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Abstract:

A two phase water hammer has been

simulated with Method of Characteris-

tics (MOC) and Computational Fluid Dy-

namics (CFD). MOC is performed in 1D

with the Discrete Vapour Cavity Model

(DVCM) and the Discrete Gas Cavity

Model (DGCM). The CFD model is per-

formed in 2D with an axisymmetric pipe.

MOC and CFD are compared with 4 dif-

ferent experiments found from literature,

which covers a range of different dimen-

sions and flow conditions. The Rayleigh-

Plesset equation was investigated with the

purpose of implementation in MOC, but

because of time step size complications

and time limitations, this did not succeed.

DGCM was found as the overall best two

phase water hammer model, as it gave an

accurate estimation of the pressure, ro-

bustness with large void fractions, and an

accurate estimation of the timing of the os-

cillation.
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Nomenclature

Symbol Definition Unit

A Cross sectional area m2

a Single phase wave speed m/s

a′ Two phase wave speed m/s

B Pipe constant s/m2

c1 Poisson’s ratio dependent constant −
D Inner pipe diameter m

E Young’s modulus Pa

e Thickness of the pipe wall m

f Darcy’s friction factor −
g Gravitational acceleration m/s2

H Piezometric head m

Hr Piezometric head at the reservoir m

i & j Index notation −
J Friction term m/s2

K Bulk modulus Pa

k Brunone’s friction coefficient or turbulent kinetic energy − or m2/s2

L Length of the pipe m

M Mass transfer rate through the surface kg/m3s

m Mass or closure coefficient kg or −
N Bubble number density 1/m3

n Number of reaches (divisions of the pipes) −
P Pressure Pa

Q Volumetric flow rate m3/s

R & r Radius m

Re Reynolds number −
S Surface tension N/m

T Temperature K

t Time s

u Velocity m/s

V Volume m3

W Weighting function −
x Spatial coordinate m

z Elevation of the pipe from datum m
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Greek symbols

Symbol Definition Unit

α Void fraction −
∆ Difference −
ε Rate of dissipation of turbulent kinetic energy m2/s3

θ Inclination of the pipe deg

µ Dynamic viscosity kg/m · s
ν Kinematic viscosity m2/s

νp Poisson’s ratio −
ρ Density kg/m3

τ Dimensionless time −
τv Dimensionless closure time −
ψ Weighting factor −
ω Specific rate of dissipation of turbulent kinetic energy 1/s

∗ Convolution operator −

Subscipts

Symbol Definition

A Node to the left of node P at t = t−∆t

B Node to the right of node P at t = t−∆t

b Bubble

cav Vapour cavity

g Gas

i Index notation

j Index notation

l Liquid

m Mixture

P Node of interest

P0 Node P at t = t− 2∆t

qs Quasi-steady friction term

us Unsteady friction term

v Vapour

∞ Reference or far away (ambient)

0 Initial or steady state

v





1. Previous and Continued Work

On the 9th semester the group did a project in cooperation with Rambøll to write a
program to simulate a one dimensional and single phase water hammer. The water
hammer was simulated with the Method of Characteristics (MOC) with steady, quasi
steady, convolution based and instantaneous acceleration based friction models. The
different friction models were compared with three experiments found from literature.
The experiments were chosen so that the friction models could be tested under different
flow conditions and pipe materials to investigate if one was more reliable than the others
and if some performed better under certain conditions. The Vardy & Brown convolu-
tion based friction model was found as the overall most accurate when describing the
dampening of the pressure and the behaviour of the pressure wave.
An article was written for the internal CES conference at Aalborg University. For the
master’s thesis project, it was decided with Rambøll to investigate the modelling of wa-
ter hammer with two phase flow, as it is believed by the authors that cavitation can
increase the pressure during a water hammer event, compared to a single phase water
hammer. Therefore it is crucial to investigate whether this is the case especially when
dimensioning pipe systems.
For the master’s thesis project, the MOC program will be extended by analysing the
two phase water hammer with two different models: The Discrete Vapour Cavity Model
(DVCM) and the Discrete Gas Cavity Model (DGCM). As the DVCM and DGCM mod-
els do not use bubble dynamics for calculating the vapour fraction, the Rayleigh-Plesset
equation (bubble equation) will be analysed for the possibility of implementation in the
MOC program. Also, a two dimensional axisymmetric Computational Fluid Dynamics
(CFD) simulation is constructed to simulate a two phase water hammer. The results ob-
tained from the DVCM, DGCM, Rayleigh-Plesset equation, and CFD will be compared
with experiments found from literature to analyse which model is most accurate for an
estimation of a two phase water hammer.

1.1. Report reading

The report has been divided into sections to give an overview of the different simulation
methods and experiments. First an introduction of a single phase water hammer followed
by an introduction into the basics of cavitation and its mechanisms during a water
hammer event are presented. Then the experiments, that the models will be compared
to, and the results from these are presented. Then the report is effectively split up
into two parts. First by modelling a single phase water hammer using MOC and CFD.
Followed by the modelling of a two phase water hammer using MOC, Rayleigh-Plesset
equation, and CFD.
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2. Water Hammer Phenomenon

The water hammer phenomenon is generated by a sudden change in flow caused by e.g.
a valve closure or a pump failure. This cutoff in flow will cause a sudden change in
the momentum of the fluid, causing a pressure wave to travel through the system. This
pressure wave can lead to pipe ruptures and/or damages to equipment if comprehensive
security measures are not applied.

Figure 2.1: Water hammer illustration with instantaneous valve closure. [1]
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A pressure wave generated by an instantaneous valve closure, in a horizontal pipe, is
illustrated in Fig. 2.1. The setup has a reservoir at the upstream end and a valve at the
downstream end.
A) A steady flow through the pipe with the valve open. B) The valve is closed instan-
taneously generating an increase in pressure. C) The pressure wave moves towards the
lower pressure at the reservoir and leaves the water in standstill. D) As there is no
momentum to convert into pressure in the reservoir, the pressure wave is reflected back
towards the valve. E) The pressure is converted into velocity as the pressure wave is
moving towards the valve. The water velocity is negative as the pressure is lower at the
reservoir. F) The pressure wave is reflected as it reaches the valve. G) As the pressure
wave moves towards the reservoir, the pressure is lowered as the velocity is negative.
H) The pressure is reflected at the reservoir again and moves towards the valve. I) The
pressure is converted into velocity and as the pressure at the reservoir is higher than the
pressure wave, the velocity is positive. J) When the pressure wave has reached the valve
again, the pattern restarts from B) and continues until the energy has been dissipated
through friction, or the valve is reopened. [2]
The pressure wave is moving with the speed of sound, which is constant during a single
phase water hammer. The wave speed, a, can be calculated by Eq. (2.1). [3]

a =

√
K/ρ

1 + DK
eE c1

(2.1)

Where ρ is the density of the fluid, e is the thickness of the pipe wall, E is the Young’s
modulus which relates the stress and strain in the pipe, c1 is a constant that depends
on the anchorage of the pipe, and K is the bulk modulus of the fluid which is a measure
of the elasticity of the fluid.
For an anchored pipe that resists longitudinal movement c1 is calculated with Eq. (2.2)
if the ratio D/e < 25 and for a pipe where D/e > 25 it is calculated with Eq. (2.3). [3]

c1 =
2e

D
(1 + ν) +

D(1− ν2)

D + e
(2.2)

c1 = 1− ν2 (2.3)

Where ν is Poisson’s ratio.
A simple way to approximate the pressure increase is to use the Joukowsky equation,
seen in Eq. (2.4) [2].

∆H =
a∆u

g
(2.4)

Where H is the piezometric head, ∆u is the change in velocity from steady state, and
g is the gravitational acceleration. The Joukowsky equation assumes that the change
in velocity happens instantaneously, which should give the highest possible pressure
increase, without taking into account cavitation.
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3. Cavitation

If the pressure during the water hammer event reaches or falls below the vapour pressure,
vapour bubbles will start to form. This process is known as cavitation. The process of
cavitation is characterized by the rupturing of a liquid by decreasing the pressure to
the saturated vapour pressure while roughly keeping the temperature constant. For the
saturated liquid to become saturated vapour a sufficient amount of nucleation sites with
a significant size has to be present.
In practical engineering processes, the rupture of the liquid into vapour often occur
at the boundary between the liquid and the solid wall or between the liquid and tiny
contaminants in the liquid. This rupture process is called heterogeneous nucleation.
The nucleation sites are the optimum place for growth and appearance of macroscopic
bubbles on a solid surface. It is at these sites, when the pressure is lowered, that the
bubbles are generated and released to the liquid.
The bubble size can maximum increase in the order of a 100 for a typical cavitating flow
[4].
When the bubble collapses, a reentrant jet (microjet) is developed. Where a part of the
bubble surface will accelerate inward with a high speed, as seen in Fig. 3.1.

Figure 3.1: Reentrant jet at bubble collapse. [5]

As the bubble collapses, a cloud of smaller bubbles is generated, as seen in picture 11 -
18 in Fig. 3.1. When the bubble collapses it can cause material damages and loud noises
caused by high pressure. If the change in pressure is e.g. 0.1bar the maximum pressure
of the bubble collapse is about 1010bar (assuming a spherical bubble) [4].
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As the microjet collapse occur very localized on the surface, the surface experience very
high and transient stresses which could, if repeated, lead to damages to the material. [4]
For the water hammer pressure wave with cavitating flow, the high pressure generated
by the bubble collapse could lead to an even higher pressure than seen from a single
phase water hammer.
Another effect of the formation of vapour cavities, is that the wave speed is decreased
and is no longer constant. In Fig. 3.2 the wave speed’s dependency on the void fraction
of gas is illustrated. It is clear that with increasing gas void fraction there will be a
reduction in the wave speed. The reason for this is that the cavities effectively function
as springs separating water molecules. This is contrary to water hammer events without
cavities where the water molecules would interact directly upon each other causing a
greater wave speed.[3]

Figure 3.2: Effect of the void fraction of gas on the wavespeed. [3]

It is seen that a water hammer with cavitating flow can cause extreme damages to pipes,
joints and foundations. In 1950 at the Oigawa Hydropower Station, Japan, an accident
resulted in 3 deaths. During a maintenance of the oil control system a fast closure of a
valve caused a high pressure wave to split the penstock. As the penstock split, water was
released generating a low pressure wave resulting in column separation (clear separation
of liquid and vapour) that made the pipe collapse due to the pressure difference between
the pipe and the external atmospheric air. [6] The pipe damages can be seen in Fig. 3.3.
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Figure 3.3: Damages to the penstock at Oigawa Hydropower Station, Japan. [6]

In another case a large pipeline test rig at Deltares, the Netherlands, has an automatic
control valve at the upstream and downstream of the pipeline. Because of a power
failure both control valves closed simultaneously creating a transient event by a down-
surge at the upstream end and an upsurge at the downstream end. The closure of the
valves caused leakage at the joints and damages to the pipe support, as seen in Fig. 3.4.

Figure 3.4: Water hammer damages at Deltares, the Netherlands. [7]
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4. Experiments

Four experiments have been found with the same setup: a straight pipe with a reservoir/-
tank upstream, a fast closing valve and a reservoir/tank downstream. The experiments
have been chosen such that they have different velocities and Reynolds numbers to anal-
yse if this will affect the simulations. The experiments are performed by Soares et al.
[8] and Bergant et al. [9]. The experiments are used for comparison of the models to
evaluate which model most accurately estimate the pressure and the behaviour of the
pressure wave.

4.1. Soares et al. (Case 1 and 2)

The experiments performed by Soares et al. [8] consists of a 15.22m straight copper
pipe with a wall thickness of 1.0mm and an internal diameter of 20mm. The medium is
water at room temperature. The experimental setup, as seen in Fig. 4.1, has a hydrop-
neumatic tank at the upstream and a pneumatically actuated quarter turn ball valve at
the downstream.

Figure 4.1: Experimental setup. [8]

The closure time is not given by Soares et al. [8]. Therefore the closure time has been
determined from the experimental data, and approximated as 18ms. The Young’s mod-
ulus of the copper pipe is 120GPa. The two experiments were conducted with an initial
velocity of 0.423m/s (Case 1) and 0.497m/s (Case 2) respectively. The experiment with
the lowest velocity resulted in a single phase water hammer, while the experiment with
the highest velocity resulted in a two phase water hammer. The reservoir head of the
two experiments was 46m. The experimental parameters can be seen in Table 4.1.

Table 4.1: Experimental parameters.

Parameter Value Parameter Value

Pipe length 15.22m Case 1 velocity 0.423m/s

Wall thickness 1.0mm Case 1 Reynolds number 8428

Pipe internal diameter 20mm Case 2 velocity 0.497m/s

Valve closure time 16.5ms Case 2 Reynolds number 9894

Young’s modulus 120GPa Reservoir head 46m
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The experimental results for the single and two phase experiments at the valve is as seen
in Fig. 4.2 and 4.3. Note that the pressure is described in gauge piezometric head, i.e.
zero meters is equivalent to atmospheric conditions.
The single phase experiment, see Fig. 4.2, shows a typical water hammer event at the
valve. The pressure rises from a steady state value until it reaches a maximum pressure.
Then after a period of high pressure, a period of low pressure will follow. The pressure
will oscillate between high and low pressure with decreasing amplitude due to friction.

Figure 4.2: Single phase pressure at the valve (Case 1).

The two phase experiment, see Fig. 4.3, will initially resemble a single phase water ham-
mer, but the low pressure will reach the vapour pressure, which will cause the formation
of vapour cavities/bubbles. The second pressure peak is higher than the first pressure
peak, contrary to the single phase water hammer, because the vapour cavities collapses.
These high pressure peaks will be present as long as the low pressure reaches the vapour
pressure.
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Figure 4.3: Two phase pressure at the valve (Case 2).

4.2. Bergant et al. (Case 3 and 4)

The experiments performed by Bergant et al. [9] consists of a 37.23m straight copper
pipe with a wall thickness of 1.63mm and an internal diameter of 22.1mm. Water is the
working fluid at room temperature.

Figure 4.4: Experimental setup for the Bergant et al. experiments. [9]

9



The experimental setup, as seen in Fig. 4.4, consists of a pressurized tank at the up-
stream and downstream end of the pipe. The pressurized tanks are controlled by a
computerized pressure control system for a precise estimation of the pressure. The pipe
has a slope of 5.45% (3.12o). A fast closing ball valve is placed downstream of the pipe
for generation of the transient. Two experiments have been carried out with an initial
velocity of 0.30m/s (Case 3) and 1.40m/s (Case 4) with a head at the pressurized tank,
T2, of 22m. The fast valve closure is identical for the two experiments, 0.009s. The
material parameters used is the same as for the Soares et al. [8] experiments as they were
not given by Bergant et al. [9] and consist of the same pipe material. The experimental
parameters can be seen in Table 4.2.

Table 4.2: Experimental parameters.

Parameter Value Parameter Value

Pipe length 37.23m Case 3 velocity 0.3m/s

Wall thickness 1.63mm Case 3 Reynolds number 6605

Pipe internal diameter 22.1mm Case 4 velocity 1.40m/s

Pipe slope 3.12o Case 4 Reynolds number 30823

Valve closure time 0.009s Reservoir head 22m

The experimental results for the experiments can be seen in Fig. 4.5 and 4.6, and it can
be seen that both experiments are two phase.
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Figure 4.5: Pressure at the valve with an initial velocity of 0.30m/s (Case 3).

Figure 4.6: Pressure at the valve with an initial velocity of 1.40m/s (Case 4).
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5. 1D Modelling of Water Hammer

The water hammer phenomenon in 1D is described by the continuity and momentum
equations in Eq. (5.1) and Eq. (5.2) [3].

1

ρ

dP

dt
+ a2∂u

∂x
= 0 (5.1)

1

ρ

∂P

∂x
+ u

∂u

∂x
+
∂u

∂t
+ gsin(θ) + J = 0 (5.2)

In Eq. (5.1) ρ is the density of the fluid which is assumed to be constant, P is the
pressure, t the is time, u is the velocity, and x is the spatial coordinate along the center
of the pipe. In Eq. (5.2) g is the gravitational acceleration, θ is the inclination of the
pipe, and J is the friction term.
The pressure in piezometric head is used and it is defined as in Eq. (5.3).

P = ρg(H − z) (5.3)

Where H is the piezometric head and z is the elevation of the pipe. The total derivative
of the pressure in Eq. (5.3) can then be expressed as in Eq. (5.4).

dP

dt
= ρg

(
∂H

∂t
+ u

∂H

∂x
− ∂z

∂t
− u∂z

∂x

)
(5.4)

The two last terms in Eq. (5.4) can be replaced with ∂z
∂x = sin(θ), which is the elevation

of the pipe, and ∂z
∂t = 0, which is only relevant if the pipe moves. This, plus a conversion

of the velocity into the volumetric flow rate, Q, divided by the cross sectional area of the
pipe, A, allows Eq. (5.1) and 5.2 to be rewritten into Eq. (5.5) and (5.6) respectively.

∂H

∂t
+
Q

A

∂H

∂x
+
a2

gA

∂Q

∂x
− Q

A
sin(θ) = 0 = L2 (5.5)

∂Q

∂t
+
Q

A

∂Q

∂x
+ gA

∂H

∂x
+AJ = 0 = L1 (5.6)

5.1. Method of Characteristics

MOC is used to solve the continuity equation, Eq. (5.5), and the momentum equation,
Eq. (5.6). MOC transforms these equations, which is a set of two partial differential
equations (PDEs), into a set of four ordinary differential equations (ODEs). The first
step is to combine L1 and L2 with an unknown multiplier λ.

L = L1 + λL2 (5.7)

Inserting L1 and L2 and then rearranging gives L as in Eq. (5.8).

L =
∂Q

∂t
+

(
Q

A
+ λ

a2

gA

)
∂Q

∂x︸ ︷︷ ︸
= dQ
dt

+λ

(
∂H

∂t
+

(
Q

A
+
gA

λ

)
∂H

∂x

)
︸ ︷︷ ︸

= dH
dt

+AJ − λQ
A
sin(θ) (5.8)
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Since both Q and H is dependent on x and t, their total derivatives are as in Eq. (5.9)
and Eq. (5.10).

dQ

dt
=
∂Q

∂t
+
∂Q

∂x

dx

dt
(5.9)

dH

dt
=
∂H

∂t
+
∂H

∂x

dx

dt
(5.10)

This is substituted into Eq. (5.8), resulting in Eq. (5.11), assuming that the terms
multiplied by ∂Q/∂x and ∂H/∂t are both equal to dx/dt, as in Eq. (5.12).

dQ

dt
+ λ

dH

dt
+AJ − λQ

A
sin(θ) = 0 (5.11)

dx

dt
=
Q

A
+ λ

a2

gA
=
Q

A
+
gA

λ
(5.12)

Then Eq. (5.12) is used to solve for λ and it results in λ = ±gA
a . If the positive value

of λ is substituted into Eq. (5.11) and (5.12) they give the positive characteristics, C+

(Eq. (5.13) and (5.14)). Substituting the negative value of λ into Eq. (5.11) and (5.12)
give the negative characteristics, C− (Eq. (5.15) and (5.16)).

C+ :

{
T
T

dQ
dt + gA

a
dH
dt +AJ − gQ

a sin(θ) = 0 (5.13)
dx
dt = Q

A + a (5.14)

C− :

{
T
T

dQ
dt −

gA
a
dH
dt +AJ + gQ

a sin(θ) = 0 (5.15)
dx
dt = Q

A − a (5.16)

The positive and negative characteristics each consist of two equations. Eq. (5.13) and
(5.15) are both valid as long as their respective compatibility equation, Eq. (5.14) and
(5.16), holds true.
If a >> Q/A then Eq. (5.14) and (5.16) can be simplyfied by dropping Q/A. This
corresponds to neglecting the convective terms, i.e. Q

A
∂Q
∂x and Q

A
∂H
∂x , in Eq. (5.5) and

(5.6). This assumption causes the characteristic lines, along which Eq. (5.13) and (5.15)
are valid, to be linear with a constant slope of ±a, which is illustrated in Fig. 5.1.

dx

dt
= ±a (5.17)

To solve Eq. (5.13), (5.15), and (5.17) numerically, finite differences are used. Then Eq.
(5.17) can be expressed in finite difference form as in Eq. (5.18).

∆x = ±a∆t (5.18)

For explicit transient solvers it is necessary to have a Courant number, Co, less or equal
to one. The Courant number is defined as the computational time step divided by the
time the flow is in a cell as in Eq. (5.19). [10]

Co =
a∆t

∆x
(5.19)
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Figure 5.1: Example of characteristic lines with a constant slope in the xt plane.

In MOC the Courant number is equal to one, which can be realized from Eq. (5.18).
The desired computational time step is determined by the number of divisions of the
pipe, n, and the total travelling time of the pressure wave for the entire length of the
pipe, ttrav = L/a.

∆t =
ttrav
n

=
L

na
(5.20)

The next step is to approximate Eq. (5.13) and (5.15) with finite differences. The first
step is to multiply Eq. (5.13) with a

gAdt, as in Eq. (5.21).

a

gA
dQ+ dH +

a

g
Jdt− Q

A
sin(θ)dt = 0 (5.21)

Since the values of the variables H and Q are known at point A the unknown values at
point P can be found by integrating Eq. (5.21) along the positive characteristics line
from point A to P , as in Eq. (5.22). This integration of the positive characteristics
equation yields Eq. (5.23).∫ HP

HA

dH +B

∫ QP

QA

dQ+
a

g

∫ tP

tA

Jdt− sin(θ)

A

∫ tP

tA

Qdt = 0 (5.22)

HP −HA +B(QP −QA) +
a

g
JA∆t− sin(θ)

A
QA∆t = 0 (5.23)

Where B = a
gA . Then solving for the head at point P yields the positive characteristics

equation, Eq. (5.24).
HP = Cp −BQP (5.24)

Where

Cp = HA −BQA −
a

g
JA∆t+

sin(θ)

A
QA∆t (5.25)
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Similarly integrating from point P to B and solving for the head at point P yields the
negative characteristics equation, Eq. (5.26).

HP = Cm −BQP (5.26)

Where

Cm = HB −BQB +
a

g
JB∆t− sin(θ)

A
QB∆t (5.27)

The positive characteristics equation, Eq. (5.24), and the negative characteristics equa-
tion, Eq. (5.26), are a system of two equations with two unknowns. Inserting Eq. (5.24)
into Eq. (5.26) and solving for HP yields:

HP =
Cp + Cm

2
(5.28)

QP can then be calculated with Eq. (5.29).

QP =
HP − Cm

B
(5.29)

5.1.1. Steady State

In the previous section it is assumed that values at point A and B are known. To satisfy
this, the steady state of the system has to be determined. Assuming that the flow rate is
constant throughout the pipe in steady state and by inserting the positive ∆t, isolated
from Eq. (5.18), simplifies Eq. (5.23) to the steady state solution for pipe flow. Note
that the volumetric flow rate has been replaced by the steady state volumetric flow rate,
Q0.

HP = HA −
1

g
J∆x+

sin(θ)

aA
Q0∆x (5.30)

5.1.2. Boundary Conditions

The upstream end of the pipe is modelled as a large pressure reservoir with constant
pressure. The volumetric flow rate is determined with Eq. (5.26) setting HP = Hr.

The downstream end of the pipe is a valve. The valve closing characteristics have a
great effect on the size of the pressure peak and of the timing of the pressure peak.
When the valve characteristics is unknown it can be modelled with a dimensionless
closure time, τv, defined as in Eq. (5.31) [11].

τv = 1− t

tc

m

(5.31)

Where tc is the closure time and m is an adjustable constant that describes the type of
closure. There are four closure types depending on the value of m, and is illustrated in
Fig. (5.2).

15



m = 0 This corresponds to an instantaneous closure of the valve, which will result in the
largest pressure peak.

0 < m < 1 Choosing m in this interval will produce a concave decrease. Values of m close
to 0 will resemble the instantaneous closure and close to 1 will resemble a linear
closure.

m = 1 This corresponds to a linear closure of the valve.

1 < m <∞ Choosing m in this interval will produce a convex decrease. Again values of m
close to 1 will resemble a linear closure and large values will resemble a delayed
instantaneous closure.

Figure 5.2: Dependency of τv on m.

The volumetric flow rate is calculated with Eq. (5.32) for t < tc and when t ≤ 0 it is set
to zero.

QP = −BCv +
√

(BCv)2 + 2CvCp (5.32)

Where Cv is defined as in Eq. (5.33).

Cv =
(Q0τv)

2

2H0
(5.33)
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5.2. Grid Type

In MOC there are two different grid types, assuming constant wave speed: The rectan-
gular grid and the diamond grid. The diamond grid, see Fig. 5.3b, works by calculating
the nodes where the characteristics lines meet. This can results in problems when calcu-
lation and plotting the results, because each node is only calculated for half of the time
steps. This is normally solved via interpolation but this might result in interpolation
errors, which is not wanted. This is not a problem for the rectangular grid (see Fig.
5.3a) because it is simply two diamond grids, making it possible to calculate every time
step for the nodes. This, however, comes with its own problems, because the diamond
grids are not directly connected to each other, and can therefore cause numerical oscil-
lation with certain unsteady friction models [12]. Together with this, the rectangular
grid is also more computationally heavy, because it calculates each node for every time
step. The grid type used herein will be the rectangular grid type to avoid the need of
interpolation.

(a) Rectangular grid. (b) Diamond grid.

Figure 5.3: The rectangular and diamond grid.
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5.3. Friction models

The friction term, described by J as in Eq. (5.34), is the combination of a quasi-steady,
Jqs, and an unsteady part, Jus.[13]

J = Jqs + Jus (5.34)

Modelling only the quasi-steady friction approximates the first pressure peak well, but
underestimates the friction for the rest of the transient event [1]. Therefore, the unsteady
friction is crucial for the description of the entire transient event [14]. Duan et al. [15]
investigated the relevance of the unsteady friction with dependence on pipe length and
Reynolds number and it showed that the relevance of the unsteady friction decreased
with increasing lengths and Reynolds numbers. The reason being that the unsteady
friction phenomenon occurs where the fluid accelerates or decelerates which is close to
the pressure wave front [16, 17]. This means that for a long pipe, the unsteady friction
relevance should be less than for a short pipe, as the pressure wave front needs to
propagate longer. Therefore the pressure wave front is present at a point for only a
fraction of the time of the transient event. The unsteady friction is still important to
model, but it is good to note that for actual pipeline systems the relevance might be
smaller compared to the relatively short pipe line systems used for experiments.
The unsteady friction is primarily modelled by two different friction model types: The
Convolution Based (CB) friction model and the Instantaneous Acceleration Based (IAB)
friction model. The friction models investigated will be a CB friction model suggested
by Vardy & Brown [18] and an IAB model suggested by Brunone et. al [17].

5.3.1. Quasi-Steady Friction

The quasi-steady friction is calculated with the skin friction in Eq. (5.35).

Jqs =
fQ|Q|
2DA2

(5.35)

Where f is the friction factor. The friction factor calculation method is dependent on
the flow regime in the pipe. For laminar flow it is calculated with Eq. (5.36) and for
turbulent flow it is calculated with the Colebrook equation in Eq. (5.37)[19].

f =
64

Re
(5.36)

1√
f

= −2.0log

(
ε/D

3.7
+

2.51

Re
√
f

)
(5.37)

The quasi-steady friction is implemented such that it is updated for each time step and
position according to the local flow conditions.
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5.3.2. Vardy & Brown Friction Model

The CB friction model was first developed by Zielke [16] for laminar flow and was
extended to the turbulent flow regime for a smooth pipe by Vardy & Brown [18]. The
CB friction model is the convolution of the history of accelerations and of a weighting
function, as in Eq. (5.38).

Jus =
16µ

ρD2A

(
∂Q

∂t
∗W (τ)

)
(5.38)

Where µ and ρ is the dynamic viscosity and density of the fluid respectively, ∂Q
∂t is the

acceleration, W (τ) is the weighting function that is dependent the dimensionless time τ
defined as in Eq. (5.39).

τ =
4ρt

µD2
(5.39)

The weighting function developed by Vardy & Brown, in Eq. (5.40), is derived assum-
ing a bilinear eddy viscosity distribution and assuming frozen viscosity. The weighting
function is valid for Reynolds numbers ranging from 2000 to 108.

W (τ) =
A∗eτB

∗

√
τ

(5.40)

Where A∗ = 1
2
√
π

, B∗ = Reκ

12.86 , κ = log
(

15.29
Re0.0567

)
and it is assumed that the eddy viscosity

at the wall is equal to the laminar viscosity i.e. νw = νlam.

Figure 5.4: Illustration of the weighting function’s, derived by Vardy & Brown, depen-
dency on the Reynolds number.
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In Fig. 5.4 it is clear that with an increase in the Reynolds number the weighting
function tend to zero quicker. This results in past accelerations having a smaller effect
on the friction with increasing Reynolds numbers.
The Vardy & Brown friction model is implemented in a rectangular grid via a first order
finite difference approximation as in Eq. (5.41)[20].

Jus =
16ρ

µD2A

n−1∑
j=2

(
Q(i, n− j + 1)−Q(i, n− j) ·W

(
j∆τ − ∆τ

2

))
(5.41)

Where i is the position index, j is the time index, n ≥ 3 and is the number of time
steps from the start of the transient event and ∆τ is the dimensionless time step and is
defined as in Eq. (5.42).

∆τ =
4ρ∆t

µD2
(5.42)

Figure 5.5: Illustration of the discretisation of Eq. (5.41).

In Fig. 5.5 a graphical representation of the discretisation is present. As in the previous
chapter, the value at point P is determined by the positive and negative characteristics
equations. For the positive characteristics equation values of the acceleration history at
point A is used and for the negative characteristics equation values at point B. The thin
lines correspond to the characteristic lines of the system. To calculate the acceleration
at point A values at time j − 1 and j − 2 is used. These two values are not on the same
characteristics grid, but on two independent diamond grids which is a consequence of
the rectangular grid.

5.3.3. Brunone Friction Model

The IAB friction model suggested by Brunone et al. [17] is dependent on the local
instantaneous acceleration and the local instantaneous convective acceleration, as in Eq.
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(5.43).

Jus =
k

A

(
∂Q

∂t
− a∂Q

∂x

)
(5.43)

Where k is Brunone’s friction coefficient, ∂Q
∂t is the local acceleration, ∂Q

∂x is the local
convective acceleration. Eq. (5.43) predicts the convective acceleration correctly in the
case of a downstream valve, but Vı́tkovský showed that it failed to predict other cases
such as an upstream valve which led to the corrected version in Eq. (5.44) [21].

Jus =
k

A

(
∂Q

∂t
− a · sign(Q)

∂Q

∂x

)
(5.44)

Brunone’s friction coefficient can be determined either empirically, as suggested by
Brunone et al. [17], or by determining Vardy’s shear decay coefficient, C∗, as suggested
by Vardy & Brown [18] in Eq. (5.45).

k =

√
C∗

2
(5.45)

Vardy’s shear decay coefficient, for smooth pipes, can be calculated for laminar flow as
in Eq. (5.46) and for turbulent flow with Eq. (5.47) [21].

C∗ = 0.000476 (5.46)

C∗ =
7.41

Relog(14.3/Re0.05)
(5.47)

The Brunone friction coefficient dependency on the Reynolds number is illustrated in
Fig. 5.6.

Figure 5.6: The relationship between Brunone’s friction coefficient and the Reynolds
number.
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As with the weighting function it is clear that k decreases with an increase in Reynolds
number.
The implementation of the Brunone friction model with both explicit and implicit im-
plementation was investigated by Vı́tkovský et al. [22] and it showed that there was
no significant difference between them. Therefore the instantaneous acceleration and
instantaneous convective acceleration are implemented explicitly as in Eq. (5.48) and
Eq. (5.49) and are illustrated in Fig. 5.7.

C+ :

{
∂Q
∂t ≈

Q(i−1,j−1)−Q(i−1,j−2)
∆t

∂Q
∂x ≈

Q(i,j−1)−Q(i−1,j−1)
∆x

(5.48)

C− :

{
∂Q
∂t ≈

Q(i+1,j−1)−Q(i+1,j−2)
∆t

∂Q
∂x ≈

Q(i+1,j−1)−Q(i,j−1)
∆x

(5.49)

Figure 5.7: Illustration of the discretisation of Eq. (5.48) and (5.49).
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6. CFD Modelling of Single Phase Flow

The conservation equations: Continuity and momentum, is solved for all flows in ANSYS
Fluent.

6.1. Continuity Equation

For the conservation of mass the equation can be written as in Eq. (6.1).

∂ρ

∂t︸︷︷︸
accumulation

+
∂

∂xj
(ρuj)︸ ︷︷ ︸

convection

= 0 (6.1)

The equation is valid for both incompressible and compressible flows.

6.2. Momentum Equation

The compressible Navier-Stokes momentum equation is written as in Eq. (6.2). It is
assumed that there is no body force, gravity and slip velocity.

∂

∂t
(ρui)︸ ︷︷ ︸

accumulation

+
∂

∂xj
(ρuiuj)︸ ︷︷ ︸

convection

= − ∂P

∂xi︸︷︷︸
pressure gradient

+
∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))
︸ ︷︷ ︸

viscous stresses

(6.2)

6.3. Turbulence Models

To analyze if the choice of turbulence model has an effect on the simulation results, three
different RANS turbulence models will be tested: Realizable k− ε, Standard k−ω, and
Shear-Stress Transport (SST) k− ω model. All of the equations are written for a single
phase flow.

6.3.1. Realizable k − ε Model

The effects of convection, diffusion, production, and destruction of turbulence are de-
scribed by the Realizable k − ε model. The model consists of two partial differential
transport equations: The turbulent kinetic energy, k, and the rate of dissipation of
turbulent energy ε. The equation for the turbulent kinetic energy is seen in Eq. (6.3).

∂

∂t
(ρk)︸ ︷︷ ︸

accumulation

+
∂

∂xi
(ρkūi)︸ ︷︷ ︸

convection

=
∂

∂xj

((
µ+

µt
σk

)
∂k

∂xj

)
︸ ︷︷ ︸
viscous + turbulent diffusion

+Gk − ρε− YM︸ ︷︷ ︸
other terms

(6.3)

Where µt is the turbulent viscosity, σk is the turbulent Prandtl numbers for k, Gk is the
effect of the mean velocity gradient, and YM is the fluctuating dilatation of the overall
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dissipation rate in the compressible turbulence.
The rate of dissipation of turbulent energy are expressed as in Eq. (6.4).

∂

∂t
(ρε)︸ ︷︷ ︸

accumulation

+
∂

∂xi
(ρεūi)︸ ︷︷ ︸

convection

=
∂

∂xj

((
µ+

µt
σε

)
∂ε

∂xj

)
︸ ︷︷ ︸
viscous + turbulent diffusion

+ ρC1Sε︸ ︷︷ ︸
production of ε

− ρC2
ε2

k +
√
νε︸ ︷︷ ︸

disintegrating term

(6.4)

Where S is the modulus of the mean rate of the strain tensor, C1 and C2 are constants
and ν is the kinematic viscosity. The Realizable model deviates from the Standard k− ε
model by proposing a new production and disintegration term in the dissipation equation
as this equation is a weakness of the Standard model. The model is realizable because
the turbulent normal stresses is non-negative [23]. The Standard and RNG k− ε models
use a constant, Cµ, for the eddy viscosity where the Realizable model uses a function
describing the effect of the mean rotation on the Reynolds stresses.
For the closure of the k − ε model the eddy viscosity is calculated as in Eq. (6.5).

µt = Cµρ
k2

ε
(6.5)

The default model constants of the Realizable model from Fluent User Guide are used
[23].
Nikpour et al. [24] has analysed the Standard, Realizable and RNG k− ε model and the
Reynolds Stress Model for a water hammer simulation. It was concluded that the Real-
izable model was the best turbulence model for the case based on simulation accuracy
and computational time.

6.3.2. Standard k − ω

The Standard k−ω model has a robust and accurate formulation in the near-wall region,
but is strongly sensitive for freestream flow (outside the shear layer). As the Realizable
k − ε model, the k − ω models consist of two transport PDE’s: The turbulent kinetic
energy, k, and the specific rate of dissipation of turbulent energy, ω, which is a ratio of
ε to k. The equation for the turbulent kinetic energy is seen in Eq. (6.6).

∂

∂t
(ρk) +

∂

∂xi
(ρkūi) =

∂

∂xj

((
µ+

µt
σk

)
∂k

∂xj

)
+Gk − Yk (6.6)

Where Yk is the dissipation of k due to turbulence. The equation for the specific rate of
dissipation of turbulent energy, is as seen in Eq. (6.7).

∂

∂t
(ρω) +

∂

∂xi
(ρωūi) =

∂

∂xj

((
µ+

µt
σω

)
∂ω

∂xj

)
+Gω − Yω (6.7)

Where Gω is the production of ω.
The closure for the k − ω model, the turbulent viscosity, is calculated with Eq. (6.8).

µt =
ρk

ω
(6.8)

The default model constants of the k − ω model from Fluent User Guide are used [23].
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6.3.3. SST k − ω

Menter (1992) proposed a hybrid model combining the Standard k − ω model’s be-
haviour at the near-wall region with the Standards k− ε model’s at the free stream flow
region. The turbulent kinetic energy is calculated as in Eq. (6.6) and the specific rate
of dissipation of turbulent energy as in Eq. (6.9).

∂

∂t
(ρω) +

∂

∂xi
(ρωūi) =

∂

∂xj

((
µ+

µt
σω

)
∂ω

∂xj

)
+Gω − Yω +Dω (6.9)

Where Dω is the cross-diffusion, used to blend the Standard k − ω and Standard k − ε
model.
The turbulent viscosity has been corrected for the SST model compared to the Standard
k − ω model as it fails to properly predict the amount of flow separation from smooth
surfaces. To obtain the proper behaviour, Eq. (6.8) has been corrected with a limiter
such that the eddy viscosity will not be over-predicted.
For the SST model, the σk and σω are dependent on the blending function, F1, and the
constants σk,1, σk,2, σω,1 and σω,2.
The default constants of the SST k−ω model from the Fluent User Guide are used [23].

6.4. CFD Simulation of Single Phase Water Hammer

A 1D single phase water hammer experiment is compared with a CFD simulation to
prove that the CFD method is a reliable method for water hammer simulation and to
test different boundary conditions for later two phase simulations. A grid independency
analysis and turbulence test are not performed because it is not found essential for the
purpose of the single phase CFD simulation. The CFD simulation is performed using
ANSYS Fluent 19.0.
The single phase experiment chosen is Case 1 from Soares et al. described in Sec. 4.1.
The CFD simulation will be compared to MOC simulations using different unsteady
friction models performed on the 9th semester [1].

6.4.1. Geometry and Mesh

The geometry is constructed as 2D axisymmetric to simulate the effects in a 15.22m
straight pipe. The cell shape for the mesh is chosen as quadrilateral with 16500 cells
(15 · 1100cells) as seen on Fig. 6.1.
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Figure 6.1: Quadrilateral mesh.

An inflation is used for better refinement at the wall and thereby obtaining a lower y+
value. The y+ value is below 5, which is in the viscous sublayer. The aspect ratio has
a maximum of 99.67.

6.4.2. Setup

The coupled pressure based solver is used with the SST k-ω turbulence model. The
SST model is chosen as it combines the advantages of the k-ε and the k−ω model and
accounts for the transport of turbulent shear stress when defining the turbulent viscosity.
The time step size is chosen as 10−5 to account for the speed of sound through each cell.

6.4.3. Boundary Conditions

The boundary conditions chosen for the simulation is a ”pressure-inlet” to describe the
pressure at the upstream reservoir, which is assumed constant, and a ”mass flow-outlet”
to describe the mass flow through the pipe. For the two phase simulation the ”mass
flow-outlet” and the ”velocity-outlet” are not possible. Therefore a simulation using a
”reverse” velocity with a ”velocity-inlet” and a ”pressure-outlet” boundary condition
has also been tested. For this the inlet boundary condition is a Dirichlet (constant
velocity over the boundary) and the outlet a Neumann (pressure based). The purpose
of this simulation is to analyze if the different boundary conditions have an effect on the
pressure wave at the valve.
The velocity profile at the valve with the ”mass flow-outlet” and the negative velocity
”velocity-inlet” are illustrated in Fig. 6.2. With the ”velocity-inlet” boundary, the flow
has a fixed velocity over the entire boundary whereas the ”mass flow-outlet” velocity
profile has been developing through the pipe as seen in Fig. 6.2. The ”mass flow-outlet”
reaches a higher velocity at the pipe core as it has obtained a developed velocity profile.
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Figure 6.2: Velocity profile comparison.

Figure 6.3: Pressure wave comparison.

As the pressure is close to uniform at the boundary, the pressure is taken as an average of
the 15 nodes for the pressure wave. The pressure wave with the two boundary conditions
are compared in Fig. 6.3. It can be seen, the pressure wave is almost identical with the
two different boundary condition setups. The velocity profile did not have a significant
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effect on the pressure wave and the ”velocity-inlet” will be used for the two phase
simulations.

6.4.4. Valve Closure

As the flow behaviour through the valve is not of interest, the valve closure is described
by a user defined function (UDF) at the mass-flow outlet boundary. The UDF controls
the outlet mass flow by the closure function τv described in Eq. (5.31).

6.4.5. Bulk Modulus

The pipe walls are not modelled in the simulation as fluid structure interaction is not
used. Therefore, the bulk modulus has been modified to take into account the elasticity
effect on the fluid from the pipe. The speed of sound can be calculated with Eq. (6.10),
which assumes no effect from the pipe, and with Eq. (6.11), which accounts for the pipe.

a =

√
K

ρ
(6.10)

a =

√
K/ρ

1 + ((K/E)(D/e))c1
(6.11)

Eq. (6.10) and Eq. (6.11) is set equal to each other as it is assumed that the speed of
sound is constant. The bulk modulus, in Eq. (6.10), now noted as K ′, is then isolated
and an equation of a modified bulk modulus is obtained in Eq. (6.12).

K
′

=
K

1 + KD
eE

(6.12)

If the pipe elasticity effects is not included, the wave speed would be too high, which
would be unrealistic.
This modified bulk modulus is specified in Ansys Fluent when the density of water is
set to compressible.

6.4.6. Results

The CFD results are compared with the results obtained by MOC with the quasi-steady,
Brunone and Vardy & Brown friction models which can be seen in Fig. 6.4. It can be
seen that both unsteady friction models and the CFD model overestimate the pressure
of the first peak and that the quasi-steady friction model give the best result. On the
second peak both the CFD model and all the MOC models agree closely on the pressure.
It can also be seen that the behaviour of the CFD model and friction model suggested by
Vardy & Brown is very similar and that the quasi-steady friction model and the friction
model suggested by Brunone have similar behaviour with the Brunone friction model
giving a broader peak. From the following peaks it is clear that the Brunone gives the
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best results followed by the CFD, Vardy & Brown, and the quasi-steady friction model in
that order. From the comparison of the CFD simulation with the experimental results,
it can be concluded that CFD model is valid for water hammer modelling.

Figure 6.4: Soares single phase comparison.
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7. Modelling of a Two Phase Flow using the Method
of Characteristics

The following sections will cover the modelling of the two phase water hammer that
occurs when the pressure is decreased to the vapour pressure. In Sec. 3 the nature of
cavitation is briefly described as well as the effects these have on the water hammer
event. From this it is clear that there are primarily two things that will have to be
modelled: The formation and collapse of vapour bubbles/cavities and the effect these
have on the wave speed. For a two phase water hammer the wave speed can be calculated
by Eq. (7.1) [3].

a′ =

√√√√ Km
ρm

1 +
(
KmD
Ee

)
c1

(7.1)

Where ρm is the mixture density. The mixture density is calculated with Eq. (7.2),
where it is assumed that the void fraction, α, is low, and therefore ρm ≈ ρl.

ρm = αρg + (1− α)ρl ≈ ρl (7.2)

The bulk modulus of the mixture, Km, can be described with Eq. (7.3).

Km =
Kl

1 + α
(
Kl
Pg
− 1
) (7.3)

Where Kl is the bulk modulus of the liquid phase and Pg is the absolute partial pressure
of the gas phase, which can be described with Eq. (7.4). [3]

Pg = ρlg (H − z −Hv) (7.4)

Where Hv is the gauge saturation/vapour pressure. It is assumed that Pg is equal to
the bulk modulus of the gas phase for isothermal conditions.
Eq. (7.3) can be simplified to Eq. (7.5) by recognising that Kl/pg >> 1.

Km =
Kl

1 + αKlpg
(7.5)

Inserting Eq. (7.2) and (7.5) into Eq. (7.1), and rearranging, the expression for a′ in
Eq. (7.6) is obtained.

a′ =

√√√√√ Kl
ρl(

1 + αKlpg

)
+
(
KlD
Ee

)
c1

(7.6)

It is possible to simply Eq. (7.6) to Eq. (7.7).

a′ =
a√

1 +
α
Kl
pg

1+
(
KlD

Ee

)
c1

(7.7)
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Where a is the wave speed in a single phase system, described with Eq. (2.1).
A problem with a′ is the fact that it is pressure dependent, and therefore will change
size during the simulation. This will be a problem when setting up the one-dimensional
equations for the MOC, because the size of the reaches and of the time step will change
over time. In Fig. 7.1, an example of how the grid can change is shown, where the red
lines represent the grid with a′, while the places where the grey lines intersect represent
the grid with a.

Figure 7.1: Effect of relating the wave speed to the absolute partial pressure of the gas,
i.e. having a varying wave speed.

In extreme cases, the nodes can shift outside of the ends of the pipe, which is not phys-
ically possible, and nodes would have to be removed during the calculation. A way to
solve this problem would be to interpolate the results either at every time step or peri-
odically (e.g. at every fifth time step). This will move the nodes back to predetermined
positions and should remove the possibility of nodes moving away from the setup. How-
ever, doing this will introduce interpolation error, which is not of interest.
Another way to solve the problems with the moving grid would be to assume that the
wave speed is not affected by the amount of free gas present. It is assumed that all the
free gas, in a reach, forms a single pocket of gas at the node and therefore the wave speed
between each node is constant at the speed for a single phase system. This assumption
forms the basis for two commonly used two phase MOC methods, known as the Discrete
Vapour Cavity Model (DVCM), which will be explained in Sec. 7.1, and the Discrete
Gas Cavity Model (DGCM), which will be explained in Sec. 7.2. DVCM and DGCM
models the size of the gas pocket, Vg (Vcav for DVCM), via Eq. (7.8). [3]

dVg
dt

= Qout −Qin (7.8)
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Where Qout is the volumetric flow rate going out of the node, and Qin is the volumetric
flow rate going into the node. Integration of Eq. (7.8) from time t−2∆t to time t results
in Eq. (7.9) [3].

Vg,P = Vg,P0 + 2∆t (ψ (QP −Qu,P ) + (1− ψ) (QP0 −Qu,P0)) (7.9)

Where Vg,P is the size of the gas pocket at time t, Vg,P0 is the size of the gas pocket at
time t − 2∆t, QP is the volumetric flow rate going out of the node at time t, Qu,P is
the volumetric flow rate going into the node at time t, QP0 is the volumetric flow rate
going out of the node at time step t− 2∆t, Qu,P0 is the volumetric flow rate going into
the node at time step t− 2∆t, and ψ is a weighting factor.
The volumetric flow rates and the gas volumes are illustrated in Fig. 7.2, where it can
also be seen that there is a change for the characteristic line C−, because it goes from
Qu,B and not QB. Because of this, QB in Eq. (5.27) is replaced with Qu,B and Qu,P is
calculated with Eq. (7.10).

Qu,P =
Cp −HP

B
(7.10)

Figure 7.2: Grid for Two Phase MOC.

The weighting factor ψ is used to control the amount of numerical oscillation that might
occur in the simulation of the water hammer. The simulation is expected to produce
unstable results for 0 < ψ < 0.5, due to an over reliance on the ”old” flow rates. A value
of ψ = 0.5 is expected to produce the most accurate results, however, it is likely that
there will be numerical oscillation in the simulation. The chance of numerical oscillation
is higher during periods of small gas volumes, which is during high pressure periods.
If the value of ψ is increased towards unity, then there will be more spreading of the
rarefaction waves, which can result in more than usual attenuation. Setting ψ to unity
will remove all numerical oscillation, but it is not recommended due to the high chance
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of increased attenuation. Therefore, it is best to use a ψ with a value close to 0.5, where
the amount of numerical oscillation is minimal. [3]

7.1. Discrete Vapour Cavity Model

DVCM assumes that there is no vapour in steady state and when the pressure is above
vaporization pressure. Because of this assumption, DVCM is calculated as a single phase
system when the pressure is above vaporization, with Vcav set to zero and Qu,P = QP .
When the calculated pressure becomes lower than or equal to the vaporization pressure,
the node of interest is converted into a pressure boundary, where the pressure is set as
in Eq. (7.11). [3]

HP = zP +Hv (7.11)

When the node is treated as a pressure boundary, it is assumed that the difference
between the flow rates Qu,P and QP is turned into vapour and stored in the node. The
vapour cavity size is calculated with Eq. (7.9), where Vg,P and Vg,P0 are replaced with
Vcav,P and Vcav,P0 respectively.
A flow chart for the calculation of an interior node is shown in Fig. 7.3, where the
block with Vcav(i, j − 1) > 0 investigates whether there is a vapour cavity present in the
previous time step. If there is a vapour cavity at the previous time step, it is assumed
that the node is still a pressure boundary. After calculating HP , Qu,P , QP , and Vcav,P ,
it is checked whether the vapour cavity has condensed or if it is still there. If the
vapour cavity has condensed, the node should be calculated as a single phase node, with
Vcav = 0.
DVCM is the simplest of the two phase MOC models shown, and, as will be seen later,
it can reproduce some of the flow scenarios to a certain degree [3]. However, it will also
be seen that DVCM have its limitations for large flow rates, where it is not possible
to simulate flow scenarios due to relatively large vapour cavities being created. It is
recommended to keep the void fraction in every reach below 10% [25].

7.1.1. DVCM Steady State

DVCM uses the same method for calculating the steady state conditions as the single
phase method, shown in Sec. 5.1.1. It is assumed that the steady state conditions do
not allow the formation of vapour cavities, and therefore Vcav is set to zero.

7.1.2. DVCM Boundaries

For the upstream boundary, DVCM uses the same description for the reservoir as in
the single phase method, shown in Sec. 5.1.2. It is assumed that the pressure at the
reservoir is always above the vaporization pressure, and therefore no vapour cavities can
be created, Vcav = 0.

For the downstream boundary, the same method for the valve closure is used to cal-
culate the outlet flow rate, QP , as in Sec. 5.1.2. The head is calculated in almost the
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Import from solver

Vcav(i, j − 1) > 0 Eq. (5.28)

HP ≤ zP +Hv

Vcav,P = 0
Eq. (5.29)
Qu,P = QP

Vcav,P = 0
Eq. (5.28)
Eq. (5.29)
Qu,P = QP

Vcav,P ≤ 0

Eq. (7.11)
Eq. (7.10)
Eq. (5.29)
Eq. (7.9)

Output to solver

End

Yes
No

Yes

No

Yes

No

Figure 7.3: DVCM flow chart.

same way as in the flowchart in Fig. 7.3. Eq. (5.28) is replaced with Qu,P = QP and
Eq. (7.12), while Eq. (5.29) is replaced with Eq. (5.32).

HP = Cp −BQu,P (7.12)
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7.2. Discrete Gas Cavity Model

DGCM assumes there is always a small amount of free gas present in the system. Because
there is always a small amount of free gas present in the system, it is not possible to
do as in DVCM, where the head is calculated as single phase when HP > zP +Hv and
treated as a pressure boundary when it is not. A new expression for the head has to
be set up, which takes the effect of the gas cavity into account. This can be done with
the use of Eq. (7.9), where Qu,P is described with Eq. (7.10), and QP with Eq. (5.29).
Now, the only remaining parameter, which is not described, is Vg,P . An expression for
Vg,P can be set up with the ideal gas law and the assumption that the mass of free gas,
Mg, is constant, shown in Eq. (7.13). [3]

MgRgT = PgαV = Pg,0α0V (7.13)

Where Rg is the gas constant, T is the temperature, Pg is the absolute partial pressure
of the free gas, and Pg,0 is the absolute partial pressure for the initial void fraction α0

(i.e. at steady state). Vg,P = αV is isolated from Eq. (7.13), and the result can be seen,
in a simplified form, in Eq. (7.14), where Pg is described with Eq. (7.4). [3]

Vg,P =
C3

HP − zP −Hv
(7.14)

C3 =
Pg,0α0V

ρlg
(7.15)

Combining Eq. (7.9), (7.10), (5.29), and (7.14) gives the expression in Eq. (7.16), which
can rearranged into Eq. (7.17).

C3

HP − zP −Hv
= Vg,P0

+ 2∆t

[
ψ

(
HP − Cm

B
− Cp −HP

B

)
+ (1− ψ) (QP0 −Qu,P0)

] (7.16)

0 = (HP − zP −Hv)
2 + 2B1 (HP − zP −Hv)− C4 (7.17)

Where B2, C4, Bv, and B1 are defined as in Eq. (7.18).

B2 =
0.5

2

C4 =
B2BC3

ψ∆t

Bv =

Vg,P0

2∆t + (1− ψ) (QP0 −Qu,P0)

ψ

B1 = −B2 (Cp + Cm) +B2BBv +
zP +Hv

2

(7.18)
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Eq. (7.17) is treated, and solved, as a quadratic equation, shown in Eq. (7.19).

0 = x2 + 2B1x− C4 (7.19)

Where x = HP − zP −Hvap. The result can be seen in Eq. (7.20), where it can be seen
that there are five expressions instead of the expected two. This is because the first two
expressions can yield inaccurate results in extreme conditions of high pressure and very
low volumes of free gas, or at very low pressure and high volumes of free gas, where
|BB| = |C4/B

2
1 | << 1. A way around this is to linearise the expressions, which gives the

third and fourth expressions. The fifth expression is for when B1 = 0.

HP =



−B1

(
1 +
√

1 +BB
)

+ zP +Hv if B1 < 0 and BB > 0.001

−B1

(
1−
√

1 +BB
)

+ zP +Hv if B1 > 0 and BB > 0.001

−2B1 − C4
2B1

+ zP +Hv if B1 < 0 and BB < 0.001
C4
2B1

+ zP +Hv if B1 > 0 and BB < 0.001
√
C4 + zP +Hv otherwise

(7.20)

With the expression for the head, the flow rates, and the gas cavity size are calculated
with Eq. (7.10), (5.29), and (7.9) respectively.

7.2.1. DGCM Steady State

DGCM calculates the steady state conditions in almost the same way as in the single
phase method, shown in Sec. 5.1.1. The only difference is the addition of the calculation
for the volume of gas. This is done with Eq. (7.14), which can be simplified to Eq.
(7.21) upon insertion of C3, with Pg,0 = ρlg (HP − zP −Hv).

Vg = α0V (7.21)

7.2.2. DGCM Boundaries

For the upstream boundary, the same addition as to the steady state calculations, is
added to the single phase reservoir method, meaning the volume of gas is calculated
with Eq. (7.14), while the rest is calculated as in Sec. 5.1.2.

For the downstream boundary, the same method for the valve closure is used to cal-
culate the outlet flow rate, QP , as in Sec. 5.1.2. The head is described in a similar
fashion as is Sec. 7.2, however, now QP is known and therefore, Eq. (5.29) is not in-
serted into Eq. (7.9). This gives the expression in Eq. (7.22), which can be rearranged
into Eq. (7.23)

C3

HP − zP −Hv
= Vg,P0 + 2∆t

[
ψ

(
QP −

Cp −HP

B

)
+ (1− ψ) (QP0 −Qu,P0)

]
(7.22)

0 = (HP − zP −Hv)
2 + 2B1 (HP − zP −Hv)− C4 (7.23)
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Where B2, C4, Bv, and B1 are defined as in Eq. (7.24).

B2 =
1

2

C4 =
B2BC3

ψ∆t

Bv =

Vg,P0

2∆t + (1− ψ) (QP0 −Qu,P0)

ψ

B1 = −B2 (Cp −BQP ) +B2BBv +
zP +Hv

2

(7.24)

Since Eq. (7.23) has the same form as Eq. (7.17), the head at the valve can be described
with Eq. (7.20), remembering to use the expressions from Eq. (7.24) instead of Eq.
(7.18).
The flow rates and gas cavity size are calculated with Eq. (7.10), (5.32), and (7.9)
respectively.

37



7.3. MOC Settings - Two Phase Soares

In order to set up MOC for case 2, the valve closure coefficient, m, the weighting factor,
ψ, and the number of reaches, n, have to be chosen.
m was chosen as 5, while ψ and the number of reaches is determined via a grid inde-
pendency analysis where it was chosen to investigate grids with 6, 12, 24, 48, 96, and
192 reaches. If a full analysis where to be conducted, a total of 108 different simulations
would have to be conducted (6 different grids X 3 different friction models X 3 different
weighting factor values (0.55, 0.75 and 0.95) X 2 different two phase models). It was
chosen to reduce the number of simulations and use the following approach:

1. Find the appropriate weighting factor, ψ, for the analysis using a frequently used
grid size of 24 reaches [14, 12].

2. Conduct a grid independency analysis for each friction model for both DVCM and
DGCM with the chosen ψ.

3. Compare and choose the best friction model for DVCM and DGCM separately.

After this there will be a setup for DVCM and for DGCM, which will be compared
with the CFD simulations in Sec. 10.1. The reason for conducting a grid independency
analysis for each friction model is because it was seen that it was not the same mesh
which was ideal for all friction models.

The ψ values used for the grid independency analysis can be seen in Table 7.1, where
it can be seen that for DVCM, all the friction models use the same values. For DGCM
however, it can be seen that the quasi-steady friction model required a higher ψ value
compared to Brunone and Vardy & Brown, which is due to numerical oscillation. Fig.
7.4 show how much numerical oscillation was produced during the simulation with quasi-
steady friction, while Fig. 7.5 show how much was seen for Brunone. For quasi-steady,
it can be seen that there is still some numerical oscillation with ψ = 0.75, and notably
more than with ψ = 0.95, however, since it was recommended to choose a value close to
ψ = 0.5, it was chosen to use ψ = 0.75 because the numerical oscillation was of relatively
small magnitude.

Table 7.1: ψ chosen for the grid independency analysis.

Friction models DVCM DGCM

Quasi-steady 0.55 0.75

Brunone 0.55 0.55

Vardy & Brown 0.55 0.55
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Figure 7.4: Comparison of different ψ values for DGCM with quasi-steady friction.

Figure 7.5: Comparison of different ψ values for DGCM with Brunone unsteady friction.
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7.3.1. Grid Independency Analysis

The grid independency analysis was, as mentioned, performed on six different meshes
with 6, 12, 24, 48, 96, and 192 reaches respectively for each friction model for each
two phase method. In the comparison, the following three parameters were taken into
account: The head at the valve over time, the void fraction at the valve over time, and
the total amount of vapour/gas in the pipe over time, Vcav,total and Vg,total. The reason
for including the void fraction and the total amount of vapour/gas in the pipe is because
there can be problems with an increased amount of vapour/gas as the number of reaches
increases [25]. It is possible to see which mesh has been chosen for each friction model
and each two phase model in Table 7.2. It can be seen that the unsteady friction mod-
els agree on which mesh is sufficient for the simulations, while the quasi-steady friction
model requires a more refined mesh.

Table 7.2: Number of reaches in the appropriate mesh for each friction model.

Friction models DVCM DGCM

Quasi-steady 96 96

Brunone 48 48

Vardy & Brown 48 48

For DVCM with the quasi-steady friction model (see Fig. 7.6), the mesh with 96 reaches
were chosen because it produced the highest head at the second high pressure zone.
There were no consistency for the head when the number of reaches was increased, and
therefore the mesh with the highest head was chosen. If the mesh with the head closest
to the experimental data were to be chosen, then the mesh with 6 reaches should be
chosen. For α, it was observed that when the number of reaches increased, the void
fraction also increased, together with the amount of numerical oscillation. However, it
was not accompanied with an increase in total amount of vapour, which actually stayed
relatively constant. This could indicate that more of the total amount of vapour is
formed at the valve.
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Figure 7.6: Grid independency analysis of case 2 with DVCM using the quasi-steady
friction model.
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For DVCM with Brunone’s unsteady friction model (see Fig. 7.7), the mesh with 48
reaches was chosen because of a relatively small difference in head and total vapour vol-
ume between the mesh with 48, 96, and 192 reaches. The mesh with 24 reaches were not
chosen because it had a lower head at the second high pressure zone, compared to the
mesh with 48 reaches. When looking at α, there were no consistency for what happened
when the number of reaches were increased. An increase was seen when the number
of reaches were increased from 6 to 24, followed by a marginal decrease for 48 reaches.
α then remained relatively stable for 96 reaches before a significant decrease with 192
reaches. Despite this inconsistency in α, the total amount of vapour still remained rela-
tively constant when the amount of reaches increased.

Figure 7.7: Grid independency analysis of case 2 with DVCM using Brunone’s unsteady
friction model.

For DVCM with Vardy & Brown’s unsteady friction model (see Fig. 7.8), the mesh
with 48 reaches was chosen because of a relatively small difference in head and total
vapour volume between the mesh with 48 and 192 reaches. The mesh with 24 reaches
was not chosen because of the same reason as with DVCM using Brunone’s unsteady
friction model, lower head at the second high pressure zone. The mesh with 96 reaches
was not chosen because the head was higher at the second high pressure zone, compared
to the mesh with 48 reaches. When looking at α, it was seen that as the amount of
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reaches increased, the size of α also increased, which was also seen for DVCM using the
quasi-steady friction model. The amount of numerical oscillation for α also increased as
the amount of reaches increased. This behaviour for Vardy & Brown’s unsteady friction
model was also seen for the other unsteady friction models, which were used in the pre-
vious work (Zielke [16] and Zarzycki [26]), and it could indicate that for DVCM with
convolution based unsteady friction, the void fraction increases as the amount of reaches
increases. However, because the total amount of gas is constant for all used meshes, it
seems like the amount of gas is distributed in another way, with more gas coalescing at
the valve.

Figure 7.8: Grid independency analysis of case 2 with DVCM using Vardy & Brown’s
unsteady friction model.
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For DGCM with the quasi-steady friction model (see Fig. 7.9), the mesh with 96 reaches
was chosen because of a relatively small difference in head and total gas volume between
the mesh with 96 and 192 reaches. The mesh with 48 reaches was not chosen because
of a higher head at the first peak than on the third high pressure zone, compared to
the mesh with 96 reaches. When looking at α and Vcav,total, the same tendency as for
DVCM using quasi-steady friction was observed. However this time, there were almost
no oscillation for the mesh with 192 reaches.

Figure 7.9: Grid independency analysis of case 2 with DGCM using the quasi-steady
friction model.
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For DGCM with Brunone’s unsteady friction model (see Fig. 7.10), the mesh with 48
reaches were chosen. However, like with DVCM using quasi-steady friction, there was
no clear convergence for the second high pressure zone when the amount of reaches was
increased. There was however, a convergence on the third high pressure zone, where the
first peak became smaller and smaller as the amount of reaches increased. The mesh
with 48 reaches was therefore chosen because it shared roughly the same size of head at
the second high pressure zone, while also having a relatively small first peak on the third
high pressure zone. For α, the same tendency as for DVCM using Brunone’s unsteady
friction model was observed, i.e. no consistency in size when the number of reaches
increased. For the total amount of gas, a roughly constant amount was observed when
increasing the number of reaches, but with a decrease in numerical oscillation (except
for the mesh with 6 reaches).

Figure 7.10: Grid independency analysis of case 2 with DGCM using Brunone’s unsteady
friction model.
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For DGCM with Vardy & Brown’s unsteady friction model (see Fig. 7.11), the mesh
with 48 reaches was chosen because of relatively small difference in head, α, and total
gas volume between the mesh with 48 og 96 reaches. The mesh with 24 reaches was not
chosen because of a lower head at the second high pressure zone, compared to the mesh
with 48 reaches. For α, the same tendency as for DGCM using Brunone’s unsteady
friction model was observed. However, this time the amount of numerical oscillation was
significantly less. For the total amount of gas, a relatively constant amount of gas was
observed when increasing the amount of reaches, with the amount of numerical oscilla-
tion decreasing.
The behaviour for DGCM using Vardy & Brown’s unsteady friction model was, as with
DVCM, the same for the other convolution based friction models used in the previous
work. This could indicate that for both DVCM and DGCM, the choice of convolution
based unsteady friction model is of less importance when modelling a two phase water
hammer.

Figure 7.11: Grid independency analysis of case 2 with DGCM using Vardy & Brown’s
unsteady friction model.

46



7.3.2. Comparison of Friction Models

The highest peak on each high pressure zone is determined, via Matlab, and the time
and size of the pressure peaks are noted.
The time between each high pressure peak is compared to the experimental data, and
the results for DVCM are summarized in Table 7.3. It can be seen that the average time
period, between each high pressure peak, is similar for the experiment and all of the
friction models at approximately 0.049s. When looking at the largest and smallest time
period, it can be seen that there is some disagreement between the experimental data
and the simulations. The difference in the largest time period can be attributed to the
placement of the peak on the first high pressure zone, see Fig. 7.12 and Fig. 7.13. For
the experiment, the first high pressure zone is comprised of a quick increase in pressure,
followed by a small decrease before the pressure quickly falls down into the cavitation
zone. The simulations are comprised of a quick increase in pressure followed by a small
increase, before the pressure quickly falls down into the cavitation zone. The difference
in the smallest time period can be attributed to the difference in the fourth high pressure
zone, where the experiment has two peaks, while the simulations only have one peak.
The largest of the peaks, for the experiment, is the first one, and therefore it is used for
calculating the time period. This first peak happens earlier than in the simulations and
therefore the time period is smaller.

Table 7.3: Time of period of oscillation - DVCM

Friction models Largest Average Smallest

Experiment [s] 0.0690 0.0489 0.0290

Quasi-Steady [s] 0.0614 0.0485 0.0460

Brunone [s] 0.0604 0.0487 0.0478

Vardy & Brown [s] 0.0602 0.0484 0.0475
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Figure 7.12: The peaks used by the experiment for the comparison with MOC.

Figure 7.13: The peaks used by DVCM, using Brunone, for the comparison.
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The size of the pressure peaks are also compared to the experimental data, and the
results for DVCM are summarized in Table 7.4. The deviation from the experimental
data is illustrated in Fig. 7.14 and it can be seen that for the first peak, all of the friction
models give nearly the same results. For the second peak, it can be seen that Brunone
is slightly more accurate than Vardy & Brown, but the deviation from Vardy & Brown
is positive rather than Brunone, which has a negative deviation. For the third peak, it
can be seen that non of the friction models accurately describe the head, which is due
to the fact that the experiment has its largest peak here. This is not the case for the
simulations and therefore non of them can accurately describe this peak. It can how-
ever be seen that the quasi-steady and Vardy & Brown’s friction models have a higher
head at the second peak (+12.4% and +4.8% respectively), which is advantageous for
dimensioning purposes. For the fourth and fifth peak, all friction models give similar
results, and from the sixth peak Brunone give the most accurate results. As expected,
the quasi-steady friction model is not able to describe the dampening of the pressure
and it therefore gives the least accurate results from the sixth peak. When the flow time
was increased to 0.9s, it was seen that Brunone and Vardy & Brown each converged to
a deviation of roughly +2.5% and +11% respectively, while quasi-steady continued to
increase in deviation (+31% at peak 15).

Table 7.4: Difference in head at peaks - DVCM

Experiment Quasi-steady Brunone Vardy & Brown

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%] Head [m] Deviation [%]

1 108.00 110.44 2.26 110.46 2.27 111.17 2.93

2 143.00 162.96 13.96 136.59 -4.48 151.98 6.28

3 145.00 106.11 -26.82 100.28 -30.84 101.40 -30.07

4 112.00 101.47 -9.40 97.55 -12.90 99.48 -11.18

5 98.90 101.08 2.20 94.90 -4.05 97.65 -1.27

6 94.30 100.68 6.77 92.34 -2.08 95.90 1.69

7 90.10 100.30 11.32 90.08 -0.03 94.27 4.63

8 86.50 99.92 15.51 88.01 1.74 92.70 7.17

9 82.40 99.54 20.80 86.01 4.38 91.17 10.65

10 81.40 99.17 21.83 84.02 3.22 89.68 10.17

Based on the comparison of the time period between oscillations and the deviation in the
head, it is concluded that Vardy & Brown’s unsteady friction model is the best friction
model to use with DVCM, because it has a relatively low amount of deviation (converges
at +11%), and it is the friction model which most accurately describe the head of the
largest peak (+4.8%), even though the peak in not located in the same high pressure
zone (experiment at the third zone and Vardy & Brown at the second zone).
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Figure 7.14: Deviation of MOC, using DVCM, from the experimental data.

For DGCM, the results of the time between each high pressure peak is shown in Ta-
ble 7.5. It can be seen that the average time period, between each high pressure peak,
is similar for the experiment and all of the friction models at approximately 0.049s.
When looking at the largest and smallest time period, it can be seen that there is some
disagreement between the experimental data and the simulations. The difference in the
largest time period can be attributed to the same problem as with DVCM. For the
smallest time period, the difference can be attributed to the difference in the third high
pressure zone. The experimental data, and the simulations, all have two peaks on the
third high pressure zone, unlike DVCM, but it is only for quasi-steady that the first of
the two peaks are the highest, as was also the case for the experiment, see Fig. 7.15,
while for Brunone and Vardy & Brown, the second peak is the highest, see Fig. 7.16.
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Table 7.5: Time of period of oscillation - DGCM

Friction models Largest Average Smallest

Experiment [s] 0.0690 0.0489 0.0290

Quasi-Steady [s] 0.0617 0.0484 0.0272

Brunone [s] 0.0609 0.0487 0.0475

Vardy & Brown [s] 0.0599 0.0487 0.0465

Figure 7.15: The peaks used by DGCM, using quasi-steady friction, for the comparison.
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Figure 7.16: The peaks used by DGCM, using Vardy & Brown, for the comparison.
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The size of the pressure peaks, for DGCM, are compared to the experimental data in
Table 7.6, and the deviation from the experimental data can be seen in Fig. 7.17. It can
be seen that for the first peak, all of the friction models give nearly the same results.
For the second peak, it can be seen that Brunone is the most accurate model, with a
slight underestimation of the head, while the remaining two models overestimate the
head. For the third peak, it can be seen that non of the friction models can accurately
describe the head. This is again due to the problem with the experiment having the
highest head at the third peak, and again it can be seen that quasi-steady and Vardy
& Brown have a higher head at the second peak (+16.7% and +7% respectively). This
is again advantages for dimensioning purposes. For the fourth peak, Vardy & Brown
is the most accurate model, with a slight overestimation of the head. From the fifth
peak and onwards, Brunone is the most accurate model, with an overestimation of less
than +10%. It is not as clear as with DVCM, but quasi-steady friction is again not
able to describe the dampening of the pressure and therefore gives the least accurate
results. When the flow time was increased to 0.9s, it was seen that Brunone and Vardy
& Brown each converged to a deviation of roughly +6.4% and +18% respectively, while
quasi-steady continued to increase in deviation (+33% at peak 15).

Table 7.6: Difference in head at peaks - DGCM

Experiment Quasi-steady Brunone Vardy & Brown

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%] Head [m] Deviation [%]

1 108.00 110.44 2.26 110.45 2.27 111.16 2.93

2 143.00 169.26 18.37 141.10 -1.33 155.16 8.51

3 145.00 134.64 -7.14 107.85 -25.62 113.23 -21.91

4 112.00 107.89 -3.67 101.57 -9.31 112.61 0.54

5 98.90 105.76 6.94 98.76 -0.14 106.64 7.83

6 94.30 103.87 10.15 95.72 1.51 103.87 10.14

7 90.10 102.70 13.98 93.11 3.34 101.52 12.67

8 86.50 102.09 18.02 90.82 4.99 99.44 14.96

9 82.40 101.46 23.13 88.75 7.70 97.49 18.31

10 81.40 100.92 23.98 86.93 6.79 95.67 17.53

Based on the comparison of the time period between oscillations and the deviation in the
head, it is concluded that Vardy & Brown’s unsteady friction model is the best friction
model to use with DGCM, because it is the model which most accurately describes the
head at the highest peak (+7%), while still having a relatively acceptable deviation for
the remaining peaks (converges at +18%). If the damping period is of primary interest,
then Brunone’s unsteady friction model should be used (it underestimates the largest
peak by −2.7%).
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Figure 7.17: Deviation of MOC, using DGCM, from the experimental data.
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7.4. MOC Settings - Two Phase Bergant et al. - Low Velocity

For Case 3, the same approach as in Sec. 7.3 will be used to determine the valve closure
coefficient, m, the weighting factor, ψ, and the number of reaches. m was chosen to 5.
When ψ and the number of reaches has been determined, the best friction model for
DVCM and DGCM will be compared to the results from the CFD simulations in Sec.
10.2. The ψ values used for the grid independency analysis can be seen in Table 7.7,
where it can be seen that for DVCM, all the friction models use the same values. For
DGCM however, it can be seen that quasi-steady and Vardy & Brown’s friction model
both require a higher ψ value compared to Brunone.

Table 7.7: ψ chosen for the grid independency analysis.

Friction models DVCM DGCM

Quasi-steady 0.55 0.75

Brunone 0.55 0.55

Vardy & Brown 0.55 0.75

Figure 7.18: Comparison of different ψ values for DGCM with quasi-steady friction.

In Fig. 7.18 it is possible to see the amount of numerical oscillation present for the sim-

55



ulations with quasi-steady friction for DGCM. It can be seen that there is a relatively
high amount of numerical oscillation for all of the simulated ψ values, with ψ = 0.55
having a much higher amount. Since it is recommended to have a ψ close to 0.5, 0.75 was
chosen rather than 0.95 due to their relatively similar amounts of numerical oscillation.

Figure 7.19: Comparison of different ψ values for DGCM with Vardy & Brown.

In Fig. 7.19 it is possible to see the amount of numerical oscillation present for the
simulations with Vardy & Brown for DGCM. It can be seen that the amount of numer-
ical oscillation is much lower than for quasi-steady, but there is still a high amount of
numerical oscillation for ψ = 0.55. It was therefore chosen to use ψ = 0.75. The grid
independency analysis was conducted in the same fashion as in Sec. 7.3.1 and the results
are shown in Table 7.8. A detailed description of the mesh grid independency analysis
is available in App. C.1.

Table 7.8: Number of reaches in the appropriate mesh for each friction model.

Friction models DVCM DGCM

Quasi-steady 24 24

Brunone 48 24

Vardy & Brown 48 48
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7.4.1. Comparison of Friction Models

For the comparison of the friction models, the same approach as in Sec. 7.3.2 will be
used. The highest peak on each high pressure zone is determined via Matlab, and the
time and size of the pressure peak is noted.
The time between each high pressure peak is compared to the experimental data, and
the results for DVCM are summarized in Table 7.9. It can be seen that the average time
period between each high pressure peak is relatively similar at approximately 0.12s, with
Vardy & Brown having the largest deviation at −6.4%. For the largest and smallest time
period, there is some disagreement between the experimental data and the simulations.
The problem here is exactly the same as for Case 2 (Sec. 7.3.2), where the position
of the highest point on a high pressure zone is very different. It can be seen that the
quasi-steady friction model is generally better at replicating the time period between
the oscillation, with a deviation of only +4% for the largest, −4.7% for the average, and
+18% for the smallest time period. Both unsteady friction models have at deviation
of −20.1% for the largest, Brunone have −5.5% for the average, and they both have a
deviation greater than +60% for the smallest time period.

Table 7.9: Time of period of oscillation - DVCM

Friction models Largest Average Smallest

Experiment [s] 0.1561 0.1227 0.0676

Quasi-Steady - DVCM [s] 0.1623 0.1170 0.0800

Brunone - DVCM [s] 0.1247 0.1159 0.1129

Vardy & Brown - DVCM [s] 0.1247 0.1149 0.1106

The size of the pressure peaks is also compared to the experimental data, and the re-
sults for DVCM are shown in Table 7.10. The deviation from the experimental data is
illustrated in Fig. 7.20, and it can be seen that for the two first peaks, both unsteady
friction models are very similar in deviation. From the third peak and afterwards, the
difference between the unsteady friction models become relatively large with Vardy &
Brown being the most accurate for the third to fifth peak, and Brunone for the sixth and
seventh. The quasi-steady friction model has a deviation which is almost comparable
to the deviation for Vardy & Brown, with the largest difference being at peak 4, where
Vardy & Brown has a deviation of −11% while quasi-steady has a deviation of −20%.
Unlike with Case 2 (Sec. 7.3.2), it was not possible to see a convergence, for the un-
steady friction models, if the flow time was increased, as all of the experimental data
was in use. There is an indication of a convergence for both unsteady friction models,
with Brunone at −4% and Vardy & Brown at +12%, however more peaks are required
to conclude this.
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Table 7.10: Difference in head at peaks - DVCM

Experiment Quasi-steady Brunone Vardy & Brown

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%] Head [m] Deviation [%]

1 62.13 64.35 3.57 64.37 3.60 65.14 4.84

2 95.37 103.42 8.45 99.10 3.91 99.90 4.75

3 78.62 68.87 -12.40 51.28 -34.77 67.76 -13.80

4 60.50 48.47 -19.88 47.42 -21.61 53.83 -11.02

5 49.60 48.26 -2.70 44.72 -9.85 50.91 2.63

6 43.88 48.06 9.51 42.39 -3.40 48.81 11.22

7 41.84 47.85 14.37 40.17 -3.99 46.84 11.96

Figure 7.20: Deviation of MOC, using DVCM, from the experimental data.

Based on the comparison of the time period between oscillations and the deviation in the
head, it is concluded that Vardy & Brown’s unsteady friction model is the best friction
model for use with DVCM in this case. This is because it has a lower deviation from
the experimental results for the first five peaks.

For DGCM, the results of the time between each high pressure peak is summarized
in Table 7.11. It can be seen that the average time period between each high pressure
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peak is relatively similar at approximately 0.12s, with Vardy & Brown having the largest
deviation at −3.7%. For the largest and smallest time period, there is some disagreement
between the experimental data and the simulations. The problem here is exactly the
same as for Case 2 (Sec. 7.3.2), where the position of the highest point on a high pressure
zone is very different. It can be seen that the quasi-steady friction model is generally
better at replicating the time period between the oscillation, with a deviation of only
+7% for the largest, −1.6% for the average, and −2.5% for the smallest time period.
When comparing the unsteady friction models, it can be seen that Brunone is slightly
more accurate for the largest and average time period with a deviation of −16.4% and
−2.7% respectively while Vardy & Brown has −16.7% and −3.7% respectively (both
have +67% for the smallest time period).

Table 7.11: Time of period of oscillation - DGCM

Friction models Largest Average Smallest

Experiment [s] 0.1561 0.1227 0.0676

Quasi-Steady - DGCM [s] 0.1670 0.1207 0.0659

Brunone - DGCM [s] 0.1305 0.1194 0.1129

Vardy & Brown - DGCM [s] 0.1300 0.1182 0.1129

The size of the pressure peaks is also compared to the experimental data, and the re-
sults for DGCM are shown in Table 7.12. The deviation from the experimental data is
illustrated in Fig. 7.21, and it can be seen that for the first two peaks, all three friction
models are relatively similar in deviation, with quasi-steady being slightly larger. For
the third peak, it can be seen that all of the friction models are still relatively similar,
not accounting for ±, with Brunone having the largest deviation. From the fourth peak
and onwards, both unsteady friction models have a similar deviation, with Vardy &
Brown being the most accurate at the fourth peak, and Brunone being slightly better
from the fifth peak and onwards. The deviation for the quasi-steady friction model in-
creases greatly from the fourth peak to the sixth peak, followed by a small decrease.
As for DVCM, it is not possible to see a convergence for the unsteady friction model in
DGCM. It might be possible to see a slight indication of a convergence, with Brunone
at +17% and Vardy & Brown at +20%, but it is not possible to be certain.
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Table 7.12: Difference in head at peaks - DGCM

Experiment Quasi-steady Brunone Vardy & Brown

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%] Head [m] Deviation [%]

1 62.13 64.35 3.56 64.50 3.81 65.13 4.83

2 95.37 102.29 7.25 99.39 4.22 99.69 4.53

3 78.62 81.58 3.78 70.42 -10.42 84.60 7.61

4 60.50 70.60 16.70 59.46 -1.72 60.21 -0.48

5 49.60 62.39 25.78 52.70 6.24 53.49 7.84

6 43.88 60.21 37.22 50.72 15.59 51.31 16.94

7 41.84 56.40 34.79 48.85 16.76 50.03 19.57

Figure 7.21: Deviation of MOC, using DGCM, from the experimental data.

Based on the comparison of the time period between oscillations and the deviation in the
head, it is concluded that Vardy & Brown’s unsteady friction model is the best friction
model for use with DGCM in this case. This is because of a lower deviation at the third
peak, compared to Brunone (+7.6% vs −10.4% respectively), and the relatively small
difference in deviation afterwards (+20% vs +17% respectively).
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7.5. MOC Settings - Two Phase Bergant - High Velocity

For Case 4, the same approach as in Sec. 7.3 will be used to determine the valve closure
coefficient, m , the weighting factor, ψ, and the number of reaches. m was chosen as
5. When ψ and the number of reaches has been determined, the best friction model for
DVCM and DGCM will be compared to the results from the CFD simulations in Sec.
10.3.

Unlike for the previous two cases, for this case a number of problems were observed
for DVCM together with some unexpected behaviour for both DVCM and DGCM.
One of the unexpected behaviours for both DVCM and DGCM are related to the time
period between each high pressure zone. The only difference between Case 3 and 4,
which uses the exact same setup, is the inlet velocity, and from this it was assumed that
the time period between each high pressure zone should be relatively similar. However,
this was not the case, which can be seen in Fig. 7.22, where the experimental data from
Case 3 and 4 are plotted together. It can be seen that for Case 3 (Low velocity), the
water hammer moves way faster than in Case 4 (High velocity), with Case 3 having
three times as many high pressure zones per second. This indicates that the amount of
vapour/gas produced during cavitation, in Case 4, is of such great magnitude that the
wave speed is severely reduced.

Figure 7.22: Comparison of experimental data from case 3 and 4, which uses the exact
same setup, but with different inlet velocities.
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This could (and did for DVCM) result in problems for DVCM and DGCM, because
both models assume that the vapour/gas is coalesced together in each reach, therefore
assuming a constant single phase wave speed, because the vapour/gas pockets are of a
relatively small size. In Fig. 7.23 it can be seen that non of the friction models, when
using DVCM, can accurately describe the experiment. It can be seen that for the second
high pressure zone, DVCM is very accurate, but after this, all of the friction models have
too much damping, which is believed to be the reason for the smaller distance between
each high pressure zone. Because of this major difference between the experimental data
and the simulations, it is concluded that DVCM is not suited for use in this case, and
will therefore not be considered for Case 4.

Figure 7.23: The friction models used together with DVCM is compared to the experi-
mental data.

Another unexpected behaviour for both DVCM and DGCM is the way the void fraction
at the valve develops during the periods with cavitation (see Fig. 7.24). It was expected
that the void fraction would continuously increase until the pressure increase. However,
this was not the case and it was observed that the void fraction started to decrease after
0.25 seconds. This response seems strange because the pressure is still at the vaporiza-
tion pressure and the pressure wave should just have left the reservoir. However, others
have documented a similar response from another model and an experiment [27].

In Table 7.13 it is possible to see the chosen ψ value for the grid independency analysis,
and it can be seen that the quasi-steady friction model has been omitted. The reason

62



Figure 7.24: The head and void fraction obtained with DGCM.

Table 7.13: ψ chosen for the grid independency analysis.

Friction models DGCM

Brunone 0.55

Vardy & Brown 0.55

for omitting the quasi-steady friction model is due to an excessive amount of numerical
oscillation independent of the chosen value of ψ.
ψ was set to 0.55 for both Brunone and Vardy & Brown because the amount of nu-
merical oscillation was relatively low. The grid independency analysis was conducted in
the same fashion as in Sec. 7.3.1 and the results are shown in Table 7.14. A detailed
description of the grid independency analysis is available in the App. sec. C.2.

Table 7.14: Number of reaches in the appropriate mesh for each friction model.

Friction models DGCM

Brunone 24

Vardy & Brown 24
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7.5.1. Comparison of Friction Models

For the comparison of the friction models, the same approach as in Sec. 7.3.2 will be
used.
The time between each high pressure peak is compared to the experimental data, and the
results are summarized in Table 7.15 (unlike in previous sections, here it is first, second,
and third period, not largest, average, and smallest). As with the other cases, there are
still some problems with the placement of the highest point on the experimental data,
which results in the first time period being a little longer for the experiment, compared
to the simulations. For the second and third period the problem with placement of the
highest peak might be the reason for the difference between the experiment and Vardy
& Brown. Brunone however, seems to have more damping than the experimental data
and Vardy & Brown, and this could result in a smaller time period (see Fig. 7.25).

Figure 7.25: Experimental data, DGCM using Brunone, and DGCM using Vardy &
Brown plotted together.
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Table 7.15: Time of period of oscillation - DGCM

Friction models First Second Third

Experiment [s] 0.4024 0.3420 0.3005

Brunone - DGCM [s] 0.3775 0.3234 0.2576

Vardy & Brown - DGCM [s] 0.3846 0.3446 0.2905

The size of the pressure peaks is also compared to the experimental data, and the results
are shown in Table 7.16. The deviation from the experimental data is illustrated in Fig.
7.26, and it can be seen for the two first peaks, that Brunone and Vardy & Brown are
relatively similar in deviation. After the second peak, the similarity stops, and it is
seen that Vardy & Brown’s overestimation increases rapidly in size between the third
and fourth peak. Brunone’s overestimation becomes of relatively small size for the third
peak followed by an underestimation of the fourth peak. It is unknown to which degree
Brunone and Vardy & Brown will under- and overestimate the head at the following
peaks, and it is therefore difficult to recommend any of the models for other purposes
than dimensioning purposes.

Figure 7.26: Deviation of MOC, using DGCM, from the experimental data.
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Table 7.16: Difference in head at peaks - DGCM

Experiment Brunone Vardy & Brown

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%]

1 210.69 213.10 1.14 215.53 2.30

2 204.58 211.60 3.44 212.96 4.10

3 187.40 188.54 0.61 198.32 5.83

4 164.41 156.02 -5.10 197.45 20.09

Based on the comparison of the time period between oscillations and the deviation in
the head, it is concluded that Vardy & Brown’s unsteady friction model is the best
friction model for the use with DGCM in this case. This is because of a more accurate
description of the time period between each oscillation. When looking at the head, it is
too early in the flow time to conclude whether Vardy & Brown is better than Brunone,
because they both have trouble accurately describing the damping of the head.

7.6. MOC Settings - Summary

In Table 7.17 the settings chosen in Sec. 7.3, 7.4, and 7.5 for Case 2, 3, and 4 respectively
are summarized. These settings will be used in the simulations for comparison with the
CFD simulations in Sec. 10.

Table 7.17: Chosen settings for DVCM and DGCM for each experiment.

Experiment Two phase model Friction model m ψ Reaches

Soares et al.
DVCM Vardy & Brown 5 0.55 48

DGCM Vardy & Brown 5 0.55 48

Bergant et al. DVCM Vardy & Brown 5 0.55 48

Low velocity DGCM Vardy & Brown 5 0.75 48

Bergant et al.
DGCM Vardy & Brown 5 0.55 24

High velocity
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8. 1D Two Phase Water Hammer with Bubble Dynamics

The previously presented two phase water hammer models have neglected bubble dy-
namics. This section is used to get the theoretical basis for developing a 1D two phase
water hammer model that includes bubble dynamics. First the governing equations for
a two phase water hammer will be introduced then focus will turn to bubble dynamics.

8.1. Governing Equations

It is assumed that the liquid is contaminated by a contaminant gas in small nuclei. It
is assumed that the distribution is uniform, that there is no slip between the bubbles
and the liquid, that no gas will be released to the liquid, the gravitational effects can be
neglected, and that the mass of the bubbles can be neglected since ρl >> ρv [28].
With these assumptions, the continuity and momentum equations can be written as in
Eq. (8.1) and Eq. (8.2).

∂

∂t
((1− α)ρlA) +

∂

∂x
((1− α)ρluA) = 0 (8.1)

∂

∂t
((1− α)ρluA) + u

∂

∂x
((1− α)ρluA) +A

∂P

∂x
+AJ = 0 (8.2)

Where u is the velocity, A is the cross sectional area of the pipe, and α is the void
fraction of gas.
The void fraction is defined as in Eq. (8.3), as the volume of gas, Vg, compared to the
total volume, Vtot [29].

α =
Vg
Vtot

=
n0

4
3πR

3

1 + n0
4
3πR

3
(8.3)

Where n0 is the start concentration of vapour in steady state and R is the bubble radius.
With Eq. (8.1) - (8.3), the only thing needed is a description of the bubble radius.

8.2. Bubble Dynamics

The bubble dynamics of a single bubble suspended in a liquid driven by a sinusoidal
acoustic pressure is illustrated in Fig. 8.1.
Initially the bubble is in equilibrium with the radius R0 at ambient pressure. As the
pressure is dropped, the bubble will grow slowly at first then start to grow faster until the
pressure gets closer to the initial pressure. The bubble growth will begin to slow down
until it reaches the maximum radius. After the maximum radius has been reached, the
bubble collapses until it reaches the minimum radius where it will rebound and increase
in radius. During the collapse extreme bubble surface velocities are obtained. The
reason for this rebound is that the gas and vapour is highly compressed. This behaviour
of collapse and rebound will continue with decreasing amplitudes until it is at rest. [30]
If the bubble is stable, and does not implode and split up into smaller bubbles, as
was seen in Fig. 3.1, the Rayleigh-Plesset equation can be used to describe the bubble
dynamics.
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Figure 8.1: Bubble radius response for a sinusoidal acoustic pressure change. [30]

8.2.1. Rayleigh-Plesset Equation

The Rayleigh-Plesset equation, Eq. (8.4), describes the dynamics of a single spherical
bubble, that is the growth and the collapse, in an infinite liquid domain. It is derived
from the Navier-Stokes equation and the full derivation is in App. A. It is assumed that
the temperature of the liquid, the liquid density, and the dynamic viscosity of the liquid
are constant. For the bubble it is assumed that the temperature is constant and that
the internal bubble pressure, PB, is uniform. [4]

ρ

(
R
d2R

dt2︸ ︷︷ ︸
(1)

+
3

2

(
dR

dt

)2

︸ ︷︷ ︸
(2)

) = PB︸︷︷︸
(3)

− P∞︸︷︷︸
(4)

− 2S

R︸︷︷︸
(5)

− 4µ

R

dR

dt︸ ︷︷ ︸
(6)

(8.4)

The first term (1) describes the pressure generated by the acceleration of the bubble wall,
(2) comes from the convective terms in the Navier-Stokes equation, (3) is the internal
bubble pressure, (4) is the pressure in the fluid far away from the bubble, (5) describes
the surface tension of the bubble, and (6) is the viscous effect caused by the bubble
growth. Since term (6) is the only viscous force present, it is assumed that the bubble
follow the flow perfectly.
If it is assumed that P∞ is known, a description of PB is needed to solve Eq. (8.4) for
the bubble radius. To describe the bubble pressure, the bubble contents will have to be
assumed. It is assumed that a contaminant gas is present in the bubble with a partial
pressure, PGo, at a reference radius at steady state, R0, and temperature, T∞. Then the
partial pressure of the gas at any given radius can be determined by Eq. (8.5), if the
bubble temperature is constant and the gas behaviour is polytropic. [4]

PG = PG0

(
R0

R

)3

(8.5)
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Then the bubble pressure can be determined with Eq. (8.6).

PB = Pv + PG (8.6)

Where Pv is the vapour pressure. To solve Eq. (8.4) numerically it is split up into two

first order ODEs, with d2R
dt2

= dy
dt .

dR

dt
= y (8.7)

dy

dt
= − 3

2R
y2 +

PB − P∞
ρR

− 2S

ρR2
− 4µ

ρR2
y (8.8)

The initial conditions for the ODEs are R(t = 0) = R0 and y(t = 0) = Ṙ0.
The last step is choosing a numerical solver. Alehossein et al. [31] investigated numer-
ous solvers both with constant and variable time step for solving the Rayleigh-Plesset
equation for cavitating water jets. They concluded that a variable time step is prefer-
able, because at the bubble collapse and rebound, the slope is near ±∞. Therefore,
very small time steps are needed to resolve the rebound. They also concluded that the
Runge-Kutta-Feldberg (RKF) gave the most accurate solution. It has also been found
in the litterature that a Runge-Kutta based solver has been successfully applied to the
Rayleigh-Plesset equation [32, 29].

8.2.2. Rayleigh-Plesset Response

In the Rayleigh-Plesset equation it is the driving pressure P∞ that causes the change
in bubble radius. Therefore, the bubble response at different driving pressures is in-
vestigated. First with a small driving pressure also used by Alehossein et al. [31] with
different solvers to test the implementation. Then with a driving pressure from case 2
with different initial bubble sizes.

8.2.3. Small Driving Pressure

Alehossein et al. [31] investigated the Rayleigh-Plesset equation for cavitating water jets.
To test the numerical methods, they used a simplified version of the driving pressure, see
Fig. 8.2. This simplified driving pressure is also used here to test if the Rayleigh-Plesset
equation is correctly implemented and to test two numerical methods: Euler and the
built in MATLAB ”ode45” Runge-Kutta solver.
In the Euler method, a constant time step of 2 · 10−10s was used as further reductions
of the time step had no effect on the bubble dynamics. The Runge-Kutta solver used a
variable time step that is dependent on the bubble boundary speed. The fluid properties
and initial bubble size used for the simulation are listed in Table 8.1.
The results of the simulation are in Fig. 8.2. The Euler and Runge-Kutta solvers give
similar results predicting the initial growth phase and the first collapse and rebound.
But after the first rebound, an offset between the two solvers occurs. This small offset
starts to occur when the rate of change of the bubble radius begins to decrease which
is where the step size should increase for the Runge-Kutta solver. Therefore, the offset
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Symbol Value

P∞(0) 12000Pa

Pv 4240Pa

ρl 996 kg
m3

νl 0.798 · 10−3m2

s

S 7.2 · 10−2N
m

R0 10−5m

Table 8.1: Fluid properties and initial bubble size.

is likely to be caused by this effect. The Runge-Kutta uses significantly less time steps
with 177 time steps compared to 185001 timesteps used by the Euler solver. Therefore
the built-in MATLAB ”ode45” solver will be used [33]. The results obtained here give a
smaller bubble growth than the one obtained by Alehossein et al. [31], which might be
caused by a different calculation method of Pg0, which was not given in the article.

Figure 8.2: Bubble radius and driving pressure.
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8.2.4. Bubble Response to Water Hammer Pressures

Compared to the pressure changes in Sec. 8.2.3, the actual pressure changes in a water
hammer event is usually both steeper and larger. Therefore it will be more difficult to
resolve the collapse and rebound of the bubble. The response with three different initial
bubble sizes are also tested.
In Fig. 8.3 the driving pressure during case 2 is illustrated.

Figure 8.3: Driving pressure during water hammer event.

Where point (A) is the end of the first high pressure zone, from point (A) to (B) is the
change from the high pressure zone to the low pressure zone, from point (B) to (C) there
is a small decline in pressure until it reaches the vapour pressure in (C), from (C) to (D)
the pressure is at the vapour pressure, from point (D) to (E) there is a slight increase in
pressure, and from point (E) to (F) it changes from the low pressure zone to the second
high pressure zone. The pressure data was extracted with the program ScanIt and linear
interpolation between the points is used when solving the Rayleigh-Plesset equation.
In Fig. 8.4, the response of three bubbles, using different initial radii, can seen for the
driving pressure in Fig. 8.3.
From time equals to zero until point (A), all three bubbles have the same behaviour i.e.
initially staying at R0 followed by a compression of the radius caused by an increase in
pressure. Also from point (A) to (B), i.e. the period where the pressure changes from
the high pressure zone to low pressure zone, the behaviour is similar with an increase in
radius resembling an exponential increase. Then from point (B) to (C) the behaviour of
the three bubbles begin to differ, but still exhibiting the same tendency. The bubble with
the initial radius of 10−5m starts to oscillate directly after point (B), but the oscillations
are damped quickly and thereafter the bubble starts to grow exponentially until point
(C). The bubbles with initial radii of 5 · 10−5m and 10−4m start to oscillate directly
after point (B) as with the smallest bubble, but with larger and slower oscillations.
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Figure 8.4: Bubble response with different initial bubble radius. The dashed lines indi-
cate positions (A) to (E).

After the oscillations both bubbles start to grow, but now the characteristics of the
growth is not of an exponential growth. From point (C) to (D) the smallest bubble
seems to quickly reach an equilibrium state since there is no change in radius. The two
larger bubbles do not reach an equilibrium. Instead they both grow initially and for the
bubble with an initial radius of 5 ·10−5m starts to decrease again before point (D). Since
the pressure is constant at the vapour pressure an explanation of this could be due to
it overshooting the radius that would bring it into equilibrium. From point (D) to (E)
the smallest bubble experiences a decrease in radius due to an increase in pressure. The
two largest bubbles both collapse and rebound. The collapse experienced by the bubble
with an initial radius of 10−4m is so violent that the ”ode45” solver fails. After point
(F) the smallest bubble collapses and reaches a new equilibrium state while the bubble
with the initial radius of 5 · 10−5m collapses so violent that the solver fails.
There are three possible conclusions that can be made. It seems that the larger the
bubble the slower it will respond to the pressure or that the oscillations of the bubble
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becomes larger and slower. The reverse is true for smaller bubbles which should respond
quickly to the pressure causing only small oscillations. The second is that during water
hammers it seems that it is possible for the bubbles to reach an equilibrium state even
if the pressure is equal to the vapour pressure. This is a consequence of the assumption
that the mass transfer across the bubble interface can be neglected. It also seems that
the larger the bubble the more violent the collapse. These violent collapses caused the
”ode45” solver to fail because integration tolerances could not be met without lowering
the timestep below the minimum allowed value of 1.11 · 10−6.
The radius that causes the bubble to be in equilibrium at the vapour pressure can be
determined by combining Eq. (8.4) to Eq. (8.6), and setting dR/dt = d2R/dt2 = 0 and
P∞ = Pv and solving for R.

R =

(
2S

PG0R3
0

)− 1
2

(8.9)

To test whether the bubbles do indeed reach an equilibrium point the pressure will be
kept at the vapour pressure from point (B) and onwards. The results are plotted in Fig.
8.5.

Figure 8.5: Bubble response with different initial bubble radius and equilibrium radius
at vapour pressure.

From this it is clear that the bubbles actually respond to the change to the vapour
pressure, but that they oscillate around the radius that causes them to be in equilibrium.
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It can also be seen that the larger the initial bubble radius is, the longer the oscillation
will be present. This is a problem since the bubble would not grow even though the fluid
is at the vapour pressure. As explained before this is caused by the assumption that there
is no mass transfer through the bubble interface. This assumption is only valid if the
bubble is only a short time in the vapour pressure region. Which is not necessarily the
case during a water hammer event. Therefore, for application to water hammer events,
the mass transfer through the interface should be modelled. For the implementation of
the Rayleigh-Plesset equation another solver than the ”ode45” should be used during a
water hammer event since the collapse of the bubble is too violent. Other solvers such as
the stiff solvers ”ode23s” and ”ode15s” were also used, but they yielded similar results
and also failed to solve the Rayleigh-Plesset equation. The used solver should be a solver
that can handle the discontinuity during the collapse and rebound.

8.3. Implementation

If the problems with the Rayleigh-Plesset equation are solved the next step would be
to implement it into the governing equations, Eq. (8.1) and Eq. (8.2), via the void
fraction.
Kalwijk et al. [28] implemented Eq. (8.1) and Eq. (8.2) into the MOC without the
Rayleigh-Plesset equation governing the void fraction. They found that for low pressure,
i.e. at vapour pressure, that the governing equations turned from hyperbolic to elliptic
which is not physical. This might be a problem as well with the implementation of the
Rayleigh-Plesset equation.
Another problem, if the Rayleigh-Plesset equation is implemented, is that at the collapse
and rebound, extremely small time steps are needed to resolve the bubble growth. This
time step is very small compared to the time step normally needed to calculate a water
hammer event with the MOC. This decrease in the time step would also increase the
number of reaches in the MOC since dt and dx is related by Eq. (5.18) and thereby
increase the calculation time significantly. To decrease the calculation time, a variable
time step could be used, but it would cause the characteristics grid to resemble the
variable grid in Fig. 7.1 which introduces other problems.
It seems therefore that the implementation is not straight forward in the explicit MOC
and perhaps other methods should be considered.

74



9. CFD Modelling of Two Phase Flow

In this section, the CFD theory for two phase simulations with the choice in multiphase
and cavitation model is presented, and CFD simulations are performed for Case 2, 3 and
4.

9.1. Multiphase Model

To model the multiphase flow ANSYS Fluent 19.0 has three different models available;
Volume of Fluid (VOF), the Mixture model and the Eulerian model. All three models
uses the Euler-Euler approach but only the mixture and Eulerian model is available
with the cavitation models. With the Eulerian model only the k-ε turbulence models is
available. If the Mixture model is chosen, both the k-ε and the k-ω turbulence models
is available. The Mixture model is less computational heavy as it has less equations
to solve compared to the Eulerian model which also can be less computationally stable
because it is more complex [23].
The Mixture model solves the mixture momentum equation to calculate the relative
velocities of the dispersed phases, but can also be used without relative velocities.
The Mixture model can model an infinite number of fluids by solving the continuity,
momentum, and energy equation of the mixture and the void fraction for the secondary
phase. The limitations of the Mixture model is that only a pressure-based solver is
available, only one phase can be defined as compressible, and a specified mass flow rate
boundary condition is not possible.
For a multiphase flow the continuity, momentum equation and the transport equations
for the turbulence models has been changed such that the mass averaged velocity, the
density and viscosity is based on a mixture of the phases. The mass averaged velocity
can be calculated with Eq. (9.1).

→
vm=

1

ρm

n∑
k=1

αkρk
→
v k (9.1)

Where αk is the void fraction of phase k. The mixture density is calculated with Eq.
(9.2).

ρm =
n∑
k=1

αkρk (9.2)

The mixture viscosity is calculated with Eq. (9.3).

µm =
n∑
k=1

αkµk (9.3)

The compressible Navier-Stokes momentum equation for the mixture can be obtained
by summing the individual momentum equation for each phase.
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9.2. Cavitation Model

ANSYS Fluent 19.0 have three available cavitation models: The Schnerr and Sauer [34],
the Zwart-Berber-Belamri, and the Singhal et al. model. The two first models converge
quickly and are robust where Singhal et al. is numerically less stable. The Schnerr and
Sauer and the Zwart-Berber-Belamri models have the same options for the simulations,
but as the Schnerr and Sauer model has shown to give good results in other studies
[35, 36, 37]. Therefore the Schnerr and Sauer model is chosen to determine the mass
transfer between the liquid and vapour phases. The model is based on a simplified
Rayleigh-Plesset equation for the effect of bubble dynamics. The bubble growth is
described as in Eq. (9.4) [34] and it is a simplified form of the Rayleigh-Plesset equation
from Eq. (8.4) in Sec. 8.2.1.

dR

dt
=

√
2

3

P (R)− P∞
ρl

(9.4)

Where P (R) is the pressure at the bubble boundary in the liquid (set to the vapour
pressure), P∞ is the pressure in the liquid far from the bubble and ρl is the liquid
density. The net mass transfer rate for the vapour void fraction, Mv, is calculated with
Eq. (9.5).

∂

∂t
(αρv) +

∂

∂xj
(αρv

→
uv) = Mv (9.5)

Where α is the nucleation site void fraction,
→
uv is the vapour phase velocity (which is

equal to the liquid phase velocity when there is no slip velocity).
The Schnerr og Sauer connects the void fraction to the number of bubbles per volume
of liquid to determine the nucleation site void fraction with Eq. (9.6).

α =
nb

4
3πR

3
B

1 + nb
4
3πR

3
B

(9.6)

Where nb is the bubble number density and RB is the bubble radius.
In this model, the only parameter which has to be user defined is the number of spherical
bubbles and the vaporization pressure. Schnerr and Sauer determines both the mass
transfer for the evaporation and for the condensation, where, if no bubbles are created
or destroyed, the bubble density will be constant. Mass transfer for the evaporation,
Me, and condensation, Mc, can be seen in Eq. (9.7) and (9.8) respectively.

Me =
ρvρl
ρm

α(1− α)
3

RB

√
2

3

(Pv − P∞)

ρl
(9.7)

Mc =
ρvρl
ρm

α(1− α)
3

RB

√
2

3

(P∞ − Pv)
ρl

(9.8)

Where ρv, ρl and ρm is respectively the density for the vapour, liquid and the mixture,
Pv is the vapour pressure and P∞ is the far-field pressure.
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The bubble radius can be determined with Eq. (9.9).

RB =

(
α

1− α
3

4π

1

nb

) 1
3

(9.9)

The limitation of using the cavitation models in ANSYS Fluent 19.0, is that, it is only
possible to simulate a single cavitation process (single liquid undergoes cavitation).
Which means that it is not possible to model cavitation in a multi-component flow.
Also Schnerr and Sauer does not by default take the effect of non-condensable gases into
account. [23]

9.3. CFD Simulation of Soares et al. Experiment

A two phase CFD simulation is performed on Case 2. In this section, the fluent settings
are described and a grid independency analysis and a turbulence model test have been
performed.

9.3.1. Assumptions

The geometry is drawn as 2D axisymmetric to simulate the pipe flow. The bulk modulus
of the water has been calculated such that it incorporate the effect of the pipe elasticity
as described in Sec. 6.4.5.

9.3.2. Boundary Conditions

The boundary conditions chosen is a ”velocity-inlet” with a reversed velocity as described
in Sec. 6.4.3 and a ”pressure-outlet”. The ”velocity-outlet” and ”mass flow-outlet” is
not available in the Mixture model but, the ”velocity-inlet” is, as described in Sec. 9.1.
A UDF is used for the ”velocity-inlet” to control the valve closure as in Sec. 6.4.4. The
UDF can be seen in App. B.

9.3.3. Pressure Velocity Coupling Scheme

The pressure based coupled algorithm is chosen for solving the system of equations. The
coupled solver has an improved convergence rate compared to the segregated solvers [23].

9.3.4. Time Step Size

To ensure that the pressure wave is calculated through each cell at each time step, a
proper time step size has to be determined. The time step size is chosen based on a
Courant number of 1 calculated with Eq. (5.19).

9.3.5. Convergence Analysis

To analyse if the solution has converged, the residuals were monitored. An absolute con-
vergence criteria was set to 10−5 and the maximum number of iterations were limited
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to 200 per time step. When the vapour pressure was reached all iterations were used as
the solution of the continuity equation solution would not meet the convergence criteria.
After about 20-40 iterations the solution would not improve and the residual would be
around 10−3 as seen in Fig. 9.1.

Figure 9.1: Residuals for cavitation flow.

As it can be seen the problem was only detected with the continuity equation. When
the flow was not cavitating, the convergence criteria was obtained and the solution used
between 20-40 iterations, the residuals can be seen in Fig. 9.2.

Figure 9.2: Residuals for high pressure non-cavitation flow.
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9.3.6. Fluent Setting Overview

An overview of the chosen parameters for the CFD simulations in ANSYS Fluent are
listed in Table 9.1.

Table 9.1: Fluent settings.

Settings Parameters

Solver type Pressure-based

Velocity formulation Absolute

Time Transient

2D Space Axissymmetric

Multiphase model Mixture model

Cavitation model Schnerr and Sauer

Fluid Water-liquid

Vapour Water-vapour

Inlet boundary Velocity-inlet

Outlet boundary Pressure-outlet

Wall boundary Wall

Shear Condition No Slip

Wall roughness 1.5 · 10−6m

Pressure velocity coupling Coupled

Discretisation QUICK

Absolute convergence criteria 1 · 10−5

Solution initialization Hybrid initialization

Time step size 5.9690 · 10−6s

Number of time steps 41884

Max Iterations/Time step 200

9.3.7. Grid Independency Study

The grid is generated with an inflation as in Sec. 6.4.1. To analyze if the pressure wave
is properly resolved, a grid independency study has been carried out. The purpose of
the study is to determine if the result of a more coarse mesh is sufficient compared to
a finer grid. To determine if there is a change in the grid results, the pressure at the
valve is measured. As the pressure is almost equal at all nodes on the valve boundary,
an average is taken over all the nodes. The chosen cell numbers for the different meshes
are listed in Table 9.2.
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Table 9.2: Different grid cell numbers.

Number of cells Mesh size y+ at steady state Time step size

3.000 6 · 500 15.5− 19.5 2.3876 · 10−5s

12.000 12 · 1000 3− 6.7 1.1938 · 10−5s

48.000 24 · 2000 0.3− 2 5.9690 · 10−6s

192.000 48 · 4000 0.02− 0.6 2.9845 · 10−6s

The grid with respectively 48000 and 192000 cells have a y+ value below 5 (in the viscous
sublayer) where the grids with 3000 and 12000 cells is chosen to also analyze how large
dependence the y+ value has on the mean pressure at the valve. The time step size is
different for each mesh to ensure all models have a Courant number of 1 (calculated as
in Sec. 9.3.4).
The result for the grid independence study is as seen in Fig. 9.3.

Figure 9.3: Grid independency test.

At the first high pressure zone and low pressure zone, all mesh sizes produce identical
results. At the second high pressure zone, the mesh with 3000 and 12000 cells underes-
timate the pressure where the mesh with 48000 cells gives a good representation of the
pressure and the mesh with 192000 cells overestimate the pressure.
At the third high pressure zone, the mesh with 3000 and 12000 cells have an accurate
description of the first peak, while the mesh with 48000 and 192000 cells underestimates
the pressure. For the second peak on the third high pressure zone, all of the mesh sizes
give similar results, but they all seriously underestimate the pressure. This problem was
also observed for MOC, with the experiment having its largest peak at the third high
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pressure zone, while the simulations have their highest peak at the second high pressure
zone. When comparing the largest peaks, it can be seen that the mesh with 48000 cells
slightly underestimate the pressure while the mesh with 192000 cells slightly overesti-
mates the pressure. Despite missing the peak behaviour from the third high pressure
zone, the mesh with 48000 cells is chosen as it gives the best results for the second high
pressure zone and seem to have converged with the larger model of 192000 cells every
where else.

9.3.8. Turbulence Models Test

A turbulence model test is performed to analyse if the choice in turbulence model has
an effect on the result. Three turbulence models are tested: Realizable k − ε, Standard
k − ω and SST k − ω (which are described in Sec. 6.3).
A wall function was only used with the Realizable k − ε model as the other models
resolve the flow at the wall. The enhanced wall treatment was used as it does not rely
on empirical relations and the criteria of y+ ≈ 1 is satisfied [23].
As for the grid test, the pressure is analysed as an average for all notes at the valve.
The comparison of the turbulence models can be seen in Fig. 9.4.

Figure 9.4: Turbulence models test.

It is only possible to see the SST k − ω model as all models give similar results. The-
oretically following Sec. 6.3.3, the SST k − ω model should give the best results and
as the simulation is independent of the turbulence model used, the SST k − ω model is
used for further calculation.
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9.4. CFD Simulation of Bergant et al. Experiments

For the simulation of the Bergant et al. experiments (Case 3 and 4), the same assump-
tions for the, boundary conditions, pressure velocity coupling scheme, and fluent settings
were used.
The time step size was calculated based on a Courant number of 1, as with the Soares
et al. experiment (Case 2). It was not possible to obtain proper CFD simulation results
for Case 3 and 4 even though a variety of methods were carried out for better results.

Convergence

The problem with the Bergant et al. simulations are the fact that when the pressure
wave reaches the vapour pressure, the residuals for the continuity is too high (as seen in
Fig. 9.5). The convergence criteria is set to 10−5.

Figure 9.5: Residuals for the Bergant experiment with high velocity and 6000 cells.

On Fig. 9.5 the residuals uphold the convergence criteria for the high pressure zones,
but for the cavitation zones the residuals of the continuity equation are almost equal to
1.

Mesh

To achieve more precise residuals the mesh was refined and the time step size was
decreased correspondingly. The refinement did not improve the residuals.
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Pressure Velocity Coupling Scheme

The PISO solver was tried as this should also be a precise solver for transient flow [23],
but this only made the residuals for continuity and void fraction of the vapour higher.

Under-relaxtion factors

Decreasing the under-relaxation factors for the void fraction and the vaporization mass
made the residuals more stable and the calculation time slower but did not increase the
accuracy of the residuals.

Cavitation models

To analyse if the cavitation model had an effect on the residuals, the Zwart-Berber-
Belamri model was tried. The shift in cavitation model only increased the residuals of
the continuity equation to around 10.

Time step size

The time step size used for a Courant number of 1 does not seem to be low enough even
though, the tested meshes had a time step size of between 2 · 10−5s - 10−6s. Various
CFD-forums suggest a time step size as low as 10−7s - 10−8s for cavitation simulations.
A simulation was run with a time step size of 5 · 10−8s but unfortunately the computer
(Windows 10) chose to update after 5 days of simulation without reaching the cavitation
zone. Because of time constraints is has not been possible to do another simulation with
a time step size that low.

Bergant et al. Simulation Results

It was seen that the Soares et al. two phase simulation with a grid of 6 · 500 cells gave
relatively good results. To decrease the simulation time and as the Bergant et al. pipe
is almost twice as long, a mesh with 6 · 1000 cells was used. With a Courant number of
1, the time step size is 2.8067 · 10−5s. The results of the Bergant et al. simulations with
low and high velocity can be seen in Fig. 9.6 (Case 3) and 9.7 (Case 4).
In Fig 9.6 it can be seen that the CFD model accurately describe the first pressure peak.
In the first low pressure zone it can be seen that the vapour pressure of the model is
smaller than the one in the experiment and the time in the low pressure zone is also
slightly longer. The second pressure peak is overestimated by the CFD model and a
slight offset in time. It is suspected that these two effects can be attributed to the ad-
ditional time in the first low pressure zone. In the second low pressure zone, the CFD
model has a behaviour reminiscent of the experimental data, but it greatly overestimates
the time in the zone. This again causes the an overestimation of the pressure and an
offset of the pressure peak compared to the experimental data.
Again it can be seen from Fig. 9.7 that the CFD model accurately describe the first
pressure peak. It is also clear that the CFD model overestimates the time in the low
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pressure zone, which causes, in this case, a large overestimation of the pressure. It can
be seen that the model has a behaviour opposite of the experimental results. In the
experimental data it is clear that the pressure reduces for each pressure peak followed
by a decrease of the time in the low pressure zone at vapour pressure. This is caused
by friction in the pipe. In the CFD model the pressure increases for each pressure peak
followed by an increase of the time in the low pressure zone. This is clearly incorrect as
the energy should dissipate through friction.
These problems are for both Case 3 and 4 attributed to the large residuals in the cavi-
tation zone.

Figure 9.6: Bergant experiment with u= 0.3m/s and 6000 cells.

84



Figure 9.7: Bergant experiment with u= 1.4m/s and 6000 cells.
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10. Results

The results for Case 2, 3 and 4 are presented in this section.

10.1. Soares et al. Experiment

The simulations of Case 2 can be seen in Fig. 10.1. DVCM, DGCM, and CFD simula-
tions are compared to the experimental data for a flow time of 0.5s.

Figure 10.1: Comparison of head and void fraction for DVCM, DGCM, CFD, and the
experimental data.

The comparison of the simulations has been performed in the same manner as in Sec.
7.3.2. The highest peaks of the high pressure zones for DVCM, DGCM, and CFD simu-
lation have been determined and the size of the peaks are compared to the experiment
as seen in Fig. 10.2. The size of the peaks and the deviation from the experiment can
also be seen in Table 10.1. To analyse if the simulations have phase shifts, the time
between the high pressure peaks are summarized in Table 10.2.

Comparing the high pressure peaks with Fig. 10.2 and Table 10.1 it can be seen that
the pressure for all of the simulations are almost equal for the first pressure peak with
a deviation of +3% from the experiment. A part of this deviation can be because of a
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Figure 10.2: Deviation from the experimental data.

Table 10.1: Difference in head at peaks.

Experiment DVCM DGCM CFD

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%] Head [m] Deviation [%]

1 108.00 111.17 2.93 111.16 2.93 111.25 3.01

2 143.00 151.98 6.28 155.16 8.51 143.16 0.11

3 145.00 101.40 -30.07 113.23 -21.91 106.10 -26.83

4 112.00 99.48 -11.18 112.61 0.54 102.13 -8.81

5 98.90 97.65 -1.27 106.64 7.83 99.88 0.99

6 94.30 95.90 1.69 103.87 10.14 97.91 3.82

7 90.10 94.27 4.63 101.52 12.67 96.06 6.62

8 86.50 92.70 7.17 99.44 14.96 94.30 9.02

9 82.40 91.17 10.65 97.49 18.31 92.62 12.40

10 81.40 89.68 10.17 95.67 17.53 90.98 11.77

higher pressure at steady state, as it can be seen in Fig. 10.1 that the head at time zero
is higher for the simulations than for the experiment. For the second peak, the CFD
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simulation reaches almost precisely the head of the experiment with only a deviation
of +0.11% where DVCM and DGCM overestimate the head with +6.28% and +8.51%
respectively. For the third peak, it can be seen that non of the simulations can accu-
rately describe the peak. The reason for this is, as explained in Sec. 7.3.2, that for the
experiment, the third peak is the largest, while for the simulations, the second peak is
the largest. However, when looking at Fig. 10.1, it can be seen that for DVCM and
DGCM, their second peak is higher than the third peak for the experiment, which means
these models are actually able to predict the largest pressure (overestimation at +4.8%
and +7% respectively). However, CFD is not able to predict the largest pressure peak
and has an underestimation of −1.3% of the largest peak.
As the pressure wave propagates, the DVCM and CFD simulations follow the experi-
mental results with a small overestimation, whereas the deviation from the experiment
to the DGCM simulation is almost twice as high as the deviation for the DVCM simu-
lation.
It can be seen in Fig. 10.1 that the vapour void fraction for the DGCM simulation is
much lower than for the DVCM simulation. This behaviour of the DGCM simulation
was described in Sec. 7.3.1 where it was a general observation for the Vardy % Brown
friction model. The void fraction for the CFD simulation is not plotted, as in the ex-
ported data, the void fraction was only given for two of the 25 nodes at the boundary
valve.

Table 10.2: Time of period of oscillation.

Friction models Largest Average Smallest

Experiment [s] 0.0690 0.0494 0.0290

DVCM [s] 0.0602 0.0491 0.0475

DGCM [s] 0.0599 0.0496 0.0465

CFD [s] 0.0581 0.0488 0.0472

Comparing the phase shift for the simulations, it can be seen from Fig. 10.1 and Table
10.2 that the DGCM simulation follows the average time period of the experiment most
precise, whereas when analysing Fig. 10.1 DVCM and CFD simulations is almost iden-
tical. The time between the high pressure peaks are almost identical for the simulations
as seen in Table 10.2 but as it can be seen in Fig. 10.1 the DGCM simulation has the
smallest phase shift from the experiment.
The overall most accurate simulation is chosen, from an engineering point of view, as
the DVCM simulation. The DVCM simulation overestimates the second high pressure
peak more than the CFD simulation, but as the third pressure peak is higher than the
second for the experiment and the CFD simulation is below that, the DVCM simulation
is chosen as the best representation for this experiment. The DVCM simulation has a
reminiscent behaviour of the wave and the phase shift.
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10.2. Bergant et al. Low Velocity Experiment

The simulations of Case 3 can be seen in Fig. 10.3. Only DVCM and DGCM simulations
is compared as the CFD simulation did not converge properly as described in Sec. 9.4.

Figure 10.3: Comparison of head and void fraction for DVCM, DGCM, and the experi-
mental data.

When comparing the high pressure peaks, using Fig. 10.4 and Table 10.3, it can be
seen that for the first pressure peak, both simulations overestimates the pressure with
almost +5%. For the second pressure peak the two simulations are almost identical
and has a deviation of +5% from the experiment. The DGCM simulation estimates the
third pressure peak much better than the DVCM simulation which underestimates the
pressure with −13.8%, which is almost the case for the fourth pressure peak too. Neither
of the simulations identify the first pressure peak of the high pressure zones but only
the last as seen in Fig. 10.3. As the wave propagates, both simulations underestimate
the dampening and as the DVCM simulation underestimates the pressure for the third
and fourth peak, the size of its pressure peaks for the further peaks are close to the
experimental pressure peaks.
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Figure 10.4: Deviation from the experimental data.

Table 10.3: Difference in head at peaks.

Experiment DVCM DGCM

Peak Head [m] Head [m] Deviation [%] Head [m] Deviation [%]

1 62.13 65.14 4.84 65.13 4.83

2 95.37 99.90 4.75 99.69 4.53

3 78.62 67.76 -13.80 84.60 7.61

4 60.50 53.83 -11.02 60.21 -0.48

5 49.60 50.91 2.63 53.49 7.84

6 43.88 48.81 11.22 51.31 16.94

7 41.84 46.84 11.96 50.03 19.57

In the first cavitation zone, it can be seen in Fig. 10.3 that the DVCM and DGCM
simulations give almost the same void fractions, whereas for the second cavitation zone
it is only possible to see the void fraction for the DGCM simulation. This is because the
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DGCM simulation is at vapour pressure for a longer period in the second low pressure
zone.

Table 10.4: Time of period of oscillation.

Friction models Largest Average Smallest

Experiment [s] 0.1561 0.1227 0.0676

DVCM [s] 0.1247 0.1149 0.1106

DGCM [s] 0.1300 0.1182 0.1129

Comparing the time period for the simulations, it can be seen from Fig. 10.3 and Table
10.4 that the average time period for the DGCM simulation is more reminiscent of the
experiment compared to the DVCM simulation. In Fig. 10.3 the pressure history for
the DGCM simulation has almost no phase shift whereas the DVCM simulation has a
relatively large phase shift from the experiment.
Based on the size of the pressure peaks, the behaviour of the pressure waves and the
phase shift, the DGCM simulation is the most precise simulation for Case 3.

10.3. Bergant et al. High Velocity Experiment

For Case 4 only the DGCM simulations gave proper results. As described in Sec. 7.5
the DVCM simulations had a too large dampening and has therefore not been included.
The CFD simulation has not been included either, as it did not converge properly as
described in Sec. 9.4.

Table 10.5: Difference in head at peaks.

Experiment DGCM

Peak Head [m] Head [m] Deviation [%]

1 210.69 215.53 2.30

2 204.58 212.96 4.10

3 187.40 198.32 5.83

4 164.41 197.45 20.09

Comparing the four pressure zones with Fig. 10.6 and Table 10.5, it can be seen that
the DGCM simulation give an accurate estimation of the first three peaks. However, for
the fourth peak, a relatively large overestimation is achieved at +20%. It is uncertain
whether this increase in deviation is only for this peak or, if more data were available,
the deviation would continue to increase.
It can be seen from Fig. 10.5 that the void fraction reaches almost 15% in the first
cavitation zone and as the velocity decreases and the time in the cavitation zones are
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Figure 10.5: Comparison of head and void fraction for DVCM and the experimental data.

reduced, the void fractions decrease.

Table 10.6: Time of period of oscillation.

Friction models 1st 2nd 3rd

Experiment [s] 0.4024 0.3420 0.3005

DGCM [s] 0.3846 0.3446 0.2905

From Fig. 10.5 and Table 10.5, it can be seen that the time between each peak for the
simulation is very reminiscent of the experiment with almost no phase shift.
It can be concluded that the DGCM simulation gives an accurate estimation of the first
three pressure peaks and a behaviour reminiscent of the experimental data. However,
more data is need to ensure that the damping is described properly.
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Figure 10.6: Deviation from the experimental data.
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11. Discussion

Comparing the results of the single phase water hammer experiment (Case 1) with sim-
ulation results showed that the best results are obtained by MOC combined with the
friction model suggested by Brunone. It can also be seen that the behaviour of the
pressure history with the model suggested by Brunone is similar to the one obtained
with quasi-steady friction just damped. This seems to imply that the behaviour of the
pressure wave is not necessarily modelled correctly, but that the dampening coefficient
suggested by Vardy & Brown gives a good approximation of the friction. It can also be
seen that the CFD results and the results obtained by MOC with the friction model sug-
gested by Vardy & Brown have similar behaviour. Initially the CFD and friction model
suggested by Vardy & Brown give near identical results, but as time increases they start
to differ with the results obtained by CFD giving the best results. It is known that
the assumption that the turbulent viscosity is constant can cause the Vardy & Brown
friction model to initially give good results, but as time increases lead to discrepancies
[38]. Perhaps this can partly explain why CFD and Vardy & Brown give similar results
initially and start to differ with increasing time as the turbulent viscosity is updated in
CFD.
The valve closure is usually modelled with Eq. 5.31 in MOC and as MOC is one di-
mensional the velocity is constant over the entire valve. In CFD the same valve closure
is implemented with two different boundary conditions. As a mass outlet and a veloc-
ity inlet and the resulting velocity profiles are illustrated in Fig. 6.2. Both boundary
conditions results in similar pressures when compared to the MOC and experiments.
Therefore, it is concluded that the reverse ”velocity-inlet” boundary condition is valid,
if only the pressure is of interest. If the flow features at the valve is also of interest the
valve should be modelled more accurately.
In CFD the fluid and wall interaction is implemented via the modified bulk modulus
in Eq. 6.12. This implementation seems to be sufficient to model a water event as the
pressure amplitudes and wave speed are close to the experimental values. Other methods
could be used such as actually modelling the wall and fluid interaction by fluid structure
interaction, if the wall behaviour is also of interest.

In two phase MOC, two different models are investigated: The DVCM and DGCM.
With these two models, three different friction models are applied. To make sure that
the solution has converged, a grid independency analysis is conducted. The first param-
eter investigated is the weighting factor, ψ, and the optimum value is decided from a grid
consisting of 24 reaches. It is assumed that the optimal weighting factor at 24 reaches
is the optimal value for every grid. This could potentially be incorrect and cause some
extra oscillations, that another choice of weighting factor could have avoided. But be-
cause of the amount of data that otherwise would have been needed to be processed, this
method was chosen. From the chosen values it can be seen that the quasi-steady friction
generally needs a larger weighting function than the friction models suggested by Vardy
& Brown and Brunone. A likely explanation for this is that the quasi-steady friction is
known to underestimate the friction, causing the pressure to be at vapour pressure for

94



more low pressure zones. It is also found that the optimal number of reaches is around
24-48 reaches for all cases except for the quasi-steady friction model in Case 2, where
96 reaches is the optimal amount of reaches. Another parameter that has been observed
is the void fraction at the valve. For the quasi-steady friction model, the void fraction
at the valve increases with increasing reaches in all the experiments. For the friction
model suggested by Brunone, there does not seem to be any clear correlation between
number of reaches and the size of the void fraction in any of the experiments. For the
friction model suggested by Vardy & Brown, there is an increase in the vapour void
fraction in all experiments, except for in case 2 using DGCM. For all the experiments
for both two phase models, it is the friction model suggested by Vardy & Brown that
gives the best results. This seems to agree with the results from the conclusions of the
9th semester project, where it was concluded that the Vardy & Brown friction model is
the most versatile and generally most accurate friction model for single phase flows [1].
This also indicates that the assumption, that only the skin friction between the liquid
and the wall is taken into account is valid for these void fractions.

The grid independency analysis of the CFD model is only conducted for Case 2, as
there are troubles with simulating Case 3 and 4. The grids tested consisted of 3000,
12000, 48000, and 192000 cells. As the number of cells are increased some of the flow
features disappear that are present in the experiment, but the CFD model seems to have
converged with 48000 cells. A test of three turbulence models, the Realizable k − ε, the
Standard k − ω, and SST k − ω model have been made, and it was seen that all of the
models gave almost identical results. The continuity residuals of the CFD models in the
low pressure zones for each experiment are higher than in the high pressure zones. This
indicates that there might be some convergence problems with the cavitation models.
For case 2, the continuity residuals converge to a satisfactory level, while for Case 3 and
4, they converged to high values, providing inaccurate solutions. This could possibly
be the reason for the overestimation of the low pressure zones in Case 3 and 4, which
in turn causes the overestimation of the pressure. Another cavitation model, than the
one suggested by Schnerr and Saur, was also tested, but the results obtained by Swart-
Berber-Belamri gave even more inaccurate results. It is possible that the cavitation
models converge better with a decrease in time step size, but this was not possible due
to the length of the simulations and time restraints.

For Case 2, all the models gave satisfying results. For the second peak the best re-
sults were obtained by CFD followed by DVCM and DGCM. The third peak in the
experimental data are larger than the second peak. This is surprising since the time
the pressure is at vapour pressure is shorter for the third pressure peak than for the
second peak. None of the models can predict the pressure of the third peak, but results
obtained on second peak with DVCM were closest to the third peak of the experiment
while still overestimating the pressure. Therefore, from the engineering point of view
the DVCM model is chosen as the best model.
For Case 3, only DVCM and DGCM gave satisfying results. The DGCM model had some
advantages compared to the DVCM model. It models the peaks from high pressure zone
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2-4, which is the peaks after the vapour pressure has been attained in the underpressure,
more accurately than the DVCM model. The DGCM model also accurately model the
oscillation. This means that the assumption of a constant small vapour bubble gives
significantly better results.
For Case 4, only DGCM gave satisfying results. Since the void fraction at the pipe
for this experiment is significantly higher than for the other experiments it seems that
the DVCM has some problems with large void fractions. Therefore, if large void frac-
tions are expected the DGCM model is preferred. The void fraction of both DGCM
and DVCM had a strange behaviour of decreasing while still at vapour pressure in the
first low pressure zone. For the two nodes for the CFD simulation, this behaviour was
not present and the void fraction only decreased after the pressure was increased above
vapour pressure. Therefore, it was unfortunate that the residuals of the momentum
equation were large since the development intuitively seems more realistic than the ones
obtained with DVCM and DGCM.
Another parameter that is of interest, when comparing DVCM, DGCM and CFD, is the
calculation time. The calculation time with DVCM and DGCM are both in the range
of seconds to minutes depending on the grid, where the calculation time for CFD is in
the range of days or weeks. Therefore, it is clear that the DVCM and DGCM have a
clear advantage, especially when also taking the robustness into account.

The Rayleigh-Plesset equation was not implemented in a 1D model because of the diffi-
culties explained in Sec. 8.3 and time constraints. A reason why it would be interesting
to implement the Rayleigh-Plesset equation in either MOC or other methods is that
perhaps it would have the same behaviour of the void fraction obtained by the CFD
model for Case 4 and avoid the behaviour of DVCM and DGCM. The thought behind
this is, that the cavitation model used in CFD is based on a simplified Rayleigh-Plesset
equation with mass transfer.
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12. Conclusion

In the first part, a single phase water hammer is modelled with MOC using the quasi-
steady, Vardy & Brown, and Brunone friction models and with a CFD model. These
models are compared to experimental data collected by Soares et al. [8] (Case 1). This
comparison was done to ascertain that the boundary conditions of the CFD model were
correct and see how it performed compared to MOC models. The comparison showed
that the MOC utilizing the Brunone friction model outperformed the more advanced
MOC model utilizing the Vardy & Brown friction model as well as the CFD model.
Additionally, it was verified that the choice in boundary conditions gave no difference in
pressure.
In the second part, three water hammer experiments performed by Soares et al. (Case
2) and Bergant et al. (Case 3 and 4) are modelled by the two phase MOC models
DVCM and DGCM as well as a two phase CFD model. Additionally, both DVCM and
DGCM are tested with the three friction models also tested in Case 1. For both DVCM
and DGCM the friction model suggested by Vardy & Brown gave the best results in all
three cases. It was attempted to implement the Rayleigh-Plesset equation, however a
number of complications were observed and these would have to be addressed in order
to continue the work.
In Case 2 the DVCM is chosen as the best model as it is the model that has the small-
est deviation while overestimating the maximum pressure and giving the overall best
description of the pressure from peak 4 and onwards compared to the experiment. The
CFD model gave the second best results followed by the DGCM model.
In Case 3 only the DVCM and DGCM models gave satisfying results. In this case it
was the DGCM model that gave the best results. The DGCM model outperformed
the DVCM model when comparing the estimation of the pressure and in predicting the
timing of the oscillation. CFD did not produce proper results and it is expected to be
because of improper time step sizes.
In Case 4 satisfying results was only obtained with the DGCM model. The DGCM
model produced an accurate estimation of the pressure and of the timing of the oscilla-
tion. The reason for the DVCM model not giving proper results is believed to be due to
the high void fractions in this case.
Therefore, the overall best two phase water hammer model is the DGCM model as it is
robust as it can handle large void fractions (largest void fraction seen in this study is
about 15%). It also gave an accurate estimation of the pressure while never underesti-
mating it.
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Appendix

A. Rayleigh-Plesset Equation Derivation

The full derivation of the Rayleigh-Plesset equation, Eq. (8.4), from the conservation of
mass and momentum for a bubble experiencing cavitation is presented in this appendix.
In Fig. A.1 a single bubble surrounded by liquid is illustrated.

Figure A.1: On the left side is illustrated the bubble in a liquid and on the right a slice
of the bubble interface. [4]

A.1. Mass Conservation

Conservation of mass requires that the radial outward velocity, u(r, t), is inversely pro-
portional to the square of distance from the center of bubble.

u(r, t) =
F (t)

r2
(A.1)

Where F (t) is a function that is related to the radius at the bubble/liquid interface.
Therefore to determine F (t), the radial outward velocity at R, u(R, t), must be deter-
mined. The first step is to write the mass conservation of the bubble. Which is the
change in mass of the vapour equal to the change in mass of the liquid, as in Eq. (A.2).

dmv

dt
=
dml

dt
(A.2)

Where mv is the vapour mass and ml is the liquid mass. The change in the mass of
vapour must be related to the change in bubble volume, as in Eq. (A.3), and the change
in the mass of liquid is related to the liquid flow through the bubble interface, as in Eq.
(A.4).

dmv

dt
= ρv

dVv
dt

= 4πρvR
2dR

dt
(A.3)

dml

dt
= ρlAul = 4πρlR

2ul (A.4)

101



Solving for ul in Eq. (A.2) yields:

ul =
ρv
ρl

dR

dt
(A.5)

Then u(R, t) is:

u(R, t) =
dR

dt
− ρv
ρl

dR

dt
=

(
1− ρv

ρl

)
dR

dt
(A.6)

Then F (t) is:

F (t) = R2u(R, t) =

(
1− ρv

ρl

)
R2dR

dt
(A.7)

Then it can been seen that if ρv << ρl, as is normal for vapour and water, Eq. (A.7)
simplifies to:

F (t) = R2dR

dt
(A.8)

Inserting Eq. (A.8) into (A.1) yields:

u(r, t) =
R2

r2

dR

dt
(A.9)

A.2. Momentum Conservation

The Navier-Stokes equation for motion in the radial direction is:

ρl

(
∂u

∂t
+ u

∂u

∂r

)
= −∂P

∂r
+ µl

(
1

r2

∂

∂r

(
r2∂u

∂r

)
− 2u

r2

)
(A.10)

Rearranging Eq. (A.10) so that the pressure term is isolated:

− ∂P

∂r
= ρl

(
∂u

∂t
+ u

∂u

∂r

)
− µl

(
1

r2

∂

∂r

(
r2∂u

∂r

)
−2u

r2

)
(A.11)

Utilizing that the total derivative of u(R, t) is equal to ∂u
∂t = ∂u

∂t + dR
dt

∂u
∂R and inserting u

from Eq. (A.9) into Eq. (A.11) yields:

− ∂P

∂r
= ρl

(
R2

r2

d2R

dt2
+

2R

r2

(
dR

dt

)2

− 2R4

r5

(
dR

dt

)2
)

(A.12)

Note that with the substitution of u the viscous terms cancel out. Then integrating
Eq. (A.12) from R to infinitely far away from the bubble, as in Eq. (A.13), yields Eq.
(A.14).

−
∫ P (∞)

P (R)
dP = ρl

∫ ∞
R

(
R2

r2

d2R

dt2
+

2R

r2

(
dR

dt

)2

− 2R4

r5

(
dR

dt

)2
)
dr (A.13)

P (R)− P∞ = ρl

(
R
d2R

dt2
+

3

2

(
dR

dt

)2
)

(A.14)
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A.3. Bubble Boundary Condition

The last thing needed is to evaluate the boundary condition at the bubble interface. If
it is assumed that the bubble interface is infinitely thin and there is no mass transfer
across the interface, then the net force per area acting at the interface is:

σrr(R) + PB −
2S

R
= 0 (A.15)

Where PB is the internal bubble pressure, S is the surface tension and σrr(R) is the
normal stress evaluated at R pointing out radially from the bubble center. σrr(R) is
defined as in Eq. (A.16).

σrr(R) = −P (R) + 2µl
∂u

∂r r=R
= −P (R)− 4µl

R

dR

dt
(A.16)

Inserting the result of Eq. (A.16) into Eq. (A.15) and solving for P (R) yields:

P (R) = PB −
4µl
R

dR

dt
− 2S

R
(A.17)

Then the last step to get the Rayleigh-Plesset equation is substituting P (R) from Eq.
(A.17) into Eq. (A.14).

ρ

(
R
d2R

dt2
+

3

2

(
dR

dt

)2
)

= PB − P∞ −
2S

R
− 4µ

R

dR

dt
(A.18)
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B. User Defined Function

1 #inc lude ”udf . h”
2

3 DEFINE PROFILE( Veloc ity magnitude , t , i )
4 {
5 r e a l v e l o c i t y ;
6 r e a l th e cu r r en t t ime ;
7 f a c e t f ;
8

9 th e cu r r en t t ime = CURRENTTIME;
10

11 i f ( ( th e cu r r en t t ime >= 0) && ( the cu r r en t t ime < 0 .018 ) )
12 {
13 v e l o c i t y =−0.4966∗(1−pow( ( th e cu r r en t t ime /0 .018) ,5 ) ) ;
14 }
15 i f ( ( the cur r ent t ime >=0.018) )
16 {
17 v e l o c i t y =0;
18 }
19

20

21 b e g i n f l o o p ( f , t )
22 {
23 F PROFILE( f , t , i ) = v e l o c i t y ;
24 }
25 end f l o op ( f , t )
26 }
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C. Grid Independency Analysis

C.1. Bergant et al. - Low Velocity Experiment

The grid independency analysis was performed on meshes with 6, 12, 24, 48, 96, and 192
reaches respectively for each friction model for each two phase model. For the analysis,
three parameters were investigated, the head at the valve over time, the void fraction at
the valve over time, and the total amount of vapour/gas in the pipe over time. As with
Case 2, there can be problems with an increased amount of vapour/gas as the number
of reaches increases.
In Table C.1, it is possible to see which mesh has been chosen for each friction model,
with their corresponding two phase model. It can be seen that DVCM with Brunone,
DVCM with Vardy & Brown, and DGCM with Vardy & Brown requires 48 reaches while
the remaining combinations use the recommended mesh.

Table C.1: Number of reaches in the appropriate mesh for each friction model.

Friction models DVCM DGCM

Quasi-steady 24 24

Brunone 48 24

Vardy & Brown 48 48
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For DVCM with the quasi-steady friction model (see Fig. C.1), the mesh with 24 reaches
was chosen because of a lack of double peaks on high pressure zone 4-7. The reason for
this lack being deemed more accurate, is because there is no consistency in when the first
of each double peaks happens on the high pressure zone, and what size they have. When
looking at α, it can be seen that as the number of reaches increase, the void fraction
increases. However, the total amount of vapour in the pipe is relatively constant when
the number of reaches increase, which could indicate that more of the vapour is formed
in the valve, when a higher number of reaches is used.

Figure C.1: Grid independency analysis of Case 3 with DVCM using the quasi-steady
friction model.
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For DVCM with Brunone’s unsteady friction model (see Fig. C.2), the mesh with 48
reaches was chosen because of a relatively small difference in head and total vapour
volume between the mesh with 24, 48, and 96 reaches. It was observed that the first
peak on the third high pressure became smaller and smaller as the amount of reaches
increased and it was therefore chosen to use the mesh with 48 reaches rather than 24
reaches, because this first peak was way smaller than for 24 reaches. When looking
at α, there were no consistency for what happened when the number of reaches were
increased. An increase was seen when the number of reaches was increase from 6 to
48 reaches, however this was followed by a decrease for 96 reaches. For 192 reaches,
an increase was seen again, but the behaviour of the void fraction increase over time
was also different compared to the other meshes. Despite the inconsistency in α, the
total amount of vapour still remained relatively constant when the amount of reaches
increased.

Figure C.2: Grid independency analysis of Case 3 with DVCM using Brunone’s unsteady
friction model.
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For DVCM with Vardy & Brown’s unsteady friction model (see Fig. C.3), the mesh with
48 reaches was chosen. The mesh with 24 reaches was not chosen because it had a lower
head at most of the peaks compared to the mesh with 48, 96, and 192 reaches. The mesh
96 and 192 reaches were not chosen because they both had an extra peak on the third and
fourth high pressure zone, which was not seen in any of the other meshes. When looking
at α, it was seen that as the amount of reaches increased, the size of α also increased,
which was also seen in DVCM using the quasi-steady friction model. However, the total
amount of vapour in the pipe still remained relatively constant, which indicates that
more vapour is formed at the valve as the number of reaches increase. This behaviour
for Vardy & Brown’s unsteady friction model was also seen for the other unsteady friction
models, which were used in the previous work (Zielke and Zarzycki), which was also seen
for Case 2.

Figure C.3: Grid independency analysis of Case 3 with DVCM using Vardy & Brown’s
unsteady friction model.
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For DGCM with the quasi-steady friction model (see Fig. C.4), the mesh with 24 reaches
was chosen because it had many features from the mesh with 48, 96, 192 reaches, while
not having a very large peak on the fifth and sixth high pressure zone. The mesh with
12 reaches was not chosen because it had a phase shift not seen on any of the other.
The mesh with 48 and 192 reaches was not chosen because they had a very large peak
on the fifth high pressure zone, which is very late for such a high pressure peak. The
mesh with 96 reaches was not chosen because it had a similar peak, which happened at
the sixth high pressure zone. When looking at α, the same tendency as for DVCM using
quasi-steady friction was observed, however with significantly less numerical oscillation.
Again, it was also seen that the total gas volume in the pipe remained relatively constant.

Figure C.4: Grid independency analysis of Case 3 with DGCM using the quasi-steady
friction model.
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For DGCM with Brunone’s unsteady friction model (see Fig. C.5), the mesh with 24
reaches was chosen because there were no clear convergence for the head. It was seen that
as the number of reaches increased, the amount of damping between each high pressure
zone increased. The reason for choosing the mesh with 24 reaches over the others is
because it had the highest head at four out of six high pressure zones (not including the
first high pressure zone). The two high pressure zones where the mesh with 24 reaches
was not highest is the third and fourth, were the mesh with 6 reaches have the highest
head. When looking at α, the same tendency as for DVCM using Brunone’s unsteady
friction model was observed, i.e. no consistency in size when the number of reaches
increased, but with less numerical oscillation. The same tendency was also observed for
the total amount of gas in the pipe, which remained relatively constant as the number
of reaches increased.

Figure C.5: Grid independency analysis of Case 3 with DGCM using Brunone’s unsteady
friction model.
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For DGCM with Vardy & Brown’s unsteady friction model (see Fig. C.6), the mesh with
48 reaches was chosen because of relatively small difference in head and the total gas
volume between the mesh with 48, 96, and 192 reaches. The mesh with 24 reaches was
not chosen because it had two peaks on each high pressure zone after the second high
pressure zone, which was not seen for any of the other meshes. When looking at α, the
same tendency as for DVCM, using Vardy & Brown, was observed, where α increases as
the number of reaches increase. However, for DGCM, there is significantly less numerical
oscillation. The same tendency was also observed for the total gas volume in the pipe,
with a relatively constant amount as the number of reaches increase.
The behaviour for DGCM using Vardy & Brown’s unsteady friction model was, as with
DVCM, the same for the other unsteady friction models used in the previous work. This
supports the conclusion from Sec. 7.3.1, that the choice of convolution based unsteady
friciton model is of less importance when modelling a two phase water hammer.

Figure C.6: Grid independency analysis of Case 3 with DGCM using Vardy & Brown’s
unsteady friction model.

The friction models, with the chosen mesh, are compared for DVCM and DGCM respec-
tively in Sec. 7.4.1.
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C.2. Bergant et al. - High Velocity Experiment

The grid independendcy analysis was performed on meshes with 6, 12, 24, 48, 96, and
192 reaches for Brunone and Vardy & Brown using DGCM. For the analysis, three pa-
rameters were investigated, the head at the valve over time, the void fraction at the valve
over time, and the total amount of gas in the pipe over time. As with Case 2, there can
be problems with an increased amount of gas as the number of reaches increases.
In Table 7.14 it is possible to see which mesh has been chosen for Brunone and Vardy
& Brown. It can be seen that both friction models uses the recommended mesh.

Table C.2: Number of reaches in the appropriate mesh for each friction model.

Friction models DGCM

Brunone 24

Vardy & Brown 24

For DGCM using Brunone’s unsteady friction model (see Fig. C.7), the mesh with 24
reaches was chosen because of a relatively small difference in head and the total gas
volume between the mesh with 24, 48, 96, and 192 reaches. The mesh with 12 reaches
was not chosen because it had higher head at the second and third high pressure zones.
When looking at α, the same strange behaviour as described in Sec. 7.5 can be seen and
it is unknown if the behaviour for 24 or 48 reaches is the correct behaviour. There is
a relatively high void fraction for the mesh with 6 and 24 reaches (maximum at 0.366),
while the mesh with 12 reaches is below 0.2. The other 3 meshes are all below 0.14. For
the total amount of gas in the pipe, all mesh sizes have relatively similar values for the
first cavitation zone, with varying degree of numerical oscillation.
For DGCM using Vardy & Brown’s unsteady friction model (see Fig. C.8), the mesh
with 24 reaches was chosen because of relatively small difference in head and the total
gas volume between the mesh with 24 and 48 reaches. The mesh with 96 and 192 reaches
were not considered because they had a too high void fraction. The mesh with 12 reaches
was not chosen because of the amount of numerical oscillation present on the third high
pressure zone. When looking at α, it can be seen that the void fraction increases when
the number of reaches is increased. However, the total amount of gas in the pipe remains
relatively constant, not accounting for the extreme amount of numerical oscillation in
the mesh with 48 reaches.
The friction models, with the chosen mesh, are compared for DVCM and DGCM respec-
tively in Sec. 7.5.1.
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Figure C.7: Grid independency analysis of Case 4 with DGCM using Brunone’s unsteady
friction model.
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Figure C.8: Grid independency analysis of Case 4 with DGCM using Vardy & Brown’s
unsteady friction model.
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D. Matlab code

Start

Import settings
and parameters

Calculating steady
state conditions

Setting i = 2 and j = 1

Calculate in-
terior node i

i = n− 1

Setting i = i + 1

Calculate boundaries

Calculate accelerations

j = nt

Setting i = 2
and j = j + 1

Outputting data

End

No

Yes

No

Yes

Figure D.1: Flow chart of the MOC code in Matlab.
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Master

1 %−%−%−%−% MASTER %−%−%−%−%
2 c l e a r
3 c l c
4

5 %% Sta r t i ng t imer
6 t i c
7

8 %% Adding f o l d e r s to d i r e c t o r y
9 addpath ( ’ Funct ions ’ , ’ Output ’ , ’ So lve r ’ , ’ So lve r \Boundary ’ , . . .

10 ’ So lve r \ In t e r i o rNodes ’ , ’ So lve r \SteadyState ’ , ’ Output\Plot ’ , ’ Input ’ )
11

12 %% Spec i f y Input F i l e
13 %Input
14 %Input OnePhase Traudt
15 %Input OnePhase Covas
16 %Input OnePhase Adamkowski
17 %Input OnePhase Soares
18 %Input TwoPhase Soares DVCM
19 Input TwoPhase Soares DGCM
20 %Input TwoPhase Bergant Low DVCM
21 %Input TwoPhase Bergant Low DGCM
22 %Input TwoPhase Bergant High DVCM
23 %Input TwoPhase Bergant High DGCM
24

25 %% Calcu la t ing the s i z e and number o f the reaches and time s t ep s .
26 % Trave l l i ng time f o r the p r e s su r e wave , from downstream to upstream
27 t t r a v = L/a ;
28 % Time step s i z e [ s ]
29 dt = t t r a v /Reaches ;
30 % Maximum time [ s ]
31 t max = 4∗Os c i l l a t i o n s ∗ t t r a v ;
32 % Reach length ( d i s t ance between nodes ) [m]
33 dx = a∗dt ;
34 % Number o f time s t ep s [− ]
35 n t = round ( t max/dt + 1) ;
36 % Number o f nodes [− ]
37 n = round (L/dx + 1) ;
38

39 %% Calcu la t ing the weight ing func t i on f o r unsteady f r i c t i o n
40 W = 0;
41 switch Fr ic t ion Type
42 case ’ Uns t eady Fr i c t i on Z i e l k e ’
43 W = WeightFuncZielke ( v i s c o s i t y , dt ,D, rho , n t ) ;
44 case ’ Unsteady Friction VardyBrown ’
45 W = WeightFuncVardyBrown ( v i s c o s i t y , dt , D, rho , Re 0 , n t ) ;
46 case ’ Uns teady Fr i c t i on Zarzyck i ’
47 W = WeightFuncZarzycki ( v i s c o s i t y , dt , D, rho , Re 0 , n t ) ;
48 end
49

50 %% Solve r
51 switch So lve r
52 case ’ 1D SinglePhase ’
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53 So lve r S ing l ePhase
54 case ’ 1D TwoPhase DVCM ’
55 Solver DVCM
56 case ’ 1D TwoPhase DGCM ’
57 Solver DGCM
58 end
59

60 %% Disp lay ing and s t o r i n g the c a l c u l a t i o n time
61 toc
62 % Calcu la t i on time [ s ]
63 t c a l = toc ;
64

65 %% Output
66 Output

Input

1 %% Choose Solver , Boundary Condit ions , Wave Speed method and Fr i c t i on Type
2 % Choose s o l v e r :
3 % 1) 1D SinglePhase
4 % 2) 1D TwoPhase DVCM
5 % 3) 1D TwoPhase DGCM
6 So lve r = ’ 1D TwoPhase DGCM ’ ;
7

8 % Choose upstream boundary cond i t i on :
9 % 1) Rese rvo i r

10 Upstream boundary = ’ Rese rvo i r ’ ;
11

12 % Choose downstream boundary cond i t i on :
13 % 1) Va lve Ins tantaneous Closure
14 % 2) Va lve Trans i ent Closure
15 Downstream boundary = ’ Va lve Trans i ent Closure ’ ;
16

17 % Choose wave speed method : a l r eady known or need c a l c u l a t i o n :
18 % 1) WaveSpeed Known
19 % 2) WaveSpeed Calculate
20 WaveSpeed Type = ’WaveSpeed Calculate ’ ;
21

22 % Choose f r i c t i o n type :
23 % 1) Pr e s c r i b ed S t e ady S t a t e F r i c t i on ( i n s e r t va lue in f p r e )
24 % 2) S t eady S ta t e F r i c t i on
25 % 3) Quas i S t eady Fr i c t i on
26 % 4) Unsteady Frict ion Brunone
27 % 5) Uns t eady Fr i c t i on Z i e l k e
28 % 6) Unsteady Friction VardyBrown
29 % 7) Unsteady Fr i c t i on Zarzyck i
30 Fr ict ion Type = ’ Unsteady Friction VardyBrown ’ ;
31

32 %% Mesh
33 % Number o f d i v i s i o n s o f the pipe [− ]
34 Reaches = 48 ;
35 % One o s c i l l a t i o n i s f our t imes the t r a v e l i n g time o f the p r e s su r e wave [− ]
36 Os c i l l a t i o n s = 20 ;
37
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38 %% Univer sa l Constants
39 % Grav i t a t i ona l a c c e l e r a t i o n [m/ s ˆ2 ]
40 g = 9 . 8 ;
41

42 %% Pipe Dimensions and Parameters
43 % Length o f pipe [m]
44 L = 15 . 2 2 ;
45 % Diameter o f p ipe [m]
46 D = 0 . 0 2 ;
47 % Cross s e c t i o n a l area o f p ipe [mˆ2 ]
48 A = pi ∗ Dˆ2/4 ;
49 % Thickness o f p ipe [m]
50 e = 0 . 0 0 1 ;
51 % Young ’ s modulus [ Pa ]
52 E = 120E9 ;
53 % Absolute roughness [m]
54 roughness = 0.0015E−3;
55 % Poisson ’ s r a t i o [− ]
56 nu p = 0 . 3 5 ;
57 % Angle o f i n c l i n a t i o n [ deg ]
58 theta = 0 ;
59

60 %% Fluid Prope r t i e s
61 % Density o f water [ kg/mˆ3 ]
62 rho = 998 . 2 ;
63 % Bulk modulus o f water [ Pa ]
64 K = 2.2E9 ;
65 % Dynamic v i s c o s i t y [ kg/m∗ s ]
66 v i s c o s i t y = 1.002E−3;
67

68 switch So lve r
69 case ’ 1D TwoPhase DVCM ’
70 % Vapour p r e s su r e in p i e zomet r i c head [m]
71 H vap = 0 .10793 ;
72 % Barometric p r e s su r e head [m]
73 H b = 101325/( rho∗g ) ;
74 % Vapour p r e s su r e in gauge p i e zomet r i c head [m]
75 H v = H vap − H b ;
76 case ’ 1D TwoPhase DGCM ’
77 % Saturat ion pr e s su r e in p i e zomet r i c head [m]
78 H sat = 0 . 10793 ;
79 % Barometric p r e s su r e head [m]
80 H b = 101325/( rho∗g ) ;
81 % Saturat ion pr e s su r e in gauge p i e zomet r i c head [m]
82 H v = H sat − H b ;
83 % Void f r a c t i o n at r e f e r e n c e p r e s su r e [− ]
84 a lpha 0 = 1e−7;
85 end
86

87 %% Weighting f a c t o r f o r DVCM and DGCM
88 % Weighting f a c t o r [− ]
89 p s i = 0 . 5 5 ;
90

91 %% Flow Inputs
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92 % I n i t i a l f low v e l o c i t y [m/ s ]
93 u 0 = 0.156 e−3/A;
94 % I n i t i a l vo lumetr i c f low ra t e [mˆ3/ s ]
95 Q 0 = u 0∗A;
96 % I n i t i a l Reynolds number [− ]
97 Re 0 = rho∗u 0∗D/ v i s c o s i t y ;
98

99 %% Upstream r e s e r v o i r / I n i t i a l head
100 % Height / p r e s su r e o f the r e s e r v o i r [m]
101 H r = 46 ;
102

103 %% Downstream valve
104 % Clos ing time o f va lve [ s ]
105 t c = 18/1000;
106

107 switch Downstream boundary
108 case ’ Va lve Ins tantaneous Closure ’
109 % Valve c l o s u r e c o e f f i c i e n t [− ]
110 m = 0 ;
111 case ’ Va lve Trans i ent Closure ’
112 % Valve c l o s u r e c o e f f i c i e n t [− ]
113 m = 5 ;
114 end
115

116 %% Wave speed − pure l i q u i d
117 switch WaveSpeed Type
118 case ’WaveSpeed Calculate ’
119 % Speed o f the p r e s su r e wave [m/ s ]
120 a = WaveSpeed ( e ,D,K, rho ,E, nu p ) ;
121 case ’WaveSpeed Known ’
122 % Speed o f the p r e s su r e wave [m/ s ]
123 a = 1200 ;
124 end
125

126 %% Presc r ibed steady s t a t e f r i c t i o n c o e f f i c i e n t ( do not remove or hide )
127 % Presc r ibed steady s t a t e f r i c i o n c o e f f i c i e n t [− ]
128 f p r e = 0 ;

WaveSpeed

1 f unc t i on a = WaveSpeed ( e , D, K, rho , E, nu p )
2 %% Calcu la t i on o f c 1
3 % The p i p e l i n e i s anchored aga in s t l o n g i t ud i n a l movement
4 i f D/e < 25
5 % Constant [− ]
6 c 1= 2∗ e/D∗(1 + nu p ) + D∗(1−nu p ˆ(2) ) /(D + e ) ;
7 e l s e
8 % Coe f f i c i e n t [− ]
9 c 1=1−nu p ˆ(2) ;

10 end
11

12 %% Calcu la t i on o f the wave speed
13 % Wave speed [m/ s ]
14 a = sq r t (K/rho ) / sq r t (1+(K∗D/(E∗e ) ) ∗ c 1 ) ;
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15

16 end

WeightingFuncVardyBrown

1 f unc t i on W = WeightFuncVardyBrown ( v i s c o s i t y , dt , D, rho , Re 0 , n t )
2 %% Vardy and Brown ’ s we ight ing func t i on
3 % Dimens ion les s time step [− ]
4 dtau = 4∗ v i s c o s i t y ∗dt /(Dˆ2∗ rho ) ;
5 % Constant [− ]
6 A star = 1/(2∗ s q r t ( p i ) ) ;
7 % Constant [− ]
8 Kappa = log10 (15 .29∗Re 0 ˆ(−0.0567) ) ;
9 % Constant [− ]

10 B star = Re 0ˆKappa /12 . 8 6 ;
11

12 f o r j = 1 : n t−2
13 % Dimens ion les s time [− ]
14 tau ( j ) = j ∗dtau − 0 .5∗ dtau ;
15 % Weighting func t i on [− ]
16 W( j ) = A star ∗ exp(−B star ∗ tau ( j ) ) / sq r t ( tau ( j ) ) ;
17 end
18 end

Solver SinglePhase

1 %% I n i t i a l i z e matr i ce s to reduce c a l c u l a t i o n time
2 % Volumetric f low ra t e [mˆ3/ s ]
3 Q(1 : n , 1 : n t ) = 0 ;
4 % Piezometr i c head [m]
5 H(1 : n , 1 : n t ) = 0 ;
6 % Time [ s ]
7 t ( 1 : n t ) = 0 ;
8 % Height from datum [m]
9 z ( 1 : n) = 0 ;

10 % Volumetric f low ra t e a c c e l e r a t i o n [mˆ3/ s ˆ2 ]
11 dQ(n , n t−2) = 0 ;
12

13 %% Calcu la t ing the o f f s e t o f each node from the datum ( r e f e r e n c e he ight )
14 % i i nd i c a t e node number [− ]
15 f o r i = 1 : n
16 % Height from datum [m]
17 z ( i ) = ( i −1)∗dx∗ s ind ( theta ) ;
18 end
19

20 %% Steady State
21 [Q, H] = SteadyState (Q 0 , H r , rho , D, v i s c o s i t y , a , A, roughness , g , . . .
22 dx , Q, H, n , theta , Fr ict ion Type , f p r e ) ;
23

24 %% Trans ient f low
25 % j i nd i c a t e time step number [− ]
26 f o r j = 2 : n t
27 % Time [ s ]
28 t ( j ) = t ( j−1) + dt ;
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29

30 %% In t e r i o r Nodes
31 f o r i = 2 : n−1
32 [Q( i , j ) , H( i , j ) ] = In t e r i o rNode s S ing l ePhase ( a , g , A, rho , D , . . .
33 v i s c o s i t y , roughness , dx , theta , Q( i −1, j−1) , H( i −1, j−1) , . . .
34 Q( i +1, j−1) , H( i +1, j−1) , Q, Re 0 , i , j , dt , Fr ict ion Type , . . .
35 Q 0 , f p r e , W, dQ, n t ) ;
36 end
37

38 %% Upstream Boundary
39 switch Upstream boundary
40 case ’ Rese rvo i r ’
41 [Q(1 , j ) , H(1 , j ) ] = Reservoir Upstream (a , g , A, rho , D, dx , . . .
42 v i s c o s i t y , roughness , theta , Q(2 , j−1) , H(2 , j−1) , H r , . . . .
43 Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ, n t ) ;
44 end
45

46 %% Downstream Boundary
47 switch Downstream boundary
48 case ’ Va lve Ins tantaneous Closure ’
49 [Q(n , j ) , H(n , j ) ] = Valve Closure ( a , g , A, D, dx , roughness , . . .
50 rho , v i s c o s i t y , t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , . . .
51 Q(n−1, j−1) , H(n−1, j−1) , Q, Re 0 , i , j , dt , . . .
52 Frict ion Type , f p r e , W, dQ, n t ) ;
53 case ’ Va lve Trans i ent Closure ’
54 [Q(n , j ) , H(n , j ) ] = Valve Closure ( a , g , A, D, dx , roughness , . . .
55 rho , v i s c o s i t y , t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , . . .
56 Q(n−1, j−1) , H(n−1, j−1) , Q, Re 0 , i , j , dt , . . .
57 Frict ion Type , f p r e , W, dQ, n t ) ;
58 end
59

60 %% Calcu la t ing the change in vo lumetr i c f low ra t e f o r unsteady f r i c t i o n
61 switch Fr ic t ion Type
62 case ’ Uns t eady Fr i c t i on Z i e l k e ’
63 i f j<n t
64 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
65 end
66 case ’ Unsteady Friction VardyBrown ’
67 i f j<n t
68 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
69 end
70 case ’ Uns teady Fr i c t i on Zarzyck i ’
71 i f j<n t
72 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
73 end
74 end
75 end

Solver DVCM

1 %% I n i t i a l i z e matr i ce s to reduce c a l c u l a t i o n time
2 % Volumetric f low ra t e [mˆ3/ s ]
3 Q u ( 1 : n , 1 : n t ) = 0 ;
4 % Volumetric f low ra t e [mˆ3/ s ]
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5 Q(1 : n , 1 : n t ) = 0 ;
6 % Piezometr i c head [m]
7 H(1 : n , 1 : n t ) = 0 ;
8 % Time [ s ]
9 t ( 1 : n t ) = 0 ;

10 % Height from datum [m]
11 z ( 1 : n) = 0 ;
12 % Volumetric f low ra t e a c c e l e r a t i o n [mˆ3/ s ˆ2 ]
13 dQ(n , n t−2) = 0 ;
14 % Vapour cav i ty volume [mˆ3 ]
15 V cav ( 1 : n , 1 : n t ) = 0 ;
16

17 %% Calcu la t ing the o f f s e t o f each node from the datum ( r e f e r e n c e he ight )
18 % i i nd i c a t e node number [− ]
19 f o r i = 1 : n
20 % Height from datum [m]
21 z ( i ) = ( i −1)∗dx∗ s ind ( theta ) ;
22 end
23

24 %% Steady State
25 [Q, H] = SteadyState (Q 0 , H r , rho , D, v i s c o s i t y , a , A, roughness , g , . . .
26 dx , Q, H, n , theta , Fr ict ion Type , f p r e ) ;
27 Q u ( : , 1 ) = Q( : , 1 ) ;
28

29 %% Trans ient
30 % j i nd i c a t e time step number [− ]
31 f o r j = 2 : n t
32 % Time [ s ]
33 t ( j ) = t ( j−1) + dt ;
34

35 %% In t e r i o r Nodes
36 % The d i f f e r e n t formulaton f o r j = 2 and j > 2 i s because Eq . 7 . 9
37 % requ i r e s a vapour cav i ty volume from two time s t ep s back . However as
38 % there i s no j = −1, the steady s t a t e va lue s ( j = 1) w i l l be used f o r
39 % V cav , Q, and Q u in Eq . 7 . 9 .
40 i f j == 2
41 f o r i = 2 : n−1
42 [ Q u( i , j ) , Q( i , j ) , H( i , j ) , V cav ( i , j ) ] = InteriorNodes DVCM ( . . .
43 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
44 Q( i −1, j−1) , H( i −1, j−1) , Q u( i +1, j−1) , H( i +1, j−1) , Q , . . .
45 Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ , . . .
46 n t , V cav ( i , j−1) , V cav ( i , j−1) , Q( i , j−1) , Q u( i , j−1) , . . .
47 ps i , z ( i ) , H v ) ;
48 end
49 e l s e
50 f o r i = 2 : n−1
51 [ Q u( i , j ) , Q( i , j ) , H( i , j ) , V cav ( i , j ) ] = InteriorNodes DVCM ( . . .
52 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
53 Q( i −1, j−1) , H( i −1, j−1) , Q u( i +1, j−1) , H( i +1, j−1) , Q , . . .
54 Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ , . . .
55 n t , V cav ( i , j−1) , V cav ( i , j−2) , Q( i , j−2) , Q u( i , j−2) , . . .
56 ps i , z ( i ) , H v ) ;
57 end
58 end
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59

60 %% Upstream Boundary
61 switch Upstream boundary
62 case ’ Rese rvo i r ’
63 [Q(1 , j ) , H(1 , j ) ] = Reservoir Upstream (a , g , A, rho , D, dx , . . .
64 v i s c o s i t y , roughness , theta , Q u (2 , j−1) , H(2 , j−1) , H r , . . .
65 Q u , Re 0 , 1 , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ, n t )

;
66 end
67 Q u(1 , j ) = Q(1 , j ) ;
68

69 %% Downstream Boundary
70 % Again , because the re i s no j = −1, the steady s t a t e va lue s are used
71 % fo r V cav , Q, and Q u in Eq . 7 . 9 .
72 i f j == 2
73 switch Downstream boundary
74 case ’ Va lve Ins tantaneous Closure ’
75 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V cav (n , j ) ] = Valve Closure DVCM

( . . .
76 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
77 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
78 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
79 W, dQ, n t , V cav (n , j−1) , V cav (n , j−1) , Q(n , j−1) , . . .
80 Q u(n , j−1) , ps i , z (n) , H v ) ;
81 case ’ Va lve Trans i ent Closure ’
82 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V cav (n , j ) ] = Valve Closure DVCM

( . . .
83 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
84 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
85 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
86 W, dQ, n t , V cav (n , j−1) , V cav (n , j−1) , Q(n , j−1) , . . .
87 Q u(n , j−1) , ps i , z (n) , H v ) ;
88 end
89 e l s e
90 switch Downstream boundary
91 case ’ Va lve Ins tantaneous Closure ’
92 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V cav (n , j ) ] = Valve Closure DVCM

( . . .
93 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
94 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
95 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
96 W, dQ, n t , V cav (n , j−1) , V cav (n , j−2) , Q(n , j−2) , . . .
97 Q u(n , j−2) , ps i , z (n) , H v ) ;
98 case ’ Va lve Trans i ent Closure ’
99 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V cav (n , j ) ] = Valve Closure DVCM

( . . .
100 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
101 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
102 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
103 W, dQ, n t , V cav (n , j−1) , V cav (n , j−2) , Q(n , j−2) , . . .
104 Q u(n , j−2) , ps i , z (n) , H v ) ;
105 end
106 end
107
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108 %% Calcu la t ing the change in vo lumetr i c f low ra t e f o r unsteady f r i c t i o n
109 switch Fr ic t ion Type
110 case ’ Uns t eady Fr i c t i on Z i e l k e ’
111 i f j<n t
112 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
113 end
114 case ’ Unsteady Friction VardyBrown ’
115 i f j<n t
116 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
117 end
118 case ’ Uns teady Fr i c t i on Zarzyck i ’
119 i f j<n t
120 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
121 end
122 end
123 end

Solver DGCM

1 %% I n i t i a l i z e matr i ce s to reduce c a l c u l a t i o n time
2 % Volumetric f low ra t e [mˆ3/ s ]
3 Q u ( 1 : n , 1 : n t ) = 0 ;
4 % Volumetric f low ra t e [mˆ3/ s ]
5 Q(1 : n , 1 : n t ) = 0 ;
6 % Piezometr i c head [m]
7 H(1 : n , 1 : n t ) = 0 ;
8 % Time [ s ]
9 t ( 1 : n t ) = 0 ;

10 % Height from datum [m]
11 z ( 1 : n) = 0 ;
12 % Volumetric f low ra t e a c c e l e r a t i o n [mˆ3/ s ˆ2 ]
13 dQ(n , n t−2) = 0 ;
14 % Gas cav i ty volume [mˆ3 ]
15 V g ( 1 : n , 1 : n t ) = 0 ;
16

17 %% Calcu la t ing the o f f s e t o f each node from the datum ( r e f e r e n c e he ight )
18 f o r i = 1 : n
19 % Height from datum [m]
20 z ( i ) = ( i −1)∗dx∗ s ind ( theta ) ;
21 end
22

23 %% Calcu la t ing the pipe volume a s s o c i a t ed to each node
24 % Volume a s s o c i a t ed to the node at the upstream boundary [mˆ3 ]
25 V tota l ( 1 , 1 ) = A∗dx /2 ;
26 % Volume a s s o c i a t ed to the i nd i v i dua l i n t e r i o r nodes [mˆ3 ]
27 V tota l ( 2 : n−1 ,1) = A∗dx ;
28 % Volume a s s o c i a t ed to the node at the downstream boundary [mˆ3 ]
29 V tota l (n , 1 ) = A∗dx /2 ;
30

31 %% Steady State
32 [Q, H, V g ] = SteadyState DGCM(Q 0 , H r , rho , D, v i s c o s i t y , a , A , . . .
33 roughness , g , dx , Q, H, n , theta , Fr ict ion Type , f p r e , a lpha 0 , . . .
34 V tota l , V g , z , H v ) ;
35 Q u ( : , 1 ) = Q( : , 1 ) ;
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36

37 %% Trans ient
38 % j i nd i c a t e time step number [− ]
39 f o r j = 2 : n t
40 % Time [ s ]
41 t ( j ) = t ( j−1) + dt ;
42

43 %% In t e r i o r Nodes
44 % The d i f f e r e n t formulaton f o r j = 2 and j > 2 i s because Eq . 7 . 9
45 % requ i r e s a vapour cav i ty volume from two time s t ep s back . However as
46 % there i s no j = −1, the steady s t a t e va lue s ( j = 1) w i l l be used f o r
47 % V g , Q, and Q u in Eq . 7 . 9 .
48 i f j == 2
49 f o r i = 2 : n−1
50 [ Q u( i , j ) , Q( i , j ) , H( i , j ) , V g ( i , j ) ] = InteriorNodes DGCM ( . . .
51 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
52 Q( i −1, j−1) , H( i −1, j−1) , Q u( i +1, j−1) , H( i +1, j−1) , Q , . . .
53 Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ , . . .
54 n t , H( i , 1 ) , a lpha 0 , V tota l ( i , 1 ) , V g ( i , j−1) , Q( i , j−1)

, . . .
55 Q u( i , j−1) , ps i , z ( i ) , H v ) ;
56 end
57 e l s e
58 f o r i = 2 : n−1
59 [ Q u( i , j ) , Q( i , j ) , H( i , j ) , V g ( i , j ) ] = InteriorNodes DGCM ( . . .
60 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
61 Q( i −1, j−1) , H( i −1, j−1) , Q u( i +1, j−1) , H( i +1, j−1) , Q , . . .
62 Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ , . . .
63 n t , H( i , 1 ) , a lpha 0 , V tota l ( i , 1 ) , V g ( i , j−2) , Q( i , j−2)

, . . .
64 Q u( i , j−2) , ps i , z ( i ) , H v ) ;
65 end
66 end
67

68 %% Upstream Boundary
69 switch Upstream boundary
70 case ’ Rese rvo i r ’
71 [ Q u (1 , j ) , Q(1 , j ) , H(1 , j ) , V g (1 , j ) ] = Reservoir Upstream DGCM

( . . .
72 a , g , A, rho , D, dx , v i s c o s i t y , roughness , theta , . . .
73 Q u(2 , j−1) , H(2 , j−1) , H r , Q u , Re 0 , 1 , j , dt , . . .
74 Frict ion Type , Q 0 , f p r e , W, dQ, n t , H(1 , 1 ) , alpha 0 , . . .
75 V tota l ( 1 , 1 ) , z (1 ) , H v ) ;
76 end
77

78 %% Downstream Boundary
79 % Again , because the re i s no j = −1, the steady s t a t e va lue s are used
80 % fo r V g , Q, and Q u in Eq . 7 . 9 .
81 i f j == 2
82 switch Downstream boundary
83 case ’ Va lve Ins tantaneous Closure ’
84 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V g (n , j ) ] = Valve Closure DGCM

( . . .
85 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
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86 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
87 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
88 W, dQ, n t , alpha 0 , V tota l (n , 1 ) , V g (n , j−1) , . . .
89 Q(n , j−1) , Q u(n , j−1) , ps i , z (n) , H v ) ;
90 case ’ Va lve Trans i ent Closure ’
91 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V g (n , j ) ] = Valve Closure DGCM

( . . .
92 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
93 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
94 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
95 W, dQ, n t , alpha 0 , V tota l (n , 1 ) , V g (n , j−1) , . . .
96 Q(n , j−1) , Q u(n , j−1) , ps i , z (n) , H v ) ;
97 end
98 e l s e
99 switch Downstream boundary

100 case ’ Va lve Ins tantaneous Closure ’
101 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V g (n , j ) ] = Valve Closure DGCM

( . . .
102 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
103 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
104 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
105 W, dQ, n t , alpha 0 , V tota l (n , 1 ) , V g (n , j−2) , . . .
106 Q(n , j−2) , Q u(n , j−2) , ps i , z (n) , H v ) ;
107 case ’ Va lve Trans i ent Closure ’
108 [ Q u(n , j ) , Q(n , j ) , H(n , j ) , V g (n , j ) ] = Valve Closure DGCM

( . . .
109 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
110 t ( j ) , t c , m, theta , Q(n , 1 ) , H(n , 1 ) , Q(n−1, j−1) , . . .
111 H(n−1, j−1) , Q, Re 0 , n , j , dt , Fr ict ion Type , f p r e , . . .
112 W, dQ, n t , alpha 0 , V tota l (n , 1 ) , V g (n , j−2) , . . .
113 Q(n , j−2) , Q u(n , j−2) , ps i , z (n) , H v ) ;
114 end
115 end
116

117 %% Calcu la t ing the change in vo lumetr i c f low ra t e f o r unsteady f r i c t i o n
118 switch Fr ic t ion Type
119 case ’ Uns t eady Fr i c t i on Z i e l k e ’
120 i f j<n t
121 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
122 end
123 case ’ Unsteady Friction VardyBrown ’
124 i f j<n t
125 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
126 end
127 case ’ Uns teady Fr i c t i on Zarzyck i ’
128 i f j<n t
129 dQ( : , n t−j +1) = Q( : , j )−Q( : , j−1) ;
130 end
131 end
132 end

SteadyState

1 f unc t i on [Q, H] = SteadyState (Q 0 , H r , rho , D, v i s c o s i t y , a , A , . . .
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2 roughness , g , dx , Q, H, n , theta , Fr ict ion Type , f p r e )
3 %% Steady State So lve r
4 % Volumetric f low ra t e [mˆ3/ s ]
5 Q( : , 1 ) = Q 0 ;
6 % Piezometr i c head at r e s e r v o i r [m]
7 H( 1 , : ) = H r ;
8

9 % R i s a r e s i s t a n c e c o e f f i c i e n t , which d e s c r i b e s the f r i c t i o n at steady
10 % sta t e where unsteady f r i c t i o n i s ze ro .
11 switch Fr ic t ion Type
12 case ’ P r e s c r i b ed S t e ady S t a t e F r i c t i on ’
13 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
14 R = f p r e ∗dx/(2∗ g∗D∗Aˆ2) ;
15 otherw i s e
16 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
17 R = Res i s tanceCoe f f ( g , D, A, dx , roughness , rho , Q 0 , v i s c o s i t y ) ;
18 end
19

20 f o r i = 2 : n
21 % Piezometr i c head , d i s r e ga rd i ng f r i c t i o n [m]
22 H 0 = H( i −1 ,1) − dx ∗ s ind ( theta ) ;
23 % Piezometr i c head [m]
24 H( i , 1 ) = H 0 − R∗Q 0∗abs (Q 0 ) + dx/( a∗A) ∗ s ind ( theta ) ∗Q 0 ;
25 end
26

27 end

SteadyState DGCM

1 f unc t i on [Q, H, V g ] = SteadyState DGCM(Q 0 , H r , rho , D, v i s c o s i t y , a , . . .
2 A, roughness , g , dx , Q, H, n , theta , Fr ict ion Type , f p r e , a lpha 0 , . . .
3 V tota l , V g , z P , H v )
4 %% Steady State So lve r
5 % Volumetric f low ra t e [mˆ3/ s ]
6 Q( : , 1 ) = Q 0 ;
7 % Piezometr i c head at r e s e r v o i r [m]
8 H( 1 , : ) = H r ;
9

10 % R i s a r e s i s t a n c e c o e f f i c i e n t , which d e s c r i b e s the f r i c t i o n at steady
11 % sta t e where unsteady f r i c t i o n i s ze ro .
12 switch Fr ic t ion Type
13 case ’ P r e s c r i b ed S t e ady S t a t e F r i c t i on ’
14 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
15 R = f p r e ∗dx/(2∗ g∗D∗Aˆ2) ;
16 otherw i s e
17 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
18 R = Res i s tanceCoe f f ( g , D, A, dx , roughness , rho , Q 0 , v i s c o s i t y ) ;
19 end
20

21 f o r i = 2 : n
22 % Piezometr i c head , d i s r e ga rd i ng f r i c t i o n [m]
23 H 0 = H( i −1 ,1) − dx ∗ s ind ( theta ) ;
24 % Piezometr i c head [m]
25 H( i , 1 ) = H 0 − R∗Q 0∗abs (Q 0 ) + dx/( a∗A) ∗ s ind ( theta ) ∗Q 0 ;
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26 end
27

28 f o r i = 1 : n
29 % Gas cav i ty volume [mˆ3 ]
30 V g ( i , 1 ) = alpha 0 ∗V tota l ( i , 1 ) ;
31 end
32

33 end

InteriorNodes SinglePhase

1 f unc t i on [Q P , H P ] = Inte r i o rNode s S ing l ePhase ( a , g , A, rho , D , . . .
2 v i s c o s i t y , roughness , dx , theta , Q A, H A, Q u B , H B , Q, Re 0 , i , j

, . . .
3 dt , Fr ict ion Type , Q 0 , f p r e , W, dQ, n t )
4 %% In t e r i o r nodes
5 % Pipe constant [ s /mˆ2 ]
6 B = PipeConst ( a , g , A) ;
7 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
8 C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
9 theta , Q A, H A, Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .

10 dQ, n t ) ;
11 % Negative c h a r a c t e r i s t i c s equat ion [m]
12 C m = Charac t e r i s t i c Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
13 theta , Q u B , H B , Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .
14 dQ, n t ) ;
15 % Piezometr i c head [m]
16 H P = (C p + C m) /2 ;
17 % Volumetric f low ra t e [mˆ3/ s ]
18 Q P = (H P − C m)/B;
19 end

InteriorNodes DVCM

1 f unc t i on [ Q u P , Q P , H P , V cav P ] = InteriorNodes DVCM(a , g , A, rho , . . .
2 D, v i s c o s i t y , roughness , dx , theta , Q A, H A, Q u B , H B , Q, Q u , . . .
3 Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ, n t , V cav t , . . .
4 V cav P0 , Q P0 , Q u P0 , ps i , z P , H v )
5 %% In t e r i o r nodes
6 % Pipe constant [ s /mˆ2 ]
7 B = PipeConst ( a , g , A) ;
8 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
9 C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .

10 theta , Q A, H A, Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .
11 dQ, n t ) ;
12 % Negative c h a r a c t e r i s t i c s equat ion [m]
13 C m = Charac t e r i s t i c Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
14 theta , Q u B , H B , Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , . . .
15 W, dQ, n t ) ;
16

17 % Checking i f a vapour cav i ty was pre sent at the prev ious time step .
18 i f V cav t > 0
19 %% Vapour cav i ty was pre sent at the prev ious time step .
20 % Piezometr i c head [m]
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21 H P = z P + H v ;
22 % Volumetric f low ra t e [mˆ3/ s ]
23 Q u P = (C p − H P)/B;
24 % Volumetric f low ra t e [mˆ3/ s ]
25 Q P = (H P − C m)/B;
26 % Vapour cav i ty volume [mˆ3 ]
27 V cav P = V cav P0 + 2∗dt ∗( p s i ∗(Q P − Q u P) + (1 − p s i ) ∗(Q P0 − Q u P0

) ) ;
28

29 % Checking i f the vapour cav i ty d i sappear s .
30 i f V cav P <= 0
31 %% Vapour cav i ty d i sappear s because o f a r i s e in head .
32 % Vapour cav i ty volume [mˆ3 ]
33 V cav P = 0 ;
34 % Piezometr i c head [m]
35 H P = (C p + C m) /2 ;
36

37 i f H P < z P + H v
38 % Piezometr i c head [m]
39 H P = z P + H v ;
40 end
41

42 % Volumetric f low ra t e [mˆ3/ s ]
43 Q u P = (C p − H P)/B;
44 % Volumetric f low ra t e [mˆ3/ s ]
45 Q P = Q u P ;
46

47 end
48 e l s e
49 %% No vapour cav i ty was pre sent in the prev ious time step .
50 % Piezometr i c head [m]
51 H P = (C p + C m) /2 ;
52

53 % Checking i f the head f a l l s below the l e v e l where vapour c a v i t i e s are
c r ea ted .

54 i f H P <= z P + H v
55 %% Head f e l l below vapour i za t i on l e v e l .
56 % Piezometr i c head [m]
57 H P = z P + H v ;
58 % Volumetric f low ra t e [mˆ3/ s ]
59 Q u P = (C p − H P)/B;
60 % Volumetric f low ra t e [mˆ3/ s ]
61 Q P = (H P − C m)/B;
62 % Vapour cav i ty volume [mˆ3 ]
63 V cav P = V cav P0 + 2∗dt ∗( p s i ∗(Q P − Q u P) + (1 − p s i ) ∗(Q P0 −

Q u P0 ) ) ;
64

65 % Checking i f a vapour cav i ty i s c r ea ted .
66 i f V cav P <= 0
67 %% No vapour cav i ty i s c r ea ted .
68 % Vapour cav i ty volume [mˆ3 ]
69 V cav P = 0 ;
70 % Piezometr i c head [m]
71 H P = (C p + C m) /2 ;
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72

73 i f H P < z P + H v
74 % Piezometr i c head [m]
75 H P = z P + H v ;
76 end
77

78 % Volumetric f low ra t e [mˆ3/ s ]
79 Q u P = (C p − H P)/B;
80 % Volumetric f low ra t e [mˆ3/ s ]
81 Q P = Q u P ;
82

83 end
84 e l s e
85 %% Head i s above vapour i za t i on l e v e l .
86 % Vapour cav i ty volume [mˆ3 ]
87 V cav P = 0 ;
88 % Volumetric f low ra t e [mˆ3/ s ]
89 Q u P = (C p − H P)/B;
90 % Volumetric f low ra t e [mˆ3/ s ]
91 Q P = Q u P ;
92 end
93 end
94

95 end

InteriorNodes DGCM

1 f unc t i on [ Q u P , Q P , H P , V g P ] = InteriorNodes DGCM(a , g , A, rho , D , . . .
2 v i s c o s i t y , roughness , dx , theta , Q A, H A, Q u B , H B , Q, Q u , Re 0 , . . .
3 i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ, n t , H 0 , alpha 0 , . . .
4 V tota l , V g P0 , Q P0 , Q u P0 , ps i , z P , H v )
5 %% In t e r i o r nodes
6 % Pipe constant [ s /mˆ2 ]
7 B = PipeConst ( a , g , A) ;
8 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
9 C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .

10 theta , Q A, H A, Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .
11 dQ, n t ) ;
12 % Negative c h a r a c t e r i s t i c s equat ion [m]
13 C m = Charac t e r i s t i c Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
14 theta , Q u B , H B , Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W

, . . .
15 dQ, n t ) ;
16

17 %% Calcu la t i on o f head − Fluid Trans i ent s in Systems
18 % Pressure at steady s t a t e [ Pa ]
19 P 0 = rho∗g ∗(H 0 − z P − H v) ;
20 % Constant [mˆ4 ]
21 C 3 = P 0∗ a lpha 0 ∗V tota l /( rho∗g ) ;
22 % Constant [− ]
23 B 2 = 0 . 5 / 2 ;
24 % Constant [mˆ2 ]
25 C 4 = B 2∗B∗C 3/( p s i ∗dt ) ;
26 % Constant [mˆ3/ s ]
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27 B v = (V g P0 /(2∗ dt ) + (1 − p s i ) ∗(Q P0 − Q u P0 ) ) / p s i ;
28

29 i f B v <= 0
30 % Constant [mˆ3/ s ]
31 B v = 0 ;
32 end
33

34 % Constant [m/ s ]
35 B 1 = −B 2 ∗(C m + C p) + B 2∗B∗B v + ( z P + H v) /2 ;
36

37 i f B 1 == 0
38 % Piezometr i c head [m]
39 H P = sqr t (C 4 ) + z P + H v ;
40 e l s e
41 % Constant [− ]
42 B B = C 4/B 1 ˆ2 ;
43

44 i f B 1 < 0 && B B > 0 .001
45 % Piezometr i c head [m]
46 H P = −B 1 ∗(1 + sq r t (1 + B B) ) + z P + H v ;
47 e l s e i f B 1 > 0 && B B > 0 .001
48 % Piezometr i c head [m]
49 H P = −B 1 ∗(1 − s q r t (1 + B B) ) + z P + H v ;
50 e l s e i f B 1 < 0 && B B < 0 .001
51 % Piezometr i c head [m]
52 H P = −2∗B 1 − C 4/(2∗B 1 ) + z P + H v ;
53 e l s e i f B 1 > 0 && B B < 0 .001
54 % Piezometr i c head [m]
55 H P = C 4/(2∗B 1 ) + z P + H v ;
56 end
57 end
58

59 i f H P < z P + H v
60 % Piezometr i c head [m]
61 H P = z P + H v ;
62 end
63

64 %% Calcu la t i on o f f l ows and vapour s i z e s
65 % Volumetric f low ra t e [mˆ3/ s ]
66 Q u P = (C p − H P)/B;
67 % Volumetric f low ra t e [mˆ3/ s ]
68 Q P = (H P − C m)/B;
69 % Gas cav i ty volume [mˆ3 ]
70 V g P = V g P0 + ( p s i ∗(Q P − Q u P) + (1− p s i ) ∗(Q P0 − Q u P0 ) ) ∗2∗dt ;
71

72 i f V g P < 0
73 % Gas cav i ty volume [mˆ3 ]
74 V g P = C 3/(H P − z P − H v) ;
75 end
76

77 end

Reservoir Upstream
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1 f unc t i on [Q P , H P ] = Reservoir Upstream (a , g , A, rho , D, dx , . . .
2 v i s c o s i t y , roughness , theta , Q B , H B , H r , Q, Re 0 , i , j , dt , . . .
3 Frict ion Type , Q 0 , f p r e , W, dQ, n t )
4 %% Boundary cond i t i on s f o r upstream r e s e r v o i r
5 % Pipe constant [ s /mˆ2 ]
6 B = PipeConst ( a , g , A) ;
7 % Piezometr i c head [m]
8 H P = H r ;
9 % Negative c h a r a c t e r i s t i c s equat ion [m]

10 C m = Charac t e r i s t i c Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
11 theta , Q B , H B , Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .
12 dQ, n t ) ;
13 % Volumetric f low ra t e [m]
14 Q P = (H P − C m)/B;
15 end

Reservoir Upstream DGCM

1 f unc t i on [ Q u P , Q P , H P , V g P ] = Reservoir Upstream DGCM(a , g , A , . . .
2 rho , D, dx , v i s c o s i t y , roughness , theta , Q u B , H B , H r , Q u , Re 0 , . . .
3 i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, dQ, n t , H 0 , alpha 0 , . . .
4 V tota l , z P , H v )
5 %% Boundary cond i t i on s f o r upstream r e s e r v o i r
6 % Pipe constant [ s /mˆ2 ]
7 B = PipeConst ( a , g , A) ;
8 % Negative c h a r a c t e r i s t i c s equat ion [m]
9 C m = Charac t e r i s t i c Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .

10 theta , Q u B , H B , Q u , Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , . . .
11 W, dQ, n t ) ;
12 % Piezometr i c head [m]
13 H P = H r ;
14 % Volumetric f low ra t e [mˆ3/ s ]
15 Q P = (H P − C m)/B;
16 % Volumetric f low ra t e [mˆ3/ s ]
17 Q u P = Q P ;
18 % Pressure at steady s t a t e [ Pa ]
19 P 0 = rho∗g ∗(H 0 − z P − H v) ;
20 % Constant [mˆ4 ]
21 C 3 = P 0∗ a lpha 0 ∗V tota l /( rho∗g ) ;
22 % Gas cav i ty volume [mˆ3 ]
23 V g P = C 3/(H P − z P − H v) ;
24 end

Valve Closure

1 f unc t i on [Q P , H P ] = Valve Closure ( a , g , A, D, dx , roughness , rho , . . .
2 v i s c o s i t y , t , t c , m, theta , Q 0 , H 0 , Q A, H A, Q, Re 0 , i , j , dt , . . .
3 Frict ion Type , f p r e , W, dQ, n t )
4 %% Calcu la t ing the d imens i on l e s s c l o s u r e time f o r the va lve
5 i f t < t c
6 % Dimens ion les s va lve c l o s u r e time [− ]
7 tau v = 1 − ( t / t c ) ˆm;
8 e l s e
9 % Dimens ion les s va lve c l o s u r e time [− ]
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10 tau v = 0 ;
11 end
12

13 %% Calcu la t ing the vo lumetr i c f low ra t e at the va lve
14 % Pipe constant [ s /mˆ2 ]
15 B = PipeConst ( a , g , A) ;
16 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
17 C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , . . .
18 v i s c o s i t y , theta , Q A, H A, Q, Re 0 , i , j , dt , . . .
19 Frict ion Type , Q 0 , f p r e , W, dQ, n t ) ;
20 % Var iab le [mˆ5/ s ˆ2 ]
21 C v = (Q 0∗ tau v ) ˆ2/(2∗H 0 ) ;
22 % Volumetric f low ra t e [mˆ3/ s ]
23 Q P = − B∗C v + sq r t ( (B∗C v ) ˆ2 + 2∗C v∗C p) ;
24

25 %% Calcu la t i on o f the head
26 % Piezometr i c head [m]
27 H P = C p − B∗Q P ;
28

29 end

Valve Closure DVCM

1 f unc t i on [ Q u P , Q P , H P , V cav P ] = Valve Closure DVCM(a , g , A, D, dx , . . .
2 roughness , rho , v i s c o s i t y , t , t c , m, theta , Q 0 , H 0 , Q A, H A, Q , . . .
3 Re 0 , i , j , dt , Fr ict ion Type , f p r e , W, dQ, n t , V cav t , V cav P0 , . . .
4 Q P0 , Q u P0 , ps i , z P , H v )
5 %% Calcu la t ing the d imens i on l e s s c l o s u r e time f o r the va lve
6 i f t < t c
7 % Dimens ion les s va lve c l o s u r e time [− ]
8 tau v = 1 − ( t / t c ) ˆm;
9 e l s e

10 % Dimens ion les s va lve c l o s u r e time [− ]
11 tau v = 0 ;
12 end
13

14 %% Calcu la t ing the vo lumetr i c f low ra t e at the va lve
15 % Pipe constant [ s /mˆ2 ]
16 B = PipeConst ( a , g , A) ;
17 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
18 C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
19 theta , Q A, H A, Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .
20 dQ, n t ) ;
21 % Var iab le [mˆ5/ s ˆ2 ]
22 C v = (Q 0∗ tau v ) ˆ2/(2∗H 0 ) ;
23 % Volumetric f low ra t e [mˆ3/ s ]
24 Q P = − B∗C v + sq r t ( (B∗C v ) ˆ2 + 2∗C v∗C p) ;
25

26 %% Calcu la t i on o f the head
27 % Checking i f a vapour cav i ty was pre sent at the prev ious time step .
28 i f V cav t > 0
29 %% Vapour cav i ty was pre sent at the prev ious time step .
30 % Piezometr i c head [m]
31 H P = z P + H v ;
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32 % Volumetric f low ra t e [mˆ3/ s ]
33 Q u P = (C p − H P)/B;
34 % Vapour cav i ty volume [mˆ3 ]
35 V cav P = V cav P0 + 2∗dt ∗( p s i ∗(Q P − Q u P) + (1 − p s i ) ∗(Q P0 − Q u P0

) ) ;
36

37 % Checking i f the vapour cav i ty d i sappear s .
38 i f V cav P <= 0
39 %% Vapour cav i ty d i sappear s because o f a r i s e in head
40 % Vapour cav i ty volume [mˆ3 ]
41 V cav P = 0 ;
42 % Volumetric f low ra t e [mˆ3/ s ]
43 Q u P = Q P ;
44 % Piezometr i c head [m]
45 H P = C p − B∗Q P ;
46

47 i f H P < z P + H v
48 % Piezometr i c head [m]
49 H P = z P + H v ;
50 end
51

52 end
53 e l s e
54 %% No vapour cav i ty was pre sent in the prev ious time step
55 % Volumetric f low ra t e [mˆ3/ s ]
56 Q u P = Q P ;
57 % Piezometr i c head [m]
58 H P = C p − B∗Q u P ;
59

60 % Checking i f the head f a l l s below the l e v e l where vapour c a v i t i e s are
c r ea ted .

61 i f H P <= z P + H v
62 %% Head f e l l below vapour i za t i on l e v e l .
63 % Piezometr i c head [m]
64 H P = z P + H v ;
65 % Volumetric f low ra t e [mˆ3/ s ]
66 Q u P = (C p − H P)/B;
67 % Vapour cav i ty volume [mˆ3 ]
68 V cav P = V cav P0 + 2∗dt ∗( p s i ∗(Q P − Q u P) + (1 − p s i ) ∗(Q P0 −

Q u P0 ) ) ;
69

70 % Checking i f a vapour cav i ty i s c r ea ted .
71 i f V cav P <= 0
72 %% No vapour cav i ty i s c r ea ted
73 % Vapour cav i ty volume [mˆ3 ]
74 V cav P = 0 ;
75 % Piezometr i c head [m]
76 H P = C p − B∗Q P ;
77

78 i f H P < z P + H v
79 % Piezometr i c head [m]
80 H P = z P + H v ;
81 end
82
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83 % Volumetric f low ra t e [mˆ3/ s ]
84 Q u P = Q P ;
85 end
86 e l s e
87 %% Head i s above vapour i za t i on l e v e l
88 % Vapour cav i ty volume [mˆ3 ]
89 V cav P = 0 ;
90 end
91 end
92

93 end

Valve Closure DGCM

1 f unc t i on [ Q u P , Q P , H P , V g P ] = Valve Closure DGCM(a , g , A, D, dx , . . .
2 roughness , rho , v i s c o s i t y , t , t c , m, theta , Q 0 , H 0 , Q A, H A, Q , . . .
3 Re 0 , n , j , dt , Fr ict ion Type , f p r e , W, dQ, n t , alpha 0 , V tota l , . . .
4 V g P0 , Q P0 , Q u P0 , ps i , z P , H v )
5 %% Calcu la t ing the d imens i on l e s s c l o s u r e time f o r the va lve
6 i f t < t c
7 % Dimens ion les s va lve c l o s u r e time [− ]
8 tau = 1 − ( t / t c ) ˆm;
9 e l s e

10 % Dimens ion les s va lve c l o s u r e time [− ]
11 tau = 0 ;
12 end
13

14 %% Calcu la t ing the vo lumetr i c f low ra t e at the va lve
15 % Pipe constant [ s /mˆ2 ]
16 B = PipeConst ( a , g , A) ;
17 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
18 C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
19 theta , Q A, H A, Q, Re 0 , n , j , dt , Fr ict ion Type , Q 0 , f p r e , W, . . .
20 dQ, n t ) ;
21 % Var iab le [mˆ5/ s ˆ2 ]
22 C v = (Q 0∗ tau ) ˆ2/(2∗H 0 ) ;
23 % Volumetric f low ra t e [mˆ3/ s ]
24 Q P = − B∗C v + sq r t ( (B∗C v ) ˆ2 + 2∗C v∗C p) ;
25

26 %% Calcu la t i on o f the head
27 % Pressure at steady s t a t e [ Pa ]
28 P 0 = rho∗g ∗(H 0 − z P − H v) ;
29 % Constant [mˆ4 ]
30 C 3 = P 0∗ a lpha 0 ∗V tota l /( rho∗g ) ;
31 % Constant [− ]
32 B 2 = 1/2 ;
33 % Constant [mˆ2 ]
34 C 4 = B 2∗B∗C 3/( p s i ∗dt ) ;
35 % Constant [mˆ3/ s ]
36 B v = (V g P0 /(2∗ dt ) + (1 − p s i ) ∗(Q P0 − Q u P0 ) ) / p s i ;
37

38 i f B v <= 0
39 % Constant [mˆ3/ s ]
40 B v = 0 ;
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41 end
42

43 % Constant [m/ s ]
44 B 1 = −B 2 ∗(C p − B∗Q P) + B 2∗B∗B v + ( z P + H v) /2 ;
45

46 i f B 1 == 0
47 % Piezometr i c head [m]
48 H P = sqr t (C 4 ) + z P + H v ;
49 e l s e
50 % Constant [− ]
51 B B = C 4/B 1 ˆ2 ;
52 i f B 1 < 0 && B B >= 0.001
53 % Piezometr i c head [m]
54 H P = −B 1 ∗(1 + sq r t (1 + B B) ) + z P + H v ;
55 e l s e i f B 1 > 0 && B B >= 0.001
56 % Piezometr i c head [m]
57 H P = −B 1 ∗(1 − s q r t (1 + B B) ) + z P + H v ;
58 e l s e i f B 1 < 0 && B B < 0 .001
59 % Piezometr i c head [m]
60 H P = −2∗B 1 − C 4/(2∗B 1 ) + z P + H v ;
61 e l s e i f B 1 > 0 && B B < 0 .001
62 % Piezometr i c head [m]
63 H P = C 4/(2∗B 1 ) + z P + H v ;
64 end
65 end
66

67 i f H P < z P + H v
68 % Piezometr i c head [m]
69 H P = z P + H v ;
70 end
71

72 %% Calcu la t i on o f f l ows and vapour s i z e s
73 % Volumetric f low ra t e [mˆ3/ s ]
74 Q u P = (C p − H P)/B;
75 % Gas cav i ty volume [mˆ3 ]
76 V g P = V g P0 + ( p s i ∗(Q P − Q u P) + (1− p s i ) ∗(Q P0 − Q u P0 ) ) ∗2∗dt ;
77

78 i f V g P < 0
79 % Gas cav i ty volume [mˆ3 ]
80 V g P = C 3/(H P − z P − H v) ;
81 end
82

83 end

Characteristic Plus

1 f unc t i on C p = Cha r a c t e r i s t i c P l u s ( a , g , A, D, dx , roughness , rho , . . .
2 v i s c o s i t y , alpha , Q p , H p , Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , . . .
3 f p r e , W, dQ, n t )
4 %% Calcu la t i on o f the p o s i t i v e c h a r a c t e r i s t i c s l i n e .
5 % In ”Frict ionTerm ” , ”Charact Line ” i n d i c a t e s whether the f r i c t i o n term i s
6 % fo r the p o s i t i v e or the negat ive c h a r a c t e r i s t i c s l i n e .
7 Charact Line = ’ Plus ’ ;
8
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9 % Pipe constant [ s /mˆ2 ]
10 B = PipeConst ( a , g , A) ;
11

12 % Fr i c t i on term [m]
13 J = FrictionTerm ( Frict ion Type , D, roughness , rho , Re 0 , Q 0 , Q p , Q , . . .
14 v i s c o s i t y , A, i , j , dx , dt , Charact Line , g , a , f p r e , W, dQ, n t ) ;
15

16 % Pos i t i v e c h a r a c t e r i s t i c s equat ion [m]
17 C p = H p + Q p∗(B + dx/( a∗A) ∗ s ind ( alpha ) ) − J ;
18 end

Characteristic Minus

1 f unc t i on C m = Charac t e r i s t i c Minus ( a , g , A, D, dx , roughness , rho , . . .
2 v i s c o s i t y , alpha , Q m, H m, Q, Re 0 , i , j , dt , Fr ict ion Type , Q 0 , . . .
3 f p r e , W, dQ, n t )
4 %% Calcu la t i on o f the negat ive c h a r a c t e r i s t i c s l i n e .
5 % In ”Frict ionTerm ” , ”Charact Line ” i n d i c a t e s whether the f r i c t i o n term i s
6 % fo r the p o s i t i v e or the negat ive c h a r a c t e r i s t i c s l i n e .
7 Charact Line = ’Minus ’ ;
8

9 % Pipe constant [ s /mˆ2 ]
10 B = PipeConst ( a , g , A) ;
11

12 % Fr i c t i on term [m]
13 J = FrictionTerm ( Frict ion Type , D, roughness , rho , Re 0 , Q 0 , Q m, Q , . . .
14 v i s c o s i t y , A, i , j , dx , dt , Charact Line , g , a , f p r e , W, dQ, n t ) ;
15

16 % Negative c h a r a c t e r i s t i c s equat ion [m]
17 C m = H m + Q m∗(−B + dx/( a∗A) ∗ s ind ( alpha ) ) + J ;
18 end

FrictionTerm

1 f unc t i on [ J ] = FrictionTerm ( Frict ion Type , D, roughness , rho , Re 0 , Q 0 , . . .
2 Q point , Q, v i s c o s i t y , A, i , j , dx , dt , Charact Line , g , a , f p r e , . . .
3 W, dQ, n t )
4 % The f r i c t i o n term i s comprised o f three parts , steady s t a t e f r i c t i o n , J s
5 % ( only used by ” Pr e s c r i b ed S t e ady S t a t e F r i c t i on ” and
6 % ” St eady S ta t e F r i c t i on ”) , quasi−steady f r i c t i o n , J q , and unsteady
7 % f r i c t i o n , J u ( f o r the unsteady f r i c t i o n models ) . Theses three are
8 % summarized a f t e r the c a l c u l a t i o n o f each part .
9 switch Fr ic t ion Type

10 case ’ P r e s c r i b ed S t e ady S t a t e F r i c t i on ’
11 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
12 R = f p r e ∗dx/(2∗ g∗D∗Aˆ2) ;
13 J s = R∗Q point∗abs ( Q point ) ;
14 J q = 0 ;
15 J u = 0 ;
16 case ’ S t e ady S ta t e F r i c t i on ’
17 % Darcy f r i c t i o n fa c to r , determined f o r e i t h e r laminar f low or v ia
18 % the Colebrook−White equat ion f o r turbu l ent f low [− ]
19 f s = FricFac (D, roughness , rho , Q 0 , v i s c o s i t y , A) ;
20 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
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21 R = f s ∗dx/(2∗ g∗D∗Aˆ2) ;
22 J s = R∗Q point∗abs ( Q point ) ;
23 J q = 0 ;
24 J u = 0 ;
25 case ’ Quas i S t eady Fr i c t i on ’
26 % Darcy f r i c t i o n fa c to r , determined f o r e i t h e r laminar f low or v ia
27 % the Colebrook−White equat ion f o r turbu l ent f low [− ]
28 f q = FricFac (D, roughness , rho , Q point , v i s c o s i t y , A) ;
29 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
30 R = f q ∗dx/(2∗ g∗D∗Aˆ2) ;
31 J s = 0 ;
32 J q = R∗Q point∗abs ( Q point ) ;
33 J u = 0 ;
34 case ’ Unsteady Frict ion Brunone ’
35 % Darcy f r i c t i o n fa c to r , determined f o r e i t h e r laminar f low or v ia
36 % the Colebrook−White equat ion f o r turbu l ent f low [− ]
37 f q = FricFac (D, roughness , rho , Q point , v i s c o s i t y , A) ;
38 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
39 R = f q ∗dx/(2∗ g∗D∗Aˆ2) ;
40 J s = 0 ;
41 J q = R∗Q point∗abs ( Q point ) ;
42 switch Charact Line
43 case ’ Plus ’
44 J u = BrunoneFricp (Q, Re 0 , D, j , i , a , dt , dx , g ,A) ;
45 case ’Minus ’
46 J u = BrunoneFricm (Q, Re 0 , D, j , i , a , dt , dx , g ,A) ;
47 end
48 case ’ Uns t eady Fr i c t i on Z i e l k e ’
49 % Darcy f r i c t i o n fa c to r , determined f o r e i t h e r laminar f low or v ia
50 % the Colebrook−White equat ion f o r turbu l ent f low [− ]
51 f q = FricFac (D, roughness , rho , Q point , v i s c o s i t y , A) ;
52 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
53 R = f q ∗dx/(2∗ g∗D∗Aˆ2) ;
54 J s = 0 ;
55 J q = R∗Q point∗abs ( Q point ) ;
56 switch Charact Line
57 case ’ Plus ’
58 J u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t ) ;
59 case ’Minus ’
60 J u = CBFricm( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t ) ;
61 end
62 case ’ Unsteady Friction VardyBrown ’
63 % Darcy f r i c t i o n fa c to r , determined f o r e i t h e r laminar f low or v ia
64 % the Colebrook−White equat ion f o r turbu l ent f low [− ]
65 f q = FricFac (D, roughness , rho , Q point , v i s c o s i t y , A) ;
66 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
67 R = f q ∗dx/(2∗ g∗D∗Aˆ2) ;
68 J s = 0 ;
69 J q = R∗Q point∗abs ( Q point ) ;
70 switch Charact Line
71 case ’ Plus ’
72 J u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t ) ;
73 case ’Minus ’
74 J u = CBFricm( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t ) ;

138



75 end
76 case ’ Uns teady Fr i c t i on Zarzyck i ’
77 % Darcy f r i c t i o n fa c to r , determined f o r e i t h e r laminar f low or v ia
78 % the Colebrook−White equat ion f o r turbu l ent f low [− ]
79 f q = FricFac (D, roughness , rho , Q point , v i s c o s i t y , A) ;
80 % Res i s tance c o e f f i c i e n t [ s ˆ2/mˆ5 ]
81 R = f q ∗dx/(2∗ g∗D∗Aˆ2) ;
82 J s = 0 ;
83 J q = R∗Q point∗abs ( Q point ) ;
84 switch Charact Line
85 case ’ Plus ’
86 J u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t ) ;
87 case ’Minus ’
88 J u = CBFricm( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t ) ;
89 end
90 end
91 % Fr i c t i on term [m]
92 J = J s + J q + J u ;
93 end

FricFac

1 f unc t i on f = FricFac (D, roughness , rho , Q, v i s c o s i t y , A)
2 %% Calcuat ion o f the Darcy f r i c t i o n f a c t o r .
3 % Reynolds number [− ]
4 Re = rho∗D∗abs (Q) /( v i s c o s i t y ∗A) ;
5

6 i f Re==0
7 % Darcy f r i c t i o n f a c t o r f o r zero f low [− ]
8 f = 1 ;
9 e l s e i f Re>0 && Re<2100

10 %% Laminar f low
11 % Darcy f r i c t i o n f a c t o r f o r laminar f low [− ]
12 f = 64/Re ;
13 e l s e
14 %% Colebrook−White equat ion
15 % The f r i c t i o n fac to r , f , i s so lved i t e r a t i v e l y with f f be ing the

i n i t i a l
16 % value , and the accepted e r r o r being 1E−12. e r r i s the e r r o r compared
17 % with the a l low er ror , and the f r i c t i o n f a c t o r i s only accepted when
18 % er r becomes lower than 1E−12.
19 % I n i t i a l i z i n g f f [− ]
20 f f = 10 ;
21 % Set t ing lower e r r o r l im i t [− ]
22 e r r = 0 . 0001 ;
23 % I n i t i a l i z i n g Darcy f r i t i o n f a c t o r [− ]
24 f o l d = 0 ;
25

26 whi le e r r > 1E−12
27 % Darcy f r i c t i o n f a c t o r f o r turbu l ent f low [− ]
28 f = 1/ f f ˆ2 ;
29 % Result from Colebrook equat ion [− ]
30 f f = −2∗ l og10 ( roughness / (3 . 7∗D)+2.51/(Re∗ s q r t ( f ) ) ) ;
31 % Error between i t e r a t i o n s [− ]
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32 e r r = abs ( f − f o l d ) ;
33 % Darcy f r i c t i o n f a c t o r f o r turbu l ent f low [− ]
34 f o l d = f ;
35 end
36 end
37 end

BrunoneFricp

1 f unc t i on h up = BrunoneFricp (Q, Re , D, j , i , a , dt , dx , g ,A)
2 %% Brunone ’ s unsteady f r i c t i o n model
3 % Brunone ’ s unsteady f r i c t i o n i s c a l c u l a t ed f o r the p o s i t i v e
4 % ch a r a c t e r i s t i c s l i n e .
5 i f Re < 2100
6 % Vardy shear c o e f f i c i e n t f o r laminar f low [− ]
7 C = 0 .00476 ;
8 e l s e
9 % Vardy shear c o e f f i c i e n t f o r turbu l ent f low [− ]

10 C = 7.41/ (Reˆ( log10 ( 1 4 . 3 / . . .
11 Reˆ0 .05 ) ) ) ;
12 end
13

14 % Brunone ’ s f r i c t i o n c o e f f i c i e n t [− ]
15 k = sq r t (C) /2 ;
16

17 % For j = 2 , the re i s no nodes two time steps , so i t i s not p o s s i b l e to
18 % ca l c u l a t e the a c c e l e r a t i o n o f the vo lumetr i c f low ra t e . I t i s t h e r e f o r e
19 % se t to zero , because two va lue s from steady s t a t e would otherw i s e be
20 % used , which would r e s u l t in zero f o r the a c c e l e r a t i o n term .
21 i f j == 2
22 % Unsteady f r i c t i o n term [m]
23 h up = a∗dt∗k/( g∗A) ∗( a∗ s i gn (Q( i −1, j−1) ) . . .
24 ∗abs ( (Q( i , j−1)−Q( i −1, j−1) ) /dx ) ) ;
25 e l s e
26 % Unsteady f r i c t i o n term [m]
27 h up = a∗dt∗k/( g∗A) ∗ ( (Q( i −1, j−1)−Q( i −1, j−2) ) /dt + a∗ s i gn (Q( i −1, j−1) ) . . .
28 ∗abs ( (Q( i , j−1)−Q( i −1, j−1) ) /dx ) ) ;
29 end
30 end

BrunoneFricm

1 f unc t i on J u = BrunoneFricm (Q, Re , D, j , i , a , dt , dx , g ,A)
2 %% Brunone ’ s unsteady f r i c t i o n model
3 % Brunone ’ s unsteady f r i c t i o n i s c a l c u l a t ed f o r the negat ive
4 % ch a r a c t e r i s t i c s l i n e .
5 i f Re < 2100
6 % Vardy shear c o e f f i c i e n t f o r laminar f low [− ]
7 C = 0 .00476 ;
8 e l s e
9 % Vardy shear c o e f f i c i e n t f o r turbu l ent f low [− ]

10 C = 7.41/ (Reˆ( log10 ( 1 4 . 3 / . . .
11 Reˆ0 .05 ) ) ) ;
12 end
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13

14 % Brunone ’ s f r i c t i o n c o e f f i c i e n t [− ]
15 k = sq r t (C) /2 ;
16

17 % For j = 2 , the re i s no nodes two time steps , so i t i s not p o s s i b l e to
18 % ca l c u l a t e the a c c e l e r a t i o n o f the vo lumetr i c f low ra t e . I t i s t h e r e f o r e
19 % se t to zero , because two va lue s from steady s t a t e would otherw i s e be
20 % used , which would r e s u l t in zero f o r the a c c e l e r a t i o n term .
21 i f j == 2
22 % Unsteady f r i c t i o n c o e f f i c i e n t [m]
23 J u = a∗dt∗k/( g∗A) ∗( a∗ s i gn (Q( i +1, j−1) ) . . .
24 ∗abs ( (Q( i +1, j−1)−Q( i , j−1) ) /dx ) ) ;
25 e l s e
26 % Unsteady f r i c t i o n c o e f f i c i e n t [m]
27 J u = a∗dt∗k/( g∗A) ∗ ( (Q( i +1, j−1)−Q( i +1, j−2) ) /dt + a∗ s i gn (Q( i +1, j−1) ) . . .
28 ∗abs ( (Q( i +1, j−1)−Q( i , j−1) ) /dx ) ) ;
29 end
30 end

CBFricp

1 f unc t i on J u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t )
2 %% Convolution based f r i c t i o n models
3 % The convo lut ion based f r i c t i o n i s c a l c u l a t ed f o r the p o s i t i v e
4 % ch a r a c t e r i s t i c s l i n e ( the weight ing f a c t o r W( tau ) d e f i n e s i f i t i s Vardy
5 % & Brown ’ s unsteady f r i c t i o n model be ing used or another ) .
6 i f j > 2
7 % Unsteady f r i c t i o n term [m]
8 J u = 16∗ v i s c o s i t y ∗dt∗a∗sum(dQ( i −1, n t−j +2: n t−1) . ∗ . . .
9 W(1 , 1 : j−2) ) /(Dˆ2∗ rho∗A∗g ) ;

10 e l s e
11 % Unsteady f r i c t i o n term [m]
12 J u = 0 ;
13 end
14 end

CBFricp

1 f unc t i on J u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W,dQ, n t )
2 %% Convolution based f r i c t i o n models
3 % The convo lut ion based f r i c t i o n i s c a l c u l a t ed f o r the p o s i t i v e
4 % ch a r a c t e r i s t i c s l i n e ( the weight ing f a c t o r W( tau ) d e f i n e s i f i t i s Vardy
5 % & Brown ’ s unsteady f r i c t i o n model be ing used or another ) .
6 i f j > 2
7 % Unsteady f r i c t i o n term [m]
8 J u = 16∗ v i s c o s i t y ∗dt∗a∗sum(dQ( i −1, n t−j +2: n t−1) . ∗ . . .
9 W(1 , 1 : j−2) ) /(Dˆ2∗ rho∗A∗g ) ;

10 e l s e
11 % Unsteady f r i c t i o n term [m]
12 J u = 0 ;
13 end
14 end
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