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Abstract

In this thesis we present two parts: Adaptive storage rearrangement, and process discovery, where the
second part adds to the work we did in the previous semester. The work for this thesis has been carried out
in collaboration with two stakeholders, Av Form which is a warehouse located in Denmark, and Logimatic
whom develop the warehouse management system called LOGIA, which is being used at Av Form.

In the First part of the thesis we present the warehouse and how part of their work is structured,
followed by the specification and clarification of an area which a worker at the warehouse believes could
be improved. We come to the conclusion that the area suited for optimisation relates to the process of order
picking, which is believed by many to be the most expensive part of running a warehouse.

We proceed to explain how work done through LOGIA affect the configuration of the warehouse, i.e.
where items are stored, their quantity etc., and how this work is being logged in LOGIA. We then present
our theory which on the basis of the LOGIA log, is used to devise a novel algorithm that quantifies the
impact of rearranging storage locations for a given warehouse configuration. Using this algorithm it is
possible to predict which rearrangements in the current warehouse configuration will result in reduced
costs for the warehouse.

We then include time heuristics of specific operations used as part of the prediction, before we introduce
our implementation of the rearrangement algorithm in the LOGIA system—an implementation which have
been used by Av Form.

The LOGIA implementation concludes the first part of our thesis, before we proceed to the second part
regarding process discovery. Based on work we conducted during our previous semester, where we amongst
other work presented a method for the discovery of timed-arc Petri nets, we elaborate on the time dilemma
which emerges during the discovery process. To solve this issue we propose two methods which preprocess
a timed event log before it is used in the discovery process.

After our elaboration of the time dilemma and its solutions, we re-introduce our method for calculating
the distance between an extended timed-arc work net and a discrete-time event log, where we include an
example based on the context of our current stakeholders.

Our thesis then culminates in four experiments covering different areas of the work we have conducted.
The first experiment serves as an evaluation of our rearrangement algorithm, the second experiment is used
to evaluate the solutions to the time dilemma, our third experiment covers our data mining and process
discovery efforts, where we use the solution for the time dilemma chosen in the previous experiment. In
our fourth and last experiment, we see how our distance measure evaluates on the discovered models and
discrete-time event logs from Av Form.

And finally we conclude on the entire thesis and present suggestions and thoughts on areas that can be
researched further in the future.

Keywords: Process mining, Extended timed-arc workflow nets, Distance measure, Partitional clustering,
Warehouse management, Storage assignment problem, Adaptive storage relocation
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1. Introduction

In order to reduce costs for a business, and to keep up with competitors, workflow modelling and analysis is
often seen as a facilitator [1, 2]. In this thesis we involve one of two stakeholders, a warehouse with whom we
identify an area suitable for optimisation. The area we look into is a segment of the warehouse’s order picking
process, which a number of papers claim to be the most expensive process for a warehouse [3, 4, 5, 6].

We also include another stakeholder, the developer of the Warehouse Management System (WMS) running
at the warehouse, and with the two stakeholders we identify how different actions in the WMS affects the
configuration of the warehouse. We then use this knowledge to create the theory for suggesting changes to the
warehouse configuration, which over time would result in less resources spend on the segment of the order
picking process.

The shift from analog to digital technologies has benefitted the world in several regards [7]. One benefit
of this technological shift is the capability to store a larger amount of information. According to [7] this has
resulted in a compound annual growth rate in storage capacity of 23 % in the period 1986–2007.

These annual increases allow organisations, such as businesses or government departments, to expand and
extend on what information is stored. This advancement is encompassed in the growing importance of the
concepts of big data and data-driven decision making, which both are intrinsic to the field of data science.
Organisations that are capable of exploiting data science, that is to turn data into value, can substantially
improve organisational performance [8].

However, exclusively focusing on a data-driven perspective may encumber the potential performance
improvements. Organisations are complex structures with even more complex management structures. In
order to effectively improve the performance of an organisation this process-centric perspective must also be
taken into consideration.

Aalst [9] introduces process mining as a means to "bridge the gap between data science and process
science", where process mining aims at discovering, monitoring and improving real processes based on
knowledge obtained from the underlying data referred to as event logs. These event logs can be used to
conduct three types of process mining: Discovery, conformance, and enhancement. In the first type, discovery,
a process model is created from the event logs without using any a-priori information. The second type,
conformance, is utilised to compare a process model to an event log of the same process. The purpose is to
ensure that reality, that is the event log, conforms to the model and vice versa. In the last type, enhancement,
the aim is to improve or extend a process model using its event logs.

In a paper by Aalst et al. [10], the authors mention three process mining perspectives; process, organisa-
tional, and case. We focus mainly on the process perspective for a process mining performed on a use case in
this thesis, as we have a focus on the ordering of actions. Where we include work we have done in a provious
project (see [11]), where we extended this notion as we included a focus on timed delays between the actions.

Through our previous work with the warehouse and developers of the WMS, we found correlation with
findings in [3, 4, 5, 6], that the picking task for a warehouse is the most expensive task in the warehouse,
therefore in correlation with two stakeholders, we look into the processes at the warehouse to determine and
recommend possible changes to optimise on their overall processes associated with picking.

In the presented work we also apply our previous work on process mining discovery and conformance
checking onto workflows mined from event logs from the warehouse, with a focus on conformance checking
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different workflows associated with different workers.

Bibliographical Remarks

Some of the work presented in this thesis is an extension to work we did in a previous semester—see [11].
Consequently, some of the sections in this thesis are repeated from [11], including large parts of the above
thesis introduction. Also the description of Av Form in Section 5.1, and LOGIA and the associated LOGIA
log in Section 5.3. Next is Section 10 covering preliminary knowledge used in Part II. Finally we also included
Section 12, with the exception of Section 12.2, as this describes the method we developed for calculating
the distance between a extended timed-arc workflow net and a discrete-time event log. The definition of a
discrete-time event log and an action in Section 6.2, plus parts of the accompanying text, is taken from our
previous work but supplemented with examples from our thesis context.

2. RelatedWork

Throughout our research, we have found that there is much research on predicting an optimal assignment
on storage onto static locations in warehouses [12, 3, 13, 4, 14]. The drawback of the papers is that they
only calculate static storage assignment once. Unlike Kofler et al. [5] and Tsamis et al. [6] where the authors
research adaptive storage location. However, the research done into this field is sparse.

In their definition of the storage location assignment problem, Gu et al. [15] research the allocation of
storage locations throughout the lifetime of a warehouse. However, this allocation is still only performed as
new items arrive at the warehouse and as a consequence this only concerns the initial assignment of storage
locations, whereas our solution looks into relocating items after their initial storage location assignment.

In our process mining, we utilise ProM to mine a petri net using inductive minor, which has been
implemented as a plugin into ProM, and later expanded upon [16, 17]. In our work we do not contribute
with an extension of the tool, though we use it in an extended fashion, as we perform preprocessing of the
event logs used in ProM, in order to combine the generated nets with timed information producing extended
timed-arc workflow nets.

3. Our Contribution

In [15] the authors present an overview of the problem of storage assignment of items in a warehouse. In this
thesis we devise a novel algorithm that considers the storage assignment problem as a continuous process
where the storage assignment must adapt to the ever changing customer demands (e.g. for seasonal or trending
items). We focus on developing an algorithm such that it is optimised for the relocation of items as opposed to
the initial assignment of items to locations. With this focus in mind, and with the assumption that the storage
locations of a warehouse are being utilised, the goal of the algorithm becomes to suggest locations to swap
such that storage assignment is optimised, reducing associated costs.

In Figure 1 we provide an illustration of the storage allocation process our proposed algorithm operates in.
The swap opportunity represents any moment in which the worker has the time or inclination to perform a
swap. We emphasise that we contribute to this step by encapsulation swap suggestions in a box. We only
provide the worker with swap suggestions and it is therefore up to the worker to decide, based on their domain
knowledge, if a swap is viable; hence, the worker can cancel or execute the swap. The choice is logged in a
timed log, and the process repeats itself.
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Figure 1: Illustration of our contribution

The timed log contains information that is essential to gain insight into the effectiveness of the swap
suggestions. In order to analyse the logs and gain this insight we perform process mining [9]. However,
before we can effectively process mine the logs we first need to resolve an issue of time bias uncovered as
part of a process mining effort presented in our previous work in [11], where we included a method that was
generous as it did not include details of time information. Hence, for this thesis we discuss a way to introduce
time discrimination of the events in a timed event log such that time bias is avoided. Once the timed log
has been pre-processed we can, using the tool ProM [18], discover a model where we do not use the timed
information from the log. As we have done in our previous work we shall employ the theory of Timed-Arc
Workflow Nets when constructing a model where we combine the discovered time information, and the model
generated using ProM. The method of evaluating such a model from a process mining perspective is carried
out from a subjective and objective approach. The subjective approach, in the form of domain expert input,
provides knowledge of the workflow represented in the model that only a person with intricate knowledge
of the workflow can provide. This is then supplemented with the objective approach, in the form of quality
attributes [9, pp.188-192], where the characteristics of the model itself are evaluated.

Finally, when an appropriate model has been constructed it can be used for performance analysis. For this
purpose we will apply an algorithm, devised in our previous work [11], to find the distance between a timed
log and the constructed model. Furthermore, we include a number of ways in which we conduct performance
analysis.
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4. Outline

In Part I which corresponds to Suggesting swaps in Figure 1, we look into the field of adaptive storage
rearrangement i.e. swapping storage locations. In addition we in Section 5 present the two stakeholders
Av Form, and Logimatic and we present the specific area of the warehouse which is to be improved. In
Section 6 we define a warehouse, a warehouse configuration, and a configuration interface formalising how a
configuration can change, lastly we define a discrete-time event log. In Section 7 we present the theory and
an algorithm to compute swap suggestions in a given warehouse configuration. In Section 8 we estimate the
time workers at Av Form use on specific actions, and in Section 9 which concludes the first part, we introduce
our implementation of the swap suggestion in to the warehouse management system LOGIA.

In Part II which corresponds to Analysing logs in Figure 1, we first introduce work we conducted in a
previous semester where we in Section 10 present our label extension to the theory of extended timed-arc
Petri nets as well as the theory of extended timed-arc workflow nets (ETAWFNs). In Section 11 we elaborate
on the discovery process and what we refer to as the time dilemma with possible solutions related to this time
dilemma. And in Section 12 we present a distance measuring algorithm we developed during our previous
semester, for calculating the distance between an ETAWFN and discrete-time event log. In Section 13 we
conduct four experiments related to our work presented throughout this thesis. We conclude our thesis in
Section 14, and lastly in Section 15 we cover suggestions for future work.

Part I

Adaptive Storage Rearrangement
5. Stakeholders

Research in optimisation of warehouses has existed since the 1970’s [12]. In [3], the authors give a literature
review of work associated with "Design and control of warehouse order picking". A number of papers [3, 4,
5, 6] claim that order picking is the most crucial, expensive, or labour intensive part of a warehouse, where
most of the papers [4, 5, 6] claim that more than 50 % of resources (time and/or money) goes to this process
alone. From these claims, it naturally follows that any optimisation in the order picking process, would be
beneficial for any warehouse as it reduces related costs. As part of this project we collaborate with Av Form
[19], as our case-study. In the following we give an overview of this warehouse, followed by a description of
the problem we will be looking into.

5.1. Av Form

Av Form is an online webshop selling a broad arsenal of things bought both by private shoppers or e.g.
schools. The company primarily has manual labour, and their main office and warehouse is located in Herning
in Denmark. The company has existed since 1972, where they originally supplied schools with material for
creativity and learning. Our main contact at Av Form is John Ostersen, and he has confirmed that the process
of picking is indeed the most expensive process they have. Together with Ostersen, we have isolated an area
which is ideal for optimisation, but before presenting this area we introduce some terminology followed by an
explanation on how the warehouse, and certain processes are structured at Av Form.
The terminology used in the warehouse, is as follows:

Item A single object, with a unique identifier
Carrier A container that can hold a multiset of items, with a unique identifier
Location Uniquely identifiable place in the warehouse, where carriers are placed
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Forward location An identifiable location from which workers can manually collect items
Reserve location An identifiable location placed high, so a forklift is needed to collect the item

Events that occur at Av Form, shortly introduced as:
Pick Removing an item from a carrier in a forward location
Replenish Restocking carriers in forward locations with items from reserve locations

1
2

3
4
...

j

Figure 2: Sketch of routing path, top view

1
k
...

2
1

2 . . . n

Reserve locations

Forward locations

Figure 3: Sketch of aisle layout, front view, with n
racks and k shelves

The following descriptions are selected for their relevance to Av Form, for more descriptions we refer to
Koster et al. [3].

Warehouse Structure The warehouse mainly persists of manual labour, where the warehouse is struc-
tured as a picker-to-parts [3, p. 483] warehouse, meaning all workers (the pickers) have to move to
stationary locations in order to collect items (parts).
Route Planning All routing is planed as an s-shape routing [3, p. 495] as illustrated in Figure 2, where
workers perform picks on either side, as they traverse down an aisle. If the item furthest away is located at
aisle i where 1 ≥ i ≤ j then the worker only has to move to aisle i to initiate the picks, rather than always
moving to aisle 1 (the aisle furthest away from the end destination).
Storage Arrangement Finally, the storage locations are arranged such that the warehouse has forward-
reserve allocation [3, p. 488]. This allocation is depicted in Figure 3 where, similar to the description
in [3], workers in the warehouse perform picks directly from the forward area, and use the reserve to
replenish items in the forward area.

Figure 3 depicts a situation where all racks in an aisle has the same number of shelves, and the shelves have
the same height and width. However, this is not the case at Av Form where the number of shelves, and their
height and width may vary. Though the amount of shelves may vary in both forward and reserve areas, the
location numbering is always continued across the areas in a rack, i.e. if the top most forward location in a
rack is i, then the lowest reserve location in that rack is at i + 1.

5.2. The Relocation Problem

We had an initial talk with John Ostersen, to identify problem areas, or areas where improvements would
introduce an increase in value for the company. Ostersen had talked with management beforehand, and we
discussed both ideas presented by us and by Ostersen, where some ideas were identified by Ostersen as being
potential areas where a problem could exist, whereas other ideas were not an area of concern to Ostersen.

We completed the talk by having Ostersen reflect over the different ideas, and tell us which would generate
most value for the company. He returned to an original idea proposed by him, which we explain in the
following.

The problem presented is in relation to replenishment, which is about moving items from carriers on the
reserve locations to carriers on the forward locations. There is a number of things we have to consider:
• We are not to relocate items in the forward locations
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• We are to reduce the physical distance travelled when retrieving items for replenishment, considering
both floor distance and height to locations
• We must consider that the relocation is also time consuming.

In total we can describe the main problem as:

Is it possible to rearrange reserve locations, such that the total time used for replenishment is
reduced?

5.3. LOGIA Warehouse Management and Logistics System

Av Form uses the system called LOGIA [20], to manage their warehouse. LOGIA is both a warehouse
management and logistics system created by a department in the company Logimatic [21]. The department
currently consists of 15 developers whom support, maintain, and expand different versions of the LOGIA
system. LOGIA supports both manual and automated work, for Av Form this means mainly support for their
manual labour. The system logs most of the work it performs, mostly for the purposes of error handling and
support in general. In the following we elaborate on the specific columns and information from the LOGIA
log that are relevant to the relocation problem for Av Form — stated in Section 5.2. The relevant columns are
as follows:
CARRIER_NO is a unique ID, for every carrier registered in LOGIA.
LOCATION_NO is a unique ID, for every location registered in LOGIA.
ITEM_NO is a unique ID, for every item registered in LOGIA.
TIMESTAMP is used to track when an event is registered in LOGIA.
ACTION is a shorthand for one of the following action types:

Following actions are atomic action types
I In Place an item into a carrier
O Out Inform system that a pick has been performed
C Count Manual count of items in a carrier
M Move Move entire carrier
Following actions are logical action types
RO Replenish Out Remove some quantity of an item from a reserve location, and place onto a temporary carrier
RI Replenish In Add item taken from a temporary carrier, onto a forward location

Table 1: Actions logged in LOGIA

USER is the person whom executed the task in LOGIA
The action types are divided into atomic action types; that is action types that are irreducible, and logical

action types which are inferred from the atomic action types. The action types presented here represents a
subset of the action types logged by LOGIA. The relevance of a given action type is based on a distinction
between external action types of the environment and internal action types of LOGIA. Since the goal of the
relocation problem is to reduce work time we focus on external action types.

6. Theory Overview

In this section we introduce definitions for a warehouse, a configuration and a configuration interface, which
covers how a configuration can be changed, using a set of functions. We present a definition for a discrete-time
event log, including the definition of an action.
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6.1. Warehouse Configuration

A warehouse following Definition 6.1 has many possible states, henceforth referred to as configurations.
Colloquially, a configuration is the distribution of items in a warehouse to the locations in the warehouse
where each location can hold zero or more items. In this section we first formally define the warehouse,
followed by the definition of a configuration, and finally we will present the definition of a configuration
interface, showing how the action types described in Table 1 affects the configuration.

Definition 6.1 (WH). A Warehouse (WH) is a quintuple WH = (L, I,Dist,Lift, Swapable) where

• L is a finite set of locations,

• I is a finite set of items,

• Dist : L × L→ N0 is a function assigning the travel time between two locations,

• Lift : L→ N0 is a function assigning a lift time to a location, and

• Swapable ⊆ L × L is a symmetric and irreflexive relation stipulating which locations are allowed to be
swapped.

Definition 6.2 (Configuration). The configuration C = (Config,Lookup) of a warehouse
WH = (L, I,Dist,Lift, Swapable) is defined as:
• Config : L→ (I → N0) which is a function that, for every location and item, returns the quantity of an

item on a specific location, and

• Lookup : I → L∗ is a function assigning a sequence of locations to items indicating where an item is
stored.

In a configuration it is first and foremost required that one can determine the items on a given location and
their quantity on said location. It is for this purpose that we define Config. The second function Lookup
is defined for two reasons. First, an item in a warehouse can reside in multiple locations e.g. at Av Form
a number of reserve locations will hold the same item as one forward location. Secondly, a warehouse
will continuously receive new items and in an effort to be efficient, preempt a surge in demand by ordering
additional items. In light of this fact it is important that older low quantity carriers are emptied in order to
make room for new ones, avoid item starvation and maximise space utilisation. We therefore stipulate that the
sequence of locations returned by Lookup is treated as a queue in this regard.

A warehouse can transition from one configuration to another when a worker performs some action
type. We refer to the aggregated actions a worker can perform for a given configuration as the configuration

interface. We denote an interaction from a worker, or a transition as seen from the configuration, as C
action
−−−−→ C′.

As a preliminary step we define the notation for renaming elements in a sequence of locations as seen in
Definition 6.3.

Definition 6.3 (Renaming). Given a set of elements Σ and a sequence from Σ∗, where a, b, c ∈ Σ and w ∈ Σ∗,
we define the renaming of all b elements to c as:

(a ◦ w)
[c/b] = a ◦ (w

[
c/b

]
) if a , b

c ◦ (w
[
c/b

]
) if a = b

ε
[c/b] = ε

We introduce the option of renaming, as a way of preserving age information on items when they are being
relocated. In the following we present the definition of the configuration interface, where each function has a

8



Adaptive Storage Rearrangement and Process Discovery in a Warehouse • June 8, 2018 • DEIS1011F18

relation to one or more of the action types presented in Table 1. The In and Out functions map to the I and O
actions respectively, whereas the MoveC function in accordance with explanations provided by Logimatic,
maps to two M actions, where the first action would carry information on items being removed from one
location, and the other M action would carry information on items being added to a location. The last function,
MoveI, we present in the definition has also been specified by Logimatic as consisting of two actions; the RO
and RI actions, which has the property of carrying age information on items that are being moved around in
the warehouse.

Definition 6.4 (Configuration Interface). For Av Form we define the interface as follows, based on the action
types defined in Table 1:

• C
In(l̄,(ī,n̄))
−−−−−−→ C′: In a configuration C a worker performs the action type; I. Consequently, n̄ of item ī are

placed into location l̄ resulting in a new configuration C′ such that

precondition : n̄ > 0, l̄ < Lookup(̄i)

Config′(l)(i) =

Config(l)(i) if l , l̄ ∨ i , ī

Config(l)(i) + n̄ if l = l̄ ∧ i = ī
Lookup′(i) =

Lookup(i) if i , ī

Lookup(i) ◦ l̄ if i = ī

• C
Out(l̄,(ī,n̄))
−−−−−−−→ C′: In a configuration C a worker performs the action type; O. Consequently, n̄ of item ī

are removed from location l̄ resulting in a new configuration C′ such that

precondition : n̄ > 0, Lookup(̄i) = l̄ ◦ tail

Config′(l)(i) =



Config(l)(i) if l , l̄ ∨ i , ī

Config(l)(i) − n̄ if

 l = l̄ ∧ i = ī,

Con f ig(l)(i) > n̄

0 if

 l = l̄ ∧ i = ī,

Con f ig(l)(i) <= n̄

Lookup′(i) =


Lookup(i) if i , ī

tail if Config′ (̄l)(̄i) = 0 ∧ i = ī

l̄ ◦ tail otherwise

• C
MoveC(l̄1,l̄2)
−−−−−−−−−→ C′: In a configuration C a worker performs a sequence of two M actions. As a

consequence the carrier on location l̄1, with all its contents, is moved to the location l̄2. We formalise
this as follows:

precondition :∀i ∈ I : Config(l̄2)(i) = 0,

∃i ∈ I : Config(l̄1)(i) > 0, l̄1 ∈ Lookup(̄i)

Config′(l)(i) =


Config(l)(i) if l , l̄1 ∧ l , l̄2
Config(l̄1)(i) if l = l̄2
0 if l = l̄1

Lookup′(i) = Lookup(i)
[l̄2/l̄1]

• C
MoveI(l̄1,(ī,n̄),l̄2)
−−−−−−−−−−−−→ C′: In a configuration C a worker performs the action type sequence of RO followed

by RI. As a result hereof; n̄ of item ī are moved from location l̄1 to location l̄2.

precondition : n̄ > 0, l̄1 ∈ Lookup(̄i)
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Config′(l)(i) =



Config(l)(i) if l , l̄ ∨ i , ī

Config(l)(i) − n̄ if

 l = l̄1 ∧ i = ī,

Config(l)(i) > n̄

0 if

 l = l̄1 ∧ i = ī,

Config(l)(i) =< n̄

Config(l)(i) + n̄ if

 l = l̄2 ∧ i = ī,

Config(l̄1)(i) > n̄

Config(l)(i)+

Config(l̄1)(i) if

 l = l̄2 ∧ i = ī,

Config(l)(i) =< n̄

Lookup′(i) =


Lookup(i) if l̄2 ∈ Lookup(i)

Lookup(i)[
l̄1 ◦ l̄2/l̄1

]
if l̄2 < Lookup(i)

6.2. Discrete-Time Event Log

An essential part of any warehouse, or any business for that matter, is to record what transpires on a daily
basis. Such information is recorded in event logs and serve as the starting point for what is known as process
mining. Process mining is a field that combines a data-driven approach with a process oriented approach in
order to analyse the processes of business, organisations, etc. [9]. In the presented work this process analysis
is an intrinsic part of our analysis of the practical effectiveness of our swap suggestion algorithm. In this
section we shall define what an event log is, and focus on defining the minimum required information present
in an event log for it to be used in our analysis efforts. We first define how an action is recorded in an event
log as seen in Definition 6.5, where we let Z be the set of all positive, and non-positive integers including
zero.

Definition 6.5 (Action). Given a warehouse WH = (L, I,Dist,Lift, Swapable) then an action is an element
(t, l, i, n,w, o) ∈ T × L × I × Z ×W × O where
• T is a finite set of types,

• L is a finite set of locations,

• I is a finite set of items,

• Z is the quantity difference for an item on a location,

• W is a finite set of workers,

• O is a finite set of order numbers, and

• the set of all actions is denoted by Act.

Take Table 2 as an example of an action. The elements of the action, except for its type, are only meant
to illustrate an action in the context of our case study; hence, the values of the elements are hypothetical.
The action type O, described previously in Table 1, indicates that items were removed from the location
’123-12-3-A’. In this case the item was taken from the carrier on the location in row 123, rag 12, height 3,
position A. From the location, a quantity of five of the item seven were removed by Avery for order 23.

Type Location Item Quantity Worker Order number
O 123-12-03-A 7 -5 avr 23

Table 2: Example of an action which illustrates how actions are logged at Av Form
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An event log is then a sequence of actions where each action is associated with time i.e. an action occurred
at some point in time. We define an event log as seen in Definition 6.6 inspired by the definition given by
Weijters et al. [22]. In this definition let N0 = N ∪ {0}.

Definition 6.6 (Discrete-time Event Log). A discrete-time event log Π is a multiset of traces π where

• (a, d) ∈ Act × N0 is a discrete-time event where
– Act is a set of actions adhering to Definition 6.5,

• π ∈ (Act × N0)+ is a discrete-time event trace such that
– for a given trace π = {(a1, d1), (a2, d2), . . . , (an, dn)} we have that di ≤ di+1 ∀i, 1 ≤ i ≤ n, and

• Π ⊆ (Act × N0)+ is a discrete-time event log such that
– ∀π ∈ Π and π is a discrete-time event trace.

As an example of an discrete-time event log take Table 3. The discrete-time event log contains 17
discrete-time events for 4 different traces which corresponds to four different orders. Order one and three
was handled by Avery (avr), order two by Brian (bri) and order four by Charlie (cha). Notice that when a
carrier is moved multiple M events are registered. Firstly, the M action type indicates that an entire carrier is
moved; hence, the items on a carrier are removed or placed simultaneously. Secondly, in LOGIA both the
removal of items from the old location and placement into the new location are logged when the items have
been relocated. Consequently, moving a carrier results in a sequence of M events with the exact same delay.

Type Location Item Quantity Worker Order number Time
C 859-05-03-B 47 33 avr 1 0
O 859-05-03-B 47 -10 avr 1 11
C 444-01-03-B 15 4 bri 2 19
O 444-01-03-B 15 -4 bri 2 33
M 858-03-11-A 74 -32 avr 3 71
M 859-01-11-B 74 32 avr 3 71
M 858-03-11-A 97 -15 avr 3 71
M 859-01-11-B 97 15 avr 3 71
O 853-01-01-C 46 -109 bri 2 118
O 227-05-03-B 8 -23 avr 3 157
M 308-04-03-C 16 -87 cha 4 192
M 441-18-03-B 16 87 cha 4 192
M 308-04-03-C 69 -94 cha 4 192
M 441-18-03-B 69 94 cha 4 192
O 441-12-04-A 11 -98 bri 2 201
O 441-18-03-B 16 -45 cha 4 270
O 439-05-03-A 17 -31 cha 4 368

Table 3: Example of a discrete-time event log based on our case study

7. Swap Suggestions

In the following section we provide an overview of our swap suggestion algorithm and its most central element;
the cost function. First we outline the goal of the swap suggestion algorithm followed by a description of
several functions used to extract information from event logs. We then introduce discounting in order to
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assign preference to recent events. Finally, we conclude by defining the cost function and its elements, and
contextualise the cost function in our swap suggestion algorithm.

7.1. Goal

The goal which our swap suggestion algorithm must achieve has been previously stated in Section 5.2 and
is in essence what Gu et al. [15] refers to as the storage location assignment problem. This problem is not
concerned with general storage issues such as how many items should be kept in storage, but solely regards
the assignment of storage locations to items. The authors emphasise two major criteria with regards to this
problem. The first, called storage efficiency, corresponds to the holding capacity of a location, and the second,
access efficiency, corresponds to the amount of resources spend on taking items from locations. We shall
refer to these two criteria collectively as the expenditure and use it to indicate the expenditure associated with
two given swap candidates post-swap.

Swapping two candidates can result in either an increase, decrease, or breakeven in expenditure. However,
we must also consider the time it takes for a worker to actually perform the swap, i.e. the swapcost. Since the
swapcost is always an expense this must be added to the expenditure resulting from a swap which results in a
cost. The cost may be positive or negative, but it is always the desirable outcome to get a negative cost i.e. we
can safely disregard all swaps which result in a positive cost.

7.2. Item Average

The storage efficiency of a given reserve location, in relation to the the execution of the action type sequence
of RO followed by RI, i.e. the replenishment action, is equal to the number of times the worker can access
the location before it is emptied. When computing the storage efficiency for a given item we base it on the
average number of units taken when replenishing said item. In Definition 7.1 we present the equation which
computes the average items taken, where we have a timed event log Π being a sequence of actions, as:

Π =
(
(t1, l1, i1, n1,w1, o1), d1

)(
(t2, l2, i2, n2,w2, o2), d2

)
...(

(tn, ln, in, nn,wn, on), dn
)

(1)

In the numerator of Definition 7.1 we calculate the sum all items i occurring in Π where the type is RO, and
in the denominator we calculate the sum of RO containing some quantity of item i over the same conditions.

Definition 7.1 (Item Average). Given a discrete-time event log Π of the form as show in Equation (1), we
define the average number of items ī accessed per replenishment as:

item_avg(̄i) =

n∑
j=1

tj=RO
ī=ij

n j

n∑
j=1

tj=RO
ī=ij

1
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7.3. Time Discounting

In Definition 7.1 each observed RO type in the discrete-time event log contributes equally. As a result
hereof observations made one month ago are as indicative of the current replenishment trend as those made
during the previous week. However, this is intuitively not the case since customer demand changes e.g. as
seasons change or other events occur such as school start. Frederick et al. [23] introduces the notion of time
discounting which encompasses any reason to care less about future consequences or any factor that diminish
the expected utility they generate. In the context of our work we care less about what happened a month ago
since it is less of a causal factor into the future than what happened a week ago.

To incorporate time discounting into our swap suggestion algorithm we extend Definition 7.1. Conse-
quently, we have the extended version as seen in Definition 7.2, where we summarise over n time units.
Furthermore, the extension puts a lower weight to the average, as we get further from the newest discrete time
unit, where the discrete time unit for Av Form’s logs is is seconds, and as the use of seconds would yield
rather small values, we reduce the discrete time unit to represent days instead.

Definition 7.2 (Discounted Item Average). Given an event log Π of the form as shown in Definition 6.6, we
define the discounted item average for ī as:

disc_item_avg(̄i) =

n∑
j=1

(
n∑

k=1
tj=RO
ī=i j

n j

n∑
k=1

tj=RO
ī=i j

1
∗

1( dn−d j

60∗60∗24
))

7.4. Cost

As mentioned we aim at decreasing the cost resulting from swapping two locations. This cost which we will
elaborate on and define in the following is based on the expenditure of two swap candidates post-swap and
the cost of swapping them which we refer to as swapcost.

7.4.1 Expenditure
In Definition 7.3 we define the equation to calculate the expenditure resulting from swapping two locations.
The expression consist of two major terms, each encapsulated in parenthesis, separated by the minus operator.
The first term calculates the storage cost when two locations have been swapped, whereas the second calculates
the same storage cost but without the two locations having been swapped.

Computing the expenditure associated with a location is performed as follows: For each item i on a
location l, multiply the time it takes to access l with the number of times i can be accessed, based on
the average items taken when accessing it, before emptying the carrier. This, in essence, corresponds to
multiplying the access efficiency of l with its storage efficiency where the storage efficiency is the number of
times we can replenish item i from l.

Definition 7.3 (Expenditure). Given a warehouse WH = (L, I, Dist, Lift, Swapable) in a configuration C, we
define the effect of swapping locations l1 and l2 as:
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expenditure(l1, l2) =
(∑

i∈l2

Lift(l1) ∗
Config(l2)(i)
item_avg(i)

+
∑
i∈l1

Lift(l2) ∗
Config(l1)(i)
item_avg(i)

)
−(∑

i∈l2

Lift(l2) ∗
Config(l2)(i)
item_avg(i)

+
∑
i∈l1

Lift(l1) ∗
Config(l1)(i)
item_avg(i)

)
To emphasise on the result, the expenditure will be negative if the new configuration, with the swapped
locations, yields a lower value than the configuration prior the swap.

7.4.2 Swapcost
Let us first examine the workflow that is used in the computation of the swapcost. Starting at the known
location l1, the worker retrieves the carrier on location l1 which he then brings to reserve location l2. The
worker then temporarily places the l1 carrier on the floor while retrieving the carrier of l2. Subsequently, the
worker places the l1 carrier into the now empty location l2, and returns to the location l1 placing the l2 carrier
into that location, and hence completing the swap. We formalise this workflow as the swapcost function as
seen in Definition 7.4.

Definition 7.4 (Swapcost). Given two locations l1 and l2 from a warehouse WH = (L, I,Dist,Lift, Swapable)
to be swapped, we define the swapcost as follows:

swapcost(l1, l2) = 2 ∗
(
Lift(l1) + Dist(l1, l2) + Lift(l2)

)
We consider the swapcost since the reduction to the expenditure may be so small, that the time invested in
performing the swap could make the expenditure reduction insignificant.

7.4.3 Cost Function
With the formal definition of both the expenditure and swapcost we formally define the cost as seen in
Equation (2). As mentioned previously the cost signifies the expenditure added with the swapcost. If the
reduction in expenditure is greater than the swapcost we will get a negative cost i.e. the time gained from
swapping two locations outweigh the cost of swapping them.

cost(l1, l2) = expenditure(l1, l2) + swapcost(l1, l2) (2)

7.5. Swap Suggestions Algorithm

With the swap function defined in Equation (2) we can then compute the swap suggestions as seen in
Algorithm 1. In the swap suggestions algorithm we have to compare every location to every other location,
hence if we have n locations, we must perform a total of n2−n

2 calculations for possible swap candidates, which
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results in a complexity of O(n2).

Algorithm 1: Swap suggestions algorithm

1 function swap_suggestions(L,Π)
input :A set of locations L and a log Π
output :A list of swap suggestions with their respective cost

2 let L = {l1, l2, ..., ln}
3 let result be a list of location pairs and a cost value
4 for louter = l1..ln − 1 do
5 for linner = louter + 1..ln do
6 candidate = cost(louter, linner)
7 if candidate <= 0 then
8 add ((louter, linner), candidate) to result

9 sort result on candidate ascending
10 return result

8. Associating Time to Action Types

In Table 1 we have described different actions a worker can perform in a warehouse, and in Definition 6.1 we
included the functions Dist and Lift. These actions and functions share a common resource, which is time. In
this section we introduce a set of actions, and we introduce and apply a process for appending time estimates
onto this set of actions.

8.1. A Worker’s actions

A worker’s daily tasks involve a number of rudimentary worker actions. We provide the following brief
description of worker actions:

Aisle Traversing A worker drives on a forklift from one end of an aisle to the opposite end of that same
aisle
Corner Turning A worker turns the corner of an aisle
Between Aisles Traversing A worker drives, after having exited an aisle, in a straight line from one aisle
to the entrance of another aisle performing no corner turning under the trip
Lift Accessing A forklift operator either; lifts a carrier from the ground up to a reserve location also
bringing the forks down again, or starts with empty forks at ground level and takes a carrier from a reserve
location down to the ground.

8.2. Associating Time to Worker Actions

By observing the logs in LOGIA, we are not able to gather information of the time we workers spend on the
different worker actions, and we have no other logged measure of how the workers at Av Form move around
in the warehouse. Instead, during a visit to the warehouse, we gathered time measurements of a single worker
operating a forklift. The measurements were gathered with minimal interference from the observers, which
coupled with the discrepancy between the walking speed of the observers, and the driving speed of the forklift
resulted in sparse measurements. However, as a starting point for a solution these measurements suffice as
approximations.

Furthermore, the measurements for both aisle traversing and corner turning were carried out sporadically
since the values measured did not fluctuate significantly—the observed fluctuation did not exceed more than
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one second. The measured times for these two worker actions are as follows: Aisle traversing seven seconds
and corner turning time two seconds. The remaining observations had more fluctuations, hence we will look
at these observations in some more detail.

From To Time(sec)
Aisle
Distance

Time per
Aisle

312 308 9 2 5
312 427 19 4 5
423 434 20 5 4
304 424 8 7 1
312 427 19 4 5
312 308 9 2 5
304 428 16 9 2
420 424 8 2 4

Table 4: Rounded measurements of:
Between aisles traversing

2 4 6 8 10

1

2

3

4

5

6

Aisle distance

Time per aisle (sec) Average times
Interpolated times

Figure 4: Average and interpolated times for be-
tween aisles traversing

From the between aisles traversing measurements seen in Table 4, we see the measured time per aisle
mostly is five seconds for aisle distances 2 and 4. We consider the single aisle distance on 5, though seeming
reasonable, as noise, because a line-of-sight issue was encountered during the measurements. The remaining
aisle distances of 7 and 9 were measured with a low time per aisle average.

From the observations, we deduce that longer distances result in lower time per aisle averages, which
is also intuitively expected as the forklift operator will achieves higher speeds over longer distances. The
increase in time per aisle from distance 7 to 9 is explained from the layout of the warehouse, as the latter
distance included passing a packing area with other workers in near proximity, requiring a lower speed.

For the purpose of constructing unkown data points we use the technique of interpolation where an
approximating function is used to construct new data points such that they adhere perfectly to the, often,
unknown function of the original data set [24]. In order to generalise the collected data for between aisles
traversing we abstract away from the behaviour explaining x=7 and x=9. We also assign the slowest time
per aisle of five seconds to x=1 and the fastest time per aisle of one second to x=11 since this is the longest
aisle distance at Av Form. Applying linear interpolation using the two datapoints (1,5) and (11,1) results are
shown in Figure 4, in which each aisle distance incrementation results in a reduction in time per aisle of four
milliseconds.
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Row Time(sec) Avg. time
1 24, 25, 24, 25, 31 25
2 30, 30, 36, 36, 32 27, 31 32
3 33, 27 30
4 42, 43, 44, 41 42

Table 5: Rounded measurements of: lift
accessing

1 2 3 4 5

5

10

15

20

25

30

35

40

45

50

Reserve row

Lift Time (sec)

Average times
Interpolated times

Figure 5: Average and interpolated data for lift
accessing, based on Table 5, where
row one is the lowest row

The time measurements gathered for the lift accessing can be seen in Table 5. Notice that the average lift
time for row two and three decreases from 32 to 30. This is due to the measurment method used where we
used the row number and not physical height of the row; hence a row number for different racks can vary in
physical height. In order to remedy this erroneous data we decided to interpolate using only the lift times
for row one and four, as these measurements were more consistent. From the interpolated times, shown in
Figure 5, we observe that it takes five to six seconds for the worker to lift the forks from a row to its adjacent
rows. To conclude, we present the time values for the different worker actions in Table 6, and we show how
the time values can be used to create heuristic functions for Av Form to calculate the Dist(l1, l2) and Lift(l1)
functions presented in Definition 6.1 for a warehouse.
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Aisle Traversing (AT) 7 seconds
Corner Turning (CT) 2 seconds

Between Aisles Traversing (BAT)

aisle distance time (sec)
1 5
2 9
3 13
4 15
5 17
6 18
7 18
8 18
9 16
10 14
11 11

Lift Accessing (LA)

row height time (sec)
1 25
2 30
3 36
4 42
5 48

Table 6: Fixed time metric for each of the measured actions with rounded time values

The Lift(l1) can be calculated as seen in Equation (3), where row_height is specified for the given location,
as the number of shelves counted from the lowest reserve location which is 1, the shelf above is 2, and so
forth. The pick locations are not considered as these can be reached from ground level without the use of a
forklift. In Equation (3) the constant value of 19 seconds is a baseline for the duration of the lift time, where
each increase in row height adds another 6 seconds.

Lift(l1) = 19 + row_height ∗ 6 (3)

The Equation (4) is used to calculate the Dist(l1, l2), where x is the amount of traversed aisles, and y is the
amount of involved corner turnings. Furthermore, the heuristics of this equation include BAT, as we assume a
straight line when traversing the warehouse, where only one BAT is included for the aisle distance between
the two involved locations.

Dist(l1, l2) = x ∗ AT + y ∗ CT + BAT(l1, l2) (4)

9. Implementation in LOGIA

As previously mentioned, two stakeholders are involved in this project: The business Av Form which has a
warehouse, and Logimatic whom provides Av Form with a warehouse management system (WMS) called
LOGIA. We have implemented the cost function in Equation (2) on page 14 into LOGIA, and in this section
we will present the most prominent aspects of the user interface which we have implemented, followed by the
underlying implementation of the cost function.

LOGIA is a WMS used in multiple warehouses in different countries. Logimatic have some predefined
guidelines on how functionlity and the userface is designed and implemented, but we still have some influence
on how we wish to design the implementation. LOGIA is a Windows Presentation Foundation (WPF)
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application [25], which follows a Model View View-model (MVVM) pattern [26]. We will not go into details
on the underlying implementation of the user interface, but rather describe it from screenshots in this section.

Through our theory, we support two scenarios for for suggesting locations to swap, either where we know
one location we would like to swap, or where we consider all possible location pairs. The benefit from the
former scenario is that it can be implemented in the workers daily work where, when the worker is accessing
one location, we can suggest possible other locations to swap said location with. The latter scenario is more
applicable in situations where the worker would be otherwise idle, and we can suggest a set of location pairs
ideal for swapping.

We emphasised our desire for a solution that included both these possibilities, but trough a discussion with
Av Form, and from our visit at the warehouse, we see that knowing one location beforehand, though possible,
would not result in an effective workflow, as it did not seem feasible having to travel with the additional
carrier while performing the ordinary replenish task. Hence our implementation only support knowing neither
of the locations beforehand.

9.1. User Interface

In Figures 6 through 8 we show screenshots of what Logimatic refers to as screens. We present the screens in
the same order as a worker is presented with the screens, when she has to perform a swap task.
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Figure 6: Screenshot of LOGIA screen: Start Picking Round

9.1.1 Screen: Start Picking Round
The workers performing existing replenish order tasks prior to our implementation accessed the screen Start
Picking Round shown in Figure 6. We have chosen to extend the screen with the button Start Swap placed in
the lower right side of the screen, which is used to open the screen Swap Suggestions. This button is seen as
an extension, as it would already be possible to access the screen from the menu option on the left side of the
screen. But we have chosen to include the extra button as a reminder of the new option.
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Figure 7: Screenshot of LOGIA screen: Swap Suggestions
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9.1.2 Screen: Swap Suggestions
The screen shown in Figure 7 Is our major extension to the user interface, as the screen did not exist before
hand. The screen presents the calculated swap suggestions using two tables which are implemented with a
master-detail relation.

Master-Detail Tables
The master table named "SWAP SUGGESTIONS" shows the list of location pairs we suggest to swap,
prioritised on how much the swap will reduce the calculated expenditure, with the greatest reduction shown
in the top. We include the first column titled "Ranking" for two reasons: Multiple location pairs may have
the same cost result; hence, we add the same ranking for these pairs and a worker may choose to change the
sorting in the table, here the ranking helps to guide the worker to not pick a swap suggestion which has a high
ranking.

We as software developers lack the domain knowledge that the warehouse workers have; hence, we
include the detail table named "ITEMS IN LOCATIONS". This table updates when a worker selects a row in
the master table showing certain details of the items on the two selected swap locations. The worker may then
review the item details and decide whether or not to commence with the selected swap suggestion.

The Buttons
We provide two buttons, at the bottom left of this screen, the first titled "Calculate new swap suggestions" and
the second called "Swap selected locations". The former button was implemented because the process of
calculating the cost of all the locations is cumbersome and may take several seconds to complete. Hence we
do not want to force the workers to wait this long duration every time they have completed a swap. But we
invite them to perform the calculations as frequently as possible.

The latter button, as the title implies, initiates the process of swapping the two selected locations. Using
existing functionality in LOGIA, we open the next screen; Execute Move/Storing shown in Figure 8 while
deactivating all functionality in the Swap Suggestions screen. While initiating the new screen, we create
a sequence of move transactions, and we place the involved locations in an ignore list to ensure that other
workers does not initiate work on the same locations.

The Execute Move/Storing screen may be closed due to different reasons. Upon closing the screen different
things happens in the Swap Suggestions screen. We will explain these events before explaining the Execute
Move/Storing screen.

Execute Move/Storing may be closed due to two different outcomes; either the swap is completed, or it is
cancelled. If the swap is cancelled, the screen is updated to accommodate for possible changes performed
by other workers in the warehouse, and the created move transactions are deleted. If the swap is completed,
we also refresh the screen, but the locations are kept in the ignore list. This is done due to the decision not
to automatically recalculate the swap suggestions after each swap. Where the ignored locations are again
included after a recalculation has been performed.
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Figure 8: Screenshot of LOGIA screen: Execute Move/Storing
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9.1.3 Screen: Execute Move/Storing
The screen Execute Move/Storing shown in Figure 8 is opened when "Swap selected locations" is clicked, as
previously explained. All elements shown in the screenshot are part of the existing LOGIA functionality, but
we will include some more changes later in the description. First we explain the expected sequence of actions,
followed by more details about some of the actions.

Action sequence
We discussed some implementation strategies with Logimatic, to either introduce a new action where all
needed actions are included, or use the existing actions to achieve the swap. The drawback of the first
implementation is an increase in the implementation complexity, and more importantly that all actions
associated with the swap event would be logged at the same time, such that details on the duration of
completing the intermediate steps are lost. The second implementation would be more simple to implement,
as we can use the existing MoveC(l1, l2) function, by introducing a temporary location lt such that we
can perform the sequence MoveC(l1, lt) → MoveC(l2, l1) → MoveC(lt, l2). The drawback of the latter
implementation is that the worker will have to execute more actions, such as scanning barcodes of each
location as they are accessed, but this is already a requirement for most actions in LOGIA, hence we do not
see it as an significant drawback and went with the latter solution of using existing actions, which will carry
additional information, to enable us to identify the MoveC(l1, l2) functions used as part of a sequence to
perform a swap.

Introducing the temporary location
When the swap is initiated, we create two move actions, shown in Figure 9. This allows the worker to pick
which location to begin at, e.g. based on the distance to either location. Given the two locations ’312-04-06-A’,
and ’424-06-03-A’, henceforth referred to as l1, l2 respectively. The two generated actions are MoveC(l1, l2)
and MoveC(l2, l1). If the worker wishes to execute l1 as the first move, she first has to move l2 to a temporary
location. When performing this move, LOGIA registers that it is not the original location which is scanned
and the dialogue in Figure 10 is shown. This dialogue is the last change we have made to the user interface,
as there originally was no option for "Temporary location". If the worker selects this option, a new moveC
action is created, with the scanned location as the new source location, and the original destination location,
still being the designated destination location, and the old MoveC action is now replaced with the new action.

Figure 9: snippet with two move actions
Figure 10: Dialogue shown in s9308

9.2. Database Implementation

The underlying database used in LOGIA is an Oracle database [27], which is utilised using PL/SQL; "a
procedual language designed specifically to embrace SQL statements within its syntax" — as stated in [28].
We will not go into details with the two environments, but have to include a well discussed bottleneck of
context switching [29]. SQL and PL/SQL are two different environments, and it is sometimes necessary to
switch between the two environments. Performing this context switching only has a rather small overhead,
but if the context switching is done often the overhead will become noticeable. We first became aware of
this bottleneck during the implementation, and had to make some changes in order to achieve an increase in
performance.
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One approach we have made to reduce the context switching, is to divide the calculation of the swap
expenditure into two; preprocessing, and performing the pairwise comparison of locations.

9.2.1 Preprocessing
In PL/SQL we can use cursors for executing queries where we expect to retrieve multiple rows [30]. These
queries are SQL SELECT statements, and are primarily used to fetch data into an array in PL/SQL. This
introduces context switching, hence we wish to reduce the number of times we fetch data from cursors into
arrays.

We primarily use two cursors, one to fetch data from one of four logs in LOGIA, namely the tracelog,
and one to fetch information from the locations. We will refer to these cursors as c_translog and c_location
respectively.

c_translog cursor
We use the c_translog cursor for gathering information from the translog, and we query two attributes; item_no
and item_avg. We use entities other than the translog to get the item_no as we are interested in all items, not
restricted to those present in the translog. Listing 1 shows a snippet of the selected attributes in the c_translog
cursor, where for each day, and each item:
• sum_item_qty is the total quantity of the item retrieved for replenish,
• cnt_order is the total amount of replenish orders placed for the item,
• trunc(SYSDATE) which gets the current date, without time information, and
• date_translog is the date, for which we retrieve the sum_item_qty, and cnt_order

We use this to calculate the disc_item_avg (Listing 1) for all items, where we set the value to 0 if no
occurrences of the item were found in the translog.

1 CURSOR c_translog IS
2 SELECT
3 carrier.item_no,
4 NVL(ABS(SUM(sum_item_qty/cnt_order / (trunc(SYSDATE) - date_translog + 1))),0) AS item_avg
5 FROM carrier
6 . . .

Listing 1: disc_item_avg(i) implementation

We fetch the cursor c_translog into an array where we index each item_avg on the item_no, which later
enables us to perform a single lookup and remove the need of a loop.

c_location cursor
The cursor c_location is more cumbersome than the other, as it is used to fetch more information, including
the current quantity of items on each location, which items are on which locations, and size information on
both carriers and locations.

We use the size information to determine which carriers fit into which locations, to avoid suggesting
swaps that cannot physically be performed.

Next we populate an array a_location which holds information on each location, and a sub array where
we include the item information of all items in the location, from the array populated by the c_translog cursor.

9.2.2 Pairwise comparison of locations
Early in the implementation, we had some processes which heavily increased the calculation time. The major
increase to duration happened because we performed the disc_item_avg within the loop, which introduced
context switching for every location pair. In the final implementation, we have two nested for loops, looping
over the same array a_location, on two different indices. Hence, we can use the two indexes to get information
on two locations in the array, and we can get all needed information for the two locations using direct lookups,
reducing both the need for further looping, and context switching.
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9.2.3 Handling Concurrent Work
It is possible for two workers to execute swaps at the same time, as we briefly covered in Section 9.1. We also
had to consider this in the implementation into PL/SQL, which we cover in the following.

Ignore table
We maintain an ignore_table for two reasons. Firstly, when we calculate the swap candidates, it is likely that
a location is in multiple rows of the result set as there may be multiple candidates of locations to swap with.
Since we do not perform a recalculation of the swap candidates every time two locations are swapped, it
is important that we do not show any rows with the involved locations. We do this by adding the involved
locations to the ignore_table when a worker initiates the swap. The locations are kept in the ignore_table until
either; the swap is cancelled before completion, or the swap expenditure is recalculated.

The second reason for the ignore_table is also related to the recalculation of the swap candidates. If we
have two workers, w1 and w2, performing swaps and w1 is currently swapping two locations, while w2 is
initiating a recalculation. It is important that the two locations being swapped by w1 is kept in the ignore
list, as the recalculation includes the locations prior to the swap. We do this by adding a boolean attribute
is_reserved to locations in the ignore_table. When the swap is initiated we set the boolean to true, until the
swap is completed. When we perform the recalculation, we can then simply delete all rows from ignore_table
where is_reserved is false.

Process locking
Two workers may not initiate the recalculation of swap candidates at the same time, as the procedure modifies
tables, and trying to call the procedure when it is already running, would result in an error. To solve this issue
we use existing functionality in LOGIA, where we try to fetch a lock for the procedure. If the procedure is
not locked beforehand, we lock the procedure, executes it, and release the lock afterwards. If the procedure is
locked when we try to fetch the lock, we throw an error in LOGIA saying the process is running elsewhere.

Part II

Process Discovery
10. Preliminaries

In this section we present the theory of extended timed-arc Petri nets as well as a subclass hereof called
extended timed-arc workflow nets. We present this theory as preliminary knowledge, as it was part of our
previous work in [11], and since we do not develop the theory as part of our contribution but use it as the
foundation of our contribution.

10.1. Extended Timed-Arc Petri Nets

In the following we introduce the definitions for timed transition systems (TTSs) and extended timed-arc
Petri nets (ETAPNs), as given by Mateo et al. [31, pp. 93–95], and we present our extension of their ETAPN
definition, which includes a labelling function L. Furthermore, we also include several concepts from Mateo
et al. [31, pp. 93–95] which accompanies the two definitions such as the preset and postset of the transitions
and places of an ETAPN.

Let N0 = N ∪ {0}, N∞0 = N0 ∪ {∞}, and let R≥0 denote the set of all nonnegative real numbers. Then a
TTS can be defined as follows:

Definition 10.1 (Timed Transition System). A TTS is a triple (S , Act,→), where
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• S is the set of states,
• Act is the set of actions,
• and→⊆ S ×(Act∪R≥0)×S is a transition relation which we will write as s

a
−→ s′ whenever (s, a, s′) ∈→.

Mateo et al. [31] briefly introduces some additional basic concepts related to TTS’s.
• A transition can be either

– a switch transition if a ∈ Act, or
– a delay transition if a ∈ R≥0.

• The set of well-formed closed time intervals as I def
= {[a, b] | a ∈ N0, b ∈ N∞0 , a ≤ b}.

– and its subset, which is applied in age invariants, Iinv def
= {[0, b] | b ∈ N∞0 }.

From now on we will, in the presented work, assume a fixed set Act.

Definition 10.2 (Extended Timed-Arc Petri Net). An extended timed-arc Petri net (ETAPN) is a 10-tuple
N = (P,T,Turg, IA,OA, g,w,Type, I, L) where

• P is a finite set of places,

• T is a finite set of transitions such that P ∩ T = ∅,

• Turg ⊆ T is the set of urgent transitions,

• IA ⊆ P × T is a finite set of input arcs,

• OA ⊆ T × P is a finite set of output arcs,

• g : IA→ I is a time constraint function assigning guards to input places such that
if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

• w : IA ∪ OA→ N is a function assigning weights to input and output arcs,

• Type : IA∪OA→ Types is a type function assigning a type to all arcs where Types = {Normal, Inhib}∪
{Transport j| j ∈ N} such that

- if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
- if Type((p, t)) = Transport j for some (t, p) ∈ IA then there is exactly one (t, p′) ∈ OA such that
Type((p, t′)) = Transport j,
- if Type((t, p′)) = Transport j for some (t, p′) ∈ OA then there is exactly one (p, t) ∈ IA such that
Type((p, t)) = Transport j,
- if Type((p, t)) = Transport j = Type((t, p′)) then w((p, t)) = w((t, p′)),

• I : P→ Iinv is a function assigning age invariants to places, and

• L : T → Act ∪ {τ} is a labelling function assigning actions, including tau, to transitions.

As an example of an ETAPN take Figure 11 which consists of the places = {P1, P2, P3, P4, P5, P6, P7}
and transitions = {T1,T2,T3,T4}. Furthermore, all transitions have a label assigned to them e.g. transition
T1 is assigned the label a. We will color τ-transitions, such as T4, black to clearly distinguish them from
non-τ-transitions. The arcs (P1,T1) and (T1, P2) are both transport arcs indicated by the diamond shaped
heads and form a pair indicated by : 1. Additionally, (P1,T1) has a lower- and upperguard with the values
2 and 3 respectively. The input arc (P4,T2) is an inhibitor arc indicated by the white bullet head, and the
outgoing arc of T2 is assigned a weight of 4. Finally, the white dot in the transition T4 signifies an urgent
transition, and P7 has an age invariant.

We will now further describe some notation in order to subsequently give the formal semantics of ETAPN.
Let N be the ETAPN shown in Figure 11. By •x def

= {y ∈ P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x)) , Inhib}
we denote the preset of a transition or a place x, e.g. •T2 = {P2}. Likewise, we define the postset as
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[2, 7] 4×[2, 3]:1 :1

Figure 11: Extended timed-arc Petri net example where τ-transitions are black

x• def
= {y ∈ P ∪ T | (x, y) ∈ (IA ∪ OA)} e.g. T2• = {P3}. We denote the set of all finite multisets over R≥0

as B(R≥0). Then a marking M on N will be defined as a function M : P → B(R≥0) for which, for every
place p ∈ P and every token x ∈ M(p) it holds that x ∈ I(p) i.e. all tokens must adhere to their respective age
invariants. ByM(N) we denote the set of all markings for the net N.

The notation (p, x) denotes a token in place p with an age of x ∈ R≥0. It then follows that the multiset
representing a marking M is noted as M = {(p1, x1), (p2, x2), . . . , (pn, xn)} where we have n tokens of ages xi

in places pi. Finally, we denote the number of tokens in a place p as |M(p)|; consequently we define the size
of a marking M as |M| =

∑
p∈P |M(p)|.

We also wish to introduce Mateo et al. [31]’s definition of Enabledness, as this covers when transitions
are enabled and therefore can be fired. We include our extension to ETAPN, but this has no impact on the
remainder of the definition.

Definition 10.3 (Enabledness). Let N = (P,T,Turg, IA,OA, g,w,Type, I, L) be an ETAPN. We say that
transition t ∈ T is enabled in a marking M by the multisets of tokens In = {(p, x1

p), (p, x2
p), . . . , (p, xw((p,t))

p ) | p ∈
•t} ⊆ M and Out = {(p′, x1

p′ ), (p′, x2
p′ ), . . . , (p′, xw((t,p′))

p′ ) | p′ ∈ t•} if
• for all input arcs except the inhibitor arcs, the tokens from In satisfy the age guards of the arcs, i.e.

∀p ∈ •t. xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

• for any inhibitor arc pointing from a place p to the transition t, the number of tokens in p is smaller
than the weight of the arc, i.e.

∀(p, t) ∈ IA. Type((p, t)) = Inhib⇒ |M(p)| < w((p, t))

• for all input arcs and outpout arcs which constitute a transport arc, the age of the input token must be
equal to the age of the output token and satisfy the invariant of the output place, i.e.

∀(p, t) ∈ IA. ∀(t, p′) ∈ OA. Type((p, t)) = Type((t, p′)) = Transport j

⇒ (xi
p = Xi

p′ ∧ xi
p′ ∈ I(p′))for1 ≤ i ≤ w((p, t))

• for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA. Type((t, p′)) = Normal⇒ xi
p′ = 0 for 1 ≤ i ≤ w((t, p′)).

We now have that a given ETAPN N defines a TTS T (N) def
= (M(N),T,→) for which states are markings,

and switch and delay transitions are as follows.
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• if t ∈ T is enabled in marking M by the multisets of tokens In and Out then t can fire and produce the
marking M′ = (M r In) ] Out where ] is the multiset sum operator and r is the multiset difference

operator; we write M
L(t)
−−→ M′ for this switch transition.

• A time delay d ∈ R≥0 is allowed in M if
- (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), and

- if M
L(t)
−−→ M′ for some t ∈ Turg then d = 0.

By delaying d time units in M we reach marking M′ defined as M′(p) = {x + d | x ∈ M(p)} for all

p ∈ P; we write M
d
−→ M′ for this delay transition.

Mateo et al. [31] continues to define delay transitions in continuous time semantics i.e. d ∈ R≥0. However,
since events recorded in an event log happen in discrete steps with respect to the time precision, we define
delays in the discrete time semantics i.e. d ∈ N0.

We shall now introduce some final concepts in relation to markings. We let→def
=

⋃
t∈T

t
−→ ∪

⋃
d∈N0

d
−→. In a

marking M we denote the set of all reachable markings as [M〉 def
= {M′ | M → *M′}. Moreover, by M

d,t
−−→ M′

we denote that there is a marking M′′ such that M
d
−→ M′′

t
−→ M′. Additionaly, we say that if in a marking M

there are no d ∈ N0, t ∈ T and another marking M′ such that M
d,t
−−→ M′ then M is a deadlock. A marking M

may also allow for unbounded delays, more formally if for every d ∈ N0 we have M
d
−→ M′ for some M′, in

which case we call it divergent.
After having given the semantics for ETAPNs we can explore the behavior of the ETAPN in Figure 11

by playing the token game. Let us from the marking M0 = {(P5, 0), (P1, 0)} fire the following sequence of

transitions: T1,T3,T4. First, we need to delay in order to enable and fire T1; M0
3,T1
−−−→ M1. We are now

in the marking M1 = {(P2, 3), (P5, 3)} in which the age of the produced token in P2 is kept, as T1 is a

transport arc. Immediately afterwards we fire T3 as its guard is satisfied; M1
T3
−−→ M2. In the new marking

M2 = {(P2, 3), (P4, 0), (P6, 0)} T2 is disabled due to the inhibitor arc from P4 to T2 even though its guard is
satisfied. The final transition T4 in our desired firing sequence is enabled and since it is urgent we cannot

delay so we fire T4 immediately, M2
T4
−−→ M3. In the resulting marking M3 = {(P2, 3), (P4, 0), (P7, 0)} time

can be delayed up to six time units due to the invariant in P7. Delaying more than four time units will result
in the token in P2 not satisfying the guard on edge P2 to T2. However, given the marking M3 dalying for any
time units does not impact the enabledness of T2 since the token in p4 will continue to inhibit it.

10.2. Extended Timed-Arc Workflow Nets

In [31, pp. 97–98], the authors also define timed-arc workflow nets and soundness of timed-arc workflow
nets. Much like with the timed-arc Petri nets, we will also introduce their definitions here, with the small
change that we use the ETAPN we extended to include the labelling function L.

A timed-arc workflow net (TAWFN) has exactly one input place and one output place, and is initialised
by placing a token in the input place. An essential characteristic of any TAWFN, formally defined by the
notion of soundness, is the guarantee that any execution trace can be extended such that it terminates with
exactly one token in the output place.

Definition 10.4 (Extended timed-arc workflow net). An ET APN N = (P,T,Turg, IA,OA, g,w,Type, I, L) is
called and Extended Timed-Arc WorkFlow net (ETAWFN) if

• there exists a unique place in ∈ P such that •in = ∅ and in• , ∅

• there exists a unique place out ∈ P such that out• = ∅ and • , ∅
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• for all p ∈ P \ {in, out} we have •p , ∅ and p• , ∅, and

• for all t ∈ T we have •t , ∅.

P1

P5

P2

P6 P7 inv: ≤ 6

P4

P3

in

0
out

a
T1

a
T3

T4

b

T2

T0
T7

[0,∞)

[0,∞)

[2, 7] 4×[2, 3]:1 :1

[0,∞)
[0,∞)

[0,∞)

Figure 12: Figure 11 transformed into a TAWFN

As an example of an ETAWFN take Figure 12 which is in the marking Min = {(in, 0)} called the initial
marking. A marking M is final if |M(out)| = 1 and for all p ∈ P \ out we have |M(p)| = 0, i.e. M f inal contains
exactly one token in the place out and all other places are empty. There may be several final markings with
different ages of the token in the place out.

Next we provide the formal definition of soundness as provided by Mateo et al. [31] where the authors
have based said definition on the standard requirement for proper completion with regards to workflow nets
[32, 33].

Definition 10.5 (Soundness of timed-arc workflow nets). An extended timed-arc workflow net
N = (P,T,Turg, IA,OA, g,w,Type, I, L) is sound if for any marking M ∈ [Min〉 reachable from the initial
marking Min:

• there exists some final marking Mout such that Mout ∈ [M〉, and

• if |M(out)| ≥ 1 then M is a final marking.

We now say that an ETAWFN is sound if after it is initiated it has the option to complete and subesquently
it has proper completion. The option to complete requires that after a token of age zero has been placed in in
it can be moved to the place out. Once the net has completed (a token has been placed in out) it must do so
properly meaning it is guaranteed that all places except out is free of tokens.

The TAWFN in Figure 12 is currently not sound. Take the marking M = {(P3, 0), (P5, 6)} in which the
only enabled transition is T3. Firing T3 produces a token in the places P4 and P6 of age zero. Subsequently
we can then fire T4 followed by T7 in order to place a token in out. However, this final marking does not
satisfy the proper completion criterion as there still is a token in P4. To remedy this and make the TAWFN
sound we may add an input arc from P4 to T4.

11. Discovery: Time Discrimination

In the following section, we look into the problem of time discrimination, related to process mining, and we
look at two possible solutions, one where events are concatenated with previous events, and one where we
divide time information info clusters.
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11.1. Time Dilemma

In our previous work [11] we presented a semi-automatic method for discovering an Extended Timed-Arc
Workflow Net (ETAWFN) from a Discrete-Time Event Log (DTEL). Our method entailed manually combining
the output of two process mining tools, ProM [18] for mining Petri nets and Disco [34] for mining process
maps, in another tool called TAPAAL [35] by hand producing an ETAWFN. The issue of our method arises
after we have constructed the ETAWFN, from the Petri net, and have to annotate it with time information
from the process map. It is not a problem to construct the ETAWFN from the Petri net since the ETAWFN
is a timed extension of the Petri net modeling language, but the process map is dissimilar to the Petri net
modeling language. To give a brief example of this issue and the time dilemma it causes we use the DTEL
previously shown in Table 3 on page 11.

By mining this DTEL in Disco and ProM we discover the process map shown in Figure 13a, and the Petri
net in Figure 13b. Both models allow the same behaviour, but as mentioned previously differ in their notation
as is evident from comparing the two. As the O action type most clearly illustrates the issue of our method
we will focus on this one action type.

By inspecting the arcs going into the O node in the process map we can see the time metrics for; a C
followed by an O, a M followed by an O, and an O followed by another O. If we look at the Petri net we see
that the three aforementioned O sequences are encapsulated in the Petri net’s behaviour. However, there are
only one arc going into the O transition in the Petri net where we in the process map have three separate arcs
for the O node. Consequently, when we annotate the Petri net with time information from the process map to
produce an ETAWFN, we will have one guard for the O transition to express the three separate O arcs in the
process map.

This in and of itself does not present a problem as long as there is a low spread in the observed delays for
O. This, however, is not the case in our example DTEL in Table 3 where we have observed the following
delays for O: (11, 14, 78, 83, 85, 86, 98). In fact we have observed fast and slow O sequences: An O preceded
by a C occurs with delay (11, 14), an O preceded by a M with delay (78, 86), and an O preceded by another
O with delay (83, 85, 98). It is from this pattern that the time dilemma arises; how do we express the O
behaviour, with regards to time, recorded in the log in one guard? To unequivocally illustrate the issue of
combining the observed O delays into one guard we use Figure 14a.
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Figure 13: Models mined from Table 3

The ETAWFNs presented in the remainder of our thesis, including Figure 14a, have been constructed
such that they adhere to the constraints that we defined in our previous work [11, pp.26–27]. The constraints
was defined as a prerequisite for any ETAWFN in order for it to be used in our distance measuring algorithm
also developed as part of our previous work presented in [11]. In Figure 14a we have taken the minimum
and maximum values of the observed O delays as the lower- and upperguard for O respectively. Say a new
observation of O with 50 seconds delay is made as seen in Table 7a. The 50 seconds delay of this new O fits
into the guard [11, 98], but it does not cooperate our initial observations where we expect O to have a delay
in the neighbourhood of (11, 14), (78, 86), or (83, 85, 98) i.e. we have a false positive. Another method to
determine the guard is to take the mean value of the initial observed O delays and offset it to get the upper-
and lowerguard. However, applying this method to our example with any reasonable offset results in false
negatives (and false positives) e.g. a 25 % offset produces the guard [48, 80]. In summary, the methods that
combine the initial observed O delays into one guard exhibit symptoms of an underlying imprecision problem.

One’s first inclination to solve the imprecision problem might be to simply split the O transition in the Petri
net into three separate O transitions. However, this will introduce unecessary complexity thereby reducing
what Aalst [9] refers to as a model’s simplicity. We see this impact on the model’s simplicity as a detriment
since Aalst [9, p. 189] argues "... the simplest model that can explain the behaviour seen in the log, is the
best model". Furthermore, this solution only becomes a greater detriment to a model’s simplicity as its size
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and complexity increases. To explore a better method to combine the process map and the Petri net we use
Figure 14b. Furthermore this adheres to a constraint we defined in [11], that all tau transitions must be urgent.
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(a) Poor solution: Min and max of O used in the guard
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(b) Better solution: Grouped values of O used in the guards

Figure 14: Sound ETAWFNs based on the Petri net in Figure 13b and annotated with time from Figure 13a where
τ-transitions are urgent

In the beginning of this section we mentioned that there was a pattern in the delay of the O events in
Table 3. There were some fast O events (11, 14) and some slow O events (78, 83, 85, 86, 98). It seems
intuitive to exploit this pattern in our construction of the ETAWFN in order to improve time discrimination.
In Figure 14b we have constructed an ETAWFN with an additional O transition such that we can have
one O transition for fast Os [11, 14] and another for slow Os [78, 98]. This ETWAFN is indeed better at
discriminating O events with regards to their delays e.g. it correctly dismisses the O event in Table 7a. The
method used to construct the ETAWFN in Figure 14b is more precise than that of the ETAWFN in Figure 14a,
but it may still be refined further.

In Table 7b we have a new observation of an O event but now with a delay of 87 seconds. This new O
event is consistent with our initial observations and fits into the guard [78, 98]. However, if we consider its
preceding event in addition to its delay we see a flaw in the ETAWFN in Figure 14b. The initial observations
of the sequence C followed by an O took 11 or 14 seconds; hence, the new O most likely is erroneous and
should be recognised as such.
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Act Order number Delay (sec)
C 12 8
O 12 58

(a) O event with a delay of 50 seconds

Act Order number Delay (sec)
C 15 7
O 15 94

(b) O event with a delay of 87 seconds

Table 7: New Observations of O events

In order to also discriminate based on the order in which events occur we propose to concatenate the event
types. As an example take the trace in Table 7a. After concatenating the events in this trace it will now begin
with a C followed by a CO. In Appendix A Table 15 we have applied this method to the log in Table 3 which
we have used so far. Then, by mining the log new log in Table 15 with the concatenated events in Disco and
ProM we discover the models in Figures 15a and 15b respectively.
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Figure 15: Models mined from the log in Table 15 which contains the concatenated events from Table 3

By comparing Figures 15a and 15b it is clear that the task of annotating the Petri net with time becomes a
much simpler task since there now almost is a one-to-one mapping between the nodes and arcs in the process
map, and the input arcs and transitions in the Petri net. The one exception is the MM node/transition. In
the process map we have two arcs going into the MM node, but we only have one input arc into the MM
transition in the Petri net. This is a problem in our example since M always occur with delay 0 but it is an
early indication that the concatenating method alone may not be a complete solution to our time dilemma.
However, exactly how well both the grouping and concatenating methods perform separately and in unison
is something we shall return to later in the thesis, when we perform a set of experiments. By combining
Figures 15a and 15b we construct the ETAWFN shown in Figure 16a.
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As you can see in Figure 16a each transition, except for the two first, are labelled with the preceding
event type and then its own event type. In our work we will "un-concatenate" the ETAWFN after it has been
constructed such that we can replay traces in it without pre-processing said traces. When we un-concatenate
Figure 16a we will get the ETAWFN in Figure 16b.
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(a) Concatenated ETAWFN
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(b) Concatenated ETAWFN where original type names have
been restored

Figure 16: Sound ETAWFNs based on the Petri net in Figure 15b and annotated with time from Figure 15a where
τ-transitions are urgent

In summary, we have suggested two methods for pre-processing an event log before a model is discovered
from said log. The first method focused on improving the time discrimination with regards to each event
by grouping the respective delays of an event. The second method aimed at concatenating events such that
the order in which events occur is preserved after the discovery process thereby better discriminating events
based on their order of occurrence.

11.2. Partitional Clustering

In order to avoid the time dilemma previously discussed in Section 11.1 when discovering a timed model,
such as an ETAWFN, we propose to use clustering. In general, clustering is the activity of classyfying
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patters (e.g. observations, or data items) into groups (clusters). Any sensible clustering process strives to
produce clusters that exhibit a higher degree of internal pattern similarity than external pattern similarity.
Jain et al. [36] distinguishes between two types of clustering: Hierarchical and partitional. A hierarchical
clustering algorithm will produce a series of nested partitions, where as a partitional clustering algorithm
yields partitions that optimise some clustering criterion. Since our aim is to partition a range of integers into
disjoint intervals we will use partitional clustering. We clearly distinguish between the number partitioning
problem [37, 38, 39] and partitional clustering since the former allows solutions where set elements have
been rearranged. We define the problem of partitional clustering in context of our work in Definition 11.2.

Since the delays associated with the discrete-time events in a discrete-time event log may be repetitions of
one another we shall focus our partitional clustering efforts on multisets. A given multiset may be partitioned
in any various different combinations, where we will refer to the individual partitions of said multiset as
clustering instances. In Definition 11.2 we define this term.

Definition 11.1 (Clustering instance). A clustering instance (A1, A2, . . . , Am) of a multiset A is a sequence of
sub-multisets of A such that

a)
m⋃

i=1
Ai = A, and

b) Ai ∩ A j = ∅, for all i , j.

In order to evaluate a given clustering instance we use the squared error criterion as it is argued by Jain
et al. [36] to be "the most intuitive and frequently used criterion function used in partitional clustering".
Given a clustering instance L = (A1, . . . , Am) of a multiset A consisting of m clusters we define the squared
error criterion function as seen in Equation (5). In Equation (5) let cj be the centroid of cluster j which in our
work is the mean value of cluster j.

e2(L) =
m∑

j=1

∑
x∈Aj

(x − cj)2 (5)

From Equation (5) we get a value representing the summarised variance for each cluster which we seek
to minimise. However, in order to compare the threshold value t to our squared error criterion we need a
normalised value. For this purpose we first define Equation (6) and then Equation (7).

In Equation (6) we compute the summarised variance of a multiset A where xi is the ith element in A.
Additionally, we fix the centroid c to be the mean value of A.

e2(A) =
|A|∑
i=1

(xi − c)2 (6)

With the cluster and set variance defined we then define the disposition of a clustering instance L of a
multiset A as seen in Equation (7). The disposition of a clustering instance produces a number between zero
and one where a zero indicates no intra-cluster variance and a one indicates perfect intra-cluster variance.

disposition(L,A) =
e2(A) − e2(L)

e2(A)
(7)

With the definition of a clustering instance and a way to evaluate a given clustering instance via its
disposition we now define our partitional clustering problem as seen in Definition 11.2.

Definition 11.2 (Partitional clustering). Given a multiset A ⊆ N0, and a threshold t ∈ [0, 1], partition A into
A1, A2, . . . , Am clusters such that
• The disposition as defined in Equation (7) is greater than or equal to t while minimising m, and

• |A j| ≥
|A|
m ∗ 0.1
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In Definition 11.2 we chose to define a threshold value instead of the number of clusters to partition a
set into. We did so since we want the patterns present in a set to determine the number of clusters and not a
fixed parameter. Additionally, we also stipulate that m must be minimised since simple is always better in the
context of process mining. Secondly, we also require that each cluster accounts for a reasonable amount of
the total data items. We formulate this requirement in order to cope with what Aalst [9] refers to as noise.
The term noise refers to rare and infrequent behaviour in the log and not logging errors. By this notion of
noise we consider clusters that account for a relatively small amount of the total data items as noise clusters.

11.2.1 K-means Clustering
The k-means clustering algorithm as developed by Lloyd [40] is a well-known clustering algorithm due to its
simplicity and its observed speed [41]. The algorithm takes as input a set X = {x1, x2, . . . , xn} of points in
Rd. Then, by providing the algorithm with a seed of k centres c1, c2, . . . , ck it will, according to Arthur and
Vassilvitskii [41], partition X following steps one through three.

1. For each i ∈ 1, . . . , k, set the cluster Ci to be the set of points in X that are closer to Ci than they are to
c j for all j , i.

2. For each i ∈ 1, . . . , k, set ci to be the center of mass of all points in Ci : ci =
1
|Ci |

∑
x j∈ci

x j.
3. Repeat steps 1 and 2 until ci and Ci no longer change, at which point return the clusters Ci

In case two points are equally close to a point in X the tie is broken arbitrarily. If a cluster is empty at
the end of step two it is eliminated and the algorithm continues as before. The steps of k-means function as
stepwise refinement since each point in X is assigned to the centre it is closest to in conjunction with the fact
that the centres stabilise with regards to the points they serve. This means that the clustering cost is reduced
in each step and that no partitioning can be seen twice. Additonally, the k-means algorithm terminates in
finite time since there are only finitely many k-clusterings [42].

According to Har-Peled and Sadri [42] the output of k-means is not guaranteed to be a global minimum
and it can be arbitrarily bad compared to the optimal clustering. Furthermore, the answer returned by k-means
and the number of steps it performs has been shown to depend on the initial choice of centres. Efficient
polynomial time approximation schemes for both low and high dimensions have been developed to rectify
the shortcomings of k-means. These, however, is argued by the authors to have been of little practical use
since "they are complicated and probably impractical because of large constants". Hence we shall stick to
the basic k-means algorithm in our work.

In our work we shall apply the k-means algorithm on one dimensional integer arrays. Since this is the
case we can rely on the k-means complexity given by Har-Peled and Sadri [42] who have proved an upper
limit on the number of steps of k-means in one dimensional Euclidean space. This upper bound does not
involve the number of clusters k but rather depends on the spread ∆ in the input set. Thus, given a set of n
points with spread ∆ the upper bound of k-means is given by O(n∆2).

Using k-means alone does not consider two parts of Definition 11.2. I.e. the minimising of the amount
of clusters, and the minimal size of each cluster. In the following, we explain how we handle the parts
individually where the the minimising of clusters is handled through the use of k-means, and the check of the
cluster sizes are handled after the k-means calculation.

11.2.2 From Clusters to Intervals
Using the k-means clustering algorithm we can now define an algorithmic solution to the partitional clustering
problem as defined in Definition 11.2. The clustering instance returned by k-means is a local minimum which
inherently satisfies the requirement that all elements in the input multiset is assigned to exactly one cluster. It
may, however, not be the case that the disposition of the returned clustering instance is grater than or equal to
the disposition threshold, nor is it necessarily the case that the number of clusters is minimised. These two
concerns may be remedied in tandem by repeatedly running k-means until the disposition threshold is met
beginning with k = 2, incrementing k for each k-means iteration. Following this incremental procedure the
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clustering instance returned by k-means that satisfies the disposition threshold also minimises the number of
clusters. Notice that the incremental procedure is guaranteed to always terminate when k is equal to the size
of the input multiset, since the associated clustering instance always has a disposition of one. Finally, we need
to remove any noise clusters from the clustering instance returned by the incremental k-means procedure.

Removing noise is a vital aspect of any discovery process. As part of the partitional clustering problem
we explicitly require that noise clusters are excluded from a final solution. This, however, may not be enough
to remove all noise from the input data. It may be the case that one or more clusters in the final clustering
instance contains what we shall refer to as noise items. As an example take the fictional clustering instance
((5, 7, 11, 11), (41, 46, 48, 53, 55, 71), (175)) where no noise filtering has been applied. The cluster (175) will
be removed since it is a noise cluster. The cluster (5, 7, 11, 11) has a low spread indicating no noise items, but
this is not the case for (41, 46, 48, 53, 55, 71). The 71 value seems intuitively as a noise item. To register the
value as such, first need to relax condition a of Definition 11.2 as the union of all clusers now only has to be a
subset of A, rather than equal to A, furthermore we introduce the theory of a box plot presented by Potter et al.
[43], and illustrated in Figure 17, where given a set A of positive integers including zero:

Median is the value where 50 % of the data in A is below and above,
Lower Quartile (Q1) is the value where 25 % of data in A is below, and 75 % is above
Upper Quartile (Q3) is the value where 75 % of data in A is below, and 25 % is above
Outlier is any value x ∈ A where x ≤ Q1 − 1.5 ∗ (Q3 − Q1) ∨ x ≥ Q3 − 1.5 ∗ (Q3 − Q1)
Maximum is the largest value in A, which is not an Outlier, and
Minimum is the smallest value in A which is not an outlier.

By using the cluster (41, 46, 48, 53, 55, 71), we get the box plot shown in Section 11.2.2 where we see that 71
has been noted as an outlier, and maximum is set to 55, as it is the largest value in the cluster, hence we see
that noise element is caught.

Figure 17: Illustration of a boxplot,
[43]

Figure 18: Boxplot of the cluster (41, 46, 48, 53, 55, 71) with whiskers reach of
1.5 × IQR

Once each cluster has been filtered for noise, we remove all clusters that do not adhere to Definition 11.2,
i.e. where the cluster consists of too few elements. Then each remaining cluster can be converted to an
interval [lower, upper] simply by taking the minimum and maximum values in the cluster. As an example
take the cluster (41, 46, 48, 53, 55, 71) which will produce the interval [41, 55]. We summarise the process of
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determining the appropriate intervals for a data set in the two following steps:
i Use the incremental k-means process to find a solution to the partitional clustering problem as defined

in Definition 11.2
ii Filter out noise items in each cluster and determine each cluster’s interval
These two steps results in the makeIntervals(A, t,m,w) function shown in Algorithm 2.

Algorithm 2: makeIntervals pseudocode

1 function makeIntervals(A, t)
input :A multiset A, and a threshold value t
output :A set of intervals

2 disp := 0
3 n := 2
4 L := A
5 intervals := {}
6 while disp < t do
7 L := calculate k-means clustering for A with n clusters
8 disp := disposition(L,A)
9 n := n + 1

10 forall c ∈ L do
11 let[Q1,Q3] := calculate boxplot for elements in the cluster c
12 forall x ∈ c do
13 if x ≤ Q1 − 1.5 ∗ (Q3 − Q1) ∨ x ≥ Q3 + 1.5 ∗ (Q3 − Q1) then
14 remove x from c

15 forall c ∈ L do
16 if |c| < |A|n ∗ 0.1 then
17 remove c from L

18 forall c ∈ L do
19 let interval be a pair (min(c),max(c))
20 add interval to intervals

21 return intervals

12. Distance Algorithm

In Sections 13.4 and 13.6 we shall use a distance algorithm devised in our previous work [11] in order to
evaluate the two methods proposed in Section 11.1 to solve the time dilemma and later in Section 13.6
examine the effectiveness of the distance algorithm. As part of our previous work we implemented the
distance algorithm in c++ as part of VerifyDTAPN [44] which is the verification engine used in TAPAAL.
Furthermore, we also implemented automatic loading of discrete-time event logs from eXtensible Markup
Language (XML) documents. In the following section we focus on providing a formal description of the
distance algorithm.

12.1. Pseudocode

This distance algorithm will compute the minimal distance between a given ETAWFN and a discrete-time
event trace (DTET). As a prelude to the discussion of the individual functions which constitute our distance
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algorithm we first examine on a logical level how the distance measuring algorithm computes the distance for
a given ETAWFN and DTET. The distance computed for a DTET is the accumulated distance for each timed
action in the DTET. Each timed action (a, d) is processed through three unique steps which we denote as:

M
τ
−→
∗

M′
d
=⇒ M′′

a
=⇒ M′′′. According to these three steps a timed action is processed as follows:

i M
τ
−→
∗

M′ entails finding a marking M′ from M such that a transition with label a can be fired and the
resulting distance of steps ii and iii is minimised.

ii Once M′ is found, the appropriate delay is performed, M′
d
=⇒ M′′. We deliberately have not used the

notation M′
d
−→ M′′ since it may not be possible to delay d time units in M′′ hence we must do a

cheating delay signified by
d
=⇒. This cheating delay is always performed such that the resulting distance

from delaying d is minimised.
iii Subsequently to the cheating delay we perform a cheating firing, M′′

a
=⇒ M′′′. As with the cheating

delay, performing a cheating firing is also done such that the resulting distance is minimised.
The timed action (a, d) has now been replayed such that the distance is minimal. These three steps are

repeated for every timed action until the entire DTET have been replayed and the minimal distance for the
DTET has been computed.

With this stepwise reasoning behind our distance algorithm we now move on to discuss the individual
functions which constitute the distance algorithm; presented in Algorithms 3 through 8. Below we provide a
brief summarisation of each function in order to give an overview of each function’s purpose and subroutines.

Algorithm 3 Iterates over each timed action (a, d) of a DTET π, applying step i as a BFS followed by
the subroutine calculateDistance(M, d, a) (Algorithm 4 ) and returns the distance between n and π.
Algorithm 4 Performs step ii followed by step iii using the subroutines delayDistance(M, d) (Algo-
rithm 5) and firingDistance(M, a) (Algorithm 6) respectively. The function returns the penalty for cheat
delaying d followed by cheat firing a and the resulting marking.
Algorithm 5 Performs a cheating delay d in a marking M such that the resulting penalty is minimised i.e.
step ii. The marking produced by cheat delaying d is returned together with the penalty for reaching it.
Algorithm 6 Iterates over all transitions t where L(t) = a applying step iii and returns the penalty for
cheat firing the cheapest t, calculated by the subroutine enableTransition(M, t) (Algorithm 7), and the
resulting marking.
Algorithm 7 Determines and performs the necessary changes in a marking M to enable a transition t.
This function spawns tokens if needed but delegates the task of modifying token ages to the subroutine
modifyTokenAges(X, M, a, b, n) (Algorithm 8). The marking in which t is enabled is returned together
with the minimal penalty for enabling t.
Algorithm 8 Modifies the age of n tokens by iterating over a multiset of tokens X from a place p. The
function determines the cheapest age modification to make for a given token x using a lowerguard a
and upperguard b. The marking resulting from the neccesary age modifications, such that the penalty is
minimised, is returned together with the penalty for reaching this marking.
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Algorithm 3: distance function pseudocode

1 function distance(N,M0, π)
input :A TAPN N with its initial marking M0, and a discrete-time event trace π
output :Distance between N and π

2 penalty := 0
3 M := M0

4 while π , ∅ do
5 Dequeue (a, d) from π

6 Run BFS on τ-transitions from M and fire M
τ
−→
∗

M′ s.t. M′ minimises
calculateDistance(M′, d, a) and has the shortest τ-sequence

88 let (M′′, penaltydist) := calculateDistance(M′, d, a)
1010 penalty := penalty + penaltydist

11 M := M′′

12 return penalty

Algorithm 3 computes the distance between a given ETAWFN in its initial marking M0 and a DTET π.
The minimal distance for each timed action is computed through the while loop on line four. After having
dequed the next timed action (a, d) we perform a Breadth-First Search (BFS) for a sequence of τ-transitions
for a marking M′ that has some t such that L(t) = a i.e. we perform the first step; M

τ
−→
∗

M′. It is important to
notice that since we allow for duplicate transitions (transitions with the same label) it may be the case that we
find multiple M′ markings with the same τ sequence length. Because of this we also stipulate that the M′ we
decide to continue with, minimises the distance.

Algorithm 4: calculateDistance function pseudocode

1 function calculateDistance(M, d, a)
input :A marking M with a delay d and a label a
output :The penalty for delaying d followed by firing a in M

2 let (M′, pen1) := delayDistance(M, d)
3 let (M′′, pen2) := f iringDistance(M′, a)
4 return (M′′, pen1 + pen2)

For each marking found through the BFS in Algorithm 3 we calculate their respective distance using

Algorithm 4 as shown above. Algorithm 4 computes the two final steps, M′
d
=⇒ M′′

a
=⇒ M′′′, as delayDistance()

and firingDistance() respectively. Algorithm 4 returns the two distances added together with the marking M′′

reached by cheat delaying d followed by cheat firing a. Notice that the marking reached in Algorithm 4, M′′,
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is equivalent to the marking, M′′′, reached by the final logical step.

Algorithm 5: delayDistance function pseudocode

1 function delayDistance(M, d)
input :A Marking M and a discrete-time delay d
output :A marking M′ resulting from delaying d time units in M and the penalty for

performing said delay

2 penalty := 0
3 M′ := M
4 forall p ∈ P do
5 let [0, b] := I(p)
6 M′(p) = {min(x + d, b) | x ∈ M(p)}
7 forall x ∈ M(p) do
8 if x + d > b then
9 penalty := penalty + (x + d − b)

10 forall t ∈ T do
11 if M

t
−→ ∧ t is urgent then

12 penalty := penalty + d;

13 return(M′, penalty)

In Algorithm 5 we perform the cheating delay for d. First, we delay the minimal amount of time units
for all places p in the current marking through the forall loop on line four. In this forall loop we decide and
perform the actual delay on line six and then we penalise appropriately through the forall loop on line seven.
In the forall loop on line 10 we penalise for any enabled urgent transitions.

Algorithm 6: firingDistance function pseudocode

1 function firingDistance(M, a)
input :A marking M and a label a
output :A marking M′ resulting from firing t in M s.t. L(t) = a and the penalty for firing t

2 penalty := ∞
3 M′ := M
4 forall t ∈ T s.t. L(t) = a do
5 let (Mt, penaltyt) := enableTransition(M, t))
6 if penaltyt < penalty then
7 penalty := penaltyt

8 M′ := Mt
t
−→

9 return (M′, penalty)

In Algorithm 6 we perform the cheat firing of a transition with label a. In the forall loop on line four
we iterate over all transitions with label a in order to find the one candidate that has the lowest penalty. The
penalty associated with cheat firing a candidate is calculated by the subroutine enableTransition(M, t). If this
calculated penalty is indeed lower than the current best candidate we update the penalty and fire the candidate

transition, lines six through eight. Notice that we on line eight use the notation Mt
t
−→ and not Mt

t
=⇒. We do

this since the candidate transition t is enabled in the marking Mt returned by enableTransition(M, t).
We have divided the task of enabling a transition into two subtasks: Decide the necessary token spawns

and time modifications, and modify ages of tokens. Algorithm 7 determines the necessary changes that are
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needed to enable t which entails spawning tokens and/or modifying the ages of tokens. The actual time
modifications of token ages are then performed by Algorithm 8.

Algorithm 7: enableTransition function pseudocode

1 function enableTransition(M, t)
input :A marking M and transition t
output :The penalty for enabling t in M and the resulting marking M′ for doing so

2 penalty := 0
3 M′ := M
4 forall p ∈ •t do
5 C1 := |{x ∈ M(p) | x ∈ g(p, t)}|
6 C2 := |M(p)|
7 C3 := w(p, t)
8 let[a, b] := g(p, t)
9 if C1 < C3 then

10 if C3 ≤ C2 then
11 let (Mmod, penaltymod) := modi f yTokenAges(M(p), a, b, (C3 −C1))
12 penalty := penalty + penaltymod

13 M′ := Mmod

14 else
15 penalty := penalty +C3 −C2

16 M′(p) := M(p) ∪
C3 − C2 tokens

̂{a, . . . , a}
17 let (Mmod, penaltymod) := modi f yTokenAges(M′(p), a, b, (C3 −C1))
18 penalty := penalty + penaltymod

19 M′ := Mmod

20 return (M′, penalty)

Algorithm 7 iterates over all the pre-places of t in order to determine what changes that are needed to
enable t. The necessary changes for a place p is decided based on the three variables C1, C2, and C3.

C1: The number of tokens in p that satisfy the guard of the input arc from p to t.
C2: The total number of tokens in p.
C3: The weight of the input arc from p to t.
Additionally, we set a and b to be the lower- and upperguard respectively. If there are less than w(p, t)

tokens in p that have an age in g(p, t), i.e. C1 < C3, we enter the body of the if statement on line nine and
now face two possible scenarios. In the first scenario, C3 ≤ C2, the number of tokens in place p is at least as
many as we need according to C3 but not not enough of them currently satisfy g(p, t); hence, we only need to
modify the age of C3 −C1 of the existing tokens in p. In the second scenario, C3 > C2, there is not enough
tokens in p to satisfy g(p, t); hence, we spawn C3 −C2 tokens and modify the ages of C3 −C1 required by
C3. We perform this computation for each pre-place of t and continuously update M′ and penalty which the
function also returns.

In [11] we impose a constaint of having to inhibitor arcs in the net, and aad we not imposed this constraint,
then Algorithm 7 would also have to handle any inhibitor arcs going into t. This is a feature that if included in
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our pseudocode would utilise the type function type() which was presented as part of Definition 10.2.

Algorithm 8: modifyTokenAges function pseudocode

1 function modifyTokenAges(X,M, a, b, n)
input :A multiset of tokens X present in M, a lower- and upperguard a, b, and number of

tokens to modify n
output :The penalty for fitting the age of n tokens to be in the range [a, b] and the resulting

marking M′

2 penalty := 0
3 M′ := M
4 let candidates be a list[n] of pairs(token, di f f := ∞)
5 forall x ∈ X do
6 i := 0
7 for i < n do
8 let (ti, di f fi) := candidates[i]
9 if |di f fi| > x − b ∧ x − b > 0 then

10 remove last element in candidates
11 insert pair[x, b − x] into candidates[i]
12 break for

13 else if |di f fi| > a − x ∧ a − x > 0 then
14 remove last element in candidates
15 insert pair[x, a − x] into candidates[i]
16 break for

17 i := i + 1

18 forall e ∈ candidates do
19 let (te, di f fe) := e
20 modify x in M′ s.t. x = te to x := x + di f fe
21 penalty := penalty + |di f fe|

22 return (M′, penalty)

Algorithm 8 modifies the age of n tokens from the multiset of tokens X. We manage which tokens to
modify, and how, using the list of pairs candidates declared on line four. We iterate over all tokens in X on
line five and determine if each individual token x should be considered a viable candidate using the loop
on line seven. In this loop we iterate over all current candidates i and add x as a new one if one of the two
conditions on line nine or 13 is met. These two statements check if modifying x with respect to the upper-
or lower guard, b and a respectively, yields a lower penalty than the diff of i. We allow for both positive
and negative values for diff such that when we begin to modify M′ we can simply add the diff of a given
candidate to its corresponding x.

12.2. Example

Now that we have presented the distance algorithm as pseudocode we follow it up with a concrete example
using the discrete-time event trace in Table 8 and the extended timed-arc workflow net (ETAWFN) in Figure 19.
Our distance algorithm will replay the sequence of events in the log beginning with the first M event and with
the ETAWFN in its initial marking as shown in Figure 19.

First step i is performed where the τ-transitions in the postset of in is explored producing two separate
markings {(P1, 0)}, and {(P2, 0)}. In the marking {(P1, 0)} we find a transition labelled M so we stop the τ
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BFS. We then delay zero times units and fire the M transition since it is enabled, producing the marking
{(P3, 0)}. The next M event is replayed following steps i through iii where we produce a token in P1 of age
zero followed by a delay of zero time units and then the transition M is fired producing the marking {(P3, 0)}.
So far we have not penalised any of the events.

When performing the τ BFS for the seubsequent C event we will not find a marking with a transition
labelled C. According to Algorithm 7 line 16 we must now spawn a token in the preplace of C and if necessary
cheat delay such that we enable C. This behaviour however exposes a flaw not in the pseudocode but in our
implementation. Currently in the implementation we will not spawn any tokens, but only penalise a fixed
value and move on to the next timed action in the trace. In our example we add a penalty of 100 and move
on to the next O event. Consequently we replay the O event from the marking {(P3, 0)}. Through the τ BFS
we find that the marking {(P4, 0)} includes transitions labelled O. In this marking we delay 10 time units as
this does not violate the invariant producing the marking {(P4, 10)}. However, neither of the O transitions
are enabled in this marking; hence, we cheat delay 1 sec, penalise accordingly and produce the marking
{(P4, 11)}. We then complete the replay of the O event by firing the now enabled O transition.

Finally we need to replay the I event. This is however not possible since there are no transitions labelled I.
We therefore penalise a fixed value which in our case is 1000. The trace has now been replayed completely
with a penalty of 1101.

Type Location Item Quantity Worker Order number Delay Penalty
M 845-05-03-B 43 -33 avr 45 0 0
M 849-05-01-B 43 33 avr 45 0 0
C 401-01-03-B 17 4 avr 45 5 100
O 401-01-03-B 17 -4 avr 45 15 101
I 808-03-11-A 32 32 avr 45 96 1101

Table 8: A fictional trace where the action types corresponds to those in Table 1

13. Experiments

In this section we present four different experiments which we have conducted, each relating to different
parts of the work we have conducted in this thesis, and in our previous work in [11]. Before presenting each
experiment we, we cover how we for most of the experiments used a specific division of the data found in the
provided logs.

13.1. Methodology

A common characteristic between our experiments is that they all aim at learning something about the
behaviour represented in an event log. For our first experiment in Section 13.3 the aim is to show the impact
of one or more swaps has, where as the subsequent experiments aim towards learning what the behaviour
represented in the log is and how it changes. Due to the difference in aim between our first experiment and
the learning experiments we shall apply slightly different methodology to the former and to the ladder.

For our first experiment we will use one event log where no swaps have been performed. Using one event
log suffices since we can then modify it with swaps and compare the man hours in the event log before and
after swaps.

Our learning experiments resemble the problem of supervised learning [45]. Hence we need two data
sets; training data to produce our models, and test data to show how well the produced model fits on unknown
data. Through research we found different suggestion to the division of the data, but we will follow the Pareto
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Figure 19: The same ETAWFN previously shown in Figure 14b but all places have been labelled

principal [46] otherwise known as the 80/20 rule, where we use 80 % of the data for training, and 20 % of the
data for testing. The data could be split on a few different properties such as the time, traces, or on the items
involved. As the purpose of our learning experiments is to examine the behaviour captured in the data we
shall split on traces.

13.2. Data

In Section 5 we presented our case study of the business Av Form. As part of this case study we have available
to us data logs stretching as far back as the 14th if February 2018. In Table 9 we succinctly show the time
period that we have data for and how we created three logs from the data. The first log L1 accounts for three
months of log events, L2 also accounts for three months, and the last log L3 contains event data for four days
due to an approaching thesis deadline/time constraints with regards to our thesis. We decided to let L1 and L2
account for three months as this time interval corresponds to a quarter of a year and thereby fits well with the
notion of quarterly business reports.
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Type Location Item Quantity Worker Order number Time
I 859-05-03-B 47 31 w1 5 14-02-2018 08:19:23
...

...
...

...
...

...
...

I 147-01-03-B 12 02 w1 108 20-02-2018 08:04:31
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C 856-08-05-B 15 41 w2 389 15-05-2018 08:01:01
...

...
...

...
...

...
...

O 785-03-05-B 26 15 w3 457 18-05-2018 08:04:59
Swap 758-08-02-B 54 11 w1 524 22-05-2018 08:00:14
...

...
...

...
...

...
...

Swap 856-04-03-B 55 23 w1 600 25-05-2018 08:02:35

L1

L2

L3

Table 9: All data available during the experiments distributed between three logs: L1, L2, L3

13.3. Evaluating Swap Effectivenes

To evaluate the swap effectiveness, we look at a configuration of the warehouse at Av Form, prior to providing
our implementation. We base the calculation of the cost function presented in Equation (2) on page 14 on
the three months log, L1, presented in Section 13.2, and we look at the logged actions over the same three
months to see how the actual work performed in the warehouse during that period affects the result.

For this evaluation we first used the item average as defined in Definition 7.1, where no discounting was
used. This choice was made primarily because the amount of times each location was accessed was low,
hence we did not want the infrequent access to affect the results gathered. However, because of the results we
got, we have chosen to also include variations of the Expenditure Definition 7.3, which we introduce in the
following.

Furthermore, we picked the swap candidates based on a single calculation of the costs, as this correlates
to how the work has been executed at Av Form.

Lastly, we calculated the estimates of time used to travel between each location, using the time estimates
presented in Table 6 on page 18, where we determined how the worker would travel through the warehouse,
by looking at a blueprint annotated with their s-routing structure.

To calculate the estimates of how much time has been spend in total for the three months of log, we
calculate the accumulated time used for each event, by the following approach for all events in each trace
using the time estimates presented in Section 8.2 on page 15.

1. Set the location of the first event as source destination,
2. Add the cost of travelling from source location to the location associated with the event,
3. Add the cost associated with the event to the total cost,
4. Set the source location to the location for the current event,
5. Get the next event in the trace and go back to item 2

We first follow these steps to replay all replenish tasks found in the translog, prior to performing swaps. Then
we replay the same log where we have swapped a set of locations as explained in the above, and we added the
swapcost associated with swapping the locations.

As mentioned, our initial test with the use of Equation (2) yielded some unexpected results, hence we
decided to look at possible changes to the calculation of expenditure (Definition 7.3). Where we will first
introduce two new definitions; item_access and log_duration in Definitions 13.1 and 13.2 respectively, where
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item_access is the amount of times an item has been accessed in a log, and log_duration is a calculation of
the duration of a log where seconds are scaled to days.

Definition 13.1 (Item Access). Given a discrete-time event log Π of the form as show in Equation (1), we
define the amount of times an item ī has been accessed as:

item_access(̄i) =
n∑

j=1
tj=RO

ī=ij

1

Definition 13.2 (Log Duration). Given a discrete-time event log Π of the form as show in Equation (1), we
define duration of a log as:

log_duration(̄i) =
dn

60 ∗ 60 ∗ 24

Given these two definitions, we extend on Definition 7.3 for expenditure in two ways, the first is
Definition 13.3 where we include the amount of times each item has been accessed, without considering the
duration of the log, and the second Definition 13.4 where less frequently accessed items will weight less than
more frequently accessed items.

Definition 13.3 (Expenditure and item access). Given a warehouse WH = (L, I, Dist, Lift, Swapable) in a
configuration C, we define the effect of swapping locations l1 and l2 as:

expenditure(l1, l2) =
(∑

i∈l2

Lift(l1) ∗
item_access(̄i)

Config(l2)(i)
item_avg(i)

+
∑
i∈l1

Lift(l2) ∗
item_access(̄i)

Config(l1)(i)
item_avg(i)

)
−(∑

i∈l2

Lift(l2) ∗
item_access(̄i)

Config(l2)(i)
item_avg(i)

+
∑
i∈l1

Lift(l1) ∗
item_access(̄i)

Config(l1)(i)
item_avg(i)

)
Definition 13.4 (Expenditure, item access, and log days). Given a warehouse WH = (L, I, Dist, Lift, Swapable)
in a configuration C, we define the effect of swapping locations l1 and l2 as:

expenditure(l1, l2) =
(∑

i∈l2

Lift(l1) ∗
Config(l2)(i)
item_avg(i)

∗
item_access(ī)
log_duration(ī)

+
∑
i∈l1

Lift(l2) ∗
Config(l1)(i)
item_avg(i)

∗
item_access(̄i)
log_duration(̄i)

)
−(∑

i∈l2

Lift(l2) ∗
Config(l2)(i)
item_avg(i)

∗
item_access(ī)
log_duration(ī)

+
∑
i∈l1

Lift(l1) ∗
Config(l1)(i)
item_avg(i)

∗
item_access(̄i)
log_duration(̄i)

)
With the two Definitions 13.3 and 13.4, we calculated new swap suggestions, applied these swaps and

calculated the estimated savings as shown in Table 10, where we included the savings both with and without
the associated swapcosts.
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No Discounting Item access Item access and log duration
Swap suggestions 5 4 —
Estimate before swaps 426,834 sec 426,834 sec —
Estimate after swaps 427,482 sec 427,268 sec —
Difference 648 sec 434 sec —
Swapcost 762 sec 538 sec —
Difference without swapcost -114 sec -104 sec —

Table 10: Estimated time durations over replayed logs

The results are seen in Table 10, there the third test did not yield any results, this is due to the strictness
of the implementation, where it is calculated that no swaps could be performed, which would result in a
decrease over the three months period. For the first approach, many swap candidates were suggested, so we
chose to only look at the top 5 best candidates, whereas for the second approach, only four candidates where
suggested. Looking at the difference for the two approaches (the first highlighted row) we see that both add to
the time, rather than reducing the time.

If we however consider the cost function in Equation (2) on page 14, we include the cost of swapping
two locations. We consider that this may not be relevant, as the workers are only expected to perform swaps,
when they have no other preceding tasks, i.e. they perform the swap when they would be otherwise idle,
and therefore performing the swap does not add to the cost. This is considered in the last highlighted row in
Table 10 where we removed the swapcosts, and find that we do have a reduction in the estimated time for
performing all events in a log.

13.4. Evaluating Our Time Discrimination Methods

In Section 11 we presented the time dilemma occurring under the discovery process. As a solution to the time
dilemma we suggested two methods: Clustering of delays to improve time discrimination, and concatenation
of event types to improve event discrimination. In order to evaluate the effectiveness of these methods we use
our Distance algorithm previously discussed in Section 12. For the purposes of this experiment we will use
the L2 log which we split into training and test data. From the 1970 traces which are present in the L2 log we
then have 1576 training traces and 393 test traces.

In order to discover models based on the training data we use a combination of the tools Disco, ProM,
and TAPAAL. Most noteworthy of these tools is ProM where we use the inductive miner algorithm [17]
with a noise threshold of 0.10. We tried to use ProM with a noise threshold of 0.20 but found the resulting
Petri net too restrictive and also with a noise threshold of zero but found the resulting Petri net too general.
In Algorithm 2 we presented the makeIntervals(A, t) algorithm to create intervals from a data set. In this
experiment we set the makeIntervals(A, t) parameters t = 0.8, and A as a list of delays for some event type.

Distance evaluation
To give a broad overview of the methods we shall compare them individually and to the method we used in
our previous work which we refer to as the old method. Furthermore, we also evaluate the result of combining
the concatenation and clustering methods. The methods we evaluate are briefly summarised as follows:

Old: First discover a process map and a Petri net. Annotate the Petri net with the minimum and maximum
delay values as seen in the process map. This follows the same process as the one described in relation to
Figure 14a.
Concatenating: First preprocess the event log such that all events are concatenated. Then, discover the
process map and Petri net, and combine these following the process used to generate Figure 16.
Clustering: Preprocess the event log by executing Algorithm 2 makeIntervals(A, t). Then, only discover
a Petri net and, by following the same procedure used to generate Figure 14b, annotate it with intervals.
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distance zero traces
Old 99.2 %
Concatenating 99.2 %
Clustering 32.3 %
Combined 42.7 %

Table 11: The percentage of test traces with distance zero for the respective preprocessing methods

Combined: Preprocess the event log with concatenation followed by clustering. Then, follow the
annotation process of the clustering method.
In Table 11 and Figure 20 we compare the distances of the four methods. Our first point of comparison

is the percentage of zero traces as seen in Table 11. Both the old and concatenating methods are incapable
of discriminating based on time since their intervals are so broad; hence, almost all of the test traces has a
distance of zero. Furthermore, the concatenating method did not improve event discrimination, since the
distance algorithm will penalise a fixed amount if an event cannot be replayed without spawning tokens or its
label is unrecognisable.

The remaining two methods, clustering and combined, present major improvements with regards to time
discrimination as is evident from their zero trace percentage. By comparing their percentage of zero traces it
would seem that the clustering method performs better. However, we contribute the increase in zero traces to
the combined method’s ability to fine tune intervals to the sequence in which events occur. It has 15 different
action types where as the clustering method only has four. To explain the consequence of this difference take
the case of an I event (see table Table 1). In the combined method this I action type will be split into several
specialised Is depending on what can be observed from the event log e.g. an I preceded by another I, or an I
preceded by a C and so on. In the clustering method all of the I observations are put into the same basket
and the intervals for the I event therefore become more general. The impact of this difference is clear when
comparing the two methods as shown in Figure 20. In this chart we have ordered the traces for each method
based on their distance to the training model and selected the top 25 % of traces with the highest distance.
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Figure 20: The 25 % most penalised traces ordered by their distance

The increase in precision of the combined method does however come with a cost to the complexity of
the resulting ETAWFN. Recall that when the ETAWFN is un-concatenated we remove the preceding event
from the action type e.g. an I preceded by another I denoted as I-I becomes I, an I preceded by an M M-I
becomes I etc. This coupled with constraint three which we put on ETAWFNs in our previous work [11,
p. 27] where any marking reachable from a marking m may not have two transition enabled simultaneously
with the same label makes the un-cocatenating process of an ETAWFN cumbersome. Currently we have no
automated way of un-cocatenating an ETAWFN; hence, we shall continue with the clustering method as it
adequately discriminates events while being simple enough to use in a manual method.

13.5. Evaluating Workflows

For the workflow evaluation, we look only on select workers, for two reasons; there is a different amount of
workers in the L2 and L3 logs, and the amount of rounds for each worker varies significantly. The distribution
is seen in Tables 12 and 13.

Futhermore, for the generation of the models, we applied the clustering method for the time information
in the logs, as this is the approach we concluded to use, during the previous experiment. Then we used the
framework ProM to generate workflow nets using the specified 80 % of data used for training from logs L2,
and L3.And we manually decorated the generated ProM models with the related cluster time information.
The manual process was carried out in TAPAAL, where we also decorated some of the models with more
τ-transitions, in order to make them applicable for our distance algorithm.

Lastly, as the logs originally only contain a small amount of action types, we decorated the types with
more information, e.g. a transition with the label ’O-B-H’ is read as; action type O, from zone B, and H
specifying the height of a location. The possible zones are A,B, and C which are different regions of the
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warehouse, and the possible heights are H and L, for high and low locations respectively, where locations up
to 5 are low locations, and anything above, is a high location.

Worker Orders
w1 968
w2 118
w3 817
w4 7
w5 14
w6 1
w7 1
w8 6
w9 2
w10 37

Table 12: Order distribution in the L2 log

Worker Orders
w1 155
w2 124
w3 10
w4 3
w5 34
w6 1

Table 13: Order distribution in L3 log

From the two tables we see that workers w7 through w10 only are present in the L2 log, so these are
disregarded as we seek workers present in both logs. We chose w1 and w2 as these workers have many orders
in both logs, and for the third and last worker, we considered both w3, and w5 but decided on w3, as this
worker has more total orders than w5.

In the following we present Petri nets showing workflows of the workers w1 through w3, where we first
present the models generated on L2 followed by models generated on L3.

13.5.1 Workflow models for workers on log L2
For the first worker, the model has been split into three components shown in Figures 21 through 23, where
the places and transitions with dotted lines are shared, i.e. the shared place P5 in Figure 21 is the same place
as P5 in Figure 22. Furthermore, the events in the L2 log are only associated with replenish, and from our
conversations with Logimatic, we know that they expect the action type RO to always be followed by the RI
type. However, from observing the model, we can induce that this is indeed not the case as the model allows
either type to be executed independent on the other. Furthermore, from observing Figure 22 we clearly see
that action types have been divided into multiple partitions, i.e. from the multiple O-C-L actions depicted in
Figure 22.
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Figure 21: Component 1 of workflow for w1 using the
L2 log
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Figure 22: Component 2 of workflow for w1 using the
L2 log

54



Adaptive Storage Rearrangement and Process Discovery in a Warehouse • June 8, 2018 • DEIS1011F18

P20

P27P29

P30

P37

inv: ≤ 187

P38

inv: ≤ 207

P40 P41

P48

P49

P52

inv: ≤ 415

I-C I-B

I-A III-AI-B II-C

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0, 207]

[0,∞)
[0,∞)

[0, 187]

[0,∞) [0,∞)

[0,∞)

[0,∞)

[0,∞)

[19, 90]

[95, 167]

[1
87
, 2

46
]

[1
45
, 3

49
]

[0
, 1

42
]

[1
93
, 4

15
]

[0,
20

7]

Figure 23: Component 3 of workflow for w1 using the L2 log

The next model we present, is generated on L2 for worker w2, where the model has been split into two
components shown in Figures 24 and 25. Compared to the previous model, we see a more restricted workflow,
where some actions must occur. E.G, atleast one O or C action must be executed, whereas there still is no
guarantee for an I action to be executed. From comparing this model with the previous model for w1, we also
see that there are fewer transitions in the new model. We believe this reduction of transitions is due to fewer
orders in w2’s log, and we deduce that this is one reason for the more precise model.
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Figure 24: Component 1 of workflow for w2 using the L2 log
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Figure 25: Component 2 of workflow for w2 using the L2 log

The final model generated for the L2 log is shown in Figure 26, which consists of the workflow for w3. In
this workflow we see an increase in the number of transitions, when compared to the model for w2, which
correlates with the increase in orders. At the same time, the model is not as general as the model for w1, e.g.
as it is not possible to have a trace without atleast one C or O action.
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Figure 26: Workflow for w3 using the L2 log
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13.5.2 Workflow models for workers on log L3
In the following we presents models for workers, which have been generated using the L3 log, i.e. there now
is the possibility of performing the actions related to our swap implementation. As explained, we use ProM to
generate Petri nets from the logs. When we generated the models on log L3 for workers w2 and w3, we got
the models shown in Figures 27 and 28. These models have a large degree of generality, where there are no
restrictions to the sequence of firing different transitions. We tried adjusting the parameters for generating the
Petri nets and for the net for w2 we found that when adjusting the noise level to 50 %, a workflow began to
form, but the amount of transitions was very restricted. For the Petri net for worker w3, we found that even
with a noise level on 90 % the model still had the form as presented in Figure 28

Because of the high level of generality in the two models, we chose to disregard the models in the
following work, and we will only consider the generated model for w1.

Figure 27: flower model for w2 on L3 Figure 28: flower model for w3 on L3
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The model that was generated for w1 is split into three components, shown in Figures 29 through 31. If
we compare this model with w1’s model over L2, then we see that the new model is still general, as it is still
possible to traverse the entire net only firing τ-transitions. and we see a large amount of different transitions.
However, the major difference between the two models is shown in Figure 31, as the new model now includes
transitions related to performing swaps, i.e. we see that the worker has used our implementation. Furthermore
we can observe that all swap related transitions may be fired independently of the other work performed by
the worker, i.e. our notion, presented in Section 13.3, of a worker being able to perform swaps while he is not
performing other tasks, holds. Also the labels for the swap related events ahve changes slightly, now we have
Begin and End which signifies the first and last events related to performing swaps. And we include Tmp,
Loc1 and Loc2, which depicts how the worker accessed the locations, where Tmp is the temporary location,
Loc1 is the first location the worker accesses, and Loc2 is the last location he accesses. Lastly we added the
specific heights accessed.
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Figure 29: Component 1 of workflow for w1 using the L3 log
61



Adaptive Storage Rearrangement and Process Discovery in a Warehouse • June 8, 2018 • DEIS1011F18

P11

inv: ≤ 314

P20

P21

P22

P23

inv: ≤ 266

P24

inv: ≤ 312

C

O-A-L

O-B-L

O-B-L

O-B-L

O-B-H

O-C-H

O-C-H

O-C-L

O-B-H

[0,∞)

[0,∞)

[0,∞)
[0,∞)

[109, 266]

[0,∞)

[312, 312]

[76, 190]

[78, 204]

[219, 284]

[136, 224]

[95, 192]

[214, 314]

[0, 1]

[0, 0]

Figure 30: Component 2 of workflow for w1 using the L3 log
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Figure 31: Component 3 of workflow for w1 using the L3 log
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13.6. Evaluating Our Distance Algorithm

In the following experiment we shall evaluate our distance algorithm. In this experiment we shall use the
test logs for worker w1, w2, and w3 from the L2 log. These test traces will be replayed, by the distance
algorithm, on the models which we discovered using each worker’s respective training data from the L2
log. By analysing the results of this experiment we expect to see that each worker’s test log fits best with
their own model, although this is not guaranteed. The reason for this may be solely due to a shift in worker
behaviour, but contributing factors may also be found by assessing the worker’s model. This is something we
shall comment on when discussing the results of this experiment.

In Algorithm 5 we penalise for all enabled urgent transitions when performing a delay. This is something
which we decided not to do in this experiment in order to isolate the time performance of each worker. By
not penalising for τ-transitions, which in the models are used for routing purposes, we get a distance which
indicates how well a worker performed based solely on their time performance with regards to a given model.

L2 Models
w1 w2 w3

L
2

L
og

s w1 120 872 833
w2 109 1479 1046
w3 337 1501 571

Table 14: The average distance resulting from replaying test traces for each worker on the worker models where model
w1 = Figures 21 through 23, model w2 = Figures 24 and 25, and model w3 = Figure 26

In Table 14 we show the average distance between a worker’s test trace and each of the models which was
discovered from the L2 log. In Table 14 the w1 is the model found in Figure 26, w2 is the model found in
Figures 24 and 25, and the w3 model can be found in Figures 21 through 23. We show the average distance
for the traces in the logs since there is a discrepancy between the number of logs handled by each worker in
the period of the L2 log.

The first observation to make regards the w1 model (w1 column). Of the three workers it is not w1 that
fits this model the best but w2. In fact, this model is the one that all the test logs fits with the best i.e. for all
the worker logs it is the w1 model that has the lowest average distance. The cause of this may be found in
the generality of the w1 model. In the w1 model it is possible to reach any non-τ-transition by only firing
τ-transitions. This is not possible in the w2 model nor is it possible in the w3 model. Consequently, any trace
from any of the workers can be replayed while only penalising on any cheat delays as long as the trace does
not contain transition labels not present in the w1 model. This notion is cooperated by inspecting the ordered
list of distances for each of the worker’s test logs in relation to the three models as the w1 model consequently
is the one with the most traces only penalised for cheat delaying.

As mentioned previously we expect each worker’s test log to fit their own model the best i.e. they have
the lowest distance to their own model. So far we have observed that the test log of w1 did in fact not fit best
on the w1 model as the test log of w2 has a lower distance. This, however, does not disprove the correctness
of our distance algorithm since; if we regard the test log of w1 in relation to each of the three models we see
that it indeed fits best to the w1 model meeting our expectation.

In order to identify which test log model w1 fit best with we looked from the perspective of the test log
(row perspective). If we look from the test log perspective to identify the model best fitting test log w3 we
find that the w1 model has the lowest distance. This, however, is misleading and occurs since the w1 model
was the most general model of the three models and therefore may explain the test log of w3 well—and in
our case even better than the w3 model. If we adopt a model perspective (column perspective) and focus on
the w3 model column we correctly observe that the test trace of w3 has the lowest value. This dichotomy
between the test log and model perspective represents a difficult choice. It may be the case that if we had
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another model with high generality we could not correctly pair the w1 test trace with the w1 model.
Both perspectives falls short of pairing the w2 test log and w2 model. This might be due to the low

number of traces in the log for the w2 worker. In the L2 log we have observed the following amount of traces
for each of the workers: w1 968 traces, w2 118 traces, and w3 817 traces. When we split the w2 worker’s
data into training and test logs we have a split of 95 training traces and 23 test traces, where as w1 has 775
training traces and 196 test traces and w3 654 training traces and 163 test traces. As a consequence of the low
data amount for w2 the model becomes more restricted to the behaviour observed in the training data. We see
this clearly as both the test log for w1 and w3 fits better on the w2 model than w2’s test trace indicating that a
shift in behaviour is the most likely cause. In order to determine which perspective facilitates the pairing of
test logs with their respective worker models is something that must be examined further.

14. Conclusion

In Section 3 we outlined the contribution of our thesis which is divided into two separate, but closely related,
functions of operating a warehouse. The first function which we mainly focus on in Part I, regards the
assignment of items to locations in a warehouse, which is generally referred to as the storage location
assignment problem. The second function of operating a warehouse, which we contribute to, regards the
analysis of workflows where we employ the theory of process mining. In Part II we focus on this second
function of the warehouse and use process mining in order to evaluate our contribution to solving the storage
assignment problem.

Our initial efforts in Part I focused on understanding the problem itself and on defining the context in
which the problem occurs i.e. what actually happens in a warehouse. A vital component in gaining insight into
the storage problem and its context came from our stakeholders, presented in Section 5. These stakeholders
were the warehouse Av Form and the company Logimatic—the developers of the warehouse management
system LOGIA. Through these stakeholders we were able to define a concrete area suitable for optimisation,
namely the allocation of carriers to storage locations. The concrete problem defined in collaboration with
Av Form, was to research the possibility of rearranging locations referred to as reserve locations, in order to
reduce the total time spend on replenishment—a task related to order picking.

In Section 6 we described the theoretical basis for how workers at Av Form can perform actions that affect
the configuration of a warehouse. Afterwards in Section 7 we devised a novel algorithm for suggesting pairs
of locations to be swapped such that the overall time used on replenishment is reduced. With the algorithm
well defined, we presented some time estimates needed for the initial implementation of it in to LOGIA.
These time estimates and the implementation was described in Sections 8 and 9 respectively. Our LOGIA
implementation was installed at and used by Av Form for a short duration, which generated event logs that
we used for Part II of our thesis.

Then for Part II we first presented the theory of Petri nets and Extended Timed-Arc Workflow nets
(ETAWFNs) in Section 10, such that we in the following Section 11 could present an issue uncovered during
our previous work when applying process mining to discrete-time event logs (DTELs). The issue arose during
our previous work mainly due to the use of two different process mining tools during the discovery process
which used different modelling languages. The issue, elaborated on in Section 11.1, resulted in a lack of
precision in the discovered ETAWFN with regards to time discrimination. In order to solve this issue we
proposed two methods: Clustering of delays and concatenating action types. The concatenating method was
rather simple, but for the clustering method we devised our own algorithm in Section 11.2 which used the
k-means algorithm and box plot theory to decide which time values to use in the discovered ETAWFN. Then
in order to examine the effectiveness of the two proposed methods we presented a previous contribution of
ours in Section 12 pertaining to the field of process mining.

The final section of Part II presented four different experiments evaluating our contributions. The first
experiment in Section 13.3 examined the impact of our swap suggestions using logs from our case study. We
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found that under the assumption that swaps are performed in a worker’s idle time it will result in a reduction
in the time spend on retrieving items from replenish locations, in the warehouse. The second experiment used
our distance algorithm to evaluate our proposed methods to the time dilemma. We found that the clustering
method and the combination of concatenating and clustering significantly outperformed both our old method,
and only applying concatenating. Of the two well performing methods we chose to use clustering since
it results in models with a higher degree of simplicity, although it is not as precise as using the combined
method. Then for the third experiment, we examined the workflows of Av Form where we looked at three
different workers. We found that if locations were swapped it was done separately from the main workflow,
i.e. adding to our assumption that swaps could be performed during a workers idle time, hence not adding to
the swapcost. Secondly, we found the workflows do not strictly follow what is expected from Logimatic, as
they expected replenish related events to happen concurrently, whereas we observed that this was not the case
in either of the workflows. However, we believe this is most likely due to workers overtaking orders from
other workers, which results in LOGIA loosing track of the workflow. For our last experiment, Section 13.6,
we evaluated our distance algorithm on the models discovered in experiment three. We found that we in two
out of three cases could correctly pair a worker with their own workflow. The case where it was not possible,
we believe is a result of a small dataset for the specific worker, or that it would require examination from
another angle in order for our evaluation of the distance algorithm to be conclusive with regards to the specific
worker.

In conclusion for the first part of our thesis, we have shown through theory and a solution applied at
a warehouse, that we are able to rearrange reserve locations, which results in a reduction to the total time
needed for replenishment, and thereby satisfying the problem stated in collaboration with Av Form.

For the second part, we conclude that we have been able to address the discovered problem related to time
discrimination, and through experiment two, we showed how two of the suggested solutions provided results,
which showed a finer granularity with regards to time discrimination. Finally, in the fourth experiment, we
were able to show how our use of the distance measure may be used to analyse and compare ETAWFNs and
DTELs, though seemingly with the restriction that datasets must be of some minimum size.

15. FutureWork

In Section 7 we presented our swap suggestions algorithm for which we have identified aspects that could
be improved. The most significant of which is that the reduction in cost it computes has been shown in
relation to our case study in Section 13.3 to not be realised within a three months period, if the cost of
swapping two locations is also considered. We contribute this to the low access frequency for the swapped
locations combined with the low benefit from moving carriers to lower locations. In order to improve the
swap suggestion algorithm we propose to extend it such that it considers other aspects of the replenishment
task. In its current incarnation it only considers the time it takes the worker to bring a carrier down to the
ground. One aspect to incorporate into the algorithm would be the time it takes the worker, once a carrier has
been brought down, to move an item to its forward location. The time it takes to move an item to its forward
location is, however, not solely dependent on the most direct path to its forward location. The routing pattern
which the warehouse employs affects the time as well. In the case of Av Form with their s-pattern it would
not be sufficient to just move items close to their forward location, but close to it and before it. This way
a worker may drop off an item when passing by its forward location avoiding any backtracking to forward
locations. There are also other patterns than the s-pattern; hence, another point of improvement for the swap
suggestion is to generalise it to more than the s-pattern.

The swap suggestion algorithm may also be extended such that it considers which items are picked
together and attempt to store these close to one another. Koster et al. [3] refers to this notion as family
grouping where the relation between items is part of the storage assignment process. A simple metric to use
in this problem is the frequency at which items appear together. Given such a metric the authors mention two
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types of family grouping: Complementary-based method, and contact-based. These two methods are evident
contenders in our future work, but the research into the existence and effectiveness of other methods is also
necessary.

In Section 13.4 we examined four preprocessing methods with the aim of improving the discovery
process. We found that the clustering and the combination of concatenating followed by clustering introduced
significant improvements where the combined method outperformed solely applying clustering. The precision
gained under the combined method comes at a cost of model complexity. This fact coupled with us manually
constructing ETAWFNs from Petri nets motivated our decision to continue with the clustering method over
the combined method. To use the combined method in our future work it will require an automated process to
construct ETAWFNs from Petri nets.

Another more theoretical improvement to the evaluation of the preprocessing methods is to evaluate them
with regards to what Aalst [9] refers to as quality attributes. The author presents four aspects to consider
when assessing the quality of a model: fitness, simplicity, precision, and generalisation. In our thesis we
briefly mentioned simplicity when discussing the time dilemma. Furthermore, we have already assessed the
preprocessing methods based on fitness since our distance algorithm quantifies this quality attribute for a
given discrete-time event log and timed-arc workflow net. However, since the four quality attributes affect
one another, e.g. a more general model is less precise, it would also be beneficial to include the two yet
unexplored quality attributes of generalisation and precision. Finally, The author defines the quality attributes
for untimed models; hence, it would also be necessary to formally define them in relation to time.
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Appendices

A. Concatenated Discrete-Time Event Log

In Table 15 we have concatenated the event type of each event in a given trace with the preceding event’s type.
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Type Location Item Quantity Worker Order number Delay
C 859-05-03-B 47 33 avr 1 0
CO 859-05-03-B 47 -10 avr 1 11
C 444-01-03-B 15 4 bob 2 19
CO 444-01-03-B 15 -4 bob 2 33
M 858-03-11-A 74 -32 avr 3 71
MM 859-01-11-B 74 32 avr 3 71
MM 858-03-11-A 97 -15 avr 3 71
MM 859-01-11-B 97 15 avr 3 71
OO 853-01-01-C 46 -109 bob 2 118
MO 227-05-03-B 8 -23 avr 3 157
M 308-04-03-C 16 -87 cre 4 192
MM 441-18-03-B 16 87 cre 4 192
MM 308-04-03-C 69 -94 cre 4 192
MM 441-18-03-B 69 94 cre 4 192
OO 441-12-04-A 11 -98 bob 2 201
MO 441-18-03-B 16 -45 cre 4 270
OO 439-05-03-A 17 -31 cre 4 368

Table 15: Table 3 where events have been concatenated
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