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Abstract

We de�ne colored Petri nets with inhibitor arcs, and present an

unfolding method, which allows us to unfold these to Petri nets with

inhibitor arcs. We also present an overapproximation algorithm, which

can answer a subset of queries performed on colored Petri nets, without

unfolding the net. This algorithm o�ers faster veri�cation of colored

Petri nets, for the queries we are able to answer. In nets like BART-

COL from the MCC'2017 competition, which has never received any

answers by any tools in the competition, we are able to answer 62 out

of 128 queries, using this algorithm. We implement both the overap-

proximation algorithm and the unfolding method in the verifypn tool.

Using the nets from the MCC'2017 competition as test set, we com-

pare the unfolding implementation to the one in the tool MCC, where

we are on average 30% slower at unfolding, but are faster in total run

time in every net except one.

1 Introduction

In the modern world where systems grow in complexity, we �nd the need for
tools to verify these systems, to prove that they work as intended. For this
purpose we invent di�erent models, as to be able to represent these systems
in a way, in which we can do veri�cation to see if a property is satis�ed in the
modelled system. One such model is Petri nets �rst stipulated by C.A. Petri
in 1962 [14]. Since then this model has received numerous extensions, where
some of these include timed arcs [15], inhibitor arcs [8], colors [10], and more.
Some of these extensions were made in order to increase the expressiveness
of the model, such as inhibitor arcs, which make the model Turing complete,
while other extensions serve as higher abstractions of the model. Colored
Petri nets is such an extension.
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In this thesis, we have a closer look at colored Petri nets with inhibitor
arcs. In 1981 K. Jensen proposed the extension, colored Petri nets in [10].
This extension made it easier to model complex system, since a single place
can now hold di�erent colored tokens, i.e. tokens with di�erent values, and
arcs can selectively pick which color the tokens must have, in order for it to
be consumed or produced. The arcs can not only select the colors, they can
also contain variables. The transitions are able to de�ne guards, which can
then put restrictions on which colors can bind to the variables of the arcs.
Since this model is still a higher abstraction of Petri nets, it does not increase
the expressiveness.

Later in 1988 J. Billington took Jensen's colored Petri nets as a starting
point, and extended it with capacity and inhibitor functions [1]. His de�nition
of colored Petri nets varies from the one which appeared in Jensen's work,
but remains compatible. We use the initial idea of the inhibitor arcs from
Billington, and adapt it to the colored Petri nets de�ned in [9].

In addition to de�ning inhibitor arcs for Jensen's colored Petri nets, we
also extend the unfolding of colored Petri nets de�ned in [11], with the ad-
dition of inhibitor arcs.

The unfolding of colored Petri nets often causes an explosion in net size,
which can lead to very large state spaces. In these cases, unfolding and veri-
�cation of the unfolded net can be a very costly operation. Because of cases
like these we formulate an algorithm, which overapproximates the colored
Petri net, by stripping away the colors. This allows us to still verify some as-
pects of the net, while leaving others with inconclusive answers. An example
of a net that is too costly to unfold within a reasonable amount of time and
memory is the net BART-COL from the competition MCC'2017 [13]. With
the overapproximation algorithm we can now answer a subset of queries on
nets like these. In the category ReachabilityCardinality of the MCC'2017
competition, we answered 42.9% of the queries, while in the Reachability-
Fireability category, we are only able to answer 6% of the queries.

We implement the representation and unfolding of colored Petri nets in
the tool verifypn [2]. This implementation does not include inhibitor arcs
for colored Petri nets. The reason behind this is due to the standard for
representing Petri nets, and High-level Petri nets, named PNML [16], does
not support inhibitor arcs for colored nets. We also implement the overap-
proximation algorithm in the same tool.

Lastly we compare how many queries can be answered using the overap-
proximation algorithm, compared to unfolding and then verifying. We also
compare the speed of the overapproximation algorithm, to the speed of un-
folding and then verifying. For this we use the nets and queries from the
MCC'2017 competition [13].
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The unfolding speed will also be compared to an existing solution called
MCC1, which only does unfolding, while requiring another tool for veri�ca-
tion. On average we are 29.89% slower in unfolding the nets, but we are
faster in total run time in all nets except one.

2 Preliminaries

In this section we describe some of the preliminaries that we need in order
to understand how colored Petri nets work. To start o�, we �rst introduce
Petri nets with inhibitor arcs, as this is the model that we unfold to. After
this we describe the concept of multisets, and the operators that we use for
the rest of this thesis.

2.1 De�nition of Petri Nets with Inhibitor Arcs

In this subsection we de�ne Petri nets with inhibitor arcs. The notion of Petri
nets was �rst stipulated in [14], which was later extended with inhibitor arcs
in [8].

De�nition 1. (PN)
A Petri net is a six tuple PN = (P, T, F,W, I,W I) where:

1. P is a �nite set of places,

2. T is a �nite set of transitions,

3. F ⊆ (P × T ) ∪ (T × P ) is the set of arcs,

4. W : F → N is the weight function,

5. I ⊆ P × T is the set of inhibitor arc, and

6. W I : I → N is the inhibitor weight function.

An example of a Petri net can be found in Figure 1, which models a
parallel production line. Before going in depth with this example, we have
to de�ne what a marking is, and how we transition between markings.

A marking can then be de�ned as following:

De�nition 2. (PN Marking)
A marking M in a PN is de�ned as a function M : P → N0, i.e. returning
the number of tokens in a given place.

1https://github.com/dalzilio/mcc
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Figure 1: A Petri net modeling a parallel production line.

Given a marking, we can then de�ne the concept of enabledness of a
transition in a given marking.

De�nition 3. (PN Enabledness)
A transition t ∈ T is said to be enabled in marking M i� the following
properties are satis�ed:

1. ∀(p, t) ∈ F : M(p) ≥ W ((p, t))

2. ∀(p, t) ∈ I : M(p) < W I((p, t))

I.e. that every place p with an arc going to transition t must have at least
the amount of tokens, as the weight of the arc, and no place has more tokens
than the weight of their inhibitor arcs to the transition.

The concept of enabledness is important, as it de�nes when a transition
is able to �re, i.e. transitioning from one marking into another. The �ring
of a transition is de�ned as following:

De�nition 4. (PN Transition �ring)
When a transition t ∈ T is enabled in a marking M1, it may �re, changing
the marking M1 to marking M2, which is de�ned by:

∀p ∈ P : M2(p) = M1(p)−W ((p, t)) +W ((t, p))

M2 is said to be directly reachable from M1 by the �ring of transition t,
de�ned by:

M1
t→M2.
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The �ring of a transition is what
allows a Petri net to change states,
thus allowing us to show the be-
haviour of a net.

Looking at Figure 1, we see that
the current marking is an empty
marking. This is due to the nature
of this net. On the right we see a
fragment of the LTS for this net.
This net models a parallel produc-
tion line, where the transition t0 rep-
resents a supplier delivering materi-
als to the start of the two production
lines starting at place p0 and p2 re-
spectively. We see that each line can
move onto the next stage in production, independent of each other. Look-
ing at the top production beginning at place p0, we see that in order to �re
transition t1, we �nd that we need at least four tokens in order to move on
in the line, and that we produce two tokens to place p1, which is the next
stage in production. We also have a restriction on transition t1 in form of
the inhibitor arc from place p1, which holds production, if we have �ve or
more tokens in place p1, acting as a production limit, making sure that both
production lines do not get out of sync. In the lower production line starting
at place p2, we see that this line is similar to the top one, except that this line
consumes two tokens when �ring transition t2, and produces three tokens in
place p3. This production line is limited to six tokens in place p3, as seen by
the inhibitor arc. This production ends by collecting the results from both
lines, by �ring transition t3, which consumes one token from place p1 and
�ve tokens from place p3. Two tokens are then placed in place p4, which
represents the end product.

2.2 Multisets

In this subsection we introduce multisets, the notations, and operators used
in this thesis. Multisets are used later when we introduce the colors of colored
Petri nets.

De�nition 5. (Multisets)
A multiset b, over a non-empty and �nite set A, is a function from A to N0,
i.e. b ∈ A→ N0. If a ∈ A then b(a) is the number of occurrences of a in the
multi-set b.
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We commonly represent a multiset b by a formal sum:∑
a∈A

b(a) ′(a).

The set of all multisets over a set A is denoted by AMS. The empty
multi-set is a multiset where all the coe�cients are zero, and is denoted by
∅.

We also allow for in�nite multisets, e.g. an in�nite multiset over A is the
function A → (N0 ∪ ∞), and the set of all in�nite multisets is denoted by
AMS∞ . Thus AMS ⊂ AMS∞ .

Consider the set A = {x, y, z}, the multisets 2′(x), 1′(x) + 5′(y) + 2′(z),
and ∅ are all members of AMS, but where ∞′(x) + 1′(y) is not a member
of AMS, although it is a member of AMS∞ . I.e. the multiset containing
two occurrences of x, and the multi-set containing one occurrence of x, �ve
occurrences of y, and two occurrences of z, and the empty multi-set are all
members of AMS.

De�nition 6. (Multiset operations)
Suppose A is a set, b1, b2 ∈ AMS∞ , c ∈ A, and n ∈ N:

c ∈ b1 i� b1(c) > 0 (membership)
b1 ≤ b2 i� ∀a ∈ A : b1(a) ≤ b2(a) (inclusion)
b1 = b2 i� b1 ≤ b2 and b2 ≤ b1 (equality)
b1 ] b2 =

∑
a∈A(b1(a) + b2(a)) ′(a) (summation)

n ∗ b1 =
∑

a∈A(n ∗ b1(a)) ′(a) (scalar-multiplication)
|b1| =

∑
a∈A b1(a) (cardinality)

When b1, b2 ∈ AMS and b2 ≤ b1, subtraction is de�ned:
b1 \ b2 =

∑
a∈A(b1(a)− b2(a)) ′(a) (subtraction)

Multisets are de�ned in more depth in [9, 1].

3 Colored Petri Nets with Inhibitor Arcs

In this section we describe what colored Petri nets are, how we query them,
and how we can unfold them. First we describe what colors are, and how they
are de�ned. Next we de�ne three di�erent type expressions, namely color-,
guard-, and arc expressions. These expressions are used to inscribe either
arcs or transitions. After this, we de�ne colored Petri nets with inhibitor
arcs, using the concepts de�ned previously.

We also list the CTL syntax used for queries on the colored Petri nets,
while going into detail with the atomic propositions used.
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Lastly we de�ne how we unfold the colored Petri nets with inhibitor arcs
into uncolored Petri nets with inhibitor arcs. We also discuss how we are
able to transform atomic propositions of CTL queries to match the unfolded
nets.

3.1 Colors

The color of a token in a colored Petri net is a value of the token. The set of
all colors is de�ned as C. This color value must be contained in one of the
color sets de�ned for the net, where set of all color sets is de�ned as Σ ⊆ 2C.

In the PNML standard used in the MCC competition [13], di�erent types
of colors are de�ned. The di�erent types of colors are neutral colors, non-
ordered colors, and ordered colors [4]. Color types can also be combined in
products, which are also a color type, e.g. assume we have colors a ∈ A and
b ∈ B, then (a, b) ∈ A×B, which is also a color.

These types are de�ned in the PNML as the data types listed below. First
we de�ne three basic color types, and lastly we de�ne a compound color type
called product colors.

Dots. This type is the neutral color, equalling the tokens in a regular Petri
net. The dot color type is as such always de�ned as dot = {•}.

Finite enumerations. This type de�nes a �nite set of user de�ned con-
stants with no order. E.g. if we wanted to de�ne a Boolean-like color type,
where the constant values have no relation, such as the type {true, false}.
This color type can then be de�ned as any �nite set.

Cyclic enumerations. This type is an extension of the �nite enumeration.
It extends the �nite enumerations by adding an order, and in turn a successor
and predecessor function for each constant in the set, named Succ and Pred,
respectively. Such as a set of age groups, e.g.

(baby, teenager, youngAdult, grownUp, pensioner)

where each color is preceded by another, and the successor of a pensioner is
a baby.

In order to be able to evaluate orders using operators such as<, we assume
the order is as the set is de�ned, e.g. in the example above the smallest
element is baby, i.e. baby < teenager, and the largest element is pensioner,
i.e. grownUp < pensioner, but note that pensioner ≮ baby. This is an
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implication of the order and is not necessarily related to the successor or
predecessor functions.

As this color type requires a �nite set, a successor function, and a prede-
cessor function, cyclic enumerations are de�ned as a tuple (A, Succ, Pred),
where A is a �nite set.

Range of integers. This type is used to represent numbered colors, which
gives a natural ordering of the colors, and thereby specializes cyclic enu-
merations, by only allowing integer colors. E.g. the integer range 4 . . . 9,
corresponding to the color type [4, 5, 6, 7, 8, 9].

Since this is a specialization of cyclic enumerations, it is still de�ned as
a tuple ([a, b], Succ, Pred), where a and b are the lower and upper bound,
respectively. In this specialization Succ and Pred is always de�ned as:

Succ(x) =

{
x+ 1, if a ≤ x < b

a, if x = b
Pred(x) =

{
x− 1, if a < x ≤ b

b, if x = a

Product colors. This type is created be combining other colors. These
colors are also called domains, and consist of the Cartesian product of all
the constituent colors, i.e. T1 × · · · × Tn is a domain if T1, · · · , Tn ∈ Σ, and
then T1 × · · · × Tn ∈ Σ such that if c1 ∈ T1, · · · , cn ∈ Tn then (c1, · · · , cn) ∈
T1 × · · · × Tn.

3.1.1 Variables, Types, and Bindings

In the following sections, we de�ne arc- and guard expressions. In these
expressions we need to de�ne variables and types. From this point on the
type of a color will no longer refer to whether it is ordered, non-ordered, or
neutral, but rather the color set a given color belongs to.

The expressions are described in more detail in the following subsections.
They have no side-e�ects and the variables, denoted by v, in them are bound
to values, instead of assigning values to them, like in functional programming
languages. The set of all variables is denoted by V ar. These variables have
a type, meaning that the value bound to them must be one of the colors in
the color type. The type of a variable is a function Type : V ar → Σ.

As mentioned, variables need bindings. The set of all bindings is denoted
by B, and a binding b ∈ B is a function b : V ar → C, such that b(v) ∈
Type(v). The binding of a set of variables V ar = {v1, v2, . . . , vn} is denoted
by b = 〈v1 = c1, v2 = c2, . . . , vn = cn〉, and it is required that ci ∈ Type(vi)
for each variable vi ∈ V ar.
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3.2 Color Expressions

The color expression of τ ∈ T, where T is the set of all arc expression, is
de�ned as:

τ ::= σ | (τ, · · · , τ)

σ ::= • | constant | var | σ++ | σ−−

Where • is the neutral color type named dot, constant is one of the
allowed colors of the associated place (see Section 3.5), var ∈ V ar is a
variable which represents one of the allowed colors of the associated place,
(τ, · · · , τ) is a product color de�ning the color consisting of the individual
colors de�ned in the expression, and σ++ and σ−− are the successor and
predecessor, respectively, of the color represented by σ. The successor and
predecessor are only available when the color type allows it, since not all
PNML data types support them (see Section 3.1).

3.2.1 Semantics

To evaluate τ expressions in a given binding we de�ne the function: JK :
T × B → C. This function is used to evaluate a color sub-expression, and
can thusly be applied recursively. The function takes a color sub-expression
and a binding, and returns a color.

De�nition 7. (τ-semantics)
J(•)〈b〉K = • (neutral-color)
J(constant)〈b〉K = constant (constant)
J(var)〈. . . , var = c, . . .〉K = c (variable)
J(σ++)〈b〉K = Succ(J(σ)〈b〉K) (successor)
J(σ−−)〈b〉K = Pred(J(σ)〈b〉K) (predecessor)
J((τ, · · · , τ))〈b〉K = (J(τ)〈b〉K, · · · , J(τ)〈b〉K) (product)

An example of a color expression could be (x++, y), which denotes the
product color, consisting of the successor of variable x, and the variable y. We
can access the variables in the expression by the function Var((x++, y)) =
{x, y}. Then to �nd the type of both x and y, we can use the function
Type(x) = {1, 2, 3} and Type(y) = {4, 5, 6}. With this knowledge we can
now evaluate the expression under some binding, such as J(x+ +, y)〈x =
2, y = 6〉K = (3, 6).

9



3.3 Guard Expressions

The set of all guard expressions is de�ned as Γ, and a guard expression follows
the following syntax:

γ ::= true | false | ¬γ | γ1∨γ2 | γ1∧γ2 | γ1 → γ2 | γ1 ↔ γ2 | γ1 xor γ2 | τ1 ./ τ2

Where ./ is one of the allowed comparison operators, i.e. <, ≤, >, ≥, =,
and 6=.

3.3.1 Semantics

All guard expressions with a given binding evaluate to a Boolean value of
either true or false. To evaluate a guard expression we de�ne the function JK :
Γ×B→ {true, false}. This evaluation is later used for determining whether
a given binding satis�es the guard expression. The function is de�ned as
following:

De�nition 8. (Guard semantics)
J(¬γ)〈b〉K = ¬J(γ)〈b〉K (negation)
J(γ1 ∨ γ2)〈b〉K = J(γ1)〈b〉K ∨ J(γ2)〈b〉K (or)
J(γ1 ∧ γ2)〈b〉K = J(γ1)〈b〉K ∧ J(γ2)〈b〉K (and)
J(γ1 → γ2)〈b〉K = J(γ1)〈b〉K→ J(γ2)〈b〉K (implication)
J(γ1 ↔ γ2)〈b〉K = J(γ1)〈b〉K↔ J(γ2)〈b〉K (bi-implication)
J(γ1 xor γ2)〈b〉K = J(γ1)〈b〉K xorJ(γ2)〈b〉K (xor)
J(τ1 ./ τ2)〈b〉K = J(τ1)〈b〉K ./ J(τ2)〈b〉K (comparison)

An example of a guard expression g could be (a < 4 ∧ a+ + > b), where
Var(g) = {a, b}. If we have that Type(a) = Type(b) = {1, 2, 3, 4}, then we
can evaluate this expression with a binding such as Jg〈a = 3, b = 3〉K = true.

3.4 Arc Expressions

The set of all arc expressions is de�ned as ∆, and an arc expression follows
the following syntax:

δ ::= n′(τ) | n′(σ.all) | δ ] δ | δ \ δ | n ∗ δ

Where n ∈ N, τ is a color expression, and σ ∈ Σ.
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3.4.1 Semantics

To describe the semantics for arc expressions, we �rst need to de�ne the
function: JK : ∆ × B → CMS, which given an arc expression and a binding,
returns a multi-set over colors in C.

De�nition 9. (Arc semantics)
J(n′(τ))〈b〉K = n′(J(τ)〈b〉K) (number-of)
J(n′(ρ.all))〈b〉K =

∑
c∈ρJ(n

′(c))〈b〉K (all)

J(δ1 ] δ2)〈b〉K = J(δ1)〈b〉K ] J(δ2)〈b〉K (sum)
J(δ1 \ δ2)〈b〉K = J(δ1)〈b〉K \ J(δ2)〈b〉K (subtraction)
J(n ∗ δ)〈b〉K = n ∗ J(δ)〈b〉K (scalar-product)

To give an example of an arc expression, we have the expression a de�ned
as 1′(x)+2′(3). In this expression, the variables are de�ned as Var(a) = {x}.
We then have Type(x) = {1, 2, 3}. This could then be evaluated under a
binding such that Ja〈x = 1〉K = 1′(1) + 2′(3).

3.5 De�nition of Colored Petri Nets with Inhibitor Arcs

In this subsection we de�ne colored Petri nets with inhibitor arcs, using the
concepts described until now.

De�nition 10. (CPN)
A Colored Petri Net with Inhibitor Arcs is a nine tuple CPN =
(Σ, P, T, C,G, F,W, I,W I) where:

1. Σ is a �nite set of �nite color sets,

2. P is a �nite set of places,

3. T is a �nite set of transitions,

4. C is a color function, de�ned from P into Σ, i.e. C : P → Σ,

5. G is a guard function, i.e. G : T → Γ,

6. F ⊆ (P × T ) ∪ (T × P ) is the set of arcs,

7. W is an arc expression function, i.e. W : F → ∆,

8. I ⊆ P × T is the set of inhibitor arcs, and

9. W I is an inhibitor arc expression function, i.e. W I : I → ∆.
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Figure 2: Dining philosophers modelled in a colored Petri net.

pthink(1
′(Phil.all))

+pfork(1
′(Phil.all))

· · ·

ttakeRight〈· · · 〉

· · ·

ttakeLeft〈x = {1, 2, 3}〉

pthink(1
′(1) + 1′(2) + 1′(3))

+pfork(1
′(1) + 1′(2) + 1′(4))

+pleft(1
′(4))

ttakeLeft〈x = 4〉

· · ·

ttakeRight〈· · · 〉

· · ·

ttakeLeft〈· · · 〉

· · ·
ttakeOther1〈x = 4〉

An example of a colored Petri net can be found in Figure 2. A fragment of
the LTS for this, can be seen above. We go more in detail with the behavior
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of this later. This net is a representation of the dining philosophers, which
illustrates an inappropriate use of shared resources, generating deadlocks.
This model is also a good example of a Petri net, which is easy to represent
in a colored Petri net, but explodes in net size when modelled in uncolored
Petri nets.

If this net has to be represented as an uncolored Petri net, we would have
to represent each place as four individual places. We will see the general
form of this in Section 3.8.

We now de�ne the behavior of colored Petri nets with inhibitor arcs,
before continuing with this example.

3.6 Dynamic behavior of Colored Petri Nets

First we need to de�ne the function Var(t) which returns the set of variables
used in either the guard expression or in the arc expression of any of the
connected arcs, i.e.

∀t ∈ T : V ar(t) = {v | v ∈ V ar(G(t))

∨ ∃(p, t) ∈ F : v ∈ V ar(W (p, t))

∨ ∃(t, p) ∈ F : v ∈ V ar(W (t, p))}

De�nition 11. (Bindings)
For a transition t ∈ T with variables Var(t) = {v1, v2, . . . , vn} we de�ne the
binding type BT (t):

BT (t) = Type(v1)× Type(v2)× . . .× Type(vn)

Also we de�ne the set of all bindings B(t):

B(t) = {(c1, c2, . . . , cn) ∈ BT (t) | G(t)〈v1 = c1, v2 = c2, . . . , vn = cn〉}

Which is the set of all bindings for a transition, that satisfy the guard of
that transition, under the binding.

Next we need to de�ne markings and steps of a colored Petri net:

De�nition 12. (Marking)
A marking of a colored Petri net is a function M : P → C(p)MS where
p ∈ P .

We de�ne the set of all markings as M.
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Before de�ning enabledness of a transition, we must �rst introduce the
function Inhib∞. This function takes a multiset as input, and returns a
multiset. This function is de�ned for all x in the input b:

Inhib∞(b)(x) =

{
∞, if b(x) = 0

b(x) otherwise.

The resulting multiset thus has in�nite members of the types where it
previously had none.

De�nition 13. (Enabledness)
A transition t ∈ T is enabled under binding b ∈ B(t) in a marking M i�
the following properties are satis�ed:

1. ∀(p, t) ∈ F : M(p) ≥ W (p, t)〈b〉

2. ∀(p, t) ∈ I : M(p) < Inhib∞(W I(p, t)〈b〉)

Note that in De�nition 13 that the marking multiset of place p has to be
a subset of the multiset de�ned by the output of the function Inhib∞. This
means that if the marking of place p contains at least the number of tokens
of a given color than de�ned in the inhibitor arc weight function, then this
inhibitor arc inhibits the transition. In [1] and [5] they use inclusion of the
multiset instead of subset. Using the subset allows for better compatibility
with unfolding to uncolored Petri nets, as we will see in Section 3.8.

De�nition 14. (Transition �ring)
When a transition t ∈ T under binding b ∈ B(t) is enabled in a marking M1

it may �re, changing the marking M1 to marking M2, which is de�ned by:

∀p ∈ P : M2(p) = (M1(p) \W (p, t)〈b〉) ]W (t, p)〈b〉

M2 is said to be directly reachable from M1 by the �ring of transition t,
denoted by:

M1
t→M2.

Looking back at the net in Figure 2, we have a place for thinking philoso-
phers in place pthink, and a place pfork for storing forks. Both of these places
have the color type Phil , where each color represents a dining philosopher. In
place pfork we do not de�ne a new color type, since there exists one for each
philosopher, and we thereby refer to the fork to the right of a philosopher x
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pstart

pid

1′(1) + 1′(2) + 1′(3)

p1

pid

pc1

pid

p2

pid

pc2pid

3′(1) + 4′(2) + 5′(3)

phalt

pid

t1
1′(x) 1′(x)

1′(x)

t2
1′(x)

1′(x)

1′(x)

t3

1′(x) 1′(x)

1′(x)
t4

1′(x)
1′(x)

1′(x)

Figure 3: Colored Petri net simulating two-counter Minsky machine, calcu-
lating multiple of twos, in parallel

as fork x, and the fork on the left is x−−. A thinking philosopher can now
pick up either the fork to his right, or he can pick up the fork on his left,
where they are located in pfork. When a philosopher has one fork, then he
can pick up the other fork, if the fork is available. When he is done eating,
he can return both of the forks and return to thinking.
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pstart(1
′(1) + 1′(2) + 1′(3))

+pc2(3
′(1) + 4′(2) + 5′(3))

· · ·

t1〈x = 3〉

· · ·

t1〈x = 2〉

pstart(1
′(2) + 1′(3))

+p1(1
′(1))

+pc1(1
′(1))

+pc2(3
′(1) + 4′(2) + 5′(3))

t1〈x = 1〉

· · ·

t1〈· · · 〉

pstart(1
′(2) + 1′(3))

+p2(1
′(1))

+pc1(2
′(1))

+pc2(3
′(1) + 4′(2) + 5′(3))

t2〈x = 1〉

· · ·

t1〈· · · 〉

In Figure 3 we see another example of a colored Petri net where this
includes inhibitor arcs. A fragment of the LTS can be seen above. This net
represents a two-counter Minsky machine, running the following program:

Listing 1: Program running in Figure 3

1 c1 := c1 + 1; goto 2 /* p start */

2 c1 := c1 + 1; goto 3 /* p 1 */

3 if c2 > 0 then (c2 := c2 - 1; goto 1) else goto 4 /* p 2 */

4 HALT /* p halt */

The net in Figure 3 is running the program in three concurrent processes,
where they each have di�erent inputs, i.e. the process with pid 1 is running
with the input 3, while process 2 is running with the input 4, and process 3
with input 5. Since we have added inhibitor arcs, we now have the ability
to model any Turing complete computation, such as a net like this. We
have that Type(pid) = {1, 2, 3}, which represents the process id of each
process. Then we have the program counter represented by a token in the
place corresponding to the code line (place names seen in the comments),
and the two registers are represented by place pc1 and pc2 , and the number
of tokens of a given process id corresponds to the register of that process.
As such, each process will have its input in pc2 and its output in pc1 . An
example path could be �ring transition t1〈x = 1〉, transitioning the marking
in pstart to 1′(2) + 1′(3) and adding a 1′(1) token to both p1 and pc1 , then
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�ring transition t2〈x = 1〉, adding another token to place pc1 , and moving
the program counter token to p2. Now we can only �re transition t3〈x = 1〉,
t1〈x = 2〉, or t1〈x = 3〉, since we still have tokens of color 1 in pc1 , which
inhibits t4〈x = 1〉. We can then �re transition t3〈x = 1〉, �nishing the �rst
loop of adding two tokens to the pc1 counter. This loop can be repeated three
times for pid 1, before ending in phalt.

3.7 Querying Colored Petri Nets

In this thesis, we are using CTL [2] queries to query the colored Petri nets,
but we do not go in-depth with CTL semantics. The CTL syntax used in
this thesis is as follows:

ϕ ::= α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | AXϕ | EXϕ
| AFϕ | EFϕ | AGϕ | EGϕ | A(ϕ1Uϕ2) | E(ϕ1Uϕ2)

The set of all ϕ is denoted by CTL.
We will now have a closer look at the atomic propositions α used in the

CTL queries on colored Petri nets. An atomic proposition over a colored Petri
net, compares the number of tokens in a given place to either a constant
integer number, or to another place. In the MCC [13] competition these
comparisons are only on the total amount of tokens in a place, regardless of
the colors of the tokens, and thus it is the type of comparisons we will focus
on in this thesis. We are also able to ask whether a transition is �reable.

The syntax of these atomic propositions is:

α ::= true | false | β | t | deadlock

β ::= v1 < v2 | v1 ≤ v2 | v1 > v2 | v1 ≥ v2 | v1 = v2 | v1 6= v2

v ::= p | n | v1 + v2 | v1 − v2 | v1 · v2

Where p is the name of a place, n is an integer constant, and t is transition
�reability in a given marking. The set of all v expressions is denoted by V ,
and the set of all α is denoted by A.

In order to de�ne the semantics, we must �rst establish some functions.
The �rst is JKM : V ×M → N0. The second function is JKM : A ×M →
{true, false}.

The semantics for the atomic propositions are de�ned as following:
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JpKM = |M(p)| (place)
JnKM = n (constant)
Jv1 + v2KM = Jv1KM + Jv2KM (addition)
Jv1 − v2KM = Jv1KM − Jv2KM (subtraction)
Jv1 · v2KM = Jv1KM · Jv2KM (multiplication)

Jv1 < v2KM = Jv1KM < Jv2KM (less)
Jv1 ≤ v2KM = Jv1KM ≤ Jv2KM (less-eq)
Jv1 > v2KM = Jv1KM > Jv2KM (greater)
Jv1 ≥ v2KM = Jv1KM ≥ Jv2KM (greater-eq)
Jv1 = v2KM = Jv1KM = Jv2KM (eq)
Jv1 6= v2KM = Jv1KM 6= Jv2KM (not-eq)

JtKM =

true,
if t is enabled for some

binding in marking M

false, otherwise

(�reability)

3.8 Unfolding of Colored Petri Nets

In this section we describe the process of unfolding a colored Petri net with
inhibitor arcs into an uncolored Petri net with inhibitor arcs. We start by
�rst introducing the de�nition of the unfolding, followed by a theorem of
bisimulation and a proof of this theorem.

De�nition 15. (Unfolding)
Let N = (Σ, P, T, C,G, F,W, I,W I) be a colored Petri net. The unfolded net
is a Petri net Nu = (Pu, Tu, Fu,Wu, Iu,W

I
u ), obtained by the unfolding of N

such that:

1. Pu =
⋃
p∈P

⋃
c∈C(p)(p, c),

2. Tu =
⋃
t∈T

⋃
b∈B(t)(t, b),

3. Fu = {((p, c), (t, b)) ∈ Pu × Tu | (W (p, t)〈b〉)(c) > 0} ∪ {((t, b), (p, c)) ∈
Tu × Pu | (W (t, p)〈b〉)(c) > 0},

4. ∀((p, c), (t, b)) ∈ Fu ∩ (Pu×Tu) : Wu((p, c), (t, b)) = (W (p, t)〈b〉)(c) and
∀((t, b), (p, c)) ∈ Fu ∩ (Tu × Pu) : Wu((t, b), (p, c)) = (W (t, p)〈b〉)(c),

5. Iu = {((p, c), (t, b)) ∈ Pu × Tu | (W I(p, t)〈b〉)(c) > 0}, and

6. ∀((p, c), (t, b)) ∈ Iu : W I
u ((p, c), (t, b)) = (W I(p, t)〈b〉)(c).
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p(left,1) p(left,2) p(left,3) p(left,4)

· · ·· · · · · ·

t(takeLeft,x=1)

t(takeLeft,x=2)

t(takeLeft,x=3)

t(takeLeft,x=4)

t(takeOther1,x=4)

t(takeOther1,x=3)

t(takeOther1,x=2)

t(takeOther1,x=1)

Figure 4: Unfolded fragment of Figure 2.

In Figure 4 we see a fragment of the net in Figure 2. Here we show
the place pleft and the transitions ttakeLeft and ttakeOther1 unfolded. In this
fragment, we see that representing only one place and two transitions, has
more nodes than in the original net.

Next we show the equivalence between the colored Petri net and the
unfolded Petri net, starting with the de�nition of marking equivalence.

De�nition 16. (Marking equivalence)
Given marking M , we de�ne the function u : M→Mu such that:

u(M)((p, c)) = M(p)(c)

Theorem 1.
Let N be a colored Petri net and Nu the unfolded Petri net of N . IfM

t→M ′

under binding b, then u(M)
(t,b)→ u(M ′), and if u(M)

(t,b)→ u(M ′), thenM
t→M ′

under binding b.

Proof 1.
Assume M

t→M ′ under binding b in a colored Petri net N . Then let Nu be
the unfolded Petri net of N .

For each binding b ∈ B(t) for transition t in N , there exists a correspond-
ing transition (t, b) in Nu, as per de�nition 15. For each arc connected to
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a transition t in N , there exists a corresponding set of arcs to the transi-
tion (t, b) in Nu with corresponding weights, as per De�nition 15. We know
that transition (t, b) is enabled i� there is enough tokens in the marking of
each place to satisfy the in-going arcs, and that there is less tokens in the
marking of each place than the threshold de�ned for the connecting inhibitor
arc. Then �ring transition (t, b) in Nu will change marking u(M) to u(M ′),
where:

u(M ′)((p, c)) = u(M)((p, c))−Wu((p, c), (t, b)) +Wu((t, b), (p, c)) (1)

We know as per De�nition 15, that transition t is only enabled, if each
place connected by an inhibitor arc, has less tokens of the colors speci�ed in
the arc expression. Since u(M)((p, c)) = M(p)(c), and for all in-going arcs to
transition (t, b), Wu((p, c), (t, b)) = (W (p, t)〈b〉)(c) as per De�nition 15, and
for all out-going arcs from transition (t, b), Wu((t, b), (p, c)) = (W (t, p)〈b〉)(c)
also as per De�nition 15. Since:

M ′(p)(c) = M(p)(c)− (W (p, t)〈b〉)(c) + (W (t, p)〈b〉)(c) (2)

Then M ′(p)(c) = u(M ′)(p, c).

Assume u(M)
(t,b)→ u(M ′) in an unfolded Petri net Nu, unfolded from

a colored Petri net N . Then from De�nition 15 we know there exists a
transition t which can be �red under binding b. Given Equation (1) and
Equation (2), we �nd the relation u(M ′)(p, c) = M ′(p)(c), following the
same logic as before.

3.9 Translating Colored Petri Net Queries

Since we have shown that a colored Petri net N can be unfolded into a bisim-
ilar Petri net Nu, and we know that CTL queries can not distinguish between
bisimilar behavior [3], we just have to translate the atomic propositions to
the equivalent states in the unfolded Petri net Nu.

Since we only use total token count in places in our atomic propositions,
the same syntax and semantics can be used to express atomic propositions
over uncolored Petri nets.

In order to translate query ϕ, we have to de�ne the function unfold(ϕ) :
CTL→ CTL. The function is de�ned as:
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unfold(p) =
∑

c∈C(p)(p, c)

unfold(t) =
∨
b∈B(t)(t, b)

unfold(ϕ1 op ϕ2) = unfold(ϕ1) op unfold(ϕ2)
unfold(¬ϕ) = ¬unfold(ϕ)
unfold(AXϕ) = AXunfold(ϕ)
unfold(AFϕ) = AFunfold(ϕ)
unfold(AGϕ) = AGunfold(ϕ)
unfold(EXϕ) = EXunfold(ϕ)
unfold(EFϕ) = EFunfold(ϕ)
unfold(EGϕ) = EGunfold(ϕ)
unfold(A(ϕ1Uϕ2)) = A(unfold(ϕ1)Uunfold(ϕ2))
unfold(E(ϕ1Uϕ2)) = E(unfold(ϕ1)Uunfold(ϕ2))

Given this function we can now formulate the following theorem:

Theorem 2.
Given a colored Petri net N , a query ϕ, and an unfolded Petri net Nu then
N � ϕ i� Nu � unfold(ϕ).

Proof 2.
To prove Theorem 2 we know that the only di�erence between ϕ and unfold(ϕ)
is the case of p and t. Starting with p, the de�nition of p under a binding
M in a colored Petri net is |M(p)|. Since the de�nition of the cardinality of
that multiset is equal to the sum of all occurrences, we know that sum of all
occurrences in the unfolded net is

∑
c∈C(p)(p, c).

Next looking at t, we �nd that the �reability of t is true if it can �re
under some binding. Then in the unfolded net, we have bound each binding
to its own transition. Thus we just need to be able to �re at least one of
these bindings. This can be expressed as

∨
b∈B(t)(t, b).

Lastly we know that CTL cannot distinguish between bisimilar states [3],
and that we have only changed the atomic propositions in order for them to
be equivalent in the unfolded net, then by Theorem 1 we can conclude that
the CTL query ϕ is equivalent in the unfolded net.

4 CPN Overapproximation

In this section we show a method for overapproximating an answer for a
class of queries that can be queried on a colored Petri net. First we de�ne a
method for calculating the cardinality of an arc expression without evaluat-
ing it, which is used in a method for stripping a colored Petri net of its colors.
This method leaves us with a stripped uncolored Petri net. The method is
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de�ned thereafter. Next we de�ne the set of queries we can answer using a
stripped Petri net. Then we de�ne an algorithm for running the overapprox-
imation, which also shows which situations we can use the results and when
we cannot. Later, we present results from testing this method, and compare
the execution time of the solved queries to an engine which unfolds the net,
and then solves the queries for the unfolded net. Both these methods are
implemented in the tool verifypn [2] from the tool collection TAPAAL [6].

4.1 Arc Expression Cardinality

Before moving to the stripping of colored Petri nets, we must �rst de�ne a
way to �nd the cardinality of an arc expression without a binding. To do
this, we de�ne the partial function size : ∆ ↪→ N.

Given the arc expression syntax:

δ ::= n′(τ) | n′(σ.all) | δ1 ] δ2 | δ1 \ δ2 | n ∗ δ

We now de�ne the function as following:
size(n′(τ)) = n (size-number-of)
size(n′(σ.all)) = n ∗ |σ| (size-all)
size(δ1 ] δ2) = size(δ1) + size(δ2) (size-sum)
size(n ∗ δ) = n ∗ size(δ) (size-scalar)
The size function for δ1 \ δ2 is a little more complicated, as this actually

requires some knowledge of the binding, in order to correctly calculate the
size, since subtraction on multisets only subtracts elements that are already in
the multiset on the left hand side, thus not always being a direct subtraction
of the two constituents.

We can only de�ne the function for certain sub-expressions. This leads
to the following de�nition:

size(δ1 \ δ2) =

{
n ∗ |σ| −min(m,n), if δ1 ≡ n′(σ.all) ∧ δ2 ≡ m′(τ)

undefined otherwise.

If any sub-expression of the size function returns undefined , then they
return undefined .

Theorem 3.
For all δ ∈ ∆, if size(δ) is de�ned, then size(δ) = |δ〈b〉| for all bindings b.

Proof 3.
To prove Theorem 3, we use structural induction on δ. Here we have to

22



prove that Theorem 3 holds in 1) δ = n′(τ), 2) δ = n′(σ.all), 3) δ = δ1 ] δ2,
4) δ = n ∗ δ, and 5) δ = δ1 \ δ2. We now let b be a binding.

Starting with 1), the cardinality of the multiset from the expression of
δ〈b〉 is always n. Thus size(n′(τ)) = n = |n′(τ)〈b〉|. Looking at 2), we have
that |n′(σ.all)〈b〉| = n ∗ |σ| = size(n′(σ.all)).

Moving on to 3), then we have that if size(δ1) = |δ1〈b〉| and size(δ2) =
|δ2〈b〉|, then size(δ1 ] δ2) = size(δ1) + size(δ2).

Next, we look at 4), where we see that if size(δ) = |δ〈b〉|, then size(n∗δ) =
n ∗ size(δ) = |n ∗ δ〈b〉|.

Lastly, we have 5). Here it is only de�ned, if δ1 = n′(σ.all) and δ2 = m′(τ).
As such, size(n′(σ.all)\m′(τ)) = n∗|σ〈b〉|−min(m,n) = |n′(σ.all)\m′(τ)〈b〉|.
This is because when doing a multiset subtraction, we can only subtract the
amount of elements, that is already in the multiset, hence we can at most
subtract n elements, of each type from the multiset.

4.2 Stripping Colored Petri Nets

For our overapproximation algorithm, we strip the net of its colors. The
stripped net has the same places, transitions, and arcs, as the original col-
ored Petri net. All the transitions have their guards removed, which allows
for more behavior than the colored Petri net, hence this being an overap-
proximation. In addition to stripping the guards, we also strip the colors
from arc expressions, by using the cardinality of the multiset generated by
them. We can do this because no matter the binding of an arc expression,
the cardinality is always the same.

A stripped net can then be de�ned as:

De�nition 17. (Stripping)
Given a colored Petri netN = (Σ, P, T, C,G, F,W, I,W I) such that for all arc
expressions size is de�ned, then a stripped Petri netNS = (P S, T S, F S,W S, IS,W IS)
is de�ned by:

1. P S = P

2. T S = T

3. F S = F

4. ∀(p, t) ∈ F ∩P ×T : W S(p, t) = size(W (p, t)) and ∀(t, p) ∈ F ∩T ×P :
W S(t, p) = size(W (t, p))

5. IS = I
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6. ∀(p, t) ∈ I : W IS(p, t) = size(W I(p, t))

We can then de�ne the following de�nition for marking equivalence:

De�nition 18.
Given a CPN N with markingM , and a stripped Petri net NS with marking
MS, we de�ne M ≡MS i� for all p ∈ P holds MS(p) = |M(p)|.

The advantages of stripping versus unfolding is the vastly reduced states-
pace compared to most unfolded Petri nets. This results in faster veri�cation
times. The problem however is the number of queries that returns inconclu-
sive answers using stripped Petri nets.

4.3 Approximation Preserving Logic

Since the stripped Petri net can only answer a subset of queries, we need
to de�ne the subset of queries that can be answered by the stripped Petri
net. In this subsection we assume that all ϕ queries have been normalized
by the function pushNeg(ϕ), which normalizes the logic with the use of De
Morgan's law, pushing the negations to the atomic predicates.

First we de�ne the Approximation Preserving Logic (APL):

ψ ::= true | false | t | ¬deadlock | β | ¬β | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

β ::= v1 < v2 | v1 ≤ v2 | v1 > v2 | v1 ≥ v2 | v1 = v2 | v1 6= v2

v ::= p | n | v1 + v2 | v1 − v2 | v1 · v2

With this logic we seek to capture as many aspects from the colored
Petri net as possible, while preserving correctness. Correctness in this case
is de�ned as being able to simulate the same behavior in both nets. As such
we see that β, t, and deadlock are as de�ned in Subsection 3.7, but note
that we do not allow ¬t and deadlock. These queries cannot be answered
faithfully by the stripped net. An example of a net that would not give a
correct answer to a query like EF¬t can be seen in Figure 5. Here we see
that in this case the query would evaluate to true in the colored Petri net,
but not in the stripped net. This example also shows us that if there is a
deadlock in the colored Petri net, it is not necessarily present in the stripped
net.

We can now de�ne set of all expressions as APL. We then see that
APL ⊂ CTL.
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(a) Colored Petri net
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(b) Stripped Petri net

Figure 5: Counter example of EF¬t.

Given this logic we can form the following lemma:

Lemma 1.
Let N = (Σ, P, T, C,G, F,W, I,W I) where I = ∅ with marking M , NS a
stripped net of N with marking MS, let M ≡ MS, and let ψ ∈ APL. If
M � ψ then MS � ψ.

Proof 4.
We can show this implication by structural induction on ψ. Thus we need to
show that Lemma 1 holds in 1) ψ = true, 2) ψ = false, 3) ψ = β, 4) ψ = ¬β,
5) ψ = t, 6) ψ = ¬deadlock, 7) ψ = ψ1 ∧ ψ2, and 8) ψ = ψ1 ∨ ψ2.

When looking at 1) and 2), we see that these cases are trivial. Moving
on to 3), we have several expressions in β, but we only need to look at one of
the subexpressions, i.e. p, which then renders the rest of the subexpressions,
i.e. p, which then renders the rest of the subexpressions trivial. In order to
show that JpKM = JpKMS , we look at the how JpKM and JpKMS is de�ned. We
see that JpKM = |M(p)| and JpKMS = MS(p), then looking at De�nition 1 we
�nd that MS(p) = |M(p)|, hence the lemma holds for 3). The same holds
for ¬β.

In 5), we assume that M � t, then from De�nition 13 we know that
in order for this transition to be enabled, then we satisfy the �rst property
∀(p, t) ∈ F : M(p) ≥ W (p, t)〈b〉. Since we do not have any inhibitor arcs we
always satisfy the second property. For uncolored Petri nets, we know from
De�nition 18, that since MS ≡M , then MS(p) = |M(p)|. From De�nition 3
we know that t is enabled if ∀(p, t) ∈ F : MS(p) ≥ W S((p, t)). We also know
from De�nition 17 that each arc has the same weight in the stripped net, as
the cardinality of the arc expression in the colored net. Thus we know that
if M � t, then MS � t.

For the query type 6), we know that the de�nition for a deadlock is that
there is no enabled transitions. We then assume that M � ¬deadlock, then
we know that there must exist a transition that is enabled in the colored
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Petri net under markingM . From 5), we know that if a transition is enabled
under M , then the corresponding transition is enabled under MS. Therefore
we know that if M � ¬deadlock, then MS � ¬deadlock.

For 7) we have that M � ψ1 ∧ ψ2, which implies M � ψ1 and M � ψ2.
Then following the structural induction, we know that MS � ψ1 and that
MS � ψ2. This implies that MS � ψ1 ∧ ψ2.

Lastly 8) we see thatM � ψ1∨ψ2, which implies thatM � ψ1 orM � ψ2.
Then following the structural induction, we know that either MS � ψ1 or
MS � ψ2. From this, we imply MS � ψ1 ∨ ψ2.

Now given Lemma 1 and De�nition 18, we come to the last lemma:

Lemma 2.
Let N = (Σ, P, T, C,G, F,W, I,W I) where I = ∅ with marking M0, N

S a
stripped net of N with marking MS

0 , then let M0 ≡ MS
0 . If M0 →∗ M and

M � ψ, then MS
0 →∗ MS and MS � ψ.

This holds because any given marking we can transition to, from the
initial marking in a colored Petri net, we can transition to in an equivalent
marking in the stripped Petri net, but not the other way around.

Theorem 4.
Let N = (Σ, P, T, C,G, F,W, I,W I) where I = ∅, with marking M0, and let
NS be a stripped Petri net with an equivalent marking MS

0 . If M0 � EFψ,
then MS

0 � EFψ.

Now we can express EFψ, but we still lack AGψ. This can also be
expressed as ¬EF¬ψ. If we normalize ¬ψ, into ψ′, and ψ′ ∈ APL, then
following Theorem 4 we know that EFψ′ is a query we can answer using the
stripped net. Since we negate EF , we must also negate which answers are
correct, and which are unde�ned. By this reduction, we can also answer AG
queries.

4.4 Interpreting The Results

Now we describe the pseudo code for how the overapproximation algorithm
works. This algorithm takes a colored Petri net, a marking, and a query
as input. The algorithm then returns whether the marking M satis�es the
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query ϕ or not, or returns inconclusive.

Data: CPN N = (Σ, P, T, C,G, F,W, I,W I), Marking M , Query ϕ
Result: M � ϕ, M 2 ϕ, or Inconclusive result
if ϕ is not EFϕ′ or AGϕ′ then

return Inconclusive result ;
end
if N contains arc expression with unde�ned size, or I 6= ∅ then

return Inconclusive result ;
end
NS := strip N ;
MS := strip marking M ;
if ϕ ≡ EFϕ′ then

ψ := pushNeg(ϕ′);
if ψ /∈ APL or MS � EFψ then

return Inconclusive result ;
end
return false;

end
if ϕ ≡ AGϕ′ then

ψ := pushNeg(¬ϕ′);
if ψ /∈ APL or MS � EFψ then

return Inconclusive result ;
end
return true;

end
Algorithm 1: Interpreting query results

As we see from Algorithm 1, the class of queries we are able to answer
conclusively is limited to Reachability queries, i.e. a reduced set of CTL
queries, and only queries that do not contain deadlock nor negated �reability
queries after being normalized.

5 Implementation

In this section, we discuss the implementation done in the tool verifypn [2].
The source code can be found at https://launchpad.net/verifypn, where
the code is part of the release version. In this tool, we extended the parser to
accommodate the additional extensions for colored Petri nets in the PNML
standard [16]. As the standard currently has no de�nition of inhibitor arcs
for colored Petri nets, this extension of colored Petri nets has not been imple-
mented in the tool. Additionally we implemented the functionality to unfold
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the new colored Petri net structure into the existing representation of Petri
nets in the engine, along with the ability to run the overapproximation al-
gorithm. For the remainder of this section, we lay out some of the design
decisions.

5.1 Data Structures

As the design of the parsing of the PNML standard is mostly dependent
on the data structures used for representing the colored Petri net, we only
discuss these.

When having to represent colors, we are met with the challenge of product
colors, which can be used as colors. To overcome this, we used the composite
pattern. The real challenge was how to compare two product colors, as we
had to choose between spacial complexity and temporal complexity, in order
to either look up product colors in a sorted map, or compute the relations.
In the end we chose to compute the relations, as the spacial consumption of
some product color maps exploded.

As we see in De�nition 11, we needed to compute the set of all bindings
for each transition t, as this is needed for computing the unfolding of both
transitions, and arcs. This structure is currently implemented as a list of
all bindings that satisfy the guard expression of the transition t. The disad-
vantage of this method, is that each binding also contain invariant variables,
which do not have any impact on the result of the evaluation of the guard
expression. As such, we still store each combination of bindings, over all
variables. This reduces the temporal complexity, but as mentioned above,
this can also explode in spacial complexity. Thus it could be a possibility to
test other data structures, which simplify spacial complexity at the cost of
temporal complexity.

6 Experiments

In this section, we describe the two experiments we did, and show the testing
results of the implementations. First we compare the unfolding speed of the
implementation build into verifypn, and the unfolding speed of the implemen-
tation in the MCC tool. After this, we compare the number of queries we are
able to answer using the overapproximation algorithm, compared to unfold-
ing a net, and then verifying the unfolded net. We also test how running the
overapproximation algorithm and unfolding with veri�cation, consecutively
compares to only running veri�cation on an unfolded net.
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6.1 Experimental Setup

All tests in this thesis were conducted on an AMD Opeteron 6376 proces-
sor running single-threaded with a memory limit of 15 GB, and a timeout
after 20 minutes for each run. All experiments were run on the 136 nets
in the MCC'2017 competition [13]. The version used in all the experiments
can be found at https://code.launchpad.net/~verifypn-cpn/verifypn/
andreas-exam.

6.2 Unfolding

In this subsection we to look at the results of the unfolding experiments. The
full results of this experiment can be found in Appendix A and Appendix B.
In these tables OOM is short for Out Of Memory, and TO is short for Timed
Out.

6.2.1 Setup

The unfolding experiment consisted of two parts. The �rst part was running
the modi�ed version of verifypn, which can be found at the link mentioned
in Subsection 6.1, which allowed us to skip the veri�cation engine and only
print the unfolded net. Here we collected the time it took for the unfolding,
from the time the engine had parsed the input �le, to the time we had an
in-memory representation of the unfolded net. We also timed the whole
execution. The second part was comprised of running a version of MCC
containing a timer that timed the execution of the unfolding algorithm, which
was also timed from the point it had parsed the input, to it having an internal
representation of the unfolded net. This time was collected, along with the
total execution time. We ran this tool with the option to output for the
LoLA format [17]. Both of these parts were set to output to /dev/null in
order to avoid introducing drive bottlenecks.

6.2.2 Results

If we look at the average unfolding time of all the nets in the MCC'2017
competition, we �nd that our implementation takes on average 3.680 seconds,
while the MCC tool takes on average 2.580 seconds. We see that in most
nets, the MCC tool is faster than our implementation in the unfolding part
of the run time. Especially in the Philosophers-COL nets we fall behind, as
theMCC implementation has a focus on detecting nets with a single variable
used with a circular symmetry.
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Though the MCC tool is faster at unfolding it lacks behind in total run
time, as this tool transforms the unfolded net into a string in either a hlnet
format or a LoLA format. This procedure is very costly, and in six cases
results in run times 300 seconds slower than in our implementation. In
Appendix B, we �nd a table that shows the total time it took to �nish each
program running on each net. If we look at this table, we see that our
implementation has a shorter run time in every net except CSRepetitions-
COL-02, where the di�erence is less than 40 milliseconds. Since the verifypn
tool supports to output the resulting Petri net, we ran it with this option,
but since this tool does not natively support writing the output net without
veri�cation, we modi�ed it to do this. Looking at a net like SharedMemory-
COL-000200, we see that our unfolding time is 2.078 seconds, while MCC
does it in 0.64 seconds, which is almost 1.5 seconds faster, but we �nish
writing the result in 11.63 seconds, whereas MCC �nishes writing the output
in 1105.57 seconds. Looking at Philosophers-COL-010000, which MCC is
optimized for, we �nd that our implementation unfolds in 11.74 seconds,
with a total run time of 16.08 seconds, where MCC unfolds in 2.32 seconds,
but has a total run time of 171.68 seconds. There were also 11 executions were
both tools unfolded the nets, but only our implementation �nished within
the time limit.

6.3 Overapproximation

In this subsection we describe at the setup of the overapproximation experi-
ments, and look at the results.

6.3.1 Setup

The overapproximation experiment involved running three setups. For each
setup we ran 32 queries for each net, which were from the same competi-
tion as the nets, where the queries were split evenly between cardinality and
�reability queries, i.e. the categories ReachabilityCardinality and Reachabili-
tyFireability in the competition. We did not include queries from the compe-
tition categories ReachabilityDeadlock, CTLCardinality, and CTLFireability
as these would not be able to be solved by the overapproximation algorithm,
unless some of the CTL queries happened to be belong the set APL. In
the �rst setup, denoted Unfolded, we ran our implementation of unfolding,
and then using the existing veri�cation engine, we ran the veri�cation on
the unfolded net. This was done for each query for each net. We then col-
lected the amount of queries that we were able to verify. The second setup,
denoted Overapproximation, consisted of running the overapproximation al-
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gorithm on every query for each net. We collected the number of queries we
were able to verify using this algorithm. We also noted how many nets were
exclusively solved by this setup in comparison to the Unfolded setup and
how many were exclusively solved by the Unfolded setup in comparison to
this setup. The third and last setup, denoted Combined, ran a script which
�rst tried to run the overapproximation algorithm, and in case this returned
inconclusive, then it ran the unfolding algorithm followed by veri�cation of
the unfolded net. This setup was also tested on each query for each net. We
then collected the number of queries solved by this method.

6.3.2 Results

As seen from the algorithm in Section 4.4, there are some nets and some
queries that we are not able to answer using the overapproximation algorithm.

ReachabilityCardinality <0.1s <1s <5s <30s <60s <20m
Unique Unfolded 165 372 553 762 813 963

Overapproximation 628 406 282 206 199 193
Total Unfolded 436 882 1196 1490 1548 1704

Overapproximation 899 916 925 934 934 934
Combined 1046 1295 1486 1700 1749 1895

Table 1: Runtime brackets for Unfolded, Overapproximation, and Combined
setups, with uniquely solved queries compared between Unfolded and Over-
approximation, and total solved queries for all setups, using ReachabilityCar-
dinality queries.

In Table 1 we see that the overapproximation algorithm �nishes all the
nets that it can answer within at most 30 seconds, and that within the
�rst 0.1 second it has uniquely solved 628 queries, that is not solved by the
unfolded veri�cation engine in that time brackets. Though we see that the
longer we wait the amount of answers found solely by the overapproximation
is decreasing. When looking at the combined method, we see that this scales
very closely with the amount of unique answers from the overapproximation
algorithm, in comparison to the total amount of nets veri�ed with only the
unfolded veri�cation.

Looking at Table 2, we see that the tendencies of Table 1 are also visible
here. Though if we look at the less than �ve seconds bracket, then we see
that we answered more queries with the combined script, than we did if we
add the total unfolded �eld with the unique overapproximation �eld, and
this is due to the runtime variance between runs.
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ReachabilityFireability <0.1s <1s <5s <30s <60s <20m
Unique Unfolded 187 307 438 690 1209 1433

Overapproximation 110 103 93 85 72 68
Total Unfolded 206 334 475 735 1267 1495

Overapproximation 129 130 130 130 130 130
Combined 304 437 578 828 1327 1550

Table 2: Runtime brackets for Unfolded, Overapproximation, and Combined
setups, with uniquely solved queries compared between Unfolded and Over-
approximation, and total solved queries for all setups, using Reachability-
Fireability queries.

We also see that the number of queries that can be solved by the over-
approximation algorithm is 804 queries less than for ReachabilityCardinality
queries. When analyzing the outputs of the algorithm, we �nd that 1478 of
the queries in the ReachabilityFireability category were not in APL, which
might be a side e�ect of not allowing negated �reability queries. We also
found that 7 of the nets contained arcs with unde�ned size.

From both Table 1 and 2 we see that the unfolding algorithm o�ers a
speedup, in comparison to the veri�cation of the unfolded net. This is because
this algorithm generally is faster than unfolding a colored Petri net and
verifying the larger unfolded net. Also this algorithm does not o�er much
overhead if it is not able to answer the query.

6.4 Summary

So in summary, our unfolding implementation is not as fast as an existing
solution in the speci�cs of unfolding, but in overall usage outperforms MCC.
Our implementation could be improved in a number of ways, in order to
catch up to MCC, which we will touch more on later.

As for the overapproximation we see that this o�ers a signi�cant speedup
in those queries where applicable, as discussed in Subsection 6.3. The fact
that it does not take much overhead, if it is not able to answer a query makes
it a good strategy to try before running the unfolding, and then verifying the
unfolded query on the unfolded net.

7 Conclusion

In this thesis, we de�ned colored Petri nets with inhibitor arcs and introduced
a method for unfolding these into uncolored Petri nets with inhibitor arcs.
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In addition to this we de�ned a method of unfolding CTL queries in order
for them to �t the unfolded Petri nets. We also proposed an algorithm for
overapproximating an answer to a subset of queries, without unfolding a net.

We then implemented both the unfolding algorithm, and the overapproxi-
mation algorithm in the tool verifypn. Following this we compared the speed
of our unfolding implementation to an existing implementation in the tool
MCC. In the unfolding alone we were on average 29.89% slower than this
tool. This can possibly be counteracted by changing the generation of possi-
ble bindings for a transition, such that we do not have to compute invariant
bindings for any transition or connected arc. Another approach to improve
the performance is to implement an expression analyzer, which would be able
to calculate the exact set of bindings needed for a transition without iterating
through each combination. Here one could look into the Z3 theorem prover2

[7].
We also tested the overapproximation algorithm against unfolding a col-

ored net and verifying the unfolded net. We found this to be an e�ective
algorithm to use in conjunction with unfolding and then verifying the un-
folded net. This o�ered both a speed boost in most cases, and even allowed
for answering queries in nets that were otherwise very di�cult to unfold.

In the future it would be interesting to look at structural net reductions
on the colored nets, as this would also impact the unfolding, as fewer places
and transition also allows for faster unfolding.

Acknowledgements. Lastly we would like to thank Peter Gjøl Jensen for
his contribution with a counter example to why transition �ring cannot be
negated in the Approximation Preserving Logic, and for doing code reviews
on the implementation.

A special thanks also goes out to Jiri Srba for excellent sparring during
the making of this thesis.

8 Bibliographical Remarks

This thesis builds upon [12]. In [12] we made a prototype of the unfolding
algorithm in Python, where we did not include unfolding of queries. For this
thesis we rewrote the whole implementation in C++ and extended this to
include queries as well. Subsection 3.1 is taken from [12], but extended with
more explanations and examples. Subsection 2.2 is also taken from [12].

2https://github.com/Z3Prover/z3
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In this thesis the de�nition of Petri nets has been based on [14], but
extended with inhibitor arcs. The multiset theory is based on the one found
in [9] and [1]. The base idea of di�erent color types are based on [4], but the
color data types are based on the PNML standard in [16]. The de�nition
of colored Petri nets is based on the work in [9, 11], but extended with the
inhibitor arcs. The de�nition of enabledness was originally inspired by [11]
for colored Petri nets without inhibitor arcs, while the inspiration for the
enabledness de�nition for inhibitor arcs came from [1]. The de�nition of the
unfolding is based on [11], but has a novel addition for unfolding inhibitor
arcs.
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A Unfolding Comparison

Net verifypn MCC Di�erence %
AirplaneLD-COL-0010 0.00073 0.00051 0.000226 30.706%
AirplaneLD-COL-0200 0.01201 0.00651 0.005504 45.805%
AirplaneLD-COL-0500 0.03385 0.02389 0.009962 29.428%
AirplaneLD-COL-1000 0.06999 0.04190 0.028095 40.138%
AirplaneLD-COL-2000 0.16769 0.10651 0.061185 36.485%
AirplaneLD-COL-4000 0.42408 0.21614 0.207936 49.032%
BART-COL-002 OOM OOM
BART-COL-005 OOM OOM
BART-COL-010 OOM OOM
BART-COL-020 OOM OOM
BART-COL-030 OOM OOM
BART-COL-040 OOM OOM
BART-COL-050 OOM OOM
BART-COL-060 OOM OOM
BridgeAndVehicles-COL-V04P05N02 0.00105 0.00057 0.000475 45.238%
BridgeAndVehicles-COL-V20P20N10 0.02765 0.01667 0.010987 39.725%
BridgeAndVehicles-COL-V20P20N20 0.05613 0.03084 0.025287 45.048%
BridgeAndVehicles-COL-V20P20N50 0.13125 0.08463 0.046619 35.517%
BridgeAndVehicles-COL-V50P20N10 0.14524 0.09989 0.045349 31.222%
BridgeAndVehicles-COL-V50P20N20 0.27502 0.19083 0.084193 30.612%
BridgeAndVehicles-COL-V50P20N50 0.62559 0.49256 0.133033 21.264%
BridgeAndVehicles-COL-V50P50N10 0.14457 0.10346 0.041105 28.432%
BridgeAndVehicles-COL-V50P50N20 0.26829 0.18959 0.078698 29.333%
BridgeAndVehicles-COL-V50P50N50 0.69692 0.47386 0.223060 32.006%
BridgeAndVehicles-COL-V80P20N10 0.34855 0.25047 0.098081 28.139%
BridgeAndVehicles-COL-V80P20N20 0.69017 0.47552 0.214650 31.100%
BridgeAndVehicles-COL-V80P20N50 1.53692 1.28707 0.249847 16.256%
BridgeAndVehicles-COL-V80P50N10 0.36159 0.24280 0.118787 32.851%
BridgeAndVehicles-COL-V80P50N20 0.66770 0.48343 0.184269 27.597%
BridgeAndVehicles-COL-V80P50N50 1.66897 1.11859 0.550380 32.977%
CSRepetitions-COL-02 0.00020 0.00013 0.000067 32.682%
CSRepetitions-COL-05 0.00243 0.00112 0.001301 53.539%
CSRepetitions-COL-07 0.00641 0.00280 0.003614 56.336%
CSRepetitions-COL-10 0.01940 0.00782 0.011580 59.681%
DatabaseWithMutex-COL-02 0.00039 0.00024 0.000147 37.404%
DatabaseWithMutex-COL-20 0.05946 0.04038 0.019082 32.088%
DatabaseWithMutex-COL-40 0.37914 0.36747 0.011667 3.0771%
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DotAndBoxes-COL-2 0.00611 0.00330 0.002811 45.976%
DotAndBoxes-COL-5 0.34224 0.25558 0.086652 25.319%
DrinkVendingMachine-COL-02 0.00120 0.00074 0.000456 37.968%
DrinkVendingMachine-COL-10 2.45578 1.80053 0.655250 26.681%
DrinkVendingMachine-COL-16 26.672 21.3651 5.30683 19.896%
DrinkVendingMachine-COL-98 OOM OOM
GlobalResAllocation-COL-03 0.08269 0.05608 0.026604 32.172%
GlobalResAllocation-COL-05 0.95484 0.80816 0.146676 15.361%
GlobalResAllocation-COL-06 2.73159 2.09632 0.635270 23.256%
GlobalResAllocation-COL-07 6.40236 4.82136 1.58099 24.693%
GlobalResAllocation-COL-09 20.4616 18.4905 1.97108 9.6330%
GlobalResAllocation-COL-10 37.4426 35.2797 2.16284 5.7764%
GlobalResAllocation-COL-11 61.8118 58.0303 3.78144 6.1176%
LamportFastMutEx-COL-2 0.00107 0.00050 0.000568 52.837%
LamportFastMutEx-COL-7 0.00538 0.00252 0.002863 53.146%
LamportFastMutEx-COL-8 0.00614 0.00297 0.003174 51.618%
NeoElection-COL-2 0.00727 0.00382 0.003443 47.352%
NeoElection-COL-6 0.16814 0.12794 0.040206 23.911%
NeoElection-COL-7 0.29943 0.17360 0.125828 42.021%
NeoElection-COL-8 0.41422 0.36415 0.050065 12.086%
PermAdmissibility-COL-01 0.00893 0.00496 0.003970 44.456%
PermAdmissibility-COL-02 0.00912 0.00515 0.003970 43.521%
PermAdmissibility-COL-05 0.0096 0.00381 0.005789 60.302%
PermAdmissibility-COL-10 0.00891 0.00383 0.005085 57.025%
PermAdmissibility-COL-20 0.00928 0.00524 0.004043 43.543%
PermAdmissibility-COL-50 0.00867 0.00381 0.004867 56.084%
Peterson-COL-2 0.00159 0.00100 0.000585 36.792%
Peterson-COL-4 0.00732 0.00317 0.004154 56.702%
Peterson-COL-5 0.01406 0.00551 0.008550 60.780%
Peterson-COL-6 0.02286 0.00881 0.014045 61.433%
Peterson-COL-7 0.03241 0.01782 0.014592 45.014%
Philosophers-COL-000005 0.00020 0.00014 0.000062 30.693%
Philosophers-COL-005000 0.31244 0.17233 0.140112 44.843%
Philosophers-COL-010000 0.82894 0.29570 0.533247 64.328%
Philosophers-COL-050000 11.7449 2.32112 9.42377 80.237%
Philosophers-COL-100000 44.343 4.18525 40.1577 90.561%
PhilosophersDyn-COL-03 0.00123 0.00119 0.000034 2.7619%
PhilosophersDyn-COL-20 0.24562 0.20888 0.036743 14.958%
PhilosophersDyn-COL-50 4.21086 4.25142 -0.04056 -0.9633%
PhilosophersDyn-COL-80 18.3078 16.4749 1.83285 10.011%
PolyORBLF-COL-S02J04T06 0.00871 0.00927 -0.00055 -6.392%
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PolyORBLF-COL-S02J06T08 0.01456 0.01210 0.002455 16.858%
PolyORBLF-COL-S02J06T10 0.01711 0.01457 0.002543 14.859%
PolyORBLF-COL-S04J04T06 0.03697 0.03138 0.005587 15.111%
PolyORBLF-COL-S04J04T08 0.05493 0.04086 0.014074 25.618%
PolyORBLF-COL-S04J04T10 0.07476 0.05699 0.017770 23.766%
PolyORBLF-COL-S04J06T06 0.04621 0.03243 0.013773 29.804%
PolyORBLF-COL-S04J06T08 0.05737 0.03962 0.017755 30.943%
PolyORBLF-COL-S04J06T10 0.07947 0.05613 0.023340 29.368%
PolyORBLF-COL-S06J04T04 0.12514 0.07965 0.045498 36.355%
PolyORBLF-COL-S06J04T06 0.18780 0.14773 0.040071 21.336%
PolyORBLF-COL-S06J04T08 0.20636 0.21192 -0.00556 -2.696%
PolyORBLF-COL-S06J06T04 0.12854 0.09955 0.028995 22.555%
PolyORBLF-COL-S06J06T06 0.19380 0.15149 0.042312 21.831%
PolyORBLF-COL-S06J06T08 0.25163 0.21229 0.039338 15.633%
PolyORBNT-COL-S05J20 0.01751 0.01159 0.005916 33.778%
PolyORBNT-COL-S05J30 0.02038 0.01311 0.007270 35.663%
PolyORBNT-COL-S05J40 0.02358 0.01500 0.008586 36.398%
PolyORBNT-COL-S05J60 0.02899 0.02109 0.007901 27.249%
PolyORBNT-COL-S05J80 0.03172 0.02482 0.006905 21.763%
PolyORBNT-COL-S10J20 0.18572 0.18001 0.005704 3.0712%
PolyORBNT-COL-S10J30 0.23997 0.19038 0.049591 20.665%
PolyORBNT-COL-S10J40 0.24193 0.18533 0.056600 23.394%
PolyORBNT-COL-S10J60 0.22964 0.20411 0.025529 11.116%
PolyORBNT-COL-S10J80 0.27839 0.20243 0.075955 27.283%
QuasiCertifProtocol-COL-02 0.00057 0.00042 0.000148 25.919%
QuasiCertifProtocol-COL-10 0.00337 0.00202 0.001344 39.857%
QuasiCertifProtocol-COL-18 0.00752 0.00530 0.002225 29.556%
QuasiCertifProtocol-COL-22 0.01017 0.00945 0.000724 7.1161%
QuasiCertifProtocol-COL-28 0.02128 0.01843 0.002849 13.384%
QuasiCertifProtocol-COL-32 0.02391 0.02058 0.003338 13.956%
Referendum-COL-0010 0.00018 0.00008 0.000100 55.555%
Referendum-COL-0015 0.00025 0.00011 0.000146 56.370%
Referendum-COL-0020 0.00033 0.00014 0.000193 57.100%
Referendum-COL-0050 0.0007 0.00031 0.000382 54.571%
Referendum-COL-0100 0.00131 0.00063 0.000680 51.789%
Referendum-COL-0200 0.00289 0.00100 0.001886 65.191%
Referendum-COL-0500 0.00693 0.00279 0.004132 59.624%
Referendum-COL-1000 0.01568 0.00466 0.011025 70.285%
SafeBus-COL-03 0.00143 0.00075 0.000681 47.522%
SafeBus-COL-10 0.03426 0.01438 0.019877 58.011%
SafeBus-COL-15 0.12741 0.06447 0.062938 49.398%
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SafeBus-COL-20 0.34414 0.17652 0.167620 48.706%
SafeBus-COL-50 10.4017 5.58800 4.81369 46.277%
SafeBus-COL-80 58.9255 29.4219 29.5035 50.069%
SharedMemory-COL-000005 0.00056 0.00029 0.000267 47.173%
SharedMemory-COL-000100 0.27429 0.14654 0.127748 46.573%
SharedMemory-COL-000200 2.07812 0.64052 1.43759 69.177%
SharedMemory-COL-050000 TO OOM
SharedMemory-COL-100000 TO OOM
SimpleLoadBal-COL-02 0.00117 0.00104 0.000129 10.978%
SimpleLoadBal-COL-15 0.04058 0.02572 0.014858 36.608%
SimpleLoadBal-COL-20 0.08017 0.05927 0.020903 26.071%
TokenRing-COL-005 0.00205 0.00144 0.000609 29.620%
TokenRing-COL-040 0.85988 0.70193 0.157949 18.368%
TokenRing-COL-050 1.60725 1.56312 0.044125 2.7453%
TokenRing-COL-100 13.9285 12.6642 1.26427 9.0768%
TokenRing-COL-200 115.51 88.5252 26.9847 23.361%
TokenRing-COL-500 OOM OOM
Average 3.6799103 2.5799877 1.0999179 29.890%
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B Run time comparison

Net verifypn MCC Di�erence %
AirplaneLD-COL-0010 0.04 0.23 -0.19 -475.00%
AirplaneLD-COL-0200 0.07 0.50 -0.43 -614.28%
AirplaneLD-COL-0500 0.14 2.50 -2.36 -1685.7%
AirplaneLD-COL-1000 0.45 14.80 -14.35 -3188.8%
AirplaneLD-COL-2000 1.33 63.51 -62.18 -4675.1%
AirplaneLD-COL-4000 5.06 326.36 -321.30 -6349.8%
BART-COL-002 OOM OOM
BART-COL-005 OOM OOM
BART-COL-010 OOM OOM
BART-COL-020 OOM OOM
BART-COL-030 OOM OOM
BART-COL-040 OOM OOM
BART-COL-050 OOM OOM
BART-COL-060 OOM OOM
BridgeAndVehicles-COL-V04P05N02 0.00 0.01 -0.01
BridgeAndVehicles-COL-V20P20N10 0.03 0.06 -0.03 -100.00%
BridgeAndVehicles-COL-V20P20N20 0.06 0.12 -0.06 -100.00%
BridgeAndVehicles-COL-V20P20N50 0.20 0.52 -0.32 -160.00%
BridgeAndVehicles-COL-V50P20N10 0.20 0.33 -0.13 -65.000%
BridgeAndVehicles-COL-V50P20N20 0.34 0.65 -0.31 -91.176%
BridgeAndVehicles-COL-V50P20N50 0.67 2.78 -2.11 -314.92%
BridgeAndVehicles-COL-V50P50N10 0.16 0.32 -0.16 -100.00%
BridgeAndVehicles-COL-V50P50N20 0.28 0.58 -0.30 -107.14%
BridgeAndVehicles-COL-V50P50N50 0.74 2.96 -2.22 -300.00%
BridgeAndVehicles-COL-V80P20N10 0.36 0.61 -0.25 -69.444%
BridgeAndVehicles-COL-V80P20N20 0.76 1.78 -1.02 -134.21%
BridgeAndVehicles-COL-V80P20N50 1.64 10.78 -9.14 -557.31%
BridgeAndVehicles-COL-V80P50N10 0.43 0.60 -0.17 -39.534%
BridgeAndVehicles-COL-V80P50N20 0.74 1.57 -0.83 -112.16%
BridgeAndVehicles-COL-V80P50N50 1.80 9.21 -7.41 -411.66%
CSRepetitions-COL-02 0.04 0.01 0.03 75.0000%
CSRepetitions-COL-05 0.00 0.02 -0.02
CSRepetitions-COL-07 0.01 0.07 -0.06 -600.00%
CSRepetitions-COL-10 0.04 0.47 -0.43 -1075.0%
DatabaseWithMutex-COL-02 0.00 0.01 -0.01
DatabaseWithMutex-COL-20 0.15 1.99 -1.84 -1226.6%
DatabaseWithMutex-COL-40 1.57 49.18 -47.61 -3032.4%
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DotAndBoxes-COL-2 0.01 0.03 -0.02 -200.00%
DotAndBoxes-COL-5 0.46 27.17 -26.71 -5806.5%
DrinkVendingMachine-COL-02 0.00 0.01 -0.01
DrinkVendingMachine-COL-10 3.54 440.25 -436.71 -12336%
DrinkVendingMachine-COL-16 38.39 OOM
DrinkVendingMachine-COL-98 OOM OOM
GlobalResAllocation-COL-03 0.12 2.82 -2.70 -2250.0%
GlobalResAllocation-COL-05 1.51 218.29 -216.78 -14356%
GlobalResAllocation-COL-06 4.31 541.24 -536.93 -12457%
GlobalResAllocation-COL-07 10.31 TO
GlobalResAllocation-COL-09 34.96 OOM
GlobalResAllocation-COL-10 61.64 OOM
GlobalResAllocation-COL-11 96.66 OOM
LamportFastMutEx-COL-2 0.00 0.01 -0.01
LamportFastMutEx-COL-7 0.01 0.04 -0.03 -300.00%
LamportFastMutEx-COL-8 0.01 0.05 -0.04 -400.00%
NeoElection-COL-2 0.01 0.04 -0.03 -300.00%
NeoElection-COL-6 0.36 14.65 -14.29 -3969.4%
NeoElection-COL-7 0.69 52.09 -51.40 -7449.2%
NeoElection-COL-8 1.04 148.18 -147.14 -14148.%
PermAdmissibility-COL-01 0.02 0.10 -0.08 -400.00%
PermAdmissibility-COL-02 0.02 0.10 -0.08 -400.00%
PermAdmissibility-COL-05 0.02 0.08 -0.06 -300.00%
PermAdmissibility-COL-10 0.01 0.08 -0.07 -700.00%
PermAdmissibility-COL-20 0.02 0.10 -0.08 -400.00%
PermAdmissibility-COL-50 0.01 0.09 -0.08 -800.00%
Peterson-COL-2 0.00 0.02 -0.02
Peterson-COL-4 0.01 0.06 -0.05 -500.00%
Peterson-COL-5 0.03 0.13 -0.10 -333.33%
Peterson-COL-6 0.05 0.37 -0.32 -640.00%
Peterson-COL-7 0.08 0.84 -0.76 -950.00%
Philosophers-COL-000005 0.00 0.01 -0.01
Philosophers-COL-005000 4.13 217.08 -212.95 -5156.1%
Philosophers-COL-010000 16.08 171.68 -155.60 -967.66%
Philosophers-COL-050000 373.16 TO
Philosophers-COL-100000 TO TO
PhilosophersDyn-COL-03 0.00 0.02 -0.02
PhilosophersDyn-COL-20 0.39 47.16 -46.77 -11992%
PhilosophersDyn-COL-50 6.79 TO
PhilosophersDyn-COL-80 29.07 OOM
PolyORBLF-COL-S02J04T06 0.02 0.13 -0.11 -550.00%
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PolyORBLF-COL-S02J06T08 0.03 0.21 -0.18 -600.00%
PolyORBLF-COL-S02J06T10 0.04 0.30 -0.26 -650.00%
PolyORBLF-COL-S04J04T06 0.06 1.04 -0.98 -1633.3%
PolyORBLF-COL-S04J04T08 0.09 2.04 -1.95 -2166.6%
PolyORBLF-COL-S04J04T10 0.13 3.19 -3.06 -2353.8%
PolyORBLF-COL-S04J06T06 0.08 1.27 -1.19 -1487.5%
PolyORBLF-COL-S04J06T08 0.10 2.19 -2.09 -2090.0%
PolyORBLF-COL-S04J06T10 0.13 3.95 -3.82 -2938.4%
PolyORBLF-COL-S06J04T04 0.18 8.57 -8.39 -4661.1%
PolyORBLF-COL-S06J04T06 0.30 20.02 -19.72 -6573.3%
PolyORBLF-COL-S06J04T08 0.32 31.55 -31.23 -9759.3%
PolyORBLF-COL-S06J06T04 0.21 11.84 -11.63 -5538.0%
PolyORBLF-COL-S06J06T06 0.31 24.40 -24.09 -7770.9%
PolyORBLF-COL-S06J06T08 0.40 29.73 -29.33 -7332.5%
PolyORBNT-COL-S05J20 0.03 1.21 -1.18 -3933.3%
PolyORBNT-COL-S05J30 0.03 1.26 -1.23 -4100.0%
PolyORBNT-COL-S05J40 0.04 0.99 -0.95 -2375.0%
PolyORBNT-COL-S05J60 0.05 1.34 -1.29 -2580.0%
PolyORBNT-COL-S05J80 0.06 1.41 -1.35 -2250.0%
PolyORBNT-COL-S10J20 0.28 21.31 -21.03 -7510.7%
PolyORBNT-COL-S10J30 0.37 37.28 -36.91 -9975.6%
PolyORBNT-COL-S10J40 0.38 34.79 -34.41 -9055.2%
PolyORBNT-COL-S10J60 0.37 28.42 -28.05 -7581.0%
PolyORBNT-COL-S10J80 0.46 33.00 -32.54 -7073.9%
QuasiCertifProtocol-COL-02 0.00 0.50 -0.50
QuasiCertifProtocol-COL-10 0.01 0.58 -0.57 -5700.0%
QuasiCertifProtocol-COL-18 0.03 0.48 -0.45 -1500.0%
QuasiCertifProtocol-COL-22 0.04 0.48 -0.44 -1100.0%
QuasiCertifProtocol-COL-28 0.09 0.54 -0.45 -500.00%
QuasiCertifProtocol-COL-32 0.14 0.56 -0.42 -300.00%
Referendum-COL-0010 0.00 0.44 -0.44
Referendum-COL-0015 0.00 0.05 -0.05
Referendum-COL-0020 0.00 0.63 -0.63
Referendum-COL-0050 0.00 0.04 -0.04
Referendum-COL-0100 0.00 0.02 -0.02
Referendum-COL-0200 0.01 0.64 -0.63 -6300.0%
Referendum-COL-0500 0.03 0.16 -0.13 -433.33%
Referendum-COL-1000 0.08 0.78 -0.70 -875.00%
SafeBus-COL-03 0.00 0.58 -0.58
SafeBus-COL-10 0.05 0.23 -0.18 -360.00%
SafeBus-COL-15 0.16 2.62 -2.46 -1537.5%
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SafeBus-COL-20 0.44 16.51 -16.07 -3652.2%
SafeBus-COL-50 11.92 1105.57 -1093.6 -9174.9%
SafeBus-COL-80 64.81 TO
SharedMemory-COL-000005 0.00 0.01 -0.01
SharedMemory-COL-000100 1.00 60.92 -59.92 -5992.0%
SharedMemory-COL-000200 11.63 313.32 -301.69 -2594.0%
SharedMemory-COL-050000 TO OOM
SharedMemory-COL-100000 TO OOM
SimpleLoadBal-COL-02 0.00 0.02 -0.02
SimpleLoadBal-COL-15 0.05 0.19 -0.14 -280.00%
SimpleLoadBal-COL-20 0.10 0.52 -0.42 -420.00%
TokenRing-COL-005 0.00 0.01 -0.01
TokenRing-COL-040 1.27 137.74 -136.47 -10745%
TokenRing-COL-050 2.29 526.31 -524.02 -22882%
TokenRing-COL-100 20.90 TO
TokenRing-COL-200 180.94 OOM
TokenRing-COL-500 OOM OOM
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