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Summary

Purpose: The purpose of this master thesis is to investigate the possibility of creating a
multi-thread Random Linear Network Coding Encoder which is ignorant to specific system
resources, such as size of main memory and cache, and the amount of available CPU cores.
This is done with the goal of significantly decreasing the latency introduced by encoding
when using Random Linear Network Coding.

Method: We present three possible encoding schemes which can utilise parallel computing
and multi-threaded programming, and thereby have the potential to decrease encoding
latency. We select one of these schemes for implementation. With the implemented
encoder we conduct an empirical study and compare the results with the latency of a
state-of-the-art single threaded Random Linear Network Coding encoder.

Results: We concluded that the implemented scheme does not give a decrease to encoding
latency, and that this is the effect of ignoring cache size. Additionally, we also concluded
that it is unlikely, that an efficient parallel multi-threaded encoding scheme can be
designed, without taking system resources, such as cache size, into account.
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Introduction 1
In recent years the usage of cloud based systems has become an increasingly more
integrated part of our everyday technology usage, for instance cloud based storage solution
such as DropBox [3], Google Cloud [4], Microsoft One Drive [5], Apple iCloud [6] and others
have found their way into both the consumer and enterprise markets. However, with cases
such as "the fappening" [7] an increased demand for secured service have risen from the
customer base. Based on this, Chocolate Cloud ApS [8] have developed the a distributed
cloud storage solution called SkyFlok [9], which focus on high security and availability,
which in both cases utilise Random Linear Network Coding (RLNC) [10]. However, the
latency penalty of using RLNC for data encoding was unknown to Chocolate Cloud ApS,
but they wanted a maximum latency limit of one second. In advance it was known that
the configuration used for RLNC had an impact on latency and what elements of the
configuration had an influence was also known, but the relationship between these elements
was unknown, therefore did we create a way to investigate the impact of a configuration on
latency and analysed relationship between configuration changes an latency as presented
in Nielsen [11]. The study showed that for a data size of 512MB the latency limitation of
one second was broken. Thus, Chocolate Cloud ApS would like to investigate a scheme
which could reduce the latency of encoding, such that it decreases to below the one second
limitation.

Chocolate Cloud ApS have two main reasons for investigating the potential of decreasing
latency for RLNC encoding, both will be explained using Figure 1.1. The first reason is
based on the satisfaction of clients, as stated above we know that there is a latency penalty
using RLNC thus extending the time spent uploading or downloading files, and from the
clients perspective the upload time in SkyFlok will seem longer than that of competing
cloud storage solutions, even though the preprocessing of data using RLNC encoding is a
key essential of SkyFlok. Therefore is it essential to decrease the latency of RLNC encoding
such that the latency penalty becomes less evident for the clients. In [11] it is described
how Chocolate Cloud ApS would like to decrease the management overhead when utilising
RLNC, which is the second reason for investigating a way to decrease latency. In Figure 1.1,
we see meta data stored in SkyFlok during the upload, the meta data stored contains
information such as file name, location of file fragments, RLNC generation information,
and more. The major issue with this is RLNC generation information, because for each
generation we need to store the symbol- and generation size, and what symbols belong
to what generation, see Section 2.1 for a description of RLNC. The management of this
information can be dramatically lessened by using a single generation, this will however
result in a large encoding latency as shown in [11]. Therefore decreasing encoding latency
will be a beneficial tool for lessening the management issue.
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Figure 1.1: Data upload in the multi cloud storage system by Chocolate Cloud ApS

The problem is then; "How can we decrease encoding latency?" A possible approach to
a solution is to utilise the multi-threaded capabilities of modern Central Process Units
(CPUs) [12, p. 180-181] and distribute the computations of RLNC encoding between the
cores of the CPUs. However, for Chocolate Cloud ApS this raises a concern, because it
is unlikely that clients machines provide a uniform set of capabilities, i.e amount of main
memory, size of cache (L1, L2, and L3), and amount of CPU cores. Therefore, Chocolate
Cloud ApS would like such a solution to be platform independent and not be designed
around a system specific configuration. Thus, a multi-thread solution must be tested with
multiple amount of threads to ensure that the latency will be below the limitation of one
second.

Thus, the purpose for the project can be formulated as follows; We seek to design,
implement, and through experiments investigate if it is possible to create a platform
independent multi-thread RLNC encoder which decreases the latency of encoding, such that
a latency limitation of one second can be achieved for larger generation size.

1.1 Related Work

Research already conducted in the field of using parallelism / multi-threading have focused
either on RLNC decoding alone or the utilisation of a specific system resource. Examples
of this is the usage of General Purpose Graphical Processing Units as presented by Choi
et al. [13], who shows an approach utilising the extreme parallel capabilities of GPUs for
decoding data using RLNC. Another example is presented by Wunderlich et al. [14], this
approach utilise a direct acycled graph to determine which part of data can be parsed to
a thread for computation and which is currently either blocking or being blocked. The

2
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data in this approach is essentially divided into sub-matrices which can fit into L1 cache.
A thing both approaches have in common is also that they focus on throughput (MB

s ),
rather than latency itself.

Additionally, Morten V. Pedersen Chief Technical Officer of Steinwurf ApS [15] have played
with a multi-threaded implementation of RLNC encoding and decoding. This work resulted
in a working solution, however it was slower than the single threaded implementation
provided with the RLNC software library Kodo [1].

3





Preliminaries 2
In this chapter we present the preliminary knowledge base, needed to design a parallel
RLNC encoder. The topics discussed are Network Coding (NC)/RLNC, multi-threading,
and thread-pooling. This includes the advantages and disadvantages of using multi-
threading for solving latency issues in general.

2.1 Network Coding

Ahlswede et al. [16] introduce NC, as a technique which could be applied in networks for
outperforming routing, by allowing coding of data at the source and in the network nodes.
Ho et al. [10] showed that performing random linear combinations of incoming packets
in the intermediate nodes of a network, achieves multicast capacity asymptotically. This
process is called random linear network coding (RLNC). RLNC has since been adapted
for usage in data storage by applications such as SkyFlok. In this section we describe
how operations on data are conducted, from the source, in network nodes, and at the
destination. We will also give a brief introduction to Finite Field (GF), as they provide
the key arithmetic operations for NC and RLNC. Finally we will give an introduction of
the RLNC C++ library Kodo.

NC can be divide into the following step Encoding, Decoding, and Recoding. In Figure 2.1,
we give an illustration of where the three steps is located in a network utilising NC.

Figure 2.1: Illustration of where in a network encoding, recoding, and decoding takes
places

5
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At the source we wish to transfer data to the destination and part of this process is to
produce coded packets using RLNC encoding. To do this, we first divide the data into a
set of blocs called generations, these blocks are not required to have the same size. Wen the
divide each generation further into smaller data chunks called symbols, where each symbol
with in a generation have the same size, called symbol size (k). The number of symbols
with in a generation is referred to as the generation size (g), and g ⋅ k is the total data
size of the generation, also called the block size. For each generation we create a matrix,
called the symbol matrix (S). S is created by viewing each symbol in the generation as a
row in S, as illustrated in Equation (2.1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S11 S12 ⋯ S1k

S21 S22 ⋯ S2k

...
. . . ⋯

...

Sg1 Sg2 ⋯ Sgk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.1)

The next part of encoding is to generate a matrix, called the coefficient matrix (C). Each
row in C consist of g coefficients, all drawn uniformly at random from the elements of a
Finite Field (GF) on the form GF (2n), see section Section 2.1.1 for a brief introduction
to finite fields, and are called a coefficient vector (c). ∀c ∈ C we then construct a coded
symbol by multiplying c with S as shown in Equation (2.2)

Ci ⋅ S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ci,0 ⋅ (S11 S12 ⋯ S1k)

+

Ci,1 ⋅ (S21 S22 ⋯ S2k)

+

...
. . . ⋯

...

+

Ci,g ⋅ (Sg1 Sg2 ⋯ Sgk)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= CSi (2.2)

From the coded symbols, we construct a new matrix called the coded symbol matrix CS.
We then append the coefficient used to generate the coded symbol, such that we have
a augmented matrix on the form [CS∣C], each row is now referred to as a coded packet.
Though this concludes encoding itself, there is an additional step. This step is linear
combination of n coded packets as illustrated in Figure 2.2. What happens is that from
[CS∣C] we take n coded packets at random and combine them using the XOR (⊕) operation,
and we then transmit these combined coded packets along side the coded packets in the
network. The advantage of this is best explained by example; We assume that we have
two coded packets a and b, and we create the combined coded packet a + b. We then
transmit all three packets through the network to the destination, but due to packet loss
the destination never receives b. This not a problem, due to the properties of ⊕, it is
possible for us to reconstruct b from a and a + b. For, if a ⊕ b = a + b, then a ⊕ a + b = b.
This decrease the charge of having to retransmit a packet through the network.

6
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Figure 2.2: Linear combination of n packets using the ⊕ operation

In each network node we receive a set of both coded- and combined coded packets. We then
construct new combined coded packets from the set of received coded packets, following
the same method as shown in Figure 2.2, this is Recoding. The node then transmit these
newly combined packets through the network along side those it received, either from the
source or another node in the network.

As both the combined coded- and coded packets arrive at the destination, the foundation
of the decoding process takes place. Using the coded packets, we start reconstructing other
coded packets from the combined coded packets, and we do this until we have g unique
coded packets. We order the coded packets as an augmented matrix [CS∣C]. Then, we
decode CS by applying Gauss-Jordan reduction [17, p. 18] on C, such that it is brought
to its identify. We apply all row operations performed in C in CS as well. By doing so,
will the row operations bring CS back to S and this concludes decoding. After decoding
each generation, we order them in the correct sequence and thus, we have reconstructed
the original data from the source at the destination. Next we will give a brief introduction
to finite fields.

2.1.1 Finite Fields

Finite Field (GF), also known as Galois Field, is a class of numerical fields which are used
in NC and RLNC for providing essential arithmetic operations and provided additional
beneficial properties. Furthermore are the content of C drawn uniform randomly from the
same Finite Field (GF). Here we briefly will introduce the arithmetic operations used by
RLNC and the beneficial properties, for a in-depth description see [18] section 4.5 and 4.7,
with 4.5 focusing on explaining the general principals of GFs on the form GF (p), and 4.7
focuses on the GFs applied in NC and RLNC, which is on the form GF (2n).

A GF is a field which contains a finite number of elements and is closed under the field,
meaning that if an arithmetic operation is perform on a GF will map to a GF in the same
field. Thus if x is a number in GF (28

) and we add y, then the result will be in GF (28
).

This property, has a beneficial side effect in terms of memory in a computer, because if we
use GF (28

), we then know that we can store the result in a contain which has the size of
a byte, i.e uint8_t from C++, meaning that we have a large control over memory usage.

7
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The second property, is interesting in relation to computations, as GFs utilised polynomial
arithmetic for computations, this includes addition and multiplication. Furthermore, for
any GF (pq) it follows that the addition rule for the base field p is applied, when utilising
addition in a larger field. For Gf(2n) this means the addition rule for GF (2) is applied,
which is an XOR(⊕) operation. This means that instead of having to implement multiple
version of addition, is possible to only implement one. The case for multiplication is a
bit more complex, as the multiplication of two polynomials does not necessary map to the
same field domain, but that is a rule of GF and this is solved as described in Stallings
[18, p]: If the multiplication of two polynomials of a GF exceeds the field, the resulting
polynomial must be reduced by modulo with a irreducible polynomial from the GF and
the remainder is kept. Thus will the multiplication of two polynomials stay within a GF.

We will now give a brief introduction to the RLNC C++ library Kodo.

2.1.2 Kodo

Kodo is a C++ software library designed for data encoding and decoding and it provides
multiple codes for this process, amongst these are RLNC codes, for a full list of Kodo
supported RLNC codes see [11, p.10-13]. Kodo was first introduced by Pedersen et al.
[19] in 2011 as a research project under the department of Electronic Systems at Aalborg
University and is currently maintained and further developed by Steinwurf ApS [15].

The encoder and decoder components provided by Kodo for RLNC operations all provided
a similar interface for interaction, by expecting generation size (g) and symbol size (k),
and data input, with extra parameters for special codes. This makes Kodo easy to use
when switching RLNC code. Furthermore Kodo provides memory shallow encoders and
decoders, this means that instead of copying the data when initialising an encoder or
decoder is a reference passed, through which data is used. For multi-threading this is ideal
as it minimise the amount om memory need by the individual encoder.

Encoding in using Kodo encoders, is executed by invoking the write_symbol method,
which takes a uint8_t pointer pointer as destination ad fill the pointer with a coded
symbol. When write_symbol, the Kodo encoder will generate the coefficient vector for us
and append it, to the destination.

Since the study presented in [11] was conducted, have 4 new major versions of Kodo
been released, and Kodo version 11.0.0 is the newest major version. However, to ensure
comparability with the study presented in former study, will we continue to use Kodo
version 7.0.0.

This concludes the section on RLNC, we will follow this with a description of multi-
threading.

2.2 Multi-threading

In this section we present the principles of multi-threading. We include a explanation of the
difference between concurrent and parallel execution, the disadvantage of multi-threading,
and the usage thread-pools. We base most of this chapter on Stallings [12, p. 177 - 217]

8



2.2. Multi-threading Aalborg University

A program is executed within a process, where a process can be seen as an environment
which contains a program as machine instructions and associated data, as illustrated in
Figure 2.3. A process allows a program to be executed in a protected environment, such
that other programs is unable to change neither machine instructions nor the data of the
program. However, a process only allows for sequential execution of machine instructions,
to enable concurrent execution of machine instructions we use threads.

Figure 2.3: A process and its content, all program machine instruction and associated
data

The purpose of threads is to allow concurrent execution of tasks within a process. Thus,
a thread is an environment which contains an executable sub-part of a process machine
instructions. As illustrated in Figure 2.4.

Figure 2.4: A process containing multiple threads, and distribution of machine
instructions to the threads

However, threads can be executed in two different ways, concurrent and parallel.
Concurrent thread execution, allows for the execution of multiple threads on a single
CPU by interweaving the execution of threads, Figure 2.5 illustrates concurrent thread
execution. What we see is that first a part of the machine instructions of T1 is executed,
then a part of T2 This continues until both threads have finished execution. In Figure 2.5,

9
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the total execution time for T1 and T2 is the same, but if we assume T2 execution time would
only match two boxes in the figure, then it would complete execution quickly, allowing T1

to complete execution afterwards. This would allow following tasks to not wait for T2

when T1 completes its execution. This is how, multi-threading is handled in most single
CPU core systems.

T1

T2

Figure 2.5: Example of concurrent multi-threaded execution tow thread. Coloured boxes
indicate active thread execution, grey for T1 and black for T2.

T1

T2

Figure 2.6: Example of Parallel multi-thread execution for two threads. Coloured boxes
indicate thread execution, grey for T1 and black for T2.

To take advantage of the more modern multi core CPU systems, parallel execution is used.
Here T1 and T2 are executed at the same time as illustrated in Figure 2.6. But they
are executed on different CPU cores and does not interfere with each others execution.
However, if we make the assumption that we have a CPU with n cores, we are then able to
execute n threads in parallel and we cannot exceed this. Does this mean that we are only
able to have n threads in a multi-threading system? No, because each CPU core allows for
x threads to run concurrent, and though they will not run true parallel, the total execution
time will be shortened and we end out with #threads = n ⋅ x. Note that while we are able
to create more threads than can be executed concurrent on a single core, they will just be
in a waiting state until they can be executed.

Thus in theory, we can assume that if we have a single process running on a single CPU
core and divide it between multiple cores, then the speed gain should be as shown in
Equation (2.3) [12, p. 192], where (1−f) is the part of the code which cannot be executed
in parallel, with the fraction f which can be run in parallel infinitely.

speedup =
time to execute program on a single processor

time to execute program on N parallel processors
=

1

(1 − f) + f
N

(2.3)

This means, that if we assume, that 10% (f = 0.9) of the program needs to be run
sequentially and that we have an eight core CPU, the performance gain will , in theory,
be 1

(1−0.9) 0.9
8

= 4.7x.

10



2.2. Multi-threading Aalborg University

However, though there is a performance gain using multi-threading, it also introduces a set
of issues. Firstly, recall that data is protected between different process. This, however,
is not the case for threads and this alone creates two major issues; race conditions and
deadlocks. Race conditions is a situation where two or more threads work on the same
piece of data, and depends on the order of which the data is updated. But, as we have
no control over the order in which threads are executed, the threads can reach a situation
where data is changed out of order and resulting in program bugs. Race conditions can be
avoided by locking data such that only one thread can access it at a time and when done
it releases the data. However, this creates the possibility of deadlocks, a situation where,
for instance, T1 has a lock on data resource d1 and will release the lock, when it can access
data resource d2, and T2 has a lock on d2 and will release the lock, when it has access to d1.
Thus, the two threads a blocking each other and will never continue executing, resulting
in a deadlock. As with race conditions, deadlock can be avoided using locks, by letting a
thread lock all the data it needs, thus putting all other threads on hold in the period it has
lock, and then release the lock when done with data, letting the next thread do the same.
However, this does create bottlenecks in thread execution and result in further decrease to
the theoretical performance gain.

The last issue is the time cost of spawning threads. The time cost of spawning a thread
depends on the CPU, which can be influenced by environmental conditions, and the thread
system implementation used. Therefore, spawning new threads for each task is a costly
strategy. To solve this, we utilise the ability to reuse a thread, by giving it new instructions
to process and avoid the cost of spawning a new thread. The next step in this solution is
to create a pool of n threads, which are spawned at the beginning of program execution,
then when a thread is need we request it from the pool, and when the thread completes
execution, we return it to the pool. This final approach is known as a thread-pool.

With the preliminaries covered in this chapter, will we continue with the design of the
parallel encoder.

11





Parallel Encoder Design 3
In this chapter we present different parallel encoding schemes and select which one to move
forward with, and based on this we design a parallel RLNC encoder.

In Chapter 1 we state that Chocolate Cloud ApS seeks a solution which can be used on
any platform. This presents a set of limitations for designing a parallel encoder. Firstly,
we cannot use system specific libraries, as this will limit the encoder designed to a single
system. Secondly, the designed encoder cannot depend om specific hardware configurations
such as cache size or size of main memory. Finally, we need to utilize an abstraction layer
over the thread system used in the host system, which will allow usage of threads on any
system. With this in mind will we look at possible parallel encoding schemes.

3.1 Parallel Encoding Schemes

Before designing the encoder is it needed to investigate the potential schemes which can
be utilised to parallelize the process of encoding with RLNC. With the encoding process
being C × S there exists at least three schemes of dividing encoding into multiple tasks.
The first scheme is to divide a symbol into multiple chunks or sub-symbols, where for each
sub-symbol a thread is spawned where a coefficient from the coefficient vector is multiplied
with the sub-symbols in each thread, as illustrated in Figure 3.1.

Figure 3.1: Dividing a symbol into multiple sub-symbols and multiplying each sub-symbol
with a coefficient within multiple threads

This scheme will essentially reduce the symbol size (k), such that k′ = k
m where m is the

number of sub-symbols created. Though this will decrease the symbol size, it will also
increase the generation size (g) and from [11, 20] we know that decreasing k will result

13



deis914e17 3. Parallel Encoder Design

in lower latency, but that increasing g will result in an higher latency. Therefore, if this
scheme is chosen, the benefit of multi-threading will depend on the final choice of k and g.

The second scheme is to parallelize the addition of symbols during the matrix
multiplication, as illustrated in Figure 3.2. This approach takes effect after a coefficient
vector has been multiplied on S, by distributing n symbols to m threads, and let each
thread handle the addition of n symbols, Figure 3.2 illustrates this with n = 2 and m =

g
n .

Then when the result of each thread is returned, we divide n′ partial coded symbol per
thread, where we have m′ threads. This is repeated until only the fully coded symbol is
constructed. This is repeated for each coefficient vector ∈ C.

Figure 3.2: Multi-threaded approach to partial symbol addition for four symbols

This scheme will alter neither g nor k in any way but it should result in a speedup for
encoding and thus decrease latency.

The final scheme is to split the multiplication of C and S by letting a thread handle the
multiplication of n coefficient vectors from C with S, as illustrated in Figure 3.3. This
means that each thread produces n coded symbols.

Figure 3.3: Multi-threadded approach to coefficient vector multiplication with S, where
n coefficient vectors are parsed to a thread to construct n coded symbols.

This scheme effectively splits the original problem of g coefficients into g
n problems,

thus reducing the amount of product operations performed per thread and thus should
drastically decrease the latency for encoding, based on the Equation 5.4 [11, p. 18].
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If we compare the three encoding schemes in relation to Equation 5.4 [11, p. 18], we see
that decreasing g, whilst not altering k has the highest potential of decreasing latency.
For this reason we chose to continue with the last presented encoding scheme and in the
following we present a structure for an encoder based on this scheme.

3.2 Encoder Structure

With the parallel encoding scheme selected, we will outline the components of the encoder
and how it facilitates RLNC encoding using the selected parallel scheme.

First we have to determine how to handle the threads used for encoding. In Section 2.2
we explain how spawning threads are costly in relation to latency and a way to circumvent
this issue is the usage of a thread pool. For this reason we will be using a thread pool in
the encoder and let it handle threads. We will be using the thread pool library ThreadPool
by Jakob Progsch [21]. We are using this library because we have experience using it and
therefore, know that it is a working library.

Next, we need to figure out how to implement the selected encoding scheme and for this
we have chosen to implement two different approaches, and for the second approach
we also present an smart approach. The first approach creates a thread pool with
g threads, each thread then produce a single coded symbol. This implementation of
the encoding scheme will likely result in a high level of context switching, which is
disadvantageous for performance, we will reference this implementation as simple encoder.
For this reason it is expected that a decrease in latency will be seen, but that the
improvement will be limited. The second approach is implemented such that it is possible
to state the number of threads (t) to use for encoding and number of coded symbols
produced per thread is g+r

t , we will reference this implementation as complex encoder.
This approach will have a smaller amount of context switching and should in the ideal
world result in latency decrease of single threaded encoding latency

t . The smart approach is
to utilise a language feature of C++ called std::thread::hardware_concurrency [22],
which allows for automatic reading of how many concurrent threads a system supports,
we will reference this implementation as smart encoder. However, [22] state, that this
language feature is only available on supported systems. We have tested the support of
std::thread::hardware_concurrency on the experiment machine and the two machines
used for developing the experiment source code with the coded presented in Listing 3.1
and the result of std::thread::hardware_concurrency() for all three machines is 8.� �

1 #include <thread>

2 #include <iostream>

3 #include <string>

4 int main() {

5 std::string result = "";

6

7 if (std::thread::hardware_concurrency() == 0) {

8 result = "Unsupported/Not computable";

9 }

10 else { result = "Supported"; }
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11

12 std::cout << "Hardware concurrency is: " << result << std::endl;

13

14 return 0;

15 }

Listing 3.1: Simple program for identifying if the system support the usage of
std::thread::hardware_concurrency

Furthermore, we have also tested machines with Windows 10, MacOS High Sierra
and Linux1 and have not found a system, not supporting the language feature
amongst these and also the none-int??? version of this encoder can be used, when
std::thread::hardware_concurrency is not supported. Therefore, we will still implement
a solution using this language feature, though it may limit the amount of supported
systems. It must also be noted that std::thread::hardware_concurrency, only gives
the amount of concurrent threads and not parallel threads.

To produce coded symbols n Kodo Full Vector encoders will be used, where each encoder
will be assigned to a thread and based on the number of coded symbols produced per
thread, the method write_payload will be invoked and all the resulting payloads will be
stored in a shared result vector. To ensure minimal memory usage for the encoders, we
will use a version of the Kodo Full Vector encoder, known as a shallow Full Vector encoder
which avoids deep copy of data to the encoder, by only working on a reference to the
original data.

Additionally we need to handle the case where (g + r) mod t ≠ 0, as this means that the
number coded symbols created per thread in the second implemented approach cannot be
divide equally between threads, and for this reason we will need to handle this case. For
this experimental implementation we handled it by assigning the encoding of the remaining
(g + r) mod t coded symbols, to the last thread. This is not necessarily the most efficient
approach with which a solution can be found, but for this initial implementation, this will
be the solution used. Later it should be investigated, what the most efficient division of
the remaining symbols is.

Finally we need a way to check if the encoding process is completed. The reason for this is,
that unlike the single-thread RLNC encoder, we do not know when encoding has concluded
unless we keep track of the process. We will do this with an unsigned integer counter of the
type uint32_t [23]. We initialise the counter to 0U and each time a thread has completed
its run, we increment the counter with 1U, using the compound operator ++. We guard it
with an atomic lock provided by C++’s Atomic operations library [24], which provide a
atomic lock free version of the compound operation ++ on integers.

Based on this design we have implemented three different encoders, a simple encoder
which spawns a thread per coded symbol, a complex encoder where the number of
threads used can be adjusted, and finally a smart encoder which utilise the capabilities
of std::thread::hardware_concurrency. With these encoders we have conducted the
experiments presented in the following chapter.

1Ubuntu 17.11, Fedora 26/27, and Debian 9
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In this chapter we describe the experiment setup, the configurations which will be used, and
present an experiment protocol. The intention of these experiments is meant to measure
the encoding latency for the three parallel encoders and compare the recorded latency
values, with that presented in [20] and [11] for a single threaded full vector encoder, with
generation size 32 for data size 512MB. We compare with the result for generation size 32,
because it was this configuration which broke the 1 second limitation defined by Chocolate
Cloud ApS.

4.1 Experiment Setup

We have conducted the experiments with the same setup presented in [11]. This is done
to create a comparison foundation, between the results presented in [11, 20] and those
recorded for the parallel encoders. We have used a HP ProDesk 490 G3 MT Business PC
[25], with an Intel® Core™i7-6700 which has a clock rate of 3.40GHz, and 16GB of main
memory, divide into two blocks of 8GB, running a clock rate of 2133HZ. For operating
system we are using Fedora 21. [26]

We have enabled Secure Shell (SSH) [27] access to the machine, enabling remote execution
of experiments and supervision of experiments. We also utilise the Linux system command
nohup [28], which makes it possible to ignore user hangups and log out. This allows us to
terminate an SSH connection without terminating execution of the experiments.

Finally, we have created a setup of scripts which are used for execution of the experiments
with different configurations. The scripts are structured with a ten second break period
between each experiment, thereby allowing the system to return to an idle state.

4.2 Experiment Configuration

The experiments will be conducted for three data sizes 512MB, 1GB, and 2GB. We know
from Nielsen [11], that a single-thread approach reaches the one second latency limit
generation size 32 for data size 512MB, and we also know that for the same data size with
generation size 8 and 16 is below the latency limit. Therefore, these configurations will be
used as control configurations, to confirm if there is a performance gain when switching
to a multi-threaded encoding approach. Additionally, to investigate if it is possible to
increase the generation size, whilst still keeping latency below the limit, we will include
experiments configured with generation size 64, 128, and 256. Thus, the configurations for
generation- and symbol size presented in Table 4.1 will be used
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g k for ds = 512MB k for ds = 1GB k for ds = 2GB
8 67108864 134217728 268435456
16 33554432 67108864 134217728
32 16777216 33554432 67108864
64 8388608 16777216 33554432
128 4194304 8388608 16777216
256 2097152 4194304 8388608

Table 4.1: Experiment configurations used for 512MB, 1GB, and 2GB. g = generation
size, k = symbol size, and ds = data size.

Furthermore, for the complex encoder we include an additional configuration parameter
representing the amount of threads used. The experiments for the complex encoder have
been conducted with 1, 4, 8, 16 and 32 threads. Also, as presented in Nielsen et al. [20],
each experiment will be executed 1000 times. Next we present the experiment protocol
used to conduct the experiments.

4.3 Experiment Protocol

Here we describe the experiment protocol. We do this to ensure reproducibility of the
results, but also to ensure that future experiments are conducted in the same manner as
the first. For all encoder types the following steps apply:

Step zero: Ensure that the multi-threaded RLNC encoder you wish to conduct experiments
for is implemented and that a benchmark have been created.

First step: Select the multi-threaded RLNC encoder for which the experiment will be
conducted.

Second step: Confirm that the necessary configuration file for the experiment exists.
Generate a configuration file if none is available. Configuration files can be generated
using the generate_config.py script, included with the project source code.

Third step: If a hypothesis for the experiment does not exists, formulate one and append
it to the list of hypothesis.

Fourth step: If a script to execute the experiment does not exists, create it and remember
to utilise the system command sleep. Additionally, if a result folder for the experiment
does not exists in the directory ./results, create one.

Fifth step: Reboot system before experiment execution, to ensure a clean system.

Sixth step: Start the experiment using the nohup command and the experiment script.

Seventh step: Compare results to hypothesis, to either confirm or debunk the hypothesis.

Eighth step: Compare results with that of other multi-threaded encoders.

Ninth step: Compare the results with those presented for the Full Vector algorithm
presented in Nielsen et al. [20].
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With the experiment setup and protocol defined, we can define hypothesis for the
experiments, which we present in the following chapter.
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Hypothesis 5
In this chapter we present the hypothesis which will be utilise during experimtation. The
hypothesis will focus on the changes in latency based on generation size configuration and
with regards to the latency record for data size 512MB for generation size 8, 16, and 32
presented in [11, p.21].

5.1 Change in Latency with Regards to Increases in
Generation Size

In [11] we present Equation (5.1) as the base calculation for RLNC encoding latency, which
can be used to calculate the effect of changing either generation- or symbol size.

latency =
α ⋅Σg

i=1(k(g + r)) + β((k ⋅ (g − 1))(g + r))

Hz
(5.1)

To accommodated for the usage of threads when calculating latency, we have to divide
latency for a single-threaded encoder with the number of threads (t), but add the cost of
spawning t threads (tc), thus Equation (5.1) becomes Equation (5.2).

latency =
α⋅Σg

i=1(k(g+r))+β((k⋅(g−1))(g+r))

Hz
t

+ (t ⋅ tc) (5.2)

However, it is not possible to define a value for tc, as it varies for all CPU units and
are influenced by environmental factors, such as temperature [29] and for this reason is it
decided to ignore the cost of spawning threads. This will make the expected latency better
than what it will be in reality and will be kept in mind when results are analysed. But,
in Chapter 3 we present a multi-threaded encoding scheme which changes generation size
based on t, in the following way; g

t and for this reason we have to adapt Equation (5.2)
such that it is on the form shown in Equation (5.3)

latency =
α ⋅Σg

i=1(k(
g
t + r)) + β((k ⋅ (g − 1))(gt + r))

Hz
+ (t ⋅ tc) (5.3)
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And in [11], we show that the difference in latency between generation size, can be
calculated as shown in Equation (5.4), if we ignore the clock rate of the CPU

h(g, k, g′, k′) =
(2g′ − 1) ⋅ k′ ⋅ (g′ + r)

(2g − 1) ⋅ k ⋅ (g + r)
(5.4)

We adapt this to take into account for t modifying generation size, such that the difference
in latency ∆L can be calculated as presented in Equation (5.5), g′ and k′ is the increased
generation size and the decreased symbol size.

∆L = h′(g, k, g′, k′, t) =
(2g′ − 1) ⋅ k′ ⋅ (g

′

t + r)

(2g − 1) ⋅ k ⋅ (gt + r)
(5.5)

By adapting Equation (5.4) to Equation (5.5), we can calculate the latency for the complex-
and smart encoder, where the calculation for eight threads, represent that of the smart
encoder. In Table 5.1 is the expected ∆L values presented, we have filled the row generation
size 8 with X ’s, as no experiments with smaller generation sizes has been conducted.

g/t 4 8 16 32
8 X X X X
16 2.06x 2.06x 2.06x 2.06x
32 2.03x 2.03x 2.03x 2.03x
64 2.01x 2.01x 2.01x 2.01x
128 2x 2x 2x 2x
256 2x 2x 2x 2x

Table 5.1: Expected changes in latency (∆L) for the complex- and smart encoder with
regards to generation size (g) and threads (t) used

From Table 5.1 and Equation (5.5) we get that the number of threads used, will not
change the expected ∆L when increasing generation size. Furthermore, if we compare the
expected ∆L presented here with ∆L values found in [11, p.21], see Table 5.2, we see that
they follow the same ∆L pattern. Thus, we can hypothesis, that using more threads will
not change ∆L. Therefor, will the benefit only be a decreased latency.

Code / generation sizes 8 vs 16 16 vs 32
Full Vector 2.06 2.03
On-The-Fly 2.14 2.6

Table 5.2: Estimated x differences in latency between generation sizes for The Full Vector
and On-The-Fly codes [11, p.21]

Next, we will state hypothesis for the changes to latency, when going from a single-threaded
encoder to the multi-threaded encoder
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5.2 Difference in Latency betwen Single-threaded and
Multi-threaded Encoders

Next to calculate the gain of utilising a multi-threaded encoder, we utilise Equation (5.3).
Again as we cannot provide an accurate (t ⋅ tc) will it not be include in the calculation.

f(g, k, r, t) =
α ⋅Σg

i=1(k(g + r)) + β((k ⋅ (g − 1))(g + r))

α ⋅Σg
i=1(k(

g
t + r)) + β((k ⋅ (g − 1))(gt + r))

(5.6)

Based on Equation (5.6) can it be hypothesised that t is equal to n× decrease in latency
which should be observed. However, this is not correct, because if g < t will the complex-
and smart encoder not utilise all the spawned threads, as there will be fewer symbols to
encoded than t, leaving threads without work. We therefore, use X to mark where no
further performance improvement is expected. For the generation size 128 and 256 we
should still see a ∆L which follows Equation (5.6) as the encoders can efficiently divide
the multiplication of coefficient vector between threads. The expected values are presented
in Table 5.3

g/t 4 8 16 32
8 4x 8x X X
16 4x 8x 16x X
32 4x 8x 16x 32x
64 4x 8x 16x 32x
128 4x 8x 16x 32x
256 4x 8x 16x 32x

Table 5.3: ∆L between single-threaded- and multi-threaded encoders with regards to
genration size (g) and amount of threads (t) used

However, there is an issue with the presented expected values for ∆L. Above we noted
how, if g < t, then we wouldn’t be able to fully utilise the spawned threads, which will
result in something inconvenient. Which is; Though n

m threads can execute multiplication
of coefficient vectors with S, will a number threads do nothing. The problem is that a
thread pool keeps the thread in a "busy waiting"-state, meaning that a thread will check if
a task is available for it to work. This results in a context switch which has a negative effect
on latency and thus, we are unable to accurately predict the latency for these experiment
cases. But we must take it under consideration when analysing the results.

With the experiment procedure defined and hypothesis formulated, we will conducted the
experiments and analyse the results.
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Results 6
Here we presented the results for the experiments we have conducted, we evaluate the
result, and evaluate our approach as part of this process.

6.1 Results for Complex, Smart, and Simple Encoder

Here we present the results and analysis of the empirical study conducted for data size
512MB, 1GB, and 2GB with the complex-, smart-, and simple encoder.

In Table 6.1 we present the average observed ∆L values for experiments conduct for
the complex encoder with 512MB, for all number of threads (t) and generation size (g)
configurations. By comparing the latency values for the complex encoder run with t being
either 4, 8, 16, or 32, with the single-threaded encoder, as presented in Table 6.2. We
observer something highly unexpected.

# of Threads
/ Generation
Size

8 16 32 64 128 256

4
Latency 700.02 1036.09 1796.62 3312.44 5780.05 7908.37

∆L X 1.48 1.73 1.84 1.74 1.37

8
Latency 831.07 1153.76 1896.27 3584.45 6825.26 11660.70

∆L X 1.39 1.64 1.89 1.9 1.7

16
Latency 432.17 1329.55 2114.77 3844.64 7304.92 13626.84

∆L X 3.07 1.59 1.82 1.9 1.86

32
Latency 901.79 460.19 2215.72 3909.08 7417.16 14308.14

∆L X 0.51 4.81 1.76 1.89 1.93

Table 6.1: The average results for complex encoder in milliseconds for data size 512MB
with 4, 8, 16, and 32 threads, for generations size 8 to 32, with the differences (∆) between
previous and current generation size.

Generation Size 8 16 32
Latency 534.29 1036.49 1972.12

Table 6.2: Latency for Single-threaded Encoder for Generation Size 8, 16, and 32 for data
size 512MB in milliseconds

We observer that the complex encoder, only in certain cases outperform the single-threaded
encoder. These case are g = 8 with t = 16 and g = 16 with t = 32, for the later the
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improvement is ∼ 2.25x. Compared to the other ∆L values, we deem ∆L an extreme data
point. For this reason we decided to conduct the experiments again to verify our findings, a
part of this process involved validating the configuration files for the experiment. We found
no fault in the configuration files and we where able to reproduce similar results to those
presented in Table 6.1. Therefore, we cannot disregard this ∆L value. We also see that
for g = 32 and t = 4 ∨ t = 8, we see small performance gain of 1.09x and 1.04 respectively.
Such a minimal gain can be attributed to system or environmental interference and we
therefore will not conclude that for these configurations are the complex encoder better.
Additionally, we observer that for g = 16 that for all configurations but one, g = 16∧ t = 32,
is the latency values above the 1 second limit. Thereby, we can conclude that the complex
encoder is not a general purpose solution for the latency issue, and that it will not make
sense to further investigate the latency values for the complex encoder with data size 1GB
and 2GB.

Another interesting observation, is that if we recall Table 5.1, we expected a ∼ 2x ∆L when
increasing generation size, as was also expected in [11, p. 21]. But, like observed in [11,
p. 25 - 28] we do not see ∼ 2x ∆L when increasing generation size. With the exception
of the difference between generation size 16 and 32, we observer ∆L < 2x, with ∆L for
g′ = 32 ∧ g = 8 for t = 2 being 0.51. This indicates that the single-threaded- and complex
encoder does behave alike in terms of latency.

Based on what we have observer, we would like to investigate further, why the performance
of the complex encoder is so poor. If we follow 1) the theory of multi-threading, 2) the
fact that Kodo utilise Single Instruction Multiple Data (SIMD), and 3) we know that for
some relationships of t and g, will some threads not be utilised properly. Then, we can
state three hypothesis as too why the complex encoder performance poorly. Starting with
utilisation of threads, we stated that if g < t then some threads would not be utilised and
they would enter a "bussy wait"-state, and when they request a context switch to check
if a task is available, this will result in increased latency. However, though this might be
the case for g = 8 ∧ g = 16, it should not be the case for g ≥ 32 and therefore, is it not the
likely cause for the poor performance of the complex encoder.

The second hypothesis is SIMD, in [11, p. 26] we state that SIMD might be a factor for
the lower than expected ∆L values observed, but in a multi-threaded scenario the benefits
of SIMD can be turned into something harmful. The reason for this, is that SIMD utilise
dedicated registries for SIMD-operations [30] and depending on the CPU will there either
be SIMD-registers available per core or a shared between all cores, with the later being
the most common. This means that if each core has its own set of SIMD-registers, then
if t ≥ number of cores, then when one thread is using the cores SIMD-register, then other
threads one the core will not be able to continue execution until SIMD-registers are free.
This becomes an even more harmful problem if the SIMD-registers are shared between all
cores. This issue is fairly easy to investigate, as the part of Kodo, which utilise SIMD can
be compiled without support for SIMD and will fallback to a non-SIMD approach.

The third hypothesis, is in regards to multi-threading and how memory swapping is done
when two threads switching state. Such that one goes from running to waiting and the
other goes from waiting to running. When two threads switch state, the data from the one
going to waiting, will also be swapped out of cache and possible main memory. Then the
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data of the thread, now in the running state, will be read into main memory and cache,
and preferably all in cache as this is a faster medium. However, what if symbol size (k) ≥
cache size? Then we will first swap the current running threads data out of cache and write
it either to main memory or disk. Next the former waiting thread will now be running and
when it will access data it will likely get a cache miss. This will lead to a read from main
memory, and if we are unlucky this might lead to a page fault [12, p. 370] which will lead
to a read from secondary storage, which is costly. We compared k for all g with the cache
size of the experiment machine which is 32kB for the L1 cache, and we could conclude,
that ∀g k ≥ cache size. This makes it a likely performance issue candidate and for this
reason, we have decided to create an encoder which is cache size aware and compare it to
the performance of single-threaded encoder.

Before investigating these issues further, will we also analyse, the results for the simple-
and smart encoder with data size 512MB, to confirm that the latency issues seen with the
complex encoder is present with the two other encoders, and we will start with the smart
encoder.

In Table 6.3 we show the observed average latency and ∆L values for the smart encoder,
where the t = 8. What we see is that the differences between the complex- and smart
encoder are insignificant and can be attributed to system interference.

Generation Size 8 16 32 64 128 256
Latency 774.59 1083.56 1905.92 3592.45 6799.44 11629.59

∆L X 1.40 1.76 1.88 1.89 1.71

Table 6.3: The average results for smart encoder for generation size 8 to 256 in
milliseconds, with the differences (∆) between previous and current generation size.

This becomes even more evident if we plot the results for the two encoders side by side as
shown in Figure 6.1, where it can bee seen that the data points for the two encoders are
close to overlapping. This means that as with the complex encoder, can we state the smart
encoder is not a general purpose solution to the latency problem. This is to be expected
as the smart encoder, is a trivial modified version of the complex encoder. It also means
that we have a continues reason to investigate the hypothesis presented above.
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Figure 6.1: Overlay of the results for the complex encoder running with 8 threads and
the smart encoder
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Next, we analyse the result for the simple encoder. In Table 6.4 we show the recorded
average latency for the simple encoder, and we observer something interesting. What
we observer is that the ∆L between the simple encoder and the single-thread encoder is
minuscule. Which follows the our expectation presented in Chapter 5. We also observer
that only for g = 8 ∧ g = 16 is the latency below the 1 second limit, and for this reason, we
can conclude that the simple encoder is not a solution to the latency problem

Generation Size 8 16 32 64 128 256
Latency 499.50 997.87 1880.42 3591.80 7032.30 13968.92

∆L X 1.96 1.92 1.91 1.96 1.99

Table 6.4: The average results for simple encoder for generation size 8 to 256 in
milliseconds, with the differences (∆) between previous and current generation size.

However, we can make two interesting observations. First, the ∆L values observed for
the simple encoder is much more uniform, than that of the single-threaded-, smart-, and
complex encoder, and the ∆L values are much closer to the expected ∼ 2x. The second
observation was made when comparing the simple-encoder with the complex encoder
configured with 8 threads and the smart encoder, as illustrated in Figure 6.2. What
we observer is that for g = 256 there is a clear benefit of having t = 8 as is the case with
the complex- and smart encoder, where t = 256 for the simple encoder. This observation
furthers the suspicion, that something is interfering with the execution of threads.
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Figure 6.2: Comparison of the Simple Encoder with Complex Encoder configured with
t = 8 and the Smart Encoder

With the results for the three encoders analysed will we investigate the two hypothesis
presented above, starting with the SIMD-operations hypothesis.

6.2 Results for Simple, Complex, and Smart Encoder
without SIMD

To investigate if SIMD-instructions have a negative influence on latency, we need to disable
SIMD-instructions for the encoder to determine if the latency is effect in a positive or
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negative way. As, the influence of SIMD-instructions should effect all three encoders in
same way, either decreasing or increasing latency, have we decided to only conduct this
experiment for the smart encoder.

In the source code repository, we have created no-simd folder, its content is a
replica of source code for the encoders presented above, with a change to the file
resolved_dependencies/fifi-f85dcd/27.0.0-0d5bf9/wscript, where we have removed the
following compiler flags -mssse3, -msse4.2, and -mavx2. These compiler flags are used
for enabling different types of SIMD-instructions and to verify if the platform supports
SIMD-instructions and this disables SIMD-instruction usage in Kodo.

Table 6.5 shows the results for these experiments, along side the ∆L values for the smart
encoder run with, see Table 6.3, and without SIMD-instructions.

Generation Size 8 16 32 64 128 256
Latency 924.54 1489.08 2726.40 5318.04 10426.15 20956.72

∆L 1.19x 1.37x 1.43x 1.48x 1.53x 1.8x

Table 6.5: Latnecy for the Smart Encoder, when no utilising SIMD-instructions, and ∆L
values compared against the smart encoder utilisng SIMD

Based on the latency values we observer and the ∆L values, can we confidently conclude
that SIMD-instructions is not negative factor when it comes to latency. As all cases of
smart encoder run without SIMD-instructions have a worse latency, than the encoder run
with SIMD-instructions. With the worst case increase in latency being 1.8x. Based on
this, we conclude that further investigation into a multi-threaded encoder should apply the
usage of SIMD-instruction. We will continue investigating the potential of a cache aware
multi-threaded encoder.

6.3 Cache Size Aware Encoder

Here we present a new design for multi-threaded cache size aware encoder, with the intent
decreasing the latency of RLNC encoding. We also present the results for experiments
conducted with cache aware encoder.

6.3.1 Cache Aware Encoder Design

There are multiple ways to make an encoder cache aware, one would simply be to say
generation size (g) multiplied by the symbol size (k) must not be larger than cache size.
However, this will restrict the data size which can be encoded, which is highly undesirably.

The scheme we propose is inspired by the first encoder design presented in Section 3.1 and
is similar to that presented by Choi et al. [13] without the usage of graphical processing unit
and intend for encoding instead of decoding. In single-threaded RLNC, we can describe
the data size as presented in Equation (6.1)

Data SizeBytes = g ⋅ k (6.1)
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What we suggest for a cache aware encoder is to alter Equation (6.1) to accommodate
splitting symbols into multiple fragments of length l. Each symbol is split into k

l fragments,
where each fragment is placed into a group, representing its placement in the symbol. This
is illustrated in Figure 6.3, where the first fragment of each symbol is placed in group 0.
The next fragment of each symbol will the be placed in group 1, and so on until group n,
where n =

k
l − 1.

Figure 6.3: Symbol splitting for Cache Aware Encoder, with placement of fragments in
Group 0Placement of fragements in group 0 after symbol splitting

To decide l, we say that for the number of threads (t) available, will the total data size
operated on not exceed cache size, as shown in Equation (6.1). Then l can be decided as
shown in Equation (6.2)

cache size ≥ t ⋅ g ⋅ l (6.2)

l =
cache size

t ⋅ g
(6.3)

However, we know that the data access pattern illustrate in Figure 6.3 is flawed, as we
cannot take advantage of spatial memory location [31, p. 582-584]. A solution for this is
to transpose the symbol matrix (S) before encoding, such that we have ST on the form
[k × g]. This allows us to use a data access pattern, which allows for the usage of spatial
memory access, as the fragments of a group now are located sequential in memory. There,
however, is another issue with the solution, which is that g ⋅ l ⋅ k > k ⋅ g, meaning that we
have to alter k and how we calculate Data SizeBytes. We alter Equation (6.1), such that
Data SizeBytes is calculated as shown in Equation (6.4) and adapt k to be calculated as
shown in Equation (6.5).
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Data SizeBytes = g ⋅ l ⋅ k (6.4)

k =
Data SizeBytes

g ⋅ l
(6.5)

This means that for this encoder, we do not allow the user to decide k and l, and thereby
restrict the configuration of RLNC parameters, however, for a proff-of-concept encoder,
we will accept this limitation. We will also have the encoder determine the amount of
threads it use by replicating the usage of std::thread::hardware_concurrency [22] from
the smart encoder.

The next step is determining cache size, which is very difficult to do cross platform. The
reason for this is that most operating systems has individual ways of determining cache
size and is not an integrate part of C++. For this reason have we decided provided the
cache size in bytes as a parameter to the encoder constructor.

Encoding for this encoder is performed by creating k shallow Full Vector encoders each
assigned there own fragment group, and configured with k = l and generation size is still
the g from above. We generate the coefficient matrix (C). The we create a task queue
which contains k tasks, where each task generates g coded fragments and places them in
the coded symbol matrix (CS). When a thread is free, it will take task from the queue
and execute. In Figure 6.4 we illustrate how coded fragments are placed into ∼ for each
fragment group multiplied with the first coefficient vector (c1) from C.

Figure 6.4: Encoding approach for the cache aware encoder. Illustrating how fragment
groups are utilised to create coded fragments
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The approach allows us to avoid usage of a mutex or atomic locks on CS as no-two threads
will be writing to the same memory. Allowing for a lower latency, as threads will not have
to wait for each other to finish writing to CS.

We will implement a version of this encoder design and conduct experiments to see if
performance of this encoder is better than that of the other multi-threaded encoders and
the single-threaded encoder.

6.3.2 Experiment Results for the Cache Aware Encoder

Before presenting the results for the cache aware encoder, we must state that due to
technical issues with the experiment machine used for the experiment presented above,
have another machine been used for the experiments. The machine is an Apple MacBook
Pro with an Intel Core i7-6920HQ CPU, running with a clock rate of 2.9GHz and 16GB of
RAM with a clock rate of 2133MHz. Thus, the CPU used for these experiments is slower,
than that of the original experiment machine. The cache size of the new experiment
machine have been found by using the sytem command sysctl [32] with the parameter
hw.l1icachesize which gives the size of L1 cache in bytes, and the cache size of the
experiment machine is 32768 Bytes. Furthermore, due to time constraints of the project,
will we reduce the amount of iterations from 1000 to 10 for each experiment.

We will also calculate the values for l and k respectively based on cache size. We determined
t, by executing the code presented in Listing 3.1, on the experiment machine and the value
was 8. Thus l can be calculated as shown in Equation (6.6) and the result of the calculations
is presented in Table 6.6.

l =
32768

8 ⋅ g
(6.6)

g 8 16 32 64 128 256
l 512 256 128 64 32 16

Table 6.6: l values for cache aware encoder running with 8 threads, generation size (g),
and cache size 32768 Bytes

The value of k is then calculated as illustrated in Equation (6.5), with Data SizeBytes =

536870912 and with respective l and g values from Table 6.6. k is calculated to 131072

for all generation size. For the same reason as stated in Chapter 5, is it difficult to state
hypothesis for the cache aware encoder and as see above, is the hypothesis far from reality.
Furthermore, we know the context switching will cost less than it did before, due to it
know being adapted to the cache size, but the cost of writing to CS has increased and
we cannot say if this will result in a latency high enough to undermined the decrease in
latency from context switching. Therefore, we will not present hypothesis for the cache
aware encoder, but we will make the assumption that it perform better than the other
encoders.

In Table 6.7 we presented the results for the cache aware encoder and can state that
the results are interesting. Firstly, the difference in ∆L between generation size are
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insignificant including ∆L for generation size 8 and 32. Due to these minuscule difference
in latency, we decided to verify the configuration files used and conduct the experiments
again. The result of this was a confirmation of the findings found in Table 6.7. Based on
these result, we observer that for generation sizes 8, 16, and 32 is latency increased with
3.16x, 1.63x, and 1.17 respectively, compared to the single-threaded encoder. However, we
also observer that compared to smart encoder, we see gains for generation size 32, 64, 128,
and 256. Where we for generation size 256 achieve a gain of 6.87x.

g 8 16 32 64 128 256
Latency 1690.6 1697.16 1685.54 1672.17 1705.03 1692.54

Table 6.7: Observed latency values for the cache aware encoder, with regards to generation
size (g)

The increase in latency for generation size 8, 16, and 32 compare to the single-threaded
encoder indicates that there is an added cost when writing data to CS. The result also
shows that adapting the cache aware encoder scheme, does provided a gains for large
generation size. However, none of the recorded latency values are below the one second
limit and for this reason, we cannot concluded that the cache aware encoder is a solution
to the latency problem. But, we will state, that further optimisation of writes to CS could
have the potential to bring the latency further down. For this reason we suggest further
investigation of the cache aware encoder approach.

This concludes our experiments, we will now switch focus to discussion of choice made
during the project, conclusion, and future work.
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In this chapter we discus decision made through the project and the influence of theses
choice on the final state of the project.

7.1 Choosing to Ingore Cache Size

Through the project we have ignored cache size until the result analysis, as it was a
requirement state by Chocolate Cloud ApS as explained in the Chapter 1. However, as
presented in Chapter 6 this meant that the latency for the parallel encoders increased
instead of decreased as expected, resulting in an attempt to investigate if it was SIMD or
cache missed which resulted in the increased latency.

Was it good decision to ignore cache size? We will argue both yes and no. Firstly, if
we from the beginning had taken into account cache size and the symbol size, we would
have known that context switching would be an issue, and therefore, had been able to
dismiss Chocolate Cloud ApS requirement from the get go. But, this would have limited
us such that the approach without taking cache size into consideration, might never had
been research. Leading to the a potential simple solution to the latency issue would have
been left unexplored. Thereby, we can state; Though taking cache size into consideration
would have saved time, it would also have limited the process of investigating a cache
size ignoring solution, leading to a gap in the research of utilising parallel computation
in RLNC. For this reason will we state that though the decision might not have been the
best, it was still the correct decision.

7.2 Selected Encoding Scheme

In Section 3.1 we described and selected the encoding scheme used for the project. Was
it the correct scheme or would one of the two other schemes have been better suited for
the project? Based on the reality, that the first scheme would result in a higher level of
context switching, than the selected scheme. Will we say that the latency would have been
higher for this scheme and thus, was it correct to disregard it. If we compare to the second
encoding scheme, we see that though no changes to generation- nor symbol size would
have occur, would an increased amount of context switching be introduced. But would it
have performed better or worse than selected scheme? As the selected scheme decreased
generation size, and thus the amount of operations performed within a single thread, will
we say that it is more plausible that the selected scheme will have better performance, and
thus we see it as the correct choice. However, we will also state that we highly recommend
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investigation of the second scheme to compare the performance of that with the complex
and smart encoder, and potentially design a new cache aware encoder scheme.

Furthermore, if we consider the adapted encoder presented in Section 6.3.1, we designed a
more complex version of the first disregarded encoding scheme, which includes being aware
of cache size. We show with this scheme decrease latency of encoding for certain generation
sizes. We also suggest that further optimisation of the implementation could lead to even
greater decreases in latency. Thus, we see it as the correct choice to implement a cache
aware encoding scheme.

This concludes the discussion of choices made during this master thesis, we will now
continue with the conclusion.
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We have constructed three RLNC encoders adapted to a multi-threaded approach based
on already implemented RLNC encoders provided through Kodo. We attempted to
produce an encoder which seamlessly could be ported across systems without taking into
account system specific configurations, such as cache size. Based on the result presented
in Sections 6.1 and 6.2 we can state that the approach used for platform independent
multi-threading encoding cannot fulfil the latency limitation requirement set by Chocolate
Cloud ApS and the approach is outperformed by single-threaded RLNC encoders provided
through Kodo. Therefore, we concluded that this approach should not be investigated
further without taking cache size into consideration when encoding, as it results in a high
level of context switching based on the symbol size.

We also conclude that we have designed, implemented, and empirically analysed an RLNC
encoder which is aware of the cache size. We conclude that this encoder has the potential
to solve Chocolate Cloud ApS latency issues, if further efforts are put into optimisation of
the encoder.
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Here we present potential furture work for improving a multi-threaded RLNC encoder.

In Section 6.3.2, we explain how the new approach for writing coded symbols to coded
symbol matrix is suspected of increasing latency. We would like to investigate if this is
true and find ways to reduce the latency if it is an issue. One thing we already are aware
of is that at the moment, is the cache aware encoder using a copy operation to write to the
coded symbol matrix. This is more costly than a move operation and therefore, should all
copy operations, where possible, be replaced with a move operation.

In Section 6.3.2, we state that C++ does not provided a built-in abstraction for determining
cache size for a machine. We would therefore like to investigate, if there exists a third-party
library for this, or if none exists create a library for C++ for determining cache size.

In Section 6.1, we disregard the encoders schemes, as they are not a general solution to the
latency problem. However, we wonder what would happen if one increases generation size
such that k = Data SizeBytes

g ≤
Cache Size

n , n ∈ N. Do we still see the same latency punishment
as seen in Section 6.1 for the complex and smart encoder? We suggest that this should be
investigate further.

In Section 3.2, we describe the need for continuously increment a counter to track
how many threads have completed there run. Then when the condition counter ==

number of threads − 1 we know that all threads have completed and we can work with
the encoded data. However, in the benchmark code, we utilise a busy while-loop to check
if the condition is true. This is bad for performance as it constantly request a function call
to counter, which is enclosed in std::atomic, which will halt other threads from updating
the counter whilst it is being read. But there is a solution to this issue, which is to utilise a
construct from C++ called std::condition_variable [33]. The purpose of this construct
is to create a lock for one thread, which then can be unlock in another part of the program,
even within another thread. Thus, when after a thread increments the counter, can we
check if the condition is true and if yes release the lock. This should decrease latency even
further and therefore, we would like to implement this in the encoder and investigate the
change impact on latency. Furthermore, this can be applied in all four of the designed and
implemented encoders.

Lastly, we would like to conduct all experiments again on the same machine, such that the
foundation for comparison between the cache aware encoder and a single-thread encoder.
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