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ABSTRACT

On 26" July 1820, the one which is considered as the first suspended bridge was opened
([11]). Union Chain Bridge, spans only 137m connecting England to Scotland. Almost 100
years later, on 25" October 1931, George Washington Bridge, in New York, surpass the
milestone of 1000m suspended span ([4]).

From that time ahead, the challenges are increasing exponentially, and the goal of reaching
suspended spans of two or three thousand meters is now a reality. At the same time, designers
are asked to keep the structures lightweight, slender and flexible but, at the same time, large
enough to carry the future traffic demands.

The combination of all these factors made the engineering science to look into details
such as aerodynamics. The effect of wind on suspended bridges, and in any structure in
general, can result in catastrophic events as happened on 7 November 1940 with Tacoma
Narrow Bridge ([10]).

The passion about bridges, and in particular, the challenges presented by the aerodynamic
analysis, were the motivational core of the author. The reader will be presented with an
aerodynamic analysis of three systems based on up-scaled models of a referential bridge
(Great Belt Bridge, Denmark). The aim of the present thesis is to describe and evaluate the
procedure for investigate the onset of flutter for long-span systems, through a new theory
which differs from Scanlan [9]. The entire procedure is developed since the definition of the
cable geometry and its stiffness onto the evaluation of aerodynamic parameters.

Due to the complexity of the topic, the author assumes that the reader possesses significant
knowledge regarding structural dynamics and aeroelasticity.
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NOMENCLATURE

Acronyms

CFD Computational Fluid Dynamics

DOF Degree-of-freedom

FEM Finite Elements Method

Greek letters

A; Non-dimensional frequency response quantities due to harmonic varying rota-
tion (i =u, 0)

u Mass per unit length of bridge girder plus cables

Me> He o Mass per unit length of suspension cable, on referential bridge

Up Mass per unit length of bridge girder

(0] Undamped angular eigenfrequency

Q, Q. Non-dimensional reduced angular frequency, critical value

0] Phase lag

IT; Non-dimensional frequency response quantities due to harmonic varying verti-
cal displacement (i = u, 6)

d Undamped eigenmode vector

Pecs Ph Material density of cables; hangers

o)} Allowable stress

0,0 Rotation in z-direction, Normalized rotation vector in z-direction

4 Structural modal damping ratio

Notation

A, Amplitude vector

H, Frequency response matrix

U Complex amplitude vector

Ap, A, Ay Cross sectional area of bridge girder, cable, hanger



ds Spatial discretization along cable length

dx, dy Spatial discretization along x-axis, along y-axis

L.t Undamped eigenfrequency; Modal load of jth mode; Modal load vector

fi Undamped eigenfrequency of the jth mode

g Gravitational acceleration

H, Hy Horizontal force on cables, Horizontal force on cables of referential bridge

hg Cable camber of referencial bridge

hp Critical buckling length of the pylons

hyy Non-dimensional frequency dependent lift-and moment coefficients (x = p,m
andy=u,0)

1, Iy Moment of inertia, Referential moment of inertia

Ly, 1y Moment of inertia about strong axis, weak axis

I St.Venant torsional inertial constant

J Mass moment of inertia per unit length of bridge girder plus cables

Jp Mass moment of inertia per unit length of bridge girder

Ji Refering to bending mode (i = 1,2,...)

ki Refering to torsional mode (i =1,2,...)

L, Ly Length of main span of up-scaled models, Length of main span of referential
bridge

Ly Length of side span

m, m;j Moment load per unit length in z-direction; Modal mass of the jth mode

PP Load per unit length in y-direction, Load vector per unit length

q;,Q; Modal coordinate of the jth mode, Modal coordinate vector

u,u Displacement in y-direction, Displacement vector in y-direction

\% Vertical reaction force; Mean wind velocity

Ve Critical Euler buckling force; Critical mean wind velocity



CHAPTER

INTRODUCTION

1.1 Problem formulation

The work conducted in this thesis deals with the procedure to investigate the aerodynamic
stability of long-span suspended bridges. As known nowadays, suspended bridges are one of
the primary solutions to overcome the challenge of connecting two points largely distanced.

In opposition to the well known design procedures, suspended bridges have a significant
challenging detail - the aerodynamic stability. The seek for longer spans, slender and flexible
structures, and streamlined cross-sections, turns the topic of aerodynamic stability a priority
focus during design processes.

Since 1940, when the failure of Tacoma Narrow Bridge occurred, the study of aeroe-
lastic effects in bridges has been increasing in order to fully understand how and in which
circumstances, the vertical oscillations can couple with torsional oscillations.

The traditional approach to aeroelastic stability of suspension bridges has been based
on wind tunnel experiments of a scaled model of the bridge section. The bridge section is
undergoing harmonically varying vertical and torsional motions and the aeroelastic induced
load and moment load on the bridge section is measured. The idea is to determine the
so-called flutter derivatives, which are merely the real and imaginary parts of the frequency
response functions of the indicated load components. The flutter derivatives are assumed
to be independent of Reynolds number and dependent on the angular frequency and the
mean wind velocity via a combined non-dimensional parameter called the reduced frequency.
The Reynolds number for onset of flutter in the prototype is supercritical, corresponding
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to turbulent boundary layer flows, whereas merely subcritical levels of Reynolds number
can be achieved in the model testing. In this thesis, the scalling problem is circumvented by
calculating the frequency response functions by means of CFD.

Following the bridge engineering trend, the present thesis look into the aerodynamic
stability of suspended bridges up to a main span of 4000m, aiming to evaluate how sensitive

the flutter phenomenon can be, when dealing with such systems.

1.2 Methodology

Due to the complexity of the topic of the present thesis, involving significant amount of
mathematical work, numerical solutions are required. The author chose to use the commercial

software as:

* MatLab to perform all the mathematical calculations, graphical plot outputs, and
solving the required algorithms;

* ABAQUS for the structural dynamic analysis, where the eigenfrequencies and mode
shapes are obtained from:;

* STAR-CCM+ for the CFD analysis.

Preliminary to this thesis, the author had extensively used MatLab, experience which was
useful to the work performed in here. However, knowledge of ABAQUS was very limited
to a much simpler problems and structures, and STAR-CCM+ was completely unknown to
the author. Those factors played an important role on the timeline of the thesis, since an

extensive research was needed.

1.3 Thesis content

The work presented in this thesis is divided into six main chapters, ordered in the natural
way of how the topic is studied, where each chapter complements the next one.

Chapter 1 introduces the reader to the topic of the thesis. Information about how the
research is developed is also presented along. The definition of the referential and up-scaled
systems, and the scaling assumptions taken into account can be seen in this Chapter.

Chapter 2 deals with the bridge component which plays an important role in the structural
dynamic behaviour of the suspended bridges - the cable system. Here, a mathematical

formulation for the cable geometry is performed, aiming to determine the horizontal forces
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applied, fulfilling the equilibrium state. The results obtained from Chapter 2 are the baseline
for the numerical model performed in Chapter 3.

Chapter 3 focus on the structural dynamics behaviour of the structure. The purpose of
this chapter is to evaluate the eigenfrequencies and mode shapes of the referential bridge and
up-scaled models. A full description of the type of FEM model used, as well as, parameters
taken into account is also found along this Chapter. Chapter 3 ends with a validation of the
model against reference values and an overview of the results for each case studied.

Chapter 4 is dedicated to the suggested theory to evaluate the frequency response function
for the modes of interest, i.e., the modes the author assumes a possible onset of flutter.

Chapter 5 provides the evaluation of the aerodynamic parameters by means of CFD
simulations and numerical solutions. A description of the model used for this thesis, together
with the chosen parameters can be found here. A description of the different cases studied
accompanying with the outcome from each one is presented. The aim core of this Chapter is
to validate the theory presented along Chapter 4 and to present results for a set of different
variable parameters. A procedure for further numerical evaluation of the critical values of the
reduced frequency and wind velocity end this Chapter.

A discussion of the outcomes and recommendations for future frameworks are described
in Chapter 6.

1.4 Reference bridge and up-scaled models

The reference bridge chosen for this thesis is the East Bridge, a 6790m long bridge composed
by two approach bridges and a suspended bridge with length of 2694m (53541624 + 535m).
The East Bridge is part of the Great Belt Link, located in Denmark, and connecting the
regions of Sjelland and Fyn. The focus is only in the suspended span (main span and two
side spans), and, for simplicity, the reference bridge is named along this thesis as Great Belt
Bridge.

In order to predict future bridge engineering developments, three up-scaled models are
subject of the investigations as follows:

* Main suspended span of 2000m (ahead named as Model A)
* Main suspended span of 3000m (ahead named as Model B)

* Main suspended span of 4000m (ahead named as Model C)
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1.5 Scaling assumptions

In order to up-scale the models, some assumptions are made as follows.

Cross sectional area of cables

As reference value, the allowable stress on the cables is calculated for the Great Belt Bridge

using Eq.(1.1). .
0
2-A.

It is assumed that the up-scaled models should fulfil the same criteria of allowable stress.

0p = ~ 469 MPa (1.1)

Inserting Eq.(2.4) into Eq.(1.1), the unknown value of A, can be determined as

L
g (W +2-Ac-pe) L

=0
ho
2-A;

oo | =—

0o = (1.2)

where the parameter L is given, respectively, by 2000, 3000 and 4000m, and the parameter

h
% is constant and equal to 1/9, representing the sag ratio in the referential bridge. The

Lo
results are presented in Table 1.1.

Table 1.1 Up-scaled values for cross section area of cables

L[m] A [m?]

1624  0.410
2000  0.566
3000  1.237
4000  3.037

reference values

Length of side span

The length of the side span is geometrically scaled based on the assumption that the ratio
between the pylons height and the main span length is kept. Table 1.2 shows the values

considered for the up-scaled models.
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Table 1.2 Up-scaled values for side span length

L[m] h[m] L [m]

1624 180.50 535
2000 22222 659
3000 333.33 988
4000 444.44 1318

reference values

Pylons

Following the scaling assumption of keep the ratio between the pylons height and the main
span length, the up-scaled pylon height is determined by the cable calculations. In order to
obtain a realistic result, the section of the pylons is also up-scaled.

The inertial moment / of the pylon legs are determined, so the reaction force V on the
pylons from the cables in proportion to the critical Euler buckling force V. is the same for the
referential configuration and the up-scaled bridges.

1
V is varying as (up +2- U¢) - L, and V, as 2 for the up-scaled bridges. Hence,

Vo
VC,O

)13
_ (up+2-p)-L (1.3)

(Mp+2-pieo) - LY

S~ <

where V) and V.. o indicates the reaction force and critical buckling load of the referential
configuration with the inertial moment Iy and free span L. U, and U, indicate, respectively,
the cable mass per unit length of the up-scaled and referential bridge. The mass per unit
length 1, is assumed the same for the referential and the up-scaled bridge.

The geometric location of the cross beams is, however, kept adopting the same reference
distances as in the Great Belt Bridge. It is assumed that this detail do not influence the results.
Figure 1.1 shows the critical buckling length of the pylons. In the Models B and C, due to the
significant increase of the distance between cross beams, an additional cross beam is placed
at half of the distance (in Model B) and two cross beams at one third and two thirds of the
distance (in Model C).
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A A A A

Fig. 1.1 Up-scaling of pylons

Damping ratios

The damping ratios considered in the dynamic analysis of the up-scaled models, are the same

of the reference values mentioned on Table 3.4 on Section 3.3.



CHAPTER

CABLE GEOMETRY

It is known that cables are an important element regarding the aerodynamic stability of
suspended bridges. As structural element, cables are usually assumed to be fully flexible in
bending. In order to be able to possess transverse stiffness, a cable should have an axial force.
The purpose of this Chapter is to determine the axial force on the cables of the reference

bridge, as well as, for the investigated up-scaled models.

2.1 Cable elements formulation

Along this Section, the analytical approach used to calculate the horizontal force H is
described, along with the iterative process needed to solve the problem. The formulation is
divided into two parts: the main span, where symmetry is used meaning to solve from the
middle point of the suspended span until the top of the pylon, and the side span, from the
anchor blocks to the top of the pylon.

2.1.1 Main span

The initial calculations are based on the data from the reference bridge ([5] and [8]), and are

as follows:
e [ =1624m

* h=180.5m
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o 1, =14.78-103 kg/m
* U =3.36-10% kg/m
e dx=24m

The spatial discretization along x-axis, has origin at the symmetry point of the cable, and
along y-axis is oriented in the upwards direction. As seen in Appendix A, the hangers are not
equally distributed near the pylons and at the centre of the suspended bridge. Due to the fact
this is not a relevant parameter which influences the dynamic analysis, the distance between
hangers is defined in a way to create equal elements from pylon to pylon.

The statical model for the main span is described in Figure 2.1.

4 V()

H

h
Fig. 2.1 Main span statical model
From Figure 2.1 the equations below can be determined:
V—H-tn(a)=H- 2 2.1)
= =H- .
v 2
ds = 1+(§)¢u (2.2)

Since there are no horizontal external loads, the horizontal component H of the normal force
1S constant.
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Using Eq.(2.1) and Eq.(2.2) it is possible to define the following equality:

av d2y dy 2
a:H'@:Nb'g‘i‘.uc'g‘ 1+<a) =
d2 d 2 L
e 1+(ay> 0 xE}O,E} (2.3)

Eq.(2.3) defines the equilibrium to be fulfilled along the iteration. For the main span the

boundary conditions are defined as:

* ¥(0)=0
+ £ 3(0)=0

To start the iteration process an initial value Hy of H is needed. This is obtained from a

parabolic suspension so dS = dx.

L2

g (M + ) = (2.4)

o]
073 h

After each iteration with a present solution for y(x), a new value of H is obtained from

Eq.(2.5).
L 2
g 2 (L dy
H == ——x|- q/1 — d 2.5
(G e[ () e @3)
The iteration process is terminated when H; deviates insignificantly from the previous iterated
H
value Hy, corresponding to the criteria 171 — l‘ <1075,
0
In order to solve Eq.(2.3) numerically, the ODE is represented in a state vector formulation
d
S 2(x) = 8(2(v))
(2.6)
Z(0)=0
and solved by means of a Runge-Kutta 4th order scheme, as shown below.
[ dy(x) ]
y(x) dx
Z(x) dy(x) | ° g(x) = (2.7)
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The procedure described above is inserted in MatLab and the algorithm is illustrated in
the flowchart shown in Figure 2.2.

The updating of y(x) described in Figure 2.2 is determined based on Eq.(2.8).

yix) = ylx)+Ayx)

2
X L
A = 4-—=-|h—y| = 2.
y(x) P ( y<2)> (2.8)
Calculate initial value Hy
using Eq.(2.4)
Solve Eq.(2.3)

|

no

Update y(x) using
Eq.(2.8)

Calculate H; using
Eq.(2.5)

Results: H and y(x)

Fig. 2.2 Flowchart of the algorithm for main span
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2.1.2 Side span

After analysing the main span, the value of H is known, however, the slope of the cables at
the anchor blocks is unknown. The calculations procedure for the side spans are, in general,

similar to the ones described along Section 2.1.1. The following parameters apply:
e [(=535m
o U, =3.45-10% kg/m
Figure 2.3 shows the statical model considered for the side span.

YA 1%

Fig. 2.3 Side span statical model

Similarly to previous procedure, an initial estimation of the slope (see Eq.(2.10)) can be
obtained based on parabolic suspension.

d2
He S = () g =0 =

dx2
o _l Hp + He 2
YLs)=h=00-Ls—5 ( o ) gL =
CH - .o 2

2-H-L,
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Eq.(2.3) is now possible to solve introducing the boundary conditions as follows, within
the interval of x € [0, L]

* (0)=0
+ L0 =0

A flowchart of the algorithm for the side span is shown in Figure 2.4. The updating of oy
described in Figure 2.4 is determined based on Eq.(2.11), assuming that the increment Aoy

is proportional to the deviation of y(Ls) in proportion to & (case of parabolic suspension).

o = apt+Aa

Aoy = h%(l‘s) (2.11)

Calculate o using
Eq.(2.10)

Solve Eq.(2.3)

y(Lg) =h > ———| Results: o and y(x)

no

Update o using
Eq.(2.11)

Fig. 2.4 Flowchart of the algorithm for side span

Finalized the procedure and all values acquired, one can determine the vertical force on
the pylons V from each cable, by means of Eq.(2.12).

V=H — (2.12)
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2.2 Results

The procedure described in Sections 2.1.1 and 2.1.2 is initially performed for the data from
the Great Belt Bridge (main span of 1624m and side span of 535m). The results are validated
using equilibrium state between the vertical forces at the pylons and anchor blocks, and the
self-weight of the structure (see Eq.(2.13)).

2'(Vanchor‘{'vpylon)J:yb'(L+2'LS)'€+ 2'.uc'Lc'g +f|"/~Lc'Lcs'éi (2~13)

g v N
values from Eq.(2.12) bridge girder cables main span cables side span

The algorithm is then run changing the parameters L, Ls and . for the up-scaled models,
according the assumptions described in Section 1.5. The results for main and side spans can

be seen, respectively, in Figures 2.5 and 2.6.

450

I I I
—>Span = 1624 m, H = 3.85e+08 N
4007—Span = 2000 m, H = 5.31e+08 N |
Span = 3000 m, H = 1.16e+09 N

—>Span = 4000 m, H = 2.85e+09 N

350
300+
E 250
~
200
150 -

100 (-

50—

0! | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

z [m]

Fig. 2.5 Equilibrium suspension of cables in main span

The horizontal spacing for the hangers, dx, varies between models, in order to fulfil the
criteria of equal amount of hangers with a spacing of order of magnitude close to 24 m.
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450

400 -

350
300
"8 250
X200
150
100

50

Fig

. 2.6 Equilibrium suspension of cables in side span

I
—~Span = 535 m
—~Span = 659 m |
Span = 988 m
—Span = 1318 m
! ! ! ! ! !
0 200 400 600 800 1000 1200
z [m]

1400
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STRUCTURAL DYNAMICS

In order to evaluate the structural response of the bridge models, a finite element model
is created using ABAQUS software. The outputs requested are the eigenfrequencies and
mode-shapes. The choice of ABAQUS lays on the fact that this software is able to solve
advanced non-linear static and dynamic problems. In the particular case of suspended

bridges, the most important non-linearity is the geometrical stiffness in the cable system.

3.1 Description of the model

In order to keep the duration of the simulations within reasonable time frame, as well as,
being able to run it with the computational power available, the model is build using simple
Bernoulli-Euler beam elements.

The cable system and hangers are defined by beam elements with low bending stiffness.
The girder is modelled as a beam element placed in the centroid of the section and spanning
between hangers. Transversally, the beam elements of the girder are connected to the hangers
using kinematic coupling, an ABAQUS tool which allow to constrain the DOF’s of a master
node (girder) in relation to slave nodes (hangers). The pylons are modelled as box elements,
with equivalent section as described in the drawings in Appendix A. As by defaultin ABAQUS
software, the coordinate system adopted is illustrated in Figure 3.1. The cardinal directions
are also represented, as a close approximation to the orientation of the Great Belt Bridge.

In the following, the definition of the Cartesian referential system (x, y, z) is changed.
Now the origin of the coordinate system is chosen at the end of the bridge, the z-axis is
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N
w I 4+—E

S \
X
}7
A

<
-y
A

S& . )N
‘ cG

Fig. 3.1 Coordinate system and model orientation

placed along the bridge girder orientated toward the opposite end, and the y-axis is orientated
in the vertical direction.

For the sake of simplicity, and taking into account that this detail do not significantly
influence the results, the bridge deck is modelled horizontally, without camber, as seen in the
longitudinal section on Figure 3.1.

3.2 Material properties

The structure is mainly composed by two different materials: steel and reinforced concrete.
It is known, according [5], that the steel is class S355 J2. Material properties considered
along all the components are shown on table A.

3.2.1 Cable system

The section properties for the different elements are based on literature - [5] and [8]. For
the sake of simplicity, the cables are modelled with the section properties from the main
span, although the cables on side spans has slightly different parameters. It is assumed that

the cables do not have significant bending and torsional stiffness. The cross sectional area,
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Table 3.1 Material properties

Properties ~ Value Units

Egeel 2.1-10'"  Pa

Vsteel 0.3 [‘]

Psteel 7850  kg/m’®
Econcrete  4.0-1010  Pa
p concrete 2400 kg/ m3
Vconcrete 02 [_]

A, is equal to 0.41 m? and the mass per unit length, g, is equal to 3.36 - 10° Kg/m for the
referential bridge.

3.2.2 Hangers

According [5], the cables are connected to the girder by two parallel hangers with a distance
between each other of half meter. In order to simplify the modelling process, only one hanger
is modelled but its section properties are doubled. In similarity to the cable system, also the
hangers are modelled without significant bending and torsional stiffness. The cross sectional
area, Aj, and density, p;, are, respectively, equal to 6.5 - 10~2 m? and 7850 Kg/m3.

3.2.3 Pylons

The two existing pylons are divided into four different components: two vertical elements
and two cross beams. The vertical elements consist in a box shape with regular geometry
constant from the foundation until the level of the bridge girder and a different one from there
until the top. The two cross beams, placed at project defined level, has also two different
cross sections. All the element components of the pylons are modelled as Bernoulli-Euler

beam elements. The sectional dimensions of these elements are described in Table 3.2.

Table 3.2 Sectional properties of the pylons (referential bridge)

Element a[m] b[m] ¢ [m]

Lower sectionleg 13.8 15.1 1.7
Upper section leg 8.0 9.0 1.7
Lower cross beam 9.0 120 1.2
Upper cross beam 9.0 13.0 0.8

(Notation: refer to Figure 3.2)
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N
<

a a

Fig. 3.2 Notation for section properties of pylons
(Left side: pylon legs; Right side: cross beams)

3.2.4 Bridge girder

As stated in Section 3.1, the model is based in simple elements due to faster simulation time
and to the fact that the chosen elements perform results according expected. Following this
approach, the bridge girder is modelled using Bernoulli-Euler beam elements.

The mass moment of inertia per unit length of the bridge deck becomes

Jp=p - (Iex + 1) (3.1)

where I, and I, indicates, respectively, inertial moment about the strong and weak axis.

Regarding the bridge girder, the beam elements are modelled based on the parameters
founded in [5], [8] and in the data in Appendix B. Table 3.3 shows the parameter taken into
account.

Table 3.3 Section properties for bridge girder

Properties Value Units
Ap 1.137 m?
Ly 3.577 m*
L 94.694 m*
I, 9.366 m*
Jp 1.277-10° Kg.m

i 14.78-10° kg/m

The parameter I, indicates the St.Venant torsional inertial constant.
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3.3 Model validation

In order to assure the reliability of the model outputs, the results from eigenfrequencies for
bending and torsional vibrations are compared against reference values, as well as, crude
analytical solutions.

An analytical solution for the fundamental angular frequency for shallow cables is
founded in [7], and shown in Eq.(3.2). The mass per unit length, m, is determined by
summing the contribution from the girder and cables. The mass per unit length from the
hangers is neglected, assuming a rigid connection between girder and cables, thus an upper
bound solution is expected, [7].

m- L2

®; =8.99- ( H ) (3.2)

When computing Eq.(3.2) with the parameters from the Great Belt Bridge, the fundamental

bending frequency is estimated as follows:

3.85-108
8.99- \/(21.5. 105- 16242)

fi= o ~0.12 Hz (3.3)

An operational modal analysis was performed in 1999 and the results obtained using the
software ARTeMIS published one year later in [1]. The results shown in Table 3.4 are the ones
obtained using the solver SCI-UPC (Stochastic Subspace Identification techniques), which
the author assumes to represent the most accurate ones, based on the advanced techniques
involved in the outputs.

Table 3.4 Reference values from modal analysis

Mode j Symmetry f[Hz] ¢ [%]

1 S 0.113  0.90
2 SS 0.174  1.25
3 S 0.208  0.79
4 SS 0.241 044
5 S 0.287 0.20
6 S 0332  1.25
7 SS 0.372  0.80
8 SS 0.391 0.68
9 S 0.429 149
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The labels S and SS on Table 3.4 and 3.5 indicate symmetric and skew-symmetric modes,
respectively. Based on the scaling assumptions from Section 1.5, the damping ratios § (in %)

cited on Table 3.4 will be used for the up-scaled models.

3.4 Outputs from dynamic analysis

As output of the dynamic analysis performed in ABAQUS, the parameters of interest are
extracted as, the bending and torsional eigenmodes and corresponding eigenfrequencies
associated to each mode. As stated in Section 1.5, the damping ratios are the ones from the
reference values in Table 3.4.

The results are shown in Table 3.5 and a plot of the selected mode shapes for the
referential bridge can be seen in Figures 3.3 to 3.6, where Vi(z), U;(z) and ®;(z) represent

the normalized amplitudes of the eigenvector function.

Table 3.5 Eigenfrequencies for referential and up-scaled bridges

Great Belt Model A Model B Model C
Symm. f[Hz] Symm. f[Hz] Symm. f[Hz] Symm. f[Hz]

S 0.128 S 0.113 S 0.090 S 0.078
SS 0.174 SS 0.151 SS 0.119 S 0.083
S 0.216 S 0.187 S 0.129 SS 0.103
SS 0.269 S 0.243 SS 0.148 SS 0.115
S 0.294 SS 0.277 SS 0.180 S 0.128
SS 0.306 S 0.318 SS 0.183 SS 0.156
S 0.331 SS 0.323 S 0.215 S 0.171
SS 0.387 SS 0.361 S 0.217 S 0.185
S 0.438 S 0.390 SS 0.242 SS 0.211

Mode

O 01NN B~ W~
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Vi(2)1

Fig. 3.3 First symmetric bending mode j = 1 (referential bridge)

V3(2) 1

Fig. 3.4 Second symmetric bending mode j = 3 (referential bridge)
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Va(2) 1

O7(2) 1

Fig. 3.5 Third symmetric bending mode j = 7 (referential bridge)

O5(2)

Fig. 3.6 First symmetric torsional mode j = 5 (referential bridge)

The non-dimensional quantities a;, ay and a j; from Eq.(4.34) are evaluated numerically
for the referential bridge and up-scaled models. Table 3.6 shows the results considering the
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onset of flutter between the first symmetrical bending mode j; and the first symmetrical

torsional mode ki, for the referential bridge and Model C (4000m suspended span).

Table 3.6 Non-dimensional quantities a j;

Great Belt Bridge Model C

g 21.5-103kg/m  64.5-10% kg/m
J 2.9-10kgm  13.2-10%° kg.m

ajj 0.308 0.345

m 0.239 0.161

aj 0.038 0.178

I 0.124 0.515
JJ

i 0.159 1.101

Akk

(results for j; and ki)

As shown, the non-dimensional quantities corresponding to the normalized eigenmodes
are not independent of the up-scaling, neither approximately similar.






CHAPTER

AERODYNAMICS

The focus of this Chapter is to describe the theory used to obtain the aerodynamic parameters
and the frequency response functions. The proposed theory differs from the approach in
Scanlan [9] since it considers the different bridge deck response along the bridge and uses
normalized non-dimensional quantities. The latter characteristic reveals to be useful when

dealing with up-scaled systems. The core of the aerodynamic effects is the onset of flutter.
4.1 Modal analysis

y

A

Ap(z,1), u(z,1)

|%
[ Q ) ‘—z@m<z,r>, 0(z,1) )

Fig. 4.1 Notation

u(z,t) and 0(z,t) signify, respectively, the displacement in the y-direction and the rotation
in the z-direction of the bridge section at position z at the time ¢ from a given static referential
deformation.

p(z,t) and m(z,t) signify, respectively, the work conjugated load per unit length in the

y-direction and the moment load per unit length in the z-direction at position z at the time ¢.
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The loads may be assemble in the vector:

p(z,0) = [p(z’t)
’ (

~—

m(z,t

] 4.1)

Flutter is assumed to take place as a modal coupling between the jth and the kth eigen-
modes. Hence, at the onset of flutter, the displacement field may be written as:

u(z,r) = ®;(z) q(t) + Pr(z) i (1) (4.2)
where:
u(z,1)
u(z,t) = 4.3
1] o
g;(t) is a modal coordinate, and ®;(z) is the related undamped eigenmode vector, given as:
Uj(z)
®(z)=| "’ (4.4)
The eigenmode vector fulfills the orthogonality property:
L 0, j#k
/ D7 (2) My (z) dz = { J,# 4.5)
0 mj, j=k
where
u 0
M= (4.6)
0 J

where L is the total length of the bridge (main span plus side spans), and u is the constant
mass per unit length of the bridge deck plus cables and J is the mass moment of inertia per

unit length of the bridge deck plus cables given as:

2

B
J=dpt e (4.7)

m; indicates the modal mass of the jth mode given as
LT
m = [ @TIM®(2)d:

= [ v 48} @438)
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Due to the orthogonality property of the eigenmodes, the modal equations of motion

decouple. The jth modal equation reads:

mj- (§() +2- §j- ;- 4;(t) + @F - qj(1)) = f;() (4.9)

where (; indicates the structural modal damping ratio, ®; is the undamped angular eigenfre-

quency, and f;(z) is the modal load given as:

L
fi(t) = /O @' (2)p(z,1) dz (4.10)

Conveniently, the modal loads may be stores in the vector f(z) given as:

f(r) = /L¢T(z)p(z,r)dz (“.11)
0
)
ft) = [fi(t)] (4.12)

®(z) is a modal matrix function given as:

®(z) = [<P i(2) Qk(Z)} (4.13)

4.2 Frequency response analysis
Assume that the bridge deck undergoes harmonic varying deformations on the form
u(z,1) =U(z) - e’ (4.14)

where i indicates the complex unit, @ is the angular frequency of the excitation, and U(z) is
a complex amplitude vector function depending on z, i.e., a phase difference between the two

components may be present. Then, the modal coordinates become harmonic varying as well:

qt) = Q- (4.15)
q(r) = Z;g;] (4.16)

Ok

Q = Qf] (4.17)
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From Eq.(4.2), (4.13), (4.14), (4.15) follows
U(z) =®(z)Q (4.18)

The pressure over the bridge deck and the load resultants per unit length p(z,¢) and m(z,t)

become harmonic varying as well. Hence, Eq.(4.1) can be written as:

p(z,t) = P(z,)e'™ (4.19)
P(z,0) = Hu(0,V)U(z) = Hy(0,V)®"(z)Q (4.20)

Hpy(0,V) Hpg(w,V)

H,(o,V) Hpu(0,V) Hyg(o,V)

(4.21)

H,(w,V) indicates the frequency response matrix for the load per unit length p(z,¢) and
the moment load per unit length m(z,¢) due to harmonic varying deformations u(z,t) or
0(z,t) of the bridge deck. E.g. H,g(®,V) indicates the frequency response function for
p(z,t), when the bridge deck undergoes harmonic varying rotation 0(z,¢) = ©(z) - /®" with
the vertical displacement u(z,¢) = 0. The frequency response function depend on V via the
Reynolds number Re = ~ = where v is the kinematic viscosity. However, this dependency
is assumed to be weak, because the boundary layer around the bridge deck is everywhere
turbulent, i.e. both the referential and the up-scaled bridges are considered at supercritical
values of Reynolds number. Notice that H,(®, V) is assumed to be independent of z. This is
necessary in order to apply the results from the 2D CFD analysis. We may refer to H,(®,V)
as the aeroelastic frequency response matrix. H,(®,V) depends on the mean wind speed V
in the negative x-direction, which is assumed constant along the bridge, see Figure 4.1.

The modal loads become harmonic varying as well. Then Eq.(4.12) may be written as:
f(t) =F(o,V) e (4.22)
where the amplitude vector follows from Eq.(4.11), (4.19), (4.20) as

L
F(w,V) :/O ®T(2)P(z,0,V)dz=A(@,V)Q (4.23)
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where:

L
Ad0,V) = /0 O () Hy(,V) ®(z) dz
_ /L @)
— Jo @ (2)

A, (®,V) fulfills the following symmetry properties

[Hpu(a),V) Hyo(w,V)

Hypu(0,V) Hpyg(o V)] [q)j(z) Dy(z)| dz (4.24)

Re(Aq(@,V)) = Re(Aq( w,v»} @2s)
Im(A,(w,V))= —Im(A;(—@,V))
4.3 Flutter
From Eq.(4.9), (4.13), (4.22) and (4.23) follows
As(w) ' Q - F((D,V) = Aa(w,V) : Q =
(As(w) - Aa((D,V)) : Q =0 (4.26)
where:
Aj((i)) 0
A(w) 0 A(©) 4.27)

where A ;(w) indicates the inverse of the modal frequency response function H;(w), given
as
Aj(@)=m; (07 —0*+2-§; 0; 0i) (4.28)

Eq.(4.26) is a system of linear homogeneous equations. Non-trivial solution Q # 0, corre-

sponding to onset of flutter, requires that:

det (Ag(®) — Ag(®,V)) =0 (4.29)

Eq.(4.29) must be fulfilled for both the real and imaginary part of the determinant. This
provides two nonlinear coupled equations from which the critical wind speed V. and the
angular frequency @, at onset of flutter may be determined.

The indicated theory is the correct approach based on a truncated modal analysis with
two critical modes. It deviates from the approach in [9], which lacks any reference to 3D
effects (the different bridge deck response along the bridge).
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4.4 Reduction of system of equations

The eigenmodes are ordered corresponding to ascending values of the undamped eigenfre-
quency f; (see Table 3.5). In the following, the index j indicates a symmetric bending mode,

and the index k indicates a symmetric torsional mode.

Uiz) 20, ©;(z)=0 } 430
U(2) =0, O(z) £0
The bending modes are normalized, so:
maxUj(z) =1 4.31)
Correspondingly , the torsional modes are normalized, so:
max®;(z) =1 (4.32)

With the indicated normalization, the modal coordinate Q;(z) have dimension of length, and
Qs (z) is non-dimensional.

Flutter is assumed to take place as a coupling between the first, the second or the third
symmetric bending mode, corresponding to j = 1, 3, 5, and the first symmetric torsional
mode, corresponding to k = 1. Due to symmetry properties of the involved eigenmodes, this
fulfill the properties of Figure 3.3 to 3.6. Then, the modal masses become:

L

Vs

(4.33)
L
my = /OJ-G%(z)dz: J-L-ay
where: | L .
ajj = Z/O U}(Z)dZ
1 L
ap= 7 /0 Uj(z)- Ok(z) dz (4.34)
1 (L,
Aik = Z/() ®k(x)dx

ajj, ajx and ay are non-dimensional quantities with values in the interval 10, 1].
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The matrix function A,(®,V) may be calculated as

L 0,V) b(z,0,V
Aa(w,v):/ az,0,V) bzoV)| . (4.35)
0 |c(z,0,V) d(z,0,V)
where:
a(z,o,V) b(z,0,V)| Hpu(a),V)-sz(z) Hyo(@,V)-U;j(z) - O(z) (4.36)
c(z,0,V) d(z,0,V)| |[Hw(®,V)-Uj(z)-Oi(z)  Hue(®,V)-0;(z) '
The aeroelastic frequency response functions can be defined as:
1 ) )
Hp(0,V) = E-p-V hpu(Q,V)
1
Hyp(@,V) = E-p~V2-B-hmM(Q,V)
) (4.37)
Hypo(@,V) = 2-p-V?-B-hpp(Q,V)
1 2. p2
Hpuo(0,V) = E-p-V B hye(Q,V) )
where € indicates a non-dimensional reduced angular frequency given as:
‘B
=2" (4.38)
Vv

hpu(2, V), iy (2,V), hppe (2, V) and hy,0 (Q, V) are non-dimensional frequency and velocity
dependent lift-and moment coefficients. For Q —; 0, /1,9 (0) and £,,¢(0) indicates the quasi-
static lift-and moment coefficients ¢; and c¢,, from 2D aerodynamics. If the aerodynamic
center is assumed to be placed at the quarter point from the leading edge, and the moment
load is referred to the center of the profile, then ¢, >~ }‘ - ¢y as follows from potential flow
theory from thin plates ([3]).

Then, Eq.(4.35) may be written as:

hpu(Q,V)-ajj B-hpe(.Q,V)-ajk

4.39
B- hmu(Q,V) -ajk B2 'hmg (.Q.,V) * Ak ( )

1
Aa(a),V)zz-p-Vz-L-
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Similarly, As(®) may be written as:

As(w):VQ'L. [u-ajj-<92—93+2-§j-9j-9> 0
B 0 Joap- (Q2—Q2+2- G- - Q)
(4.40)
where:
Q;=Q;(V) = a’f"/'B L = (V) = a”;B (4.41)

The singularity condition on Eq.(4.29), can then be reduced to:

det(a;(Q,V) —a,(Q,V))=0 (4.42)
where
Q2 —QXV)+2-&;-Qi(V)-Q-i 0
a,(Q,V) = V)26 (V) Qi . | @43
0 Q —Qk(v>+2'€k-.Q.k(V)-.Q-l
B .
1 - 'hpu('Qav) o % 'hpO (vi)
.
a,(QV)=5p-B | F H (4.44)
7-4-/1,%(9,‘/) — hye(Q,V)
Aakk



CHAPTER

EVALUATION OF AERODYNAMIC PARAMETERS

The scope of this Chapter is to evaluate the aerodynamic parameters from the theory described
in Chapter 4. For this purpose, two methods are used: CFD simulations done in STAR-CCM+
and numerical solutions using MatLab. A full scale model of the bridge girder, performed in
STAR-CCM+, subjected to a harmonic varying vertical displacement and forced rotation,
is used to obtain the frequency response functions. Further, the remaining aerodynamic

parameters are evaluated numerically.

5.1 Background in CFD

Due to the author’s limited knowledge of CFD beforehand, some time was applied in research
on the matter. Two main sources were chosen in order to gain confidence within the topic
([6] and [12]).

Regarding STAR-CCM+, the usage of this tool was completely new to the author. Tutori-
als presented on the user guide literature [2] were conducted, as well as, the cases done in
[6]. The author considered confidence acquired when the results obtained matched the ones
from the sources. Due to time limitations, some of the parameters subjected to sensitivity
analysis as, domain and mesh size, are chosen from [6], based on the parameters the source

authors considered as convergent.
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5.2 Description of the CFD model

Following the drawings on Appendix A, a full scale cross section of the bridge girder
has been modelled using the build-in CAD-designer tool. In order to maintain the model
simple, however, with the necessary attention to details which may influence the fluid-body
interaction, the girder is made including the lateral and central railings, but omitting the
hangers, cables and other vertical standing components. Each parameter of the model is
described in detail along the following subsections.

5.2.1 Inputs

The aeroelastic analysis is performed by the STAR-CCM+ code. The input to the software
must be in terms of harmonic varying velocities #(¢) in the y direction and angular velocities

0(¢) in the z direction, i.e.:

W)=t } (5.1)

9(1‘) = 90 . ei~a)-z
Correspondingly, the obtained frequency response functions for the load per unit length
p(t) and moment load per unit length m(¢) on the bridge deck obtained from the software are
denoted as Hp; (@), H (@), Hyi(®) and H,,4 ().
However, in the modal analysis the frequency response functions Hp,(®), Hpg(®),
Hyu(®) and H,9(w) as driven by the vertical displacement u(¢) and the rotation 6(¢) are
needed. A relation between these and the frequency response functions from the STAR-CCM+

code is given in the following.

— Hpu(a))

— p(t)

Fig. 5.1 Frequency response function for p(¢) due to harmonic varying displacement and
velocity of the bridge deck

The harmonic varying load per unit length is given as:

p(t) =po-e"®! (5.2)
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where the complex amplitude pg per definition becomes:
Po = Hpu(®) -up = Hpy (o) - tig (5.3)
Now, 1ip = i- @ - ug. Hence, Eq.(5.3) provides the relation:
Hp(0) = i- 0 Hpy(0) = "> - 0 - Hpy(0) (5.4)
H,;(®) may be written on the polar form:
Hpi(0) = |Hpa(®)| e~ i) (5.5)

where ¢,,;(®) indicates the phase lag of p(r) relative to u(z).
Similarly, H,,(®) may be written as:

Hou(0) = [Hpu(@)] ¢ ()
= o |Hyi(@)|-e 1) (5.6)
Hence, the modulus |H,,(®)| and phase lag ¢,,(®) of p(z) relative to u(t) are given as:

Hp(@)| = 0 [Hpi(@)] , 9pu(®) = pu(@) = 5 57)

Similarly, moduli and phase lags of the frequency response functions H, (@), Hy, (@)
and H,,¢(w) are given as:

Ho(@) = 0-1H,) . (@)= o503 )
()| = 0 Hu(0)] . onl0)= dpil0) 3 (538)
Hno (@) = 0 H,6(@) , 9no(®)= 6,5(@) =5 |

Finally, /1, (@,V), hpg(®,V), iy (®,V) and hy,g(o,V) follow from Eq.(4.37).

5.2.2 Domain size

In order to perform a CFD simulation, a domain must be defined. The size of the domain
should be as large as the edges of it do not influence or limit the flow. However, large domain

containing a refined mesh can end up in a large simulation time. In order to find the balance
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between accuracy and simulation time, a smaller domain is created just around the bridge
girder with refined mesh. The dimensions of the main domain are shown in Figure 5.2. As

state in Section 5.1, the dimensions considered are based on [6].
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Fig. 5.2 Main domain size

(dimensions in m)

For the girder domain (marked in blue in Figure 5.2), 50x15m size is adopted, vertically
centred and with 20m to the inlet side and 30m in the opposite direction. The area towards the
inlet is considered sufficiently large to avoid interference of the uniform incoming flow, and

the opposite area, towards the outlet, sufficiently large to observe wakes and its vanishing.

5.2.3 Mesh size

The mesh size plays an important role in any numerical model. However, one should be
aware that the meshing process needs to account for the aim of the simulation, meaning that
not the entire domain required a fine mesh. In STAR-CCM+ the process is done using an
automated built-in tool which allows the user to define the base mesh (the coarser mesh) for
the areas with low or none variation, and the customized refined mesh based on a percentage
of the base mesh parameters, for the areas where the flow motion is of interest.

In Figure 5.3, the different mesh setups can be seen, and are as follows:
1. Domain mesh: represents the coarse mesh applied in most of the domain;

2. Girder mesh: a refined mesh around the bridge girder, in order to obtain an accurate

flow observation;

3. Wake refinement: as the name indicate, a finer mesh is applied in the wake zone;
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Fig. 5.3 Mesh domains and refinements

4. Overset mesh interface: this is a built-in tool from STAR-CCM+ which allow the
connection between the domain mesh and the girder mesh. This is needed due to the
moving condition of the girder since the girder mesh will change in every time step of

the motion;

5. Volumetric mesh: the purpose of this area is to make a smooth transition between the
coarse and fine mesh. A volumetric control is therefore applied by inserting the values

of size mesh for both, coarse and fine areas.

Beside the different mesh setups, surface controls are applied in the girder and railing,
and curve controls applied along the edges of the girder.
A resume of the mesh parameters is shown in Table 5.1.
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Table 5.1 Mesh input parameters

Domain mesh Input  Unit
Base size 3 [m]
Surface growth rate 1.3 [-]
Volumetric control

Custom size 33.33  [%]
Girder mesh

Base size 1 [m]
Surface growth rate 1.2 [-]
Surface control - girder

Surface size 5 [%]
Surface growth rate 1.1 [-]
Wake size 12.5 [%]
Wake range 10 [m]
Wake growth rate 1.3 [-]
Surface control - railing

Surface size 5 [%]
Surface growth rate 1.1 [-]
Wake size 5 [%]
Wake range 0.5 [m]
Wake growth rate 1.3 [-]
Wake spread angle 0.1 [rad]
Curve controls - girder

Surface size 1 [%]

5.2.4 Physics and solver

For the purpose of investigate air flow, the material is set to be gas with a constant density, p

equal to 1.225% and the kinematic viscosity v equal to 1.48- 107> mTz . A turbulent viscous

regime has been chosen and the turbulence model set to SST k-®.
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At the initial phase of the simulation, the response is influenced by the initial value of the
response quantities. The following plots refer to a state where a stationary periodic response

under the harmonic excitation is achieved.

5.3 Response functions

The CFD simulation is conducted for a translational motion «(t) with amplitude zg of 0.47¢,
and a rotational motion 6(¢) with amplitude 8, of 0.028%. These are considered sufficient
small, that the responses in terms of the load and moment load per unit length become linear
functions of u(t) and ().

In both cases, the flow is assumed to be uniform in the total height of the incoming
flow and the velocity V, set to be equal to 507 corresponding to Re = 1.04 - 108, and the
frequency of excitation is defined as 0.128Hz. The parameters above corresponds to the
non-dimensional angular frequency € equal to 0.5, cf. Eq.(4.38).

2000

1500

1000

500

41000
/

-1500

-2000
60

Fig. 5.4 Time series for the normalized and centralized load per unit length due to a harmonic
varying vertical velocity of the bridge deck
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Fig. 5.5 Time series for the normalized and centralized moment load per unit length due to a

harmonic varying velocity displacement of the bridge deck

x10*

56 57 58 59 60

55

51 52 53

48 49 50

40 41 42 43 44 45 46 47

39

Fig. 5.6 Time series for the normalized and centralized load per unit length due to a harmonic

varying angular velocity of the bridge deck
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Fig. 5.7 Time series for the normalized and centralized moment load per unit length due to a
harmonic varying angular velocity of the bridge deck

The non-dimensional quantities IT;(z), IT,(f), Au(t) and A, (¢) are defined as:

i 0o
] i (5.9
Aalt) = m(tb)to— m L Ag(r) = m(tgo— m

where p and m represent time averages of the related p(r) and m(t) caused by either u(z) or

(1) defined as:

1 T 1 T
p:7-/0 p(0)dr m:?-/o m(t) dt (5.10)
T indicates the period of the harmonic excitations.

The phase lag ¢ of a function with the time variation cos(®w -t — ¢@) caused by the

harmonic variation cos(® -¢) is determined from the relation:

2 T
cos(@) = 7'/0 cos(w-t—¢)-cos(w-1)dt (5.11)
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Assuming that IT;(¢), Ay(), IT4(t) and A, (7) are harmonic varying and with the period
T and the amplitudes |Hp; (2, V)|, [H,5(Q, V)], [Hni(2,V)| and [H,,4(Q,V)], the related
phase lags ¢pi, Omis qbpe and ¢, 4 are calculated from:

T A
/ IT,(t) - cos(w-t) dt / -cos(w-t)dt
nlon) = 3 A o) A
T
Ay(t)-cos(w-t)dt -cos(w-t)dt
COS("’M”"): %/0 Hypa(Q,V)] ’ COS("’mé): %/ H 5 (Q,V)] )

(5.12)
where

Hpu( V)| = @.\/%./OTHgW, (V)| = ﬁ-\/%-/orﬂixr)dr
Hni(2,V)| = ﬁ-\/%-/OTAzmdr @) = \f\/ [ 3oy

The dimensions of [Hyu(Q, V)|, |H,4(Q,V)],
N- N- N-
tively, [ zs]’ { S}, [ S} and [N-s].
m m m

Eq.(5.12) is evaluated numerically and the results are as follow on Table 5.2.

. 13)
mi(, V)| and |H,, 5(Q,V)| are, respec-

Table 5.2 Phase lag ¢

Phase lag  Value [rad]

Opi 1.275
Omi 1.510
0,6 —0.400

Oi 0.174
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Then, the frequency response functions Hyi(Q, V), Hyu(2, V), H,4 (2, V) and H,4(Q, V)

are given as:

Hp(Q,V) = |Hpu(Q, V)| (cospy—i-sing,;)

Hpi(Q,V) = [Hpy(Q,V)| - (cOS @y — i - sin @) (5.14)
H,y(Q V)= |H,5(QV)| (cos¢,g—i-sing,g)

H,5(Q,V)= [H,;(Q,V)| (cos@,y—i-sing,s) |

5.4 Evaluation of Q2. and V,

From Eq.(4.42) let A(Q,V) = a,(Q,V) —a,(Q,V). The critical wind velocity V, and related
non-dimensional reduced angular frequency Q. are determined from:

det(A) = Ap1-Ap—Apn-Ay

= fi(Q,Ve)+i- f2(Qc,Ve) =0 (5.15)
where: \
f1 (QC,VC) = RG(AH) -Re(Azz) — Im(An) Im(Azz)
—Re(Alz) -Re(AZI) —}-Il‘n(Alz) Im(AZI) (5.16)
fz(Qc,Vc) = RC(A“) Im(Azz) +Im(A11) Re(Azz)
—RG(A12> Im(Azl) — Im(Alz) Re(Azl) )
Further, let:
QC fl (QC7VC’)
X = . Q) = (5.17)
VC fZ(QC7VC
Then Eq.(5.15) may be written as:
f(x) =0 (5.18)

Newton-Raphson iteration

Given a present iterated solution X, so f(xg) # 0. Determine a new solution x; = Xq + Ax,

SO:
f(xo+ Ax) = 0 (5.19)
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First order Taylor expansion of Eq.(5.19) provides the following solution for xi:

f(xo) + VE(x0) - Ax =
X| = Xo +Ax = xo — (VE(x0)) " - £(x0) (5.20)

where the gradient of f(xq) is given as:

o o

Vi(x) = o oV (5.21)
o o
9Q 9V

The partial derivatives in Eq.(5.21) are evaluated numerically.

5.5 Dependency of the frequency response function on @
and V

It is currently assumed by bridge design offices, that the flutter derivatives do not depend
on Reynolds number, thus independent of the mean wind velocity V. In the present context,
this means that the frequency response functions H,,(Q,V), H,,(Q,V), H,e(Q,V) and
H,,0(Q,V) should also be independent of V. This hypothesis will be investigated in the
present Section.

The methodology will be to investigate the load response to harmonic varying velocities
i(t) in the y direction and angular velocities 8 (¢) in the z direction with the angular frequen-

cies ® = 0.4%l and @ = 0.8%‘, respectively. The related mean wind velocities are chosen

. 0. ) .
asV = 25%l andV = 50%1, so the fraction v is constant. The amplitudes gy and 6 of the
excitations are unchanged in the two investigations.

Then, if the frequency response functions H (€2, V), Hpi (2, V), H,(Q,V) and H,,4 (2, V)
are essential identical in the two investigations, it may be concluded that the mentioned
frequency response functions merely depend on w and V via the non-dimensional frequency

w-B
Q—

number.

in the indicated ranges of @ and V, and hence is independent of the Reynolds
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Fig. 5.9 Variation of A;(¢); Red curve, ® = 0.8%1, Blue curve, 0 = 0.4%1
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Fig. 5.10 Variation of Iy (7); Red curve, @ = 0.8%1, Blue curve, ® = 0.4%i
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Fig. 5.11 Variation of A, (); Red curve, ® = 0.8%1, Blue curve, 0 = 0.4%1

Figures 5.8 to 5.11 illustrate the normalized and centralized loads per unit length IT;(¢),
IT,4(), and the normalized and centralized moment loads per unit length A; (1), Ay(t) for
angular frequencies of 0.8%i and 0.4%1l respectively. Based on the relations in Eq.(5.12) and
Eq.(5.13) the following amplitudes |Hpi(Q,V)], |H,¢(Q, V)], [Hpni(2, V)|, |H,,(2,V)| and
phase lags ¢,i, Omis ‘Pp(-) and ¢, 4 are obtained:
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Table 5.3 Frequency response functions and phase lags

o= 0.4%i W= 0.8%1 Variation

V=251 y=50"  [%]
-
|H il m—; 195100 1.77-100 92
e
|Hpi ?S 1.66-10  1.52-10* 8.4
o
Hyl [==| 395-10°  4.16-10°  —53
Hgl [Nos| 349108 339108 29
0p [rad] 1.645 1.275 225
O [rad] 1717 1510 12.1
¢p9 [rad] —0.073 —0.400 —
0, 5 [rad] 0.253 0.174 312

The variation in the third column of Table 5.3 is determined using the results in the first
column as a reference.

As seen, the variations of the amplitudes are within 10%, whereas the variations on the
phase lags are significantly larger. The inevitable conclusion seems to be that the obtained

frequency response functions for the load and moment load per unit length does not merely

depend on V and w via the reduced frequency Q = a)T-B’ as assumed in the classical flutter
analysis based on the flutter derivatives.

After determining Hpi(®,V), Hpui(@,V), H,o(®,V) and H,4(®,V), the related fre-
quency functions H,,(®,V), Hyg(®,V), Hyu(®,V) and H,,9(®,V) are determined from
Eq.(5.8).

Next, the normalized frequency response functions £,,(Q,V), hye(2,V), by (Q,V)
and h,,9(Q2,V) are obtained from Eq.(4.37), and the matrices a,;(2,V) and a,(2,V) from
Eq.(4.43) and Eq.(4.44).

Finally, the functions f1(Q,V) and f>(Q,V) are calculated by means of Eq.(5.15)
Eq.(5.16).






CHAPTER

CONCLUSION

Due to the current highly use of computational resources, the approach taken into account
along this thesis represent an improvement in obtaining the frequency response by means of
CFD. This method reflects a significant decrease in time and cost, since wind tunnel tests
has an high cost and require significant time for setting up the simulations. Beside that, the
use of CFD allows to reach supercritical Reynolds number, whereas only subcritical levels
can be achieved in the model testing. Although in wind tunnel testing is possible to simulate
full scale models, this highly influence the costs of the procedure. When down-scaling the
models, errors can occur. None of mentioned considerations exist while using CFD, since
the time of simulations merely depends on the computational power available.

With the procedure mentioned in Section 5.5, the critical values for onset of flutter can
be evaluated. Due to the lack of time, this step is left for further framework. It is suggested
to perform a tabulation of the real and imaginary parts of the normalized frequency response
functions £, (Q,V), hye(2,V), h(Q,V) and h,,9 (2, V) for the load per unit length p(z)
and the moment load per unit length m(t). Next, results of interest for different values of Q
and V can be obtained by means of interpolation.

In the thesis the often applied hypothesis used in aeroelastic bridge engineering bridge
engineering, that the so-called flutter derivatives are independent of Reynolds number and
merely depends on the critical wind velocity and critical flutter angular frequency via a
non-dimensional reduced frequency parameter. The flutter derivatives merely represent the

real and imaginary parts of the frequency response functions for the loads and moment loads.
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However, the CFD calculations, which are carried out for wind velocities of V = 25%i and
V= 50%1, seems to question this assumption.

As proposal for future framework, it is recommended as follows:

* Up-scaling models: the up-scaling considerations from Section 1.5 should be verified

or, in alternative, modified for the parameters close or equal to real bridge projects;

* Structural dynamic model: although the obtained values for eigenfrequencies are
within an acceptable difference from the ones considered as reference values (see Table
3.4 and 3.5) it is of interest to validate against other sources and/or modify the current

model in order to reach higher accuracy;

* CFD simulations: as mentioned in Section 5.1, the author had limited knowledge of
CFD and no knowledge of the software STAR-CCM+ beforehand. Although the author
assumed to have reached sufficient confidence within the two topics, it is of interest to
re-evaluate the modelling procedures and set up parameters considered, i.e., sensitivity

analysis on the mesh size, time step and simulation time.

Based on the above described, the author assumes that the present thesis reached the
initial aim, however, it has sufficient content to be subject of future frameworks, either to
perform the proposed improvements, or to finalize the theory with a complete tabulation of
the results of interest. This includes the determination of the critical flutter velocity V. as a
function of the main span L.

Finally, the author concludes that the combination of computational resources as ABAQUS,
STAR-CCM+ and MatLab or any other equivalent software, it represents an efficient and
sufficiently accurate way to perform aerodynamic analysis, when compared to analytical,

empirical and experimental methods used during the past decades.
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APPENDIX

PROJECT DRAWINGS FROM STOREBZALT BRIDGE



A. Project drawings from Storeblt Bridge
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APPENDIX

CROSS SECTIONAL PARAMETERS OF GIRDER



B. Cross sectional parameters of girder
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