekter/FLOW/

Folium. (2018). Folium. Python Data. Leaflet.js Maps. Retrieved March 9, 2018, from
https://folium.readthedocs.io/en/latest/

Friendly, M. (2008). A Brief History of Data Visualization. In C. Chen, W. Härdle, & A. Unwin (Eds.),
Handbook of Data Visualization (pp. 15–56). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-33037-0

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 53

Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the Effetiveness and Efficiency of Visual Variables for

Geographic Information Visualization. In Spatial Information Theory (pp. 195–211). Berlin,
Heidelberg: Springer. Retrieved from https://link-springer-
com.zorac.aub.aau.dk/content/pdf/10.1007%2F978-3-642-03832-7.pdf

GDAL. (2018). GDAL: GDAL - Geospatial Data Abstraction Library. Retrieved April 6, 2018, from
http://www.gdal.org/

GeoServer. (2018a). GeoServer. Retrieved May 5, 2018, from http://geoserver.org/about/

GeoServer. (2018b). Introduction to SLD — GeoServer 2.14.x User Manual. Retrieved May 5, 2018, from
http://docs.geoserver.org/latest/en/user/styling/sld/introduction.html

GeoServer. (2018c). Virtual Services — GeoServer 2.14.x User Manual. Retrieved May 5, 2018, from
http://docs.geoserver.org/latest/en/user/configuration/virtual-services.html#virtual-services

GeoServer. (2018d). WCS settings — GeoServer 2.14.x User Manual. Retrieved June 3, 2018, from
http://docs.geoserver.org/latest/en/user/services/wcs/webadmin.html#service-metadata

GeoServer. (2018e). WMS settings — GeoServer 2.14.x User Manual. Retrieved June 3, 2018, from
http://docs.geoserver.org/latest/en/user/services/wms/webadmin.html

Harrower, M., & Brewer, C. A. (2003). ColorBrewer.org: An Online Tool for Selecting Colour Schemes for
Maps. The Cartographic Journal, 40(1), 27–37. https://doi.org/10.1179/000870403235002042

Iacovella, S., & Youngblood, B. (2013). GeoServer Beginner’s Guide. Birmingham: Packt Pub. Retrieved
from https://ebookcentral.proquest.com/lib/aalborguniv-
ebooks/reader.action?docID=1108358&ppg=1

JetBrains. (2018). PyCharm: Python IDE for Professional Developers by JetBrains. Retrieved April 6, 2018,
from https://www.jetbrains.com/pycharm/

Kennedy, H., Hill, R. L., Aiello, G., & Allen, W. (2016). The work that visualisation conventions do.
Information, Communication and Society, 19(6), 715–735.
https://doi.org/10.1080/1369118X.2016.1153126

Keßler, C., & Marcotullio, P. J. (2017). A Geosimulation for the Future Spatial Distribution of the Global
Population. In AGILE 2017. Wageningen, Neatherlands.

Kraak, M.-J., & Ormeling, F. (2010). Cartography: Visualization of Spatial Data. Pearson Education (3rd
ed.). London, New York: Routledge. https://doi.org/10.1111/cag.12149

Kropla, B. (2005). Beginning MapServer. Open Source GIS Development. New York: Springer. Retrieved
from http://www.springeronline.com.

Langtangen, H. P. (2009). Python Scripting for Computational Science (3rd ed.). Berlin, Heidelberg:
Springer. https://doi.org/10.1007/978-3-662-05450-5

Leaflet. (2018). Leaflet - a JavaScript library for interactive maps. Retrieved March 9, 2018, from
http://leafletjs.com/

MacEachren, A. M., & Kraak, M.-J. (2001). Research Challenges in Geovisualization. Cartography and
Geographic Information Science, 28(1), 3–12.
https://doi.org/10.1559/152304001782173970doi.org/10.1559/152304001782173970

MapServer. (2018a). About — MapServer 7.0.7 documentation. Retrieved May 5, 2018, from

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 54

http://mapserver.org/about.html

MapServer. (2018b). LAYER — MapServer 7.0.7 documentation. Retrieved June 2, 2018, from
http://mapserver.org/mapfile/layer.html

MapServer. (2018c). Templating — MapServer 7.0.7 documentation. Retrieved June 2, 2018, from
http://mapserver.org/mapfile/template.html

MapServer, Nacionales, P. S., & McKenna, J. (2017). MapServer Tutorial — MapServer 7.0.7
documentation. Retrieved May 17, 2018, from http://www.mapserver.org/tutorial/

McKenna, J., & Gateway Geomatics. (2018). MapServer for Windows (MS4W) README — MS4W 3.2.7
documentation. Retrieved May 13, 2018, from
https://ms4w.com/README_INSTALL.html#introduction

Monmonier, M. (1996). How to Lie with Maps (2nd ed.). Chicago: University of Chicago Press.
https://doi.org/10.2307/2685420

Monmonier, M. (2005). Lying with Maps. Statistical Science, 20(3), 215–222.
https://doi.org/10.1214/088342305000000241

Moreland, K. (2009). Diverging Color Maps for Scientific Visualization. In G. Bebis & et al. (Eds.), Advances
in Visual Computing. ISVC 2009, Part II (pp. 92–103). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-29066-4{_}11

Mose, J., & Strüver, A. (2009). Diskursivität von Karten. In Handbuch Diskurs und Raum. Theorien und
Methoden für die Humangeographie sowie die sozial- und kulturwissenschaftliche Raumforschung
(pp. 315–325). Bielefeld: transcript.

Nowell, L. T. (1997). Graphical Encoding for Information Visualization: Using Icon Color, Shape, and Size
To Convey Nominal and Quantitative Data. Blacksburg, Virginia: Virginia Tech. Retrieved from
https://vtechworks.lib.vt.edu/bitstream/handle/10919/29663/ETD.PDF?sequence=1&isAllowed=y

NumPy. (2018). NumPy. Retrieved April 6, 2018, from http://www.numpy.org/

OGC - Open Geospatial Consortium Inc. (2007). Styled Layer Descriptor profile of the Web Map Service.
(M. Lupp, Ed.), OGC Implementation Specification (V 1.1.0, Vol. 0). Retrieved from
http://www.opengeospatial.org/standards/sld

OGC - Open Geospatial Consortium Inc. (2006). OpenGIS Web Map Server Implementation Specification.
(J. de la Beaujardiere, Ed.), OpenGIS Implementation Specification (V 1.3.0).
https://doi.org/http://www.opengeospatial.org/standards/wms

OGC - Open Geospatial Consortium Inc. (2010a). OpenGIS Web Feature Service 2.0 Interface Standard. (P.
A. Vretanos, Ed.), OpenGIS Implementation Standard (V 2.0.0).

OGC - Open Geospatial Consortium Inc. (2010b). OpenGIS Web Map Tile Service Implementation
Standard. (J. Maso, K. Pomakis, & N. Julia, Eds.), OpenGIS Implementation Standard (V 1.0.0).
Retrieved from http://www.opengeospatial.org/standards/wmts

OGC - Open Geospatial Consortium Inc. (2012). OGC WCS 2.0 Interface Standard- Core: Corrigendum. (P.
Baumann, Ed.), OGC Interface Standard (V 2.0.1). Retrieved from
http://www.opengeospatial.org/standards/wcs%5Cnpapers2://publication/uuid/D303A640-AF41-
432D-B72C-593E1BDCFF47

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 55

OGC - Open Geospatial Consortium Inc. (2016). DGIWG – Web Feature Service 2.0 Profile Copyright. (S.

Strobel, D. Sarafinof, D. Wesloh, & P. Lacey, Eds.), OGC Best Practice (V 2.0). Retrieved from
http://www.opengeospatial.org/standards/wfs

OpenGeospatial. (2018). Welcome to the OGC | OGC. Retrieved May 4, 2018, from
http://www.opengeospatial.org/

OpenLayers.org. (2018). OpenLayers - Welcome. Retrieved June 1, 2018, from http://openlayers.org/

OpenLayers. (2018). Custom Overview Map. Retrieved June 2, 2018, from
https://openlayers.org/en/latest/examples/overviewmap-custom.html

OSGeo. (2018a). About OSGeo - OSGeo. Retrieved April 6, 2018, from https://www.osgeo.org/about/

OSGeo. (2018b). FAQGeneral – GDAL. What does OGR stand for? Retrieved May 21, 2018, from
https://trac.osgeo.org/gdal/wiki/FAQGeneral#WhatdoesOGRstandfor

OSGeo. (2018c). FAQGeneral – GDAL. Retrieved April 6, 2018, from
https://trac.osgeo.org/gdal/wiki/FAQGeneral#FAQ-General

Periscopic. (2018). Periscopic: Do good with data. Retrieved April 11, 2018, from
http://www.periscopic.com/

Python Software Foundation. (2018a). 26.6. timeit — Measure execution time of small code snippets —
Python 2.7.15 documentation. Retrieved May 21, 2018, from
https://docs.python.org/2/library/timeit.html

Python Software Foundation. (2018b). General Python FAQ. Retrieved April 6, 2018, from
https://docs.python.org/3/faq/general.html#what-is-python

Python Software Foundation. (2018c). Python Software Foundation. Retrieved April 6, 2018, from
https://www.python.org/psf/

QGIS. (2018a). Discover QGIS. Retrieved April 17, 2018, from https://qgis.org/en/site/about/index.html

QGIS. (2018b). PYQGIS Cookbook (QGIS 2.18) - Python Applications. Retrieved April 18, 2018, from
https://docs.qgis.org/2.18/en/docs/pyqgis_developer_cookbook/intro.html#running-custom-
applications

Snow, J. (1855). On the Mode of Communication of Cholera (2nd ed.). London: J. Churchill. Retrieved
from http://gallica.bnf.fr/ark:/12148/bpt6k856189z/f5.item

Spence, R. (2014). Information Visualization (3rd ed.). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-07341-5

Tufte, E. R. (2015). The Visual Display of Quantitative Information (2nd ed.). Cheshire, Connecticut:
Graphics Press. Retrieved from
https://www.colorado.edu/geography/foote/maps/assign/reading/TufteCoversheet.pdf

United Nations, Department of Economic and Social Affairs, P. D. (2014). World Urbanization Prospects:
The 2014 Revision. Retrieved April 9, 2018, from https://esa.un.org/unpd/wup/

United Nations, Department of Economic and Social Affairs, P. D. (2015). World Population Prospects,
the 2015 Revision. Retrieved May 5, 2018, from https://esa.un.org/unpd/wpp/

United Nations, Department of Economic and Social Affairs, P. D. (2017). World Population Prospects:

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 56

The 2017 Revision. Retrieved April 10, 2018, from https://esa.un.org/unpd/wpp/

Van Der Walt, S., Colbert, C. S., & Varoquaux, G. (2011). The NumPy array: a structure for efficient
numerical computation. Computing in Science and Engineering, 13(2), 22–30.
https://doi.org/10.1109/MCSE.2011.37

worldometers.info. (2018). World Population Clock: 7.6 Billion People (2018) - Worldometers. Retrieved
May 27, 2018, from http://www.worldometers.info/world-population/

worldpopulationhistory.org. (2018). World Population | An Interactive Experience - World Population.
Retrieved May 27, 2018, from http://worldpopulationhistory.org/map/2050/mercator/1/0/25/

worldpopulationreview.com. (2018). 2018 World Population by Country. Retrieved May 27, 2018, from
http://worldpopulationreview.com/

M a s t e r T h e s i s – S a r a h S . L a f a i r e P a g e | 57

Appendix

1. Folium

2. Bokeh with timeit

3. GeoServer

3.1. Raster Style – SLD

3.2. GeoServer – OpenLayers

4. MapServer

4.1. Mapfile interact.map

4.2. Mapfile template test1.html

4.3. Layer template layertmp.html

4.4. MapServer – OpenLayers

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 1

1. Folium

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

import gdal
import numpy as np
import folium
from folium.plugins import ImageOverlay

print(folium.__version__)

src = gdal.Open('PopDK.tif', gdal.GA_Update)
band = src.GetRasterBand(1)
imarray = np.array(band.ReadAsArray())

map= folium.Map(zoom_start=3)

folium.plugins.ImageOverlay(
 image=imarray,
 bounds=[[-180, -60], [180, 85]],
 colormap=lambda x: (1, 0, 0, x),
 origin='lower',
).add_to(map)

#Save html
map.save('folium_test.html')

2. Bokeh with timeit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

from bokeh.plotting import figure, save, output_file
import gdal
import numpy as np
import timeit

def popDK():
 src = gdal.Open('PopDK.tif', gdal.GA_Update)
 band = src.GetRasterBand(1)
 imarray = np.array(band.ReadAsArray())

 output_file(r"C:/master/imageDK.html")

 imarray = imarray[::-1]
 p = figure(x_range=(-180,180), y_range=(-60,85))
 p.image_rgba(image=[imarray], x=[-180], y=[-60], dw=[360], dh=[145],
dilate=False)
 save(p)

ta = timeit.Timer(popDK).timeit(number=5)
print 'PopDK took ', ta, ' seconds'

def popEU():
 src = gdal.Open('PopEU.tif', gdal.GA_Update)
 band = src.GetRasterBand(1)
 imarray = np.array(band.ReadAsArray())

 output_file(r"C:/master/imageEU.html")

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 2

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 imarray = imarray[::-1]
 p = figure(x_range=(-180,180), y_range=(-60,85))
 p.image_rgba(image=[imarray], x=[-180], y=[-60], dw=[360], dh=[145],
dilate=False)
 save(p)

tb = timeit.Timer(popEU).timeit(number=5)
print 'PopEU took ', tb, ' seconds'

def popAus2():
 src = gdal.Open('PopAus2.tif', gdal.GA_Update)
 band = src.GetRasterBand(1)
 imarray = np.array(band.ReadAsArray())

 output_file(r"C:/master/imageAus2.html")

 imarray = imarray[::-1]
 p = figure(x_range=(-180,180), y_range=(-60,85))
 p.image_rgba(image=[imarray], x=[-180], y=[-60], dw=[360], dh=[145],
dilate=False)
 save(p)

tc = timeit.Timer(popAus2).timeit(number=5)
print 'PopAus2 took ', tc, ' seconds'

def popAus():
 src = gdal.Open('PopAus.tif', gdal.GA_Update)
 band = src.GetRasterBand(1)
 imarray = np.array(band.ReadAsArray())

 output_file(r"C:/master/imageAus.html")

 imarray = imarray[::-1]
 p = figure(x_range=(-180,180), y_range=(-60,85))
 p.image_rgba(image=[imarray], x=[-180], y=[-60], dw=[360], dh=[145],
dilate=False)
 save(p)

td = timeit.Timer(popAus).timeit(number=5)
print 'PopAus took ', td, ' seconds'

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 3

3. GeoServer
3.1 Raster Style - SLD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- a Named Layer is the basic building block of an SLD document -->
 <NamedLayer>
 <Name>default_raster</Name>
 <UserStyle>
 <!-- Styles can have names, titles and abstracts -->
 <Title>Default Raster</Title>
 <Abstract>A sample style that draws a raster, good for displaying

imagery</Abstract>
 <!-- FeatureTypeStyles describe how to render different features -->
 <!-- A FeatureTypeStyle for rendering rasters -->
 <FeatureTypeStyle>
 <Rule>
 <Name>rule1</Name>
 <Title>Opaque Raster</Title>
 <Abstract>A raster with 100% opacity</Abstract>
 <RasterSymbolizer>
 <Opacity>1.0</Opacity>
 <ColorMap>
 <ColorMapEntry color="#000000" quantity="-500" label="nodata"

opacity="0.0" />
 <ColorMapEntry color="#ffffb2" quantity="0" label="0" />
 <ColorMapEntry color="#fed976" quantity="100" label="100"/>
 <ColorMapEntry color="#feb24c" quantity="500" label="500" />
 <ColorMapEntry color="#fd8d3c" quantity="1000" label="1000" />
 <ColorMapEntry color="#f03b20" quantity="2000" label="2000" />
 <ColorMapEntry color="#bd0026" quantity="5000" label="5000" />

 </ColorMap>
 </RasterSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 4

3.2 GeoServer – OpenLayers

1
2
3
4
5

6

7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44

45
46
47
48
49
50

<!DOCTYPE html>
<html>
 <head>
 <title>Tiled WMS</title>
 <link rel="stylesheet" href="https://openlayers.org/en/v4.6.5/

css/ol.css" type="text/css">
 <!-- The line below is only needed for old environments like

Internet Explorer and Android 4.x -->

<script src="https://cdn.polyfill.io/v2/polyfill.min.js?

features=requestAnimationFrame,
Element.prototype.classList,URL"></script>

 <script src="https://openlayers.org/en/v4.6.5/build/ol.js"></script>
 <style>
 .ol-custom-overviewmap,
 .ol-custom-overviewmap.ol-uncollapsible {
 bottom: auto;
 left: auto;
 right: 0;
 top: 0;
 }

 .ol-custom-overviewmap:not(.ol-collapsed) {
 border: 1px solid black;
 }

 .ol-custom-overviewmap .ol-overviewmap-map {
 border: none;
 width: 300px;
 }

 .ol-custom-overviewmap .ol-overviewmap-box {
 border: 2px solid red;
 }

 .ol-custom-overviewmap:not(.ol-collapsed) button{
 bottom: auto;
 left: auto;
 right: 1px;
 top: 1px;
 }

</style>
 </head>
 <body>

 <div id="map" class="map"></div>
 <div id="legend">
 <img src="http://localhost:8080/geoserver/wms?

REQUEST=GetLegendGraphic&
VERSION=1.0.0&FORMAT=image/png&WIDTH=20&
HEIGHT=20&LAYER=master:Pop_correct10&
legend_options=layout:vertical">

 </div>
 <script>
 var overviewMapControl = new ol.control.OverviewMap({

 className: 'ol-overviewmap ol-custom-overviewmap',
 layers: [

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 5

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 collapseLabel: '\u00BB',
 label: '\u00AB',
 collapsed: false
 });

var layers = [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 new ol.layer.Tile({
 preload: Infinity,
 source: new ol.source.TileWMS({
 url: 'http://localhost:8080/geoserver/master/wms',
 params: {'LAYERS': 'master:Pop_correct10'},
 serverType: 'geoserver'
 })
 })
];
 var map = new ol.Map({
 controls: ol.control.defaults().extend([
 overviewMapControl,
 new ol.control.ScaleLine({
 units: 'metric'
 })
]),
 layers: layers,
 target: 'map',
 view: new ol.View({
 center: [2269873, 5087648],
 zoom: 2

 })
 });
 </script>
 </body>
</html>

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 6

4. MapServer
4.1 Mapfile interact.map

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

MAP
 NAME "testMap"
 IMAGETYPE png8
 STATUS ON
 SIZE 4320 1740
 EXTENT -180 -90 180 90
 UNITS DD
 SHAPEPATH "../data"
 IMAGECOLOR 189 201 225
 # This is the output PROJECTION definition
 PROJECTION
 "init=epsg:4326"
 END

 WEB
 TEMPLATE 'test1.html'
 IMAGEPATH "/ms4w/tmp/ms_tmp/"
 IMAGEURL "/ms_tmp/"
 METADATA
 "wms_title" "WMS Demo Server for MapServer"
 "wms_onlineresource" "http://127.0.0.1/cgi-

bin/mapserv.exe?map=wms.map&"
 "wms_srs" "EPSG:4326"
 "wms_enable_request" "*"
 END
 END # WEB

 LAYER
 NAME "pop"
 METADATA
 "wms_title" "World population"
 "wms_srs" "EPSG:4326"
 "gml_include_items" "all"
 "gml_featureid" "ID"
 "wms_enable_request" "*"
 END # METADATA
 TEMPLATE "layertmp.html" # required for GetFeatureInfo requests
 TYPE raster
 STATUS ON
 DATA "Pop_correct10.tiff"
 # PROJECTION objects within the LAYER object define the input
 # projection--this is the native projection of your data.
 PROJECTION
 "init=epsg:4326"
 END

 CLASS
 NAME "0-100"
 EXPRESSION ([pixel] >= 0 and [pixel] < 100)
 STYLE
 COLOR '#ffffb2'
 END
 END

 CLASS
 NAME "100-500"
 EXPRESSION ([pixel] >= 100 and [pixel] <500)
 STYLE

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 7

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

 COLOR '#fed976'
 END
 END

 CLASS
 NAME "100-500"
 EXPRESSION ([pixel] >= 500 and [pixel] < 1000)
 STYLE
 COLOR '#feb24c'
 END
 END

 CLASS
 NAME "500-1000"
 EXPRESSION ([pixel] >= 1000 and [pixel] < 2000)
 STYLE
 COLOR '#fd8d3c'
 END
 END

 CLASS
 NAME "1000-2000"
 EXPRESSION ([pixel] >= 2000 and [pixel] < 5000)
 STYLE
 COLOR '#f03b20'
 END
 END

 CLASS
 NAME ">= 5000"
 EXPRESSION ([pixel] >= 5000)
 STYLE
 COLOR '#bd0026'
 END
 END
 END # LAYER

 LEGEND
 KEYSIZE 12 12
 LABEL
 TYPE BITMAP
 SIZE MEDIUM
 COLOR 0 0 89
 END
 STATUS ON
 END # legend

 SCALEBAR
 IMAGECOLOR 255 255 255
 LABEL
 COLOR 0 0 0
 SIZE TINY
 END
 STYLE 1
 SIZE 100 2
 COLOR 0 0 0
 UNITS KILOMETERS
 INTERVALS 2
 TRANSPARENT FALSE
 STATUS ON
 END # Scalebar
END # MAP

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 8

4.2 Mapfile template test1.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

<!-- MapServer Template -->
<html>
 <head>
 <title>Interactive Map</title>
 </head>

 <body>
 MapServer first version of an interactive map

 <!-- The central form the application is based on. -->
 <form namer="mapserv" method="GET" action="/cgi-bin/mapserv.exe">

 <!-- CGI MapServer applications are server stateless in principle,
 all information must be "stored" in the client. This includes
 some basic settings as below.
 The example is based on the pan and zoom test suite:
 http://maps.dnr.state.mn.us/mapserver_demos/tests36/ -->
 <input type="hidden" name="map" value="[map]">
 <input type="hidden" name="imgext" value="[mapext]">
 <input type="hidden" name="imgxy" value="[center]">
 <input type="hidden" name="layer" value="pop">
 <input type="hidden" name="mode" value="browse">

 <!-- A table for minimal page formatting. -->
 <table border=0 cellpadding=5>
 <tr>
 <!-- First column: Map and scale bar -->
 <td align=center>
 <!-- The map -->
 <input type="image" name="img" src="[img]"
 style="border:0;width:1000;height:600">

 <!-- The scale bar-->

 </td>

 <!-- Second column: Zoom direction, Legend and Reference -->
 <td valign=top>
 <!-- Zoom direction -->
 Map Controls

 Set your zoom option:

 <select name="zoom" size="1">
 <option value="2" [zoom_2_select]> Zoom in 2 times
 <option value="1" [zoom_1_select]> Recenter Map
 <option value="-2" [zoom_-2_select]> Zoom out 2 times
 </select>

 <!-- Legend -->
 Legend

 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 9

4.3 Layer template layertmp.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

<!-- MapServer Template -->
<html>
 <head>
 <title>Population layer</title>
 </head>

 <body>
 MapServer first version of an interactive map

 <!-- The central form the application is based on. -->
 <form namer="mapserv" method="GET" action="/cgi-bin/mapserv.exe">

 <!-- CGI MapServer applications are server stateless in principle,
 all information must be "stored" in the client. This includes
 some basic settings as below.
 The example is based on the pan and zoom test suite:
 http://maps.dnr.state.mn.us/mapserver_demos/tests36/ -->
 <input type="hidden" name="map" value="[map]">
 <input type="hidden" name="imgext" value="[mapext]">
 <input type="hidden" name="imgxy" value="[center]">
 <input type="hidden" name="layer" value="pop">
 <input type="hidden" name="mode" value="browse">

 <!-- A table for minimal page formatting. -->
 <table border=0 cellpadding=5>
 <tr>
 <!-- First column: Map and scale bar -->
 <td align=center>
 <!-- The map -->
 <input type="image" name="img" src="[img]"
 style="border:0;width:1000;height:600">

 <!-- The scale bar-->

 </td>

 <!-- Second column: Zoom direction, Legend and Reference -->
 <td valign=top>
 <!-- Zoom direction -->
 Map Controls

 Set your zoom option:

 <select name="zoom" size="1">
 <option value="2" [zoom_2_select]> Zoom in 2 times
 <option value="1" [zoom_1_select]> Recenter Map
 <option value="-2" [zoom_-2_select]> Zoom out 2 times
 </select>

 <!-- Legend -->
 Legend

 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 10

4.4 MapServer – OpenLayers

1
2
3
4
5

6

7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44
45

46
47
48
49
50
51
52

<!DOCTYPE html>
<html>
 <head>
 <title>Single Image WMS</title>
 <link rel="stylesheet" href="https://openlayers.org/en/v4.6.5/

css/ol.css" type="text/css">
 <!-- The line below is only needed for old environments like

Internet Explorer and Android 4.x -->
 <script src="https://cdn.polyfill.io/v2/polyfill.min.js?

features=requestAnimationFrame,
Element.prototype.classList,URL"></script>

 <script src="https://openlayers.org/en/v4.6.5/build/ol.js"></script>
 <style>
 .ol-custom-overviewmap,
 .ol-custom-overviewmap.ol-uncollapsible {
 bottom: auto;
 left: auto;
 right: 0;
 top: 0;
 }

 .ol-custom-overviewmap:not(.ol-collapsed) {
 border: 1px solid black;
 }

 .ol-custom-overviewmap .ol-overviewmap-map {
 border: none;
 width: 300px;
 }

 .ol-custom-overviewmap .ol-overviewmap-box {
 border: 2px solid red;
 }

 .ol-custom-overviewmap:not(.ol-collapsed) button{
 bottom: auto;
 left: auto;
 right: 1px;
 top: 1px;
 }

</style>
 </head>
 <body>

 <div id="map" class="map"></div>
 <div id="legend">

<img src="http://127.0.0.1/cgi-
bin/mapserv.exe?map=/ms4w/apps/pop/htdocs/interact.map&
SERVICE=WMS&VERSION=1.1.1&layer=pop&
REQUEST=getlegendgraphic&FORMAT=image/png">

 </div>
 <script>
 var overviewMapControl = new ol.control.OverviewMap({

 className: 'ol-overviewmap ol-custom-overviewmap',
 layers: [
 new ol.layer.Tile({

M a s t e r T h e s i s – S a r a h S . L a f a i r e A p p e n d i x - P a g e | 11

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

 source: new ol.source.OSM()
 })
],
 collapseLabel: '\u00BB',
 label: '\u00AB',
 collapsed: false
 });
 var layers = [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 new ol.layer.Tile({

 preload: Infinity,
 source: new ol.source.TileWMS({
 url: 'http://127.0.0.1/cgi-bin/mapserv.exe?

map=/ms4w/apps/pop/htdocs/interact.map',
 serverType: 'mapserver',
 params: {'LAYERS': 'pop'},
 })
 })
];
 var map = new ol.Map({
 controls: ol.control.defaults().extend([
 overviewMapControl,
 new ol.control.ScaleLine({
 units: 'metric'
 })
]),
 layers: layers,
 target: 'map',
 view: new ol.View({
 center: [2269873, 5087648],
 zoom: 2

 })
 });
 </script>
 </body>
</html>

