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CHAPTER 1

Introduction

1.1 Background
Trawling is a method of fishing that involves dragging a cone or a funnel shaped fishing net (trawl) through
the water column behind one or two boats (trawlers). Trawls are divided into two main types depending on
whether they are towed along the sea floor or in mid water. A bottom (demersal) trawl is a trawl which is
towed along or close to the seafloor and used to catch demersal fish species such as cod, haddock, sand eel
and shrimp. In contrast to the bottom trawling, mid-water (pelagic) trawling is characterized by the fishing
gear not coming into contact with the seabed during fishing and used to fish pelagic species for example
herring, mackerel, blue whiting, tuna and sardines. One of the differences between a bottom trawl and a
mid-water trawl is that the latter does not require a ground gear to facilitate the tow across often coarse sea
bottom. Typical components of a bottom trawl are presented in Figure 1.1, p. 1.

Figure 1.1: Key components of a bottom trawl [1].

The main goals pursued by a trawl designer is to maximize the catch of the target species with the largest
size, at the same time maintaining a low amount of by-catch, which is defined as juvenile fish or other marine
species that are caught unintentionally.

Catch maximization is provided by opening the trawl in the vertical and horizontal direction. Vertical
opening is maintained by the correct combination of floats on the headline rope and weights or ground gear
on the footline rope. Horizontal opening is maintained by using the otter boards (trawl doors) that diverge
from each other during towing due to their geometry. The extent of the horizontal opening is also influenced
by the towing speed.

1.1.1 Cod-end
Trapped inside the trawl, the catch is led thought the trawl belly and the extension piece towards the cod-end
where the catch is accumulated. One end of the cod-end is joined to the rest of the trawl though an extension
piece, while the other is tightened by a rope called cod-line fed through the last row of meshes. A typical
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cod-end is often made of two or four rectangular panels of netting joined at the sides by selvedges. Selvedges
are created by gathering few edge meshes of joint panels and binding them together. Often cod-end panels are
made of diamond mesh netting, square mesh netting or the combination of both as shown in Figure 1.2, p. 2.
Evaluation of a cod-end selectivity is a complex task. It depends on many parameters and their interaction,
such as towing speed, current amount of catch, material and geometry of the meshes, additional elements
attached to the cod-end structure, etc.

Selvedge

Codline

Round strap T0 diamond mesh panel

Square mesh window

Joint with extension
 piece of the trawl

Figure 1.2: Bacoma cod-end with a round strap for lifting the catch aboard. Square mesh window takes half of the top
panel [2].

The choice of the mesh type highly influences the selectivity of the cod-end. For example a diamond
mesh can be either conventional (T0) or 90◦ turned (T90) as shown in Figure 1.3, p. 2. In the traditional T0
netting orientation of the standard cod-end, the mesh bending resistance of the twines tends to close the
meshes. This mechanical behaviour is called mesh resistance to opening. Turning the netting 90◦ reverses
this mechanism, which provides a more open mesh [3]. The choice of the best netting type is not a trivial
task, since different types of meshing might improve the selectivity for say round fish species, but worsen it
for the square fish species.

T90 singleT0 singleT90 doubleT0 double

Stretching direction

Figure 1.3: Stretching of T0 and T90 diamond meshes made of a single and a double twine.

Bigger cod-ends that are expected to carry large amount of catch are strengthened by attaching ropes
lengthwise to prevent stretching or circumstantially to restrict the diameter under the pressure of accumulated
fish [4]. These ropes are called lastridge ropes and round straps respectively, but also can be referred as
strengthening ropes (See Figure 1.4, p. 3).

The strengthening ropes affect the mesh openness and thus the selectivity of the cod-end. Lastridge ropes
are shorter than the stretched length of the netting to which they are attached. The ropes bear the tension that
would usually be in the mesh twines allowing the meshes to open and deform more easily. The extent of this
effect will depend on the length ratios of the rope and the netting [5]. Round straps are needed to divide the
catch in a cod-end into parts of a size convenient for lifting and handling aboard the vessel. The presence of
the straps limits the mesh openness in the circumference of the cod-end in the proximity of the strap. Apart
from that, in some seas the cod-ends are supplied with sorting devices such as sea lion and turtle exclusion
devices, that are out of the scope of this report.

1.1.2 Netting characteristics
Netting is made of the textile material such as nylon, polyester and polypropylene which differs from other
structural material by having a unique combination of flexibility, anisotropy and uneven surface structure.
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Lastridge rope

Round straps Square mesh
codend

Extension piece
Selvedge

Lifting round strap
Lazy line (to trawl headline)

Figure 1.4: Square mesh cod-end with various strengthening ropes [2].

The material anisotropy results in the behaviour where netting can only effectively resist tensile loading at
the same time having low or in some cases negligible resistance in compression, bending and torsion [6].

A basic unit of a netting panel is a mesh which is defined by four twines and four knots as shown in
Figure 1.5, p. 3. The geometry of the mesh is often described through a mesh side M which is double of the
unstretched twine length m0. In the diamond mesh representation the twine length can be measured between
the knot centers. However, for the meshes with bigger twine diameter D, the knot size l0 becomes significant,
and the hexagonal mesh representation is used. The opening angle α is measured as a half angle between the
twines emerging from the same knot.

, m0

l0

M

2

Figure 1.5: Geometric parameters of a mesh. The diamond representation (left) and the hexagonal representation (right)
of the mesh.

1.1.3 Challenges related to selectivity

Mesh openness during trawling have a major effect on fish sizes accumulating in the cod-end. Therefore,
knowing the mesh geometry in trawl cod-ends during trawling is of importance for being able to select
efficient cod-end designs for different fisheries. Reliable estimation of the cod-end shape during trawling is
directly connected to improvement the catch selectivity, thus reducing the negative environmental impact of
trawling. Previously, studies of trawl selectivity have been carried out in full scale at the sea. However, due
to the large number of uncontrollable parameters, numerous trials have to be undertaken in order to obtain
a reasonable amount of data for statistical analysis. This leads to expensive studies, that have not proven
to be effective. It is mostly due to the fact that one cannot extrapolate the experimental data to predict the
selectivity due to new combinations of parameters outside the scope of the experiment [7][8].

To overcome this limitation, with the development of numerical methods it was possible to use predictive
computer models of cod-end selectivity. The models such as PRESEMO [9], have been developed during the
last decade and are able to simulate cod-end selectivity with respect to different cod-end parameters. Even
though these tools are based on approximations, their results are often reliable. However, it is important to
know the fish behaviour and the mechanical cod-end behaviour to have an accurate prediction.
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1.2 State of the art in cod-end shape estimation
In general, the cod-end can be regarded as a very flexible structure with very large potential deformations
due to its geometry and the netting material behaviour. In this respect, the modelling of the cod-end shape is
more complicated than other structures with only small deformations (building components, machine parts)
as it involves geometric non-linearity.

A cod-end that consists of only one type of meshes can be reasonably considered axis-symmetric. Under
this assumption O‘Neill [10] have developed an analytical model where he derived differential equations that
govern the geometry of axis-symmetric cod-ends for a range of different mesh shapes. Priour et al. [8] have
developed a numerical axis-symmetric model based on finite element method by looking at the force balance
on the twine elements on one row along the cod-end length (Highlighted in Figure 1.6, p. 4). The model
is valid for the cod-end made up of diamond and rectangular meshes. However, when the twines become
thicker, the knot size affects the mesh geometry, that rather resembles a hexagon than a diamond as was
shown in Figure 1.5, p. 3. It was found that the hexagonal mesh is more suitable to describe the actual shape
of the meshes in the cod-ends. Therefore, Priour [7] has extended the previous axis-symmetric model to
account for knot size by the hexagonal mesh description.

Figure 1.6: Axis-symmetric models with 25 meshes along, 25 meshes around and 13 meshes blocked by catch. The
diamond mesh representation (left) and the hexagonal mesh representation (right) with l0 = 0.5m0.

In the case of the axis-symmetric model, only the forces symmetric about the cod-end axis can be
considered. Those forces are the twine tensions and the hydrodynamic forces. As a downside of the model,
the asymmetric forces such as catch weight, buoyancy forces cannot be accounted for. The operational
conditions when towing happens with an angle to the cod-end axis can neither be simulated. However, the
biggest limitation is that only possible to model cod-ends consisting of one type of meshes, and no additional
attachments. This fact disallows to test a realistic cod-end with different strengthening ropes as shown in
Figure 1.4, p. 3. Furthermore, the numerical axis-symmetric models rely on the assumption that twines have
a negligible bending stiffness and are fully compressible.

Figure 1.7: A 3D cod-end model based on triangular finite elements with a round strap.

A more general 3D FEM model based on triangular elements is developed by Priour [11]. Priour
formulates a triangular element for netting where the boundaries are not necessary parallel to the twines or
to the mesh diagonals. Each vertex is linked to the net, so when the equilibrium position of each vertex is
found, the equilibrium position of the net is found. The model takes into account the twine tension, the drag
force on the net due to the current, the pressure created by the catch in the cod-end, the buoyancy and weight
of the net, the mesh opening stiffness and the bending stiffness of the net. This FEM model resulted in
non-commercial finite element package FEMNET developed at IFREMER. Comparisons between previously
mentioned analytic axis-symmetric model and 3D FEM model with triangular elements have been made [12]
and showed a relatively good results. A big advantage of triangular elements is that they are able to cover a
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large number of meshes (Figure 1.7, p. 4), in contrast to the 3D models, where netting is discretized with bar
or beam elements for each twine as suggested by Tsukrov et al. [13]. Due to the high number of degrees
of freedom the time required for the determination of the equilibrium position for the bar based models is
generally long. In this sense both numerical axis-symmetric and 3d model with triangular elements are more
computationally efficient.

In recent years, there is a trend towards the use of netting materials manufactured with thicker and
stiffer twines. The increased mesh resistance to opening of such materials as well as compression resistance
especially at the knots has a notable impact on the cod-end deformation. The problem was investigated
by O‘Neill [14], Morvan et al. [15], Prada and González [16] and Sala et al. [17], that resulted in the
development of several analytical, numerical and experimental approaches for non-linear stiffness models
of a net twine. Those more advanced twine models, however, were never combined with the numerical
axis-symmetric models. The analytical axis-symmetric model by O‘Neill on the other hand considers this
mechanical behaviour, and shows the results that are in good correspondence [12] with a more general
numerical 3D model for the netting deformation.

The equilibrium shapes of netting structures modeled with FEM are normally calculated by solving
the equilibrium equations of the model with the iterative Newton–Raphson (NR) method [11]. In contrary,
de la Prada and González [18] have assessed suitability of gradient-based energy minimization methods
to calculate the equilibrium shape of netting structures. Their tests on triangular FEM models indicate
that the L-BFGS (Limited memory Broyden–Fletcher–Goldfarb–Shanno) has a great potential to replace
or complement the Newton–Raphson method in the equilibrium analysis. Nevertheless, similarly to NR,
L-BFGS suffers from convergence problems when the initial shape is bad. Generation of a good initial shape
for the numerical cod-end model has not been well documented.

Some of the aforementioned models were validated by flume tank testing [11]. In the tank a tested
cod-end with a catch is subjected to current and its shape contour is captured by a digital camera. the
contour obtained experimentally is then compared to the numerically obtained contour of the cod-end. As an
improvement, it is possible to use motion capturing systems to get a spatial representation of the cod-end
shape. Madsen et al. [3] used QUALISYS [19] for a qualitative comparison of different cod-end designs.
QUALISYS finds its application in such fields as bio-mechanics, robotics and film industry. The system uses a
stereo principle with a number of underwater cameras, that by means of triangulation can detect the position
of reflective markers being placed on the object of interest. Applied to the field of fishing gear design this
approach has a potential of allowing more quantitative validation of the numerical models.

1.3 Thesis purpose and limitations

The purpose of this master thesis is to document an implementation and comparison of two different
numerical models for estimation of cod-end shape and towing resistance during towing. Main milestones of
the thesis are:

1. Describe the derivation and features of the two numerical models: axis-symmetric model and 3D FEM
model based on planar triangular elements.

2. Implement the models in a computer program using a general purpose programming language C# and
Object Oriented Programming paradigm. Describe classes and their responsibilities, as well as other
critical implementation details. As a limitation, user interface is not developed.

3. Allow the numerical models to be applied independently, but also explore how the models can be
combined to increase the performance. Research and apply the methods to obtain a sufficient speed
and robustness of the calculation routine.

4. Compare the numerical models in order to identify when the faster axis-symmetric model can be used
instead of the slower, yet more detailed 3D model and yield the same results.

5. Validate the models against a flume tank test in a quantitative way by comparing the numerical models
to a test cod-end shape sampled with a 3D motion tracking system.

1.4 Outline of the thesis report

The rest of the thesis is organized as follows:
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•Chapter 2, p. 7 presents mathematical-physical models of the axis-symmetric and the triangular finite
element models.

•Chapter 3, p. 23 presents the computer implementation and the solution algorithms.
•Chapter 4, p. 35 presents the numerical comparison between the two models.
•Chapter 5, p. 43 presents the validation of the two models with the experiment from the flume tank.
•Chapter 6, p. 49 presents the conclusion and discussion of the future work.



CHAPTER 2

Mathematical models

In this chapter two numerical cod-end models are described. The models are: the 3D FEM model based on
the triangular elements [11] and the axis-symmetric model with hexagonal mesh representation [7]. The goal
of this chapter is to present the underlying model assumptions and derivation of the force equations, that are
used later to find the equilibrium of the structure.

Since the problem at hand is a flexible netting structure, the forces in both models are geometrically
non-linear. The equilibrium shape of the structure is achieved when a deformed configuration of the structure
X provides the force equilibrium to the system F(X) = 0. Commonly for netting structures, the resulting
equation system is solved iteratively with Newton-Raphson method [20].

J(Xi)hi =−F(Xi) (2.1)
Xi+1 = Xi +hi (2.2)

Here the non-linear system is linearized with Taylor approximation and solved for displacement h. The
deformed configuration of the structure is updated by the displacement to yield a new configuration for the
linearization. The process is repeated until the force equilibrium is achieved. The classic version of the
method relies on the analytical representation of force Jacobian J(X) that is intentionally omitted in the
original papers describing the models. Here the force derivatives forming Jacobian matrices are included in
Appendix B and Appendix A.

2.1 3D Model based on triangular elements
In this section the 3D FEM model for cod-ends is considered. The model is based on the planar triangular
elements developed by Priour [11]. Triangular elements offer high flexibility in both geometric modelling
and numerical calculation aspects.

From the geometric modelling perspective, the triangles are widely used to approximate the curvature
of an arbitrary 3D shape. There are many algorithms available for mesh refinement and smoothing, some
of which are applied to the problem at hand Section 3.4, p. 30. In the particular finite element method, a
triangular element works as a super element that combined all the effects of the twines contained within it.
This allows to avoid the problems typical for the models where individual physical twines are modeled by
bar elements [13] also known as numerical twines. For those models the bars must be aligned to the physical
twines of the netting which limits the designer‘s freedom of joining netting panels made of different meshes.

From the numerical calculation perspective, the triangular element allows to reduce the total amount of
d.o.f. in the model and thus the calculation time compared to the models based on bar elements. Due to the
fact that position of each vertex of a triangle depends on the forces acting on the netting, the equilibrium of
the entire net is found when the equilibrium of all the vertices is found.

2.1.1 Coordinate systems
Apart from the standard Cartesian coordinates, the 3D FEM model operates in two additional panel-related
2D coordinate systems that are presented in Figure 2.1, p. 8.

Mesh coordinates ui and vi indicate how many meshes there are between the origin and the target point i
along two Cartesian vectors u and v. The u and v direction vectors vary from triangle to triangle and depend
on the global netting deformation. The deformation, however, does not change the mesh coordinates of the
nodes. For example, node 3 in Figure 2.1, p. 8 (b) is located 4 meshes along u direction and 3 meshes along
v direction from the origin independent on the panel deformation. The mesh coordinates are used by net
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designers and net makers to describe the width and length of a netting panel and also to position additional
elements on the panel, such as cuts, strengthening ropes, rings etc.

Twine coordinates Ui and Vi follow the same principle. They indicate how many twines there are between
the origin and the target point i along two Cartesian vectors U and V. Similarly to the mesh coordinates the
twine coordinates of the vertices are constant under the netting deformation. The U and V directions vary
from triangle to triangle and depend on the netting deformation. For example, node 3 in Figure 2.1, p. 8
(c) is located 7 twines along U direction and 1 twine along negative V direction from the origin. Twine
coordinates are used in the numerical model to calculate the Cartesian coordinates and the lengths of the
twine vectors U and V. This information allows to define the nodal forces due to twine elongation or
contraction. Furthermore, it gives twine orientation relative to each other to determine their opening, as well
as to the towing direction for the application of drag forces. Since the input is usually given in terms of the
mesh coordinates (design coordinates), the conversion between the coordinates as shown in Eq. (2.3).

Ui = ui + vi (2.3)
Vi = vi−ui
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Figure 2.1: Underformed 4 by 3 meshes panel with mesh side of 100 mm and initial opening angle of 45◦ is presented
in 3 coordinate systems: a - Cartesian coordinates, b - mesh coordinates, c - twine coordinates.

The Figure 2.2, p. 9 presents how two different netting panels are joined. The joint between two panels is
created by merging the vertices that lay on the common edge. Displacement of the vertex 3 has an effect on
the netting, which can be represented as a change in length and the direction of the U and V vectors. As
seen, the physical twines do not have to meet on the common edge. It should be noted, that both mesh and
twine coordinates are unique for each triangle. In a special case as for a panel made of the same meshes
(for example Figure 2.1, p. 8) if a pair triangles share the same vertex, they obtain a duplicate set of mesh
and twine coordinates. On the other hand, if the pair of triangles share the same vertex that lies on the edge
between two panels, each triangle will have a unique set of mesh and twine coordinates for the same vertex.

Remarkably, this formulation allows for the twine coordinates U and V to take any decimal number,
therefore, it is not required that the nodes of the triangle coincide with the physical knots of the netting or the
triangle contains the integer amount of meshes.

2.1.2 Twine vectors
Since deformation of the netting inside the triangle can be described by U and V twine vectors, the forces
and the tangent stiffness matrices in the method depend on the relative lengths and orientations of these twine
vectors. The vectors in turn depend on the current deformation state in the Cartesian coordinates, as well
as the description of the netting in the twine coordinates. Applying the assumption that the twines remain
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Figure 2.2: Joining two panels with different meshes: a - square mesh panel, b - diamond mesh panel, c - panels are
assembled and distorted, nodes are re-ordered.

parallel under deformation, the edges of a triangle can be represented as a linear combination of U and V
vectors as shown Eq. (2.4).

S12 =

 x2− x1
y2− y1
z2− z1

= (U2−U1)U+(V2−V1)V (2.4)

S13 =

 x3− x1
y3− y1
z3− z1

= (U3−U1)U+(V3−V1)V

Both Cartesian coordinates and twine coordinates are know for each triangle, therefore the U and V are
defined as shown in Eq. (2.5). The coefficient d has a physical meaning. It is defined as a cross product
between triangle‘s edges S12 and S13 expressed in the twine coordinates. Therefore, d equals double the
amount of the twines in a single direction and also the double amount of knots. For example, considering
Figure 2.2, p. 9 (b) d is calculated to be 48, therefore there are 24 twines in both U and V directions and 24
knots.

U =
V3−V1

d
S12−

V2−V1

d
S13 (2.5)

V =
U2−U1

d
S13−

V3−V1

d
S12

where:
d = (U2−U1)(V3−V1)− (U3−U1)(V2−V1)

2.1.3 Force models
The forces on the model can be categorized into two groups, internal and external forces. The internal forces
are the conservative forces due to the elastic deformation of the netting and the following resistance of the
twines to tension, opening and bending. The external forces are due to drag on the netting, catch pressure
and the weight of the cod-end. The total forces are the sum of all the external and internal forces.

Ftotal = Finternal +Fexternal = Ftension +Fopen +Fbend +Fweight +Fdrag +Fcatch (2.6)

Twine tension

It is assumed that in each triangular element the twines along the same direction have equal and constant
strains. Thus, all twines along U direction have the same length |U| and all twines along V direction have the
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same length |V|. Tensile force in a twine is calculated based on its length relative to the unstretched length
m0 as shown in Eq. (2.8). The twines behave anisotropically, meaning their resistance in compression is
significantly lower than in tension. This effect is taken into account by applying the appropriate axial rigidity
EA depending on whether the twine is stretched or compressed. Factor k in the formula is smaller than 1 and
typically equal or less than 1 % [18].

TU = EA
|U|−m0

m0
(2.7)

TV = EA
|V|−m0

m0

where:

EA =

{
EAtension if |U|> m0

k EAtension if |U| ≤ m0
(2.8)

The transformation from twine tensions inside the element to nodal forces is established through the
Principle of Virtual Work. As exemplified in Figure 2.3, p. 10, the external work is produced as the force
P initiates the displacement of node 1 by the amount δx1 along the positive x-direction. Consequently,
the twines are deformed by the amounts δ |U| and δ |V|, which produces the internal work of the tensile
forces TU and TV . The internal work is negative, because the force and the displacement are in the opposite
directions. There are d

2 twines of each kind that contribute to the internal work. Equilibrium demands that
the total work done by the system is zero as shown in Eq. (2.9).

/ jUj

2

3
x

y

/ jVjTV

TU

P

1

/x1

Fx1

Figure 2.3: Principle of Virtual Work for the force Fx1 applied to node 1 in positive x-direction.

δW = δWint +δWext = Pδx1− (TU δ |U|+TV δ |V|) d
2
= 0 (2.9)

Diving both sides of the equation by the infinitesimal displacement δx1 and letting it approach zero the
expression for the nodal force Fx1 is obtained in Eq. (2.10). Minus sign in the equation appears due to the
equilibrium condition on the node P+Fx1 = 0.

Fx1 =−
(

TU
∂ |U|
∂x1

+TV
∂ |V|
∂x1

)
d
2

(2.10)

Applying the Eq. (2.10) to all nodes in all three directions yields the complete set of nodal forces due to
twine tension for the triangular element Eq. (2.11).
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F1 = (V3−V2)TU
U

2 |U|
+(U2−U3)TV

V
2 |V|

(2.11)

F2 = (V1−V3)TU
U

2 |U|
+(U3−U1)TV

V
2 |V|

F3 = (V2−V1)TU
U

2 |U|
+(U1−U2)TV

V
2 |V|

The derivatives of the twine lengths as well as the Jacobian matrix of the force vector used for the
Newton-Raphson method are found in Appendix A.

Resistance to opening

Mesh panels made of thin twines resist in plane deformation mostly in tension. However, if the thicker twines
are used, bending resistance becomes significant. The bending resistance that happens in-plane of the netting
panel is also known as mesh resistance to opening. So far, the most detailed opening resistance models were
developed and validated for the net structures composed of bar elements [16] [15]. For the triangular element
[11] proposes a simplified mesh opening resistance model. Key assumption is that the angle between the
twines is in linear relationship with the force couple M created by the twines on the knot. The opening angle
α is defined as the half angle between the twines in Eq. (2.12). Equal and opposite force couples MU and
MV occur when the U and V twines form a half angle that is different from an initial opening angle α0 as
shown in Eq. (2.13). The proportionality coefficient between the force couple and the angle is mesh opening
stiffness H. Interaction between tension and bending (tension stiffening) is not considered in the model.

α =
1
2

acos
(

U ·V
|U| |V|

)
(2.12)

M = H (α−α0) (2.13)

The transformation from force couples inside the element into nodal forces is established trough the
Principle of Virtual Work. As exemplified in Figure 2.4, p. 11, the external work is produced as the force
P initiates the displacement of a knot by the amount δ z along the negative z-direction. Consequently the
angle α0 becomes smaller by an amount δα , producing force couples MU and MV on the knot and thus
the external work. The counterclockwise rotation is positive in the sign convention for the right hand side
Cartesian coordinates. There are d

2 knots that contribute to the internal work. Equilibrium demands that the
total work done is zero as shown in Eq. (2.14).

H

UV

P

,0

+/,!/,

!MU+MV

(a) (b)

/z

x

z

Figure 2.4: A mesh with opening stiffness H and initial opening angle a0. The force P stretches the mesh along
z-direction (mesh works as a T90 mesh), initiating the moments MU and MV to resists the deformation.

δW = δWint +δWext = Pδx1 +(−MU δα +MV (−δα))
d
2
= Pδ z−Mdδα (2.14)
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Diving both sides of the equation by infinitesimal displacement δ z and letting it approach zero the
expression for the external force P. In order to express the resisting force Fz in Eq. (2.15) minus sign appears
due to the equilibrium condition on the node P+Fz = 0.

Fz =−H(α−α0)d
∂α

∂ z
(2.15)

Applying the Eq. (2.15) to all nodes in all three directions yields the complete vector of 9 nodal forces
due to the mesh opening resistance Eq. (2.16).

Fopen =−H(α−α0)d
∂α

∂k
(2.16)

where:
k = (x1, y1, z1, x2, y2, z2, x3, y3, z3)

The expressions for the gradient of the opening angle and the Jacobian of the force vector used for the
Newton-Raphson method are found in Appendix A.

Resistance to bending

When thicker twines are used, netting panels not only have a higher in-plane bending resistance, but also
a higher out of plane bending resistance. The effect of out -of-plane bending is taken into account with a
simplified approach similar to the in-plane bending. In the current model, bending happens if two triangles
that share a common edge are not co-planar. In this case, there are non-zero angles α and β between the U
twines and V twines of the two triangles (a and b) as shown in Eq. (2.17). The angles are constant along the
common edge. The key assumption is that the bending moment along the common edge is proportional to
the bending stiffness EI and the curvature of radius R as shown in Eq. (2.18). Interaction between tension
and bending (tension stiffening) is also not considered in the model.

α = acos
(

Ua ·Ub

|Ua| |Ub|

)
β = acos

(
Va ·Vb

|Va| |Vb|

)
(2.17)

MU =
EI
RU

MV =
EI
RV

(2.18)

In order to estimate the radius of the curvature R, a circle is fit to three points that lay on the pair of the
bent triangles: the point on the common edge, and a point on each of the triangles that is an average number
of twines away from the common edge (See Figure 2.5, p. 13 a). The points form an inscribed triangle with
sides A, B and C expressed in Eq. (2.19). Notably, Figure 2.5, p. 13 shows a special situation when only
U-twines are bent. V -twines remain parallel and do not contribute to bending in this case. In general case,
there are two unique fitting circles to estimate the curvature radiuses for both U and V -twines.

A = |naUa| (2.19)
B = |nbUb|
C = |naUa +nbUb|

Where the average numbers of U-twines na and nb for triangles a and b are calculated depending on the
number of U-twines of the triangle d

2 , and the amount of twine rows that bend over the common edge (See
Eq. (2.20)).

na =

∣∣∣∣ da

2Vedge

∣∣∣∣= ∣∣∣∣ da

2(V3−V4)

∣∣∣∣ (2.20)

na =

∣∣∣∣ db

2Vedge

∣∣∣∣= ∣∣∣∣ db

2(V3−V4)

∣∣∣∣
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x

z

C

A
B

3
42

1

P

/y

R

(a)

+MU

!/,

x

z
y

1

3

4

2

nbUb

naUa

(b)

Figure 2.5: A square panel is discretized into four triangles and bent in the middle. Because of the angle between the
U-twines of the two triangles a and b, they are no longer co-planar and the bending moment MU appears
to resist this deformation. Under the deformation all the V -twines remain parallel, therefore they do not
contribute to the bending resistance.

The curvature radius for the bending moment MU is then calculated from basic geometry as shown in
Eq. (2.21). Subscript U is intentionally omitted in the components of the equation.

RU =
ABC
4S

(2.21)

S =
√

p(p−A)(p−B)(p−C)

p =
A+B+C

2
The transformation from resisting bending moment inside the element into nodal forces is established

trough the Principle of Virtual Work. As exemplified in Figure 2.5, p. 13 b, the external work is produced as
the force P initiates the displacement of node 1 by the amount δy along the negative y-direction. Consequently
the angle between U-twines increases by δα , producing the force couple MU along the common edge and
thus the external work. The counterclockwise rotation is positive in the sign convention for the right-hand
side Cartesian coordinates. There are |V3−V4| rows of U twines at the edge that contribute to the internal
work. Equilibrium demands that the total work done is zero as shown in Eq. (2.22).

δW = δWint +δWext = Pδy+MU (−δα)Vedge (2.22)

Diving both sides of the equation by infinitesimal displacement δy1 and letting it approach zero the
expression for the external force P is obtained. In order to express the resisting force Fy1 in Eq. (2.23) minus
sign appears due to the equilibrium condition on the node P+Fy1 = 0. Additionally, the zero contribution of
V -twines is added to express the general formula.

Fy1 =−
(
|V3−V4|

EI
RU

∂α

∂y
+ |U3−U4|

EI
RV

∂β

∂y

)
(2.23)

Applying the Eq. (2.23) to all nodes in all three directions yields the complete vector of 12 nodal forces
due to the bending resistance Eq. (2.24).

Fbend =−|V3−V4|
EI
RU

∂α

∂k
−|U3−U4|

EI
RV

∂β

∂k
(2.24)

where:
k = (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)
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The expressions for the gradient of the bending angle and the Jacobian of the force vector used for the
Newton-Raphson method is found in Appendix A.

Immersed weight

The weight of the netting immersed in water is taken into account in a straightforward manner as shown in
Eq. (2.25). Here the volume of the netting is represented through the twine diameter D, twine length m0 and
the amount of twines d. To avoid the choice between |U| and |V| the twine length is reasonably assumed to
be m0, because the strains in the twine are usually small. Therefore, all the Jacobian matrix entries of the
weight force are zero, since nothing depends on the nodal positions of the triangle element. The direction of
the force is negative if the netting is denser than the water (ρnet > ρwater), otherwise it is positive.

Fweight
1 = Fweight

2 = Fweight
3 =

 0
0

1
3

π
D2

4
m0d (ρwater−ρnet)g

 (2.25)

Drag on the netting

Unlike the axis-symmetric model, the 3D FEM model is able to take the drag forces on the netting into
account. Those effects are simplified to a high extent, because the fully coupled fluid-structure interaction
is still an open question. The fluid flow around the twines due to towing is characterized by the vector
c = (cx, cy, cz) and assumed to be uniform and steady. The flow approaches the U and V twines with the
angles of attack α and β Eq. (2.26) as shown in Figure 2.6, p. 14.

α = acos
(

c ·U
|c| |U|

)
β = acos

(
c ·V
|c| |V|

)
(2.26)

Hydrodynamic forces on the twines are calculated using the Morison equation assuming the twines have
cylindrical shape. Due to the steady state assumption the inertia forces are zero, and the hydrodynamic forces
are fully represented by the drag. The drag forces on the netting of the triangular element are represented by
the pressure drag and the friction drag on U and V twines as shown in Figure 2.6, p. 14. Their magnitudes
are presented in Eq. (2.27) and Eq. (2.28).

y

z

c

U

U

TU

FU

c

D

x

(b)(a)

,FU

TU

Figure 2.6: Drag force components on a U twine.

|FU |=
1
2

ρwaterCdDm0 (|c|sin(α))2 d
2

(2.27)

|TU |=C f
1
2

ρwaterCdDm0 (|c|cos(α))2 d
2

(2.28)
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The pressure drag and friction drag coefficients Cd and C f for the twine is calculated based on its
thickness D and the normal component of the current velocity cn using Eq. (2.29) and Eq. (2.30) according to
[21].

Cd =


8π
(
1−0.87 s−2

)
Ren s

if 0≤ Ren ≤ 1

1.45+8.55 Re−0.9
n if 1 < Ren ≤ 30

1.1+4 Re−0.5
n otherwise

(2.29)

C f = πµ

(
0.55 Re0.5

n +0.084 Re
2
3
n

)
(2.30)

where:

s =−0.077215665+ log
8

Ren
(2.31)

Ren =
D ρwater cn

µ
(2.32)

The pressure drag force is calculated as the pressure drag magnitude from Eq. (2.27) applied in the
direction that is simultaneously perpendicular to the twine and to the plane of the triangular element. The
perpendicular direction vector E is calculated as shown in Eq. (2.33).

EU = U× (c×U) EV = V× (c×V) (2.33)

FU = |FU |
EU

|EU |
FV = |FV |

EV

|EV |
(2.34)

The friction drag is calculated as the friction drag magnitude from Eq. (2.28) applied in the direction
of the corresponding twine vector. Normalized cosines of α and β account for the correct direction of the
friction force.

TU = |TU |
cos(α)

|cos(α)|
U
|U|

TV = |TV |
cos(β )
|cos(β )|

V
|V|

(2.35)

Both forces are distributed uniformly over the element, therefore each node is affected by one third of
the total force.

Fdrag
1 = Fdrag

2 = Fdrag
3 =

1
3
(FU +FV +TU +TV ) (2.36)

The Jacobian of the force vector used for the Newton-Raphson method is found in Appendix A.

Catch pressure

The catch is taken into account by subjecting triangular elements to the pressure Eq. (2.37) in the part where
the netting is blocked by the catch. The Cd coefficient for the catch will vary along the cod-end, however, it
was proved that it will reach its maximum over the rear of the cod-end and start to decrease over the region
where the downstream component of the flow is small [22]. Therefore, a constant value between 1.2 and 1.4
can be assumed [11].

p =
1
2

ρwaterCd
∣∣c2∣∣ (2.37)

The pressure is assumed to be distributed uniformly over the triangular area, therefore each node is
affected by one third of the resultant force as shown in Eq. (2.38).

Fcatch
1 = Fcatch

2 = Fcatch
3 =

S12×S13

2
p
3

(2.38)
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Since the pressure is always pointing outside the cod-end it is important that the triangles have correct
orientation. Node numbering must be counterclockwise when observing the elements from the outside of the
cod-end to produce an outward normal as shown in Figure 2.7, p. 16. The Jacobian of the force vector used
for the Newton-Raphson method is found in Appendix A.

z

y

x

Figure 2.7: A cod-end partially blocked by catch. The normals show the direction of the catch pressure.

2.2 Axis-symmetric cod-end models

Numerical models assuming axis-symmetry were developed much later than the 3D FEM model. The
models have been created for cod-ends with diamond, square, kite and hexagonal meshes [7] and [8]. This
report considers only the model with the hexagonal meshes, since it can also simulate the diamond mesh
cod-ends if the knot size is set to be very small. Being a reasonable assumption, the axis-symmetry limits the
modelling freedom both in terms of geometry and forces in contrast to the previously described 3D FEM
model. However, for some type of calculations, a more "lightweight" axis-symmetric model can achieve the
same results, and thus will be more preferable than the 3D FEM model.

In the axis-symmetric models, the equilibrium shape of the cod-end can be obtained by considering the
equilibrium of the nodes belonging to one row of twines, further called meridian (See Figure 2.8, p. 16).
All other rows of twines in the cod-end circumference will have the same shape as the meridian due to the
axis-symmetry assumption.

0 0.5 1 1.5 2 2.5 3

x [m]

-0.4

-0.2

0

0.2

0.4

y 
[m

]

Figure 2.8: XY projection of the axis-symmetric T0 cod-end model with 30 meshes along, 30 meshes in circumference
and 10 meshes blocked by catch. The black line represents the meridian row of twines.

In this project T0 and T90 models based on [7] are described. The meridian for two types of model
is represented differently, therefore requires independent description. Both models rely on the following
assumptions:

• Twines and knots are modelled as a 3D bar element, with only translation d.o.f. on both ends. The
stiffness in bending and compression for the twines and knots is negligible. The material behaviour in
tension is linear elastic.
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• The only internal force involved in this model is the twine tension resistance. The only external force
is the catch pressure. The drag force on the netting is considered negligible compared to the drag force
on the catch.

2.2.1 T0 model
Meridian position vector

The meridian for the T0 model is shown in Figure 2.9, p. 17. A part of meridian covering a mesh number i
consists of 4 nodes: ai, bi, ci, di. The node ai and di always have y = 0, therefore they lay in the XZ plane.
The node bi and ci lay in a radial plane, which creates angle θ with the XZ plane. If the variable nr denotes
amount of meshes in the cod-end circumference, then the angle between two radial planes is calculated with
Eq. (2.39).

θ =
π

nr
(2.39)

The nodes a j, b j, c j, d j belong to the row of twines below and above the meridian. It is important
to include these nodes to model the interaction of the meridian with the neighbouring rows of twines. In
Figure 2.9, p. 17 sections A-A and A-B show, that the nodes with index j lay in the radial planes that are 2θ

away from the planes of the meridian nodes.

Figure 2.9: Meridian with corresponding node pattern that repeats for every mesh. Mesh i is shown with red outline. ZY
sections A-A and B-B are made through the nodes ai and bi.

The position of the aforementioned nodes can be represented in the cylindrical coordinates with x axial
and r radial components. If the amount of meshes along is nx, then the total amount degrees of freedom in
the model n is 2(1+4nx). The meridian position vector X is defined as a collection of all the meridian nodes
as shown in Eq. (2.40). There are 3 restrained degrees of freedom in the system. Known position and radius
at the cod-end entrance give d0x = 0 and d0r = r0. Zero radius at the very end of the cod-end gives dnr = 0.

X = (d0x, d0r, a0x, a0r, ... aix, air, bix, bir, cix, cir, dix, dir, ... dnx, dnr)
T (2.40)

Similarly, the total force vector is represented in the cylindrical coordinates as Eq. (2.41).

F = (Fd0x, Fd0r, Fa0x, Fa0r, ... Faix, Fair, Fbix, Fbir, Fcix, Fcir, Fdix, Fdir, ... Fdnx, Fdnr)
T (2.41)

Twine tension

In order to create the vectors for twines and knots, each node is represented in the Cartesian coordinates
as shown in Eq. (2.42). Notably, all i and j nodes can be represented using only the entries of the meridian
position vector X .



18 Chapter 2. Mathematical models

ai =

 aix
0
air

 a j =

 aix
air sin2θ

air cos2θ

 bi =

 bix
bir sinθ

bir cosθ

 b j =

 bix
−bir sinθ

bir cosθ

 (2.42)

ci =

 cix
cir sinθ

cir cosθ

 c j =

 cix
−cir sinθ

cir cosθ

 di =

 dix
0
dir

 d j =

 dix
dir sin2θ

dir cos2θ


There are 2 twine vectors and 1 knot vector emerging from each node of the meridian. Knot vectors

are denoted A for axial or along. Twine vectors are denoted U for upward and D for downward. The
same notation remains true for rows of twines neighbouring to the meridian. The vectors are shown in
Figure 2.10, p. 18 and defined in Eq. (2.43).

Figure 2.10: Twine and knot vectors for nodes ai and bi. The radial force for node bi is a composition of y and z force
components due to its position.

Aai =

 d(i−1)x−aix
0
d(i−1)r−air

 Uai =

 bix−aix
bir sinθ

bir cosθ −air

 Dai =

 bix−aix
−bir sinθ

bir cosθ −air


Abi =

 cix−bix
cir sinθ −bir sinθ

cir cosθ −bir cosθ

 Ubi =

 aix−bix
air sin2θ −bir sinθ

air cos2θ −bir cosθ

 Dbi =

 aix−bix
−bir sinθ

air−bir cosθ


Aci =

 bix− cix
bir sinθ − cir sinθ

bir cosθ − cir cosθ

 Uci =

 dix− cix
dir sin2θ − cir sinθ

dir cos2θ − cir cosθ

 Dci =

 dix− cix
−cir sinθ

dir− cir cosθ


Adi =

 a(i+1)x−dix
0
a(i+1)r−dir

 Udi =

 cix−dix
cir sinθ

cir cosθ −dir

 Ddi =

 cix−dix
−cir sinθ

cir cosθ −dir


(2.43)

When the twine and knot vectors are obtained it is possible to represent both direction and the magnitude
of the nodal forces. This is exemplified in Eq. (2.44) for node a. Here m0 and l0 are the unstretched twine and
knot lengths respectively. EAl and EAm represent twine and knot tensile stiffnesses. Similarly to Eq. (2.8), if
the twine or the knot experiences compression, a significantly reduced stiffness value should be used.

Fai =
EAl

l0
(|Aai|− l0)

Aai

|Aai|
+

EAm

m0
(|Uai|−m0)

Uai

|Uai|
+

EAm

m0
(|Dai|−m0)

Dai

|Dai|
(2.44)

The computation of the equilibrium position of the cod-end is done in the cylindrical coordinates. Nodal
forces are transformed from the Cartesian coordinates, depending on whether a node is laying in the XZ
plane or in the radial plane. It is seen from Figure 2.10, p. 18 c that for nodes ai and bi the radial component
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of the force should be derived differently because of the inclination of the radial plane in the latter case.
Generally, this transformation can be represented through the matrix T(θ) as shown in Eq. (2.45).

(
Fx
Fr

)
= T(θ)

 Fx
Fy
Fz

=

[
1 0 0
0 sinθ cosθ

] Fx
Fy
Fz

 (2.45)

θ =

0 for nodes ai and di
π

nr
for nodes bi and ci

All nodal forces due to twine tension are added to the total nodal force vector Eq. (2.41). The elements
of the Jacobian matrix are obtained by finding partial derivatives of the tensile forces with respect to the d.o.f.
of the meridian vector X. The Jacobian is found in Appendix B.

Catch pressure

The pressure due to the hydrodynamic drag on the part of the netting blocked by catch is calculated in the
same way as for the 3D model.

p =
1
2

Cdρwater |c|2

The axial and radial components of the hydrodynamic force acting on the meridian nodes can be computed
by applying the pressure p to the relevant project areas. As shown in Figure 2.11, p. 19 a part of the cod-end
between points bi and ci can be considered as a truncated cone with base radiuses bir and cir. The surface
affecting the meridian is limited by the angle 2θ in the cod-end circumference. The projected area for the
radial force is the whole surface, and the projected area for the axial force is a ring sector in the ZY plane.
These areas are calculated in Eq. (2.47). The same procedure is applied for all consecutive pairs of the
meridian nodes.

Figure 2.11: Projected surface areas Ar and Ax between nodes b and c for catch pressure distribution.

Ab−c,x =
2θ

2π
π
∣∣b2

ir− c2
ir
∣∣= θ

∣∣b2
ir− c2

ir
∣∣ (2.46)

Ab−c,r = (cix−bix)
(2θ bir +2θ cir)

2
= θ (cix−bix)(bir + cir) (2.47)

The pressure p acting on the surface between nodes bi and ci is distributed evenly, so that each node
is affected by the half of the resultant force on the surface. Node bi also creates surface with the node ai.
Therefore, the force calculation for the node bi includes contributions from both preceding and successive
surfaces as shown in Eq. (2.48) and Eq. (2.49). Exceptions are the very first and very last nodes affected by
catch pressure, since they only have 1 neighbouring node affected by the catch pressure.

Fbx = θ
∣∣a2

ir−b2
ir
∣∣ P

2
+θ

∣∣b2
ir− c2

ir
∣∣ P

2
(2.48)

Fbr = θ (bix−aix)(air +bir)
P
2
+θ (cix−bix)(bir + cir)

P
2

(2.49)

All nodal forces due to catch pressure are added to the total nodal force vector Eq. (2.41). The elements
of the Jacobian matrix are obtained by finding partial derivatives of the catch pressure forces with respect to
the d.o.f. of the meridian vector X. The Jacobian is found in Appendix B.
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2.2.2 T90 model
Meridian position vector

The meridian for the T90 model is shown in Figure 2.12, p. 20. The nodes of the meridian are denoted i. The
meridian will interact with the neighbouring rows of twines. The nodes of the twine row above the meridian
are denoted j and row below k. The meridian is linked to the row j through the nodes with even indexes
and to the row k through the nodes with odd indexes. In the T90 model the angle θ is redefined, and now
represents an angle that one full mesh covers in the cod-end circumference as shown in Eq. (2.50).

θ =
2π

nr
(2.50)

The plane XZ with y = 0 is chosen to be between the meridian i and row k. In this manner the symmetry
is abused and the coordinates of k nodes are the coordinates of i nodes with the negative y component. The
coordinates of j nodes are defined as clockwise rotation of k nodes by the mesh angle θ . This applies for
nodes with both even and odd indexes.

Figure 2.12: Meridian with corresponding node patter that repeats at every mesh. A mesh is shown with red outline. ZY
section passes through nodes i3, j3 and k3. For rows j and k, only nodes linked to the meridian are labeled.

The position of the aforementioned nodes is represented in the Cartesian coordinates. If the amount of
meshes along is nx, then the total amount d.o.f. in the model n is 3(1+2nx). The meridian position vector X
is defined as a collection of all the meridian nodes as shown in Eq. (2.51). There are 5 restrained degrees
of freedom in the system. Known position and radius at the cod-end entrance give i1x = 0, i1y =

l0
2 and

i1z =
√

r2
0− i21y. Zero radius at the very end of the cod-end gives iny = inz = 0.

X = (i1x, i1y, i1z, i2x, i2y, i2z, ... imx, imr, imx,)
T (2.51)

Similarly, the total force vector is represented in the Cartesian coordinates as shown in Eq. (2.52).

F = (Fi1x, Fi1y, Fi1z, Fi2x, Fi2y, Fi2z, ... Fimx, Fimr, Fimx,)
T (2.52)

Twine tension

The definition of the node positions is given in the Cartesian coordinates in terms of the meridian position
components X in Eq. (2.53).

i4 =

 i4x
i4y
i4z

 k4 =

 i4x
−i4y
i4z

 j4 =

 i4x
i4z cosθ + i4y sinθ

i4z sinθ − i4y cosθ

 (2.53)
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Similarly to the T0 model, there are 2 twine vectors and 1 knot vector emerging from each node of the
meridian. Knot vectors are denoted A for around. Twine vectors are denoted B for backward and F for
forward. The same notation remains true for rows of twines neighbouring to the meridian. The definition of
vectors emerging from the odd and even nodes of the meridian is different because the meridian nodes are
linked to either k or j as shown in Eq. (2.13). As an example, the vectors emerging from a node with even
index i4 and a node with odd index i5 are presented in Eq. (2.54) and Eq. (2.55) respectively.

Figure 2.13: F

Ai4 =

 0
i4z cosθ + i4y sinθ − i4y
i4z sinθ − i4y cosθ − i4z

 Bi4 =

 i3x− i4x
i3y− i4y
i3z− i4z

 Fi4 =

 i5x− i4x
i5y− i4y
i5z− i4z

 (2.54)

Ai5 =

 0
2i4y

0

 Bi5 =

 i4x− i5x
i4y− i5y
i4z− i5z

 Fi5 =

 i6x− i5x
i6y− i5y
i6z− i5z

 (2.55)

The tensile forces along those vectors are collected in the resulting nodal force as exemplified inEq. (2.56)
on the node i4.

Fi4 =
EAl

l0
(|Ai4|− l0)

Ai4
|Ai4|

+
EAm

m0
(|Fi4|−m0)

Fi4
|Fi4|

+
EAm

m0
(|Bi4|−m0)

Bi4
|Bi4|

(2.56)

All nodal forces due to twine tension are added to the total nodal force vector Eq. (2.52). The elements
of the Jacobian matrix are obtained by finding partial derivatives of the tensile forces with respect to the d.o.f.
of the meridian vector X. The Jacobian is found in Appendix B.

Catch pressure

The forces on the netting blocked by the catch are calculated in the manner as for the T0 model. However,
as shown in Eq. (2.50) for the T90 model the angle θ was redefined, and now corresponds to the part of
circumference covered by the entire mesh. Now, the surface of the truncated cone that affects a meridian
node corresponds 1

2 θ instead of 2θ as shown in Figure 2.14, p. 21.

Figure 2.14: Projected surface areas Ar and Ax between nodes i4 and i5 for catch pressure distribution. Notably Ax = 0
in this case, because there is no change in radius between the nodes.
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The formulas for the projected area from Eq. (2.47) are updated as exemplified in Eq. (2.59).

A4−5,x =
1
2 θ

2π
π
∣∣i25r− i24r

∣∣= θ

4

∣∣i25r− i24r
∣∣ (2.57)

A4−5,r = (i5x− i4x)

( 1
2 θ i4r +

1
2 θ i5r

)
2

=
θ

4
(i5x− i4x)(i4r + i5r) (2.58)

where ir =
√

i2y + i2z (2.59)

The axial and radial components of the hydrodynamic force at node i5 are calculated accordingly, taking
into account the contributions from both neighbouring reference areas as shown in Eq. (2.60) and Eq. (2.61).

Fi5x = θ
∣∣i24r− i25r

∣∣ P
8
+θ

∣∣i25r− i26r
∣∣ P

8
(2.60)

Fi5r = θ (i5x− i4x)(i4r + i5r)
P
8
+θ (i6x− i5x)(i5r + i6r)

P
8

(2.61)

The force vector is required to be in the Cartesian coordinates, therefore the forces have to be transformed.
The angle β is shown in Figure 2.12, p. 20.

Fi5y = Fi5r sinβ = Fi5r
i5y

i5r
(2.62)

Fi5z = Fi5r cosβ = Fi5r
i5z

i5r
(2.63)

All nodal forces due to the catch pressure are added to the total nodal force vector Eq. (2.52). The
elements of the Jacobian matrix are obtained by finding partial derivatives of the catch pressure forces with
respect to the d.o.f. of the meridian vector X. The Jacobian is found in Appendix B.



CHAPTER 3

Computer implementation and solution
algorithm

In this chapter, a description of the computer implementation of the two numerical models is given. Usually,
books and research papers presenting numerical models focus mostly on the underlined assumptions and
mathematical formulations, leaving the actual implementation to the reader. This approach is completely
reasonable, however, it in some cases can slow down or prevent the reader from transferring his understanding
of the model to actual results. An example for that could be the information on the appropriate initial position
for the Newton-Raphson iterative method. An initial shape is a key element of the method, and while a good
one can make the scheme converge in very few iterations, a bad one might not converge at all. Sharing an
unsuccessful implementation experience is also useful, since the reader can either avoid it, or try to approach
it from a different perspective. Therefore, in this chapter some of the most important implementation choices
are supplied by the numerical tests and comparison with other possible solutions.

Two languages used in the current work are C# and MATLAB. An analyst or researcher naturally wants
to work with code which is easily extensible towards future demands, easily maintainable, but still efficient
and portable across many platforms, which well matches the key qualities of object-oriented programming
(OOP) paradigm. C# is a modern general-purpose OOP language that was chosen as a main development
language. Apart from all the advantages of .NET Framework for general software development, it lacks a
standard linear algebra library that is of a great importance for numerical modelling. Therefore, a choice of
the appropriate linear algebra library is discussed later in the chapter. As a secondary language MATLAB was
chosen. MATLAB is multi-paradigm scientific computing environment widely used at AAU. It was chosen
for fast prototyping and data visualization, because of its extensive numerical libraries and toolboxes.

3.1 Program structure and classes’ description
In OOP paradigm the key component is a class that models the state and behavior of a real-world object.
Classic approach to modelling in OOP is by using Unified Modeling Language (UML) diagrams that
represent the static view of an application. They describe what attributes, operations and relations to other
classes must be present in the system being modeled [23]. The design of the classes and their relationships
is not straightforward and there is no "best" solution. Current class relationships were established from
the perspective of real life-objects like cod-end, panel, etc. Working with those classes is intuitive for the
fishing industry. However, since it is a FEM modelling program, it could also have been approached from the
perspective of the FEM such as domain, element, etc. This structure would favour the users with structural
mechanics background.

3.1.1 3D model
The class diagram of the 3D model is presented in Figure 3.1, p. 24. The central class of the program is
Codend that contains a list of panels, and can also contain list of selvedges and ropes. Panel class generalizes
different types of panels such as a panel with square meshes, diamond meshes, and allows extension for
hexagonal meshes in the future. Rope class is a generalization of classes with rope/cable like behaviour, that
are modelled in the program as a group of simple bar elements. From the modelling perspective Selvedge
class should be a special case of Rope since it is also modelled with the bar elements. However, since it
is not an actual rope in reality, it was decided to treat it as a separate class. Panel, Selvedge and Rope
classes contain methods that are used by Codend class to assemble and discretize the cod-end structure and
create lists of nodes, bars, triangles and boundary conditions for the finite element calculations. The FEM



24 Chapter 3. Computer implementation and solution algorithm

Node

BarElement

DiamondNetTriangleTriangleElement

Panel

RoundStrap

LastridgeRope

Codend Simulation Towing

Catch

SquareMeshPanel

DiamondMeshPanel

Selvedge Rope

Material

SelvedgeMaterial

RopeMaterialPanelMaterial

11
1

1

1

0..*

1

1..*

1..*

1

1..*

1

1..*

1

1..*

3

1..*

2

1

0,2 or 4

1

1, 2 or 4

Figure 3.1: Class diagram for the 3D model. Attributes and methods are intentionally hidden and only class relations
are shown.

classes are shown in Figure 3.2, p. 24. Node class contains a spatial coordinates of a finite element node.
BarElement and TriangleElement contain the methods to obtain nodal forces and tangent stiffness matrix
for the particular element as described in Section 2.1, p. 7. The classes also contain the information of the
element d.o.f. for later global system assembly. TriangleElement holds references to its vertex node objects
and also uv coordinates. Furthermore, TriangleElement is a generalization of an element based on diamond
netting, and can be later extended to the hexagonal netting.
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Figure 3.2: Sub-diagram for the finite elements of the 3D model. The finite elements are according to [11]. Attributes
and methods are intentionally hidden and only class relations are shown.

When the panels are first discretized in 2D, the Panel class is capable of performing the geometric
manipulations in order to shape the initial position for the calculation. Those manipulations include rotation,
translation, scaling and mapping to a 3D body of revolution such as a cylinder or a shape obtained from the
axis-symmetric model.

An essential input to Panel, Selvedge and Rope classes is the corresponding Material class, that contains
the information that dictates the mechanical behaviour of a corresponding triangular or bar element. It is, for
example, mesh opening angle at rest, twine/rope thickness, various stiffness parameters, etc.

Simulation class contains the functionality in order to simulate the towing of a structure represented
by Codend with various amount of catch inside. Classes Towing and Catch keep the information required
to calculate the twine drag and catch pressure forces on the model. The finite element lists passed by
Codend class are used to assemble forces and stiffness for each step in the numerical calculation. The class
implements Newton-Raphson iteration method, that can be manipulated with a helper class SolverSettings
(not shown in the diagram).
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3.1.2 Axis-symmetric model
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Figure 3.3: Class diagram for the axis-symmetric model. Attributes and methods are intentionally hidden and only class
relations are shown.

The axis-symmetric model is implemented separately from the 3D model. Due to limited modelling
options the class diagram for the model is simpler as shown in Figure 3.3, p. 25. As previously, the central
class of the program is AxiCodend which is a generalization of the T0 and the T90 cod-end models. It
was decided not to rely on FEM classes as in 3D model. It is due to the fact that the elements represent
real twines and knots, so the discretization is not required. There are only bar elements with 2 different
properties that are assembled in a well known pattern to form the meridian. Therefore global forces and
tangent stiffness are calculated directly as a state variables of the AxiCodend depending on the meridian
position. AxiCodend also provides an initial shape that is discussed later in the chapter. Simulation class is
similar to the one of the 3D model.

3.1.3 Input-output
Current version of the program does not have a user interface. Inputs for the model are kept in a text file,
that are read by the program on execution. There are essential inputs and optional inputs. Essential are, for
example, the number of meshes along a panel of the cod-end, panel material, towing speed, etc. Optional
outputs are the advanced parameters of the solver such as convergence tolerance. Output cod-end shape and
results for catch volume, towing resistance, etc. also come in text files and can be read and visualized in
MATLAB .

3.2 Meshing and assembly of 3D cod-end model
To prepare the model for the calculation, individual panels selvedges and round straps have to be merged
together into a structure and discretized in the consistent way.

As mentioned before Panel class contains methods for subdividing (meshing) it into triangular elements.
The mesh can be categorized depending on its generation principle. In a structured mesh, a repeated pattern
is followed where every node is uniquely defined according to a specific algorithm. In an unstructured mesh
all nodes are typically positioned arbitrarily and then triangles are produced by triangulation refinement and
smoothing. In this case no regular pattern is followed [24].

There are many advantages of structured mesh compared to the unstructured mesh. It provides full
control over vertex location and number of triangles. Furthermore, there is better control over the vertex
indices and thus, the ability to reduce the band width of the finite element stiffness matrix with less effort
already on the stage of the discretization. In contrast, during the generation of an unstructured mesh the
vertices are typically added and deleted randomly (unless constrained) in order to achieve the imposed
requirements of minimum angle or maximum triangle area.

Structured mesh allows for easier neighbouring vertex or triangle search in an algorithmic way without
need of a mesh data structure containing neighbour information. However, if the structured mesh should
be refined or/and smoothed, the mesh data structure containing various triangle and edge connectivity
information is required.

Structured mesh can be aligned with the forces or with the geometric features of the structure. For the
cod-end it is beneficial that the triangles are aligned both along and across the cod-end panels as shown in
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Figure 3.4: Structured (left) and unstructured (right) meshing of a netting panel. Unstructured mesh is created with
constrained Delaunay triangulation using TRIANGLE.NET library for C# [25].

Figure 3.4, p. 26. This alignment gives the opportunity for the triangles to bend over the edges by the same
amount providing the same curvature.

The biggest advantage of the unstructured meshes is the ability to mesh complex 3D free form geometries.
In addition, the same algorithms that create the mesh can also be used to optimize it to improve the mesh
quality. However, this advantage might not be critical for the cod-end modelling, since geometry of a cod-end
is to some extend predictable. Moreover, it is not required to mesh the entire cod-end right away in 3D,
because it consists of panels that each can be meshed in 2D and then mapped to a 3D shape. Therefore it was
decided to implement only the structured mesh generation in the program.

The discretization and assembly of the cod-end follows the following pattern:

1. Individual panels are discretized. Initially the panel lies in the XY plane and is 1 by 1 unit size. For
each panel a structured grid of rectangles is created according to the mesh resolution information
stored in MeshSettings class. Then, a central point is added to each rectangle to obtain 4 triangles.
Afterwards, the unit panel is used to create the correct mesh coordinates and the Cartesian coordinates
by scaling. Triangular elements are now created with the correct coordinates in the two systems.
First and last row of the panel are labeled for later application of boundary conditions represented in
Restraint class.

2. In the current version of the program selvedge and strap discretization follows the discretization of
corresponding panels. Nodes on the longitudinal edges are labeled and assigned to selvedges. Nodes
across the panel laying at the specific offset from the start are labeled and assigned as round strap
nodes.

3. Initial shape is assembled through translation, rotation and bending (mapping to a body of revolution)
of the flat panels that are implemented in Panel class. Current version of the program supports an
initial shape based on a cylinder, or a pre-calculated solution of an axis-symmetric model as shown
in Figure 3.5, p. 27. The effect of the initial shapes on the program performance is studied in more
details later in the chapter.

4. When the cod-end shape is assembled it is crucial to merge individual meshes and avoid copies of the
nodes that should represent the same d.o.f. along the edges and the end of the cod-end. Only unique
nodes are left and the node references stored in triangles are updated. It is important to notice that
while a copy of a node can be removed, the consistency in uv coordinates is preserved, since they are
the attributes of the triangles.

After this process Codend class has created consistent and unique FEM lists List<Node>, List<BarElement>,
List<TriangleElement> and List<Restraint> to be used in Simulation class for the equilibrium shape
calculation.

3.3 Choice of mathematical library
Typically, iteration schemes for non-linear systems of equations spend most of their time solving the linear
system of equation, therefore, a good mathematical library is the biggest limiting factor that influences the
program performance. Problem at hand is a finite element problem where the coefficient matrix is usually
sparse (having significantly more zero entries than non-zero entries). Therefore, the priority of the search
was given to libraries with direct sparse matrix solver or a fast implementation of a direct dense matrix solver.
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Sample points

Axi. model meridian

Figure 3.5: A top panel with a coarse structured mesh from Figure 3.4, p. 26 can be mapped to a cylinder with entrance
radius or to a shape pre-calculated with the axis-symmetric model. For the axis-symmetric model the sample
points are obtained depending on the mesh disretization settings.

The goal of this chapter is to evaluate two candidates found among open source libraries. The first candidate
is MATH.NET NUMERICS, is an extensive mathematics library, written in C# [26]. Although, the library is
still under development and only has dense solvers, it is designed in such way, that performance-sensitive
algorithms can be swapped with alternative implementations by the concept of providers. Providers become
useful, when they can leverage a platform-native (C++ or FORTRAN) high performance library, like INTEL
MKL instead of the default purely managed (C#) provider. The second candidate is CSPARSE.NET, a
concise library for solving sparse linear systems with direct methods written in C# [27].

Two libraries are tested on 3 different types of N×N matrices with 5 sizes N spanning from 300 to 8000
degrees of freedom. Matrix 1 is a tridiagonal matrix, that arises in many numerical solutions for example
Laplace equation. Test matrix 2 is a Wathen matrix, which is a classic test case for finite element method.
Test matrix 3 is a tangent stiffness matrix for the 3D cod-end model that arises after structured meshing
discussed earlier. The sparsity pattern of the test matrices is presented in Figure 3.6, p. 27.
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Figure 3.6: Sparcity pattern of the three test matrices with approximately 500 d.o.f.

It is seen that three test matrices differ in their bandwidth, and it is expected the sparse solver to be
influenced by this fact. On the other hand, dense solver is expected to calculate solutions in the same time.
The results of the performance test are presented in Figure 3.7, p. 28.

It is seen that the band width of the matrix is highly influential for the managed sparse solver. Nevertheless,
in all cases the managed sparse solver outperforms the dense solver, even with a much more efficient
native implementation. In some cases the difference is counted in orders of magnitude. The efficiency of
CSPARSE.NET in 3D model can be further improved by optimizing the bandwidth of the stiffness matrix.

Especially big speed up can be achieved by using CSPARSE.NET for the tridiagonal matrix with a very
narrow band. The structure of the Jacobian in axis-symmetric model is very similar and has a bandwidth
of 6 or 9 depending on whether it is the T0 or the T90 model (Appendix B). For the brief comparison, the
final axis-symmetric model code was able to perform 91 simulations of a 100 mesh long cod-end filled by
catch consecutively blocking meshes 10 to 100 in only 5 seconds. In contrast, the same simulation with
MATH.NET NUMERICS took approximately 129 seconds. As a remark, other attempted libraries with
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Figure 3.7: Performance comparison of the solution of 3 different linear systems of equation.

purely managed dense solvers such as ACCORD.NET[28] were not shown in this comparison, since their
performance is orders of magnitude slower than those presented in the section.

3.4 Solution to non-linear system
The equilibrium shape of the cod-end structure is obtained by solving the system of non-linear equilibrium
equations Eq. (3.1) by the methods implemented in Simulation class. Current position vector Xi in both
models is a collection of all d.o.f. of the system.

F(Xi) = 0 (3.1)

The system can be solved with Newton-Raphson (NR) iteration:

hi =−J−1 (Xi)F(Xi) (3.2)
Xi+1 = Xi +λhi (3.3)

Where J is the Jacobian matrix of the force vector and also negative of the tangent stiffness matrix.
Power −1 indicates that the linear system of equations has to be solved for vector hi rather than inverting the
J which is never done in practice. One iteration of the solution algorithm consists of 3 main parts:

1. Assembly of the global force vector F(Xi) global and tangent stiffness matrix −J(Xi) corresponding
to current deformed configuration Xi.

For the 3D model, local force vectors and stiffness matrices for each element are obtained using
methods implemented in BarElement and TriangleElement according to Section 2.1, p. 7 and
assembled in parallel into their global systems. Parallel assembly improves the performance of the
iteration scheme by taking advantage of the fact that final global system does not depend on assembly
sequence. In the axis-symmetric model the global system skips the creation of the local force vectors
and stiffness matrices and is filled with values right away due to simplicity of the structure. In both
models, the result of the assembly is a sparse matrix. In both models the boundary conditions are
taken into account during the assembly by assigning 1 to restrained d.o.f. and nullifying the rest of the
entries in the row and column corresponding to this d.o.f.

2. Solution of the linear system of equations for the displacement vector hi is performed with a direct
sparse solver presented earlier.

3. Update of the previous deformed configuration to obtain Xi+1.
It is known that the classic NR method is not a globally convergent algorithm [29]. A globally convergent

algorithm is understood as an algorithm with the property that for any initial iterate the iteration either
converges to a solution or fails to do so in one of a small number of ways. The classic NR suffers from the
problems like divergence, flat spot or cycling presented in Figure 3.8, p. 29.

Cases (a) and (b) are due to the poor choice of the initial position, that has to be close enough to the
solution for algorithm to converge. In case (c) the full Newton step (λ = 1) is attempted toward the root, but
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Figure 3.8: Cases when classic NR iteration fails - an example with 1 non-linear equation. [20]

the length of step is too large, and overshooting happens. The algorithm is improved by introducing a line
search algorithm along Newton direction for deciding on a NR step length λ that guarantees the reduction of
the force residual by certain small value β . Chosen line search algorithms are 3-point safeguarded parabolic
line search and Armijo Rule [18] are described in Appendix C.

In many cases J is ill-conditioned and non-symmetric positive definite. The matrix becomes ill-
conditioned when twine stiffness is reduced due to compressed/slack twines and there is orders of magnitude
difference between the Jacobian entries. Another case is when the bending forces are included, that usually
are orders of magnitude smaller than the tensile forces [18]. In addition, the parts of J corresponding to
non-conservative forces such as drag, are not symmetric, and therefore J loses symmetric positive definiteness
(SPD) property that can result in NR iteration calculating a direction that is not a descend direction [30].

A classic workarounds to improve these issues suggests to add an arbitrary value α along the diagonal
of the stiffness matrix that is between 0 and ||J|| [31]. It is effective to decrease this added diagonal
stiffness value along the NR iterations as better equilibrium position are found in order to utilize quadratic
convergence rate of NR in the proximity of the solution. However, it is not trivial to choose an optimal added
stiffness α and a decrease factor for each problem, therefore those are available as advanced parameters
in SolverSettings class. Sometimes the initially chosen α might not provide the sufficient stability to the
algorithm, even with line search techniques. In that case the iteration scheme either diverges or converges to
an incorrect solution. Although a good initial shape can greatly minimize dependency on a good α value, it
is still non-negligible. To prevent that, NR method is restarted with higher α as soon as the divergence or an
incorrect (tangled) solution is detected. The pseudo-code summarizing all those modifications to classic NR
is shown in Algorithm 1, p. 30. The algorithm has been tested on the T0 and the T90 axis-symmetric models
and showed an improvement compared to the classic NR. The details of the test are presented in Appendix D.

Optimization of the initial shape
It is known that the NR method is very sensitive to the choice of the initial position and only provides a
quadratic convergence if the initial position is "close enough" to the solution. In this context both stability
and speed can be improved by optimizing the initial position. For the models considered in this report there
is very little information on the generation of an initial cod-end shape for the axis-symmetric model and
none for the 3D model.

Axis-symmetric model

For the axis-symmetric cod-end model it is suggested [7] to start from a position of a cylinder with the
cod-end entrance radius r0. The nodes are offset from each other by the mean value between a knot an a
twine length. Although, it is possible to converge from this initial position with an appropriate value of
additional diagonal stiffness α , it lacks the desired stability improved in the new initial position that is shown
in Figure 3.9, p. 30.

In the new position, the relation between knot and twine length is preserved. It is ensured that the offset
between the meridian nodes alternate between a slightly stretched twine or a knot length. This puts twines
and knots under tension in order to use their full stiffness and thus the entries in the Jacobian matrix of a
similar order of magnitude. In addition, in the end of the cod-end the shape transitions smoothly from r = r0
to r = 0. Influence of the new smoother initial shape on the number of iterations and the dependency on
added stiffness is presented in Appendix D, and showed that this solution has a strong positive effect on the
stability and speed of the axis-symmetric cod-end model.
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Algorithm 1: Modified Newton-Raphson algorithm

begin
i← 0;
tolresidual , toldisp, β , Rmax← SolverSettings ;
f ound, correct, diverged← f alse;
while not f ound and i < imax do

α, tolα from SolverSettings ;
Xi, |F(Xi)| ← SolverSettings initial shape;
while |F(Xi)|> tolresidual or |hi|> toldisp do

Solve (J(Xi)+αI)hi =−F(Xi);
Find λ with line-search to satisfy |F(Xi +λhi)|< (1−β ) |F(Xi)|;
Xi+1 = Xi +λhi;
i = i+1;
if |F(Xi)|> Rmax then

diverged = true;
break;

end
if |F(Xi)|< tolα then

reduce α and tolα ;
end

end
correct =CheckCorrectSolution(Xi);
if not diverged and correct then

f ound = true;
else

increase α;
diverged = f alse;

end
end

end

New T90 tipNew T0 tipSuggested T0 tip

Figure 3.9: Comparison between the ending of a suggested and new cylindrical initial shape.

3D model

For the 3D model, two main initial shapes are considered. The difference between them is whether the
meshed panels are mapped to a cylinder with entrance radius (further referred to as Shape 1) or a cod-end
shape pre-calculated with the axis-symmetric model (further referred to as Shape 2). Shape 2 has an obvious
advantage because it allows to start the iteration closer to the equilibrium shape of the cod-end, which is
especially valuable for the calculations with fine mesh resolution.

In order to make the cylindrical shape more competitive, it is suggested to combine it with the mesh
refinement and smoothing techniques. The idea is to start with a relatively coarse model and find its
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equilibrium shape. Thereafter, the triangles of the coarse model are subdivided (or subdivided and smoothed),
which in turn becomes an initial shape for the next calculation with finer mesh. Two refinement methods and
one smoothing method are considered. In the first refinement method each triangle can be subdivided into
4 smaller triangles by adding a vertex to each of its edges. The method is further referred to as Shape 1a
or a plain subdivision. In the second refinement method the coordinates of new vertices are recomputed to
preserve curvature continuity of the mesh within the neighbourhood of those vertices. The method is further
referred to as Shape 1b or Loop subdivision [32]. Smoothing is performed with mesh edge-flipping method.
The method attempts a trial flip of an edge shared by two neighbouring triangles. The flip is accepted if the
average triangle skewness of the pair has been reduced. Refinement and smoothing methods are exemplified
in Figure 3.10, p. 31 and described in more details in Appendix E.

Find
equillibrium
shape

Subdivide
triangles

Subdivide triangles and 
re-positon vertices

Smoothen
by edge
flipping

Figure 3.10: Series of refinements and equilibrium solutions for a simple cod-end starting from a very coarse initial
shape.

The amount of d.o.f in the refined model grows by factor of 4 since each triangle is subdivided into 4
smaller triangles. The refinement of the cylinder introduces new control parameters, such as number of
subdivisions and number of restarts that influence the result. Subdivision and smoothing algorithms rely
on mesh data structure containing connectivity and neighbourhood information for the vertices, triangles
and edges of the triangular mesh. The data structure was not implemented in the current version of the C#
program. Instead the potential of those methods was tested in MATLAB as prototypes.

The performance of the initial shape generation methods is compared based on 3 tests of a T0 diamond
cod-end model with 50 meshes along, 50 meshes around, 100mm mesh side and 25 rows of meshes blocked
by catch. Apart from the simple cod-end, there are tests for a cod-end with a round strap and a cod-end made
of 2 panels joint with 2 selvedges. The equilibrium shape for those models is shown in Figure 3.11, p. 31.
The round strap in test 2 is positioned at 3

4 of the total cod-end length and forms a ring with entrance radius.
The selvedges in test 3 have length equal 90% of the fully stretched cod-end. For all 3 tests, the additional
diagonal stiffness α was fixed to the same value for all initial shape generation methods.

Figure 3.11: Equillibrium shapes for test 2 with a round strap and test 3 with two selvedges.
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Figure 3.12, p. 32 shows the performance comparison of the initial shape generation methods, both in
terms of time and the amount of iterations. The test is performed on the simple cod-end with no attachments.
The model contained ≈ 1500 d.o.f. The figure shows that if the mesh resolution is fine from the beginning,
the cylindrical initial shape converges slowly, since it is quite far from the equilibrium. The refinement
technique Shape 1a greatly improves the cylindrical initial shape, since the original poor cylindrical initial
shape is only used with a very coarse mesh resolution. For this case, it converges in the same time as the
Shape 2. Loop subdivision method in Shape 1b did not improve the plain subdivision as it was expected.
Edge flipping method moderately improves the performance of the Loop subdivision method and affects the
plain subdivision method only slightly. For two next tests it was decide not to include smoothing, in order
not to alter the triangles in the proximity of a strap or selvedges.
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Figure 3.12: Convergence speed test with 6 different initial shape approaches for the simple cod-end model.

Figure 3.13, p. 32 shows the test performed on the cod-end with the round strap. Shape 2 converged
faster, steadier and in fewer iterations than other shapes. Shape 1a again showed great results being only
slightly slower than the Shape 2. However, when Shape 1a reached second refinement stage, there were
some fluctuations in the force residual on its convergence path to the solution. Shape 1b is still being faster
that Shape 1, however, in this test the difference between them is smaller. Shape 1 outperforms Shape 1b in
terms of stability, due to the fact that it converges to the solution in a more steady fashion.
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Figure 3.13: Convergence speed test with 4 different initial shape approaches for the cod-end model with a round strap

Figure 3.14, p. 33 shows the test performed on the cod-end made of 2 panels joined with selvedges. The
situation is similar to first 2 tests. Shape 2 showed the same steady and fast convergence rate. Shape 1a is
being slightly slower, but more stable compared to the test 2. Shapes 1 and Shape 1b converged with many
fluctuations in the force residual. It is observed that the Shape 1b starts with the biggest residual on restart,
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which suggests that the re-positioning of vertices yields the new cod-end shape that is farther away from the
equilibrium shape.
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Figure 3.14: Convergence speed test with 4 different initial shape approaches for the cod-end model with two selvedges.

The tests show that an initial shape based on a pre-calculated equilibrium position of the axis-symmetric
model is an excellent choice. The pre-calculation of the shape takes milliseconds. The solution with this
initial shape converges in the least amount of iterations, and shows better stability compared to the other
approaches. Plain subdivision method is a great alternative with a good potential. The downsides of this
approach compared to the Shape 2, is the existence of extra parameters like the amount of refinement
steps and the amount of subdivisions per refinement. The parameters can both improve and degrade the
performance of the method. Furthermore, the sub solutions of the coarser models might need different α for
the optimal convergence.

With some improvements, smoothing can potentially improve the subdivision methods. The downsides
are, that edge flipping cannot be performed on the edges where the panel joins itself. Also, edge flipping
along the edges that accommodate a round strap or a selvedge, can lead to the incorrect geometry where bar
elements are not co-planar to the triangular elements.

Loop subdivision scheme showed less potential than the plain subdivision scheme, probably due the fact
that when the new Cartesian vertex coordinates are generated and re-positioned they do not correspond well
with new uv mesh coordinates. The new method of preserving this consistency between the Cartesian and uv
mesh coordinates might improve the efficiency of this method.

It should be noted, that this comparison is meant as a qualitative assessment of the highlighted methods.
Reader should not pay attention to the actual time elapsed, but rather to the influence of different initial
shapes to the performance since calculations were done in a prototype MATLAB script, that was intentionally
not optimized for speed.





CHAPTER 4

Model comparison

In this chapter the models described earlier are compared. The goal is to identify the cases where the models
converge to the same results, and the cases when the results are different. In the first scenario it would mean
that here the axis-symmetric model is preferred due to its speed. In the second scenario, one have to run a
heavier 3D model, in order to take all the mechanical behaviour into account. An estimation on how every
combination of the input parameters influences the comparison results requires an extensive study, which is
not the purpose of this project. Therefore, the approach is to limit the comparison to the set of parameters
that are believed to influence the results the most. The comparison is conducted with following limitations:

• Only T0 codends are considered. There are 3 basic test cod-ends, whose specifications are given in
Table 4.1, p. 35. Modifications to the basic test cod-ends such as change in EI are described in relevant
subsections dedicated to specific tests.

• Weight is negligible compared to other loads, thefore is not taken into account in any of the models.
• Test for cod-ends are run with the sequence of catches from 10 to 50 blocked meshes with the step of

5.
• Only one towing speed of 0.8 ms−1 is considered.
• Five comparison parameters are chosen: maximum radius, maximum length, catch volume, resultant

drag force and a mean mesh opening angle.

Table 4.1: Basic test cod-end specifications. M. stands for mesh.

Cod-end Ent. radius M. along M. around M. side Twine thickness EA EI

1 0.4 m 50 50 80 mm single 4 mm 1000 N 0 Nmm2

2 0.4 m 50 80 100 mm single 6 mm 1000 N 0 Nmm2

3 0.4 m 50 100 120 mm single 8 mm 1000 N 0 Nmm2

4.1 Mesh convergence study
The results of the numerical model based on the 3D finite element method depend on the level of discretization,
or in other words size and quality of the triangular mesh. The effect of the meshing on a cod-end model is
exemplified in Figure 4.1, p. 36. In order to provide a reliable comparison the mesh size is chosen based on
the mesh convergence study.

For the cod-end it is possible to manipulate the mesh by changing the number of elements along or number
of elements across or both at the same time. It is considered ineffective to only increase the discretization at
one of the mentioned directions since it has a bad influence on the skewness of the elements. Therefore, for
the convergence study the discretization is undertaken both along and across the cod-end. Figure 4.2, p. 36
shows how the result parameters such as maximum radius, maximum length, catch thickness and resulting
drag force approach their asymptotic value as the mesh is refined.

It is noted, that reaching approximately≈ 5000 d.o.f. all comparison parameters begin to oscillate around
their corresponding asymptotic values. Considering the magnitude of the y-axes the oscillations are deemed
negligible, therefore the mesh with ≥ 5000 d.o.f. achieved by evenly discretizing the cod-end along and
around are considered well suited for the comparison. For the cod-ends 2 and 3 from Table 4.1, p. 35 a
separate mesh convergence is undertaken and suggested similar results.
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Figure 4.1: Coarse and fine discretization cases of the same cod-end. Case a: a triangle covers 5 netting meshes along
and 3 netting meshes across. Case b: a triangle covers 2 netting meshes along and 2 netting meshes across.
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Figure 4.2: Mesh convergence study with 4 parameters for the basic cod-end 1 with 20 meshes blocked by catch.

4.2 Comparison 1 - basic test
In the basic test a number of parameters is neglected to leave only the mechanical behaviors that both models
can take into account. Those neglected parameters are knot size, drag on the netting, bending and opening
resistance. Since in the present axis-symmetric model, the knot size cannot be ignored completely, it is set to
1/1000 of the twine size. In this scenario is expected for the models to show relatively similar results. The
comparison is presented in Figure 4.3, p. 37 and Figure 4.4, p. 37.

It is shown that two models correspond well in case of all four comparison parameters. Notably, the total
drag for the full cod-end matches for all 3 models. Such behaviour is justified in, since according to [22]
the total drag can be approximated as the the maximum pressure applied on frontal area of the catch. In
case of the fully blocked cod-end the catch area is the entrance area that is equal for all 3 cod-ends. Both
models predict the same mesh opening angle, however the variation of the angle is slightly greater for the
axis-symmetric model. It could be due to the difference in the discretization of two models.

4.3 Comparison 2 - Effect of the knot size
As mentioned before, the "knotless" version of the axis-symmetric model corresponds to knot to twine
length ratio of 1/1000. In this test, the basic test is modified and other bigger ratios of 1/100 1/50 1/10 are
considered. Drag on the netting and the bending stiffness are still neglected. The effects of different knot to
twine ratios are presented for 3 cod-end models in Figure 4.5, p. 38 and Figure 4.6, p. 38.
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Figure 4.3: Comparison 1. Between axis-symmetric and 3D models for 3 cod-ends from Table 4.1, p. 35. Knot size, drag
on the netting, and bending stiffness are not considered. The discretization for 3D model is ≈ 10000 d.o.f.
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Figure 4.4: Comparison 1. Mean mesh opening angle and the coefficient of variation for the angle for the basic test.

It is seen that for the same knot to twine ratio the difference between the models scales with the amount
of meshes in the cod-end. For the cod-end model 1 this effect is mostly represented in increasing the total
length of the cod-end. However, the effect is more significant for the cod-ends 2 and 3 with more meshes in
the circumference. The error also varies depending on the amount of the catch in the cod-end. Table 4.2, p. 38
shows the mean error over all catches in estimating the mean mesh opening angles for 3 cod-ends.

Depending on the user imposed error tolerance, the ratios 1/100 and 1/50 might be considered acceptable,
and the 3D model can still be used for those cod-end. In contrast, to accurately calculate the cod-ends with
larger knot to twine ratios, 3D model needs to be update with another type of triangular element that is based
on the hexagonal mesh representation [11].

4.4 Comparison 3 - effect of the drag on the netting
In the previous tests only the drag on the catch was considered. Here, the drag on the netting is included in
the 3D model. As mentioned in Section 2.1, p. 7, netting drag forces are subjected to the most simplifications,
because the flow field inside the cod-end is not yet fully understood. There are two sub tests to evaluate the
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Figure 4.5: Comparison 2. 3D model to the axis-symmetric model with different knot to twine ratios.
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Figure 4.6: Comparison 2. 3D model to the axis-symmetric model with different knot to twine ratios.

Table 4.2: Comparison 2. Mean error over all catches in mean opening angle relatively to the 1/1000 knot to twine ratio.

Codend 1/100 1/50 1/10

1 −1.0 % −2.1 % −10.0 %
2 −1.1 % −2.4 % −11.3 %
3 −1.2 % −2.5 % −11.8 %

netting drag. In the first one, the netting drag is applied to the entire netting. In the second one, the drag is
applied only to the netting that the flow can pass through, meaning not blocked by catch. In both cases no
flow speed reduction is given to the twines that are in a shadow of the other twines, because the 3D model
considers uniform and steady flow. The pressure and friction drag coefficients are calculated with Eq. (2.29)
and Eq. (2.30) from Section 2.1, p. 7.
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4.4.1 Netting drag applied to all twines

The comparison of the axis-symmetric model and the 3D model with the drag applied to all twines is
presented in Figure 4.7, p. 39 and Figure 4.8, p. 39.
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Figure 4.7: Comparison 3. Axis-symmetric model to the 3D model where drag on the netting is included for all twines.

Due to the extra drag on the netting the length of the cod-end increases and the radius decreases which
also leads to the decrease in volume. The effects are more distinct in case of the cod-end models 2 and
3 that have a bigger twine thickness. The error varies depending on the amount of catch in the cod-end.
Table 4.3, p. 40 shows the mean error in estimating the comparison parameters for the 3 cod-ends. This case
probably leads to an overestimation of the drag forces on the netting, especially for the cod-ends with bigger
total number of twines for the drag to take place. In contrast to the basic test, the drag forces for 3 models
do not meet in one value when the cod-end is full. This in turn produces the biggest error in the drag force
comparison, especially for model 3 with the biggest twine thickness. However, at that stage all the meshes
are blocked by catch, so the value of the drag is highly overestimated. The effect of increasing the cod-end
length and decreasing its radius influences mesh opening angle. The meshes tend to be more closed, and the
opening angle variation is slightly lower than in the axis-symmetric model.
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Figure 4.8: Comparison 3. Axis-symmetric model to the 3D model where drag on the netting is included for all twines.
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Table 4.3: Comparison 3. Mean error of the 3d model with netting drag for all twines relative to the axis-symmetric
model.

Codend Length Radius Volume Total drag Mean opening angle

1 7.2 % −5.4 % −5.3 % 70.2 % 7.8 %
2 8.7 % −8.1 % −7.0 % 90.0 % 9.1 %
3 10.6 % −9.5 % −8.4 % 139.6 % 10.3 %

4.4.2 Netting drag applied to twines not in contact with the catch

The comparison of the axis-symmetric model and the 3D model with the drag applied only to the twines not
in contact with catch is presented in Figure 4.9, p. 40 and Figure 4.10, p. 41.
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Figure 4.9: Comparison 3. Axis-symmetric model to the 3D model where drag on the netting is included for twines not
in contact with the catch.

Similarly to the previous test, the length of the cod-end increases and the radius decreases, but now much
less, even for the cod-end 3. Addition to the total drag due to contribution of the drag on the netting is
observed, but as the cod-ends accumulate catch, this addition approaches zero. Table 4.4, p. 40 shows the
mean error in estimating the comparison parameters for the 3 cod-ends.

Table 4.4: Comparison 3. Mean error of the 3d model with netting drag not in contact with the catch relative to the
axis-symmetric model.

Codend Length Radius Volume Total drag Mean opening angle

1 0.0 % −0.1 % −1.1 % 17.4 % 0.2 %
2 0.3 % −0.9 % −1.7 % 12.8 % −1.0 %
3 0.6 % −1.2 % −2.1 % 14.9 % −1.8 %
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Figure 4.10: Comparison 3. Axis-symmetric model to the 3D model where drag on the netting is included for twines
not in contact with the catch.

4.5 Comparison 4 - effect of mesh opening

Previous test did not take into account the bending stiffness of the netting. In the T0 configuration the
mesh resistance to opening helps to close the meshes. Those effects are taken into account in the 3D model
and compared to the axis-symmetric model. The 3D model only takes constant values of the EA and EI
into account, which is a simplification. In realty those stiffness values are non-linear and depend on the
current opening of the mesh and the twine tension. Therefore, it is deemed unreasonable to look for a precise
definition of the EA and EI and the maximum stiffness values were used as if the twine is a cylinder with the
diameter d given in Table 4.1, p. 35. The mesh opening stiffness H can be represented through the bending
stiffness EI and mesh side M as shown in Eq. (4.1) [33]. The elasticity modulus for the PE netting is taken
as 1000Nmm−2. The comparison is presented in Figure 4.11, p. 41 and Figure 4.12, p. 42.

H =
12EI

M
(4.1)
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Figure 4.11: Comparison 4. Axis-symmetrc and 3D where opening stiffness is taken into account.
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It is seen that this mechanical effect does not affect the comparison parameter significantly especially for
the cod-end 1 with the lowest twine thickness and bending stiffness (See Table 4.5, p. 42). The deviation
from the axis-symmetric model is seen mostly in reduction of the radius and the catch volume. Remarkably,
the mean opening angle almost have not changed. It could be due to the fact that, together with the decrease
in the radius there is also a decrease in the length that cancel out in the total contribution to the mesh opening
angle.
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Figure 4.12: Comparison 4. Axis-symmetric and 3D where opening stiffness is taken into account.

Table 4.5: Comparison 4. Mean error of the 3d model with opening resistance to the axis-symmetric model.

Codend Length Radius Volume Total drag Mean opening angle

1 −0.6 % −0.5 % −2.0 % −1.0 % 0.7 %
2 −0.9 % −2.3 % −4.6 % −2.8 % 0.6 %
3 −1.0 % −3.6 % −6.7 % −4.6 % 0.3 %

4.6 Discussion
The comparison of the axis-symmetric and 3D models is presented focusing on few chosen parameters. It is
seen that the axis-symmetric model can be adjusted to show the similar results in the cases where the drag on
the twines is small. Nevertheless, even with the twine drag included, the geometrical result parameters can
be estimated within 10 % error. This fact also explains, why it is so efficient as an initial shape for the 3D
FEM model.



CHAPTER 5

Validation

5.1 Shape estimation of a single panel cod-end
In this chapter the models are validated against the physical tests carried out in the flume tank at SINTEFF
OCEAN based in Hirtshals Denmark. The tank specification are found in Appendix F.

Figure 5.1: Shape of a single panel cod-end with 8 rows of meshes blocked is being measured in the flume tank.

A cod-end made of a single panel can be assumed to be axis-symmetric, therefore it can be used to
validate both axis-symmetric and 3D numerical models. In practice, the use of cod-ends and extension pieces
which are made of only one piece of net material and have only one selvedge is prohibited [34], therefore the
cod-end was specially manufactured for the experiment. The specifications are presented in Table 5.1, p. 43.

Table 5.1: Single panel cod-end specifications.

Parameter Value

Type T0
Meshes along 50
Meshes around 48
Bar length 50 mm
Twine thickness Single 1.4 mm
Knot length 1.4 mm

5.1.1 Setup
In the flume tank the cod-end model was attached to a metal ring. The metal ring was held by four ropes
emerging from the metal loops left on the top and the bottom of the opposite walls of the tank as shown in
Figure 5.2, p. 44. In this way the structure was supported by four mooring lines pre-tensioned by hand.

Tests with 8 and 5 blocked meshes were carried out with water speed of 0.4ms−1 and 0.8ms−1 each.
Blocking was established by fixing a circular patch of impermeable fabric inside the cod-end at the specific
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Figure 5.2: Entrance ring with the cod-end and markers attached (left) and the ring on the mooring lines in the flume
tank (right).

row of meshes as shown in Figure 5.3, p. 44. Small number of blocked meshes was chosen for the easiness
of installing the patch as well as because wrapping a circular patch to semi-spherical end part of the cod-end
will give less excess patch material as opposed to wrapping it to a much longer "bullet-shape" that naturally
appears if the cod-end has a relatively large catch.

Figure 5.3: Circular patch of impermeable material cut (left) and fixed in the cod-end to block 8 rows of meshes (right).

Four control sections including a reference section were chosen for comparison with the numerical
models as shown in Figure 5.4, p. 44. A section is positioned at a certain amount of meshes away from
the entrance and supplied by three markers. Three markers were used to fit a circle and estimate a radius
of the control section. In addition the distance from the center of a control section to the reference section
was calculated. Reference section passed through the very first mesh of the cod-end. The markers were
positioned before meshes 1, 24, 36, catch blockage as well as the very end of the cod-end. The marker size
was 28mm which is relatively large compared to the mesh size, and has to be accounted for in the data
processing.

Section 1 (Ref):

3 markers

before mesh 1

Section 2:

3 markers

before mesh 24

Section 3:

3 markers

before mesh 36

Section 4:

3 markers

before mesh 43

1 marker

in the end

Figure 5.4: Marker positions for a test with 8 rows of meshes blocked by the catch.

The motion tracking system Qualisys [19] was used to sample the spatial coordinates of the markers.
In total 1100 samples were taken, and the sampling time was 100s. Calibration was used to calculate the



5.1 Shape estimation of a single panel cod-end 45

positions of the cameras. There were two bridges with four underwater cameras each available for the
experiment. The calibration of the system happened by lowering the test XY-frame with four markers and
known dimensions down the flume tank, and sampling its position together with arbitrary movement of a
calibration rod with two markers. After that, the position of each marker was possible to track, provided
that it was visible by at least two cameras to perform a triangulation. Only the shape of the cod-end was
measured during the test. The total drag on the cod-end was not measured.

5.1.2 Results
The cod-end placed in the flume tank under the uniform current is an unstable structure. During the test
the single panel cod-end did not only oscillate under the effects of current, but also rotated around its
axis, since there were no selvedges to provide rotational stiffness. An example of the rotation can be seen
in Figure 5.5, p. 45. The problem was partially solved by attaching a small weight under the cod-end
Figure 5.3, p. 44. The weight was chosen so that it does not affect the cod-end‘s deformation and position
significantly, but helps to suppress the rotation of the cod-end. Considering the given conditions, it cannot be
expected to clearly see all the markers over the entire sampling time. For each marker the fill ratio can be
calculated, that shows how many percent of the total time it was possible to see the marker and determine
its spatial coordinates. In order to perform circle fitting to determine the radius and the center position of a
control section all 3 markers must be present. The amount of time it was possible to see all three markers of
a section at the same time can be represented by a fill ratio for a section as shown in Table 5.2, p. 45. It is
seen that for the tests 3 and 4, the fill ratio is very low or zero in the most interesting rear sections, therefore
it was decided to discard this data and continue only with tests 1 and 2.
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Figure 5.5: An example of a sample where all markers are visible. It can be noticed that the cod-end is moderately
twisted around the axis. Markers in the control sections are numbered accordingly and their abbreviations
stand for: STB - starboard or left marker, P - port or right marker, Top - top marker.

Table 5.2: Fill ratio for control sections

Test nr. Water speed Blocked meshes Section 1(Ref) Section 2 Section 3 Section 4

1 0.4ms−1 8 99.6 % 90.9 % 54.9 % 18.7 %
2 0.8ms−1 8 100 % 74.5 % 44.9 % 18.2 %
3 0.4ms−1 5 95.7 % 36.2 % 1.8 % 0.0 %
4 0.8ms−1 5 88.0 % 23.6 % 3.0 % 2.0 %

Raw data for the tests 1 and 2 is presented in Figure 5.6, p. 46 and Figure 5.7, p. 46. The fill ratio for the
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data can be easily visualized. The effect of the instability of the cod-end can be seen in the fluctuations of
the data. Marker size was accounted for in the calculation of the section radiuses as well as in the calculation
of the end distance. It was done because Qualisys measures the position in the middle of the exposed area of
the marker. In the best case when the entire marker is visible, its position is one marker radius away from the
netting position that is measured.

200 400 600 800 1000

Sample

0

100

200

300

400

500

R
ad

iu
s 

[m
]

Entrance 24 meshes 36 meshes 43 meshes (catch) End

200 400 600 800 1000

Sample

2000

2500

3000

3500

4000

4500

5000

D
is

ta
nc

e 
fr

om
 r

ef
. s

ec
tio

n 
[m

]

Figure 5.6: Raw data for the test 1: Section radiuses (left) and distances from the reference section (right).
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Figure 5.7: Raw data for the test 2: Section radiuses (left) and distances from the reference section (right).

The cod-end specifications were input to the numerical models. The axis-symmetric model included the
twine tension and catch pressure forces and accounts for the both twine and knot size in the shape calculation.
The 3D model included twine tension, drag on the netting and catch pressure. Since the forces were not
measured during the experiment, the pressure drag and friction drag coefficients for each element were
calculated based on the expressions presented in Section 2.1, p. 7 Eq. (2.29) and Eq. (2.30).

Both twine bending outside the plane and mesh opening resistance were considered negligible. The
assumption is reasonabe, based on the findings from Section 4.5, p. 41. The current 3D-model assumes
ideal diamond meshes, therefore knot size was not accounted for. After the convergence study, the mesh
with 2376 triangular elements and 3603 degrees of freedom was used. The comparison of section radiuses
and distances from the reference section between the numerical and the experimental results is presented
in Figure 5.8, p. 47 and Figure 5.9, p. 47. In the figures it is seen that the results of the numerical models
correlate well with the experimental results. The biggest difference is observed comparing radiuses of the
section at 24 meshes. It could be because the contact between the knots was not taken into account in
neither of the models. For both models, the prediction for a control section distance is more accurate than
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the prediction of the cod-end radius according to the Table 5.3, p. 48 and Table 5.4, p. 48. The distance
predictions of the 3D-model are generally lower than the distance prediction of the axis-symmetric model
due to absence of the knots in the model. None of the results is within the 95 % confidence interval, however,
given the physical uncertainties it is deemed acceptable.
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Figure 5.8: Raw data for the test 1: Section radiuses (left) and distances from the reference section (right).
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Figure 5.9: Raw data for the test 2: Section radiuses (left) and distances from the reference section (right).

5.1.3 Conclusion
The data from 2 out of 4 experiments on the cod-end made of a single panel was presented. Considering
the physical uncertainties, such as the unstable test structure, large marker size and calibration error the
experiment shows that both numerical models were able to predict the correct equilibrium shape for the
particular cod-end within an acceptable accuracy. The advantage of the axis-symmetric model for this
particular case is that it is significantly less computationally demanding compared to the 3D-model, yet
providing the results of the same quality. Inclusion of the drag force on the twines that is possible in
3D-model did not contribute to the improved accuracy due to its insignificance compared to the other forces.
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Table 5.3: Quantitative results comparison for test 1. The experimentally obtained radiuses and distances are given
with 95 % confidence interval. The percentile difference between the mean values of the experiment and
numerical models is given.

Section Rexp[m] Raxi [m] R3D [m] Erraxi [%] Err3D[%]

24 meshes 63.4±0.2 42.0 45.3 33.7 28.5
36 meshes 187.7±1.3 168.0 178.5 10.5 4.9
43 meshes (catch) 386.5±1.8 402.0 404.5 −4.0 −4.7

Section Lexp[m] Laxi [m] L3D [m] Erraxi [%] Err3D[%]

24 meshes 2394.8±0.6 2405.0 2379.2 −0.4 0.7
36 meshes 3611.9±1.1 3655.0 3562.3 −1.2 1.4
43 meshes (catch) 4229.1±1.6 4301.0 4167.9 −1.7 1.4
End 4674.0±2.3 4751.0 4531.8 −1.6 3

Table 5.4: Quantitative results comparison for test 2. The experimentally obtained radiuses and distances are given
with 95 % confidence interval. The percentile difference between the mean values of the experiment and
numerical models is given.

Section Rexp[m] Raxi [m] R3D [m] Erraxi [%] Err3D[%]

24 meshes 65.0±0.2 43.0 45.2 33.8 30.4
36 meshes 180.5±1.3 168.0 178.3 6.9 1.2
43 meshes (catch) 405.8±2.6 402.0 404.2 0.9 0.3

Section Lexp[m] Laxi [m] L3D [m] Erraxi [%] Err3D[%]

24 meshes 2439.1±0.6 2405.0 2379.1 1.4 2.5
36 meshes 3682.1±1.8 3655.0 3562.3 0.7 3.3
43 meshes (catch) 4332.2±1.4 4302.0 4168.0 0.7 3.8
End 4742.3±4.9 4752.0 4532.2 −0.2 4.4



CHAPTER 6

Conclusion and recommendations for
future work

In this project two numerical models of cod-end deformation were implemented and compared. Throughout
both numerical and experimental comparison it was found that the axis-symmetric model with the hexagonal
mesh representation can present a fast and reliable estimation for the deformation of small scale cod-ends.
Small scale mostly implies the cod-ends with a small twine thickness, because for those the twine drag,
opening resistance and bending resistance are negligible.

The experimental study explored only one case of the cod-end that was in the expected range of
application for the axis-symmetric model. Validation of the models with thicker twines is required in order
to support the results of the numerical comparison between the models, when the drag on the netting is
considered. The 3D motion tracking system showed a great applicability in the quantitative experimental
validation of the cod-ends. The application of the system can be realized to a bigger extent by performing
experiments on cod-ends with selvedges, whose shape is not axis-symmetric.

The implementation of both models followed the object-oriented programming method, which allows the
extension of the code with the new features, for example, a triangular element based on the hexagonal mesh
representation. In this project the guided user interface was not implemented, however, there is a possibility
to do so if the code is desired to be developed into an actual in-house software for SINTEF OCEAN.

A big attention was given to the optimization of the solution method to find the equilibrium shape of the
cod-end. It was found that the numerical axis-symmetric model could be combined with the 3D FEM model
as a qualified initial guess to the more detailed calculation including additional mechanical behaviour. This
cooperation was found to be favourable for the 3D FEM model, even when the axis-symmetric model was
outside its range of validity. This idea can be further expanded by studying similar application of the other
axis-symmetric cod-end models. The models such as the analytical axis-symmetric model by O’Neill or
the numerical axis-symmetric model with diamond mesh representation by Priour could be used. The T90
model was implemented and tested, but not used as extensively as the T0 model. However, when the 3D
model is upgraded with the triangular element with the hexagonal mesh representation, the application of the
T90 model as an initial shape can be studied.

Apart from using the other numerical/analytical cod-end models as the quality initial shape there are
alternative possibilities for the initial shape for those calculation cases, that can not be well approximated
by the axis-symmetric models. Those are the cod-ends including selvedges, straps or panels with more
than one type of meshes. The approach suggest to start from a simple coarse initial shape and getting to a
finer solution by switching between mesh refinement techniques and recalculation of the equilibrium shape.
The method showed a good potential comparable to the initial shape based on the axis-symmetric model
and could be optimized to yield a better performance. This optimization can take place by considering an
adaptive structured mesh generation, that refines and smoothens the cod-end accounting for the curvature as
well as the positions of round straps or selvedges.

During the implementation process it was found that a slow math library did not allow to explore the 3D
FEM model and its response do different inputs in a comfortable way. Therefore, it was critical to improve
the calculation speed at least to some degree. The solution was found in an open source direct sparse matrix
library CSPARSE.NET that allowed to step up the performance for both models. If desired, the calculation
performance of the models can be pushed even further exploring the possibilities of native direct sparse,
or native iterative sparse solvers. On the other hand, well working and robust code can continue being
developed using a slower mathematics library, and then invest in a commercial package, that has a guarantee
of high performance and robustness.

The robustness of the classic Newton-Raphson solution algorithm for both models was reinforced not
only with the better initial shape, but also restart and line search techniques. Giving the positive results, there
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is still the minor dependency on helper solver parameters, whose optimal value is not defined automatically.
Other solution techniques shall be researched in the field of globally convergent optimization / non-linear
system solution algorithms.
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APPENDIX A

Derivatives for 3d FEM model

Definition of the forces and the tangent stiffness matrices in the numerical models relies heavily on the
derivatives given below. Both Lagrange notation (′) and Leibniz notation (∂ ) are used. The derivative of a
scalar or a vector written in Lagrange notation means a derivative of its each component with respect to all
the variables k.

F′ =
∂F
∂k

(A.1)

where:
k = (x1, y1, z1, x2, y2, z2, x3, y3, z3)

d = (U2−U1)(V3−V1)− (U3−U1)(V2−V1) (A.2)

Derivatives of twine vector components

Compete set of derivatives in U′ and V′ forms a 3 by 9 matrix.
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For all other combinations of denominator and nominator, the derivative is 0.
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For all other combinations of denominator and nominator, the derivative is 0.

Derivatives of twine vector length

Compete set of derivatives in |U|′ and |V|′ forms a 1 by 9 matrix.

∂ |U|
∂x1

=
Ux (V2−V3)

d |U|
∂ |V|
∂x1

=
Vx (U3−U2)

d |V|
(A.5)

∂ |U|
∂y1

=
Uy (V2−V3)

d |U|
∂ |V|
∂y1

=
Vy (U3−U2)

d |V|
∂ |U|
∂ z1

=
Uz (V2−V3)

d |U|
∂ |V|
∂ z1

=
Vz (U3−U2)

d |V|
(A.6)
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∂ |U|
∂x2

=
Ux (V3−V1)

d |U|
∂ |V|
∂x2

=
Vx (U1−U3)

d |V|
∂ |U|
∂y2

=
Uy (V3−V1)

d |U|
∂ |V|
∂y2

=
Vy (U1−U3)

d |V|
∂ |U|
∂ z2

=
Uz (V3−V1)

d |U|
∂ |V|
∂ z2

=
Vz (U1−U3)

d |V|
∂ |U|
∂x3

=
Ux (V1−V2)

d |U|
∂ |V|
∂x3

=
Vx (U2−U1)

d |V|
∂ |U|
∂y3

=
Uy (V1−V2)

d |U|
∂ |V|
∂y3

=
Vy (U2−U1)

d |V|
∂ |U|
∂ z3

=
Uz (V1−V2)

d |U|
∂ |V|
∂ z3

=
Vz (U2−U1)

d |V|
(A.7)

Derivatives of unit twine vector

Compete set of derivatives in Û′ and V̂′ forms a 3 by 9 matrix.

Û =
U
|U|

(A.8)

∂ Û
∂k

=

(
∂U
∂k
|U|−U

∂ |U|
∂k

)
1

|U|2
(A.9)

Second derivatives of twine vector length

Compete set of derivatives in |U|′′ and |V|′′ forms a 9 by 9 matrix.

∂ 2 |U|
∂k2 =

∂ Û
∂k

T

· ∂U
∂k

(A.10)

Derivatives of twine tension forces

Complete set of derivatives in each F1, F2, F3 forms 3 by 9 matrix.

∂F1

∂k
=

EA(V3−V2)

2

[
∂U
∂k

(
1
l0
− 1
|U|

)
∂ |U|
∂k

U
|U|2

]
+

EA(U2−U3)

2

[
∂V
∂k

(
1
l0
− 1
|V|

)
∂ |V|
∂k

V
|V|2

]
(A.11)

∂F2

∂k
=

EA(V1−V3)

2

[
∂U
∂k

(
1
l0
− 1
|U|

)
∂ |U|
∂k

U
|U|2

]
+

EA(U3−U1)

2

[
∂V
∂k

(
1
l0
− 1
|V|

)
∂ |V|
∂k

V
|V|2

]
(A.12)

∂F3

∂k
=

EA(V2−V1)

2

[
∂U
∂k

(
1
l0
− 1
|U|

)
∂ |U|
∂k

U
|U|2

]
+

EA(U1−U2)

2

[
∂V
∂k

(
1
l0
− 1
|V|

)
∂ |V|
∂k

V
|V|2

]
(A.13)

Derivatives of drag force attack angles

Complete set of the drag force attack angle derivatives forms 1 by 9 matrix.

α = acos
(

c ·U
|c| |U|

)
β = acos

(
c ·V
|c| |V|

)
(A.14)

∂α

∂k
=− 1

sin(α)

(
c
|c|

)T
∂ Û
∂k

∂β

∂k
=− 1

sin(β )

(
c
|c|

)T
∂ V̂
∂k

(A.15)
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Derivatives of pressure and friction drag force magnitudes

Complete set of the drag force magnitude derivatives forms 1 by 9 matrix for both pressure and friction drag.

∂ |F|
∂k

= ρwaterCdDm0 |c|2 cos(α)sin(α)
d
2

∂α

∂k
(A.16)

∂ |T|
∂k

=−C f ρwaterCdDm0 |c|2 cos(α)sin(α)
d
2

∂α

∂k
(A.17)

For the effects on V twine angle α is substituted β .

Derivatives of the pressure drag direction

Complete set of the derivatives of the pressure drag direction E forms 3 by 9 matrix for both pressure and
friction drag.

EU = U× (c×U) (A.18)

∂EU

∂k
= 2c ·

(
UT · ∂U

∂k

)
−U ·

(
cT · ∂U

∂k

)
−
(
UT · c

)
· ∂U

∂k
(A.19)

Exactly the same is valid for EV component.

Derivatives of the pressure drag

Complete set of derivatives in each F1, F2, F3 forms 3 by 9 matrix and is concatenated into 9 by 9 matrix.

∂F1

∂k
=

∂F2

∂k
=

∂F3

∂k
=

1
3

(
E
|E|

∂ |F|
∂k

+
|F|
|E|2

(
|E| ∂E

∂k
− E
|E|

(
E

∂EU

∂k

)))
(A.20)

Exactly the same is valid for the contribution of V twines.

Derivatives of the friction drag

Complete set of derivatives in each T1, T2, T3 forms 3 by 9 matrix and is concatenated into 9 by 9 matrix.

∂T1

∂k
=

∂T2

∂k
=

∂T3

∂k
=

1
3

T
|T|

∂ |T|
∂k

+
1
3

|T|
|cos(α)| |U|

(
cos(α)

∂U
∂k

+ sin(α)U
∂α

∂k

)
−

− 1
3

T
|cos(α)| |U|

(
|cos(α)|
|U|

U
∂U
∂k
− sin(α) |U| cos(α)

|cos(α)|
∂U
∂k

)
(A.21)

Derivatives of mesh opening angle

Complete set of the derivatives of the mesh opening angle α forms 1 by 9 matrix the first derivative and 9 by
9 matrix for the second derivative.

α =
1
2

acos
(

U ·V
|U| |V|

)
(A.22)

∂α

∂k
=− 1

2sin(2α)

(
∂ Û
∂k

T

· V
|V|

+
∂ V̂
∂k

T

· U
|U|

)
(A.23)

∂ 2α

∂k2 =
A′B−B′A

B2 (A.24)

where:

A = VT · ∂U
∂k
− UT ·V
|U|

∂ |U|
∂k

+UT · ∂V
∂k
− UT ·V
|V|

∂ |V|
∂k

B =−2sin(2α) |U| |V|
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A′ =
∂ |U|
∂k

T

· ∂ |V|
∂k
−

(
∂ Û
∂k

T

·V− ∂V
∂k

T

·U

)
1
|U|

∂ |U|
∂k
− UT ·V
|U|

∂ 2 |U|
∂k2 +

+
∂ |V|
∂k

T

· ∂ |U|
∂k
−

(
∂ V̂
∂k

T

·U− ∂U
∂k

T

·V

)
1
|V|

∂ |V|
∂k
− UT ·V
|U|

∂ 2 |V|
∂k2

B′ =−4cos(2α)
∂α

∂k
|U| |V|−2sin(2α)

(
∂ |U|
∂k

T

|V|+ ∂ |V|
∂k

T

|U|
)

Derivatives of the mesh opening resistance

Complete set of derivatives of the mesh opening resistance forms 9 by 9 matrix. H is mesh resistance to
opening, d is the amount of knots in the triangle and α0 is the initial mesh openness.

∂F
∂k

= Hd
∂α

∂k

T
∂α

∂k
+Hd(α−α0)

∂ 2α

∂k2 (A.25)

Derivatives of bending angles

α =
1
2

acos
(

Ua ·Ub

|Ua| |Ub|

)
β =

1
2

acos
(

Va ·Vb

|Va| |Vb|

)
The first and the second derivatives of the bending angle are found in the same way as the derivatives of

the mesh opening angles by substituting the pair of U and V by Ua and Ub or Va and Vb depending on the
desired direction.

Derivatives of the bending curvature

Complete set of derivatives of the curvature forms 1 by 9 matrix. Curvature is the inverse of the curvature
radius R. The same applies for the V component.

A′U = nUaÛa
∂Ua

∂k

B′U = nUbÛb
∂Ub

∂k

C′U =
nUaUa +nUbUb

|nUaUa +nUbUb|

(
nUa

∂Ua

∂k
+nUb

∂Ua

∂k

)
(A.26)

ABC′U = A′U BUCU +AU B′UCU +AU BUC′U

S′U =
A′U AU B2

U +B′U A2
U BU −A′U A3

U +B′U BUC2
U +C′U B2

UCU −B′U B3
U +A′U AUC2

U +C′U A2
UCU −C′UC3

U
8SU

κU = 4
S′U AU ∗BUCU −ABC′U SU

(AU BUCU )
2

Derivatives of bending resistance

Complete set of derivatives of the mesh opening resistance forms 12 by 12 matrix. EI is the bending stiffness
and |V4−V3| is the length of the common edge in UV coordinates and κ is the curvature or the inverse of the
curvature radius R. The same applies for the V component.

∂F
∂k

=−EI |V4−V3|
(

κ
′T ∂α

∂k
+κ

∂ 2α

∂k2

)
(A.27)



vii

Derivatives of catch pressure forces

Complete set of derivatives in each F1, F2, F3 forms 3 by 9 matrix and is concatenated into 9 by 9 matrix. c
is the water speed vector.

p =
1
2

ρwaterCd |c|2 (A.28)

∂F1

∂x1
=

p
6

 0
z3− z2
y2− y3

 ∂F1

∂y1
=

p
6

 z2− z3
0

x3− x2

 ∂F1

∂ z1
=

p
6

 y3− y2
x2− x3

0

 (A.29)

∂F1

∂x2
=

p
6

 0
z1− z3
y3− y1

 ∂F1

∂y2
=

p
6

 z3− z1
0

x1− x3

 ∂F1

∂ z2
=

p
6

 y1− y3
x3− x1

0

 (A.30)

∂F1

∂x3
=

p
6

 0
z2− z1
y1− y2

 ∂F1

∂y3
=

p
6

 z1− z2
0

x2− x1

 ∂F1

∂ z3
=

p
6

 y2− y1
x1− x2

0

 (A.31)

The derivatives of the nodal forces F2 and F3 are calculated with the same expressions.





APPENDIX B

Derivatives for the axis-symmetric models

Twine tension Jacobian

Tensile force of a spring can be represented with the following equation:

F =
EA
l0

(∣∣xi j
∣∣− l0

)
x̂i j (B.1)

Where xi j = xi−x j is the vector between 2 nodes, x̂i j is a unit or normalized vector and l0 is the initial
twine length. The Jacobian of these tension forces is calculated as follows:

∂F
∂xi

=
EA
l0

[(∣∣xi j
∣∣− l0

) ∂ x̂i j

∂xi
+ x̂i j

∂
∣∣xi j
∣∣

∂xi

]
(B.2)

The derivatives of the vector magnitude and the normalized vector are obtained as follows:

∂
∣∣xi j
∣∣

∂xi
=

(
xi j∣∣xi j
∣∣
)T

∂xi j

∂xi
= x̂T

i j
∂xi j

∂xi
(B.3)

∂ x̂i j

∂xi
=

1∣∣xi j
∣∣2
(∣∣xi j

∣∣ ∂xi j

∂xi
−xi j

∂
∣∣xi j
∣∣

∂xi

)
=

1∣∣xi j
∣∣
(

∂xi j

∂xi
− x̂i j · x̂T

i j
∂xi j

∂xi

)
(B.4)

Substituting the derivatives of the vector norm and the derivatives of the unit vector yields the following
expression:

∂F
∂xi

=
EA
l0

[(∣∣xi j
∣∣− l0

) 1∣∣xi j
∣∣
(

∂xi j

∂xi
− x̂i j · x̂T

i j
∂xi j

∂xi

)
+ x̂i j · x̂T

i j
∂xi j

∂xi

]
=

=
EA
l0

[(
1− l0∣∣xi j

∣∣
)(

I− x̂i j · x̂T
i j
)
+ x̂i j · x̂T

i j

]
∂xi j

∂xi
(B.5)

The derivatives of the vector xi j should be calculated accounting for whether it is the T0 model (cylindrical
coordinates) or the T90 model (Cartesian coordinates).

Catch pressure Jacobian

The Jacobian of the catch pressure forces is a block diagonal matrix where each block is 2 by 6 (for T0)
and corresponds to each node in the meridian. It shows the change in the nodal forces in x and r directions
due to the change in the coordinates of the node as well as its two neighbours. The block of the Jacobian is
exemplified for the node bi whose neighbours are node ai and ci.

∂Fb
∂xb

=


0 −0.5θ(air +bir)P

θairP −0.5θ(aix−bix)P
0 0.5θ(air +bir)P−0.5θ(bir + cir)P
0 −0.5θ(aix−bix)P−0.5θ(bix− cix)P
0 0.5θ(bir + cir)P

−θcirP −0.5θ(bix− cix)P



T

(B.6)

where:
xb = (ax, ar, bx, br, cx, cr)
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For the T90 model the catch pressure forces Jacobian comes in blocks of 3 by 9 and is calculated in
the similar fashion. The only difference is the transformation of the coordinates from cyllindrical to the
Cartesian system.



APPENDIX C

Line search algorithm

The solution of the system of non-linear equation F(Xi) = 0 is obtained by the Newton-Raphson iterative
method:

hi =−J−1 (Xi)F(Xi) (C.1)
Xi+1 = Xi +λhi (C.2)

The length of the step λ along NR direction that leads to the decrease in force residual can be found
applying a line search method[29]. For a search direction hi a set of successive step lengths λ is tested until
the sufficient decrease condition Eq. (C.3) is satisfied. The the decrease by a factor β = 10−4 is typically
accepted.

|F(Xi +λhi)|< (1−β ) |F(Xi)| (C.3)

The Armijo rule it is suggested a testing strategy that divides the step length λ by 2 after each unsuccessful
trial. The choice of the factor 2 is not justified and is just a rule of thumb. When there are more than 2
unsuccessful trials the data from previous attempts is available for application of a smarter method called
3-point safeguarded parabolic interpolation. This method suggests a new λ that minimizes an interpolating
polynomial based on the previous trial steps. The motivation for this is that some problems respond well
to one or two reductions in the step length by modest amounts (such as 0.5) and others require many such
reductions, but might respond well to a more aggressive step length reduction (by factors of 0.1, say) [29].

After 2 rejected iterations there are 3 data points available with λ and corresponding force residual. The
data points correspond to the result of the previous NR iteration, full step result of this iteration as well as
half step result of this iteration as suggested by Armijo Rule.

Point 1: λ0 = 0.0 and f (0)
Point 2: λp = 1.0 and f (λp)

Point 3: λc = 0.5 and f (λc)

where: f (λ ) = |F(Xi +λhi)|2 (C.4)

The subscript p stands for previously considered λ and subscript c stands for currently considered λ .
The function for a parabola p(λ ) to interpolate f (λ ) reads:

p(λ ) = f (0)+
λ

λp−λc

(
(λ −λc)( f (λp)− f (0))

λp
+

(λp−λ )( f (λc)− f (0))
λc

)
(C.5)

If p′′(0)> 0 then there is a minimum for the parabola that takes the value:

λmin =−
p′(0)
p′′(0)

(C.6)

When the new minimum is found it is becomes a current point and the current point becomes the previous
point as show in Figure C.1, p. xii. The search is repeated until the reduction condition in Eq. (C.3) is satisfied.
There is a danger that the minimum maybe too near λ = 0 to be of much use and, in fact, the iteration
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may stagnate as a result. Therefore the parabolic interpolation method is extended with the safeguarding
technique as shown in Eq. (C.8). Typically σ0 = 0.1 and σ1 = 0.5.

λp = λc (C.7)

λc =


σ0λc if λmin < σ0λc

σ1λc if λmin > σ1λc or p′′(0)< 0
λmin if p′′(0)> 0

(C.8)

Parabolic interpolation step 2Parabolic interpolation step 1

Figure C.1: Two iterations of the 3-point parabolic interpolation [35].



APPENDIX D

Numerical tests on the axis-symmetric
model

In this appendix 3 editions of the axis-symmetric model were tested:
1. Simple cylindrical initial shape from [7] and classic Newton-Raphson algorithm. Further referred to

as V1.
2. Simple cylindrical initial shape from [7] but the Newton-Raphson algorithm improved with the line

search described in Appendix C. Further referred to as V2.
3. Improved cylindrical initial shape with smooth end from, the Newton-Raphson algorithm improved

with the line search and restart techniques described in Section 3.4, p. 28. Further referred to as V3.
At the time of the test a managed dense solver from ACCORD.NET [28] math library was used which

is much slower than the solver suggested in Section 3.4, p. 28. The purpose of the test was to identify the
combinations of input parameters that make the solution algorithm slow down, diverge or converge to an
incorrect tangled solution. Every new edition of the axis-symmetric model was supplied with the tools that
are believed to make it more robust. In the tests involving the influence of added diagonal stiffness α its
value was kept low, in order to rely on its stabilizing effects as little as possible. The high α value damps the
quadratic convergence of the NR method, therefor in general it is desired to use either low α or not use it at
all. The results are presented in the following tables. The notations are explained in Table D.1, p. xiv.

1. Influence of α and axial rigidity 1 on T0 Table D.2, p. xv and T90 Table D.11, p. xx.
2. Influence of α and axial rigidity 2 on T0 Table D.3, p. xv and T90 Table D.12, p. xx.
3. Influence of α and axial rigidity 3 on T0 Table D.4, p. xvi and T90 Table D.13, p. xxi.
4. Influence of the amount of catch on T0 Table D.5, p. xvi and T90 Table D.14, p. xxi.
5. Influence of the water speed on T0 Table D.6, p. xvii and T90 Table D.15, p. xxii.
6. Influence of the twine lengths and knot lengths on T0 Table D.7, p. xviii and T90 Table D.16, p. xxiii.
7. Influence of the twine lengths and knot lengths with different α on T0 Table D.8, p. xviii and T90

Table D.17, p. xxiii.
8. Influence of the difference between the twine and knot lengths on T0 Table D.9, p. xix and T90

Table D.19, p. xxiv.
9. Influence of the difference between the twine and knot lengths with different α on T0 Table D.9, p. xix

and T90 Table D.19, p. xxiv.

Following ways of avoiding the convergence failure were undertaken. Divergence can be solved by
setting an upper limit for the force residual. Once the limit is exceeded the algorithm is restarted with higher
added stiffness. Incorrect solution can be detected by checking whether there are negative coordinates in
the resulting meridian shape. Also the maximum radius and the maximum length of the final shape cannot
go beyond the limit of fully stretched fully closed meshes. A better solution was not found for cycling
behaviour other than defining a maximum number of iterations, after which the algorithm will restart with
higher additional stiffness.
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Table D.1: Notations.

Notation Description

Type Cod-end model type with either T0 or T90 mesh orientation
nx Number of meshes along the cod-end
nr Number of meshes in the cod-end circumference
nc Number of mesh rows blocked by catch
r0 Entrance radius in [m]
m0 Twine length of the mesh in [m]
l0 Knot length of the mesh in [m]
km Twine axial rigidity EA in [N]
kl Knot axial rigidity EA in [N]
c Water speed in [ms−1]
α Additional diagonal stiffness as described in Section 3.4, p. 28 and [31] [Nm−1]
Iter Amount of iterations for convergence
Time Elapsed time in [min:sec] format
DIV Failure of the method due to divergence
INC Failure of the method due to convergence to incorrect solution Figure D.1, p. xiv
CYC Failure of the method due to cycling around between the same set of values unable to continue

Figure D.1: Incorrect result of the iterative solution that satisfies the force equilibrium from Table D.8, p. xviii.



xv

Ta
bl

e
D

.2
:I

nfl
ue

nc
e

of
α

an
d

ax
ia

lr
ig

id
ity

pa
rt

1.

T
0

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

1.
01

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
0.

01
IN

C
17

00
:0

4
10

00
:0

2
1.

02
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
5

0.
1

13
00

:0
3

18
00

:0
4

13
00

:0
3

1.
03

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

48
00

:1
2

33
00

:0
7

26
00

:0
6

1.
04

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
2

85
00

:2
1

52
00

:1
2

39
00

:0
9

1.
05

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
5

19
7

00
:4

9
84

00
:1

9
74

00
:2

0
1.

06
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
5

10
38

3
01

:3
7

10
9

00
:2

5
11

3
00

:3
0

1.
07

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
15

57
0

02
:2

5
13

4
00

:3
1

12
4

00
:3

2

Ta
bl

e
D

.3
:I

nfl
ue

nc
e

of
α

an
d

ax
ia

lr
ig

id
ity

pa
rt

2.

T
0

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

2.
01

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
45

00
1.

5
0.

01
D

IV
IN

C
32

00
:0

7
2.

02
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
00

45
00

1.
5

0.
1

D
IV

50
00

:1
1

24
00

:0
5

2.
03

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
45

00
1.

5
1

53
00

:1
3

51
00

:1
2

58
00

:1
3

2.
04

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
45

00
1.

5
2

94
00

:2
3

12
9

00
:3

0
69

00
:1

6
2.

05
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
00

45
00

1.
5

5
21

2
00

:5
3

10
8

00
:2

5
70

00
:1

6
2.

06
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
00

45
00

1.
5

10
40

0
01

:4
2

15
2

00
:3

5
27

8
01

:0
4

2.
07

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
45

00
1.

5
15

58
4

02
:3

1
20

1
00

:4
6

31
8

01
:3

7



xvi Chapter D. Numerical tests on the axis-symmetric model

Table
D

.4:
Influence

of
α

and
axialrigidity

part3.

T
0

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

3.01
100

100
20

0.25
0.015

0.015
45000

45000
1.5

0.01
D

IV
134

00:31
38

00:10
3.02

100
100

20
0.25

0.015
0.015

45000
45000

1.5
0.1

D
IV

65
00:15

59
00:15

3.03
100

100
20

0.25
0.015

0.015
45000

45000
1.5

1
D

IV
81

00:18
79

00:20
3.04

100
100

20
0.25

0.015
0.015

45000
45000

1.5
2

D
IV

163
00:38

148
00:38

3.05
100

100
20

0.25
0.015

0.015
45000

45000
1.5

5
230

00:58
183

00:42
137

00:36
3.06

100
100

20
0.25

0.015
0.015

45000
45000

1.5
10

442
01:51

292
01:07

195
00:51

3.07
100

100
20

0.25
0.015

0.015
45000

45000
1.5

15
651

02:44
772

02:59
218

00:58

Table
D

.5:
Influence

ofthe
am

ountofcatch.

T
0

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

4.01
100

100
10

0.25
0.015

0.015
450

450
1.5

1
68

00:17
49

00:11
41

00:11
4.02

100
100

20
0.25

0.015
0.015

450
450

1.5
1

48
00:12

33
00:07

26
00:07

4.03
100

100
30

0.25
0.015

0.015
450

450
1.5

1
42

00:10
31

00:07
19

00:05
4.04

100
100

40
0.25

0.015
0.015

450
450

1.5
1

55
00:13

38
00:08

25
00:06

4.05
100

100
50

0.25
0.015

0.015
450

450
1.5

1
69

00:17
44

00:10
33

00:08
4.06

100
100

60
0.25

0.015
0.015

450
450

1.5
1

85
00:21

50
00:11

38
00:10

4.07
100

100
70

0.25
0.015

0.015
450

450
1.5

1
102

00:25
54

00:12
49

00:13
4.08

100
100

80
0.25

0.015
0.015

450
450

1.5
1

120
00:30

58
00:13

59
00:15

4.09
100

100
90

0.25
0.015

0.015
450

450
1.5

1
139

00:35
58

00:14
67

00:17
4.10

100
100

100
0.25

0.015
0.015

450
450

1.5
1

171
00:43

63
00:14

77
00:20



xvii

Ta
bl

e
D

.6
:I

nfl
ue

nc
e

of
th

e
w

at
er

sp
ee

d.

T
0

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

5.
01

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
0.

5
1

28
7

01
:1

2
26

6
01

:0
6

43
00

:1
1

5.
02

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
0.

6
1

21
0

00
:5

4
11

1
00

:2
6

40
00

:1
0

5.
03

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
0.

7
1

16
2

00
:4

1
62

00
:1

4
40

00
:1

0
5.

04
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

0.
8

1
13

0
00

:3
3

12
5

00
:2

9
39

00
:1

0
5.

05
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

0.
9

1
17

0
00

:2
8

95
00

:2
2

42
00

:1
1

5.
06

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1

1
90

00
:2

3
74

00
:1

7
36

00
:0

9
5.

07
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
1

1
77

00
:2

0
58

00
:1

3
35

00
:0

9
5.

08
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
2

1
76

00
:1

7
47

00
:1

1
34

00
:0

9
5.

09
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
3

1
59

00
:1

5
42

00
:0

9
33

00
:0

8
5.

10
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
4

1
53

00
:1

3
37

00
:0

8
32

00
:0

8
5.

11
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
5

1
48

00
:1

2
33

00
:0

7
26

00
:0

6
5.

12
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
6

1
43

00
:1

1
30

00
:0

7
22

00
:0

5
5.

13
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
7

1
40

00
:1

0
25

00
:0

6
20

00
:0

5
5.

14
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
8

1
37

00
:0

9
24

00
:0

6
20

00
:0

5
5.

15
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
9

1
34

00
:0

8
23

00
:0

5
19

00
:0

6
5.

16
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

2
1

32
00

:0
8

22
00

:0
5

18
00

:0
4

5.
17

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

1
1

30
00

:0
7

20
00

:0
4

17
00

:0
4

5.
18

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

2
1

28
00

:0
7

19
00

:0
4

16
00

:0
4

5.
19

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

3
1

D
IV

19
00

:0
4

16
00

:0
4

5.
20

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

4
1

D
IV

18
00

:0
4

16
00

:0
4

5.
21

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

5
1

D
IV

19
00

:0
4

16
00

:0
5

5.
22

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

6
1

D
IV

21
00

:0
4

16
00

:0
4

5.
23

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

7
1

D
IV

16
00

:0
4

15
00

:0
4

5.
24

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

8
1

D
IV

17
00

:0
4

14
00

:0
3

5.
25

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
2.

9
1

D
IV

18
00

:0
4

14
00

:0
3

5.
26

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
3

1
D

IV
18

00
:0

4
14

00
:0

4



xviii Chapter D. Numerical tests on the axis-symmetric model

Table
D

.7:
Influence

ofthe
tw

ine
lengths

and
knotlengths.

T
0

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

6.01
100

100
20

0.25
0.1

0.1
4500

4500
1.5

10
IN

C
67

00:16
43

00:11
6.02

100
100

20
0.25

0.075
0.075

4500
4500

1.5
10

112
00:29

43
00:10

33
00:10

6.03
100

100
20

0.25
0.05

0.05
4500

4500
1.5

10
130

00:33
50

00:11
45

00:13
6.04

100
100

20
0.25

0.025
0.025

4500
4500

1.5
10

248
01:03

151
00:35

150
00:49

6.05
100

100
20

0.25
0.01

0.01
4500

4500
1.5

10
590

02:40
225

00:53
511

02:22

Table
D

.8:
Influence

ofthe
tw

ine
lengths

and
knotlengths

w
ith

different
α

.

T
0

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

7.01
100

100
20

0.25
0.1

0.1
4500

4500
1.5

1
D

IV
156

00:37
95

00:22
7.02

100
100

20
0.25

0.075
0.075

4500
4500

1.5
1

D
IV

IN
C

104
00:24

7.03
100

100
20

0.25
0.05

0.05
4500

4500
1.5

1
D

IV
65

00:15
80

00:18
7.04

100
100

20
0.25

0.025
0.025

4500
4500

1.5
1

D
IV

45
00:10

42
00:09

7.05
100

100
20

0.25
0.01

0.01
4500

4500
1.5

1
77

00:20
118

00:27
105

00:24



xix

Ta
bl

e
D

.9
:I

nfl
ue

nc
e

of
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

tw
in

e
an

d
kn

ot
le

ng
th

s.

T
0

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

8.
01

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
10

38
3

01
:3

9
10

9
00

:2
6

11
3

00
:2

7
8.

02
10

0
10

0
20

0.
25

0.
01

12
5

0.
01

5
45

0
45

0
1.

5
10

40
2

01
:4

9
10

8
00

:2
5

12
6

00
:3

3
8.

03
10

0
10

0
20

0.
25

0.
00

75
0.

01
5

45
0

45
0

1.
5

10
42

7
01

:5
2

10
6

00
:2

5
13

0
00

:3
3

8.
04

10
0

10
0

20
0.

25
0.

00
37

5
0.

01
5

45
0

45
0

1.
5

10
45

8
02

:0
2

12
4

00
:2

9
12

9
00

:3
2

8.
05

10
0

10
0

20
0.

25
0.

00
15

0.
01

5
45

0
45

0
1.

5
10

D
IV

10
7

00
:2

5
16

5
00

:3
7

8.
06

10
0

10
0

20
0.

25
0.

00
07

5
0.

01
5

45
0

45
0

1.
5

10
48

8
02

:1
1

10
8

00
:2

5
17

2
00

:4
4

8.
07

10
0

10
0

20
0.

25
0.

00
01

5
0.

01
5

45
0

45
0

1.
5

10
51

2
02

:1
2

10
9

00
:2

5
17

9
00

:4
7

Ta
bl

e
D

.1
0:

In
flu

en
ce

of
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

tw
in

e
an

d
kn

ot
le

ng
th

s
w

ith
di

ff
er

en
tα

.

T
0

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

9.
01

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

48
00

:1
2

33
00

:0
7

26
00

:0
6

9.
02

10
0

10
0

20
0.

25
0.

01
12

5
0.

01
5

45
0

45
0

1.
5

1
49

00
:1

2
31

00
:0

7
38

00
:0

8
9.

03
10

0
10

0
20

0.
25

0.
00

75
0.

01
5

45
0

45
0

1.
5

1
D

IV
58

00
:1

4
29

00
:0

6
9.

04
10

0
10

0
20

0.
25

0.
00

37
5

0.
01

5
45

0
45

0
1.

5
1

D
IV

64
00

:1
5

50
00

:1
1

9.
05

10
0

10
0

20
0.

25
0.

00
15

0.
01

5
45

0
45

0
1.

5
1

IN
C

24
2

00
:5

7
37

00
:0

8
9.

06
10

0
10

0
20

0.
25

0.
00

07
5

0.
01

5
45

0
45

0
1.

5
1

D
IV

24
1

00
:5

7
62

00
:1

4
9.

07
10

0
10

0
20

0.
25

0.
00

01
5

0.
01

5
45

0
45

0
1.

5
1

D
IV

70
00

:1
6

51
00

:1
1



xx Chapter D. Numerical tests on the axis-symmetric model

Table
D

.11:
Influence

of
α

and
axialrigidity

part1.

T
90

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

1.01
100

100
20

0.25
0.015

0.015
450

450
1.5

0.01
IN

C
00:03

80
00:13

34
00:04

1.02
100

100
20

0.25
0.015

0.015
450

450
1.5

0.1
18

00:02
22

00:03
36

00:04
1.03

100
100

20
0.25

0.015
0.015

450
450

1.5
1

98
00:14

38
00:05

26
00:03

1.04
100

100
20

0.25
0.015

0.015
450

450
1.5

2
185

00:25
35

00:05
32

00:03
1.05

100
100

20
0.25

0.015
0.015

450
450

1.5
5

449
01:04

58
00:10

32
00:03

1.06
100

100
20

0.25
0.015

0.015
450

450
1.5

10
889

02:21
94

00:15
41

00:05
1.07

100
100

20
0.25

0.015
0.015

450
450

1.5
15

1328
03:27

132
00:19

43
00:05

Table
D

.12:
Influence

of
α

and
axialrigidity

part2.

T
90

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

2.01
100

100
20

0.25
0.015

0.015
4500

4500
1.5

0.01
D

IV
IN

C
68

00:08
2.02

100
100

20
0.25

0.015
0.015

4500
4500

1.5
0.1

D
IV

81
00:10

33
00:03

2.03
100

100
20

0.25
0.015

0.015
4500

4500
1.5

1
D

IV
127

00:17
39

00:04
2.04

100
100

20
0.25

0.015
0.015

4500
4500

1.5
2

221
00:37

274
00:40

55
00:07

2.05
100

100
20

0.25
0.015

0.015
4500

4500
1.5

5
477

01:09
241

00:33
87

00:11
2.06

100
100

20
0.25

0.015
0.015

4500
4500

1.5
10

906
02:21

212
00:28

154
00:17

2.07
100

100
20

0.25
0.015

0.015
4500

4500
1.5

15
1368

03:13
349

00:52
175

00:22



xxi

Ta
bl

e
D

.1
3:

In
flu

en
ce

of
α

an
d

ax
ia

lr
ig

id
ity

pa
rt

3.

T
90

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

3.
01

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
0

45
00

0
1.

5
0.

01
D

IV
C

Y
C

11
5

00
:1

3
3.

02
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
00

0
45

00
0

1.
5

0.
1

D
IV

14
1

00
:1

8
10

2
00

:1
1

3.
03

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
0

45
00

0
1.

5
1

D
IV

54
3

01
:1

8
11

4
00

:1
4

3.
04

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
0

45
00

0
1.

5
2

32
3

00
:5

0
36

0
00

:5
0

85
00

:1
0

3.
05

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
0

45
00

0
1.

5
5

49
5

00
:5

4
62

3
01

:3
0

25
1

00
:2

9
3.

06
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
00

0
45

00
0

1.
5

10
97

4
01

:5
4

14
69

03
:3

5
31

4
00

:3
6

3.
07

10
0

10
0

20
0.

25
0.

01
5

0.
01

5
45

00
0

45
00

0
1.

5
15

14
40

03
:3

5
14

84
03

:2
9

47
5

00
:5

4

Ta
bl

e
D

.1
4:

In
flu

en
ce

of
th

e
am

ou
nt

of
ca

tc
h.

T
90

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

4.
01

10
0

10
0

10
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

43
0

00
:5

7
58

00
:0

7
41

00
:0

4
4.

02
10

0
10

0
20

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
5

1
98

00
:1

5
38

00
:0

4
26

00
:0

2
4.

03
10

0
10

0
30

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
5

1
44

00
:0

5
10

1
00

:1
4

68
00

:0
7

4.
04

10
0

10
0

40
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

32
00

:0
4

80
00

:1
1

31
00

:0
3

4.
05

10
0

10
0

50
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

33
00

:0
4

48
00

:0
6

43
00

:0
4

4.
06

10
0

10
0

60
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

37
00

:0
4

29
00

:0
3

33
00

:0
4

4.
07

10
0

10
0

70
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

43
00

:0
5

27
00

:0
3

30
00

:0
4

4.
08

10
0

10
0

80
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

53
00

:0
8

29
00

:0
4

37
00

:0
4

4.
09

10
0

10
0

90
0.

25
0.

01
5

0.
01

5
45

0
45

0
1.

5
1

D
IV

31
00

:0
5

40
00

:0
4

4.
10

10
0

10
0

10
0

0.
25

0.
01

5
0.

01
5

45
0

45
0

1.
5

1
D

IV
32

00
:0

5
41

00
:0

4



xxii Chapter D. Numerical tests on the axis-symmetric model

Table
D

.15:
Influence

ofthe
w

aterspeed.

T
90

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

5.01
100

100
20

0.25
0.015

0.015
450

450
0.5

1
660

01:28
137

00:18
34

00:03
5.02

100
100

20
0.25

0.015
0.015

450
450

0.6
1

473
01:07

72
00:11

34
00:03

5.03
100

100
20

0.25
0.015

0.015
450

450
0.7

1
367

00:53
76

00:13
34

00:03
5.04

100
100

20
0.25

0.015
0.015

450
450

0.8
1

295
00:45

87
00:15

34
00:04

5.05
100

100
20

0.25
0.015

0.015
450

450
0.9

1
240

00:33
77

00:11
33

00:05
5.06

100
100

20
0.25

0.015
0.015

450
450

1
1

193
00:28

70
00:10

32
00:04

5.07
100

100
20

0.25
0.015

0.015
450

450
1.1

1
168

00:24
52

00:07
32

00:03
5.08

100
100

20
0.25

0.015
0.015

450
450

1.2
1

143
00:23

48
00:08

32
00:04

5.09
100

100
20

0.25
0.015

0.015
450

450
1.3

1
124

00:17
47

00:07
32

00:03
5.10

100
100

20
0.25

0.015
0.015

450
450

1.4
1

110
00:16

45
00:06

32
00:03

5.11
100

100
20

0.25
0.015

0.015
450

450
1.5

1
98

00:13
38

00:06
26

00:02
5.12

100
100

20
0.25

0.015
0.015

450
450

1.6
1

88
00:11

35
00:05

22
00:03

5.13
100

100
20

0.25
0.015

0.015
450

450
1.7

1
79

00:11
33

00:04
30

00:04
5.14

100
100

20
0.25

0.015
0.015

450
450

1.8
1

72
00:10

28
00:04

26
00:03

5.15
100

100
20

0.25
0.015

0.015
450

450
1.9

1
66

00:08
26

00:03
30

00:03
5.16

100
100

20
0.25

0.015
0.015

450
450

2
1

60
00:07

22
00:03

30
00:03

5.17
100

100
20

0.25
0.015

0.015
450

450
2.1

1
56

00:09
28

00:04
40

00:04
5.18

100
100

20
0.25

0.015
0.015

450
450

2.2
1

52
00:07

25
00:04

660
01:22

5.19
100

100
20

0.25
0.015

0.015
450

450
2.3

1
48

00:06
23

00:04
177

00:22
5.20

100
100

20
0.25

0.015
0.015

450
450

2.4
1

45
00:06

20
00:03

C
Y

C
5.21

100
100

20
0.25

0.015
0.015

450
450

2.5
1

42
00:05

20
00:02

39
00:04

5.22
100

100
20

0.25
0.015

0.015
450

450
2.6

1
39

00:05
18

00:02
106

00:11
5.23

100
100

20
0.25

0.015
0.015

450
450

2.7
1

37
00:06

16
00:02

43
00:06

5.24
100

100
20

0.25
0.015

0.015
450

450
2.8

1
35

00:06
16

00:02
124

00:15
5.25

100
100

20
0.25

0.015
0.015

450
450

2.9
1

33
00:04

14
00:02

41
00:04

5.26
100

100
20

0.25
0.015

0.015
450

450
3

1
31

00:04
18

00:02
184

00:22



xxiii

Ta
bl

e
D

.1
6:

In
flu

en
ce

of
th

e
tw

in
e

le
ng

th
s

an
d

kn
ot

le
ng

th
s.

T
90

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

6.
01

10
0

10
0

20
0.

25
0.

1
0.

1
45

00
45

00
1.

5
10

21
1

00
:2

7
95

00
:1

3
82

00
:1

0
6.

02
10

0
10

0
20

0.
25

0.
07

5
0.

07
5

45
00

45
00

1.
5

10
27

2
00

:3
6

12
2

00
:2

0
90

00
:1

2
6.

03
10

0
10

0
20

0.
25

0.
05

0.
05

45
00

45
00

1.
5

10
38

0
00

:5
2

16
7

00
:2

6
89

00
:1

0
6.

04
10

0
10

0
20

0.
25

0.
02

5
0.

02
5

45
00

45
00

1.
5

10
64

5
01

:2
5

22
9

00
:4

4
11

6
00

:1
4

6.
05

10
0

10
0

20
0.

25
0.

01
0.

01
45

00
45

00
1.

5
10

12
00

02
:3

8
68

2
01

:4
1

50
00

:0
6

Ta
bl

e
D

.1
7:

In
flu

en
ce

of
th

e
tw

in
e

le
ng

th
s

an
d

kn
ot

le
ng

th
s

w
ith

di
ff

er
en

tα
.

T
90

M
od

el
pa

ra
m

et
er

s
V

1
V

2
V

3
Te

st
n x

n r
n c

r 0
l 0

m
0

k l
k m

c
α

It
er

Ti
m

e
It

er
Ti

m
e

It
er

Ti
m

e

7.
01

10
0

10
0

20
0.

25
0.

1
0.

1
45

00
45

00
1.

5
1

D
IV

95
12

6
00

:1
4

7.
02

10
0

10
0

20
0.

25
0.

07
5

0.
07

5
45

00
45

00
1.

5
1

D
IV

IN
C

14
4

00
:1

6
7.

03
10

0
10

0
20

0.
25

0.
05

0.
05

45
00

45
00

1.
5

1
D

IV
16

7
00

:3
9

C
Y

C
7.

04
10

0
10

0
20

0.
25

0.
02

5
0.

02
5

45
00

45
00

1.
5

1
D

IV
00

:0
9

12
9

00
:2

0
56

00
:0

6
7.

05
10

0
10

0
20

0.
25

0.
01

0.
01

45
00

45
00

1.
5

1
27

8
00

:3
8

21
3

00
:2

7
23

00
:0

2



xxiv Chapter D. Numerical tests on the axis-symmetric model

Table
D

.18:
Influence

ofthe
difference

betw
een

the
tw

ine
and

knotlengths.

T
90

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

8.01
100

100
20

0.25
0.015

0.015
450

450
1.5

10
889

01:57
94

00:13
41

00:05
8.02

100
100

20
0.25

0.01125
0.015

450
450

1.5
10

752
01:56

630
01:50

133
00:18

8.03
100

100
20

0.25
0.0075

0.015
450

450
1.5

10
454

01:12
1018

03:18
41

00:05
8.04

100
100

20
0.25

0.00375
0.015

450
450

1.5
10

730
01:56

1929
05:53

62
00:07

8.05
100

100
20

0.25
0.0015

0.015
450

450
1.5

10
845

02:14
2321

07:10
102

00:11
8.06

100
100

20
0.25

0.00075
0.015

450
450

1.5
10

963
02:35

1828
05:03

113
00:14

8.07
100

100
20

0.25
0.00015

0.015
450

450
1.5

10
1063

02:37
1921

05:18
147

00:16

Table
D

.19:
Influence

ofthe
difference

betw
een

the
tw

ine
and

knotlengths
w

ith
different

α
.

T
90

M
odelparam

eters
V

1
V

2
V

3
Test

n
x

n
r

n
c

r0
l0

m
0

k
l

k
m

c
α

Iter
Tim

e
Iter

Tim
e

Iter
Tim

e

9.01
100

100
20

0.25
0.015

0.015
450

450
1.5

1
98

00:22
38

00:05
26

00:02
9.02

100
100

20
0.25

0.01125
0.015

450
450

1.5
1

D
IV

193
00:38

102
00:14

9.03
100

100
20

0.25
0.0075

0.015
450

450
1.5

1
D

IV
366

01:16
29

00:04
9.04

100
100

20
0.25

0.00375
0.015

450
450

1.5
1

D
IV

588
02:09

27
00:03

9.05
100

100
20

0.25
0.0015

0.015
450

450
1.5

1
D

IV
686

02:07
35

00:03
9.06

100
100

20
0.25

0.00075
0.015

450
450

1.5
1

D
IV

1828
06:50

42
00:04

9.07
100

100
20

0.25
0.00015

0.015
450

450
1.5

1
D

IV
1921

06:36
71

00:08



APPENDIX E

Mesh refinement and smoothing

Subdivision is a powerful algorithm used, in its simplest application, to refine meshes. The underlying
concepts are derived from spline refinement algorithms, but the idea is that there exists a well-defined smooth
surface associated with any given input mesh (the exact surface depends on the subdivision algorithm used.)
A refinement operation is the operation that takes the input mesh (control mesh) and generates an output
mesh that is closer to the surface. If this refinement process is applied infinitely, the target surface will be
achieved exactly. However, after just a few levels of refinement, the result is close enough to the limit surface
that they are visually indistinguishable. Depending on the type of input mesh (triangular, quadrilateral, etc.)
a different subdivision algorithm is used. Quadrilateral based meshes generally use Catmull-Clark, while
triangular based meshes generally use Loop subdivision [36]. Subdivision is performed by manipulation on
a mesh data structure.

Figure E.1: Refined shape of an icosahedron approaches the spherical limit surface.

Mesh data structure

For the current application it was deemed sufficient to apply the simple face-based mesh structure due to its
simple implementation. Besides there are other more advanced mesh data structures such as half-edge or
winged-edge data structures [37]. For each triangle the basic version of the data structure stores: 3 references
to neighboring faces, 3 references to incident vertices. For each vertex it stores 1 reference to an incident
face as shown in Figure E.2, p. xxv. For further manipulation with edges, the data structure is expanded. For
each edge the data structure stores 2 references to incident vertices and 2 references to the triangles sharing
the edge. The triangle additionally stores 3 references to its 3 edges.

Figure E.2: Face-based mesh data structure [38].
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Loop subdivision

All subdivision algorithms start by replacing the geometric element (in our case, a triangle) with smaller
versions of the same element. For every edge in the source mesh, a vertex is added and for every triangle
on the mesh, the four triangles are created as shown in Figure E.1, p. xxv. The exact geometric location of
these new edge vertices, and the new coordinates of the initial vertices, are all determined by the subdivision
scheme. In the simple case, the coordinates can be left unchanged to correspond to the edge centers. In
Loop scheme they are linear combinations of the neighbouring source mesh vertices [36]. Those linear
combinations (subdivision masks) for the insertion of new vertices and transformation of existing vertices
are shown in Figure E.3, p. xxvi.

Figure E.3: The weights for determining the spatial position of the newly created vertices as well as re-positioning of
the old vertices in the mesh interior [39].

Insertion of new vertices:

p j+1
H =

1
8

p j
A +

3
8

p j
B +

3
8

p j
C +

1
8

p j
D (E.1)

Transformation of the existing vertices requires the traversal operation to visit all the n vertices adjacent
to the considered vertex only once. That is where the mesh data structure is essential.

p j+1
G = (1−nλ )p j

G +λ

n

∑
i=1

p j
Gi (E.2)

λ =

{
3
16 if n = 3
3
8n otherwise

(E.3)

The boundaries are treated in the similar manner applying the subdivision mask shown inFigure E.4, p. xxvii

Mesh smoothing by edge flipping

Considering two adjacent faces of a triangle mesh, there exist exactly two different configurations of the
inner edge. Usually one of the configurations is more favourable in terms of triangle quality than the other.
Triangle quality is defined by skewness, that shows how close to ideal shape (equilateral or equiangular) a
face or cell is [40]. The idea of the edge flipping method is to evaluate the mean skewness in two possible
edge configurations and accept the one with the least mean skewness. This manipulation can be performed
for the entire mesh to yield the lower mesh skewness on the global level as shown in Figure E.5, p. xxvii.
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Figure E.4: The weights for determining the spatial position of the newly created vertices as well as re-positioning of
the old vertices on the mesh edge [39].

Skewness = max
(

θmax−θe

180−θe
,

θe−θmin

θe

)
(E.4)

where:
θmax largest angle in the face or cell
θmin smallest angle in the face or cell

θe angle for an equiangular face/cell (e.g., 60 for a triangle, 90 for a square) (E.5)
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Figure E.5: The effect of edge flipping on the FE mesh quality of the cod-end. The range of skewnesses according to
[40].

In the figure it is seen that in the original structured mesh there is approximately 70 % of the finite
elements that are good or excellent. After edge flipping there are more than 90 % of the good or excellent
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elements with the majority in the excellent zone. Considered cod-end is made of two panels, and it is clearly
seen that the edges on the panel joint are not flipped. This is due to the fact that flipping those edges will
break the consistency in UV coordinates, since the considered pair of triangles belongs to two different
panels.



APPENDIX F

SINTEF OCEAN flume tank in Hirtshals



 

 

The North Sea Centre Flume Tank 
Managed and operated by SINTEF Fisheries and Aquaculture 

Modern testing facility for fishing gear with a long history of servicing the net 
manufacturers and fishermen from all over the World 

Lights 
Above the tank: 18 x 400 W daylight floodlights. 
Movable on a 3x2 m frame: 6 x 1.500 W floodlights. 
 
Video 
Movable cameras are permanently displaying: Front 
view, in colour, top view (two cameras for spread 
measuring), side view (for height measuring). 
Professional studio camera for documenting tests. 
Video hardcopy printer making prints on paper from 
all the installed cameras. 

Video conference 
The tank is fully equipped with a video mixer and fixed 
and movable cameras to transmit training, testing and 
demonstrations via videoconference to customers 
sitting in classrooms or videoconference studios 
abroad. 
 
Associated facilities 
Net loft 
SINTEF has its own staff of skilled net makers and a 
net loft for constructing and altering the models. 
 
Video editing 
Video film for instruction or advertising can be edited 
on DV-Cam video editing system with text generator. 
Films are converted into the type and system required 
by the customer. 
 

Technical information: 
Dimensions 
Over-all: L: 30, H: 6, W: 8 m 
Measuring section 21.3, 2.7, 8 m. 
Volume of water: 1200 m³. 
Windows: 20  2x3 m 
 
Propulsion 
Four propellers and motors of 64 KW generate the 
flow. 
 
Velocity 
Maximum water speed:  1 m/s 
Max. simulated towing speed in scale 1:5:  4,5 knots
Max. simulated towing speed in scale 1:20:  12 knots 
 
Artificial bottom 
Conveyer belt type made of nylon. Speed adjustable,
can be locked with water speed. 
 
Equipment for measuring 
Object measuring: A full measurement of geometry in 
three dimensions is made by remote controlled video 
system. 
Resistance and drag: Load cells using strain gauge 
technology. Series of load cells can measure strain 
from a few grams to 100 kg. Measurements are 
monitored by a data-logger system and converted to 
full-scale values.  
 

Contact: Ulrik Jes Hansen, Kurt Hansen 
SINTEF Fisheries and Aquaculture, The North Sea Centre, P.O. Box 104, DK-9850 Hirtshals, Denmark

Tel: +45 9894 4300 - E-mail fish@sintef.dk - www.sintef.dk 



 

 

 
Activities and Services 
Testing fishing gear 
Trawl manufacturers and research institu-
tions from all over the world have tested 
more than 700 different designs of fishing 
gear; mainly trawls, but also Danish seines, 
Scottish seines and gill nets. 
 
Training and courses 
The flume tank is ideal for demonstrating the 
performance of fishing gear for an audience. 
SINTEF run workshops for fishermen, re-
searchers, administrators and others interes-
ted to know about fisheries technology, fish-
ing gear performance, selectivity of cod-end 
and trawls, etc. 
 

Research projects 
The flume tank is a vital instrument in a vast 
number of research projects. 
 
Testing other equipment 
The constant and even flow makes it pos-
sible to test other equipment than fishing 
gear, i.e. specific components of fishing 
gear, underwater vehicles, propellers etc. 
 
Costs 2004 
The hire is calculated on an hourly basis. 
Please ask for a quotation. A normal full day 
is around 3400 ECU (2004) including a staff 
of 3 (1 scientist, 2 technicians). 

 

 

Contact: Ulrik Jes Hansen, Kurt Hansen
SINTEF Fisheries and Aquaculture, The North Sea Centre, P.O. Box 104, DK-9850 Hirtshals, Denmark

Tel: +45 9894 4300 - E-mail fish@sintef.dk - www.sintef.dk 
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