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Abstract

Deep Learning introduces new way to handle audio data. In the last few years,
audio synthesis domain started to receive many contributions in sound generation
and simulation of realistic speech from the Deep Learning field. Specifically, a
model based on a Variational Autoencoder is hereby introduced. This model can
reconstruct an audio signal 4096 samples long (512ms with 8KHz sample rate) after
a ×32 compression factor from which 20 features have been collected to describe
the whole audio. The 20 features are then used to reconstruct back the input. The
model is adapted to collect items of the same class in the same sub-region of the
compressed features space. This approach allows morphing operations between
sub-regions corresponding to different types of audio. In order to reach this goal
two loss functions are used in the model: a reconstruction loss regularised with a
variational loss and a classification loss applied at the bottleneck. This report com-
pares the results of three Variational Autoencoders based on convolution layers,
dilation layers and a combination of them. The evaluation of the models is based
on 1-Nearest Neighbour classification at the bottleneck and a Dynamic Time Warp-
ing based on MFCC features to evaluate respectively the instances distribution in
the bottleneck layers and the goodness of the reconstruction task. Finally a music
application is introduced for drum samples.
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Abstrakt

Deep Learning introducere en ny måde at håndtere lyddata på. For nyligt beg-
yndte domænet indenfor lydsyntese at modtage mange bidrag der omhandler lyd-
generering og simulering af realistisk tale ved hjælp af Deep Learning. Et tilfælde
er en model baseret på Variational Autoencoder. Denne model kan konstruere
et lydsignal på 4096 samples (512ms med 8kHz samplings frekvens) efter en ×32
ganges kompressionsfaktor, hvoraf 20 funktioner er blevet samlted for at beskrive
hele lyden. De 20 funktioner bruges derefter til at rekonstruere inputtet. Modellen
er bygget til at samle elementer af samme klasse i samme underområde af det kom-
primerede element. Denne fremgangsmåde tillader morphing operationer mellem
underregioner svarende til forskellige typer lyd. For at nå dette mål anvendes føl-
gende funktioner i modellen: et genopbygningsforløb reguleret med afariationstab
og et klassificerings tab anvendt på flaskehalsen. Denne rapport sammenligner re-
sultaterne af tre Variational Autoenvoders baseret på convolution lag, dilation lag
og en kombination af dem. Evalueringen af modellerne er baseret på 1-Nearest-
Neighbour klassifikation ved falskehalsen og en Dynamic Time Warping baseret
på MFCC funktioner for at evaluere henholdsvis forekomstfordelingen i modellens
lag og kvaliteten af genopbygningen. Til sidst introduceres en musikapplikation til
trommeprøver.
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Preface

The current report describes the work done at Aalborg University during the
Spring semester 2018 in relation to the Master Thesis in Sound and Music Com-
puting. The work, supervised by Hendrik Purwins, has been conducted during the
final term of the studies of the Master and it takes place in a machine learning con-
text. The interest in machine learning in musical and sound contexts is motivated
by the recent evolution of machine learning tools and applications.

The thesis cover a 3 month-period, during which most of the time has been
spent studying and developing program codes.

The project has brought multiple challenges. Because of the innovative strat-
egy in audio context proposed in the thesis, the whole code has been written from
scratch and the Python library "Tensorflow" has been learnt during the project. The
project deals with complex structures and many parameters. Understanding the
contribution of each structure was part of the goal of this thesis, including learn-
ing which combinations of these provided a good strategy to solve the problems
encountered.

The thesis topic has been decided according to the previous academical projects
conducted during the Master. All semester projects were, indeed, chosen in ma-
chine learning context, investigating long short-term memory models, parametric
t-distributed stochastic neighbour embedding and modelling expressiveness of vi-
brato of violin performance in a machine learning approach.

Aalborg University, May 31, 2018

Matteo Lionello
<mlione16@student.aau.dk>
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Chapter 1

Introduction

Artificial Intelligence sectors are forcefully growing up. Their application covers
inter-disciplinary research fields such as economics, biology, medicine, telecom-
munication, automata, arts and videogames. Autonomous cars, speech recogni-
tion and synthesis, virtual personal assistant, emails filtering, video surveillance,
optimization of search engine browsers, social media services, online customer
support, recommendation systems and so on, are some examples of daily human’s
interactions with AI systems by means of Deep Learning methods.

In the last decade, there has been a growth in Deep Learning techniques im-
plementation in the images domain whose main goals are classification, transfor-
mation and generation of images. Besides similarities between images and audio
data, the amount of studies regarding Deep Learning in audio contexts is less than
its applications in the image domain. Adapting the same algorithm to work in both
domain could be not such an easy task because of the large differences between
images and sound instances. Deep Learning is usually used in audio domain for
feature extraction, music information retrieval [47, 46, 10], acoustic event classifi-
cation[56, 49] and, in the last couple of years, audio transformation and synthesis.

Audio synthesis comprehends sets of methods to generate sounds usually from
scratch. It finds its main applications in music production - synthesizers - and text-
to-speech generation - vocoders. There exist multiple strategies to create sounds
to emulate existing music instruments or to create new sounds of instruments that
actually do not exist in the real world. The main techniques consist of granular
sythesis[54], frequency modulation[6], subtracting synthesis, additive synthesis,
sampled synthesis, wavetabels[2], modelling physical systems. On the other hand,
speech synthesis is usually done by formant synthesis, concatenative synthesis or
statistical parametric synthesis. Research in artificial multi-layers neural networks,
has provided new tools to generate sound for either speech and sound synthesis[9,
50].

In this scenario, one interesting topic of ML concerns generative models which
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Matteo Lionello Chapter 1. Introduction

are capable to create new data with respect to what used during the learning pro-
cess (see section 2.2.3). These models have being largely used in computer vision
to increase the resolution of the images, to delete or add objects appearing in it,
to change some visual properties, to reduce noise, or to generate completely new
images. In audio domain generative models have been mainly investigated by
Google Magenta and Goodle Deep Mind research teams. These researches have in-
vestigated both speech and sound of musical instrument synthesis by abstracting
and then recomposing back one object (e.i. one audio file) in a stack of hierarchical
representations of it (see section 2.1). One interesting idea is how to interact with
one of this representations to reconstruct an object that will be slightly different
from the original one. The idea is to create a model which learns to manage a
large set of objects, mapping their attributes in an abstract representation by creating
unique descriptions of the objects. This method extrapolates a small amount of
important features which allow the correct reconstruction of the object.

Let us imagine a potter who needs to build a copy of an existing vase. Let us as-
sume that s/he can look at the original object only before and after the production
of the copy. After having looked at it for a while, s/he will have a first impression
of the object in her/his mind and then s/he will try to reconstruct it. Once the pro-
duction process ends, the potter will look back to the original vase and compare
her/his product with the target object. By looking at the differences between the
two objects, the abstract impression in her/his mind improves, in order to produce
smaller dissimilarities the next time s/he will have to reconstruct the object. At
this point we should distinguish a memory based representation, where the ab-
stract impression is an approximation of the real object, from a different structure
which could be a list of information and properties of the real object1. Every time
this process happens, the potter will learn a better representation of the object in
her/his mind which allows her/him to improve the copy of the vase. In this ex-
ample, the process happens in three different spaces: the 3-dimensional original
vase, the abstract representation inside the potter’s mind and the 3-dimensional
reconstructed pottery. Now, let us suppose there exists a joker-homunculus inside
the potter’s mind who is able to interact with the abstract representation; once the
potter finishes to learn a good way to rebuilt the original objects, the homunculus
inside her/his is able to change the structure of the abstract representation in or-
der to change how the potter will build the vase. By changing some properties of
this representation, the homunculus will be able to control the potter’s acquired
knowledge to build new vases, slightly different from the original one used for
the potter’s training. In this example, the homunculus introduced is nothing but
the capability of imagination which leads the person to create new things starting

1This concept will be considered later and explained in section 4.2. The idea is to distinguish a
model which conserve a fragment sort information of the original data, rather than to extract the
essential features sufficient to describe uniquely the original object.
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from what s/he learns.
Similarly to the previous example, the goal of this project is to create a model

for generating new sounds that can be easily controlled by changing the interme-
diate representation of a model. The model is built to learn to reconstruct a set
of audios by extracting a low-dimension representation from them. In the current
thesis, this is achieved by means of Deep Learning methods based on autoencoders
which learn how to represent a given dataset by extracting the features necessary
to reconstruct it. The feature extraction is done by the autoencoder by projecting
the audio into a low-dimension space defined as a probability space. Once the
training process of the model ends, it makes it possible to explore the probability
space and to create from it a new representation between two regions that collect
two different kind of sounds. By reconstructing the set of points sampled from a
path starting from one region and ending in the other one, a morphing between
the two sounds will be achieved. The project gathers multiple methods of deep
learning techniques such as autoencoders (AE), variational autoencoders (VA-AE)
and future implementation of generative adversarial networks (GAN). The project
investigates these research fields, implementing these approaches with audio data.

The thesis is structured as follows:

• Chapter 2: Related Works. A description of historical context of deep learn-
ing is proposed introducing its concept according to its time-line. Further,
this chapter contains a description of the projects that provides the state of
the art and of other academic projects to contextualise the environment in
which the current thesis is done.

• Chapter 3: Probability data representation in Machine Learning context.
It contains a formal introduction of Autoencoders and Variational Autoen-
coders.

• Chapter 4: Experiments. It consists in a description of some preliminary
experiments conducted and the methodologies used.

• Chapter 5: Results. It provides a description of the dataset used and the
results obtained from the models introduced in the previous chapters.

• Chapter 6: Example of Application in Musical Context.

• Chapter 7: Conclusions and Future Work.
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Chapter 2

Related Work

This master thesis originates from a context of successful results obtained by par-
ticular methods of Machine Learning applied to sound synthesis and picture gen-
eration. Machine Learning (ML) is the technique used in Artificial Intelligence to
give the machine the ability to "learn". The learning process consists in improv-
ing the ability of making predictions by adapting parameters of statistical models
to a particular task. Deep Learning is a particular ML framework that creates a
hierarchical representation map to extract abstract and hidden concepts from the
knowledge of the data used in a model. One goal of Deep Learning also regards to
understanding what these hidden concepts refer to and how to interact with them.
In the last couple of years, a rapid evolution of methods to generate data by means
of Deep Learning techniques has been observed, providing interesting perspectives
in how to represent and generate audio and pictures. As seen by the large amount
of projects which are based on it described in section 2.2, the most relevant work
achieved in audio domain by means of Deep Learning tools is the introduction of
WaveNet model [50] (see sec. 2.2.1) by Google DeepMind team1. In this section is
proposed a brief historical excursus of how we arrived to deep learning and state
of the art explaining, for each step, basic neural network elements and algorithms.

2.1 What is Deep Learning?

Deep Learning is a branch of Machine Learning that models the data through a
multi-level representation. Each level of the model is associated to a hierarchical
representation of the data. One instance of Deep Learning method is the multi-
layer Perceptron, also known as deep feed-forward neural network (DNN). The
history behind of the artificial neural network is strictly linked to the studies of
neural behaviour of the brain.

1https://deepmind.com/

5

https://deepmind.com/


Matteo Lionello Chapter 2. Related Work

The birth of Artificial Intelligence is given by an extraordinary meeting of differ-
ent research fields. In fact, it is strictly linked to computational biology, automata
theories, psychology and logic. During the last decade of the first half of the Twen-
tieth Century, these research fields converged to a common research area which
is nowadays called computational neuroscience. Even if the term artificial intelli-
gence was coined only in the 1955[27], the idea behind it has accompanied humans
throughout all their history. The possibility to create machines that could compete
with human kind or that can simulate their action, behaviour and smartness, has
always being a point of interest in human’s mind, across all the historical eras.
In this context the most remarkable formal point in the history is of course the
Darthmouth Conference in 1956[27], for which occasion the term "Artificial Intelli-
gence" was first coined by McCarthy. To reach that moment in the history we need
to go back at least of 65 years before when William James, at the end of the 19th
Century published a book called "Principle of Psychology"[17]. In this book he first
stated how brain could work in term of inter-connections of points. Particularly
he suggested that the activity of the brain in one point is the results of the sum of
the activity in the neighbour points which discharge their energy into it.

More than 50 years after, two researchers, McCulloch and Pitts[28], derived the
model of a neural systems according to the biological knowledge at that time. In
their book they proved that any boolean function could be represented by net-
works composed by their neurons. Their model of neuron has a similar structure
to the actual artificial neuron we use today, summing together weighted inputs and
passed them to a transfer function (compare to the elements in figure 2.2). How-
ever, there occur some dissimilarities respect to the current model. For example,
one of the assumption their model relied on was that the neuron is a all-or-none
process of binary inputs (excitatory and inhibitory synapses). They also proposed
that the phenomena of learning was given by permanent alteration in the struc-
ture of the net. Because of that they used a threshold element as transfer function.
For this reasons this model is usually referred as Threshold Logic Unit (TLU).
The current learning concept on which neural networks are based was described
in 1949. In that year Donald Hebb published "Organization of Behavior". In this
work he proposed how neurons adapt their synaptic weights during the learning
processes. The mechanism of the synaptic plasticity has been referred as Hebbian
learning and its the today idea of how a neural network update its weight during
the training process.

". . . The alternative approach, which stems from the tradition of British
empiricism, hazards the guess that the images of stimuli may never re-
ally be recorded at all, and that the central nervous system simply acts
as an intricate switching network, where retention takes the form of
new connections, or pathways, between centers of activity." - F. Rosen-
blatt, "The Perceptron" 1958

6
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Figure 2.1: Schematic representation of Mark 1, the first implementation of a perceptron. Image
taken from the "MARK I PERCEPTRON OPERATORS’ MANUAL" http://www.dtic.mil/dtic/tr/
fulltext/u2/236965.pdf

In the late ’50s at the Cornell Aeronautical Laboratory, Frank Rosenblatt worked
on a machine named Mark 1[43]. The machine implemented a perceptron net-
work. Compared to McCulloch and Pitts’s TLU, Rosenblatt proposed a new model
which was able to learn the weights and the thresholds values. The machine was
designed to learn shape classification. It consisted (see figure 2.1) of a 400 matrix
of photocells which send the electrical impulse to a set of 512 association cells in
a projection area. Both stimulus and response are still assumed as all-or-nothing
component. Then some random connections take place between the projection area
and a second area called association area, counting 40 units. Each units in this sec-
ond area receive a certain amount of connections from the first one. These units
are structured as TLU whose input were summed together and then compared
to a threshold. 8 response units were bidirectionally connected to the association
units in the association area. The model was able to reach good results in discrim-
inate different image stimuli illuminated over the photocells area by automatically
changing the the values of the potentiometers in the connection between the units
in the association area and the respective response units. The automatic change of
the potentiometers was done by electrical motors.

Adaline[52] is a similar machine of reduced physical dimension than Mark 1.
It works similarly to the previous machine. It improved the learning method by in-
troducing the least mean square (LMS) algorithm which is based on the stochastic
gradient descend method commonly used today in neural networks.

In 1969 Marvin Minsky and Seymour Papert published a book called "Percep-
tron" collecting some analysis and studies in the field. In this book they wrote how

7
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Figure 2.2: Example of a 3 layers perceptron network. By comparison to Mark 1 and Adaline ma-
chines, here is introduced an hidden layer between the input and the output layers. The internal
nodes are the circle and "SUM, th" refers to the neurons of the network performing a sum operation
of their input and then passing the result through a threshold element. Each of them is actually
a TLU neuron. The potentiometers (circles with arrow) refer to the weights which are changed
(automatically in the Mark 1, and manually in the Adaline) during the tuning.

perceptrons and their possible extensions were a sterile field. Their conclusions
directly affected the amount founding in the research field and here started a poor
period of the artificial neural network history.

2.1.1 XOR Problem

Figure 2.3: Perceptrons consisting of just one single layer of affected by weights (excluding so from
the figure 2.2 the hidden layer) are able to compute linear discrimination (AND and OR operations),
but in the case of the exclusive or (XOR) it is impossible to teach the network to discriminate correctly
these three regions in 2 classes.

The problem raised by Mynsky and Papert included specifically the XOR problem.
It is, in fact, impossible for one perceptron to process a exclusive-or problem (see
figure 2.3). Nowadays we know that this problem can be solved by a multi-layer

8
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perceptron (see figure 2.2). By adding a second layer, a neural network is indeed
capable to solve non-linear separation. Trying to find the right way to set the
weights in the way it done in the Perceptron and in Adaline, requires long time
and many learning steps. For this reason to solve the XOR problem it was needed
to wait for faster and more adapt machines. Although learning process can be seen
as an easy task in single layers perceptron, when introducing hidden layers thing
start to be complicated. Rumelhart, Hinton and Williams[44] proposed a method
to backpropagate the error across a the neurons in a network, allowing, so, to ac-
celerate the learning process of some networks. This brought a final breakthrough
to the XOR problems and multi-layers networks training, giving a concrete basis
for the growth of Deep Learning field.

2.1.2 GPU and Tensorflow

Deep feed-forward networks usually take long time and a big amount of resource
during the training. The backpropagation of the error and weights update are oper-
ations usually reserved to a Graphical Processor Units (GPU). GPU were invented
by NVIDIA in 1999 and used to process the visual data. In 2007 NVIDIA released
CUDA, a programming platform that allows parallel computing processes. 2 years
later Raina [41] showed that machine learning tasks could have benefited of GPU
usage processing tasks becoming 70 time faster then using a dual-core CPU. Ten-
sorflow[1] is a python framework for Deep Learning written in C++ and CUDA.
It was released by Google Brain Team in 2017, based on DistBelief which project
was started in 2011. Tensorflow computations are represented in flow graphs and
the operations declared can be easily specified to be loaded on GPU or reserved to
CPU.

2.2 The State of the Art in Audio Domain

2.2.1 Wavenet

WaveNet[50] is a project conducted by Google Deepmind, first published in 2016.
Wavenet consists of a convolution feed forward neural network using dilation lay-
ers to extrapolate inter time dependencies within one sound. The model can be
used to generate music and speech. Global and local condition can be applied to
specify for example to specify the gender of the speaker or the instrument to sim-
ulate and the phonemes or the pitch of the note that have to be synthesised. In
the absence of local conditioning the network will generate something sounding
similar respect to what it has been training on but not necessarily make sense to a
human listener2.

2Some audio example can be heard at https://deepmind.com/blog/
wavenet-generative-model-raw-audio/
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Figure 2.4: Convolution layer affected by dilation rate, Bottom: gate unit at the end Images taken
from [50]

Similarly to two previous projects, PixelRNN[38] and PixelCNN[36], the algo-
rithm has the particularity to predict one sample at a time. Given a set of samples
form an audio junk, each of these samples is quantified in 128 channels. By do-
ing so, each sample is linked to a distribution of possible values calculated by the
neural network. The neural network calculates the probability distribution of the
next sample and compares it to the one-hot vector of the original following sam-
ple. The internal layers have an interesting structure. To increase the length of the
receptive field (i.e. the number of neurons from the first layer which are seen from
one neuron in the output layer) by maintaining filter of short length and not in-
creasing excessively the amount of layers, a dilation factor has been introduced to
let the filter between two layers to pick non sequential samples (as shown in figure
2.4). This strategy allows the receptive field to grow exponentially respect to the
depth of the network. The dilated convolution layers are collected in a stack where
each layer receive as input the residual output of the previous one according to the
activation gate shown in figure 2.4 summed to its input. The output of each layer
is summed together and passed to a softmax function to calculate the probability
distribution of the next sample. Unfortunately its original complexity didn’t allow
the algorithm to be used in real world application.

Parallel Wavenet[39], published in 2017, allows the algorithm to be imple-

10
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mented in real time application as it is currently implemented in Google Assistant3

in English and Japanese version. Parallel Wavenet introduces the combination of
three different losses. The first one is the Probability Density Distillation which
is calculated as the Kullback-Liebler divergence between the output of a "Teacher"
Wavenet network already trained and a "Student" Wavenet network which has to
match the output of the distribution provided by the first one. The two networks
are linked in cascade where the "Student" network plays the rule of Generator and
the "Master" plays the rule of discriminator. The other two losses were introduced
to improve the quality of the output: a power loss to ensure that the wide output
of the model has similar frequency bands to the ones of the target sound, and a
Perceptual loss to classify correctly the phones.

The layers used for the current project have been modelled similarly to the dila-
tion layers used in WaveNet. Instead of one causal dilated layer, here is introduced
a parallel version of it, each of the two parallel dilation layer is affected by different
dilation rate in order to extrapolate features that are differently distributed along
the signal.

2.2.2 NSynth

NSynth[9] is a neural synthesizer developed by Magenta4. Magenta is a research
group originally started by some engineers and researchers from Google Brain
Team whose goals is to provides Machine Learning tools for art and music pur-
poses. NSynth consists of an autoencoder whose components are similar to what
used in Wavenet network. In the paper was shown that Wavenet needs persistent
external conditioning to generate stable outputs. NSynth aimed at introducing a
model which is free of this need. To avoid the external conditioning the model
decode for each set of 512 samples (corresponding to 32 ms of the original audio)
of the audio chunk into an embedding space of 16 dimensions (×32 compression)
whose average is used as conditioning for a WaveNet decoder network whose in-
put is the same original audio as shown in figure 2.5.

The network has been trained over a dataset of 300k notes 4 seconds long sam-
pled at 16KHz from 1k musical instruments. The project provided a web interface
to create new sounds by combining the properties of the embedding space learnt
by the model over the dataset.

The current thesis is similarly structured to NSynth. Indeed, the two projects
share the same goal, which is to create new sounds by sampling the latent space
where are stored the latent representation of the training audios. Some differences
have to be remarked: the thesis proposes an autoencoder that uses variational

3https://assistant.google.com/
4https://magenta.tensorflow.org/
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Figure 2.5: Structure of the WaveNet-style autoencoder used in NSynth. Image taken from [9]

inference and classification loss in the bottleneck to represent one entire sound
in one 20 dimensional point. NSynth uses a 16 point-dimension for every 32ms
of each audio. This choice allows NSynth to have a temporal representation in
the bottleneck. This achievement can be easily reach by using raw autoencoders
(see section 4.1.1), while the goal of this thesis was to build a latent representation
not depending on temporal patterns. A second difference is that the NSynth uses
a WaveNet decoder which regenerate the output sample by sample by using the
quantized distribution for each sampel to be predicted, while the final layer of the
model hereby proposed is composed of a convolutional layer allowing a simpler
training.

2.2.3 Generative Adversarial Networks

Ian Goodfellow introduced in 2014 a new framework of generative models called
Generative Adversarial Networks (GANs)[11]. The framework presets two net-
works which are train at the same time as shwon in figure 2.6. The first network
is a generative network G while the second one is a discriminative network D.
The G net tries is trained to reconstruct its input while the second network tries
to discriminate the generated output from the real training sample. Usually both
the networks consists of convolution layers. The output of the generated sample is
usually trained respect to mean square error between its output and the training
sample. The D net is usually implemented with a cross-entropy function to mea-
sure the difference between the probability distribution of the predicted classes and
the ground truth of the sample (i.e. it is generated or it belongs to the training set
of samples). The two networks are so in a competition way, where the generative
network tries to learn a good representation of the image to fool the other one.

This framework has already been widely experimented in different fields and
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Figure 2.6: Representation of GANs architecture applied to images. Image taken from https://
deeplearning4j.org/img/GANs.png

it brought interesting results for different tasks. By conditioning it is possible to
use GANs to create images from some specified features such as labels, or edges
[16]. CycleGan[59] train GANs to translate images between two different domain
by using unpaired data. This allow for example to translate pictures in painting
kind of styles, changing attributes from one classes to another one (like changing
the season of a pictures, some objects appearing in the pictures with other objects).
Changing the objects comparing in a picture is a challenging and interesting goal,
for example GeneGANs[58] uses unpair data to add glasses, facial expressions and
change the gender, hair style, skin color in portrait pictures.

GANs implementations to audio domain is also a wide area where researchers
have already started to investigate in[57]. One example is the WaveGan[8] which
use this framework for raw audio synthesis. A second example is using GANs to
increase the resolution of the audio signals augmenting its sample rate[20]. Finally,
Facebook AI Research group published[33] a project about music style transfer
with an end-to-end approach by means of GANs structured through WaveNet-
based encoders and decoders for conditioning the network.

The current project proposes in the conclusions an implementation of GANs
to be used as fine tuning after the main training. The goals is to reduce the noise
affecting the decoding of points between two latent representation of training au-
dios.

2.2.4 Variational Autoencoder

Variational Autoencoder[19][18] (see section 3.3 for the formal introduction) is a
method which infer to the latent representation values to approximate one prob-
ability distribution. This force the samples to be represented in a continuous of
value of the latent space distributed according to some prerogative. Some stud-
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Matteo Lionello Chapter 2. Related Work

ies[37] show that is also possible to infer the latent space with discrete representa-
tion by nearest neighbour calculation before fitting the sampled random variable
representing the sample into the decoder.

A combination of variational autoencoder and gans applied to image domain
was already proposed in [21][30]. The project used a combination of the two meth-
ods using portrait images reconstruction and changing of visual attributes mapped
from the latent representations.

The autoencoders used in this thesis are inferred with a normal distribution at
their bottleneck. An implementation of quantification of the latent space is let for
a future work.

2.3 Related Projects Conducted by Students at Aalborg Uni-
versity Copenhagen

Researches in Deep Learning at Aalborg University Copenhagen campus, had been
of interests during the last few years by many students. In the current and past
years different project involving Deep Learning and sound contexts were done by
students at Aalborg University Copenhagen. During the spring semester 2017,
Deep Learning subjects were token as thesis subjects from mnay students. Andrea
Corcuera[26] used Deep Learning techniques for impacts audio rendering in video.
Jose Luis Diez Antich[3] brought a studies of audio events classification in a end
to end approach.

Charles Brazier[5] studied pitch shifting by means of autoencoders. Mattia
Paterna[40] performed spectrum features timbre transformation of piano notes
through autoencoders.

In the current semester when this master thesis has been conducted, other two
students, Aleix Claramount and Tomas Gajarsky from Sound and Music Comput-
ing MSc were involved in topics concerning in Deep Learning for sound genera-
tion and representation. Aleix Claramount carried a study focused on WaveNet
implementing global and local conditioning to control music instruments genera-
tion. Tomas Gajarsky conducted different studies regarding Generative Adversar-
ial Network, to generate accurate sounds from white noise. Previous academical
project in machine learning I have been working on included: Long-short term
memory networks for musical style detection, parametric t-SNE for browsing songs
catalogue according to genre and moods features[23] and a study on vibrato fea-
tures on violin expressive performance[24].

Similarly to some projects already done, the thesis project presented hereby
is given by autoencoders. It propose a end-to-end approach using as input and
output raw audio. However, multidimensional points from the latent space to be
decoded into audio are used.
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Chapter 3

Machine Learning and Probability
Representation

3.1 Neural Networks

The current project used some instances of multi-layer Artificial Neural Network
to develop the machine learning methodologies needed for the proposed study. Be
{(~xi,~yi)}i∈{1,2,...N} a dataset of N paired vectors ~xi ∈ X ⊂ Rq and ~yi ∈ Y ⊂ Rp.
An Artificial Neural Network (ANN) is a computational model fnet which, given
an input ~xi, maps an output ~yi such that fnet(~xi) ' ~yi. The input and the output
are referred as input and output layers. ANNs are usually composed at least of
one internal layer, that is called a hidden layer, which is composed by a certain
amount of units, called neurons, each of them computing a linear combination of
the outputs of the previous layer with a set of weights. The output of each neuron is
then computed through and activation function (linear, relu, tanh, sigmoid, etc...).
The output of the jth layer, consisting of n neurons, is calculated as follows: ~hj =

g(∑( ~hj−1Wj + ~bj)), where Wj is a weight matrix of shape ‖ ~hj−1‖ × n, ~bj is a vector
of dimension n and g is the activation function. During the training process the
weights Wj=1:numbero f layers are adjusted to minimize a loss function that indicates the
error between the actual output of the model fnet(~xi) and the real target ~yi. During
the training process, the weights are continuously updated by feeding repeatedly
batches from the set X into the network fnet. Once the training ends, the model,
whereas the training reaches successful results, is ready to make prediction over
new pair samples excluded from the samples used for the training. The goodness
of the network is then evaluated respect to how well it is able to predicts correct
values from the samples not seen by the network during the training.

According to the type of the data needed to be modelled, there exist different
structures of neurons and layers. These allow to deal, for instance, with time de-
pendencies (Recurrent Neural Network and Long Short-Term Memory, LSTM[14])
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Figure 3.1: Representation of a 5-layers autoencoder with 6 neurons as input and output and 2
neurons in the bottleneck.

or with images (Convolutional Neural Network, CNN). LSTM is often used in nat-
ural language processing[53], while CNN are used mainly in image domain for
classification and attribute localisation. Caption generation[55] is an interesting
cross-field that uses both techniques to generate text description of features ex-
tracted from images. LSTM is a model provided with neurons capable to preserve
information from sequence of samples flowing through the network and using it
to influence the following samples. Its neurons are composed of multiple gates
which control the information flowing throughout the model. CNN is a network
whose weights consist in filters and whose layers are obtained by convolving the
filters with the previous layer. The usage of convolution layers are useful in image
domain and the filters are taught to extract multiple features and attributes from
images (such as edges, lines, shapes, objects, etc...).

3.2 Autoencoder

The type of Neural Networks used in this thesis are called Autoencoders. Autoen-
coders are DNN whose goal during is to reconstruct the object given in input after
a dimensionality reduction computed inside the network whose structure is repre-
sented in figure 3.1. An autoencoder is made of two components called respectively
encoder and decoder. The encoder is structured by a sequence of layers which se-
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quentially decrease the dimension of their outputs. By opposite, the decoder is a
stack of layers whose dimension increase until reach the same dimension of the
input layer. The architecture of encoder and decoder is usually symmetric. The
bottleneck of this architecture corresponds to the layer at the end of the encoder
and its dimension is the smallest among the layers of the network. According to
the definition of DNN as a hierarchical feature extractor, the bottle neck represent
the higher abstraction of the object to be reconstructed.

An autoencoder can be mathematically represented as a concatenation of two
function θ and φ:

• θ : X → Z , φ : Z → Y where X ,Y ⊂ Rq and Z ⊂ Rs.

• such that θ, φ = argminθ,φ{L(X, (θ ◦ φ)(X ))} where L is a loss function X ×
Y → R that calculate the dissimilarities between its arguments.

~xi ∈ X is one original sample, (θ ◦ φ)(~xi) = ~yi ∈ Y is the reconstruction of the
datapoint ~xi, while ~zi = θ(~xi) ∈ Z is the latent - or coded - representation of ~xi.
θ and φ are respectively the encoder and the decoder. Z is the bottleneck of the
autoencoder and φ(~xi ∈ X ) is the latent representation of the data ~xi computed by
the encoder.

3.3 Variational Autoencoder

"Generative Modelling" is used in machine learning to generate data whose prob-
ability representation is learned to be similar to the dataset used in the training.
On the contrary, the goal in discriminative models[4] is to assign for each feature
vector ~xi ∈ X ⊂ Rq, one or multiple labels among q classes ~ci ∈ C ⊂ {0, 1}q to
teach a model to classify a new vector ~x∗, with same dimensions of the elements
in the set X , with the label ~c∗. This is achieved by computing P(~c∗|~x∗,~x,~c) after
learning the likelihood P(~x|~c) from the reference dataset {(~xi,~ci)}i∈{0,1,...N}.

On the other hand, generative models try to learn the join probability distribu-
tion[48][35] that describes the dataset and then to generate new data by sampling
the obtained distribution.

The following explanation is adapted from [7] and [42]. In variational autoen-
coder, given a datapoint ~x ∈ X , the idea is to sample a latent random variable
~z ∈ Z ⊂ Rp<q from the the probability distribution P(z) defined over Z , such that
a decode function f : Z ×Θ → X for some space Θ, returns an object f (z, θ ∈ Θ)

similar to x. The joint probability of the model is P(x, z) = P(x|z)P(z). z random
variable is drawn by the prior ∼ P(z) while x ∼ P(x|z) is the likelihood of the
framework. The goal is so to learn the posterior mapping P(z|x) = P(x|z)P(z)

P(x) .
By replacing the function f (z, θ) with the probability distribution P(x|z, θ) and
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Figure 3.2: Example of Variational Autoencoder. The dimension of the mean and the variance of
the latent representation of the bottleneck coincides, in this example, with the dimension of the last
layer of the encoder. The variance neurons are multiplied by a random sample and summed with
the mean before fired inw the decoder.

by applying the law of total probability, we obtain the following:

P(x) =
∫

P(x|z, θ)P(z)dz

The choice of the latent variable z is often a normal distribution N (0, I) such that
P(x|z, θ) = N (x| f (z, θ), σ2 I). To maximize P(x), there is needed an exponential
time to solve the above equation since it needs to evaluate over all the configura-
tions of the latent variable. To solve this problem it is possible to infer the latent
space with respect to a family distribution Qλ(z|x), where λ is the variational pa-
rameter λxi = (µxi , σ2

xi
). Thus, the approximated posterior is Qθ(z|x, λ) which is

the probability function that describes the encoder: x 7→ λ. P(x|z) corresponds,
instead, to the generative network which consists in a decoder: λ 7→ Pφ(x|z). The
difference between the approximation and the real posterior is obtained by means
of Kullback-Leibler divergence KL(Qλ(z|x)‖P(z|x)) :

KL(Qλ(z|x)‖P(z|x)) = E[logQλ(z|x)− logP(z|x)] (3.1)

KL(Qλ(z|x)‖P(z|x)) = E[logQλ(z|x)− logP(x|z)− logP(z)] + logP(x) (3.2)

logP(x)− KL(Qλ(z|x)‖P(z|x)) = E[logP(x|z)]− KL(Qλ(z|x)‖logP(z)) (3.3)

To perform stochastic gradient descent on the right hand side of the previ-
ous equation, we can chose Qλ(z|x) = N (z|µ(x, θ), Σ(x, θ)). By doing so, the

18



3.3. Variational Autoencoder Matteo Lionello

Figure 3.3: The graph shows the loss functions of an autoencoder model inferred with Normal
distribution approximation at the bottleneck. The image is taken from [7]

Kullback-Liebler divergence is calculated between two multivariate Gaussian dis-
tribution. By following [7], the Kullback-Liebler divergence between two Gaussian
distribution is equal to

KL(N (µ0, Σ0)‖N (µ1, Σ1)) = 0.5(tr(Σ−1
1 Σ0)+ (µ1−µ0)

TΣ−1
1 (µ1−µ0)− k+ log

|Σ1|
|Σ0|

)

(3.4)

KL(N (0, I)‖N (µ(x), Σ(x))) = 0.5(tr(Σ(x)) + µ(x)Tµ(x)− k + log|Σ(x)|) (3.5)

E[logP(x|z)] is given by the approximation of P(x|z) for one sample of z. z
is so sampled from N (µ(x), Σ(x)) as z = µ(x) + Σ1/2(x) ∗ ε, where ε is sampled
from N (0, I) as shown in figure 3.2. By considering P(x|z) ∼ N ( f (z), σ2 I), the
log-likelihood is given as logP(x|z) = C− 0.5‖x− f (z)‖2/σ2 where C is a constant
and σ can be treated as a weight factor. As it is summarised in figure 3.3, the
objective function of a variational autoencoder is:

‖φ(ψ(x))− x‖2 + ‖ψ(x)‖0 (3.6)

where ψ and φ are respectively the encoder and decoder networks.
The loss can be interpreted as the sum of a regularizing term (the Kullback_Liebler

divergence) with the generation loss (the expected likelihood). Qθ(z|x, λ) is in-
ferred by the encoder while Pφ(x|z) is parametrized with a generator network - the
decoder.
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The last layer of the encoder consists of two parallel dense layers whose job is to
calculate for each input datapoint, the variance and the mean of its correspondent
point distribution in the latent space.

Python code: Q(z|x)

current_layer = encoder(input)
z_mean = tf.layers.dense(current_layer, n_hidden,

activation = None))
z_var = 0.5 * tf.layers.dense(current_layer, n_hidden,

activation = None)
epsilon = tf.random_normal([tf.shape(current_layer)[0],

n_hidden], 0.0, 1.0)
z = z_mean + tf.multiply(epsilon, tf.exp(z_var))
output_layer = decoder(z)

Python code: Loss calculation

generation_loss = tf.reduce_sum(tf.squared_difference(
output_layer, input), 1)

latent_loss = tf.reduce_sum(tf.log(sigma0)-z_var+
0.5*tf.square(tf.exp(z_var)/sigma0)+
0.5*tf.square((z_mean-mean0)/sigma0),1)

loss = generation_loss + latent_loss
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Chapter 4

Methods

When dealing with complex systems characterised by many parameters, one par-
ticularly hard task consists in understanding the contribution of their components
and how the changing of their parameters affects the entire model. The experi-
ments described in the current and following chapters, were run on a local server
from which one GPU slot provided with NVIDIA GeForce GTX Titan X 12GB was
used. The models are completely written and run using Tensorflow[1], a Deep
Learning library for Python.

4.1 Autoencoder structure

Three autoencoders with different architectures were analysed to study the basic
representation that autoencoders store in their bottleneck to describe the audio
input:

• convolution based autoencoder,

• dilation based autoencoder,

• hybrid autoencoder.

Here follows a description of the layers composing the autoencoders. An analysis
of the latent representation is then given. The architecture details of the first two
models proposed are shown in table 4.1.

The convolution based autoencoder consists of a stack of 12 convolution layers.
The first 6 layers compose the encoder. The amount of filters for each layer is equal
or larger than the previous except for the last layer. This provides a tensor with
1024 channels in the last layer before the bottleneck. The kernel size is equal to 5
for the first layer while is fixed to 4 for the rest of them. Each of the first 5 layers
has a stride factor equal to 2. By doing so, the length of the tensor at the bottleneck
is decreased by a factor of 25 = 32. wThe bottleneck consists of a convolution layer
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Figure 4.1: Representation of one dilation block used in the dilated and hybrid model.

1× 1 used to collapse the 1024 channels into a single channel. The architecture of
the decoder is exactly symmetrical. The activation function used in all the layers
excluded the bottleneck layer, is an hyperbolic tangent. The bottleneck layer has
been tried with both hyperbolic tangent and a linear activation function. These
parameters have been decided after some trials and similarly to the convolution
autoencoder model used in [9].

The second model, has an architecture inspired by the skip outputs and dilation
layers used in WaveNet (see section 2.2.1). After a first convolution layer (16 filters
32 samples long, with stride 1), a block of dilation layers is applied followed by
5 layers with 1 × 1 filters and stride equals to 2. The rest of the dilation based
autoencoder is composed by a decoder symmetrically set. Figure 4.1 shows what
happens inside a dilation block. The dilation block consists of 50 residual layers
[13] each of them composed of 2 parallel sub-layers sub_layer1,2

i=1:50 of 32× 2 filters
affected by a dilation rate. The dilation rate applied to the ith layer is 2mod(i−1,m),
where m is respectively equal to 10 and to 5 for the two parallel sub-layers. The
receptive field seen by one output neuron from the last, 50th layer of the dilation
block is equal to:

rec f =
N=50

∑
i=1

2mod(i−1,m) + 1 =
N
m
(2m − 1) + 1

We so obtain rec f |m=10= 5119, rec f |m=5= 319. The input of the following ith layer
in the dilated block is given by

inputi = inputi−1 + sub_layer1
i−1 · sub_layer2

i−1

The output of the entire block is given by the average of all the 50 multiplications

22



4.1. Autoencoder structure Matteo Lionello

of sublayer outputs from each layer:

output_block =
1

50

N=50

∑
i=1

skip_outputi,

with skip_outputi = sub_layer1
i−1 · sub_layer2

i−1. This procedure allows the net-
work to extract information regarding temporal patterns across the input audio.

The hybrid model is a combination of the previous two models, providing a
concatenation of one stack of convolution layers with the output of the dilation
block for the encoder, vice versa for the decoder. The architecture of the layers
in the hybrid model is similarly structured like the previous two models and is
shown in table 4.2.

All the layers in the models were passed through an added batch normalisation
layer. Drops out layers were also considered to be used, but because of the conflicts
between the two techniques[22], the choice felt on using only batch normalisation
layers.

CONVOLUTION BASED AUTOENCODER:

# layer type: filters: kernel: strides
1 conv1d 128 5 2
2 conv1d 128 4 2
3 conv1d 256 4 2
4 conv1d 512 4 2
5 conv1d 1024 4 2
6 conv1d 1 1 1
7 conv1d_transpose 1024 4 2
8 conv1d_transpose 512 4 2
9 conv1d_transpose 256 4 2
10 conv1d_transpose 128 4 2
11 conv1d_transpose 128 5 2
12 conv1d_transpose 1 1 1

DILATION BASED AUTOENCODER:

# layer type: filters: kernel: strides
1 conv1d 16 32 1
2 50 x dilation_block 32 2 1
3:7 5 x conv1d 1 2 2
8 conv1d 1 1 1
9 dense_a dense_b size: 20 - - -
10 add - - -
11 conv1d_transpose 1 1 1
12:17 5 x conv1d_transpose 1 2 2
18 conv1d_transpose 32 1 1
19 50 x dilation_block 32 2 1
20 conv1d_transpose 16 32 1
21 conv1d_transpose 1 1 1

Table 4.1: Left: Architecture of the baseline model made of 12 convolution layers. Right: Architecture
of the dilation based model made of 21 layers
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HYBRID AUTOENCODER:

# layer type: filters: kernel: strides
1 conv1d_1 16 32 1
2 50 x dilation_stack 1 - 1
3 conv1d_2 128 4 2
4 conv1d_3 128 4 2
5 conv1d_4 256 4 2
6 conv1d_5 256 4 2
7 onv1d_6 512 4 2
8 conv1d_7 1 1 1
9 conv1d_transpose_8 512 4 2
10 conv1d_transpose_9 256 4 2
11 conv1d_transpose_10 256 4 2
12 conv1d_transpose_11 128 4 2
13 conv1d_transpose_12 128 4 2
14 conv1d_transpose_13 1 1 1

Table 4.2: Architecture of the model combining the convolution and the dilation based autoencoder.

4.1.1 How is the latent information represented in autoencoder?

To study the three models introduced above, some audio datasets were program-
matically built. The datasets used were composed of modulated sine waves half a
second long with a sample rate of 16Khz sharing all the same constant amplitude.
The datasets included a set of sine waves with dynamic and constant frequency
parameters:

• sine waves with time-constant frequency ∈ [80, 1200]Hz

• sinewaves with linearly-changing frequency, from an initial frequency ∈ [80, 1200]Hz
and final frequency twice its initial value.

• frequency modulated sine waves with time-constant carrier frequency ∈ [100, 800]Hz
and linearly-changing frequency and amplitude of the modulator from an ini-
tial to a final value in the respective ranges [3, 100]Hz for the frequency and
[1, 200]Hz for the amplitude.

Some pilot experiments were conducted by considering also polyphonic sounds
computed through additive synthesis. However, they showed worse results for the
reconstruction task compared to the datasets listed above.

The three models were trained with the frequency modulation dataset. The
models were trained with 7000 frequency modulated sine waves by using Adam
Optimizer and mean square error as loss function. The sine waves were collected
in batches of 500 elements each reapeted for 70 iterations. Figure 4.3 shows some
examples of the spectrogram obtained in the reconstruction task for the frequency
modulation dataset after the training was completed. The models were then used
to analyse how the latent information is composed, by feeding the models with
samples from the other two datasets.
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By considering the ×32 compression factor applied to the input signal at the
bottleneck, the length of the signals is reduced from 8192 samples to 265 samples
in which half of a second of information is stored. To investigate to what extend
the latent representation might still be a time sequence representation of the orig-
inal signals, the latent representation is assumed to be a signal whose sample rate
is reduced by the same compression factor affecting the length of the audios. By
doing so, the correspondent sample rate in the latent domain is obtained and it is
equal to 500Hz. From the comparison of the spectrograms of an original signal and
its latent representation, it is seen that the representation at the bottleneck is still a
signal that maintains the same frequency of its input. One important observation
is that the scaled sample rate implies a new limit superior for aliasing because of
the Nyquist–Shannon sampling theorem. Because of this, the signals that can be
represented in the bottleneck without being affected of aliasing, are reduced to all
those signals whose frequency is less than half of the latent sample rate. One inter-
esting point is so to understand what happens to the latent representation in the
neighbourhood of the maximum frequency presentable. In figure 4.2, we can see
that the latent representation of the sine wave is not just a down-sampled version
of it. In order to avoid the repercussions of aliasing, the autoencoder seems to learn
a non symmetric waveform and to modulate in amplitude this representation as
shown in figure 4.2.

4.2 Variational Autoencoder

So far, it has been shown that the bottleneck of the autoencoders learns a temporal
sequence representation of the input signal. As seen in figure 4.3, this latent rep-
resentation provides a good enough tool to reconstruct a simple signal. However,
looking at editing this latent representation in order to manipulate the output of
the autoencoder, this approach does not provide a suitable representation of the
signal. Ideally, we would like to have a latent space where each of its point pro-
vides the latent representation of a different audio and perhaps collapsing similar
signal in the same area of the latent space. To reach this goal, it is needed to free
the latent projection from the temporal sequence encoding of the original object by
forcing the encoder to follow some criteria. What it is here introduced is a model
that can provide a easily tractable latent representation to generate, from each of
its point, new objects stochastic consistent to the training dataset.

4.2.1 Experiments by using variational inferences

The structures of the encoder and decoders are similar to what presented in tables
4.1 and 4.2. Between the encoder and decoder there are introduced two parallel
dense layers to store the mean and variance information of the audio sample. Then,
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Figure 4.2: Latent representation affected by aliasing of sine waves with time-constant frequency at
the bottleneck from the convolution based autoencoder trained through dynamic frequency mod-
ulators. From top to bottom: 80.0Hz, 248.0Hz, 253.6Hz, 992.8Hz, 998.4Hz, 1004.0Hz, 1009.6Hz,
1200.0Hz.

an additive layer to sample the latent sample z is provided followed by a sequence
of two dense layers to increase the length of the layer till the dimension of the
last layer in the encoder. The number of neurons of the two parallel dense layers
determines the dimension of latent space:
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Python code: Bottleneck (extended)

current_layer = tf.contrib.layers.flatten(decoder_layer)

mn = tf.layers.dense(current_layer, n_hidden)
sd = 0.5 * tf.layers.dense(current_layer, n_hidden)
epsilon = tf.random_normal(

[tf.shape(current_layer)[0], n_hidden], 0.0, 1.0)

z = mn + tf.multiply(epsilon, tf.exp(sd))

current_layer = z
current_layer = tf.layers.dense(current_layer, sample_length/32/2)
current_layer = tf.layers.dense(current_layer, sample_length/32)
current_layer=tf.reshape(current_layer,

(-1,sample_length/32,1,1))

Some experiments have been conducted with simple signals to investigate the
validity of the model proposed. The dataset used in this section is composed of 3
families of signals: sine waves 1 period long, saw-tooth of 2 periods, and Gaussian
modulated sinusoids,each of them 512 samples long. The training set contained
in total 2K signals, with values ranging from -1 to 1 summed with random white
noise signal spacing in the range [-0.05,0.05]. The dataset has been fitted in the
three models introduced in 4.1, augmented by the bottleneck to support the vari-
ational inference. The encoder reduces the length of the representation by a ×32
factor, reducing so the length of the input to 16 samples. The dimension of the
latent space was fixed to 2. As described in section 3.3, the loss function used is
the reconstruction loss calculated as mean square error between input and recon-
structed output, regularized by the variational loss at the bottleneck calculated as
the Kullback-Liebler divergence between a Gaussian distribution and the values
stored in the z latent sample. In the table 4.3 follow some graphic results of the
models obtained. From the scatter plots shown in that table, we can see how a
different combination of layers influences the organisation of the representation of
the signal in the latent space. Although the lack of labels, the models organise the
signals affected by random noise in clusters of signals from the same family. The
convolution based variational autoencoder collects in the same neighbourhood the
gaussian modelled sin waves and the sawtooth signals, while the sine waves are
collected in a far small area. The variational autoencoder based on dilation blocks
projects the signals in the latent space in non-overlapping regions. The hybrid au-
toencoder brings a latent space where the sawtooth signals are far separated from
the other two signals’ instances, however, the the gaussian modelled sine waves
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2D latent space∗: Input and output of the models:

Table 4.3: For each of the models introduced in section 4.1, the first column shows the distribution
of the testing signals in the 2 dimensional latent space, the second column collects for each model
three pairs of input and output, one from each family of signals used (sine waves, sawtooth, and
gaussian modelled sinusoid). From top to bottom: convolution autoencoder, dilated autoencoder,
hybrid autoencoder.
∗Legend for the scatter plots: blue ’>’ sine waves; black ’*’ gaussian modelled sine waves; yellow ’’̂
sawtooths

overlap the the sine waves.
Once obtained a model with non-overlapping regions of samples referring to

different signals, it comes easily to investigate what happens in the points not
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referring to any signal appearing in the dataset. Particularly, we can calculate
the mean for each cluster and then pass its coordinates to the decoder to output
the signal generated from that point. Moreover, it is possible to draw a path in
the latent space, taking a set of coordinates by sampling a line starting from one
point a in region A, to a different point b in region B as it is shown in figure 4.4.
Figure 4.5 collects the sort outputs of 9 latent coordinates from the latent space
corresponding to a path from the centre of the cluster of the latent projection of
sine waves to the centre of points referring to the sawtooths. This allows to create
morphing between the two objects that live in two separate regions of the latent
space.

Figure 4.4: The figure shows an example of path drawn in the latent space. each point in a path
connecting a point a to a second point b, refer to a particular output of the decoder network. By
doing so it is possible to create morphing between two two regions A and B collecting the latent
coordinates of different objects.

In figure 4.5 there is shown a morphing between a sinusoid and a sawtooth
performed by the dialtion based model with latent space dimension set to 2. Fur-
thermore, it is possible to see how the first output and the last output - referring
respectively to the mean of the latent coordinates of sine waves and sawtooth -
seem to be less affected by the noise respect to what was used in the dataset.
This is because the point in the middle of a cluster is a compromise between all
the points surrounding it. Since the points are all references of the same object
affected by white noise, it makes sense that the point in the middle refers to a aver-
age between the signals projected in its neighbourhood, weighted by the distance
between the centre and the points considered. This allows the representation of
the signal, stored in the middle of a cluster of instances of the same signal affected
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by random noise, to be decoded as a clean signal. This phenomenon is known as
the denoising property of variational autoencoders[15].

An example of the denoising property is shown in table 4.4. It shows the
reconstructed middle point of the clusters by using the same dataset affected by
the 20% of noise instead of the 5% used before.

2D latent space∗:
Training signals and outputs from
the sampled latent space:

Table 4.4: Noise reduction application of variational autoencoder. The left image shows the scatter
plot of the latent space of the dilation based autoencoder model trained on sine waves, sawtooth and
gaussian modelled sine waves affected by white noise. On the right side there are shown in the first
column three instances of the signals used during the training, while on the second column there are
the outputs of the models for the avarage coordinate in the latent space of the correspondent signal.
∗Legend for the scatter plots: blue ’>’ sine waves; black ’*’ gaussian modelled sine waves; yellow ’’̂
sawtooths
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Figure 4.3: Set of spectrograms of input, reconstruction and residual for the convolution, dilated and
hybrid models.
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Figure 4.5: Morphing between a sine wave and a sawtooth. The morphing has been obtained by
sampling the latent space moving from the middle point of the sinusoids cluster to the middle point
of the sawtooth cluster.
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Chapter 5

Results

5.1 Applying Variational Autoencoder to Audio Domain

The passage to audio domain requires some adjustment in the models seen so
far. The dataset used in this part consisted of spoken digits and it is a subset of the
database available at https://github.com/Jakobovski/free-spoken-digit-dataset.
The digits {0,1,...,9} were recorded by one male speaker, repeating each digit 50
times. The audio files consist of a mono track audio with 8KHz of sample rate.
All the audio files were zero-padded to be 4096 samples long, corresponding ap-
proximately to half a second of recording. To work with these files, the hidden
space is set to 20 dimensions. In order to display it, two projection techniques onto
a bi-dimensional space are used: a Principal Component Analysis (PCA) and a
t-distributed Stochastic Neighbor Embedding[25] (t-SNE). On one hand, the PCA
method projects the dataset over a space dictated by the n (in this case n is fixed
to two) eigen-vectors with largest eigen-values from the covariance matrix of the
dataset. On the other hand, t-SNE projects the dataset in a low dimensional space
trying to maintain the pairwise distances similarity among the objects in the origi-
nal high dimensional space, by calculating the distances as Gaussian probabilities
distribution. The resulting projection is obtained by minimizing, through a gradi-
ent descent method, the Kullback-Liebler divergence between the original data dis-
tribution in the high dimensional space and its projection in the low dimensional
space. The two methods provide two different information regarding the quality
of the 20 dimensional latent distribution of the results obtained from model. PCA
method provides the two largest directions across which the datapoints are spread,
while the t-SNE method provides information about local distributions and neigh-
bourhoods.

The figures in the table 5.1, show the complexity of spoken digits requires a
bottle neck of higher dimension respect to what needed by the simple signals used
in the previous chapter. It is easy to see how already in the first two columns
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audios of same digit are gathered significantly close to each other in the latent
space. However, looking at the t-SNE projection in the last row of table 5.1, we can
see that the increase of the dimensions is not enough to allow the model to collect
the digits in non overlapping regions. This brings some problems wherever we
would like to perform morphing operation between two digits.

Since the dataset provides labelled data, to solve this problem, a second loss
function to perform classification on the bottleneck was introduced.

5.1.1 Adding a Classifier at the Bottleneck

The idea is to adapt the encoder to organize the datapoints in the bottleneck to
be correctly classified by a new network. The new network consists of a 3 dense
hidden layers-network, whose input is the sampled z obtained in the bottleneck
and whose output fire as many neurons as the amount of classes considered (in
this case 10). Each neuron in the output layer is associate to a different digit and
a cross-entropy cost is calculated between the output of the classifier and the one-
hot function of the target digit. During the training the model is adjusted with
respect to the two gradients. It tries, so, to optimize both of them sequentially at
each training iteration. The model adapt its weights to reach a Nash Equilibrium
between the two cost functions.

Python code: Bottleneck Classifier

class_layer = tf.layers.dense(encoded_layer,10,activation=tf.nn.relu,
trainable=True,kernel_initializer=tf.random_normal_initializer)

class_layer = tf.layers.dense(class_layer,10,activation=tf.nn.relu,
trainable=True,kernel_initializer=tf.random_normal_initializer)

class_layer = tf.layers.dense(class_layer,10,activation=tf.nn.sigmoid,
trainable=True,kernel_initializer=tf.random_normal_initializer)

class_output = tf.nn.softmax(class_layer)

5.2 Evaluation of the latent organization

The table 5.3 shows the latent distribution of the variational autoencoder models
based on the three autoencoders introduced in 4.1 by setting the latent space to
20 dimensions. The scatter plots are the PCA and t-SNE projections from the 20-
dimensions latent space into a bi-dimensional space. The results are obtained from
the testing set composed of 10 audio per digits, after a training of 1000 iteration. It
is easy to see that the hybrid model gets worse clustering results than the dilation
and convolution based models.

1-Nearest Neighbour (1-NN) is performed to evaluate the distribution of the
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PCA projection: t-SNE projection:
Latent Space 10 dim:

Latent Space 32 dim:

Table 5.1: The figures represent the latent space of a convolution based variational autoencoder fitted
with the spoken-digit dataset. The first two rows are obtained by two different training by setting
the dimension of the latent space to 10, while the model referred in the third row has a dimensional
space fixed to 32. The digit symbols represent the actual digit to which the input audio refer.

projection of the instances in the latent space. 1-NN is a particular case of k-
NN classification and regression machine learning technique that assigns to each
point in the features space the most common class or the average value among

35



Matteo Lionello Chapter 5. Results

Model: 1-NN Accuracy:
Convolutional VAE 0.94
Dilated VAE 0.96
Hybrid VAE 0.09

Table 5.2: 1-NN accuracy results across the bottleneck.

its k nearest datapoint from the training set. For each test sample, the 1-NN his
defined over all the datapoints in the latent space except for one and a digit class
for the excluded datapoint is so predicted. The table 5.2 presents the results of this
evaluation. We can see in table 5.3 the confirmation of what seen from the scatter
plots: the hybrid model reaches poor results in organising together the datapoints
in the latent space that belong to the same class, indeed only 9% of the latent points
are close to a point belonging to the same class. Better results are achieved by the
other two models. Convolution and dilation based models achieve respectively
94% and 96% of accuracy.

5.3 Evaluation of the audio consistency

A combination of Dynamic Time Wrapping[45] (DTW) and Mel Frequency Cep-
strum Coefficients[29] (MFCC) algorithms is used to evaluate the consistency of
the generated audio from the middle point of each cluster of latent points. Com-
bination of DTW and MFCC is one of the most common strategy used in speech
recognition[32, 34, 12, 31, 51]. DTW provides a distance measurement between
two signals by considering similar patterns dilated across their length. The cal-
culation is done by summing, sample by sample, the minimum distances between
the signals by analysing the current and following sample between them and main-
taining for the next comparison the index of sample with least distance. MFCC are
obtained by taking the maximum amplitude of the cepstrum given by imposing in
the spectrum triangular overlapping windows onto the Mel scale. MFCC provides
a good method to extract features to classify phonemes of a speech. The Mel fre-
quency cepstrum coefficients are calculated through the code provided at: https:
//se.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab over
70ms windows with 8ms of overlapping.

From the MFCC is excluded the first coefficient which represent the energy of
the signal. For each audio it is calculated the DTW pairwise distances between its
MFCC and the MFCC of the rest of the audio of the same digit and the MFCC
of the audio generated from the middle point of the cluster of digits in the latent
space:

Be xij the j-th instance in digit class i ∈ {0, 1, 2, . . . , 9} and Xi the set of all
the instances of the class i. The vector of DTW pairwise distances pairwise_dtwij
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PCA projection: t-SNE projection:
Convolution VAE 20 dim:

Dilated VAE 20 dim:

Hybrid VAE 20 dim:

Table 5.3: Latent distribution projections for the spoken digits dataset over a 20 dimesnional latent
space. Each row shows the results of the variational autoencoder based don the models introduced
in sec. 4.1 implementing a classification loss at the bottleneck during the training, the left and the
right columns show respectively the distribution accoridng to a PCA and t-SNE projections

is calculated between MFCC value mfcc(xij) and the vector of MFCCs mfcc(Xi \
{xi,j}) of the other samples of the same digit i excluding sample j:

37



Matteo Lionello Chapter 5. Results

pairwise_dtwij = dtw(mfcc(xij), mfcc(Xi \ {xij})) (5.1)

Be θ the encoder network and zi,j = θ(xi,j) is its projection into the latent space,
ψ the decoder mapping the latent sample zi,j back to the audio domain and Zi the
set of latent variables Zi = θ(Xi). Then the DTW distance between the sample xi,j
and the sound generated from the mean µ(Zi) of the projections of digit i in the
latent space

center_dtwij = dtw(mfcc(xij), mfcc(ψ(µ(Zi))) (5.2)

The actual code used to calculate these is:

Matlab code: calculating DTW distances over MFCC:

for digit=0:9
files = load_files_list_per_digit(digit);
for k=1:length(files)

[audio,fs] = audioread(files(k));
audios(k,:) = audio’;
mfcc_cell{k} = mfcc(audio,fs,25,5,0.97,@hamming,[200 1200],20,13,22);

end
[middle,fs] = audioread(char(dir_mean+"mean"+digit+".wav"));
mfcc_cell{11} = mfcc(middle,fs,25,5,0.97,@hamming,[200 1200],20,13,22);
dtw_matrix = [];
for k=1:10

dtw_row = [];
dtw_coeff = [];
for j=k:10

for i=1:13
dtw_coeff(i) = dtw(mfcc_cell{k}(i,:),mfcc_cell{j}(i,:));
end

dtw_row(j) = mean(dtw_coeff);
end
for i=1:13

dtw_coeff(i) = dtw(mfcc_cell{k}(i,:),mfcc_cell{11}(i,:));
end
dtw_row(11) = mean(dtw_coeff);
dtw_matrix = [dtw_matrix;dtw_row];

end
dtw_matrixes{digit+1} = dtw_matrix;

end

The actual dissimilarity distance between the generated audio from the cluster
centre point and the distances distribution between one real audio and the rest of
the element of the same digit is given by:
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x1
0 x1

1 x1
2 x1

3 x1
4 x1

5 x1
6 x1

7 x1
8 x1

9
x1

0 0 384.67 106.06 106.74 114.45 112.78 143.42 117.92 70.66 119.71
x1

1 384.67 0 341.84 366.413 346.69 376.20 433.46 381.67 396.40 377.98
x1

2 106.06 341.84 0 87.24 53.98 98.62 143.23 105.83 100.13 96.27
x1

3 106.74 366.41 87.24 0 93.42 65.35 121.32 87.59 107.85 85.10
x1

4 114.45 346.69 53.98 93.42 0 108.88 134.89 114.18 105.49 106.21
x1

5 112.78 376.20 98.62 65.35 108.88 0 116.41 61.66 110.24 64.15
x1

6 143.42 433.42 143.23 121.32 134.89 116.41 0 139.95 123.05 125.13
x1

7 117.92 381.66 105.83 87.59 114.18 61.66 139.96 0 109.19 85.19
x1

8 70.66 396.40 100.13 107.85 105.49 110.24 123.05 109.20 0 125.78
x1

9 119.71 377.98 96.27 85.10 106.21 64.15 125.13 85.19 125.78 0
a 141.82 378.36 125.91 124.56 130.91 123.81 164.53 133.69 138.75 131.73
b 83.51 355.91 91.17 86.96 101.85 85.81 126.97 88.14 87.37 101.42
c -0.63 -0.83 -0.41 -0.41 -0.35 -0.39 -0.37 -0.47 -0.53 -0.32

Table 5.4: The table represent the results obtained from the cluster of the digit ’1’ for the dilation
based variational autoencoder. The upper part shows the pairwise DTW distances of MFCC compo-
nents for each audio in the testing set (see eq. 5.1). The a row is the mean of each column, the b row
is the mean calculated in eq. 5.2, c is the represented dissimilarity between the audio generated form
the centre of the cluster and the rest of the pairwise DTW distance among the audio in the testing
set.

dist(xi,j, ψ(µ(Zi))) =
center_dtwij − µ(pairwise_dtwij)

σ(pairwise_dtwij)
(5.3)

For each digit class i ∈ {′0′,′ 1′,′ 2′, ...′9′}, the mean and variance of dist(xi,j ∈
Xi, ψ(µ(Zi))), across all the audio instances in the ith digit class is calculated. An
example of complete distances table is shown in table 5.4 for the spoken digit ’1’.
The table 5.5 shows the results of the DTW similarity of the generated audio from
the centre of each cluster compared to the DTW distribution of the real audio
samples of the same cluster. This table shows the results of the mean and standard
deviation from eq. 3.9 across all the dataset. We can observe that the mean is
always non-positive for the dilation based model which means that the generated
audio is closer in terms of MFCC to each of the original audio compared to the
pairwise distances among them. The absolute value of the mean is always smaller
than 1, which means that the audio generated by the geometrical centre of the
region is actually also close to the centre in terms of MFCC similarities between
all the audios. The results of the other two models follow the same trend from the
1-NN evaluation of the latent distribution. The convolution based model obtaines
an average mean equal to 0.20, while the hybrid model gives largely bad results
obtaining a drift equals to 5.47. It must be clarified that even if the generated audios
refer to the centre point of the cluster, it is far from being just an average between
all the audio, in which case it would be perceived as a chorus effect. The generated
audio and the code are available at https://github.com/mlionello/Audio-VAE.
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Table 5.6 shows, for completeness, the spectrograms of the generated audio from
the middle point of each cluster besides the spectrograms of one sample audio
used in the training set from the same class.

DILA VAE: CONV VAE: HYBRID VAE:

Digit cluster: Mean: Std: Mean: Std: Mean: Std:
zero -0.29 0.96 0.79 1.65 6.89 2.47
one -0.47 0.16 0.79 1,72 4.22 0.64
two -0.38 0.51 0.03 1.13 4.27 0.86
three 0.00 1.19 0.69 1.71 5.36 1.67
four -0.25 0.71 0.38 1.43 5.73 4.46
five -0.46 0.14 0.02 1.14 7.58 1,63
six -0.32 0.73 -0.24 0.93 5.71 1,38
seven -0.37 0.27 -0.21 0.90 7.13 1,78
eight -0.42 0.47 -0.05 1.19 4.96 1,81
nine -0.32 0.68 -0.23 0.83 2.83 0.56
average: -0.33 0.58 0.20 1.26 5.47 1.89

Table 5.5: The table shows the mean and standard deviation results from eq. 5.3 across all the
dataset.
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Digit: Generation: Original:

’0’

’1’

’2’

’3’

’4’

’5’
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’6’

’7’

’8’

’9’

Table 5.6: Spectrogram of the generated audio from the middle point of each cluster of digits in the
latent space and related original audio from one one of the sample used in the training set. The
model used for these spectrograms is the dilation based variational autoencoder.
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Chapter 6

Example of Application in Musical
Context

Figure 6.1: Scatter plot of the distribution of drums samples projected in the latent space. Bi-
dimensional representation via t-SNE. Each number correspond to a different MFCC class.

The framework introduced in the previous chapter was tested in music domain, by
feeding the variational autoencoder with a dateset of drums samples. The dataset
comprehends 154 drum samples including kick, tom, hi-hat and snare sounds.
Each audio is 16384 samples long, all with sample frequency of 22KHz. The
samples have been labelled through a KMeans classifier applied to the average
of MFCCs calculated on windows of 10ms samples covering the first 70ms of each
of them. The MFCC returned 20 coefficients for each audio. A KMeans algorithm
has been applied to the MFCCs in order to collect the audio in 5 different classes.
The KMeans clustering methods was used to collect samples with similar acousti-
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cal features in the same region of the latent space. This procedure was motivated
by the observation of the large variety of sounds obtained from the same drum
instrument stored in the dataset.

The dataset presents multiple challenges. Each audio file is much longer than
all the samples used in the previous chapters and the non-zero part for each sample
varies significantly according to the drum sound. To avoid over fitting issues, the
classification network at the bottleneck was reduced to 1 hidden layer of size equals
to the number of clusters. The dimension of the hidden space is fixed to 10. The
difference setting of parameters, with respect to what used for the digit spoken
dataset, could be motivated because of the fact of the larger dissimilarities between
the samples.

As seen in the t-SNE projection of the latent space in figure 6.1, the clustering
does not reach good results except for one class of samples indicated with the
symbol ’2’. The symbols ’1’ occupy the top-right part of the projection, ’3’ are
gathered in three main disconnected area and the ’4’ and the ’0’ overlap. Because
of this the morphing between middle-point of the clusters has not been possible to
be performed. Their audio generation and the audio of a morphing from ’hi-hat’
to ’tom’ are anyway still available at the github repository https://github.com/
mlionello/Audio-VAE.

Figures 6.2, 6.3 and show the morphing in time and frequency domains be-
tween the sounds of a hi-hat and a tom. This is obtained by decoding the sampled
path starting from the latent projection of one ’hi-hat’ and ending at the coordinates
of a ’tom’.
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Figure 6.2: Morphing representation in time domain between an hi-hat and a tom sample

45



Matteo Lionello Chapter 6. Example of Application in Musical Context

Figure 6.3: Morphing representation in frequency domain between an hi-hat and a tom sample, it
continues in figure 6.4
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Figure 6.4: Second part of figure 6.3
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Chapter 7

Conclusions and Future Work

This thesis presented a preliminary study on temporal-sequence representation of
audio samples by means of autoencoder. Variational Autoencoders were then intro-
duced to free this representation from temporal constrains. The obtained models
were studied in order to distribute the extracted features according to the class of
the object by introducing a second loss function to classify the latent representation
in the bottleneck. The quality evaluation has been done by introducing a Dynamic
Time Wrapping algorithm comparing the Mel Frequency Cepstrum Coefficients
distances among the training data and its distribution over one generated sample
and the original ones. The experiments were conducted on a dataset of spoken
digits. They show positive results for the latent distribution and for the generation
task. It has been seen that Variational Autoencoders based on dilation layers, per-
formed better results with respect to convolution layers. A combination of these
two approaches appears to be more complicate to be trained because of the large
amount of parameters introduced by their concatenation.

However, some topics were left to be further investigated in the context of this
thesis. The first point to be further investigated is to find a good set of parameters
for the drum dataset to perform a better clustering over the latent space. The sec-
ond topic is to understand local distributions in the latent space by investigating
according to what criteria audio samples are organised in the same sub-region. A
third topic concerns to extend the latent space to one more dimension, reintroduc-
ing the temporal information for generate samples by flowing their representation
across the extra dimension and jumping among their neighbours at the same time.
A last point to be implemented is a fine-tuning for the model by means of Gener-
ative Adversarial Network. This implementation, trained over random generated
point from the probability space with respect to unpaired original audio from the
same sub-region of the latent space, will allow to reach a better output quality of
generated audio across the whole latent space, especially for morphing tasks.
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