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Abstract

Simulations are used to gather data for machine learning algorithms at
low cost. However, many robot simulators can not render realistic graph-
ics. Realistic image data is essential for several robots using reinforcement
learning algorithms in fields such as self-driving cars, agricultural weed de-
tection and grasping objects. In this report, we propose the use of mod-
ern game engines with highly realistic rendering for simulating robots and
training them with deep reinforcement learning using image data. We suc-
cessfully simulated and trained a Turtlebot2 robot in Unity3D with Deep
Q-learning to find and drive into a blue ball. The resulting reinforcement
learning model was used to control a real Turtlebot2 robot. The simulated
and real robot are interchangeable by design, making it easy to use the
reinforcement algorithm to control either. The real robot was controllable
by the Q-learning algorithm, but not able to perform the task. The use of
modern game engines for simulation of robots for reinforcement learning
is shown to be promising. However, for future work, testing of more real-
istic simulation environments are needed to assess the usability of game
engines for realistically simulating robots.

1 Introduction

From the industrial era to modern society, the use of robots has increased hu-
man capabilities and efficiency exponentially. Robots are capable of perform-
ing simple and repetitive tasks effectively, accurately and with high frequency.
However, historically they have not been able to act in dynamic and complex
environments. A robot arm in a factory can, for example, not operate on a
new task without reprogramming. Also, programming a robot to act in a dy-
namic and unpredictable environment is almost impossible due to the amount
of possible scenarios it may encounter. However, with modern machine learn-
ing algorithms, the capabilities of robots to perform complicated tasks that

1



Figure 1: A Turtlebot2 robot was simulated in Unity3D environment (left)
and trained to find and drive into a blue ball by using Q-learning. The real
Turtlebot2 (right) was used to verify the ability to control the robot just as the
simulated counterpart. The training model from the simulated Turtlebot2 was
used to control the real robot, but it was unable to find and drive into the blue
ball in the real environment. Both robots are controlled using the same ROS
communication system and Reinforcement Learning model.

requires problem solving is indeed feasible. State of the art examples of this is
map-less navigation [1], socially aware motion planning [2], grasping objects [3],
and self-driving cars [4].

A method of teaching robots to perform tasks in dynamic and complex
environments is Reinforcement Learning (RL). RL teaches an agent to perform
a task by learning from its past experiences. RL has its roots in theories of
neuroscience about human and animal’s ability to predict future events, by
changing their expectations through rewards and punishments [5]. In RL, an
agent uses some knowledge of the state of its environment to predict the best
action to take [6]. A state for a robot could for example be the sensor inputs
for a self-driving car to determine what is around it, and an action could be to
accelerate, brake or turn.

The RL agent is taught how to perform its task by receiving rewards for its
actions and calculates how to gain the most rewards; even rewards in the distant
future. In contrast to supervised machine learning techniques, the agent does
not need labelled data. It only needs to model a policy from past experiences
to estimate the correct actions to take to optimize rewards. A policy is what
the RL algorithm uses to determine which action to take for certain states. The
ability to teach an AI to perform complex tasks by just letting them act in
the environment is very important for the machine learning community, as it
could decrease the need for human programming of complex problem solving,
and increase learning efficiency of AI applications.

Examples of experiments using simulations for training robots to perform
complex tasks are grasping objects [7] and navigating dynamic environments
[2].
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Google Deepmind [8] made an agent able to perform complex tasks at
human-level only by the means of raw sensor data in 2015. The Deep-Q net-
work used was able to play 49 different Atari games comparable to professional
human players, with only the information of the 84X84X4 pixel values of the
game screen.

Researchers had strayed from using trail-and-error reinforcement learning for
robots, as low amounts of training steps can cause it to be unreliable. However,
Pinto & Gupta [3] succeeded in training a robot to grasp and pick up different
objects, with only images of the objects as input. The amount of experience
needed resulted in 700 hours of trail-and-error by the robot. The learning comes
at the cost of great many resources, such as electricity usage, potential damage
to the robot and its surroundings, as well as wear on the robots parts. Mean-
while, the potentially expensive robot is occupied doing learning tasks, unable
to perform any other productive tasks.

The need to run the robot for many hours was overcome by Google, by
using many robots simultaneously [9]. Between 6 and 14 robotic arms was
simultaneously used through the process, each collecting grasping attempts and
collectively learning from each other how to grasp and pick up objects in front of
them. The risk of damage caused by the robots are still present, but the robots
can be replaced if the budget allows. however, the budget does not allow for
a high number of robots and potential damage on these for many researchers.
This multi-robot setup is therefore not feasible as a general solution.

To solve this issue of cost and risk of damage, previous research papers
has performed training of robots in virtual environments [1] [2] [7] [10]. By
simulating faster than real world physics allow, and keeping the actions within
a simulation, the resource cost is greatly reduced. No real robot are used, there is
no risk of damaging any equipment or personnel, and with increased simulation
speed the robot learns faster.

Image sensor data is important for robots to understand its surroundings,
and thereby make correct choices in complex and dynamic environments. As
an example, self-driving cars needs image data to understand its surroundings
sufficiently to take proper decisions to drive safely [4] [10]. Without cameras,
the self-driving car will not have sufficient data to take the correct decisions.

Other robotics applications use raw image data to complete complex tasks.
Examples of this are weed detection in agricultural robots [11], and medical
robots for precise and minimally invasive surgery [12].

Each application need precise, realistic image data to perform correct detec-
tion and recognition of its environment and thereby taking the correct actions.
Failure to recognize objects can cause healthy crops to be sprayed with pesti-
cides, incorrect surgery to be performed, or the action could cause a car accident.
However, if the training of the robots are done properly, the benefits are great.
Autonomous precision farming, precise help with surgery, and safe self-driving
cars. Other examples of needing image data for robots are multi-floor navi-
gation through an elevator [13], fastening bolts in aircraft production using a
humanoid robot [14], and hand-eye coordination for grasping [9].

Gazebo [15] and V-rep [16] are state of the art robot simulators, designed
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to enable fast and precise simulations of robot controls. However, Gazebo and
V-rep do not have suitable computer graphics capabilities to replicate a real
world scenario, such as a dynamic crowd of pedestrians, a busy city road, or
fields of grass. Therefore they would not be suitable to provide image data to
train a robot to perform in the real world.

Researchers has successfully been using games and game engines to collect
usable realistic image data sets for machine learning algorithms [10] [17]. We
propose the use of a game engine with realistic rendering capabilities to simulate
and train robots with raw image data using RL.

In this paper, we use a real-time connection between Robot Operating Sys-
tem (ROS) and the game engine Unity3D [18] to create a realistic simulation of
a robot, its controls, and environment. A Turtlebot2 robot is simulated in the
Unity3D game engine and provide RGB camera sensor data for a reinforcement
learning algorithm. The idea is to create a safe environment for the robot to
learn by RL, without the use of a real robot. The resulting RL model will then
be used to control a real Turtlebot2 robot to verify if the learning of simulated
training of the robot can be transferred to its real counterpart. The focus of
the paper is to show the plug-and-play capabilities of Unity3D and other game
engines to train on simulated robots and control real robots with the resulting
learning.

We list the main contributions of this paper: (1) Proposing modern game
engines as realistic robot simulators and showing the plug-and-play capabilities
for changing between simulated and real robot. (2) Showing that a reinforcement
learning model trained in a game engine environment are easily transferable to
a real robot.

2 Background

2.1 Reinforcement Learning

Data points for machine learning is generally assumed by the algorithm to be
independent of each other, meaning that the result of one data point does not
effect the result of the algorithm for the next data point.

However, in reinforcement learning the state it enters is dependent on the
previous states and actions it performed. For example, if a self-driving car
drives forward, the next state would be a result of the last state and the action
of driving forward. As a result, the action taken by the agent will affect the
state that the agent finds itself in. Reinforcement learning algorithms therefore
have to take future states into consideration and which states its actions will
lead to.

Bellman’s equation calculates maximum achievable reward from the current
state by all possible actions and future states [19]. The Q-value is the maximum
estimated reward available from the current state for all possible future stats
and actions. The calculation of the Bellman’s equation can therefore estimate
the potential future reward (Q-value) of taking a certain action in the current
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state and landing in the corresponding next state.

Q(s, a) = r ∗ γmaxQ(s′, a′) (1)

Q(s, a) is the Q-value for the current state and action, r is the reward for
entering the current state, Q(s′, a′) is the Q-value of the next state and actions,
and γ is a discount factor that determines how important future potential re-
wards are for the agent compared to immediate rewards.

In 2013, Mnih et al. introduced Q-learning [19]. Q-learning is a RL algo-
rithm based on Bellman’s equation. To perform RL the Q-learning equation (2)
updates the Q-value of certain step and action by adding the new estimated Q-
value multiplied with a learning rate factor α. The Q-value is therefore changed
slightly (depending on the α value) instead of completely, every time the state
is met. The algorithm learns to be more precise in its estimation of Q-value the
more it encounters the state.

Q(st, at) = Q(st, at) + α(rt+1 + γmaxQ(st+1, a) −Q(st, at)) (2)

Using the Q-values calculated, the Q-learning algorithm will train a neural
network fitting the weights to choose the action that will provide the most
reward given the current state. This training is performed over many iterations
of entering states and taking actions.

There are two kinds of spaces when describing an environment, called dis-
crete and continuous space. A discrete space is when the space is divided into a
finite amount of possible states. For example, when playing chess, the amount
of states available are finite. The pieces has a finite amount of fields to be placed
on, and there are a finite amount of ways all the pieces can be arranged on the
board. A discrete space are generally not applicable in the real world. For ex-
ample, chess pieces can in the real world be placed anywhere on the board, not
confined to a field, as their movement are continuous when moving from one
place to another. Continuous space is when the space or environment cannot
be divided into individual fields. The state of a real environment is continuous,
meaning that to move to a new position, you need to move to the half-way point
to that position, and before that move to the half-way point of the half-way point
etc.. The space therefore contains an infinite amount of possible states.

One of the main difficulties when training reinforcement learning for the
real world, is that the states and the actions of the robot, such as sensor data
and acceleration, does not follow a discrete space. The need for an algorithm
with capabilities of predicting actions for states of continuous space is therefore
needed. The Q-learning algorithm from Mnin et al [19] can be used for contin-
uous spaces, but can be computationally expensive, thus affecting the training
process.

Lillicrap et al. [20] introduced a deep RL algorithm based on the Q-learning
algorithm from Mnih et al., which they call Deep Deterministic Gradient Policy
(DDPG). The DDPG algorithm is an actor-critic model with capabilities of
estimating actions in continuous space. An actor critic model uses two separate
networks. The actor network predicts the action to take given the state, while
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the critic ”evaluates” the decision of the actor, giving a score representing how
good the action was.

However, as this report aims toward showing the plug-and-play capabilities
of game engine simulations of robots, the robot will have a simple task to per-
form. Due to the simplicity of the task, the Q-learning algorithm from Mnih et
al. [8] will be used. For future studies with more complex robot tasks, a more
complex learning algorithm such as the DDPG actor-critic model by Lillicrap
et al. [20] is expected to be compulsory.

2.2 Robot simulations

Chen et al. [2] trained their navigating robot to move through crowds while
being socially aware, meaning it would follow common norms of passing and
overtaking. The agent was trained in a simulation consisting of four agents,
learning from each other. Even though the real robot used for validation in the
real world used cameras in addition to other sensors, the cameras were only
used to detect and, with help from Intel Realsenses, determine the distance to
pedestrians. The agent therefore was not trained on camera sensor data, but
only the position and distance of by-passers. If the robot was trained using
realistic rendering in the simulation, this position and distance translation from
real images would not be necessary.

Chen et al. [2] trained the robot to be socially aware with 4 webcam cameras,
3 Intel Realsense cameras, and a Lidar Pointcloud laser scanner. The benefit
of training with raw camera data would be to significantly decrease the cost of
sensors needed for the robots.

The movement of real world objects are continuous. A robot simulation
therefore needs to simulate the movement of a robot in a continuous space, which
follows the physics of the real world. If a reinforcement learning algorithm was
taught in a simulation that deviates from the real world, the model will not be
transferable to a real world environment. Furthermore, when using a camera as
input for the robot, the graphical rendering of the simulation must correspond
to real camera inputs.

There are robot simulation applications available, which are useful for sim-
ulating robot controls. Gazebo is an open source robot simulator with the
purpose of simulating realistic controls for robots. Gazebo offers quick and easy
imports of URDF files and control-ability of robot joints [15]. Gazebo does not
contain a realistic rendering engine (see Figure 2). A rendering library, which
implements a render engine capable of ray-tracing [21], is available. The library
provides capability of realistic reflection renders, but does not enable the user
to create realistic renders that resembles the real world.

Another robot simulation application is V-rep [16]. This simulation platform
is developed to support fast algorithm development, automation simulations,
and prototyping robotics in a safe environment. The platform is great for sim-
ulating big autonomous robot systems, such as factory floors, as well as smaller
cases, such as the map-less navigation performed by Tai, et al. [1]. However, the
application suffers from the same issue as Gazebo, and does not have realistic
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Figure 2: Example of the graphics capabilities of the Gazebo robot simulator.

rendering (see Figure 3). Tai, et al. [1] used a point laser scanner as input for
the robot, thereby negating the need for realistic graphics in the simulation.

Figure 3: Example of the graphics capabilities of the V-rep robot simulator.

The lack of realistic rendering in robot simulation is apparent. Both the
render-engines of Gazebo and V-rep are lacking in realism, which could prove a
problem for learning robots relying on camera data.

The idea of performing training on robots in a high-fidelity simulated en-
vironment are being investigated by the technology company Nvidia. In 2017
Nvidia announced Isaac, an SDK with capabilities of simulating robots and per-
forming machine learning from the simulated robots’ sensor data [22]. The goal
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of Isaac is to create an inexpensive and safe environment for robots to act and
learn. Nvidia Isaac strives for realistic rendering and physics to simulate the
world as realistically as possible. They stretch that the render capabilities of
such simulation is very important for robots using camera data.

However, at the time of writing, the Isaac SDK has yet to be released to the
general public and the SDK has not been tested by us. The dedication from
Nvidia to create Isaac highlights the usefulness and need of such simulator with
highly realistic visuals.

Opposed to Gazebo and V-rep, Unity3D [18] is a game engine with the
purpose and capability of creating realistic environments and render them in
real-time (See Figure 4). It also contains hrealistic physics that can be altered
to the need of the simulations. The game engine can therefore not only simulate
this world, but other worlds such as foreign planets, that are difficult to get
robots to. Unity3D is a promising platform to use for simulating a robot and
its environment realistically.

Figure 4: Example of the graphics capabilities of the Unity3D game engine. This
image is from a demo reel of a real-time rendering cinematic called ADAM.

2.3 Realism in Simulations

As mentioned before, projects with robots trained in a virtual environment
has already been made [1] [2]. However, as far as we know, at the time of
writing, no research project has used raw camera data from a simulated robot
for reinforcement learning, and successfully transferred the learning to a real
robot.

Game engines has already been used to collect data for deep learning [10]
[17] [23] [24]. The use of game engines is due to the collection of data only
costing computation power, reduced cost of human labelling, and the realistic
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rendering capabilities of the engines.
The idea of collecting data from realistic renders is not new. In 2010 and

2014, authors Maríın et al. [23] and Xu et al. [24] respectively, captured images
of pedestrians using the game Half-Life 2. The images had the capability of
training a pedestrian recognition classifier with approximately the same accu-
racy as classifiers from real data sets.

In between these studies, other research papers has found that the virtual
data sets and real data sets were too different from each other, which decreases
the accuracy of object detection [25] [26]. In the paper from Xu et al. [24],
they counter the difference in data sets by training on virtual data as well as
additional but relatively few real world images. They also use enhanced textures
in Half-Life 2 to increase the quality of the graphics.

Johnson-Roberson et al. [10] successfully used the game GTA V to collect
images from a simulated car, and trained a deep learning network for object
recognition with the same accuracy as a deep learning network trained with
KITTI and Cityscapes data sets. Self-driving cars need to be able to recognize
objects around them and thereby take the correct action accordingly. Therefore,
camera sensor data is needed as an input. As mentioned by Johnson-Roberson
et al. [10], vision-only driving is very sought after in the autonomous driving
community, due to the low sensor costs. Even though the collected images from
GTA V was able to train an object recognition model as accurate as real data,
the authors mention that they needed many more training images to achieve
the same accuracy. The reduced cost of acquiring the images should, however,
more than equalize the effort.

These research papers show the versatility of game engines to collect useful
data for real world applications, such as object recognition. The early exper-
iments [23] [24] needed to use real data as well to receive a proper accuracy
of the algorithm. These experiments were performed with outdated graphics
compared to what is achievable nowadays. Johnson-Roberson et al. did not
need real world data, as the game they used had much more realistic graphics.
A hypothesis for decreasing the difference in real world data and virtual data
is to decrease the difference between the virtual and the real world, thereby
eliminating the need for real world data to fine tune algorithms.

Computer graphics have become capable of creating highly realistic render-
ings, even in real time. This should solve the issue of data set differences and
increase the accuracy in the real world for systems trained in a virtual environ-
ment.

Another important factor for transferring reinforcement learning models to
the real world, is the variability of the conditions of the simulated environment.
Robots of the real world may need to perform in multiple environments and
with often changing lighting conditions. To train a robot for a single condition
limits its general usefulness as the image data is very dependent on the lighting
conditions of the environment.

To train a machine learning model of any kind, it is important to have vary-
ing data for the learning algorithm. Tremblay et al. [17] uses the Unreal game
engine to gather data for supervised machine learning. The authors underline
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the importance of changing parameters within the simulation, to create a wide
variety of realistic images. They use domain randomization, which essentially
means randomizing lighting, pose, and object textures in a scene. If the envi-
ronment and its lighting conditions are changing, the model is trained to learn
the task in many conditions, thereby generalizing the performance to many en-
vironments. This is especially important when the robot only input is from raw
pixel data. As shown be Tremblay et al. [17], modern game engines has the
capability of domain randomization and requires little to implement.

The Unity3D game engine has the capability of realistic rendering, physics,
and domain randomization. The game engine is chosen for this project to sim-
ulate a robot and train it using reinforcement learning.

Due to time constraints, the training of the reinforcement learning model in
this paper will have static lighting conditions and the simulated environment will
be not have the focus of being realistically similar to the real world environment.
As mentioned before, the experiment of the paper focuses on the plug-and-play
capabilities of the game engine. For improvement of robot performance in real
environments, a realistically rendered environment with randomizing lighting
conditions is believed to be essential.

3 Implementation

In this section, the implementation of the robot simulation and RL algorithm
is described. The robot chosen it the Turtlebot2. We will establish a commu-
nication between ROS with Unity3D to create a similar message system as a
real Turtlebot2 uses when controlled by ROS. The simulation of the robot will
be run on Unity3D with realistic physics, such as collision, gravity and velocity
control. The RL algorithm will be performed by a python script, which also
handles ROS messages that are responsible for controlling the robot.

3.1 ROS

ROS is a common middleware for robotics handling communication between
robot hardware and instructions given by software. It is used to send and
receive messages to and from robot sensors and actuators thus allowing remote
controls for a robot. In this paper, we use images from a camera sensor mounted
on the robot as the only input for the RL algorithm. Therefore, in our case we
will need to receive an image message from the simulated and the real robot.

To receive external messages, ROS needs to subscribe to a topic that pub-
lishes the needed data. A topic is a stream of messages. The topic can receive
information by getting data published to it, and it can send information by
being subscribed to. A publisher pushes data to the stream, while a subscriber
receives the data from the stream.

Connecting to the simulation is done by using the ROSbridge package. This
enables the ROS messages to be send across networks to robots or other appli-
cations.
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A sensor msgs/Image message topic is needed, with a publisher to the topic
from the simulation, and a subscriber to the topic in the RL algorithm. A
sensor msgs/Image message contains a byte array of pixel data and description
of the format. For this project, the sensor msgs/Image message format is PNG.
For ROS to receive images from the mounted camera, the robot publishes images
to the sensor msgs/Image topic.

To control the velocity of the robot, a geometry msgs/Twist message is
needed. A geometry msgs/Twist message contains 6 values: the linear and
angular x, y, and z velocity. For the Turtlebot2, only the linear velocity on
the x-axis and the angular velocity on the z axis is needed to drive forwards,
backwards, and turn. The other values are set to 0.

Additionally, the RL algorithm needs rewards published from the simulation.
Rewards are sent from the simulation through ROS the RL algorithm by a
std msgs/String message. The RL algorithm translates the String messages to
floating point values. A publisher is created in Unity3D, and a subscriber in the
python script, capable of sending rewards to teach the model of its actions.

3.2 Unity3D robot simulation

Unity3D was chosen as the game engine to simulate the robot. Unity3D con-
tains a realistic physics system with controllable gravity, mass of object, and
great collision detection. All of which are important to simulate real world
interactions between dynamic objects. As have been seen in Figure 4, the ren-
dering capabilities of the game engine is also highly realistic, which is essential
for replicating complex real world scenarios.

Unity3D does not provide native support for ROS compatibility. The ROS#
package for Unity3D provides the ability to create message classes similar to
the messages used by the ROS [27]. It can send and receive messages to and
from ROS by providing the ability to create publishers and subscribers. It
also provides the ability to import URDF files. URDF files are standard ROS
XML representations of the robots model. It has detailed information about
the robots kinematics, dynamics, and sensors. This makes it easy to import a
robot model and place its 3D model in the Unity3D environment.

The first robot implemented in Unity3D through the ROS# plugin was a
Baxter robot (see Figure 5). Baxter is a two-armed industrial robot with end
effectors capable of grasping objects. The URDF file of the robot was imported
into Unity3D, and collisions with other objects was achieved. To apply physics
to an object in Unity3D a rigidbody component is used, which controls physics
interaction of the object. As all parts had a rigidbody attached, they would all
interact with each other. However, due to the collision boxes of each part of the
robot overlapping, they would constantly collide with each other. This would
cause the robot to glitch. A work-around for this was tried. The arms were set
as kinematic rigidbodies, which means they would not be affected by physics,
but they would still affect other non-kinematic objects. That introduced new
problems, where the rotation of the arms could no longer be controlled by adding
torque or velocity to the rotation, as physics did not affect them. Therefore the
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Figure 5: A side by side comparison of the simulated and a real Baxter robot.
The first robot simulated in Unity3D for this project was the Baxter robot.

robot needed to be controlled by a step-wise rotation change of the joints, which
does not realistically simulate the real robot. Also, as all links were kinematic,
they were not able to collide with each other, making the robot able to phase
through itself. These issues are believed to be solvable within Unity3D, but
due to time constraint, another robot with no movable joints was chosen for the
purpose of this project.

3.3 Simulating Turtlebot2

The Turtlebot2 is a small robot with four wheels, one front, one back, one left,
and one right (see Figure 6). The Turtlebot2 steers and drives by controlling
the torque of its left and right wheel. It can move forwards, backwards, and
turn left and right, giving it 2 degrees of freedom for control. Additionally, the
Turtlebot2 has a mounted Primesense camera. As the Turtlebot2 contains no
individually moving parts except for its wheels, the difficulties of the Baxter
was not present. The Turtlebot2 robot was therefore chosen for this project.

The Turtlebot2 was successfully imported into Unity3D (see Figure 7) and
was realistically controllable by making only a few adjustments. The adjust-
ments were as follows.

The imported 3D model from the URDF file had many individual compo-
nents, each with a rigidbody and each was held together by joints to adjacent
parts. As the parts of the Turtlebot2 are all static, needing no individual move-
ment, the rigidbody components were removed and each part was converted to
static objects connected to a parent object, being the robots base. One rigid-
body was connected to the parent class of the Turtlebot2 to enable physics for
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Figure 6: The Turtlebot2 robot.

the robot. This caused all parts of the robot to move uniformly with the base,
just as the real robot, and keep all physics interactions.

Additionally, wheel colliders were added at the locations of the wheels at
the bottom of the robot to enable driving. Linear and Angular velocity of the
simulated robot was controlled by adjusting the torque applied to the left and
right wheel.

A camera object was added to the robot, placed at the Primesense camera
models location, with similar settings to the real Turtlebot2. These wheel col-
liders and the camera made the robot able to control and provide images in the
same manner as its real counterpart.

Figure 7: The simulated Turtlebot2 robot in Unity3D.
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To control the simulated Turtlebot2, an ROS connection is used. The ROS
communication is implemented as a replication of the communication with a
real Turtlebot2. By having the same communication system for the real and
simulated robots, the robots are seamlessly interchangeable.

In Unity3D, the simulated robot is controlled by receiving a geometry msgs/Twist
message from ROS. The message is read by creating a subscriber to the geom-
etry msgs/Twist topic using the ROS# plugin. The linear x-axis and angular
z-axis velocity from the geometry msgs/Twist message are translated to torque,
which is applied to the left and right wheel of the robot, enabling it to drive
and turn. The camera object in the Unity3D simulation renders an RGB im-
age at size 80x60x3. The low resolution is due to computation power needed
to perform convolutional RL. The camera object renders to a render texture,
which is published to a sensor msgs/Image topic using the ROS# plugin. The
simulated robot therefore controls and sends data to ROS the same way as a
real Turtlebot2 does. Due to this, the two robot counterparts are interchange-
able, and the same RL model can be applied to both of them. The resulting
architecture of the message system can be seen in Figure 8.

Figure 8: The message system used to perform RL on the simulated robot in
Unity3D. /rosbridge websocket is the connection to the robot or the simulation
(Unity3D). As can be seen, the RL script publishes to the /cmd vel and /done
topics. The messages published are geometry msgs/Twist and std msgs/String
messages respectively. The robot then subscribes to these topics, using them
to control the robot and knowing when to reset the environment. The robot
publishes to the /camera/image and /reward topics. The messages are sen-
sor msgs/Image and std msgs/String messages respectively. The RL learning
script subscribes to these topics to get information about the environment and
using that information for RL.

3.4 Reinforcement Learning Algorithm

To create the RL model for this project, the Keras neural network library based
on Tensorflow is used. A Python script with the library is able to create RL
models, fit model with new weights, predict the estimated best action from the
state, and more. ROS runs publishers and subscribers by python scripts. It
is therefore possible to perform reinforcement learning and send and receive
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Table 1: Table of the nine possible actions to provice for the Turtlebot2 by the
RL algorithm.
Action Forward Back Stand

Still
Turn
Left

Turn
Right

Back
Left

Back
Right

Forward
Left

Forward
Right

Lin.
X vel

1 -1 0 0 0 -1 -1 1 1

Ang.
Z vel

0 0 0 -1 1 -1 1 -1 1

messages to and from topics in the same script.
For this project, a single python script sets up a subscriber for the sen-

sor msgs/Image and std msgs/String Reward topics, a publisher for the ge-
ometry msgs/Twist and std msgs/String Done topics, and contains the RL
algorithm. For each time an image is fed to the subscriber from the sen-
sor msgs/Image topic, it runs a step of RL, predicting the best action to take
and publishes that geometry msgs/Twist message to the geometry msgs/Twist
topic.

For the RL algorithm, we will use a Deep Q-learning algorithm [8]. The
neural network used for the Q-learning algorithm consists of three convolutional
layers, each with 32 filters and no pooling, followed by two fully-connected layers,
each with 200 neurons. The final output layer contains nine neurons. These
represent the available actions covering its 2 degrees of freedom controls (see
Table 1). The neural network has a learning rate of 10−3 and a discount factor
γ = 0.99. From the input image, the neural network will chose its estimated
best action (see Figure 9).

Figure 9: The Neural Network used in the Q-learning algorithm. The network
is sequential and deep. It consists of three convolutional networks followed by
two fully connected layers. Nine different actions are available for the robot,
therefore the last layer consists of 9 neurons.

The neural network is updated through the Q-learning algorithm with re-
wards send from the Unity simulation. When the scene has to be reset, another
string message is published from the RL script and subscribed to in Unity3D,
which then proceeds to reset the robot environment when receiving such a mes-
sage.

15



The Q-learning algorithm proposed by Mnih et al. [8] trains its RL model
by using experience replay. Each state, action, reward and next state of a step
of RL is stored in a memory matrix. These are called experiences. Experience
replay is to train the RL model with multiple past experiences, which are not
necessarily the most recent. It is a way for the RL model to learn from the same
experience multiple times. As the Q-values in the algorithm changes slightly for
each Q-value estimation, training on the same experiences multiple times are
beneficial for learning.

For each step of RL for this implementation, a batch of 16 random samples
from the memory is used to train the model. Taking random samples instead of
the 16 most recent experiences reduces the risk of overfitting to recent actions
or causing oscillation. As the system trains the model by 16 experiences each
time one new experience is encountered, each experience is training the model
multiple times, resulting in well-rounded learning. The max memory size is 106.

The robot will act in the environment sending images and rewards to the RL
algorithm, which then proceeds to predict the best action, sending that to the
robot. Upon receiving the next image, the RL algorithm will perform experience
replay, calculate the Q-value achieved in the state and send the chosen action
to the robot. It fits the model using experience replay, recalculating the weights
of the neurons in the network.

For this RL algorithm, two models are used. The first model is used to
calculate the Q-value of the current state and is constantly fitted with the
experience replay from every stop. The second model called the Target Model,
is used to estimate future Q-value of the next states. The fully calculated Q-
value therefore uses both models for the calculation. The Target model is only
fitted at the end of an episode. It is set to the same weights as the first model,
thereby gaining the learning from the experiences. This is done to not influence
the future predictions in an episode while acting in that episode. A pseudo code
explanation of the RL algorithm can be seen in Algorithm 1.

A RN agent has two possibilities when choosing actions. It can exploit or
explore. Exploiting is when the agent takes the estimated best action. By doing
this the agent will perform its best in the environment according to its learning.
However, having the agent only exploit can cause the agent to perform the
same actions, thinking it is the best achievable strategy, even though another
unknown strategy may be superior. It has just not tried the other possibilities.

That is where exploration comes in. Exploration is when the agent performs
an action that is not necessarily the best estimated action. This causes the
agent to explore the environment, possibly finding actions that are better to
take than those previously thought by the model.

A way of controlling the exploitation and exploration of the RL agent is to
use an ε -greedy policy. An ε -greedy policy uses an ε value to determine the
probability of taking a random action instead of the best estimated one. For
example if the ε value is 1 then 100% of the actions taken by the agent will be
random, while if the ε value is 0 then 0% of the action taken is random.

During training, the ε value will decay by a predefined factor. By starting
with a high ε value of 1 and decaying it over time, the RL agent explores in
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Initialize Model and set parameters;
Initialize Target Model and set parameters;
while Learning is incomplete do

while Episode is not done do
if State is received then

Save experience to memory;
Perform experience replay ;
Fit Model with experience from random memory batch;
Estimate best action and send to Robot;

end
if Episode is Done then

Fit Target model;
Reset environment;
Set new Episode to not Done;

end

end

end
Algorithm 1: Pseudo code explanation of the Reinforcement Learning algo-
rithm

the early stages of learning, where the model has yet to be properly fit. With
decreasing ε value, the RL agent starts to increasingly exploit as the model
is being fit to perform well in the environment. The ε -greedy policy therefore
ensures much exploration when the model is not ready to exploit yet, and makes
it exploit more and more as it learns.

It is common to keep the ε at a minimum value, even late in the learning
stages. This is to keep exploring the environment. If the agent stops exploring,
it will perform the same actions, which it estimates are the best. This can
cause it to hit what is called a local maximum in the achievable rewards. It
has explored a strategy which is not the best, but it believes it is the best. By
keeping a low ε value, these local maximums can be avoided, as the agent is
forced to break its strategy. It can then explore new actions, which may prove
to provide better rewards, finding a new reward maximum. An ε -greedy policy
is used for this project with an epsilon decay of 0.99999 for each RL step.

4 Experimental Design

In this section, we will explain the experimental setup used to test the capabil-
ities of the Unity3D game engine for training a RL model for the Turtlebot2,
and using the resulting RL model to control the real counterpart of the Turtle-
bot2. The experiment is to test the capability of transferring the learning from
the simulated environment to a real environment, and test the plug-and-play
capabilities of changing from a simulated robot to a real robot.
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4.1 Task of the Robot

To show the RL capabilities of the Unity3D simulation of the Turtlebot2 robot,
we created an environment for the robot to perform a simple task. The envi-
ronment consists of a small 2.5x5.0m room with 4 walls and a blue ball that is
spawned at a random location in the room. The task for the Turtlebot2 is to
drive into the ball using the shortest amount of time possible.

Figure 10: The Unity3D environment for the simulated robot. The task for the
robot is to drive into the blue ball.

The task is designed to be simple, but still difficult for the robot to perform.
The only knowledge of the environment the robot has is a 80x60 RGB image
of its front view (see Figure 11). The algorithm has to learn to navigate the
environment with only this knowledge of its state space. No pre-trained convo-
lutional neural networks are implemented in this RL model. It therefore learns
to control its movement towards the blue ball only from raw pixel data.

4.2 Rewards

Reward shaping is when extra intermediate rewards are given to the learning
agent before the task is completed [28]. The intermediate rewards are shaped by
the programmer to guide the robot towards its end-goal. Sparse rewards means
that no rewards was given to the RL agent [29], unless the task was completed,
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Figure 11: Example of an 80X60 RGB image sent from the simulated robot.
This is the only input for the RL algorithm. Such an image corresponds to a
state in the RL model.

e.g. the robot hit the ball. This can cause a slow start in learning, as the
robot will have to perform uniformly random actions until it has accidentally
completed the task and can learn from that.

A possibility to ease learning with sparse rewards is to use demonstrations.
Vec̆eŕık et al. [7] was able to train a robot arm for object insertion tasks,
by providing it with human controlled demonstrations. The resulting model
outperformed models using shaped rewards. However, providing demonstrations
to a RL algorithm arguably defeats the purpose of self-learning.

In this project, the goal of the robot is to drive into the ball in the envi-
ronment. Three different reward systems were tried. One with sparse rewards
(SR), and two with reward shaping (RS1 and RS2). SR only provided the robot
with a reward when it hit the ball. For RS1 and RS2, the rewards were shaped
to encourage the robot to move towards the ball, and to frame the ball within
the field of view of the camera while doing it, thereby providing it with the
information that it is the collision with the ball that provides the best reward.

It is important to note that reward shaping inherently introduces human
bias. As the programmer introduces their own idea of how to complete the task
as the correct approach, they encourage the robot to perform its task a certain
way, limiting its exploration of other possibilities.

The reward systems were as follows. For SR, the robot would only get a
reward of 100 when it hit the ball and could achieve no other rewards. For RS1
and RS2, two different approaches were tried. If the robot collided with the
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ball, RS1 would receive 100 points as reward and RS2 would receive 10 points.
If the robots camera was looking at the ball and moving towards it, RS1 would
receive 4 points, while RS2 would receive -0.1. If the robot was looking at the
ball and moving away from it, RS1 would receive -2 points, and RS2 would
receive -0.2 points. If the ball is not in the camera field of view or the robot
stood still, RS1 would receive -4 points and RS2 would receive -0.4 points. For
an overview of the reward systems, see Table 2. Each state the robot enters
therefore has a corresponding reward. The corresponding rewards are therefore
sent to the reward topic each time a new image is sent to the image topic.

Table 2: Reward systems

Rewards Ball is hit
Ball seen
moved towards

Ball seen
moved away

Ball not seen
or standing still

SR 100 0 0 0
RS1 100 4 -2 -4
RS2 10 -0.1 -0.2 -0.4

It is possible for the robot to gain rewards by colliding with the ball without
the ball being in the field of view of the camera, e.g. by backing into it. This
will not teach the model that the ball is the goal, as it has no knowledge of the
ball being hit. The reward shaping systems are made to encourage the robot
to look at the ball as much as possible. Consequentially, the robot is therefore
more likely to see the ball when it collides with it - teaching it that it is the
collision with the ball that provides it with the reward points.

4.3 Learning Setup

As mentioned before, one step of RL is done each time a new state (image) is
received from the simulation. The RL script runs for a maximum of 200 steps
for each episode. An episode is a sequence of RL steps, that ends when the
goal has been achieved or a certain time has passed. At the end of an episode
in our RL algorithm, the scene is reset and another episode begins. When the
episode starts, the robot is set to the default position and the ball is spawned
at a random location in the environment. It then proceeds to run the algorithm
step by step in the new episode.

In the beginning of the RL, the epsilon value of 1 will cause the robot to
perform entirely random actions. This forces it to explore the environment and
learn from as many possibilities as possible. The epsilon value decays over time
by a decay factor of 0.99999, to a minimum of 0.001 after about 420.000 steps
or 9.5 hours of run time. This causes the robot to perform the estimated best
actions by the model, except for 0.1% of the time. As mentioned before, keeping
a low epsilon value to perform random actions helps exploring the environment,
possibly avoiding local reward maximums in the model.

The learning need to stop at a point where the task could be consistently
performed by the robot. For this project, we deem the robot consistent at
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performing the task, when it has hit the ball 200 times in a row.

4.4 Transferring Learning to Real World

A RL model that has learned from enough experiences in the simulation, is fit
with weights that will provide the best action to perform given a certain image
state. When the learning is finished, the model can be saved to a single file.
This file can then be used purely for predictions of actions given a certain image.
This can be applied to a simulated robot for verification of the learning, or it
can be applied to a real robot.

To show the capability of transferring learning from the game engine simu-
lation to a real robot, the RL model taught in the Unity3D simulation is used
to control a real Turtlebot2 robot. The connection with the Unity3D simulation
and the RL algorithm is set up to be easily integrated with the real Turtlebot2.
The simulated robot can therefore be replaced by the real robot counterpart
with few adjustments. This is done by connecting to the Turtlebot2 instead of
the Unity3D environment through the ROSbridge package. The input images
from the Turtlebot2 is re-sized to 80x60 and fed to the RL model. The model
then predicts the best actions to perform and sends them to the Turtlebot2,
controlling the robot exactly as it controlled the simulated counterpart.

5 Results

The experiments are separated into two phases. The first phase is training a
RL model with the simulated robot until it can consistently hit the ball in every
episode. The RL algorithm was run until this was achieved. It was chosen that
when the robot hit the ball 200 times in a row, it was deemed consistent at
achieving its goal. The second phase is transferring the models taught in the
simulation to the real environment and testing the models ability to control the
real robot. This section describes the results of these experiments.

5.1 Simulation Results

To get the RL model to learn in this environment, three different reward systems
was tried (see Table 2). A sparse reward system (SR) (see Section 4.2) was the
first. The learning model did not converge successfully as the state space were
too large to achieve enough random successes to learn from. The robot would
therefore stand still after 10 hours of training, believing this as the best possible
actions to take to achieve maximum rewards. This is probably due to the amount
of random actions taken to be too few. It had therefore not gathered enough
experience of hitting the ball to teach the model that rewards were given by
doing that. The model could probably be taught with enough hours of random
movement, but due to the sheer amounts of hours needed, the approach was
deemed unsuccessful.
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The first reward shaping system (RS1) (see Section 4.2) was able to perform
the task but not consistently. The reward system was made to encourage the
robot to move towards the ball, but due to the reward of moving towards the ball
had a greater magnitude of 4 than the punishment magnitude of -2 from moving
away from the ball, if the robot moved back and forth while looking at the ball,
it would receive a surplus of rewards. The robot would therefore find the ball
and then proceed to oscillate between moving forwards and backwards, only
sometimes moving close enough to actually hit the ball. The reward shaping
of RS1 was therefore deemed to be flawed, as it did not successfully guide the
robot towards the ball.

The second reward shaping system (RS2) (see Section 4.2) was created to
counteract the possibility to receive a surplus of rewards. All rewards the robot
could receive was therefore negative, except when hitting the ball. This elim-
inated the exploitation of the previous reward system as the only way to get
more rewards for an episode is to find the ball and drive into it quickly. This
caused the robot achieve consistent completion of the task.

The simulated robot with the RS2 reward system was trained by the RL
algorithm for 29.5 hours before hitting the ball 200 times in a row. During
these 29.5 hours, the RL algorithm ran 975510 steps in 10322 episodes. To see
the progress of learning for the RL see Figure 12. This graph shows the average
score of the previous 100 episodes on the y axis and the number of episodes on
the x-axis. The graph shows the score almost being consistent at around -10 at
about 3000 episodes and forward. The RL algorithm achieved 100 successes in
a row at 4316 episodes, or after 13.5 hours. The improvement of the system to
achieve 200 episodes in a row therefore took about 16 hours.

In the graph it can be seen that some large dives in score are happening.
This is due to the RL algorithm being restarted after it is paused. For example
after the algorithm had achieved 100 balls hit in a row at episode 4316, it was
automatically stopped to check that it was able to learn from the reward system.
The algorithm was then restarted to achieve 200 hits in a row and be deemed
consistent. The dive in performance is due to the experience memory being
wiped. The RL algorithm therefore starts the training on batches with very few
available experiences from memory. This causes the algorithm to temporarily
overfit the model, thereby causing loss in score.

The algorithm was able to learn the task of finding and colliding with the
ball. The RL model taught in the simulation was saved. The saved model
contains the RL policy, enabling another robot to use the model for action
prediction. An action prediction script was created, where the RL model was
imported to estimate the best actions from the input images. The RL model
in the action prediction script did not learn from the experiences. Testing the
action prediction script in the simulation, showed that the robot was able to
find and collide with the ball on every try. However, to test the capability of
transferring learning from the game engine simulation to a real robot, the model
was used for action prediction of a real Turtlebot2 robot.
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Figure 12: Graph of the score achieved with the RS2 reward system. Each data
point is the average score of the previous 100 episodes.

5.2 Real Robot Results

The primary goal of the experiment was to test the plug-and-play capabilities
the game engine had when changing from a simulated robot to a real robot.
We are looking at the systems ability to read the input and control the robot
without the need to change anything expect for connecting to the real robot.
The secondary goal was to test the transfer of learning from the simulation to
a real counterpart and how well it would perform in a real environment.

For the prediction script the only changes needed was to change the names
of the topics the subscriber and publisher, and to re-size the input image from
the real robot to 80x60. The names of the topic had to be the exact same
names as the topics used by the real Turtlebot2. The names of the topics in the
simulation was slightly different to ensure that information was not sent and
received from the wrong robot. The image sent from the Turtlebot2 robot is
640x480. The RL model only takes images of size 80x60. The images from the
Turtlebot2 is therefore re-sized to fit the RL algorithm. This caused the script
to obtain usable images from, and send actions to, the real Turtlebot2. When
these names were changed and images re-sized, the robot was fully controllable
by the RL algorithm when connected.

The trained model was loaded by the prediction script, and used to tell the
robot which actions to take. The robot was then placed in a real environment
(see Figure 13). A blue ball similar to the one in the simulated environment was
placed in the environment. The real environment was a clear floor area with
furniture and lab equipment around it. Some of the floor was covered in white
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Figure 13: The environment used to test the real robot with the trained model
from the simulated environment. The robot was generally unable to locate and
drive into the blue ball. This were probably due to the simulated environment
being too different from the real environment.

plastic and some of the floor area was dark grey. The real environment therefore
did not look as the simulate environment, and the learning was expected to not
to successfully transferred to the real robot.

The model was able to control the robot, but the robot would not act as
in the simulated environment. It would turn around to search for the ball, but
with much more inconsistent movements, turning back and forth a lot before
turning slightly more to one side. It did, however, seem to recognize the ball at
times, as the robot would sometimes stop its slight turning when the ball was
in front of it. It did not go towards the ball, but would jigger back and forth in
incoherent movements.

Moving the robot to a position where only a white wall and white floor
area was visible for the camera, made the robot able to recognize the ball and
move towards it (see Figure 14). The white walls and floor looked similar as
the environment in the simulation. We hypothesis that as this part of the
real environment was similar to the simulated environment, the training was
transferable in this specific part of the real environment. To see the behaviour
of the real robot controlled by the RL model, a YouTube video can be seen here:
https://youtu.be/PV2imw-lxH4
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Figure 14: When putting the robot with a white wall and white floor in its view,
such as in the simulated environment, the robot was able to recognize the ball
and drive into it.

6 Discussion

6.1 Interchangeable robots

The learning model was transferred to the real robot and able to control the
real Turtlebot exactly like the simulated counterpart. The ROS compatibility
with Unity3D made the message act the same in the simulation as for the real
robot. Therefore, the simulated robot was easily interchanged with the real
Turtlebot2. This shows the capabilities of using a game engine to simulate the
robot. Robots are easily implemented in the game engine, while having a great
physics engine, ability to render realistically, create realistic replications of real
environments, and providing the ability to customize lighting conditions.

The focus of the report is to show the plug-and-play capabilities of using a
game engine to simulate a robot, and the successful control of the real robot
counterpart with only few adjustments highlights the usefulness of modern game
engines as robot simulators. The experiment therefore support the use of game
engines for simulating a robot for reinforcement learning due to the easy in-
terchanging between real and simulated robots, and the ability to realistically
mimic the real environment of the robot.

6.2 Transferring learning

For this project, the simulated training environment for the RL algorithm did
not realistically replicate the real world environment. As a consequence, the
Turtlebot2 was not able to complete the task of hitting the blue ball in the real
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environment. This underlines the importance of simulating the real environ-
ment realistically to enable the learning to be usable in a real setting. Also,
the lighting conditions of the simulated environment need to replicate the real
environment’s lighting, as the pixel values of the input image are highly de-
pendent on the lighting on surfaces. Another possibility is to randomize the
lighting conditions in the simulation, thereby generalizing the RL to many dif-
ferent lighting conditions, including the potentially changing lighting conditions
of the real world environment.

7 Future Work

7.1 Reward System

The reward system of the RL algorithm was essential for the robot to learn to
hit the ball. It is therefore important for future works to implement a working
reward system. For this project, the RS2 reward system (see section 4.2) was
essential for the robot to learn how to perform the task consistently. However,
it is possible that another reward system would increase the effectiveness of
learning.

For example, the robot was taught that having the ball in sight is better
than not, even when moving away from it. This is because backing away from
the ball would provide less penalty points than not looking at the ball. For
improvement of the RS2 reward system, having the reward penalty be -0.1 only
when moving towards the ball and looking at it and -0.4 in every other occasion
could improve learning. This would discourage the robot to move away from the
ball as an attempt to minimize penalty. If the penalty for not looking at the ball
and for looking at and moving away from the ball was the same, the only way
for the robot to minimize penalty would be to move towards the ball. Therefore,
we hypothesize that a reward system where penalty points are only minimized
when looking at the ball and moving towards it, could improve learning.

7.2 Realistic Rendering and Randomizing Light Condi-
tions

Using realistic rendering and replication of the real environment and random-
izing light conditions is an important future experiment for this research. In
the current experiment, the simulated and real robot sends RGB images of size
80x60 pixels. This raises the question if realistic rendering even matters when
the details are scaled down to such a small image.

Future experiments with highly realistic rendering, dynamically changing
lighting, and high res image as input for the RL algorithm is essential to prove
the need for realistic rendering, and thereby the usability of the game engine as
a robot simulator.
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7.3 Improving Robot Controls and Learning Algorithm

The Q-learning algorithm used for this project is said by Lillicrap et al. [20]
to not be applicable for continuous action spaces. A robot is conventionally
controlled by continuous action spaces, as each action such as velocity control,
can be controlled with small floating point values. The Q-learning algorithm in
this project chooses between 9 actions to perform, while a conventional robot
control would provide a very specific value for velocity control.

For future work, the implementation of a RL algorithm such as the DDPG
with capability of estimating continuous actions will provide the robot simula-
tion with more conventional control, which would help the robot navigate better
in continuous space.

The Q-learning algorithm also uses more computation to learn in continuous
spaces than models such as the DDPG actor-critic model. It is believed to be
essential to implement a more fitting model for continuous spaces, if the robot is
to learn more complex tasks with higher resolution images as input. We believe
that for future works the use of DDPG would prove beneficial to teach a robot
to perform tasks that are more complex than the current.

7.4 Test against Gazebo and V-rep

Another future work is to test the RL learning capabilities of using a game
engine such as Unity3D against the RL capabilities of other robot simulators
such as Gazebo and V-rep. By implementing the same environment to the best
ability of the simulators and game engine, and using the same RL algorithm,
the resulting learning models is then transferred to a real robot. Testing if
the realistic rendering of the game engine would improve the learning of the RL
algorithm could further support the usage of game engines as robot simulators.

8 Conclusion

In this project, the Unity3D game engine was used to enable fast, safe and
cheap reinforcement learning for a simulated Turtlebot2 robot. The focus of the
report was to emphasize the plug-and-play capabilities of using a game engine
as a realistic simulation for a robot to act in without the risk of causing damage
while learning.

The communication between the simulated robot and a Q-learning reinforce-
ment algorithm was controlled through the ROS middleware. The simulated
robot was trained with raw RGB pixel data from a mounted camera as its only
knowledge of the environment, to perform the task of driving into a blue ball.
After 29.5 hours of training, the simulated Turtlebot2 was able to collide with
the ball 200 consecutive times. The resulting reinforcement learning model was
saved and used to predict the correct actions of a real Turtlebot2 robot in a real
environment, with the intention of completing the same task.

The real Turtlebot2 was interchangeable with the simulated counterpart for
the reinforcement learning system. The plug-and-play capabilities of the created
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game engine system made it easy to train a reinforcement learning model in the
simulation and use that model to control a robot in a real environment. The
game engine simulation was able to simulate the robot with realistic and precise
controls.

The learning from the simulation were not successfully transferred to the real
robot. This is believed to be due to the simulated environment not realistically
resembling the real environment for the robot. Additional testing, with realistic
rendering and changing lighting conditions in the game engine simulation, and
a comparison with the reinforcement learning transfer performance of other
robot simulations, are proposed future work for the project to further assess the
usability of game engines for simulating robots for reinforcement learning.
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[26] D. Vázquez, A. M. López, J. Maŕın, D. Ponsa, and D. Gerónimo, “Virtual
and real world adaptation for pedestrian detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, pp. 797–809, April
2014.

[27] M. Bischoff, “Announcing ROS#.” https://rosindustrial.org/news/

2018/1/8/announcing-ros, 2018. [Online; accessed 13-May-2018].

[28] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and
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