
Audio Music Generation using
Deep Learning in an End-to-End

Approach

Master Thesis

Aleix Claramunt Molet

Aalborg University Copenhagen
Sound and Music Computing

Copyright c© Aalborg University 2015

This document has been designed in LATEX. The scripts have been implemented using
Python. For the audio analysis and the plots the librosa library has been used. Github has
been used to mantain the code. SSH protocol has been used to communicate with the
server. 3 Nvidia Titan X have been used to perform the experiments. Jupyter Notebook has
been used to keep track of the experiments and show the results.

Sound and Music Computing
Aalborg University Copenhagen

http://www.aau.dk

Title:
Audio Music Generation using Deep
Learning in an End-to-End Approach

Theme:
Deep Learning

Project Period:
Spring Semester 2018

Project Group:

Participant(s):
Aleix Claramunt Molet

Supervisor(s):
Hendrik Purwins

Copies: 1

Page Numbers: 62

Date of Completion:
May 31, 2018

Abstract:

This master thesis wants to address the
task of synthesising new sounds us-
ing deep learning in an end-to-end ap-
proach. That means that when the sys-
tem is fed with raw audio, it gener-
ates new audio samples without any
additional information. Although the
use of deep learning is quite new in
the field, sound synthesis have always
seized the interest of researchers. Syn-
thesizers first, and the use of signal
processing techniques to model phys-
ical systems later, have been studied
deeply over the last decades. A break-
ing point in the field came in 2016
when Oord et al. presented WaveNet
[1]. The network used a deep learn-
ing architecture to generate one sam-
ple at a time when conditioning it by
all the previous ones. In this thesis,
different architectures have been de-
signed to generate audio samples in
an end-to-end approach. WaveNet has
been selected over other architectures
and a deep exploration has been done.
After seeing relevant results by using
global conditioning, the network was
extended to perform local condition-
ing. The benefits of local conditioning
have been studied, presenting a final
tool that is able to automatically distin-
guish and generate specific piano and
panflute sounds conditioning them on
the mel spectrum and MFCCs.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

Contents

Preface ix

1 Introduction 1
1.1 Motivation and Goals . 4
1.2 Structure . 5

2 Related Works 7

3 Methods 11
3.1 Wavenet . 11

3.1.1 Original Network . 13
3.1.2 Igor Babuschkin Implementation (ibab) 18

3.2 Nsynth . 26

4 Implementation and Experiments 29
4.1 Reducing the Network . 29
4.2 Global Conditioning . 30
4.3 Local Conditioning . 32

4.3.1 Mel Spectrum . 32
4.3.2 MFCC . 38

5 Conclusion 41
5.1 Future Work . 42

Bibliography 43

A Jupyter Notebook Experiments 47

vii

Preface

This report summarises the work done during the last 4 months of my master
degree in Sound and Music Computing.

Aalborg University, May 31, 2018

Aleix Claramunt Molet
<aclara16@student.aau.dk>

ix

Chapter 1

Introduction

Nowadays, Artificial Intelligence (AI) is a fast growing field where the number of
publications and interests increase every day. Even though it gained most of its
popularity just a few years ago, the history of AI started a long time ago. Orig-
inally AI was designed to automatically solve problems that were intellectually
difficult to humans. Most of this programs could be modelled by applying differ-
ent rules, and that make a computer more accurate and faster than a human. In
contrast, AI was failing in simple human tasks as speech recognition and image
detection among others. The problem is that all this data is more complicated and
complex and sometimes is hard to find a model. In these cases, the way of passing
this information to a computer became the key factor. Due to the impossibility of
passing all the information with simple models, machine learning was invented.

Machine learning, was first described as the capability of AI systems to acquire
their own knowledge by extracting patterns from data. With this new approach,
computers were able to solve more complex problems. In detail, deep learning
looks to perform better than other methodologies this task. Deep learning gives
his name to the fact that the network is composed by a large amount of different
layers. That allows the network to learn different features of the input data in each
layer, and tackling the problem with different steps, solve a complex problem. De-
spite of the popularity of AI in these days, it is important to mention that it appears
on the literature in the 40’s [2] [3], and became a field of interest in the late 50’s
[4]. However, in those days, the technology was still not ready to demonstrate the
real power of deep learning. 3 key factors helped in establishing Deep Learning
in the state-of-the art in almost every field. First, the amount of data available has
increased considerably. It has been demonstrated that deep learning architectures
work better when using a large amount of training data. The creation of these
datasets, however, was not possible until recent years due to advances on technol-
ogy. That gives us to the second key point: technology. Deep learning have been

1

2 Chapter 1. Introduction

characterised by its elevated computational cost. Even these days, training a well
optimised network and using last technological tools could take more than days.
However, the apparition of GPU’s in the market and the decreasing in price of
these tools together with others components solved this problem. Finally, with the
tools and the data available, deep learning started to be applied in a lot of differ-
ent fields, moving away from the historical typical problems. The results achieved
with most of these algorithms motivate researchers to use deep learning in broader
and broader fields [5].

Nowadays, similar architectures could be used to tackle completely different
problems. Actually, that is one of the advantages of deep learning over other archi-
tectures. With a good dataset it could perform better than more specific systems.
One of the types of architectures used in deep learning is called Convolutional
Neural Networks (CNN), that owes this name in the way that the system learns.
A CNN or DCNN (Deep Convolutional Neural Network) 1.1 are a specific kind of
AI in which the system use convolutions between layers to create a model. One
of the breaking points in the industry was produced in 2012 [6], when for the first
time a CNN won ImageNet [7], the largest contest in image recognition. Is in that
moment when CNN started gaining popularity over other architectures and start
performing better and better in this field together with others.

Figure 1.1: Convolutional Neural Network [Albelwi2017]

Arts in general are in this group of topics that humans can handle in a very
intuitive way, but is hard for computers to learn. Obviously, the reason of that is
that when we want to create something new, we need to take in consideration a
lot of parameters that we have learnt during our life. There is not an exact model
of the information that we use to create something new, it is in that cases that ma-
chine learning algorithms could, again, help us. Magenta, a research project led by
Google is a good example of how machine learning could be used to create art. All
of their demos, that range from creating new musical instruments [8], new ways of
creating music [9], [10], [11] or new ways of creating drawing from pictures [12],

3

are available as an intuitive app hosted in his website. The code for all the projects
is also fully available.

Deep learning research is still dominated by computer vision. However, there
is not much difference between how computers see images and raw audio. In one
case, they see pixels, in the other they see samples. However, in both cases they
see an array of limited values with a fixed length. Topics of high research interest
as speech recognition, natural language processing (NLP) or music information
retrieval (MIR) have been explored with the use of deep learning. The results
achieved, created a new state of the art in these fields.

Music generation, as could not be otherwise, has been in the interest of re-
searchers over the years. Although it looks a recent topic, the first computational
model for algorithmic composition dates back to 1959 [13]. It is true, however,
that not until last years neural networks have demonstrated their ability in audio
generation. Lots of new papers has been presented over the last years [14] Some of
them working in the audio domain [1] [15] [8] [16], others, working in some audio
transformations and finally others working in symbolic sequences as scores [14],
[17]. A deep explanation of some of these networks is presented in section 2.

This thesis is centered in the use of deep learning techniques to generate audio
in the audio domain, what is also called as an end-to-end approach. In particular,
the candidate selected has been WaveNet [1], a new neural network presented
by Google Deepmind in 2016 that showed better results than the state of the art
methods both in generating English speech and Chinese mandarin speech. This
system, that is well described in 3, uses a DCNN to generate one sample when
conditioned by all the previous ones. The system also showed the capabilities
of WaveNet of learning and generating music. Thanks to the online community,
and mostly by Igor Babusckin, an unofficial open source implementation has been
released [18].This thesis used this open source implementation as a starting point
in order to recreate music in and end-to-end approach. However, due to the lack
of details given by the author, the needed time, and the resources needed, the
results achieved by this network are not as realistic as the original WaveNet [1].
Nowadays, WaveNet network although it has not been released as an open source
software, has been explored by many authors and companies. This architecture,
have also been used to solve new problems a part from music generation. Some of
them are a Wavenet Autoencoder [8], WaveNet for speech denoising [19], Wavenet
for Time Series Forecasting, [20], a music style translator [21], a speaker dependent
vocoder [14], a neural text to speech synthesizer [22] among others.

4 Chapter 1. Introduction

1.1 Motivation and Goals

Seeing deep learning as the current trend in audio synthesis, this project wants to
explore some of the available tools and resources. Among different possibilities,
WaveNet and specifically Igor Babusckin’s implementation [18], has been selected
as the tool to explore. The reason to choose this tool has has been motivated by two
main factors: First, the results achieved on speech synthesis has been evaluated as
more natural and realistic than other current methods. Second, as we commented
before, seems that WaveNet is creating a new tendency while working with audio
in an end-to-end approach.

This thesis uses Igor Babusckin’s implementation [18] as an starting point, as
it is accepted as the most "official repository" having 3.658 recommendations on
Github. The main goal of the thesis is to contribute with the online community
with something new. At the very begging of our research some lacks were de-
tected. WaveNet papers [1] [15] came with a bit of secrecy. In spite of presenting
the architecture and the results, there are some specific details that were not com-
mented. Examples of that are the number of channels for most of the filter, the
number of dilation layers, or the number of iterations. Online community did a
big effort on finding the best parameters for that [23]. One of the main drawbacks
of Igor Babusckin’s implementation [18] is its complexity and its lack of informa-
tion. Due to that, one of the goals of the thesis is to create a more understandable
guide on how to use and how to modify this implementation. Another drawback
of this network is that is mostly tuned to generate high quality speech. This leads
to work with a large network that took several hours to generate a few seconds of
audio when using specially designed GPUs. Several datasets have been presented
and a bunch of experiments have been performed in order to understand the be-
haviour of the network. Finally, Igor Babusckin’s implementation [18] had one
missing feature. Local conditioning, that is the capacity of the network to learn
different phonemes and produce the specific one, was not implemented. In the
original paper [1] local conditioning is briefly explained. There is also mentioned
that the condition comes from linguistic features in a TTS model. However, there
are not more details about how to extract this features. Moreover, local condition
seems to be the key components in new implementations of Wavenet as Nsynth
[8], MidiNet [24] or the Universal Music Translation Network [21]. Global condi-
tioning (the capability of the system to distinguish among other speakers), instead,
was already implemented. Following this approach, and some posts on the Github
repository [25], [26] we implemented and tested two kinds of local condition. One
conditioned with the Mel spectrum and another conditioned on 12 Mel Frequency
Cepstral Coefficients.

1.2. Structure 5

1.2 Structure

This project is organised as follows: Chapter 2 deals with the state of the art of
using deep learning for audio synthesis. It analyse some of the most popular sys-
tems explaining their basic characteristics. Chapter 3 goes in detail in the methods
used. Is mostly centred in WaveNet [1] and its unofficial implementation by Igor
Babusckin [18]. This chapters also presents Nsynth [8] as it has also been used dur-
ing this thesis and has become an inspiration for the implementation part. Chapter
4 explains in detail the implementation and the results achieved with different ar-
chitectures. Finally, chapter 5 concludes the thesis reviewing the most relevant
aspects of it. Also some ideas to improve or continue this work are presented
during the last part of this chapter.

Chapter 2

Related Works

The use of computers to process sound as humans do has always been a chal-
lenging task. Simple tasks as identifying a musical genre, the speaker identity, the
structure of a song, or the meaning of a simple sentence have been concerning top-
ics of research. Also, the use of machines to generate music and speech in a natural
and realistic way have been a highly explored tasks during the last decades. The
techniques used in the field have been recently changed by the popularisation of
Artificial Intelligence (AI) techniques. The good results achieved by AI, mostly in
image classification and image synthesis, are being used in the audio field giving
promising results. In this section, some of the most common approaches and fa-
mous architectures will be discussed.

Music, which is the topic chosen for this thesis, has the particularity that could
be represented in two completely different ways: first, it can be seen as an audio
signal (or any transformation of it) and second it can be represented with a musi-
cal score (text, MIDI, piano roll, ABC data, etc.). Both representations can achieve
realistic results, always depending on the architecture of the network. In [27] the
author presented "The Continuator", a new instrument made use of Markov chains
to learn in real time the style of the player and reproduce it at the same time, cre-
ating a duet with the musician. In that case, the input data was a midi sequence
(pitch, amplitude, velocity and time). Knowing that music could be also repre-
sented as a sequence of characters, is logic to think that methods designed to learn
and produce long sequences of data would also work with music. An example of
this assumption is presented in [28], where a recurrent neural network (RNN) is
used to generate new scores. The audio representation used was ABC notation [29],
a notation that allows to represent a score using characters. This notation could be
easily converted to MIDI or other formats. The RNN chosen was a modification of
char-rnn created by Andrej Karpathy [30] [31]. In general, a recurrent neural net-
work can be thought of as multiple copies of the same network passing a message

7

8 Chapter 2. Related Works

to each neighbour. This architecture makes them a feasible option when the data
that has to be processed is intimately related to sequences and lists. However, one
of the main drawbacks of RNN is that they don’t process well long-term depen-
dencies. A solution to this problem was presented in [32] where Long Short Term
Memory architecture (LSTM) was described. In char-rnn [30], the author trained
an LSTM network to generate text character by character. The results showed that
the network was not only able to learn the words, but also the structure of the sen-
tences in a report. A similar implementation of this network was used by Sturm in
[28] to generate folk music.

Interesting results have also appeared working in the audio signal domain in-
stead of any kind of music representation. One of the main benefits of working
directly on the raw audio signal is that more data is available, and it is easier to find
or create a good dataset. However, the complexity of the system and the network
is also higher. This is due to the complexity of raw audio. Usually sound is stored
in a quantisation factor q of q = 216 bits and sample frequency fs of fs = 44100Hz.
That is translated to 44100 different samples per one second of audio and 65536
different possible categories per each sample. Although most of the systems try to
reduce the input data decreasing q and fs to achieve realistic results, the system
use to be more complex than score representation systems.

In 2016, Oord et. al presented pixelCNN [33] and pixelRNN [34]. Two different
architectures that were able to generate new pictures pixel by pixel. In the same
year WaveNet [1] was also presented. This network was a reimplementation of pix-
elCNN in the audio domain. It uses dilated causal convolutions to achieve a large
receptive field while mantaining a good compromise with the computational cost.
The results achieved with music and speech were better than previous state of the
art. WaveNet, that is the architecture used for this thesis and it is well described in
section 3, became popular in the field. Different studies that made use of WaveNet
are being presented. In [16] Tacotron 2 is described. It is a network that directly
translate text to speech by using a modified version of WaveNet conditioned on
mel-scale spectograms. Deep Voice [22] also used a variant of WaveNet to generate
speech in an end-to-end approach. The system consisted of 5 blocks (a segmenta-
tion model for locating phoneme boundaries, a grapheme-to-phoneme conversion
model, a phoneme duration prediction model, a fundamental frequency predic-
tion model, and an audio synthesis model) and a reduced version of WaveNet was
used for the synthesis part. The results showed realistic results while reducing
the generation time over existing implementations by a factor of 400. Another
use of WaveNet is presented in [19]. Here, the author uses non causal dilated
convolutional layers with a dilation of three to remove the noise of a signal. An
experiment with 33 participants and 20 audio samples showed that WaveNet was

9

preferred over other common denoising methods. Nsynth [8] used a conditioned
WaveNet together with a WaveNet encoder to create new sounds in a similar way
than analogue synthesizers do. Nsynth has been also explored during this thesis
and is presented in section 3.

The use of RNN in end-to-end audio approach have been also explored. As-
suming that WaveNet it is an specific implementation for audio of the pixelCNN,
a logic step was to explore how pixelRNN would work in the audio domain. With
this idea, sampleRNN [17] was created. As we commented before, RNN are good
to model sequential data, but use to don’t scale well at high temporal resolutions.
The authors solve this problem creating a network formed by different modules
each operating at a different temporal resolution. The lowest module processes
individual samples, and each higher module operates on a longer timescale and
a lower temporal resolutions. Each module also conditions the module below it,
with the lowest module outputting sample-level predictions. Trained in three dif-
ferent datasets, results showed that sampleRNN was preferred over other methods,
including a reimplementation of WaveNet.

Chapter 3

Methods

3.1 Wavenet

Wavenet [1] is a Deep Convolutional Neural Network (CNN) that is able to gener-
ate new audio wave-forms operating directly on the raw audio domain. It was re-
leased in 2016 by Oord et. al, members of the Google Deepmind. Before WaveNet,
pixelCNN [33] and pixelRNN [34] were presented. Both architectures achieved
realistic results in the image synthesis field. Both systems uses all the previous
samples to predict the current one. WaveNet [1], used this approach to generate
audio. Generating one sample at time while conditioning it with all the previous
ones it achieved more natural and realistic results than the best current available
systems on the market. Not only thanks to this results, but only to the disrup-
tive methods used, a large number of researchers explored the opportunities that
WaveNet architecture could benefit in other topics.

Although WaveNet was mostly designed for speech synthesis, in the first pa-
per [1] also showed the possibilities of using it for music synthesis. A set of new
generated piano samples were presented. Despite no perceptual evaluation was
conducted for the music samples, it showed to the community the possibilities of
using CNNs for audio synthesis.

The methodolody used in WaveNet has been considered a breaking point in
speech synthesis for different reasons. Taking a look into popular Text-To-Speech
(TTS) techniques, can be seen that there exist mainly two different approaches:
Concatenative Systems and Parametrical Systems. On the one hand Concatena-
tive Systems, make use of large databases containing short speech fragments that
are combined between them to create an utterance (word or vowel sound). Even
though the result achieved with this methods is more natural, is still difficult to
modify some parameters of the generated signal (speaker identity, emphasis, emo-

11

12 Chapter 3. Methods

tions, etc.) without recording a whole new dataset. Parametrical Systems, on
the other hand, use different parameters that contain information about the de-
sired output and are used to control the model, usually formed by different signal
processing algorithms as the Vocoder. In these cases, the stiffness given by Con-
catenative Systems is solved, but its sound tends to be less natural. [35]. The use of
machine learning techniques combined with TTS techniques is also present in the
literature. However, WaveNet presented a new state-of-the art in two key points:
first, because it works directly on raw audio, withouth any external dependencies.
Second, because it uses a deep CNN instead over architectures more common in
the literature as RNN.

Wavenet, moreover solved some of the drawbacks of Parametrical Systems and
Concatenative Systems. Firstly, the perceptual evaluation performed in [1] showed
that the generated speech was even more natural than Concatenative Systems.
Secondly, by training the network with different speakers and using global con-
ditioning, the generated speech could be controlled in several domains. However,
WaveNet also has its own drawbacks.

One of the main weaknesses of WaveNet was his high computational cost. Due
to its large receptive field 1 second was needed to generate 0.02 seconds of audio in
specially designed GPUs [1]. However, the authors focused on solving this prob-
lem and in 2017 they presented a new WaveNet architecture Oord2017 that could
parallelize most of its operations. The generation time was reduced by a factor
of 1000 times, making it possible to generate 20 seconds of audio with just one
second. Finally, this year Google adopted WaveNet in his voice assitant projects,
making it work in real time [36].

Even the big technological advance that WaveNet suppose for the field, Google
didn’t publish any open version of it, and the available information was very lim-
ited. Due to that, the community, and mainly Igor Babuschkin (ibab), implemented
a similar neural network from the available papers [18].

Igor Babuschkin’s implementation is difficult to follow from a novice perspec-
tive with the available literature. Even it is as close as possible to the original
implementation is difficult to relate the original paper [oord2016] and the open
source implementation [18]. Due to that, in the following sections first the ar-
chitecture from the original paper [1] will be presented. Later, Igor Babuschkin’s
implementation will be explained in detail while referencing also to the original
paper.

3.1. Wavenet 13

3.1.1 Original Network

Wavenet is presented as a fully probabilistic and autoregressive model where each
audio sample is conditioned in all the previous ones. In that way, they treated the
problem as if it was a classification problem. The joint probability of a waveform
x = x1, ..., xT is factorised as a product of conditional probabilities as:

p(x) =
T

∏
t=1

p(xt|x1, ..., xt−1) (3.1)

This conditional probability distribution of each sample could be learned by a
neural network. To understand the overall network is useful to divide the system in
6 different sections: Pre-processing, dilated causal convolutions, gated activations
units, residual and skip connections, post-processing and conditioning. A full
overview of the network could be seen in figure 3.1

Figure 3.1: Overview of the residual block and the entire architecture [1]

Pre-processing

Typically raw audio is generated with a sampling frequency of 44100 Hz and a
quantization of 16 bits. The sampling frequency came by the human hearing range
(20Hz - 20000 Hz) and the Nyquist-Shannon sampling theorem that says that in order
to avoid aliasing the sampling frequency has to be at least the double of the fre-
quency that has to be reproduced. However, not all the audio signals work in this
range. Speech for example tends to go from 300 Hz to 3400 Hz. Due to the sig-
nificant cost of working with this amount of samples, the first step was to reduce
the sampling frequency from the input. Researchers decided to use a sampling
frequency of 16000 Hz instead of 44100.

14 Chapter 3. Methods

When converting an analog signal to a digital one a quantization factor has to
be decided. The quantization, is the number of fractions that the amplitude of the
signal is divided. A common convention is to use 16 bits to code each possible
value. That means that the total possible values per each sample are 216 = 65536.
As we commented before and could be seen in equation 3.1 each sample is condi-
tioned by all the previous ones. That means, that this value that comes from the
quantization will be used to predict all the following samples. Due to that, one
could understand that predicting one value among 65536 values, could not be an
optimal option. However, reducing the quantization of a signal also reduce the
quality of it. A compromise between the quality of the generated signal and the
quantization channels has been found by the researchers in 9 bits. This, reduce the
possible values to 256. Is also important to mention, that even it would look like
regression problem, the problem is tackled as a classification problem. That means
that each new sample, could be seen as a category to predict while having all the
previous samples as a features. This reduction, then is more important than ever,
as the network has only to distinguish among 256 categories instead of 65536.
In order to reduce the number of quantization channels, Oord et al. decided to
a apply a µ-law transformation [37] to the data and later quantize it to the 256
possible values. Researchers found that this non-linear transformation produced
significantly better results than linear quantization methods. A µ-law transforma-
tion is computed as:

f (xt) = sign(xt)
ln(1 + µ|xt|)

ln(1 + µ)
(3.2)

where -1 < xt < 1, µ = 255 and sign represents the Sign function.

Finally, one-hot encoding is applied to each sample. One-hot encoding consist
in turning this 256 values into a form that would be understood better for the neu-
ral network. In detail, each category will be represented by an array of 0’s and 1’s
as showed in table 3.1.

Category One-Hot Vector
0 1 0 ... 0
1 0 1 ... 0
...
255 0 0 ... 1

Table 3.1: One-Hot Encoding Example

An array formed by all this concatenated one-hot encoded vectors would be
the data used to train the network, and the data generated by the network. At the

3.1. Wavenet 15

end of all the process, this one-hot vector will be decoded again to create an audio
waveform.

Dilated Causal Convolutions

Dilated causal convolutions are the main ingredient of WaveNet. The word causal
means that the network will only look at the previous and the current samples to
predict a new one (as a causal filter) [20]. In this specific case, the use of causal
convolutions is justified because the output is not known. That means that is not
possible to use a future sample inside the convolution. However, other architec-
tures (i.e. WaveNet for speech denoising [19] or even during the training process,
where the future samples are known, the use of non-causal convolutions will also
work. In figure 3.2 two WaveNet architectures are presented. The first one shows
a network consisting of a stack of causal convolutional layers [1]. The image below
presents re-implementation of WaveNet using non-causal convolutions [19]. The
architecture also differs in the dilation factor. First figure doesn’t have diltions lay-
ers. On the other hand, the architecture presented in Pons2018 has a dilation factor
that increase at the power of 3.

Figure 3.2: Top: Network with 4 layers of Causal Convolutions [1]. Bottom: Network with three
dilated non Causal Convolutions [19]

The word dilated means that the filter is applied by skipping certain elements
in the input [20]. That allows the network to create a big receptive field that grows

16 Chapter 3. Methods

exponentially with less layers than non-dilated networks. One of the main advan-
tage of CNN over RNN is that they are typically faster to train as they don’t need
recurrent connections. However, when a big receptive field is needed so many
layers are also required. The fact of adding more layer to the network increase con-
siderably the computational cost. Dilated convolutions tends to solve this problem
by assuring a big receptive field with just a few layers. Also, the input resolution
through the network is well maintained. In figure 3.3 we can see the same network
as in figure 3.2 but when dilated convolutions applied. If we compare figure 3.2
(top) and figure3.3 we could see that the receptive field of the non-dilated network
is only 5. For a non-dilated convolution the receptive field could be calculated as:

r = n + l − 1 (3.3)

where n is the number of layers and l is the filter length. However, using
dilated convolutions the receptive field of the output grows up to 16 while keeping
the same number of layers. In this case the receptive field size can be calculated as:

r = (l − 1) ·
n

∑
i=1

d(i) + 1 (3.4)

where l is the filter length, n is the number of layers, i is the current layer and
d(i) reffers to the dilation factor of each specific layer.

Figure 3.3: Top: Network with 4 layers and dilation of 2[1]

The paper proposes to start with a dilation of 1 and increase it exponentially
by a factor of 2 every time until we arrive to 512. Later, repeat this several times.
The network created then, will look like this: 1,2,4,...,512,1,2,4,...,512,1,2,4,...,512.
Applying equation 3.4 the receptive field for each block would be 1 + 2 + 4 +

...512 + 1 = 1024. However, the receptive field of the full network won’t be a
multiple of 512, it will be 3 ∗ (1 + 2 + 4 + ...512) + 1 = 3070

Gated Activation Units

The gated activations unit used were the same as in the gated PixelCNN [33]:

3.1. Wavenet 17

z = tanh (W f ,k ∗ x)� σ(Wg,k ∗ x) (3.5)

where * denotes a convolution, � denotes an element wise multiplication, σ(·)
is the sigmoid function, k is the layer index, f denotes the filter, g denotes the gate,
and W is the learneable convolution filter. Gated activation units are in charge
of mapping the output of the dilated convolution in resulting values from 0 to
1. In deep learning, is common to use a Relu function instead of other functions.
However, in pixelCNN [33] was demonstrated that this particular case of activation
units performs better than Relu.

Residual and Skip Connections

A full overview of the entire architecture is presented in figure 3.1. It can be seen
that a causal convolution occurs first with the pre-processed data. Later the result
of this convolution enters the first layer of the dilated stack. In this block the
gated activation units are calculated. Finally, in this block a 1 by 1 convolution
is performed. Later, the residual connections and the skip connections must be
calculated. To calculate the residual we need to add the output from the first causal
convolution and the output of the 1 by 1 convolution. This residual connection will
be used to feed the following layer. The skip connection is directly the value that
comes from the 1 by 1 convolution. This value is stored, until all the layers are
computed. Later all this values are summed and finally the post-processing part is
performed.

Post-processing

As could be seen in figure 3.1 the post processing part consist of a ReLU function
followed by a 1 by 1 convolution, another ReLu followed by a 1 by 1 convolution,
and finally a softmax layer, that is used to calculate the loss.

Conditioning

Finally the neural network could be extended adding a condition both during the
training and during the generation part. Adding a condition allows the system to
learn different parameters during the training and generate more specifics sounds
during the generation. For example, in the case of speech synthesis the system
could be conditioned on the speaker identity or also in the specific phoneme to
produce. To do that two different types of conditionality are presented: global
condition and local condition.

Global condition is used to force the system to learn the speaker identity. This
allow us to train the network with different speakers (different gender, race, etc.)

18 Chapter 3. Methods

and choose which one to use during the generation. To use global conditioning we
need to modify the activation function from equation 3.5 by:

z = tanh (W f ,k ∗ x + VT
f ,kh)� σ(Wg,k ∗ x + VT

g,kh) (3.6)

where V∗,k is a learnable linear projection, and the vector VT
∗,kh is broadcast over

the time dimension.

Local condition is implemented in a similar way. The use of local condition is
what allows the network to produce exactly a specific sentence desired by the user.
The main difference between local and global condition is that now the condition
have to be updated every sample. When we want to train the system using local
conditioning equation 3.5 becomes:

z = tanh (W f ,k ∗ x + Vf ,ky)� σ(Wg,k ∗ x + Vg,ky) (3.7)

where Vf ,k ∗ y is now a 1 by 1 convolution and y = f (h) is the transformed infor-
mation containing the sample labels. In speech synthesis, it contains the linguistic
information coming from a TTS model.

3.1.2 Igor Babuschkin Implementation (ibab)

When WaveNet was released for the first time in 2016, the authors didn’t want
to publish any code. Moreover, the paper Oord2016 didn’t give all the details to
replicate the model. However, due to the relevant results achieved, the online com-
munity started a research project led by Igor Babuschkin (ibab) [18]. After several
months of discussing the results and the capabilities of this new implementation of
waveNet, it started to be considered as the open source "un-official" version. Cur-
rently has more than 3000 stars on Github ans has been the starting point for a lot
of projects that used a part of WaveNet or even the full implementation.The results,
however, were not as realistic as the ones achieved by Oord et.al. That could be
for several reasons as the available resources, the time spent to train the network,
or other points that have not been implemented because they are not mentioned
in the paper. This implementation is written in Tensorflow, an interface for imple-
ment machine learning algorithms developed by Google. It runs over Python and
it could be executed both in a computer, mobile devices or large-scale distributed
systems as GPUs [38]. Although this implementation is relatively easy to execute
both for the training and the generating part, the code is very complex for begin-
ners and the published information is not enough to have a good understanding
of the project. Due to that, one of the goals of this thesis has also been to create a
useful documentation for future researchers and students.

3.1. Wavenet 19

In this section Igor Babuschkin’s implementation is presented in detail. This
section often refers to concepts seen in section 3.1.1. But is important to understand
the relation between the original paper and this implementation.

System overview

As explained in section 3.1.1 the input of the network is a directory containing
different raw audio files. The system trains the network file by file (by default
batch_size=1, but could be changed), or splitting it in fragments of 100000 sam-
ples (6.25 seconds) is the file is bigger than that. This happens during the pre-
processing block, when also a mu-law encoding (see section 3.1.1) is performed,
and a tensor is created.Later The tensor created is later one-hot encoded.

The next step is to feed the network that has been previously created. To un-
derstand the full architecture of network a clearer representation is presented in
figure 3.1.2. First, the one-hot encoded tensor is convolved with a causal filter of
length 2 (by default filter_width=2) and the output is sent to the dilated_stack
block. In this block is where the residual and the skip connections are calculated
explained in section 3.1.1 are calculated. Later, as it is explained in section 3.1.1,
the post-processing is performed. Finally, the loss is calculated using the soft-
max cross-entropy between the output of each timestep and the input at the next
timestep.

Figure 3.1.2 shows in a more clearer way WaveNet architecture and could ba
good help when trying to understand the code. Is important to mention that the
number of channels and the length of the tensors doesn’t correspond to the re-
ality. On one side or below each element, different information is also displyed.
This names corresponds with the variable names used in the code, and are also
described in the following section. In the case of the filters, we followed a Tensor-
Flow nomenclature, where each filter is defined with 3 parameters: filter length,
filter depth and output channels. The number of ouput channels will condition the
size of the next batch, and the number of put channels and depth of the next filter
must be the same to perform the convolution.

Explore how this parameters affect to the network have been out of the scope
of this project as it was already done by the community. In [23] a long discussion
about this could be found. Most of this parameters come with new papers, confer-
ences and experiments. However, we needed a reduced version of WaveNet, and
we explored different ways of reducing it.

3.1. Wavenet 21

Parameters

The number of channels could be easily modified given as an input by an external
file called wavenet_params.json. Part of this thesis has also been to explore with
some of these parameters, mainly in order to reduce the computational cost of the
network. Some of the most relevant parameters are:

• filter_width:2: width of all the filters. Both in the causal layer and in the
dilated block.

• quantization_channels: number of quantization channels.

• dilations: it defines a new layer with the dilation specified.

• residual_channels: output channel for the causal filter.

• skip_channels: output channels for the skip connection

• dilation_channels: output channels for all the filters in the dilation block
except for the skip connection.

Network and Variables

The network is defined in model.py. Inside this file we can find WavenetModel
class, a class instanced in train.py that is used to create the network. Is in this class
where the network is created and where all the weights are calculated and updated
during backpropagation. All the variables that are used to create the network are
called by the method _create_variables. This method basically creates a Python
dictionary with the parameters of the filter in each layer. In Tensorflow a filter
is defined by 3 parameters: filter width, filter depth, and output channels. The
Python dictionary created by _create_variables looks like:

• causal_layer: first causal convolution. Before entering to the dilation block.

Name Shape Parameters
Filter 2, 256, 32 initial_filter_width, quantization_channels, residual_channels

Table 3.2: Parameters of the filter in the causal layer

• dilated_stack: All of this variables are created for each dilated layer. This
are being append to the dictionary. See table 3.3

• post-processing: When all the variables used by the dilated layers are cre-
ated, the post-processing block defined in 3.1.1 is created. See table 3.1.2.

22 Chapter 3. Methods

Name Shape Parameters
filter 2, 32, 32 initial_filter_width, residual_channels, dilation_channels
gate 2, 32, 32 filter_width, residual_channels, dilation_channels
dense 1, 32, 32 1, dilation_channels, residual_channels
skip 1, 32, 512 1, dilation_channels, skip_channels
filter_bias 32 dilation_channels
dense_bias 32 residual_channels
skip_bias 512 skip_channels

Table 3.3: Parameters of the filters in the dilated layers

Name Shape Parameters
postprocess1 1, 512, 512 1, skip_channels, skip_channels
postprocess2 1, 512, 256 1, skip_channels, quantization_channels
postprocess1_bias 512 skip_channels
postprocess2_bias 256 quantization_channels

Table 3.4: Parameters of the filter for the post-processing block

After computing all the variables needed by the network, the input data is pre-
processed as explained in 3.1.1. Function mu_law_encode from wavenet\ops.py
and the method _one_hot defined inside this class are the responsible of encoding
the data. After that, the network is created in a similar way as defined in 3.1.2. The
methods used for creating the network are _create_network and _create_dilation
_layer.

The last step is to calculate the loss function. The loss is calculated as a cross-
entropy softmax of all the samples within the receptive field. The target is the input
signal, and the prediction are all the predicted samples. During the first steps the
predicted signal is smaller than the receptive field, as it is generating one sample
at a time. In these cases the predicted samples needed to calculate the loss are feed
with 0s.

Global Conditioning

Global conditioning, presented in section 3.1.1, can be understood with figure 3.4.
Global conditioning could be understood as adding a bias after the dilation con-
volution and before calculating the gated activation unit. This bias, consist in a
1x1 convolution by a filter and the global conditioning batch. Global condition-
ing batch is an array with the same number of channels of the input that con-
tains the information about the category that is being trained. If we look fig-
ure 3.4 new parameters are defined. gc_channels is the depth of the filters in

3.1. Wavenet 23

this block (gc_filtweights) and (gc_gateweights). It is also the channels of the
global_conditioning_batch. It must be 32, because it needs to have the same
shape as conv_filter. The cardinality is automatically calculated by the system
and it refers to the number of different categories. It will be explained more in
detail in section 3.1.2.

Figure 3.4: Global Conditioning Block

When global condition is detected these new variables are created:

Name Shape Parameters
gc_embeddings x, 32 cardinality, gc_channels
gc_gateweights 1, 32, 32 1, global_condition_channels, dilation_channels
gc_filtweights 1, 32, 32 1, global_condition_channels, dilation_channels

Table 3.5: Parameters of the filter for global conditioning block

So as it was mentioned before, global conditioning is performed by adding a
particular bias in each layer and just before calculating the gated activation unit.

Local Conditioning

Local condition basically force the network to generate a specific group of samples
belonging to the same class (i.e., vowel, word, pitch...). To achieve this a similar
conditioning than the explained before is performed. The main difference, is that
this condition won’t be the same for all the file. Instead, it has to be automatically
extracted by the raw audio. In [1] they used a tool that automatically extracted
some linguistic features from the input data. However, what the tool that they ex-
actly use is not mentioned in the paper, and due to that has not been implemented.

24 Chapter 3. Methods

To understand how local condition works one could review how global condi-
tioning is implemented. The key difference among them, is that global condition-
ing is performed file by file. So, global_conditioning_batch is fixed during the
same file. Local conditioning instead, is changing inside the same file. To achieve
that, a new variable called local_conditioning_batch needs to contain the infor-
mation for each sample. As it was mentioned, this information could be something
as complex as linguistic features, but could also be something easier like a category
used to distinguish two classes in a sound. In that case local_conditioning_batch
will be 0 every time that the sample belongs to the first category and 1 when it
belongs to category. This is what is represented in figure 3.5. Obviously, this one-
dimensional vector must be broadcasted to all the channels of the input. Using
just one channel to locally condition, however, doesn’t give the best results. The
intention of showing a diagram with just one channel is merely to make it easier
to understand. Part of this thesis has also been to explore different strategies (one-
hot, previous, current and future sample, etc.) to improve this quality. This will be
described in section 4

Figure 3.5: Local Conditioning Block

Small Tutorial

In this part a small tutorial on how to use this particular extension ow WaveNet is
presented. It follows the official tutorial presented in ibab, which is also a useful
resource.

The system is basically formed by 5 important files:

3.1. Wavenet 25

• wavenet_params.json: it contains the values for most of the parameters to
create the architecture of the network

• wavenet\audioreader.py: in charge of the pre-processing part.

• wavenet\model.py: it creates the network and performs most of its opera-
tions.

• train.py: trains the network.

• generate.py: generate new audio samples.

The following lines will describe how to train the network, how to generate
new audio samples, how to use global condition and finally, how to use local con-
dition.

In order to generate some audio first, the system needs to be trained. That
could be done executing the following line in the terminal:

python train.py --data_dir=corpus

where --data_dir refers to the directory where the training data is stored.
The data have to be a .wav file. Some parameters can be also added in this ex-
ecution line. They are well described in the first lines of train.py but can be
also viewed by executing python train.py --help. A recommendation is to add
--silence_threshold=0 and reduce the number of steps --num_steps if the dataset
is smaller than the VCTK. Edit the architecture of the network is also possible. This
is done by editing the parameters in wavenet_params.json.

As we commented before is also possible to condition the network. For condi-
tioning it globally we need to add --gc_channels=32 to the execution line. This
tells to the system that global condition is enabled and also defines the number of
channels for the condition. If instead of using global conditioning, we want to train
the system using local conditioning, the following parameter has to be passed in
the previous execution line --lc_channels=True.

When the system is trained and the model has been stored, the systemn is
ready to generated new audio samples. To achieve that, the following line has to
be called:

python generate.py --samples 16000 --wav_out_path=generated.wav
logdir/train/2017-02-13T16-45-34/model.ckpt-80000

26 Chapter 3. Methods

where --samples is the number of samples to generate, --wav_out_path is
the path to save the generated file and logdir is the model used for the gener-
ation. When running the generation part, both the model and the parameters in
wavenet_param.json must be the same. As before, it is also possible to condition
both locally and globally. To generate a sequence globally conditioned we must
add --gc_cardinality, -gc_channels=32 and --gc_id. --gc_cardinality is the
number of different categories and is printed in the console before starting the
training and --gc_id is the category to generate.

In order to synthesise a new sound locally conditioned more parameters need
to be added to the execution line. First, the system needs to know to the values that
goes with each sample. We did that by passing .txt file or a .json file, depends of
the network used that basically contains the information needed per each sample.
That will be described in section 4. However, to add this file, we need to add to
the execution line --labels=labels_path where labels is the name of the file that
contain the local condition. As in the case of global condition, --lc_channels=...
and --lc_cardinality=... have to be added to the execution line. These values
are printed during the training and must be the same as it defines the architecture
of the network.

3.2 Nsynth

Nsynth [8] was presented in 2017 by Magenta, a research project that explores the
role of machine learning in the process of creating art and music. They presented
several artistic projects with the purpose of generating new songs, images, draw-
ings and other materials. All the code is always available on his GitHub respository
[39].

For this project, and given the good results that Wavenet achieved in audio
synthesis, they decided to use Wavenet for a most artistic purpose. In particular,
they were inspired by classical synthesizers, in the way that they could create new
sounds with specific tone and timbre just modifying some signals as the pitch, the
velocity or some filter parameters. Wavenet, although it showed realistic results in
speech and music synthesis, was not able to create new sounds. Neither was its
purpose. In this project, instead, the purpose was to generate new sounds but, at
the same time, preserving some of the characteristics of the training data. In this
project they presented two works: first, a Wavenet autoencoder that was able to
create new sounds by combining different sounds for the training, and second, a
large-scale and high-quality dataset of musical notes.

To understand first how WaveNet works, a brief understanding of autoencoders

3.2. Nsynth 27

is needed. An autoencoder (figure 3.6) is basically a neural network that attempts
to copy its input to its output. The network could be seen as consisting of two
parts: and encoder function h = f (x) and a decoder who produces the recon-
struction r = g(h). Between these two parts there is a hidden layer, the code h,
that is used to represent the input in a reduced representation. Traditionally, au-
toencoders were used mostly for dimensionality reductions, however, nowadays an
autoencoder designed to copy perfectly the input is not especially useful. Instead,
they only copy specific characteristics of the input data to generate something new.
That, have brought autoencoders to the forefront of generative modelling. [40].
This is exactly the case of Nsynth, where an autoencoder has been used to condi-
tion the network in order to create new types of expressive and realistic instrument
sounds.

Figure 3.6: Autoencoder

Nsynth works in a similar way as WaveNet. It generates new audio waveforms
from raw audio. However, WaveNet relies on external conditions to control the
desired output. In Nsynth these external conditions, have been removed and are
automatically controlled by a temporal encoder. The temporal encoder (figure ??)
is a 30-layer non linear residual network of dilated convolutions followed by 1x1
convolutions. Each convolution has 128 channels and is followed by a ReLU func-
tion and a 1x1 convolution. The temporal encoder output is finally feed into a
1x1 convolution and is downsampled by a factor of 512 (32ms). The time resolu-
tion depends on the stride of the pooling layer. A good compromise was found
when using 16 dimension per timestep and stride of 512 (32ms when f s = 16000).
The WaveNet decoder is similar to the original WaveNet model [1], however, every
layer is conditioned by the upsampled output of the temporal encoder.

The realistic results achieved by this network is not only thanks to its archi-
tecture, but also for the specific dataset used. This dataset was created using
commercial sample libraries and it contained 1006 different instruments, 87 dif-

28 Chapter 3. Methods

Figure 3.7: Wavenet Autoencoder [8]

ferent MIDI notes and 5 MIDI velocities. The use of this specific dataset allow
the encoder to condition the WaveNet decoder, not only with its pitch, but only
with its timber. However, producing the same as the input was not the goal of this
project. To achieve new realistic sounds the authors modified the embedding in the
generation part combining the encoding result from different instruments. As an
example, if the conditioned passed in the generation is (c1 + c2)/2 being c1 a piano
samples and c2 a flute sample, the result would be a new instrument combining
some characteristics of the piano and some of the flute.[41]

Chapter 4

Implementation and Experiments

During this project, different experiments have been done in order to understand
the performance of Igor Babuschkin’s implementation of WaveNet [18]. All of these
experiments are well described in [42], and are also presented in the appendix.

This section starts describing most of these experiments, and analysing it re-
sults. Later, two new architectures are presented. Both extend Igor Babuschkin’s
implementation [18] adding local conditioning. In the first one, local condition-
ing is used to generate a specific signal from a dataset conditioning it on the mel
spectrum. To analyse the dataset, mel spectrum have been used. The other net-
work, also uses local conditioning to generate a specific sound with an specific
fundamental frequency but it uses MFCCs as the condition.

4.1 Reducing the Network

The original paper on WaveNet [1] revealed few details about the specifics of the
implementation. An online community with interest in the WaveNet explored im-
plementation details. [43].

Most of the challenges that keep the interest of the comunity were how to
achieve a realistic speech sound, or a realistic audio sound. However, this thesis
differs from most of these posts because we want to understand how WaveNet
works, and see what could it learn. For this thesis, the computational cost is a
limiting factor, as we only have 3 avilable GPUs to share among all the interested
students. The time also was a limiting factor, as we had a short period to present
the results. In this first section we explored how reducing the network affected the
quality of the generated signal, and how it reduces the computational cost.

We started by reducing the dataset. For that we used one sinuoid sampled at
16000 Hz and duration of 1 second. We have seen that good results were achieved

29

30 Chapter 4. Implementation and Experiments

with a receptive field of 16. 2 stacked layers of 3 dilations increasing by a fac-
tor of 2 (2x(1,2,4). Reducing the quantization channels also resulted in a faster
computation withouth affecting the generated signal.Training the network during
100 epochs lasted 262 seconds. To generate 1 second of audio (16000 samples) took
38.8 seconds. Figure 4.1 shows the generated signal, and the loss function achieved
during the training.

Figure 4.1: Generated signal and Loss function for the reduced network

4.2 Global Conditioning

As we described in section 3.1.1, conditionallity was implemented in order to copy
the characteristics of one specified speaker. In Igor Babuschkin’s implementa-
tion, the condition is specifically designed to work with the VCTK corpus dataset
[44]. Each different speaker is treated by the network as a different category, so
different filters are used in the conditioning part for each category. The cate-
gory is taken from the file of the name, and that is performed in the function
get_category_cardinality from audio_reader.py. In order to use global condi-
tioning with our datasets, this function has to be modified according to the name
of our files.

In this section, different datasets have been created to explore global condition-
ing. Below some of the results are presented. A full description of the experiments
could be find in [42].

First, we tried to make the system learn different frequencies. To achieves
that, we train the network using 7 different frequencies (440, 493.88, 523.25, 587.33,
659.25, 698.46, 783.99) Hz, and we train the system during 100 epoch. The results,
that could be seen in Figure 4.2 showed that the system is able to learn different
frequencies.

4.2. Global Conditioning 31

Figure 4.2: Signal generated when conditioned at 493.88 Hz

Second, we investigated if the network was able to learn different amplitudes
of the same signal, so we conditioned the network to different amplitudes. We
created a dataset containing a sinusoidal signal with frequency f = 440Hz with 4
different amplitudes (0.25, 0.5, 0.75, 1). Using the same network than before and
training with 250 epoch, the system was able to learn and generate 4 different sig-
nals.

Figure 4.3: Signals generated when trained with 4 different amplitudes

After demonstrating that the network was able to recreate precisely the input,
and also was able to distinguish between different sound characteristics, we ex-
perimented how the network would behave with a more complex dataset. For
that experiment, a dataset containing 900 signals with 100 different frequencies, 3
different shapes (triangle, sinus, sawtooth), and random amplitudes was created.
The system was conditioned to the fundamental frequency. The results showed
that the network was able to generate a new signal with a new shape, and random

32 Chapter 4. Implementation and Experiments

amplitudes, but that was maintaining the frequency. In figure 4.4 we could see the
result of a generated signal when the condition was 3928 Hz. This sound could be
listened in [42]. Even the signal maintains the frequency, the signal was not peridic
anymore. It was periodic for a few samples, and it changes constantly from one
shape, or one amplitude to another.

Figure 4.4: Conditioned in frequency with different shape and amplitude

4.3 Local Conditioning

As it is explained in section 3.1.1 local conditionally is the ability of the network to
be conditioned inside the same signal. In speech synthesis, for example it is used to
generate a specific phoneme. Local condition is not available on Igor Babuschkin’s
implementation. Moreover, the use of local conditioning for music has not been
discussed in the original paper. However, looks that is the key component of new
architectures as [8] and [21].

The community involved in the project has also been interested in implement-
ing local conditioning and that motivated us to implement our particular local
conditioning. Inspired by [25], [26], [45] and [46] we presented two different mod-
els of local Conditioning.

First model first pre-process the input data creating a file where each sample
has assigned a category. That category came from analysing all the dataset and
extracting the fundamental the frequency. The second network, uses the first 12
MFCCs to condition the network. The results showed that both networks could be
used to condition the sequence to generate.

4.3.1 Mel Spectrum

When working on simple group of signals the most distinguishable characteristic
among them is their frequency. According to this, we started this part trying to
locally condition different signals according to their frequency. The tool presented

4.3. Local Conditioning 33

is an automatic tool that automatically differentiates different frequencies in the
dataset, and create the necessary number of channels to train the network. To use
local condition the parameter --local_condition=True has to be added on the ex-
ecution line.

Pre-processing the data

In this step the system looks to all the files in the directory an analyse them using
a mel spectrum. We should mention that mel spectrum was selected over other
descriptors because we have been working with simple signals, like sinusoids. In
that case, mel spectrum could work. However, if this would be extended as a
real application this descriptor wouldn’t work. When all the different frequencies
are taken, they are translated into categories starting from 0 to n, where n is the
number of different frequencies. Different experiments showed that passing only
this category number as it was done when globally condition the system wouldn’t
work. Some of the ideas discussed in [25] proposed to use one-hot encoding to
define the category. Applying that, the network started to behave as expected and
a desired sequence was created. However, a lot of noise was produced during the
transitions. To solve that, we added to each sample also the one-hot encoded in-
formation about the previous sample and the future sample. This fact removed the
noise created during the transitions.

As an example imagine that we have a dataset containing three frequencies
(440, 880, 1320 Hz). The conditioning vector will be a 1x9 array where the first three
digits represent the previous frequency category one-hot encoded, the following
three digits represent the current frequency category one-hot encoded, and the
last three digits represent the next sample frequency category one-hot encoded.
According to this, the architecture of the network will be totally related with the
number of frequencies detected. Similar approaches have been discussed in [25]
[26] and [45].

Architecture

An overview of the local conditioning architecture is presented in figure 3.5. Nev-
ertheless, is important to mention that this architecture will be conditioned by the
number of different frequencies. As it is commented before, the local condition-
ing embedding vector (category_id_local in the code) is a one-hot encoded version
of the frequency category of the previous, current and next sample. One-hot en-
coding will depend on the number of categories, and due to that, the embedding
vector shape will depend on this. lc_filtweights and lc_gateweights will also have
a different shape depending on the number of frequencies detected. The shape

34 Chapter 4. Implementation and Experiments

of these two filters will be (1, n, 32) where n is the size of the local conditioning
vector.

Generate

During the generation, the network needs to be conditioned per each sample, that
means that together we need to pass a new parameter on the execution line. This
parameter is called –labels and has to contain the path of the labels .txt file. This
file has to be at least as long as the number of samples that we want to generate.
The format of this file, has to be one of the labels used during the training sepa-
rated by a coma. Each label has to be created in a new line. Also we have to add the
number of categories and the number of channels. This values are printed during
before starting the training, and are called --lc_channels and --lc_cardinality.
An example of an execution line would be:

CUDA_VISIBLE_DEVICES=3 python generate.py --samples 24000
--wav_out_path=train0.wav ./logdir/train/2018-05-13T06-14-23/model.ckpt-
2999 --lc_channels=9 --lc_cardinality=3 --labels=./corpus/localTrain/
lc_train0.txt

When the networks detects that local conditioning is enabled, it will automati-
cally convert the labels from the .txt file to one-hot vector of previous-current-next
sample. We could generalize that the size of each label will be 3xc where c is the
cardinality, and it refers to the number of different frequencies. Moreover, the size
of this vector will also condition the shape of the filters in the local conditioning
part (lc_filtweights and lc_gateweights).

Results

This section presents the most relevant results while working with locally condi-
tioning the network using the mel spectrum. Hypothetically, the system should be
able to automatically detect different frequencies on the training data, create the
labels and condition the network. After that, we should be able to tell the system
which specific sequence of signals we want to generate and it should be able to
create this sequence. In order to understand how the network behaves and also
considering the available resources, it was decided to work with simple datasets
and increase the complexity when the results are favourable. Due to the lack of
this kind of datasets, a different set of datasets have been created.

Different datasets are presented in this section, as well as the results and con-
clusions extracted. A full detailed explanation of the experiments could be seen in
the jupyter notebook [42] of the project and also in appendix ??.

4.3. Local Conditioning 35

Random Sinusoids with Normalized Amplitude

This dataset consists of 100 signals formed by randomly concatenations of three
frequencies (440 Hz, 880 Hz and 1320 Hz). Using a small receptive field of 16
(2x1, 2, 4) and training the network 500 epoch the results shows that the network
is perfectly able to generate the sequence desired. Figure 4.5 shows the generated
signal (right) when the network is locally conditioned with the signal on the left.

Figure 4.5: Expected signal (left) and generated signal (right)

The training took 35 minutes, and the loss achieved was around 0.6. In order
to remove the noise in the generated signal, we tried to train the network by using
more iterations. Effectively, the noise was removed from the signal, but it affected
the temporal quality of the condition.

Random Sinusoids with Random Amplitudes

A logical step forward to increase the complexity of the dataset, would be to use
different frequencies and different amplitudes. In this dataset we created 100 sig-
nals formed by the concatenation of the same frequencies as before with random
amplitudes. Figure 4.6 shows the generated files together with the labels passed by
the input when trained with 500 epoch and 3000 epoch. As it could be observed,
increasing the number of iterations remove the noise of the generated signal but
then the condition is not learnt. This experiment has been run with different itera-
tion, but we couldn’t achieve a good compromise between the temporal resolution
of the condition and the absence of noise. We couldn’t remove neither the noise ap-
plied to the first frequency (440 Hz) which is much superior than in the other two
frequencies. That could be due to the length of the period and the short receptive
field.

36 Chapter 4. Implementation and Experiments

Figure 4.6: Expected signal (left), 500 epoch (middle), 5998 epoch (right)

Random Shapes and Random Amplitudes

This dataset added different signal shapes on the last dataset. It contains 100
signals with three frequencies, 4 random amplitudes and three different shapes
(triangular, sinus, sawtooth). To obtain the results showed in figure 4.7 we needed
to train the system during 2999 epoch to get this results. It took 3 hours and 20
minutes to train, and the loss value was around 1.21. Less iteration gave worse
results in terms of the quality of the sound (noise added) and how the condition is
generated.

Figure 4.7: Labels when the signal is a sinus (left), generated signals (right)

In terms of the shape, for the second and third frequency is usually constant
with a square or a sawtooth. However, for the first frequency is changing constantly
from one shape to another, giving a signal with more noise. Figure ?? shows the
results for two of this signals. As in the previous dataset the first frequency present
more noise than the other. Some harmonics are present due to the square and the
saw-tooth shapes.

4.3. Local Conditioning 37

Panflute Dataset

In this dataset we selected 7 examples from the dataset [47] containing three dif-
ferent frequencies. Then, we randomly concatenated these signals with different
lengths creating 100 signals. The dataset was created in order to demonstrate that
wavenet is able to work with real instruments. The selection of a panflute over
other instruments is because of its timbre and it is shape. As could be appreciated
in figure 4.8, it presents only a few harmonics and the waveform is constant over
time. In this picture, also we could see how the network is able to recreate the
timbre of a panflute and that it could differentiate over different frequencies. Even
with most of the frequencies the signal generated is clear, some noise is presented
in specific frequencies.

We investigated the reason of why some notes were more noisy than others.
First, we looked if it was because the receptive field. But increasing it didn’t solve
the problem. Later, we explored if it could be because this frequency has less
training the data in the dataset, but the dataset was well distributed. So, we still
need to explore why some frequencies are more noisy than others.

Figure 4.8: Expected signals (left) and generated signals (right)

Piano Dataset

The last dataset presented consists of 100 signals formed with three different fre-
quencies from a piano dataset [47]. The timber of a piano is richer in harmonics
than a panflute, and also the waveform is more complex as it presents attack, de-
cay, sustain and release. Due to that, we need to increase the receptive field of
the network. An architecture that worked has been using 4 stacked layers of dila-
tions 1,2,4,8, providing a receptive field of 62 samples. Training the system during
3000 epochs took 3 hours and 15 minutes in a NVIDIA TITAN X GPU. Figure 4.9
shows two examples of the generated sounds. As it could be seen the network is
able to recreate some of the harmonics of the piano. The local condition is also
well learned. As it could be seen also some noise is added to the signal. That

38 Chapter 4. Implementation and Experiments

is something common with this implementation. We tried to remove that noise
but increasing the number of the iterations. Doing that, however, the noise was
reduced but the condition was not learned and the network was not able to create
and specific sequence.

Figure 4.9: Piano labels (left) and generated signals (right)

4.3.2 MFCC

Inspired by Nsynth[8], Tacotron2[16], and the Universal Music Translator Network
[21], we decided to use Mel-frequency cepstral coefficients to locally condition the
network. In the previous network we used the mel spectrum to classify different
frequencies and use the local condition to generate an specific sequence. How-
ever this analysis presented different problems. First, mel spectrum is not a good
descriptor for detecting the fundamental frequency or the pitch. [48] Other algo-
rithms as pitch detection should be used. Second, using this network with a big
dataset probably wouldn’t give good results as the number of channels in the local
conditioning batch will be too large. Finally, the use of the mel spectrum as the
local condition is useful when we want the output to be as similar as possible to
the input. However, if we prefer to combine the characteristics of different sounds
to create new sounds, as Nsynth [8] is doing, is not a good descriptor.

MFCCs are one of the most common descriptors in audio processing and speech
recognition. The steps to compute MFCCs are the following: first, the input signal
is windowed in frames of 20-40 ms. Later, for each frame the power spectrum is
calculated. After that, this is sent into a bank of Kmel mel frequency filters. Mel
filters are a group of triangular filters and unity responds at its centre that treats
the signal in a similar way as our cochlea does. The first filter, gives information
about how much energy exists around 0 Hertz and is much narrow than last filter,
due to that as higher is the frequency, less we perceive the differences in frequency.
After computing the mel filter, we take the logarithm of them. Finally, the cosine

4.3. Local Conditioning 39

discrete transform (CDT) is computed. [49] The selection of MFCCs over other
audio descriptors was inspired by Tacotron2 [16] that already used MFCCs.

In order to use MFCCs the architecture of the network has to be modified. In
the following lines this structure will be described. First, MFCCs are computed per
each signal during the pre-processing.To calculate the MFCCs we used the built in
function from the librosa library with 20 MFCCs, frames of 2048 samples and a
hop size of 512. We selected only 12 MFCCs, from the 2nd to the 13rd as they
are the ones that give the most relevant information. This information is upsam-
pled using nearest neighbour and stored in a .json file as it could be converted
directly to a python dictionary. When all the files have been analysed, the net-
work will start the training. In that case, local_condition_batch, lc_filtweights
and lc_gateweights from figure 3.5 will have always 12 channels. Is important to
mention that here MFCCs are directly used to train the network and to generate
new samples. That means that during the generation a .json file containing the 12
MFCCs per sample have to be passed to the network.

As before experiments with different datasets have been run. Below some of
these experiments are presented and more results are available in the jupyter note-
book [42].

Different Sinusoids with Random Amplitudes

Same dataset as presented in 4.3.1, different amplitudes and three frequencies. If
we observe the results presented in figure4.10 we could see that the spectrum is
as clean as in the last method. However, when conditioning on the fundamental
frequency using different amplitudes, we got probelms getting the right sequence.
In that case, this is also solved. In this particular example we used 3000 epoch
achieving a loss of 0.84.

Figure 4.10: Labels (left) and generated signals (right)

40 Chapter 4. Implementation and Experiments

Piano Dataset

Seeing the good results achieved with the last dataset, we decided to finally train
with real sounds again. We used the pianoDataset, described in section 4.3.1.
Results show that the network is able to recreate better the timbre of the selected
instrument. Also the condition is learned well, and it changes at the desired sample
conditioned by the labels.

Figure 4.11: Piano labels (left) and generated signals (right)

Chapter 5

Conclusion

In this thesis the state of the art of audio synthesis using artificial Intelligence has
been investigated. First, different networks have been presented showing their
basics implementations and results. Later, WaveNet [1] has been selected over net-
works due to its breaking results compared with other methods and its popularity.
Although Wavenet [1] is a well-known architecture in the field, it comes with a bit
of secrecy by the authors. This lack of information motivated the online commu-
nity to recreate the network by using the available data and tuning the system by
trial and error. This network [18] has been accepted by the community as the start-
ing point to create new projects. However, this implementation is still too complex
for novices researchers. And the information available is neither abundant. In this
thesis inverse engineering has been applied in order to understand well how the
network is working and a more intuitive guide has been provided. Although Igor
Babuschkin’s implementation has become very popular, the results achieved are
far away from Google implementation. That could be due to the limited resources,
the time, or some parameters that are not identically tuned.

Being realistic about the time and the resources available in Aalborg University,
a reduced architecture of WaveNet has been presented for this thesis. Also differ-
ent datasets has been created and the behaviour of the network has been explored.
First results showed that global conditioning, a part from the purpose of repro-
ducing different speakers, could be used to condition the network to generate a
specific frequency, a specific shape or a desired amplitude.

One of the missing parts of Igor Babuschkin’s implementations was the lo-
cal conditioning part. This part was not implemented because when using for
speech synthesis a system to extract the linguistic features in a TTS model was
not presented in the paper. However, local conditioning could be used in differ-
ent approaches. In order to understand and see its potential, a simple model that

41

42 Chapter 5. Conclusion

automatically learns the fundamental frequency of a signal and uses it in local
conditioning has been created. After seeing good results both with simple signals
and realistic sounds (piano and pan-flute) a more general tool has been also pre-
sented. This tool uses 12 MFCCs to condition the network and later it uses it to
generate a specific sequence of notes. The use of MFCCs instead of mel spectrum
demonstrated cleaner results when the dataset was more complex.

5.1 Future Work

This thesis could be extended in several different ways. First, the system could be
trained with larger datasets containing more complex data. Even this implementa-
tion is still far from real recordings the use of denoising systems at the end of the
network could help on achieving realistic sounds.

The use of MFCCs in the local conditioning part showed that the network re-
produced well the pitch and the timber of the input. However, synthesizing a new
sound was out of the scope of this work. Secondly, the project could be extended
in this way, using MFCCs to create new musical instruments. Finally, two audio
descriptors have been explored to locally condition the networ: mel spectrum and
MFCC. This thesis could also be extended by finding a more adequate descriptor
to use with the local condition.

Bibliography

[1] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu.
“WaveNet: A Generative Model for Raw Audio”. In: CoRR abs/1609.03499
(2016). arXiv: 1609.03499. url: http://arxiv.org/abs/1609.03499.

[2] Warren S. McCulloch and Walter H. Pitts. “A Logical Calculus of the Ideas
Immanent in Nervous Activity”. In: Bulletin of Mathematical Biophysics Vol. 5
(1943), pp. 115–133.

[3] Donald Olding Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[4] F. Rosenblatt. “The Perceptron: A probabilistic model for information storage
and oganization in the brain”. In: Psychological Review Vol. 65 (1958).

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016, pp. 1–4.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in neural
information processing systems (2012), pp. 1097–1105.

[7] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. “ImageNet: A
large-scale hierarchical image database”. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition. 2009, pp. 248–255. doi: 10.1109/CVPR.
2009.5206848.

[8] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck,
Karen Simonyan, and Mohammad Norouzi. “Neural Audio Synthesis of Mu-
sical Notes with WaveNet Autoencoders”. In: CoRR abs/1704.01279 (2017).
arXiv: 1704.01279. url: http://arxiv.org/abs/1704.01279.

[9] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. “A Hierarchical
Latent Vector Model for Learning Long-Term Structure in Music”. In: ArXiv
e-prints (Mar. 2018). arXiv: 1803.05428 [cs.LG].

43

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1704.01279
http://arxiv.org/abs/1704.01279
http://arxiv.org/abs/1803.05428

44 Bibliography

[10] Adam Roberts, Jesse Engel, Sageev Oore, and Douglas Eck, eds. Learning
Latent Representations of Music to Generate Interactive Musical Palettes. 2018.
url: http://ceur-ws.org/Vol-2068/milc7.pdf.

[11] Anna Huang, Sherol Chen, Mark Nelson, and Doug Eck. “Mixed-Initiative
Generation of Multi-Channel Sequential Structures”. In: 2018.

[12] D. Ha and D. Eck. “A Neural Representation of Sketch Drawings”. In: ArXiv
e-prints (Apr. 2017). arXiv: 1704.03477.

[13] Lejaren Hiller and Leonard M. Isaacson. Experimental music; composition with
an electronic computer. Psychology Press, 2005.

[14] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang. “MidiNet: A Convolutional Genera-
tive Adversarial Network for Symbolic-domain Music Generation”. In: ArXiv
e-prints (Mar. 2017). arXiv: 1703.10847 [cs.SD].

[15] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande, D.
Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves,
H. King, T. Walters, D. Belov, and D. Hassabis. “Parallel WaveNet: Fast High-
Fidelity Speech Synthesis”. In: ArXiv e-prints (Nov. 2017). arXiv: 1711.10433
[cs.LG].

[16] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y.
Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y.
Wu. “Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram
Predictions”. In: ArXiv e-prints (Dec. 2017). arXiv: 1712.05884 [cs.CL].

[17] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and
Y. Bengio. “SampleRNN: An Unconditional End-to-End Neural Audio Gen-
eration Model”. In: ArXiv e-prints (Dec. 2016). arXiv: 1612.07837 [cs.SD].

[18] A TensorFlow implementation of DeepMind’s WaveNet paper. https://github.
com/ibab/tensorflow-wavenet. Accessed: 2018-05-30.

[19] D. Rethage, J. Pons, and X. Serra. “A Wavenet for Speech Denoising”. In:
ArXiv e-prints (June 2017). arXiv: 1706.07162 [cs.SD].

[20] A. Borovykh, S. Bohte, and C. W. Oosterlee. “Conditional Time Series Fore-
casting with Convolutional Neural Networks”. In: ArXiv e-prints (Mar. 2017).
arXiv: 1703.04691 [stat.ML].

[21] N. Mor, L. Wolf, A. Polyak, and Y. Taigman. “A Universal Music Translation
Network”. In: ArXiv e-prints (May 2018). arXiv: 1805.07848 [cs.SD].

[22] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang,
X. Li, J. Miller, A. Ng, J. Raiman, S. Sengupta, and M. Shoeybi. “Deep Voice:
Real-time Neural Text-to-Speech”. In: ArXiv e-prints (Feb. 2017). arXiv: 1702.
07825 [cs.CL].

http://ceur-ws.org/Vol-2068/milc7.pdf
http://arxiv.org/abs/1704.03477
http://arxiv.org/abs/1703.10847
http://arxiv.org/abs/1711.10433
http://arxiv.org/abs/1711.10433
http://arxiv.org/abs/1712.05884
http://arxiv.org/abs/1612.07837
https://github.com/ibab/tensorflow-wavenet
https://github.com/ibab/tensorflow-wavenet
http://arxiv.org/abs/1706.07162
http://arxiv.org/abs/1703.04691
http://arxiv.org/abs/1805.07848
http://arxiv.org/abs/1702.07825
http://arxiv.org/abs/1702.07825

Bibliography 45

[23] Generating good audio samples. https : / / github . com / ibab / tensorflow -
wavenet/issues/47. Accessed: 2018-05-30.

[24] K. Choi, G. Fazekas, K. Cho, and M. Sandler. “A Tutorial on Deep Learning
for Music Information Retrieval”. In: ArXiv e-prints (Sept. 2017). arXiv: 1709.
04396 [cs.CV].

[25] Global condition and Local conditioning. https://github.com/ibab/tensorflow-
wavenet/issues/112. Accessed: 2018-05-30.

[26] Trying to condition on F0 (problem with embedding). https://github.com/ibab/
tensorflow-wavenet/issues/198. Accessed: 2018-05-30.

[27] Francois Pachet. “The continuator: Musical interaction with style”. In: Journal
of New Music Research 32.3 (2003), pp. 333–341.

[28] B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Korshunova. “Music transcription
modelling and composition using deep learning”. In: ArXiv e-prints (Apr.
2016). arXiv: 1604.08723 [cs.SD].

[29] ABC Notation. http://abcnotation.com/. Accessed: 2018-05-30.

[30] char-rnn. https://github.com/karpathy/char-rnn. Accessed: 2018-05-30.

[31] The Unreasonable Effectiveness of Recurrent Neural Networks. http://karpathy.
github.io/2015/05/21/rnn-effectiveness/. Accessed: 2018-05-30.

[32] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
9 (Dec. 1997), pp. 1735–80.

[33] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu. “Conditional Image Generation with PixelCNN Decoders”.
In: ArXiv e-prints (June 2016). arXiv: 1606.05328 [cs.CV].

[34] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. “Pixel Recurrent
Neural Networks”. In: ArXiv e-prints (Jan. 2016). arXiv: 1601.06759 [cs.CV].

[35] Simon King. “A Beginners Guide to Statistical Parametric Speech Synthesis”.
In: (Jan. 2010).

[36] Cloud text-to-speech. https://cloud.google.com/text- to- speech/. Ac-
cessed: 2018-05-30.

[37] Pulse Code Modulation (PCM) of voice frequencies. ITU-T. Recommendation G.
711.

https://github.com/ibab/tensorflow-wavenet/issues/47
https://github.com/ibab/tensorflow-wavenet/issues/47
http://arxiv.org/abs/1709.04396
http://arxiv.org/abs/1709.04396
https://github.com/ibab/tensorflow-wavenet/issues/112
https://github.com/ibab/tensorflow-wavenet/issues/112
https://github.com/ibab/tensorflow-wavenet/issues/198
https://github.com/ibab/tensorflow-wavenet/issues/198
http://arxiv.org/abs/1604.08723
http://abcnotation.com/
https://github.com/karpathy/char-rnn
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1601.06759
https://cloud.google.com/text-to-speech/

46 Bibliography

[38] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek
G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. “TensorFlow: A system for large-
scale machine learning”. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). 2016, pp. 265–283. url: https://www.
usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

[39] Magenta: Music and Art Generation with Machine Intelligence. https://github.
com/tensorflow/magenta. Accessed: 2018-05-30.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016, p. 499.

[41] NSynth: Neural Audio Synthesis. https://github.com/tensorflow/magenta/
tree/master/magenta/models/nsynth. Accessed: 2018-05-30.

[42] Wavenet Experiments. http://nbviewer.jupyter.org/github/aleixcm/
tensorflow-wavenet/blob/master/wavenetExperiments.ipynb. Accessed:
2018-05-30.

[43] A TensorFlow implementation of DeepMind’s WaveNet paper - Issues. https://
github.com/ibab/tensorflow-wavenet/issues. Accessed: 2018-05-30.

[44] English multi-speaker corpus for CSTR voice cloning toolkit. hhttp://homepages.
inf.ed.ac.uk/jyamagis/page3/page58/page58.html. Accessed: 2018-05-30.
2012.

[45] Local Conditioning on F0 Working (Kind of). https : / / github . com / ibab /
tensorflow-wavenet/issues/233. Accessed: 2018-05-30.

[46] Which features to implement now? https://github.com/ibab/tensorflow-
wavenet/issues/189. Accessed: 2018-05-30.

[47] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka.
“RWC music database: Music genre database and musical instrument sound
database”. In: (2003).

[48] Alain de Cheveign c© and Hideki Kawahara. “YIN, a fundamental frequency
estimator for speech and music”. In: The Journal of the Acoustical Society of
America 111.4 (2002), pp. 1917–1930. doi: 10.1121/1.1458024. url: http:
//link.aip.org/link/?JAS/111/1917/1.

[49] Manuel Davy. “An Introduction to Statistical Signal Processing and Spec-
trum Estimation”. In: Signal Processing Methods for Music Transcription. Ed. by
Anssi Klapuri and Manuel Davy. Boston, MA: Springer US, 2006, pp. 21–
64. isbn: 978-0-387-32845-4. doi: 10.1007/0-387-32845-9_2. url: https:
//doi.org/10.1007/0-387-32845-9_2.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://github.com/tensorflow/magenta
https://github.com/tensorflow/magenta
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/tensorflow/magenta/tree/master/magenta/models/nsynth
https://github.com/tensorflow/magenta/tree/master/magenta/models/nsynth
http://nbviewer.jupyter.org/github/aleixcm/tensorflow-wavenet/blob/master/wavenetExperiments.ipynb
http://nbviewer.jupyter.org/github/aleixcm/tensorflow-wavenet/blob/master/wavenetExperiments.ipynb
https://github.com/ibab/tensorflow-wavenet/issues
https://github.com/ibab/tensorflow-wavenet/issues
hhttp://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
hhttp://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
https://github.com/ibab/tensorflow-wavenet/issues/233
https://github.com/ibab/tensorflow-wavenet/issues/233
https://github.com/ibab/tensorflow-wavenet/issues/189
https://github.com/ibab/tensorflow-wavenet/issues/189
https://doi.org/10.1121/1.1458024
http://link.aip.org/link/?JAS/111/1917/1
http://link.aip.org/link/?JAS/111/1917/1
https://doi.org/10.1007/0-387-32845-9_2
https://doi.org/10.1007/0-387-32845-9_2
https://doi.org/10.1007/0-387-32845-9_2

Appendix A

Jupyter Notebook Experiments

This appendix contains all the experiments performed to achieve the results previ-
ously presented in section 4 . It aims to be a useful guide to understand some of
the decisions taken during this project. This Jupyter Notebook is also available in
[42]

To perform these these experiments the use of specific GPUs has been required.
Thanks to Aalborg University and the Machine Learning Lab we could make use
of three Nvidia Titan X.

47

Series
of
experiments
performed
with
ibab
implementation
of
wavenet

Input
data

Import and plot input data

In [1]:

Put these at the top of every notebook, to get automatic reloading and inline plotting
%reload_ext autoreload
%autoreload 2
%matplotlib inline

In [2]:

import matplotlib.pyplot as plt
import scipy.io.wavfile as wavfile
import librosa, librosa.display
import IPython.display as ipd
import numpy as np
import scipy as sc

In [3]:

signal = wavfile.read('corpus/oneSin/sinus16000.wav')
signal = signal[1]
plt.figure(1)
plt.title('Input Signal - 440 Hz')
reduced = signal[:440]
plt.plot(reduced)
plt.show()

In this first experiment we used the recommendations from the paper. That means 5 stacked layers with 10 dilation layers per stack. That give a receptive field of 5116.

receptive_field = (filter_width - 1) * sum(dilations) + 1

where

filter_width = 2

dilations = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

 1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

100 epoch were used.

Reducing
wavenet

First experiments consisted of sinusoidal signal input with sample rate 16000 Hz and frequency 440 Hz. Some of the parameters have been modified in order to reduce the complexity and the computational cost of the network.

In [4]:

signal = wavfile.read('generatedSignals/longSin.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, 100 epoch, 5x1,2,4,8,16,32,64,128,256,512')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

Reducing the quantization give the following results:

In [5]:

signal = wavfile.read('generatedSignals/quantization8.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=8, 100 epoch, 5x1,2,4,8,16,32,64,128,256,512')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

In [6]:

signal = wavfile.read('generatedSignals/quantization32.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=32, 100 epoch, 5x1,2,4,8,16,32,64,128,256,512')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

In [7]:

signal = wavfile.read('generatedSignals/quantization64.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=64, 100 epoch, 5x1,2,4,8,16,32,64,128,256,512')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

In [8]:

signal = wavfile.read('generatedSignals/quantization128.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=128, 100 epoch, 5x1,2,4,8,16,32,64,128,256,512')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

Changing the quantization to 128 good results are achieved. Now, the number of layers will be decreased.

In [9]:

signal = wavfile.read('generatedSignals/dilations1x1248.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=256, 100 epoch, 1x1,2,4,8')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

In [10]:

signal = wavfile.read('generatedSignals/dilations2x1248.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=256, 100 epoch, 2x1,2,4,8')

plt.title('Generated Signal - 440 Hz, Q=256, 100 epoch, 2x1,2,4,8')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

In [11]:

signal = wavfile.read('generatedSignals/dilations3x1248.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=256, 100 epoch, 3x1,2,4,8')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

Finally a combination of the best results obtained with reducing the number stacked layers and the quantization steps is presented. Q = 128 and dilations = 3x[1,2,4,8]. The receptive field is equal to 47. This configuration will be used during the following experiments.

In [12]:

signal = wavfile.read('generatedSignals/dilations3x1248q128.wav')
signal = signal[1]
plt.title('Generated Signal - 440 Hz, Q=128, 100 epoch, 3x1,2,4,8')
reduced = signal[-440:]
plt.plot(reduced)
plt.show()

Global
Conditionality

In the original paper conditionality is used to control the speaker or the speech. Let's see how it behaves with different sinusoidal signals.

Two
frequencies

First we'll use two signals named sinus1.wav and sinus2.wav with frequencies 440Hz and 493.88

In [13]:

signal = wavfile.read('generatedSignals/consin1.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 440 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 440 Hz')
plt.axis([0,1,0,1000]);

In [14]:

signal = wavfile.read('generatedSignals/consin2.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 493.88 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 493.88 Hz')
plt.axis([0,1,0,1000]);

One
Scale

Now, the system was conditioned to learn one scale. That means that we conditioned that with 7 categories. The frequencies used were:

f = [440, 493.88, 523.25, 587.33, 659.25, 698.46, 783.99] #array of frequencies

In [15]:

signal = wavfile.read('generatedSignals/scaleSin0.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 440 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 440 Hz')
plt.axis([0,1,0,1000]);

In [16]:

signal = wavfile.read('generatedSignals/scaleSin1.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 493.88 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 493.88 Hz')
plt.axis([0,1,0,1000]);

In [17]:

signal = wavfile.read('generatedSignals/scaleSin2.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 523.25 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 523.25 Hz')
plt.axis([0,1,0,1000]);

In [18]:

signal = wavfile.read('generatedSignals/scaleSin3.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 587.33 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 587.33 Hz')
plt.axis([0,1,0,1000]);

In [19]:

signal = wavfile.read('generatedSignals/scaleSin4.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 659.25 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 659.25 Hz')
plt.axis([0,1,0,1000]);

In [20]:

signal = wavfile.read('generatedSignals/scaleSin5.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 698.46 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 698.46 Hz')
plt.axis([0,1,0,1000]);

In [21]:

signal = wavfile.read('generatedSignals/scaleSin6.wav')
signal = signal[1]
reduced = signal[-440:]

fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,5))
ax1.plot(reduced); ax1.set_title('Generated Signal - Conditioned 783.99 Hz')
NFFT = 1024; Fs = 16000;
ax2.specgram(signal, NFFT=NFFT, Fs=Fs, noverlap=900);
ax2.set_title('Spectrogram Generated - 783.99 Hz')
plt.axis([0,1,0,1000]);

As we can see the system is able to learn all the frequencies. However, more noise is added than before. This could be solved increasing the number of epochs, or increasing the complexity of the network.

Changing
shape,
frequency
and
amplitude

Following experiments analyze the behaviour of the network with a training dataset consisted in different shapes, frequencies and amplitudes.

Different
Amplitudes

Here we conditioned wavenet with four different amplitudes (0.25, 0.5, 0.75,1). Each amplitude is a category. 100 epoch was not enough, but increasing the number of epoch clearly increases the generated file. I used 250 epoch. From here we can see that wavenet is able to learn the amplitudes.

In [22]:

signal0 = wavfile.read('generatedSignals/amp0.wav')
signal0 = signal0[1]
reduced0 = signal0[-440:]
signal1 = wavfile.read('generatedSignals/amp1.wav')
signal1 = signal1[1]
reduced1 = signal1[-440:]
signal2 = wavfile.read('generatedSignals/amp2.wav')
signal2 = signal2[1]
reduced2 = signal2[-440:]
signal3 = wavfile.read('generatedSignals/amp3.wav')
signal3 = signal3[1]
reduced3 = signal3[-440:]

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2,figsize=(16,10))
ax1.plot(reduced0); ax1.set_title('Generated Signal - 440 Hz, 0.25')
ax2.plot(reduced1); ax2.set_title('Generated Signal - 440 Hz, 0.50')
ax3.plot(reduced2); ax3.set_title('Generated Signal - 440 Hz, 0.75')
ax4.plot(reduced3); ax4.set_title('Generated Signal - 440 Hz, 1');

Different
Shapes

Here we trained wavenet with 2 different frequencies 440Hz and 880 Hz. With three different shapes of waveforms (sinusoidal, square, and sawtooth). The hypothesis is that wavenet will learn f0. 1000 epoch have been used as 100 and 250 gives poor results.

In [23]:

x, sr = librosa.load('generatedSignals/shape440_1000.wav')
ipd.Audio(x, rate=sr)

In [24]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-1000:]); ax1.set_title('Generated Signal - 440 Hz, 3 shapes, 1000 epoch')
ax2.plot(f[:500],X_mag[:500]); ax2.set_title('Spectrogram - 440 Hz, 3 shapes, 1000 epoch');

Out[23]:

Your browser does not support the audio element.

In [25]:

x, sr = librosa.load('generatedSignals/shape880_1000.wav')
ipd.Audio(x, rate=sr)

In [26]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-1000:]); ax1.set_title('Generated Signal - 880 Hz, 3 shapes, 1000 epoch')
ax2.plot(f[:500],X_mag[:500]); ax2.set_title('Spectrogram - 880 Hz, 3 shapes, 1000 epoch');

Different
shapes
and
Amplitudes
(Big
Dataset)

From previous experiments we have seen that using global conditionality on wavenet makes it possible to learn different frequencies, different shapes, and different amplitudes. Moreover, when wavenet is trained with different waveforms with the same frequency (f0) it is able to learn this frequency. In this experiment wavenet is trained with a dataset of 900 signals, containing 100 different frequencies with different amplitudes and
shapes. Each frequency will be a category for the global conditionality. The hypothesis is that wavenet will learn the f0.

This first example is generated with 1000 epoch, and a frequency of 1351 Hz.

In [27]:

x, sr = librosa.load('generatedSignals/random0.wav')
ipd.Audio(x, rate=sr)

In [28]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-1000:]); ax1.set_title('Generated Signal - 880 Hz, 9 shapes, 1000 epoch')
ax2.plot(f[:500],X_mag[:500]); ax2.set_title('Spectrogram - 880 Hz, 9 shapes, 1000 epoch');

Poor results are achieved. The loss value was 1.4533637 for the last iteration. However that value, could be improved increasing the number of iterations. If that is not possible, then the network should be increased.

Increasing the number of epoch to 10000 the results achieved are much better. In this example the f0 was 3928 Hz, and in the same category there were 6 different files with the same f0 and different shapes and amplitudes.

In [29]:

x, sr = librosa.load('generatedSignals/random9999_6.wav')
ipd.Audio(x, rate=sr)

In [30]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-300:]); ax1.set_title('Generated Signal - 3928 Hz, 9 shapes, 10000 epoch')
ax2.plot(f[:1000],X_mag[:1000]); ax2.set_title('Spectrogram - 3928 Hz, 9 shapes, 10000 epoch');

F0 = 2659, 9 different shapes, 10000 epoch

In [31]:

x, sr = librosa.load('generatedSignals/random9999_54.wav')
ipd.Audio(x, rate=sr)

In [32]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-300:]); ax1.set_title('Generated Signal - 2659 Hz, 9 shapes, 10000 epoch')
ax2.plot(f[:1000],X_mag[:1000]); ax2.set_title('Spectrogram - 2659 Hz, 9 shapes, 10000 epoch');

F0 = 4136, 9 different shapes, 10000 epoch

In [33]:

x, sr = librosa.load('generatedSignals/random9999_75.wav')
ipd.Audio(x, rate=sr)

In [34]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-300:]); ax1.set_title('Generated Signal - 4136 Hz, 9 shapes, 10000 epoch')
ax2.plot(f[:1000],X_mag[:1000]); ax2.set_title('Spectrogram - 4136 Hz, 9 shapes, 10000 epoch');

F0 = 2413, 9 different shapes, 10000 epoch

In [35]:

x, sr = librosa.load('generatedSignals/random9999_99.wav')
ipd.Audio(x, rate=sr)

In [36]:

X = sc.fft(x[:4096])
X_mag = np.absolute(X) # spectral magnitude
f = np.linspace(0, sr, 4096) # frequency variable
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,5))
ax1.plot(x[-300:]); ax1.set_title('Generated Signal - 2413 Hz, 9 shapes, 10000 epoch')

Out[25]:

Your browser does not support the audio element.

Out[27]:

Your browser does not support the audio element.

Out[29]:

Your browser does not support the audio element.

Out[31]:

Your browser does not support the audio element.

Out[33]:

Your browser does not support the audio element.

Out[35]:

Your browser does not support the audio element.

ax1.plot(x[-300:]); ax1.set_title('Generated Signal - 2413 Hz, 9 shapes, 10000 epoch')
ax2.plot(f[:1000],X_mag[:1000]); ax2.set_title('Spectrogram - 2413 Hz, 9 shapes, 10000 epoch');

Conclusions

Wavenet is able to learn the shape of the signal.
Wavenet is able to learn the amplitude of the signal.
When globally conditioned wavenet could learn different frequencies.
When globally conditioned with different waveforms having the same frequency, wavenet is able to learn that frequency.

Local
Conditioning

Local
Conditioning
on
the
generation
part

Local conditioning was used in the original paper to generate the specific words that wavenet had to reproduce. That was done adding a second time series vector or each sample. In the speech case, that vector contained linguistic features information in a TTS model.

In ibab's implementation, local conditioning is still not implemented. The main difficulty is that the network is training the model file by file instead of sample by sample. However, similar results could be achieved training the network with Global Condition and generating with Local Condition.

For this experiment, local conditioning in the generation part has been implemented. In the following example, wavenet has been trained with three different sinusoids corresponding to the a minor chord. Each sinusoid correspond to one category. Then, in the generation part, a .txt file containing the information for each sample is passed to the system. That allows us to create different sequences.

Three results are presented below.

The code is available on the github repository under the branch localCondition_noGlobal.

--samples 24000 --wav_out_path=generatedSignals/aminor3.wav --gc_channels=32 --gc_cardinality=3 --labels=corpus/Aminor/aminor3.txt logdir/train/2018-04-13T17-51-32/model.ckpt-99

In [37]:

x, sr = librosa.load('generatedSignals/aminor.wav')
ipd.Audio(x, rate=sr)

In [38]:

x, sr = librosa.load('generatedSignals/aminor2.wav')
ipd.Audio(x, rate=sr)

In [39]:

x, sr = librosa.load('generatedSignals/aminor3.wav')
ipd.Audio(x, rate=sr)

Local
Conditioning
both
on
Train
and
Generate

If local condition is implemented in the training part it should be able to detect some information about the sample that is feeding. Our idea is too feed a signal containing three different frequencies (440Hz, 880Hz, and 1320Hz) and then choose which one to reproduce in the generation part. For that porpouse a .txt file with all the information for each sample has to be passed through the network. In our example this .txt file will be
formed by 8000 x [0, 1, 2] corresponding to the three categories.

The implementation could be seen under the branch localCondition

First results with small receptive field of 47 and few iterations 300 are not good enough.

In [40]:

x, sr = librosa.load('generatedSignals/lc_train_0.wav')
ipd.Audio(x, rate=sr)

Increasing the number of iterations to 10000 we achieve a similar result.

In [41]:

x, sr = librosa.load('generatedSignals/lc_train_9999.wav')
ipd.Audio(x, rate=sr)

With a big receptive field of 5117 and 10000 epoch the results are.....

In [42]:

x, sr = librosa.load('generatedSignals/lc_train_9999_5117.wav')
ipd.Audio(x, rate=sr)

Final
Version

Severals trials and configurations have been tested in order to achieve good results. Some things learned during this process are:

One Hot Encoding gives better results during the conditioning. However noise is present during the transitions.
Using a dataset with more than one signal varying the sequences and adding noise helps on reducing the noise between different frequencies.
When a big dataset is used the freqüencies are not changed as good as with one signal.
We can solve this adding the left sample and the right sample in the condition. So, in the case that we would have three frequencies (categories) the local_condition_batch that will come with each sample would look like [0 0 0, 0 0 0, 0 0 0] where the first three 0's represent the frequency of the left sample one hot encoded, the next three represent the current sample and the last ones represents the next sample.
If we use a simple dataset (sinusoids between 1 - 3s) a smaller receptive field works better. If the receptive field is bigger, the noise is reduced but the local condition is not created. We use 16 for simple signals and 62 for more complex signals (piano).

Below I present some results achieved with an automatic tool that automatically extract the different frequencies using a mel-spectograms. Different datasets have been tried. This code, that could be find in the branch localCondition_embed, works with any given input. Is not limited to any number of different frequencies. However, we trained and generated with 3 and 7 frequencies.

Datasets

localTrainBigDataset_noAmp: 100 signals combining three different frequencies (440 Hz, 880Hz, 1320Hz) with the same amplitude.
localTrainBigDataset2: 100 signals combining three different frequencies (440Hz, 880Hz, 1320Hz) with random combinations and random amplitudes.
localTrainBigDatasetShapeAmp: 100 signals combining three different frequencies (440Hz, 880Hz, 1320Hz) with random combinations, random amplitudes and random shapes(sin, square, sawtooth).
panFluteBigDataset: 100 signals with random combinations of three different notes from the panflute dataset.
panFluteBigDataset7freq: 100 signals with random combinations of 7 diffeent frequencies from the panflute dataset.
pianoBigDataset: 100 signals with random combinations of three different notes from the piano dataset.
pianoPanFlute: 100 signals with random combinations of panflute and piano. 3 frequencies.

Conditioning
files

The same 4 files have been used to generate the conditioned signals:

lc_train0.txt
lc_gen0_16000.txt
lc_gen1_24000.txt
lc_gen2_16000.txt
lc_gen3_48000.txt
lc_gen4_72000.txt

The expected ouputs then are:

In [43]:

lc_train0, sr = librosa.load('corpus/Analysis/lc_train0.wav')
ipd.Audio(lc_train0, rate=sr)

In [44]:

lc_gen0, sr = librosa.load('corpus/Analysis/lc_gen0_16000.wav')
ipd.Audio(lc_gen0, rate=sr)

In [45]:

lc_gen1, sr = librosa.load('corpus/Analysis/lc_gen1_24000.wav')
ipd.Audio(lc_gen1, rate=sr)

In [46]:

lc_gen2, sr = librosa.load('corpus/Analysis/lc_gen2_16000.wav')
ipd.Audio(lc_gen2, rate=sr)

In [47]:

lc_gen3, sr = librosa.load('corpus/Analysis/lc_gen3_48000.wav')
ipd.Audio(lc_gen3, rate=sr)

In [48]:

lc_gen4, sr = librosa.load('corpus/Analysis/lc_gen4_72000.wav')
ipd.Audio(lc_gen4, rate=sr)

How
to
train?

CUDA_VISIBLE_DEVICES=3 python train.py --data_dir=corpus/pianoPanFlute/ --num_steps=3000 --silence_threshold=0 --lc_channels=True

How
to
generate?

CUDA_VISIBLE_DEVICES=3 python generate.py --samples 24000 --wav_out_path=generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_train0.wav ./logdir/train/2018-05-13T06-14-23/model.ckpt-2999 --lc_channels=9 --lc_cardinality=3 --labels=./corpus/localTrain/lc_train0.txt

Where:

--samples is the number of samples that we want to generate. Has to be the same lenght of the labels file, or smaller.
--lc_channels comes from the analysis done during the training and is printed before starting the training.
--lc_cardinalitynumber of different categories (frequencies) that are detected. Is printed before starting the training.
--labels directory containing the labels. Has to be a .txt file of this format.

Generated
Files

LocalTrainBigDatset_noAmp

Out[37]:

Your browser does not support the audio element.

Out[38]:

Your browser does not support the audio element.

Out[39]:

Your browser does not support the audio element.

Out[40]:

Your browser does not support the audio element.

Out[41]:

Your browser does not support the audio element.

Out[42]:

Your browser does not support the audio element.

Out[43]:

Your browser does not support the audio element.

Out[44]:

Your browser does not support the audio element.

Out[45]:

Your browser does not support the audio element.

Out[46]:

Your browser does not support the audio element.

Out[47]:

Your browser does not support the audio element.

Out[48]:

Your browser does not support the audio element.

In [49]:

train0, sr = librosa.load('generatedSignals/general/localTrainBigDataset_noAmp/randomBig_16_499_train0.wav')
ipd.Audio(train0, rate=sr)

In [50]:

gen0, sr = librosa.load('generatedSignals/general/localTrainBigDataset_noAmp/randomBig_16_499_gen0.wav')
ipd.Audio(gen0, rate=sr)

In [51]:

gen1, sr = librosa.load('generatedSignals/general/localTrainBigDataset_noAmp/randomBig_16_499_gen1.wav')
ipd.Audio(gen1, rate=sr)

In [52]:

gen2, sr = librosa.load('generatedSignals/general/localTrainBigDataset_noAmp/randomBig_16_499_gen2.wav')
ipd.Audio(gen2, rate=sr)

In [53]:

gen3, sr = librosa.load('generatedSignals/general/localTrainBigDataset_noAmp/randomBig_16_499_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [54]:

gen4, sr = librosa.load('generatedSignals/general/localTrainBigDataset_noAmp/random_16_499_gen4.wav')
ipd.Audio(gen4, rate=sr)

In [55]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(6,2,figsize=(16,24))
plt.subplot(6, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(6, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

LocalTrainBigDataset2

When the network is trained with 500 epoch, the resulting signal is too noisy. However, the frequencies are well detected on time.

In [56]:

train0, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_499_train0.wav')
ipd.Audio(train0, rate=sr)

In [57]:

gen0, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_499_gen0.wav')
ipd.Audio(gen0, rate=sr)

In [58]:

gen1, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_499_gen1.wav')
ipd.Audio(gen1, rate=sr)

Out[49]:

Your browser does not support the audio element.

Out[50]:

Your browser does not support the audio element.

Out[51]:

Your browser does not support the audio element.

Out[52]:

Your browser does not support the audio element.

Out[53]:

Your browser does not support the audio element.

Out[54]:

Your browser does not support the audio element.

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c1f549d68>

Out[56]:

Your browser does not support the audio element.

Out[57]:

Your browser does not support the audio element.

Out[58]:

In [59]:

gen2, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_499_gen2.wav')
ipd.Audio(gen2, rate=sr)

In [60]:

gen3, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_499_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [61]:

gen4, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_499_gen4.wav')
ipd.Audio(gen4, rate=sr)

In [62]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(6,2,figsize=(16,24))
plt.subplot(6, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(6, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

Increasing the number of iterations produces sounds less noisy, but the conditionality is not manteined.

In [63]:

train0, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_5998_train0.wav')
ipd.Audio(train0, rate=sr)

In [64]:

gen0, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_5998_gen0.wav')
ipd.Audio(gen0, rate=sr)

In [65]:

gen1, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_5998_gen1.wav')
ipd.Audio(gen1, rate=sr)

In [66]:

gen2, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_5998_gen2.wav')
ipd.Audio(gen2, rate=sr)

In [67]:

gen3, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_5998_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [68]:

gen4, sr = librosa.load('generatedSignals/general/localTrainBigDataset2/randomBigAmp_16_2999_gen4.wav')
ipd.Audio(gen4, rate=sr)

Your browser does not support the audio element.

Out[59]:

Your browser does not support the audio element.

Out[60]:

Your browser does not support the audio element.

Out[61]:

Your browser does not support the audio element.

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c231c4b38>

Out[63]:

Your browser does not support the audio element.

Out[64]:

Your browser does not support the audio element.

Out[65]:

Your browser does not support the audio element.

Out[66]:

Your browser does not support the audio element.

Out[67]:

Your browser does not support the audio element.

Out[68]:

In [69]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(6,2,figsize=(16,24))
plt.subplot(6, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(6, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

localTrainBigDatasetShapeAmp:

In [70]:

train0, sr = librosa.load('generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_train0.wav')
ipd.Audio(train0, rate=sr)

In [71]:

gen0, sr = librosa.load('generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_gen0.wav')
ipd.Audio(gen0, rate=sr)

In [72]:

gen1, sr = librosa.load('generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_gen1.wav')
ipd.Audio(gen1, rate=sr)

In [73]:

gen2, sr = librosa.load('generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_gen2.wav')
ipd.Audio(gen2, rate=sr)

In [74]:

gen3, sr = librosa.load('generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [75]:

gen4, sr = librosa.load('generatedSignals/general/localTrainBigDatasetShapeAmp/shapeAmp_16_2999_gen4.wav')
ipd.Audio(gen4, rate=sr)

In [76]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)

Your browser does not support the audio element.

Out[69]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c23b9bf98>

Out[70]:

Your browser does not support the audio element.

Out[71]:

Your browser does not support the audio element.

Out[72]:

Your browser does not support the audio element.

Out[73]:

Your browser does not support the audio element.

Out[74]:

Your browser does not support the audio element.

Out[75]:

Your browser does not support the audio element.

Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(6,2,figsize=(16,24))
plt.subplot(6, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(6, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

panFluteBigDataset

Labels

In [77]:

lc_train0, sr = librosa.load('corpus/Analysis/lc_train0_flute.wav')
ipd.Audio(lc_train0, rate=sr)

In [78]:

lc_gen0, sr = librosa.load('corpus/Analysis/lc_gen0_flute.wav')
ipd.Audio(lc_gen0, rate=sr)

In [79]:

lc_gen1, sr = librosa.load('corpus/Analysis/lc_gen1_flute.wav')
ipd.Audio(lc_gen1, rate=sr)

In [80]:

lc_gen2, sr = librosa.load('corpus/Analysis/lc_gen2_flute.wav')
ipd.Audio(lc_gen2, rate=sr)

In [81]:

lc_gen3, sr = librosa.load('corpus/Analysis/lc_gen3_flute.wav')
ipd.Audio(lc_gen3, rate=sr)

In [82]:

lc_gen4, sr = librosa.load('corpus/Analysis/lc_gen4_flute.wav')
ipd.Audio(lc_gen4, rate=sr)

In [83]:

lc_scale, sr = librosa.load('corpus/Analysis/7freq_56000.wav')
ipd.Audio(lc_scale, rate=sr)

Generated

In [84]:

train0, sr = librosa.load('generatedSignals/general/panFluteBigDataset/panFluteBig_16_2999_train0_2.wav')
ipd.Audio(train0, rate=sr)

In [85]:

gen0, sr = librosa.load('generatedSignals/general/panFluteBigDataset/panFluteBig_16_2999_gen0_2.wav')
ipd.Audio(gen0, rate=sr)

In [86]:

gen1, sr = librosa.load('generatedSignals/general/panFluteBigDataset/panFluteBig_16_2999_gen1_2.wav')
ipd.Audio(gen1, rate=sr)

In [87]:

gen2, sr = librosa.load('generatedSignals/general/panFluteBigDataset/panFluteBig_16_2999_gen2_2.wav')
ipd.Audio(gen2, rate=sr)

In [88]:

Out[76]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c25f2bb00>

Out[77]:

Your browser does not support the audio element.

Out[78]:

Your browser does not support the audio element.

Out[79]:

Your browser does not support the audio element.

Out[80]:

Your browser does not support the audio element.

Out[81]:

Your browser does not support the audio element.

Out[82]:

Your browser does not support the audio element.

Out[83]:

Your browser does not support the audio element.

Out[84]:

Your browser does not support the audio element.

Out[85]:

Your browser does not support the audio element.

Out[86]:

Your browser does not support the audio element.

Out[87]:

Your browser does not support the audio element.

In [88]:

gen3, sr = librosa.load('generatedSignals/general/panFluteBigDataset/panFluteBig_16_2999_gen3_2.wav')
ipd.Audio(gen3, rate=sr)

In [89]:

gen4, sr = librosa.load('generatedSignals/general/panFluteBigDataset/panFluteBig_16_2999_gen4_2.wav')
ipd.Audio(gen4, rate=sr)

In [90]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(6,2,figsize=(16,24))
plt.subplot(6, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(6, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

panFluteBigDataset7freq

In [91]:

train0, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_train0_3.wav')
ipd.Audio(train0, rate=sr)

In [92]:

gen0, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_gen0_3.wav')
ipd.Audio(gen0, rate=sr)

In [93]:

gen1, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_gen1_3.wav')
ipd.Audio(gen1, rate=sr)

In [94]:

gen2, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_gen2_3.wav')
ipd.Audio(gen2, rate=sr)

In [95]:

gen3, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_gen3_3.wav')
ipd.Audio(gen3, rate=sr)

In [96]:

gen4, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_gen4_4.wav')
ipd.Audio(gen4, rate=sr)

In [97]:

scale, sr = librosa.load('generatedSignals/general/panFluteBigDataset7freq/panFluteBig7freq_16_2999_scale4.wav')
ipd.Audio(scale, rate=sr)

In [98]:

Out[88]:

Your browser does not support the audio element.

Out[89]:

Your browser does not support the audio element.

Out[90]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c1e67cdd8>

Out[91]:

Your browser does not support the audio element.

Out[92]:

Your browser does not support the audio element.

Out[93]:

Your browser does not support the audio element.

Out[94]:

Your browser does not support the audio element.

Out[95]:

Your browser does not support the audio element.

Out[96]:

Your browser does not support the audio element.

Out[97]:

Your browser does not support the audio element.

In [98]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sscale = librosa.feature.melspectrogram(scale, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sscale = librosa.power_to_db(Sscale, ref=np.max)
SlabelScale = librosa.feature.melspectrogram(lc_scale, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelscale = librosa.power_to_db(SlabelScale, ref=np.max)

f, axs = plt.subplots(7,2,figsize=(16,24))
plt.subplot(7, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(7, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 13)
librosa.display.specshow(log_Slabelscale, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(7, 2, 14)
librosa.display.specshow(log_Sscale, sr=sr, x_axis='time', y_axis='mel')

pianoBigDataset

Piano
Labels

In [99]:

lc_train0, sr = librosa.load('corpus/Analysis/lc_train0_piano.wav')
ipd.Audio(lc_train0, rate=sr)

In [100]:

lc_gen0, sr = librosa.load('corpus/Analysis/lc_gen0_piano.wav')
ipd.Audio(lc_gen0, rate=sr)

In [101]:

lc_gen1, sr = librosa.load('corpus/Analysis/lc_gen1_piano.wav')
ipd.Audio(lc_gen1, rate=sr)

In [102]:

lc_gen2, sr = librosa.load('corpus/Analysis/lc_gen2_piano.wav')
ipd.Audio(lc_gen2, rate=sr)

In [103]:

lc_gen3, sr = librosa.load('corpus/Analysis/lc_gen3_piano.wav')
ipd.Audio(lc_gen3, rate=sr)

In [104]:

lc_gen4, sr = librosa.load('corpus/Analysis/lc_gen4_piano.wav')
ipd.Audio(lc_gen4, rate=sr)

Generated
Signals

In [105]:

train0, sr = librosa.load('generatedSignals/general/pianoBigDataset/piano_62_2998_train_0_2.wav')
ipd.Audio(train0, rate=sr)

Out[98]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c28d59470>

Out[99]:

Your browser does not support the audio element.

Out[100]:

Your browser does not support the audio element.

Out[101]:

Your browser does not support the audio element.

Out[102]:

Your browser does not support the audio element.

Out[103]:

Your browser does not support the audio element.

Out[104]:

Your browser does not support the audio element.

Out[105]:

Your browser does not support the audio element.

In [106]:

gen0, sr = librosa.load('generatedSignals/general/pianoBigDataset/piano_62_2998_gen0_2.wav')
ipd.Audio(gen0, rate=sr)

In [107]:

gen1, sr = librosa.load('generatedSignals/general/pianoBigDataset/piano_62_2998_gen1_2.wav')
ipd.Audio(gen1, rate=sr)

In [108]:

gen2, sr = librosa.load('generatedSignals/general/pianoBigDataset/piano_62_2998_gen2_2.wav')
ipd.Audio(gen2, rate=sr)

In [109]:

gen3, sr = librosa.load('generatedSignals/general/pianoBigDataset/piano_62_2998_gen3_2.wav')
ipd.Audio(gen3, rate=sr)

In [110]:

gen4, sr = librosa.load('generatedSignals/general/pianoBigDataset/piano_62_2998_gen4_2.wav')
ipd.Audio(gen4, rate=sr)

In [111]:

mel-scaled power (energy-squared) spectrogram
Strain0 = librosa.feature.melspectrogram(train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Strain0 = librosa.power_to_db(Strain0, ref=np.max)
Slabeltrain0 = librosa.feature.melspectrogram(lc_train0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabeltrain0 = librosa.power_to_db(Slabeltrain0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen0 = librosa.feature.melspectrogram(gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen0 = librosa.power_to_db(Sgen0, ref=np.max)
Slabelgen0 = librosa.feature.melspectrogram(lc_gen0, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen0 = librosa.power_to_db(Slabelgen0, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen1 = librosa.feature.melspectrogram(gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen1 = librosa.power_to_db(Sgen1, ref=np.max)
Slabelgen1 = librosa.feature.melspectrogram(lc_gen1, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen1 = librosa.power_to_db(Slabelgen1, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen2 = librosa.feature.melspectrogram(gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen2 = librosa.power_to_db(Sgen2, ref=np.max)
Slabelgen2 = librosa.feature.melspectrogram(lc_gen2, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen2 = librosa.power_to_db(Slabelgen2, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(6,2,figsize=(16,24))
plt.subplot(6, 2, 1)
plt.title('mel power spectrogram - Labels')
librosa.display.specshow(log_Slabeltrain0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 2)
librosa.display.specshow(log_Strain0, sr=sr, x_axis='time', y_axis='mel')
plt.title('mel power spectrogram - Generated')
plt.subplot(6, 2, 3)
librosa.display.specshow(log_Slabelgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 4)
librosa.display.specshow(log_Sgen0, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 5)
librosa.display.specshow(log_Slabelgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 6)
librosa.display.specshow(log_Sgen1, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 7)
librosa.display.specshow(log_Slabelgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 8)
librosa.display.specshow(log_Sgen2, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 9)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 10)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 11)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(6, 2, 12)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

pianoPanFlute

In [112]:

train0, sr = librosa.load('generatedSignals/general/pianoPanFlute/pianoFlute_62_2999_train_0.wav')
ipd.Audio(train0, rate=sr)

In [113]:

gen0, sr = librosa.load('generatedSignals/general/pianoPanFlute/pianoFlute_62_2999_gen0.wav')
ipd.Audio(gen0, rate=sr)

In [114]:

gen1, sr = librosa.load('generatedSignals/general/pianoPanFlute/pianoFlute_62_2999_gen1.wav')
ipd.Audio(gen1, rate=sr)

In [115]:

gen0, sr = librosa.load('generatedSignals/general/pianoPanFlute/pianoFlute_62_2999_gen2.wav')
ipd.Audio(gen2, rate=sr)

Out[106]:

Your browser does not support the audio element.

Out[107]:

Your browser does not support the audio element.

Out[108]:

Your browser does not support the audio element.

Out[109]:

Your browser does not support the audio element.

Out[110]:

Your browser does not support the audio element.

Out[111]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c295d17f0>

Out[112]:

Your browser does not support the audio element.

Out[113]:

Your browser does not support the audio element.

Out[114]:

Your browser does not support the audio element.

Out[115]:

Your browser does not support the audio element.

In [116]:

gen3, sr = librosa.load('generatedSignals/general/pianoPanFlute/pianoFlute_62_2999_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [117]:

gen4, sr = librosa.load('generatedSignals/general/pianoPanFlute/pianoFlute_62_2999_gen4.wav')
ipd.Audio(gen4, rate=sr)

Local
Conditioning
using
MFCC

LocalTrainBigDataset2

Labels

In [118]:

lc_gen3, sr = librosa.load('corpus/Analysis/lc_gen3_48000.wav')
ipd.Audio(lc_gen3, rate=sr)

In [119]:

lc_gen4, sr = librosa.load('corpus/Analysis/lc_gen4_72000.wav')
ipd.Audio(lc_gen4, rate=sr)

Generated
Signals

In [120]:

gen3, sr = librosa.load('generatedSignals/mfcc/localTrainBigDataset2/mfccBigAmp_16_2999_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [121]:

gen4, sr = librosa.load('generatedSignals/mfcc/localTrainBigDataset2/mfccBigAmp_16_2999_gen4.wav')
ipd.Audio(gen4, rate=sr)

In [122]:

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(2,2,figsize=(16,6))
plt.subplot(2, 2, 1)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(2, 2, 2)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(2, 2, 3)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(2, 2, 4)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

pianoBigDataset

Labels

In [123]:

lc_gen3, sr = librosa.load('corpus/Analysis/lc_gen3_piano.wav')
ipd.Audio(lc_gen3, rate=sr)

In [124]:

lc_gen4, sr = librosa.load('corpus/Analysis/lc_gen4_piano.wav')
ipd.Audio(lc_gen4, rate=sr)

Generated

In [125]:

gen3, sr = librosa.load('generatedSignals/mfcc/pianoBigDataset/mfccPianoBig_62_256_9999_gen3.wav')
ipd.Audio(gen3, rate=sr)

In [126]:

gen4, sr = librosa.load('generatedSignals/mfcc/pianoBigDataset/mfccPianoBig_62_256_9999_gen4.wav')
ipd.Audio(gen4, rate=sr)

In [127]:

mel-scaled power (energy-squared) spectrogram
Sgen3 = librosa.feature.melspectrogram(gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen3 = librosa.power_to_db(Sgen3, ref=np.max)
Slabelgen3 = librosa.feature.melspectrogram(lc_gen3, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen3 = librosa.power_to_db(Slabelgen3, ref=np.max)

mel-scaled power (energy-squared) spectrogram
Sgen4 = librosa.feature.melspectrogram(gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Sgen4 = librosa.power_to_db(Sgen4, ref=np.max)
Slabelgen4 = librosa.feature.melspectrogram(lc_gen4, sr=sr, n_mels=128)
Convert to log scale (dB). We'll use the peak power (max) as reference.
log_Slabelgen4 = librosa.power_to_db(Slabelgen4, ref=np.max)

f, axs = plt.subplots(2,2,figsize=(16,6))
plt.subplot(2, 2, 1)
librosa.display.specshow(log_Slabelgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(2, 2, 2)
librosa.display.specshow(log_Sgen3, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(2, 2, 3)
librosa.display.specshow(log_Slabelgen4, sr=sr, x_axis='time', y_axis='mel')
plt.subplot(2, 2, 4)
librosa.display.specshow(log_Sgen4, sr=sr, x_axis='time', y_axis='mel')

Pitch
Transformation

I wanted to see if modifying the target in the training wavenet was able to learn a transformation. For example feeding the network with a 440 Hz signal and a target consisting of a 880 Hz, I wanted to see if wavenet could learn the transformations. Although the loss function goes below 0.02 with 100 epoch, looks like in wavenet the input have to match the output. More information about this here

This implementation could be seen below the branch pitchTransformation link

In this implementation, when I pass as a target the same signal as the input, I achieve a good result, however, when the target is a signal with a different frequency, wavenet is not able to learn that.

Be Careful, LOUD NOISE!

In [128]:

x, sr = librosa.load('generatedSignals/pitch1.wav')
ipd.Audio(x, rate=sr)

Real
sounds

Bunch of experiments with two different real instruments.

Out[116]:

Your browser does not support the audio element.

Out[117]:

Your browser does not support the audio element.

Out[118]:

Your browser does not support the audio element.

Out[119]:

Your browser does not support the audio element.

Out[120]:

Your browser does not support the audio element.

Out[121]:

Your browser does not support the audio element.

Out[122]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c255d10b8>

Out[123]:

Your browser does not support the audio element.

Out[124]:

Your browser does not support the audio element.

Out[125]:

Your browser does not support the audio element.

Out[126]:

Your browser does not support the audio element.

Out[127]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c27e4c4a8>

Out[128]:

Your browser does not support the audio element.

Drum
Samples
Dataset

With this reduced wavenet of a receptive field of 47 bad results are achieved working with real sounds. In order to solve that, the receptive field has been increased to ... and the original dataset has been reduced to 29 items split in 5 categories (Kick Drum, Snare, Tom, Hit Hat and Cymbal). Later the neural network is trained with 5000 epoch.

Some results are presented below:

In [129]:

x, sr = librosa.load('generatedSignals/cymbal_0_4999.wav')
ipd.Audio(x, rate=sr)

In [130]:

x, sr = librosa.load('generatedSignals/kick_1_4999.wav')
ipd.Audio(x, rate=sr)

In [131]:

x, sr = librosa.load('generatedSignals/snare_2_4999.wav')
ipd.Audio(x, rate=sr)

In [132]:

x, sr = librosa.load('generatedSignals/hithat_3_4999.wav')
ipd.Audio(x, rate=sr)

In [133]:

x, sr = librosa.load('generatedSignals/tom_4_4999.wav')
ipd.Audio(x, rate=sr)

Even with increasing the receptive field and the number of iterations is still impossible to recreate a good drum sound. Because of that, we decided to train the neural network now with only one signal, and try to generate that signal. When that would be achieved, we will apply again global conditioning

Cymbal

python train.py --data_dir=corpus/drumsamplesReduced2/ --num_steps=5000 --silence_threshold=0.0000001

python generate.py --wav_out_path=cymbal_nogc_4999.wav --samples=32000 logdir/train/2018-04-15T09-32-07/model.ckpt-4999

In [134]:

x, sr = librosa.load('generatedSignals/cymbal_nogc_4999.wav')
ipd.Audio(x, rate=sr)

Even though the loss function became 0 with a few iterations, the sound quality is not good.

In [135]:

from IPython.display import Image
Image("corpus/drumsamplesReduced2/loss.png")

python train.py --data_dir=corpus/kickDrum/ --num_steps=5000 --silence_threshold=0.0000001

python generate.py --wav_out_path=generatedSignals/kickDrum_4999.wav --samples 16000 ./logdir/train/2018-04-15T13-32-01/model.ckpt-4999

Kick
Drum

In [136]:

x, sr = librosa.load('generatedSignals/kickDrum_4999.wav')
ipd.Audio(x, rate=sr)

In [137]:

from IPython.display import Image
Image("corpus/kickDrum/loss.png")

Snare

python train.py --data_dir=corpus/snare/ --num_steps=5000 --silence_threshold=0.01

python generate.py --wav_out_path=snare_256_4999.wav --samples 16000 ./logdir/train/2018-04-15T14-18-48/model.ckpt-4999

quantization_channels = 256

In [138]:

x, sr = librosa.load('generatedSignals/snare_256_4999.wav')
ipd.Audio(x, rate=sr)

In [139]:

from IPython.display import Image
Image("corpus/snare/loss.png")

Hit
Hat

In [140]:

x, sr = librosa.load('generatedSignals/hithat_256_4999.wav')
ipd.Audio(x, rate=sr)

In [141]:

from IPython.display import Image
Image("corpus/hithat/loss.png")

Out[129]:

Your browser does not support the audio element.

Out[130]:

Your browser does not support the audio element.

Out[131]:

Your browser does not support the audio element.

Out[132]:

Your browser does not support the audio element.

Out[133]:

Your browser does not support the audio element.

Out[134]:

Your browser does not support the audio element.

Out[135]:

Out[136]:

Your browser does not support the audio element.

Out[137]:

Out[138]:

Your browser does not support the audio element.

Out[139]:

Out[140]:

Your browser does not support the audio element.

Out[141]:

Tom

In [142]:

x, sr = librosa.load('generatedSignals/tom_256_4998.wav')
ipd.Audio(x, rate=sr)

In [143]:

from IPython.display import Image
Image("corpus/tom/loss.png")

Acoustic
Scenes
Dataset

Here I selected 144 recordings from water (beach and lakes) from the TUT Acoustic Scenes 2017 Dataset (link) and I trained wavenet with a receptive field of 5117 and 10000 epoch.

In [144]:

x, sr = librosa.load('generatedSignals/water_9999.wav')
ipd.Audio(x, rate=sr)

Out[142]:

Your browser does not support the audio element.

Out[143]:

Out[144]:

Your browser does not support the audio element.

	Front page
	English title page
	Contents
	Preface
	Introduction
	Motivation and Goals
	Structure

	Related Works
	Methods
	Wavenet
	Original Network
	Igor Babuschkin Implementation (ibab)

	Nsynth

	Implementation and Experiments
	Reducing the Network
	Global Conditioning
	Local Conditioning
	Mel Spectrum
	MFCC

	Conclusion
	Future Work

	Bibliography
	Jupyter Notebook Experiments

