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Danish summary

Dette kandidat speciale er skrevet i samarbejde med nanosatellit producent virksomhe-
den GomSpace. Specialet undersøger hvorvidt Doppler skift estimater udvundet fra AIS
signaler sendt ud fra et skib og modtaget af GomSpaces satellitter kan benyttes til at
beslutte om skibet forsøger at forfalske sin position. Det er lovpligtigt for skibe over
en hvis størrelse at udsende AIS signaler, der blandt andet indeholder information om
skibets position, fart, samt identifikationsnummer. Indkodningen af denne information
foregår ombord på skibet. I og med at indkodningen af information forløber ombord
på skibet, kan et skib vælge at kode falsk information om eksempelvis dets position ind
i AIS signalet. Et eksempel på et tilfælde hvor besætningen ombord på et skib kunne
finde på at udsende falsk information om deres position, er hvis skibet udøver pirat-
fiskeri. I dette tilfælde vil det være oplagt for besætningen af få det til at se ud som
om de befinder sig et andet sted, end hvor de i virkeligheden er. Systemet bestående af
skibet, satellitten og radio kanalen imellem dem kaldes i dette speciale for space-based
AIS systemet.

Måden hvorpå problemet om hvorvidt det ud fra Doppler skift estimater kan bestemmes
om et skib forsøger at forfalske sin position er forsøgt løst, er ved først at undersøge
hvorvidt det er muligt at modtage AIS signaler på GomSpace’s satellitter. Denne un-
dersøgelse har taget udgangspunkt i et af GomSpaces eksisterende satellit projekter, der
går under navnet Starling projektet. Herefter er det undersøgt og analyseret hvilke ob-
serverbare og uobserverbare variable, der, udover Doppler skiftene, eksisterer i systemet.
Herefter er der opstillet sandsynlighedsmodeller, der modellerer både de observerede og
uobserverede variable i systemet. For at udføre statistisk inferens i de opstillede mod-
eller, er der opbygget algoritmer baseret på Markovkæde Monte Carlo metoder. Mere
specifikt er disse algoritmer bygget på Metropolis within Gibbs samplere.

I specialeperioden har der ikke været data fra satellitter tilgængeligt til at teste de
udviklede algoritmer, og det har derfor været nødvendigt at simulere data til brug i
de tests af algoritmerne, der er blevet udført. Dette data er simuleret under realistiske
antagelser omkring hvordan space-based AIS systemet opfører sig, og inkluderer fejlmod-
ellering. De test, der er blevet udført i dette speciale, omfatter detektion af forfalskning
af positions information i tilfælde hvor både én og to satellitter benyttes til detekterin-
gen. I begge disse tilfælde er det blevet testet hvor langt fra sin sande position et skib
skal forfalske sin position for at de udviklede algoritmer kan detektere forfalskningen.

Resultater fra de udførte tests viser, at de udviklede algoritmer i nogle af de tilfælde
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hvor en enkelt satellit benyttes, kan detektere når et skib forfalsker sin position 20
kilometer væk fra sin sande position. Derudover viser de tests, der er udført med to
satellitter, at forfalskning af skibspositionen i nogle tilfælde kan detekteres når skibet
blot forfalsker sin position 5− 10 kilometer væk fra sin sande position.
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Lists of notation and fixed parameters

x ∈ CN N -dimensional vector.

x(n) n’th element of vector x.

X ∈ Cm×n (m× n)-dimensional matrix.

x(n) n’th column of the matrix X.

x(i,j) (i, j)’th entry of matrix X.

Moreover, when a given symbol appears both with and without a tilde, e.g. ν and
ν̃, then ν is equal to ν̃ and a noise contribution. This notation is used when simulating
observed data.
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Fixed parameters

Description Symbol Value Unit

Earth radius RE 6378.137 km

Speed of light c 299792.458 km s−1

Earth standard η 3.986004418·105 km3s−2

gravitational

parameter

AIS channel 1 f1 161.975 MHz

frequency

AIS channel 2 f2 162.025 MHz

frequency

AIS data rate rb 9600 bps

AIS message TAIS 0.02667 s

duration

Earth angular ωE 7.272205 · 10−5 rad s−1

rotation speed

Boltzmann k0 −228.6 dBW/K/Hz

constant

AIS message Nbit 256

bit length

Day duration TE 86400 s

Table 1: Fixed parameters used in this thesis.
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1 | Introduction

The Automatic Identification System (AIS) is a radio communication system developed
in the 1990s. AIS operates in the very high frequency (VHF) band. The VHF band is
the radio wave band from 30 to 300 MHz [40]. Vessels use AIS to transmit AIS signals in
which their identity, position, heading, velocity, and other parameters, the collection of
which is referred to as an AIS message, are encoded. Originally, AIS was developed to
ensure that a given vessel was aware of the identity, position etc. of surrounding vessels
within a range limited by the horizon. This range is approximately 10-20 nautical miles,
or 18.5− 37.0 km.

More recently, space-based AIS reception, i.e. reception of AIS signals in space
using low-earth-orbit (LEO) satellites has been considered, as illustrated in Figure 1.1.
However, the AIS was not originally developed with space-based reception in mind.
Being able to receive AIS signals from space has the potential to provide global vessel
surveillance coverage.

Local (ideal) horizon

Orbit Earth surface

Satellite

Vessel

Figure 1.1: LEO satellite receiving an AIS signal transmitted by a vessel.

AIS signals are transmitted over two channels, corresponding to carrier frequencies
of 161.975 MHz and 162.025 MHz [13, p. 912108-2], and vessels alternate between these
frequencies when transmitting their AIS messages. These channels are referred to as
AIS channel 1 and 2, respectively.

International maritime law requires internationally voyaging ships to be equipped
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with AIS transponders if they exceed 300 gross tons. Gross tonnage is a measure of the
internal volume of a vessel. The definition can be found in [37]. Likewise, passenger
vessels, independent of their size and weight, are required to be equipped with AIS.

Sea vessels can be categorized into two classes called class A and B. Class A is used
by larger vessels and transmits signals carrying more information than class B, which
are carried by smaller vessels. Smaller vessels include e.g. leisure vessels. Class A trans-
mitters use more power when transmitting their AIS signals than class B transmitters,
resulting in the AIS signals transmitted by class A vessels being able to travel further
than those transmitted by class B vessels. Since class A is mandatory for both passenger
vessels and vessels exceeding 300 gross tons, and since their AIS signals are transmitted
using more power, this will be the class of vessels focused on in this thesis.

AIS is a self-reporting system. When a vessel transmits, amongst other parameters,
its positional information, this information stems from a sensor on board the vessel.
The naturally underlying assumption in AIS is that the information encoded in the
transmitted signals is trustworthy. With the rise of space-based AIS reception and
potentially global surveillance capacity, it may be wise to not blindly trust the positional
information reported by a given vessel [4]. An example of why a given vessel would want
to mask its true position is that of a vessel fishing in protected waters. Figure 1.2 shows
an example, in which a vessel is fishing in what could be a protected fjord in Greenland.
The vessel falsifies the positional information encoded in the AIS signal, an act referred
to as spoofing. The positional information is falsified to indicate a position in which
the vessel is allowed to fish. Space-based AIS reception can potentially also provide the

Figure 1.2: Illustration of vessel positional spoofing in a fjord in Greenland.

solution to the problem of spoofed positional information [13, p. 912108-1]. Using LEO
satellites, as illustrated in Figure 1.1, spoofed AIS signals can be received, and, possibly,
categorized as spoofed signals. In the case of position spoofing, being able to detect this
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spoofing is desireable. Ideally, this detection is to be based on the physical information
about the received AIS signal in conjunction with the information encoded in the AIS
signal. The general system is illustrated in Figure 1.3. This system will be referred to
as the space-based AIS system. This leads to the core problem of this thesis, namely to

Transmitter
(vessel)

Radio
channel

Receiver
(satellite)

Spoofing
detection
algorithm

u(t) r(t) Received AIS info

Signal observables

Figure 1.3: Block diagram illustration of the space-based AIS system. It includes transmission of an
AIS signal, u(t), the channel that u(t) has to travel through to arrive at the satellite, and the satellite
receiving the signal r(t), consisting of the AIS signal along with interfering signals and noise. Finally, it
includes the received AIS info (from the AIS message) and AIS signal observables, which are to be used
in spoofing detection algorithms.

be able to detect AIS position spoofing using one or more LEO satellites. In order to
choose the approach that will be used to solve the problem in this thesis, the following
system analysis questions need to be answered.

• What is AIS and how does it work?

• How is the LEO satellite orbit geometry?

• Based on a GomSpace satellite project, what are the conditions under which space-
based AIS reception is feasible?

• Which observable variables exist in the space-based AIS system that can potentially
help solve the problem of AIS position spoofing detection?

GomSpace is a nano-satellite manufacturer, and this thesis is written in conjunction with
this company.

The GomSpace satellite project under consideration in this thesis is known as the
Starling project. Starling is a constellation of LEO satellites equipped with AIS signal
receivers. Parallels to the Starling project will be drawn in this thesis, especially when
presenting a link budget showing the feasibility of space-based reception of AIS signals.
This link budget is heavily influenced by the link budget of the Starling project. More-
over, a selection of satellite and orbit parameter values in this thesis are chosen based
on the Starling values for these parameters. When this is the case, it will be stated.

After analyzing the above questions in the succeeding chapters, the final problem
statement of this thesis is given in Chapter 5. Chapter 2 serves as a preliminary for later
analysis of the space-based AIS system. In Chapter 3, a link budget heavily influenced
by the Starling project is presented, in order to examine the feasibility of space-based
AIS signal reception. In chapter 4, an analysis of the space-based AIS system analysis
is found, wherein the observable variables within the system that can potentially help
solve the problem of this thesis are examined. Notice that all data used in the developed
algorithms for spoofing detection in this thesis is simulated data, since no real-world
data has been available.
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2 | Space-based AIS system pre-
liminaries

This chapter serves as preliminary information for the later space-based AIS system
analysis. Initially, the chapter describes AIS. As mentioned in the introduction to this
thesis, it is the position information encoded in AIS signals that can be subject to
spoofing. Moreover, terms and concepts from LEO satellite orbit geometry needed in
this thesis are introduced. Eventually, an effect known as the Doppler shift, which is
experienced when receiveing signals at LEO satellites, is described.

2.1 Automatic identification system (AIS)
In the early 1990s, a proposal that vessels should be required by law to carry AIS
equipment was set forth by the International Association of Marine Aids to Navigation
and Lighthouse Authorities. This proposal was accepted by the International Maritime
Organization (IMO), and AIS was made mandatory [16, p. 8]. Vessels send out AIS
signals with AIS messages containing data such as their position, velocity, heading etc.
The signals are sent out using carrier frequencies in the VHF band, which is the range
of frequencies from 30-300 MHz. The IMO requested for two channels in the VHF
band to be assigned to the use of AIS. The carrier frequencies, fc, of these channels are
f1 = 161.975 and f2 = 162.025 MHz, referred to as AIS channel 1 and 2, respectively.
Vessels alternate between these two channels when sending out their AIS messages [16,
p. 40].

When using either of the AIS channels, vessels are allowed to use carrier frequen-
cies varying by up to ±3 parts per million (ppm), creating frequency offsets from the
designated AIS carrier frequencies of [31, p. 85]

foff ∈ [−∆,∆], (Hz) (2.1)

where
∆ =

{
486.075 if fc = f2
485.925 if fc = f1.

The frequency offset in (2.1) is referred to as the AIS frequency offset.
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Two categories of AIS shipborne equipment exist; class A and class B. Class A is ship-
borne mobile equipment using self-organized time division multiple access (SOTDMA)
technology in compliance with requirements set forth by the IMO. For more details on
SOTDMA, see Appendix K. Class B is shipborne mobile equipment not necessarily in
compliance with the requirements set forth by the IMO [31, p. 6].

AIS was developed with collision avoidance and maritime security in mind. The
system allows vessels to exchange the navigational information in their AIS messages
between eachother or the shore. One of the important pieces of navigational information
in the AIS messages is the position information, which is usually obtained using GPS
[16, p. 44]. The AIS messages are sent out using the SOTDMA scheme at a data-
rate rb of 9600 bps using Gaussian minimum shift keying (GMSK) modulation. For a
description of GMSK, see Appendix J. The AIS data in the AIS message is encoded using
a non-return-to-zero inverted (NRZI) waveform. For a description of NRZI encoding,
see Appendix J, Section J.4. The NRZI waveform is encoded using GMSK, and is then
modulated onto the carrier wave with frequency correponding to one of the two AIS
channels. For class A vessels, the resulting AIS signal, containing the AIS message, is
sent out with transmission power 12.5 W. When operating on a single AIS channel, AIS
fits 2250 AIS messages into one minute, and this capacity is doubled when both AIS
channels are used.

A receiving vessel can receive AIS messages from other vessels, when said vessels are
in the line-of-sight of the receiving vessel. If the number of vessels within the line-of-
sight of a receiving vessel exceed the AIS message capacity in regards to how many AIS
messages can be fit into one minute, the SOTDMA scheme reduces the range within
which the receiving vessel can receive AIS messages. This is done by suppressing AIS
message transmissions from far away, prioritizing those close to the receiving vessel [1].

A vessel encodes the information in an AIS message as part of a length-256 bit-string
[31, pp. 24-26]. This is illustrated in Figure 2.1. The number of bits in an AIS message
is denoted Nbit = 256.

Ramp up Training sequence Start flag Data CRC End flag Buffer

8 bits 24 bits 8 bits 168 bits 16 bits 8 bits 24 bits

Figure 2.1: AIS message bit string [31, p. 24].

The parts of these 256 bits that are significant for this thesis are the 168 bits con-
taining the vessel data, the start and end flags, and the cyclic redundancy check (CRC).
This thesis assumes that for successful decoding of the vessel data in an AIS message,
none of the bits in these parts of the overall bit-string can be received in error.

The data part of the bit-string is divided into subsequences of varying length, each
representing certain information about the vessel. An overview of the information en-
coded in the data bit-string is seen in Table 2.2. Notice that the table only shows the
parts of the length-168 data bit-string relevant to this thesis.
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Field (bit #) Description

0− 5 Message type
8− 37 MMSI
50− 59 Speed over ground
60− 60 Position accuracy
61− 88 Longitude
89− 115 Latitude

Figure 2.2: Table of data field bit subsequences and which information they contain [29].

In Table 2.2, message type covers several different types of AIS messages. The ones
relevant for this thesis are the ones indicating whether the AIS message is sent out by a
class A vessel. MMSI is a unique vessel identification number, speed over ground is the
speed of the vessel, and the position accuracy indicates whether the reported position
has an accuracy of above or below 10 m.

Given that an AIS message is encoded as a length-265 bit-string, the AIS data-rate
of 9600 bps yields the AIS message duration

TAIS = 256
9600 ≈ 0.02667. (s) (2.2)

Vessels using AIS are required to report, i.e. transmit their AIS information, at
different time intervals. These time intervals depend on the state of the vessel, including
whether the vessel is anchored, moored or changing course, along with the vessel’s speed
over ground (SOG). An overview of the different states a given class A vessel can be in,
and the corresponding reporting intervals, tr, is seen in Table 2.1 [31, p. 8].

Class A vessel reporting intervals

Vessel status Reporting intervals, tr
If at anchor or moored, and not moving faster than 3 knots. 180 s
If at anchor or moored, and moving faster than 3 knots. 10 s
SOG 0− 14 knots and steady course. 10 s
SOG 0− 14 knots and changing course. 3.3 s
SOG 14− 23 knots and steady course. 6 s
SOG 14− 23 knots and changing course. 2 s
SOG > 23 knots and steady course. 2 s
SOG > 23 knots and changing course. 2 s

Table 2.1: States and reporting intervals for a class A vessel.

A knot is equal to a speed of one nautical mile per hour, where one nautical mile is
equal to 1852 m. Hence, the conversion between knots and km/h is such that a speed
of one knot is equal to 1.852 km/h.
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2.2 Low-earth-orbit satellites and orbit geometry
In order to investigate the feasibility of space-based AIS signal reception using LEO
satellites, the geometry of the orbits of these satellites is explored. A satellite orbit is
the path followed by the satellite in space. This path lies in a plane, referred to as the
orbit plane. LEO satellites travel in circular orbits with constant altitude [24, p. 10].
The altitudes for LEO satellites are approximately between 160 and 1500 km [17, p. 28].

The LEO satellites manufactured by GomSpace are known as cubesats. Cubesats
are small satellites made up of 10 × 10 × 10 cm cube units. The LEO satellites used
in the Starling project are 3U cubesats, which means that they are made out of 3 of
the above mentioned cube units. All satellites manufactured by GomSpace fall within
a category called nano-satellites, which is a class of satellites with mass between 1 and
100 kg.

Figure 2.3 illustrates the field-of-view (FoV) of an LEO satellite. In this thesis, the
FoV for a given moment in time is defined as the part of Earth from which an LEO
satellite can receive AIS signals.

Satellite

bv

p

vs

Figure 2.3: Illustration of FoV on earth for an LEO satellite. The satellite FoV is the red circle, bv is
the sub-satellite point, vs is the velocity vector of the satellite, and p is the vessel.

In Figure 2.3, the sub-satellite point, bv, is the satellite position projected onto
the surface of the Earth. The colatitude and longitude of this point are the spherical
coordinates of the satellite. For colatitude and longitude, see Section F.1. The speed,
vs, of a satellite in a circular orbit is calculated as

vs = ‖vs‖ =
√

η

RE + h
, (km s−1) (2.3)
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in which ‖·‖ is the `2-norm, RE is the radius of Earth, h is the orbit height, and η is the
standard gravitational parameter, which for Earth is 3.986 · 105 km3s−2 [28, p. 19]. The
Earth radius and the orbit height is illustrated in Figure 2.4. Notice that in this thesis,
Earth is assumed to be a perfect sphere, and the orbits of LEO satellites are assumed to
be perfectly circular. Moreover, the satellite orbit and the satellite speed are assumed
unaffected by Earth’s rotation. With these assumptions, the Earth’s angular rotation
speed can be calculated as

ωE = 2π
24 · 60 · 60 = 7.27 · 10−5, (rad s−1) (2.4)

in which the assumption is that a day is exactly 24 hours.

F1F2

RE

Satellite

p

O

hΦ

Figure 2.4: Cross section of Earth and a satellite orbiting Earth, flying directly above a vessel, p in a
direction from right to left in the figure. The dashed line is the satellite orbit, the red circle arc is the
field-of-view of the satellite, and the horizontal solid line is the ideal vessel horizon. Moreover, F1 is the
first point in which the satellite can receive AIS signals from the vessel, and F2 is the last point.

The time period in which an LEO satellite is above the local horizon (as illustrated
in Figure 2.4) and able to receive AIS signals from a given vessel is referred to as a pass.
In practice, a satellite may not be able to receive AIS signals from a vessel until it is a
certain height above the ideal vessel horizon. Due to this, an elevation angle, e ∈ [0, π2 ),
is introduced. This is an angle that determines how far above the ideal vessel horizon
the satellite has to be in its orbit in order to be able to receive AIS signals from the
vessel. The elevation angle is illustrated in Figure 2.5a. This figure illustrates that the
point, F1, has been moved in the satellite orbit, corresponding to the elevation angle.
Effectively, this reduces the size of the satellite FoV.
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sw
s(t)

RE

Satellite

p

O

F1

hΦ

e

(a)

RE + h

sw

RE

p

O

F1

Φ

π
2 + e

q

(b)

Figure 2.5: (a): The elevation angle, e, that determines how far above the ideal vessel horizon the
satellite has to be in order to receive AIS signals from the vessel. The quantity s(t) is the distance
between the satellite and the vessel, and sw is the distance from the vessel to the point F1. (b): Triangle
extracted from Figure 6.8a.

In the triangle in Figure 2.5b, the distance sw is the distance between the vessel
and the satellite when the satellite is at the point in its orbit where it is first able to
receive AIS signals. Making the natural restriction that this distance has to be positive,
applying the law of cosines to the triangle, and solving a resulting quadratic equation,
sw can be expressed in terms of the elevation angle as

sw =
√

(RE sin(e))2 + 2REh+ h2 −RE · sin(e). (2.5)

Another satellite orbit parameter used in this thesis is the inclination, i ∈ [0, π]. The
satellite orbit lies in a plane, referred to as the orbit plane, containing the center of the
Earth. The inclination is the angle between the orbit plane and the equator plane [28,
p. 26]. The inclination is illustrated in Figure 2.6, in which the satellite orbit has been
projected down onto Earth.
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RE i

vs

Satellite orbit

bv

Figure 2.6: Inclination, i, of a satellite orbit. Figure inspired by [2, p. 311].

2.3 Doppler shift
The LEO satellites travel at very high velocities compared to the vessels at sea. This
relative velocity causes what is known as a Doppler shift in the AIS signal frequency. In
this thesis, the Doppler shift is a key parameter of the AIS signal received by a satellite,
and it is used in determining whether the position information encoded in a received
AIS signal has been spoofed. The velocities of the LEO satellites are several kilometers
per second. The relative velocity between the vessel and the satellite is determined by
the rate of change in the distance between them, i.e.

vr(t) = −ds(t)
dt

, (2.6)

in which s(t) is the distance between the vessel and the satellite, as illustrated in Figure
2.5a [43, p. 33]. When the satellite travels closer to the vessel, the relative velocity is
positive, and vice versa. The consequence of the relative velocity is that the frequency
of the AIS signal observed on the satellite is

fobs(t) =
(

1 + vr(t)
c

)
fc,

where c is the speed of light and fc is the carrier frequency of the AIS signal. The change
in frequency, known as the Doppler shift, is

ν(t) = vr(t)
c

fc = fobs(t)− fc.

Due to the nature of the relative velocity in (2.6), the Doppler shift experienced on the
satellite is positive when the satellite is moving towards the vessel and vice versa.

In Figure 2.7, a Doppler shift curve is seen. It is generated based on the scenario
in Figure 1.1, in which the satellite passes directly above the (non-moving) vessel in its
orbit.
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Figure 2.7: Doppler curve for an LEO satellite passing directly above a vessel. The illustration is made
with a satellite with h = 500 km, as is the case in the Starling project. The vessel sends out a signal
with carrier frequency corresponding to AIS channel 1. The elevation angle, e, is 0 degrees.

With the set-up in Figure 2.7, the satellite path from one end of the local horizon
to the other, i.e. the length of the circle arc of the orbit from point F2 to point F1 in
Figure 2.4, is 5829 km. The figure illustrates how the Doppler shift changes throughout
this path. Notice that when the Doppler shift is 0 Hz, the satellite is directly above the
vessel. Moreover, the absolute maximum Doppler shifts experienced by the satellite in
this set-up is when the satellite ascend into the local horizon in the point F1 and when
the satellite descend out of it in the point F2. These maximum Doppler shifts are ±3563
Hz.

An additional illustration of a satellite’s FoV is given in Figure 2.8a, along with an
illustration of the Doppler shifts experienced by the satellite for different vessel positions
within the satellite’s FoV in Figure 2.8b. Notice that in the later figure, it is evident
that a given Doppler shift value does not yield a unique vessel position when a single
satellite is utilized. Notice that whenever an illustration like the one in Figure 2.8a
is shown in this thesis, the geographical coordinates latitude and longitude are shown.
This is in contrast to the spherical coordinates which are also utilized in this thesis.
The definition of, and difference between, geographical and spherical coordinates can be
found in Appendix F.
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(a)

(b)

Figure 2.8: (a): Part of Earth with a part of a satellite trajectory projected onto it. The blue diamond
is the satellite at a point in time, and the red circle is the satellite’s FoV at that time. The satellite is
travelling from the bottom of the figure to the top. Moreover, the geographical coordinates latitude and
longitude are plotted for illustrative purposes. (b): Illustration of the Doppler shifts experienced on the
satellite at the given moment in time, had the AIS signal with carrier frequency f1 been sent from a
given point on the mesh grid. Notice that by assumption, the satellite can only receive AIS signals sent
from within its FoV, but the part of the grid outside the FoV is shown for illustrative purposes.
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3 | Link budget for space-based
AIS signal reception

This chapter illustrates that reception of AIS signals on LEO satellites is feasible, even
though AIS was not originally developed with space reception in mind. This is done by
making a link budget, which is a calculation accounting for gains and losses in signal
strength when the signal travels from transmitter to receiver. In satellite communication,
the path between a transmitter on Earth and a satellite is called a satellite link. This
link consists of a downlink, which is signal transmission from satellite to Earth, and an
uplink, which is signal transmission from Earth to the satellite. This chapter focuses on
the uplink, since in this thesis, LEO satellites receive AIS signals from vessels.

When designing a satellite communication system, knowledge about the required
performance of both the down- and uplink is needed. This performance metric is usually
a bit error rate (BER), which is the probability of bit errors in the transmission of data
in a communications sytem. The BER is closely related to a quantity known as the
carrier-to-noise ratio, measured at the receiver demodulator input. The carrier-to-noise
ratio is the ratio between the signal carrier power and the noise power.

When transmitting radio frequency signals, a signal is sent out with a given power.
When travelling to the receiver, the signal loses strength. Since the link budget accounts
for the gains and losses in signal strength, it shows the strength of the signal at the
receiver. It also shows the minimum requirements for obtaining a given performance
level. The performance level can be expressed using a number of different quantities,
but the most commonly used parameter is the carrier-to-noise ratio.

Unless otherwise stated, this chapter uses lower case letters to denote the numerical
values of a parameter, and the corresponding upper case letters to denote the decibel
(dB) value of the same parameter.

3.1 Transmitter parameters
The parameter describing transmitter performance is the effective isotropic radiated
power (EIRP), defined as [28, p. 101]

eirp = ptxgtx, (W) (3.1)
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or in dBW
EIRP = 10 · log10

(
eirp

1 [W ]

)
= Ptx +Gtx. (dBW) (3.2)

In (3.2), Ptx is the transmission power in dBW, Gtx is the gain of the transmitter antenna
expressed in dBi, i.e. the gain over an isotropic antenna, and log10(·) is the base-10
logarithm. In practice, the power sent out by the transmitter is reduced by cable and
connector losses, and subtracting this quantity in decibel, referred to as Ltx_cc, yields
the transmitter EIRP

EIRPt = Ptx +Gtx − Ltx_cc. (dBW) (3.3)

3.2 Propagation parameters
When propagating from transmitter to receiver, a signal experiences attenuation. If
propagating in empty space, the only loss experienced in the signal is equal to what is
known as the free space path loss, namely [28, p. 103]

Lfs = 20 log10

(4πrfc
c

)
. (dB) (3.4)

In (3.4), r is the distance between transmitter and receiver, fc is the carrier frequency,
and c is the speed of light. The free space path loss is a large contributor to signal
attenuation in satellite communication.

The distance, r, is often chosen to be the largest distance between transmitter and
receiver such that the receiver is able to receive signals form the transmitter. In the
case of a vessel transmitting signals to be received by an LEO satellite, this distance
corresponds to the distance sw in Figure 2.5a.

In practice, other signal attenuation effects occur, resulting in the total signal loss
Ltot = Lfs − Ltx_ap + Lpol + Latm + Lion, (dB) (3.5)

in which Ltx_ap, Lpol, Latm, and Lion are transmitter antenna pointing loss, polarization
loss, atmospheric loss, and ionospheric loss, respectively, expressed in dB.

3.3 Receiver parameters
In satellite communication, a parameter describing the efficiency of the receiver is figure
of merit. This is defined as [17, p. 72]

M = Grx − Trx, (dB/K) (3.6)
in which Grx is the receiver antenna gain expressed in dBi, and Trx is the receiver
system noise temperature expressed in dBK. The parameter Trx includes temperature
noise sources such as antenna temperature, equivalent noise temperature, and inference
noise temperature. For a description of these noise sources, see [28, pp. 106-112]. Further
accounting for cable and connector losses, Lrx_cc, as was done in the transmitter, and
receiver antenna pointing loss, Lrx_ap, results in the figure of merit for the receiver

Mr = Grx − Trx − Lrx_ap − Lrx_cc. (dB/K) (3.7)
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3.4 Performance parameters and requirements
The primary parameter of interest when designing satellite communication systems is
the carrier-to-noise ratio, Cc

N , where Cc is the signal carrier power and N is the noise
power. Expressed in dB, this ratio is defined as [17, p. 74]

Cc
N

= EIRPt +Mr − Ltot − k0 −B, (dB) (3.8)

where k0 is the Boltzmann constant and B is the bandwidth in dBHz. A quantity closely
related to the carrier-to-noise ratio is the carrier-to-noise density ratio (CNDR), which
in dB is defined as [17, p. 74]

Cc
N0

= Cc
N

+B. (dBHz) (3.9)

Often in digital communications systems, a certain BER is desired. Depending on the
modulation type used in the transmitted signal, a given BER equals an energy per bit
to noise spectrum (Eb/N0), given as

Eb
N0

= Cc
N0
− 10 · log(rb), (dB) (3.10)

where rb is the bit rate in bits per second. For GMSK, a plot of BER vs. Eb/N0 is seen
in Figure 3.1. This figure is generated using (J.12) and the GMSK information found in
Section J.3.
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Figure 3.1: Plot of BER vs. Eb/N0 for non-coherent GMSK modulation with bandwidth-time product
BbT = 0.5. For BbT product, see Appendix J.

As evident from Figure 3.1, a desired BER yields a required Eb/N0 value. Rearrang-
ing (3.10), a required Eb/N0 value yields a required carrier-to-noise density ratio on the
receiver in order to obtain the desired BER, i.e.(

Cc
N0

)
req

=
(
Eb
N0

)
req

+ 10 · log10(rb). (dB) (3.11)

The difference between the required CNDR and the CNDR available at the receiver is
called the system link margin. It is defined as

ML = Cc
N0
−
(
Cc
N0

)
req

. (dB) (3.12)

A link budget for the GomSpace Starling project is seen in Table 3.1. Notice that the
elevation angle in this table has been set to 16 degrees, and that the desired BER is
10−5. For this BER, the required Eb/N0 value is 13.6 dB. This is illustrated by the red
lines in Figure 3.1. A plot of link margin versus elevation angle can be seen in Figure
3.2.
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Paramter Variable Note Value Unit
Link parameters

Carrier frequency fc AIS channel 1 161.975 MHz
Speed of light c 299792.458 km·s−1

Boltzmann constant k0 −228.6 dBW/K/Hz
Satellite parameters

Orbit height h 500 km
Earth radius RE 6378.137 km
Elevation angle e 16 degrees
Tx-rx distance r Equation (2.5) 1359.46 km

Transmitter parameters (AIS transmitter)
Tx antenna gain Gtx Considered isotropic 0 dBi
Tx power ptx Class A vessel 12.5 W
Tx power Ptx 10 · log10(ptx) + 30 40.97 dBm
Tx cable and Ltx_cc 2 dB
connector loss
EIRP tx EIRPt Equation (3.3) 8.97 dBW

Propagation parameters
Tx antenna pointing Ltx_ap Isotropic antenna 0 dB
loss
Polarization loss Lpol Worst case 3 dB
Free space path loss Lfs Equation (3.4) 139.3 dB
Atmospheric loss Latm 2.1 dB
Ionospheric loss Lion 0.4 dB
Total signal loss Ltot Equation (3.5) 144.80 dB

Receiver parameters
Rx antenna pointing Lrx_ap 0 (N/A) dB
loss
Rx antenna gain Grx 0 (N/A) dB
Rx cable and Lrx_cc 2 dB
connector loss
Rx system noise Trx 34.24 dBK
temperature
Rx figure of merit Mr Equation (3.7) −36.24 dB/K

Required carrier-to-noise density ratio
Data rate rb AIS data rate 9600 bps
Bit error rate PG Desired BER 10−5

at 10−5

Desired Eb/N0
(
Eb
N0

)
req

Non-coherent GMSK, 13.6 dB
computer simulated

Required CNDR
(
Cc
N0

)
req

Equation (3.11) 53.4 dBHz
Available carrier-to-noise density ratio

Available CNDR Cc
N0

Equation (3.9) 56.23 dBHz
System link margin

System link margin ML Equation (3.12) 3.11 dB

Table 3.1: Link budget for the GomSpace Starling project.
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Figure 3.2: Link margin vs. elevation angle. Figure is generated with a desired BER of 10−5 percent.

The packet error probability (PEP) is

Pp(Nb) = 1− (1− PG))Nb ,

where Nb is the number of bits in the packet. With a desired BER of PG = 10−5 in the
receival of AIS signals on-board LEO satellites,

Pp(200) = 1− (1− PG))200 = 0.00199, (3.13)

i.e. there is a 0.2 percent risk that an AIS message is received erroneously by the satellite.
The factor 200 in (3.13) is the summation of the number of bits contained in the start
and end flag, data, and CRC parts of the AIS message, as shown in Figure 2.1. This
is the number of bits in the AIS message in which, if an error occurs, the message is
received erroneously.
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4 | Space-based AIS system anal-
ysis

This chapter describes the generation and transmission of AIS signals on-board the
vessel, and the reception and processing of these AIS signals on-board the satellite. The
overall space-based AIS system is illustrated in Figure 1.3.

Initially, the transmission side is described. This corresponds to the first block in
Figure 1.3. After this, the receiver side is described, corresponding to the third block in
Figure 1.3. In both of these descriptions, the observable quantities such as the satellite
position, Doppler shifts, and the alleged vessel position, i.e. the position that needs to
be checked for position spoofing, are described. These observable quantities are what
the position spoofing detection will be based on.

Eventually, GomSpace’s Doppler shift estimator is described and its performance
assessed. This includes simulating its mean square error, root mean square error, and
bias.

4.1 Vessel AIS signal generation and transmission
Figure 4.1 shows a block diagram of the transmission of N AIS messages from a single
vessel. Starting from left to right in the figure, the dashed-line block, named AIS info,
is the encompassing of AIS data from data sources such as GPS. The collected AIS
info is passed to an AIS encoder, which combines the AIS data to an AIS message.
Each message is then NRZI encoded and GMSK modulated. The output of the GMSK
modulator is a complex baseband signal denoted by x(t). Translating x(t) to a carrier
frequency and highpass filtering this signal results in the AIS signal, u(t) for transmission.
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Figure 4.1: Block diagram of the AIS transmitter on-board a vessel. AIS information for N AIS
messages is passed into the AIS encoder. The output of this encoder is a length-256 bit-string b(n), as
described in Section 2.1, and an AIS message starting time T (n)

T for each of the N AIS messages. These
are NRZI encoded and GMSK modulated. From the GMSK block, the resulting signal x(t) is mixed
with a carrier wave produced by the oscillator of the vessel. Eventually, the mixed signal is high-pass
filtered, resulting in the signal, u(t), for transmission.

The AIS signal, u(t), is modelled as

u(t) = Re
(
x(t)ej(ωc+ωoff )t

)
,

where ωc and ωoff are an angular carrier frequency and an angular carrier frequency
offset, respectively, and

x(t) =
N−1∑
n=0

Atx(t− T (n)
T )e

jφ

(
t−T (n)

T ,q(n)
)
, (4.1)

is the complex baseband representation of u(t). For theory concerning complex baseband
signal representation, see Appendix I. Here, T (n)

T is the starting time of the n’th AIS
message, φ

(
t, q(n)

)
∈ R is a time-varying phase conveying the AIS information encoded

in the NRZI sequence, q(n), and Atx(t) is a time-varying amplitude given by

Atx(t) =
{

1 0 ≤ t ≤ TAIS ,
0 otherwise.

Consider again the dashed line box in Figure 4.1, labelled AIS Info. This box illustrates
different data generators, one of which is a GPS data generator that provides vessel
colatitude and longitude, which in this thesis is denoted by the corresponding Cartesian
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coordinate vectors
(
p(n)

)N−1

n=0
, which are referred to as the true vessel positions. These

are the positions which may be subject to position spoofing. Furthermore, vessel data
is provided, e.g. MMSI number. Lastly, info such as the speed over ground (SOG),
heading (HDG) and rate-of-turn (ROT) is provided.

The true vessel positions are passed into a position spoofing block, in which a pa-
rameter S determines whether the vessel is spoofing its position or not. The output
of this block is the alleged vessel positions, denoted as the cartesian coordinate vectors(
a(n)

)N−1

n=0
, which are equal to the true vessel positions if spoofing is not occuring, and

not equal to the true vessel positions if spoofing is occuring.
Data is passed into the AIS encoder. Here, the AIS data is ordered and encoded.

Moreover, a function ft(Dd) is shown in this box. This is a function which, based on
the collection of data, Dd, passed into the AIS encoder box, determines the time instant
T

(n)
T , in which a given AIS message is to be transmitted.
The output of the AIS encoder box is pairs of bit strings, b(n), and time instants,

T
(n)
T . These pairs are denoted

(
(b(n), T

(n)
T )

)N−1

n=0
, where

b(n) =
[
b(n,0) b(n,1) . . . b(n,Nbit−1)

]>
with

b(n,m) ∈ {0, 1} m = 0, 1, . . . , Nbit − 1.

is the bit string corresponding to the AIS message to be sent out at time T (n)
T , and

T
(i)
T > T

(j)
T > 0 for i > j, i, j = 0, 1, . . . , N − 1.

Next,
(
(b(n), T

(n)
T )

)N−1

n=0
is passed into the NRZI block. In this block, the bit strings,

b(n), are NRZI encoded, and a length-256 NRZI vector for each of the N AIS messages
is the output of the block. These vectors are denoted as

(
q(n)

)N−1

n=0
. The content of one

of these vectors is
q(n) =

[
q(n,0) q(n,1) . . . q(n,Nbit−1)

]>
(4.2)

with
q(n,m) ∈ {±1} m = 0, 1, . . . , Nbit − 1.

The vector in (4.2) is referred to as the data symbols of the n’th AIS message. Also
evident from (4.2) is the fact that NRZI encodes a bit string consisting of 1s and 0s into
a string consisting of ±1s. This happens with a one-to-one correspondence between b(n)

and q(n).
Next,

(
(q(n), T

(n)
T )

)N−1

n=0
is passed as input to the GMSK box, where the GMSK signal

x(t) is generated. The signal x(t) is passed through a complex mixer, where it is mixed
with a complex exponential with frequency ωc + ωoff , where ωc = 2πfc. The mixer is
described in Appendix H. Moreover, ωoff = 2πfoff corresponds to the frequency offset
from ωc happening in the oscillator (the OSC block) of the vessel. This frequency offset
is due to the ±3 ppm frequency offset referred to in Section 2.1.
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The signal resulting from the mixer is high-pass filtered to eliminate the difference
frequencies created in the mixer. The output of the filter is u(t).

4.2 Satellite AIS signal reception
On the receiver side of the system, i.e. the receiver block in Figure 1.3, reception, de-
modulation, and decoding take place. In Figure 4.2 the receiver side is illustrated. It
illustrates the reception of N AIS messages.
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Figure 4.2: Block diagram over the AIS receiver embedded in the satellite. The signal, r(t), received
by the satellite is passed through a bandpass filter to filter out interfering signals and out of band noise.
The filter output is then mixed with a complex exponential generated by the GPS disciplined oscillator
of the satellite. The resulting signal is low-pass filtered and the resulting signal is passed into the digital
receiver, which estimates the data symbols, q(n), and the carrier-frequency offset, ζ(n), for each of the
N AIS messages. The data symbols are NRZI decoded, and eventually the bit-strings resulting from the
NRZI decoder are decoded in the AIS decoder, and vessel data is returned.

The signal, r(t), received by the satellite represents the AIS signal transmitted by
the vessel, the channel effects, along with interfering signals and noise. It is given as

r(t) = h(t) + i(t) + n(t),

where i(t) is interfering signals, n(t) is assumed circularly symmetric gaussian noise with
variance σ2

n > 0, and
h(t) = Re

(
ỹ(t)ejωct

)
,

where
ỹ(t) = E(t)x(t− τ(t))ej2πζ(t)t, (4.3)

ζ(t) = ν(t)+foff is the carrier frequency offset, and ν(t) is the Doppler shift. Moreover,
E(t) is real-valued attenuation of the AIS signal and τ(t) is a propagation delay.

Passing r(t) through a bandpass filter designed to reduce image response and atten-
uate interfering signals and noise, the output of the filter, ũ(t), is given as

ũ(t) = Re
(
y(t)ejωct

)
,

where
y(t) = E(t)x(t− τ(t))ej2πζ(t)t + w(t). (4.4)
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In (4.4), y(t) is the output of the low-pass filter illustrated in Figure 4.2 and w(t) is
assumed band-limited circularly symmetric gaussian noise with variance σ2

w > 0.
Next, ũ(t) is mixed with a complex exponential with frequency ωc. By assumption,

this complex exponential stems from a GPS disciplined oscillator, which means that it
oscillates at the given frequency with very little or no variation. Sum and difference
frequencies are created, and the signal is passed to a low-pass filter in order to reject the
sum frequencies. The filter output is passed to the digital receiver.

An important part of the digital receiver is the estimation of the carrier frequency
offset. The digital receiver outputs an estimate, ζ̂(n) of the carrier frequency offset,

ζ(n) = ν(n) + foff . (4.5)

The assumption that the Doppler shift experienced by the satellite in the duration of the
n’th AIS message is constant is made, hence the notation ν(n) is used for the Doppler
shift for the n’th AIS message in (4.5). Furthermore, data symbol estimates, q̂(n), and
estimates, T̂ (n)

R , of the time-of-arrival

T
(n)
R = T

(n)
T + τ (n), (4.6)

of the n’th AIS message are outputs from the digital receiver. In (4.6), the assumption
that τ(t) is approximately constant during the duration of the n’th AIS message is made,
hence the notation τ (n). Based on the time-of-arrivals, it is assumed that GomSpace is
able to determine the report interval, tr, used by the vessel in question, hence why it is
an output of the digital receiver.

When generating the data that is used in this thesis, the propagation delay is ne-
glected, i.e. T (n)

T = T
(n)
R when generating data. The reasoning behind this is that the

propagation delay is approximately equal to the time it takes light to travel the distance
sw in Figure 2.5a. In this worst-case scenario, the propagation delay can be calculated
based on (2.5) and is approximately equal to 9.44 ms with an elevation angle e = 0
(raising the elevation angle only makes the propagation delay smaller). The change in
vessel position during this timeframe is negligible. Since the vessel position does not
change, whether the satellite receives the AIS signal at time T (n)

T or at time T (n)
R does

not change the end result for the simulations carried out later in this thesis.
The last outputs of the digital receiver are pairs of satellite positions. The Starling

project LEO satellites are equipped with GPS able to sample the satellite position with
a frequency, fp of up to 100 Hz. It is assumed that this maximum frequency is utilized.
Another assumption is that for the n’th AIS message received at time T (n)

R , two satellite
positions are available. The first satellite position s(n)

α is the one sampled by the on-board
satellite GPS at time

T (n)
α =

⌊
T

(n)
R · fp

⌋
· f−1
p . (4.7)

The second satellite position s(n)
β is the one sampled at time

T
(n)
β =

⌈
T

(n)
R · fp

⌉
· f−1
p . (4.8)
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In (4.7) and (4.8), b·c and d·e are the floor and ceiling operators, respectively. The
expression in (4.7) corresponds to a mapping of T (n)

R to the greatest integer multiple of
f−1
p less than or equal to T (n)

R , and the expression in (4.8) corresponds to a mapping of
T

(n)
R to the least integer multiple of f−1

p greater than or equal to T (n)
R .

After the digital receiver,
(
(q̂(n), T̂

(n)
R )

)N−1

n=0
is passed to the NRZI decoder, which

decodes the estimate of the data symbols,
(
q̂(n)

)N−1

n=0
. The output of this block is the

estimate of the N bit strings. This output,
(

(b̂(n)
, T̂

(n)
R )

)N−1

n=0
, is now passed to the AIS

decoder, which decodes the N bit strings,
(
b̂

(n)
)N−1

n=0
. The output of this block is the

AIS information. Specifically, the alleged vessel position, a(n), of the n’th AIS message
is among these outputs.

In conclusion, the observable quantities, on which position spoofing detection will be
based, are the satellite positions, the carrier frequency offsets, the report interval, the
time-of-arrivals, and the alleged vessel positions.

4.3 Carrier frequency offset estimator
This section introduces the carrier frequency offset estimator used by GomSpace.

Recalling the complex baseband representation in (4.4) of the received passband
signal, the part of the signal corresponding to the n’th AIS message is

y(n)(t) = E(n)x(n)(t− τ (n))ej2πζ(n)t + w(n)(t) T
(n)
R ≤ t ≤ T (n)

R + TAIS , (4.9)

where the signal amplitude is assumed constant during the n’th AIS message, hence the
notation E(n). Furthermore,

x(n)(t) = Atx(t− T (n)
T )e

jφ

(
t−T (n)

T ,q(n)
)
, T

(n)
T ≤ t ≤ T (n)

T + TAIS .

Now, (4.9) can be reduced to

y(n)(t) = E(n)e
jφ

(
t−T (n)

T ,q(n)
)
ej2πζ

(n)t + w(n)(t), T
(n)
R ≤ t ≤ T (n)

R + TAIS , (4.10)

since Atx(t) is equal to one during the n’th AIS message. Now, consider Ps samples of
the n’th AIS message in (4.10) over its time duration, given as

y(n)(pTs) = y(n,p) = E(n)ej(2πζ(n)p+φ(n,p)+ψ(n)) +w(n,p), p = 0, 1, . . . , Ps−1, (4.11)

where Ts is the sampling period, and w(n,p) is a colored band-limited complex normal
circular symmetric process. The correlation in the noise samples are created during the
sampling process, in which GomSpace uses a sampling frequency fs > 2B, where B is the
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bandwidth of w(t). This is elaborated on in Section 4.4 and Appendix L. Furthermore,
in (4.11), the samples of the phase φ(n,p) ∈ P =

{
π
4 ,

3π
4 ,

5π
4 ,

7π
4

}
, and ψ(n) ∈ R is a

phase offset caused by the sampling process that is assumed constant during the n’th
AIS message.

The carrier frequency offset can be estimated utilizing the discrete Fourier transfor-
mation [7, p. 1725-1726]. In order to realize this, a non-linear transformation of the
signal in (4.11) is carried out. This transformation raises the sampled signal in (4.11) to
the K’th power, where K = card(P). This results in

k(n,p) =
(
y(n,p)

)K
=
(
E(n)

)K
e
j

(
ζ

(n)
K ·p+φ

(n,p)
K +Kψ(n)

)
+ v(n,p), p = 0, 1, . . . , Ps − 1,

(4.12)
where ζ(n)

K = 2Kπζ(n), φ(n,p)
K = Kφ(n,p), and by the binomial theorem

v(n,p) =
K−1∑
i=0

(
K

i

)(
E(n)

)i (
w(n,p)

)K−i
eji(2πζ(n)p+ψ(n)).

In GMSK, K = 4, and thus φ(n,p)
K ∈ {π, 3π, 5π, 7π}. This makes ejφ

(n,p)
K = −1 in (4.12).

Therefore, when raising the signal in (4.11) to the 4’th power, the resulting signal

k(n,p) = −
(
E(n)

)K
e
j

(
ζ

(n)
K p+Kψ(n)

)
+ v(n,p), p = 0, 1, . . . , Ps − 1, (4.13)

can be seen as a constant amplitude complex exponential with frequency ζ(n)
K in complex

non-Gaussian, zero-mean additive noise. Other modulation schemes have different K-
values, e.g. K = 2 for pulse amplitude modulation, and K = 4 for quadrature amplitude
modulation [7, p. 1725]. Due to this fact, and to preserve generality, K is kept as a
variable in the succeeding derivations. In order to make these derivations easier, (4.13)
is rewritten as

k(n,p) =
(
E(n)

)K
e
j

(
ζ

(n)
K ·p+ψ

(n)
K

)
+ v(n,p), p = 0, 1, . . . , Ps − 1,

where ψ(n)
K = Kψ(n) + π. Now, non-linear least squares (NLLS) can be utilized to

estimate the scaled carrier frequency offset, ζ(n)
K . In this setup, the NLLS problem is

that of determining values that minimize the expression

f
(n)
∆ =

P−1∑
p=0

∣∣∣∣∣k(n,p) −
(
E(n)

)K
e
j

(
ζ

(n)
K ·p+ψ

(n)
K

)∣∣∣∣∣
2

. (4.14)

In Appendix G, the derivations leading to the estimates of ζ(n)
K and ψ

(n)
K are found.

These estimates are [41, p. 58]

ψ̂
(n)
K = arg

P−1∑
p=0

k(n,p)e−jζ̂
(n)
K ·p

 ,
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where arg(·) is the argument of a complex number, and

ζ̂
(n)
K = argmax

ζ
(n)
K

∣∣∣∣∣∣
P−1∑
p=0

(
k(n,p)e−jζ

(n)
K ·p

)∣∣∣∣∣∣ . (4.15)

In (4.15), it is seen that the estimate of ζ(n)
K corresponds to estimating the frequency

yielding the highest value in the magnitude spectrum of k(n,p). Based on the estimate
of ζ(n)

K , the digital receiver outputs estimates ζ̂(n).

4.4 Carrier frequency offset estimator simulation

GomSpace samples the complex baseband signal from (4.9) at the receiver on-board the
Starling satellites with a sampling frequency fgs = 38.4 kHz, yielding

Pgs = fgs · TAIS = 1024

samples per AIS message. The company has provided software for simulating the trans-
mission and receival of AIS messages, in which the carrier frequency offset, ζ, can be
varied before its estimation. This process can be seen in Figure 4.3. In this figure, the
software provided by GomSpace is represented by the second block. Notice that this
block is treated as a black box. Based on (4.11), samples of the n’th transmitted AIS
message can be defined as

x(n,p) = ej(φ
(n,p)+ψ(n)), p = 0, 1, . . . , Pgs − 1

Omitting the superscript n, denoting a particular AIS message, for the remainder of this
section, the output of the second box in Figure 4.3 is the Doppler shifted transmitted
AIS signal samples without noise, where

x =
[
x(0) x(1) . . . x(Pgs−1)

]>
,

and x(p) = ej(φ
(p)+ψ), p = 0, 1, . . . , PGS − 1, and

ex =
[
1 ej2πζ ej4πζ . . . ej2πζ(Pgs−1)

]>
.

Raising the Pgs samples to the 4’th power quadruples the carrier frequency offset, as
evident from (4.12). Fast Fourier transforming the 1024 transformed samples yields an
FFT bin width

∆ζK = fgs
Pgs

= 37.5, (Hz) (4.16)

but when ζK has been estimated, it is divided by 4 to yield the estimate of ζ, which also
reduces the FFT bin width to

∆ζ = ∆ζK

4 = 9.375. (Hz) (4.17)
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+ 4)GS frequency
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Figure 4.3: Block diagram illustrating the process of generating a single AIS message, adding complex
noise to the signal, and estimating the carrier frequency offset. The symbol ”◦” denotes the Hadamard
product, also called entry-wise multiplication. The GomSpace (GS) AIS signal block and the GS fre-
quency estimator block are considered black boxes in this thesis.

In this thesis, the estimator in (4.15) is simulated for Neb = 200 Eb/N0 values (in
dB). These values are

eb =
[
−6.07 −6.07 + 0.126 . . . −6.07 + (Neb − 1) · 0.126

]>
.

For a particular Eb/N0 value e(i)
b , i = 0, 1, . . . , Neb−1, the number of simulations carried

out are
N

(i)
sim =

{
50000 if e(i)

b ∈ [7.4, 12]
2000 otherwise.

(4.18)

The reason for simulating certain Eb/N0 values more than others is that simulations
have shown that the interval in (4.18) is the one in which the error on the estimator
begins to increase. For the i’th Eb/N0 value, N (i)

sim AIS messages are independently
generated using GomSpace software, illustrated by the second block in Figure 4.3, and
corresponding carrier frequency offset values are drawn as

ζ(i,l) ∼ unif [−(3564.42 + 485.925), (3564.42 + 485.925)] , (4.19)

for l = 0, 1, . . . , N (i)
sim−1. In (4.19), the start and end point of the interval corresponds to

the sum of the maximum Doppler shift as seen in Figure 2.7 and the ±3 ppm frequency
offset for AIS channel 1 as seen in (2.1).

In order to obtain the given Eb/N0 value, correlated complex noise is added to
each of the generated AIS signals according to the procedures described in Appendix L.
Moreover, for the i’th Eb/N0 value, the mean square error (MSE) is calculated as

MSE(i) = 1
N

(i)
sim

N
(i)
sim−1∑
l=0

|ζ(i,l) − ζ̂(i,l)|2, i = 0, 1, . . . , Neb − 1,
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and the root mean square error (RMSE) is calculated as

RMSE(i) =
√
MSE(i),

where ζ̂(i,l) = ζ̂
(i,l)
K

2πK , and ζ̂(i,l)
K is estimated by GomSpace’s carrier frequency offset esti-

mator, with K = 4, as shown in the fourth block in Figure 4.3. Notice that the imple-
mentation of the estimator is out of the scope of this thesis. A software implementation
of the estimator has been provided by GomSpace.

Moreover, the bias of the estimator is estimated as

Bias(i) = 1
N

(i)
sim

N
(i)
sim−1∑
l=0

ζ(i,l) − ζ̂(i,l), i = 0, 1, . . . , Neb − 1.

The resulting simulations of the MSE and RMSE of GomSpace’s carrier frequency offset
estimator can be seen in the Figures 4.4 and 4.5. In these plots, two horizontal dashed
lines are drawn, corresponding to the variance and standard deviation of a uniform
random variable. These are calculated as

σ2
u =

∆2
ζ

12 = 7.32 (4.20)

and
σu =

√
σ2
u = 2.71.

The plots show that at high Eb/N0 values, i.e. higher than approximately 10.75 dB,
the variance of the estimator is approximately equal to that of a continuous uniform
random variable with support size equal to ∆ζ from (4.17). Notice that this is variance
conditioned on knowing the carrier frequency offsets, but in this thesis the errors are
assumed independent of the carrier frequency offsets.

The simulations of the bias of the estimator can be seen in the Figures 4.6 and 4.7.
These simulations show that the estimator is approximately unbiased at high Eb/N0
values, i.e. higher than approximately 10.75 dB. The variance on the bias estimator is
seen to increase when going below this threshold value.

In combination, the MSE and bias simulations show that at high Eb/N0 values, the
estimator is approximately unbiased, and hence the MSE is an estimate of the variance
of the estimator.

In conclusion, it is evident from the simulation plots that the desired Eb/N0 of
13.6 dB from the link budget in Chapter 3 results in an estimator that is approximately
unbiased and whose MSE is approximately equal to the variance of a continuous uniform
random variable with support size equal to ∆ζ .
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Figure 4.4: MSE and RMSE for the estimator in (4.15) for 200 different Eb/N0 values.
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Figure 4.5: Zoom of the tail of the graph in Figure 4.4.
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Figure 4.6: Estimate of bias for the estimator in (4.15) for 200 different Eb/N0 values.

8 10 12 14 16 18 20
Eb/N0 [dB]

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

B
ia

s 
[H

z]

Bias vs. Eb/N0

0 Hz

Figure 4.7: Zoom of the tail of the graph in Figure 4.6.



33

5 | Problem statement

Based on the space-based AIS system analysis up until this point of the thesis, the
observable data available for AIS position spoofing detection is, amongst other, the
carrier frequency offsets, the satellite positions and the alleged vessel positions. Detection
of position spoofing will be examined based on estimates of the carrier frequency offsets
experienced by LEO satellites receiving AIS signals. Cases in which a single LEO satellite
is utilized are examined, as well as cases where two LEO sateliltes flying in constellation
are examined.

Intuitively, basing the spoofing detection on said observables, and in particular the
Doppler shift, seems reasonable. Individuals wanting to mask their position spoofing
from Doppler shift based spoofing techniques would need to send out AIS signals from
their true position with a carrier frequency that, when received by the satellite, match
their spoofed position. This would require knowledge about the velocity, position and
orbit of the satellite at the time of an AIS message transmission. Furthermore, it would
require an oscillator on-board the vessel that can generate carrier waves across a rela-
tively wide range of frequencies.

A disadvantage in the space-based AIS system is that of overlapping AIS messages
from different vessels [44, pp. 2529-2530]. The partial, or complete, overlap of AIS
messages is a consequence of receiving AIS messages from space. Depending on the
degree of overlap, algorithms for the separation of overlapping AIS messages exist [44, p.
2529]. However, separation of colliding AIS messages is out of the scope of this thesis,
hence the assumption is that no overlapping of AIS messages occurs and that the vessel
information in the received messages is not contaminated by overlapping.

In conclusion, the aim of this thesis is to be able to detect AIS positon spoofing based
on the carrier frequency offsets, and thus indirectly on the Doppler shifts, experienced
on the LEO satellites.

5.1 Problem statement
Based on the system analysis and description in the Chapters 2 and 4, the problem
statement in this thesis is

• Can AIS position spoofing be detected based on the observable variables in the
space-based AIS sytem?
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• How can a spoofing detection algorithm be constructed?

• When can AIS position spoofing be detected?
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6 | Space-based AIS system data
generation

This chapter describes how data is simulated in this thesis. Data is simulated in this
thesis since no real world data has been available. Data simulated according to the
descriptions in this chapter has no error modelling to compensate for real-world mea-
surement errors and noise. The modelling of errors is described in Chapter 7. The
procedures described in this chapter generate the data associated with M ≥ 1 satellites
simultaneously receiving N AIS messages sent out by a single vessel, i.e. each of the N
AIS message are received by all of theM utilized satellites. This data includes the times
at which the vessel sent out each of the N AIS messages, the position encoded in each
of these messages, the carrier frequency used to send out each of these messages, and M
pairs of satellite points upon receival of the n’th AIS message for n = 0, 1, . . . , N − 1. A
block diagram of the data generation can be seen in Figure 6.1. The output data that
is denoted using a tilde is the data for which, in Chapter 7, errors will be modelled. A
common notation in this chapter is S2 =

{
x ∈ R3 | ‖x‖ = 1

}
, which is the unit sphere.

The set of inputs when generating data is

Dinput =
{
tr,p

(0)
v , vv, S, ds, φdir, µdir, i

(0),Ω(0)
off , i

(1),Ω(1)
off , . . . , i

(M−1),Ω(M−1)
off

}
,

where

• tr is the reporting interval of the vessel.

• p(0)
v ∈ S2 is the first true vessel position.

• vv ≥ 0 is the speed by which the vessel travels.

• S ∈ {0, 1} determines whether the vessel is spoofing its position. If S is set to 0,
the vessel is not spoofing its position. If S is set to 1, the vessel is spoofing its
position.

• ds ≥ 0 is how far away the vessel is spoofing its position.

• φdir ∈ [0, 2π) determines the direction in which the vessel is spoofing its position
if spoofing is occuring.
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Figure 6.1: Data generation block diagram. The arrows not pointing to a block symbolize the data
output. Notice that whenever index superscripts are used in this figure, this is to be understood as
inputs and outputs being passed between the blocks for n = 0, 1, . . . , N − 1 and/or m = 0, 1, . . . ,M − 1,
e.g. when writing p(n) this is to be understood as p(n) for n = 0, 1, . . . , N − 1.

• µdir ∈ [0, 2π) determines the direction in which the vessel is heading.

• i(m) ∈ [0, π] is the orbit inclination of the m’th satellite for m = 0, 1, . . . ,M − 1.

• Ω(m)
off ∈ [0, 2π) is an angle used to make the m’th satellite orbit pass the vessel p(0)

v

at an angle.

The output of the data generation is, for n = 0, 1, . . . , N − 1,

• T (n)
T ≥ 0, the time at which the vessel sends out its n’th AIS message.

• ν̃(n,m) ∈ R, the Doppler shift experienced on the m’th satellite upon receiving the
n’th AIS message at time T (n)

T .

• p(n) ∈ S2, the true vessel positions.

• ã(n) ∈ S2, the alleged vessel positions, i.e. the positions encoded in the AIS mes-
sages, which may be subject to spoofing.

• f (n)
c ∈ {f1, f2}, the carrier frequency used to send out the n’th AIS message.

• s̃(n,m)
α , s̃

(n,m)
β ∈ S2, pairs of satellite positions for the m’th satellite upon receiving

the n’th AIS message.
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Notice that the elevation angle, e, and the satellite orbit height, h, are also used in the
data generation. These are assumed fixed at e = 16 degrees, due to the link budget
from Chapter 3, and h = 500, which is chosen based on the GomSpace Starling project.
Moreover, a parameter fp is used in the data generation, which is the assumed sampling
frequency of the GPS embedded on the satellite. This is set to 100 Hz, based on the
GomSpace Starling project. Notice that in the succeeding chapters, whenever a single
satellite receiving N AIS messages is used, i.e. when M = 1, the notation ν(n) is used
for the Doppler shift experienced on the satellite upon receiving the n’th AIS message
and the pairs of satellite points are denoted (s̃(n)

α , s̃
(n)
β ). In other words, the satellite

superscript is suppressed in the notation. Whenever this is the case, it is clear from the
context.

Notice that the data generation in this chapter does not compensate for the fact that
some packages may be lost due to the packet error probability shown in (3.13). Instead,
this is compensated for in the end of Chapter 7, in which error modelling is described.

6.1 Simulation of AIS transmission times
This section outlines the procedure in block 1 in Figure 6.1. The simulation of AIS
message transmission times starts at time t = 0. The simulation of these transmission
times is based on the SOTDMA scheme, which is described in Appendix K. The initial
AIS message is sent out at time

T (0)
v ∼ unif[0, TAIS , 2 · TAIS , . . . , tr],

where tr is the reporting interval in seconds of the vessel, as described in Section 2.1.
The succeeding AIS message transmission times are generated as

T (j)
v = T (0)

v + j · tr
TAIS

+ w(j), j = 1, 2, . . . , J − 1,

where
w(j) ∼ unif ([−I, I] ∩ Z) ,

and
I =

⌊225
tr

⌋
,

which corresponds to the selection interval described in Appendix K. This procedure is
illustrated in Figure 6.2a and 6.2b. All the transmission times are collected in the set

Tv =
{
T (j)
v

}J−1

j=0
. (6.1)

Lastly, making the assumption that the speed, vv of a given vessel is constant during
a pass, the report interval, tr, used by said vessel can be determined by GomSpace by
utilizing the relatively large gap between different report intervals, as evident from Table
2.1.
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t = 0

t = TAIS

t = 2 · TAIS

t = tr
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· · · · · · · · · · · ·

TAIS

· · ·

T
(0)
v

j · tr
TAIS

2I + 1
T

(j)
v unif. on these tansmission slots

(b)

Figure 6.2: (a): SOTDMA transmission slots on which T (0)
v is chosen. (b): SOTDMA transmission

slots on which T (j)
v is chosen for j = 1, 2, . . . , J − 1.
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6.2 Simulation of satellite orbit
This section outlines the procedure in block 2 in Figure 6.1. It proceeds by constructing
a mathematical expression that describes a circular satellite orbit, which can be sampled
in time to obtain satellite positions. Having created this expression, a new expression
describing a satellite orbit in which Earth’s rotation has been accounted for is created.
The expression in which Earth’s rotation has been taken into account can also be sampled
in time in order to obtain satellite positions. The expression accounting for Earth’s
rotation is named g1, and is the one utilized when creating satellite positions.

The mathematical expressions developed in this section to describe satellite orbits
are based on the expression for a circle in three dimensions with unit radius and center
in origo. This is a function g : R+ × S2 × S2 7→ S2 expressed as

g(t,u,n) = cos
(2πt
To

)
u+ sin

(2πt
To

)
n× u, (6.2)

where
To = 2π(RE + h)

vs
(s) (6.3)

is the time it takes for the satellite to travel one orbit, n is a normal vector, u is a
vector perpendicular to n, and ”×” is the vector cross product. Moreover, vs is the
speed of the satellite as calculated in (2.3). Notice that the function in (6.2) is such that
g(0,u,n) = u.

Generating a circular satellite orbit that crosses directly above a vessel position

p(0)
v =

[
sin(θp) cos(φp) sin(θp) sin(φp) cos(θp)

]>
is done with the function

g0
(
t,p(0)

v , i
)

= g (t,u0,n0 (u0)) . (6.4)

In (6.4), u0 is given as
u0 =

[
cos (φ0) sin (φ0) 0

]>
, (6.5)

in which
φ0 =

{
φp − a2 if φp ≥ a2

2π + φp − a2 if φp < a2

and
a2 = cos−1

(cos(a3)
cos(a1)

)
, (6.6)

in which
a3 = sin−1

(sin(a1)
sin(i)

)
(6.7)

and
a1 = π

2 − θp. (6.8)
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Figure 6.3: Earth depicted as a unit sphere. Vessel position, p(0)
v , on the northern hemisphere and

part of a satellite orbit (red solid line).

The calculation of u0 relies on the geometry seen in Figure 6.3, and the calculation of
the triangle sides in (6.6)-(6.8) follows from right spherical triangle identities. Notice
that choosing u0 as described above ensures that it lies in the x − y plane. Thus, the
generated orbit starts at Equator at time t = 0. All LEO satellite orbits cross Equator,
hence this choice. Moreover,

n0(u0) = R

(
u0,−

(
i− π

2

))
Rz

(
−π2

)
u0. (6.9)

Choosing n as in (6.9) ensures that the normal vector is perpendicular to u0 and that
the satellite orbit generated from the function g0 has the right orbit inclination. In (6.9),
n0 is the result of a clockwise rotation of u0 around the z-axis followed by a clockwise
rotation around u0. The matrices Rz and R, which are rotations around the z-axis and
an arbitrary axis, respectively, are described in Appendix F, Section F.2. Notice that
the condition

i ≥ π

2 − θp, for 0 ≤ i ≤ π

2 .

must be fulfilled for the satellite to be able to fly directly above the point p(0)
v . An

example of an orbit generated using (6.4) can be seen in Figure 6.4. In order to generate
a satellite orbit in which Earth’s rotation has been accounted for, the expression

g1(t, i,p(0)
v ,Ωoff ) = Rz(ωE · t)g(t,u1,n1(u1)) (6.10)

is used. The quantity
ωE = 2π

TE
, (rad s−1) (6.11)
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Figure 6.4: A vessel, p(0)
v , at colatitude 0.80 and longitude 0.52 and with i = 70 · π

180 as inclination
angle. Moreover, 109 evenly spaced satellite orbit points are illustrated. The length of the normal vector,
n0, has been extended for illustrative purposes.

is the angular rotation speed of Earth and TE is the duration of a day. In (6.10), u1 is
based on u0 from (6.5) and a3 as given in (6.7). It is given as

u1 = Rz(Ωoff )Rz(−Ω)u0, (6.12)

where
Ω = ωE · ts, (rad) (6.13)

and ts is the time it takes the satellite to travel the distance corresponding to the angle
a3 in Figure 6.3. It is given as

ts = a3
ωs
, (s) (6.14)

where
ωs = vs

2π(RE + h) (rad s−1) (6.15)

is the radian speed of the satellite. Moreover,

n1(u1) = R

(
u1,−

(
i− π

2

))
Rz

(
−π2

)
u1,

and Ωoff ∈ [−π, π) is an offset angle with which the satellite is supposed to pass the
point p(0)

v . For Ωoff = 0, the satellite passes directly above the point p(0)
v . In Figure 6.5,

this is illustrated. This figure illustrates the satellite orbit passing directly above p(0)
v ,

i.e. the figure illustrates the case in which Ωoff = 0. This would not have been the case
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Figure 6.5: Part of a satellite orbit in which u0 has been shifted to u1 to ensure that the satellite flies
directly over the vessel, p(0)

v , after compensating for Earth’s rotation.

if the time-dependent rotation in (6.10), which is used to include Earth’s rotation, had
been applied directly to the expression in (6.4). Notice that the way the time-dependent
rotation is applied is under the assumption that Earth revolves in a counterclockwise
direction around the z-axis. An example of an orbit generated using (6.10) with Ωoff = 0
can be seen in Figure 6.6.

In order to later find out which of the time values in the set Tv from (6.1) that
correspond to times at which the vessel is within the FoV of all of the M satellites at
once, satellite orbit points for the m’th satellite are generated as

s(j,m)
v = g1

(
T (j)
v , i(m),p(0)

v ,Ω(m)
off

)
, j = 0, 1, . . . , J − 1.

6.3 Simulation of vessel movement
This section outlines the procedure in block 3 in Figure 6.1. To simulate vessel move-
ment, the von Mises distribution and the principles behind the sampling of a Fisher
distribution are used. The von Mises distribution is described in Appendix E and the
sampling of a Fisher distribution is described in Section 7.1. Vessel movement is gen-
erated stochastically in this thesis. The directions in which a vessel is moving between
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Figure 6.6: A vessel, p(0)
v , at colatitude 0.80 and longitude 0.52 and with i = 70 · π

180 as inclination
angle. Moreover, 109 evenly spaced satellite orbit points are illustrated.

successive AIS message transmissions are generated as

µ(1)
v = µdir (6.16)
µ(2)
v ∼ VM(µ̄(2), κr)

...
µ(J−1)
v ∼ VM(µ̄(J−1), κr),

where

µ̄(j) = atan2

 j−1∑
i=max(1,j−Navg)

sin
(
µ(i)
v

)
,

j−1∑
i=max(1,j−Navg)

cos
(
µ(i)
v

) , j = 2, 3, . . . , J−1.

(6.17)
The expression in (6.17) is an estimate of the mean of a collection of angles as given in
[39, p. 5]. The variable Navg is the amount of angles the mean angle estimate is to be
estimated from. In this thesis, the value Navg = 10 is used.

Next, the distances travelled by the vessel between successive transmission times are
calculated as

d(j) =
(
T (j−1)
v − T (j)

v

)
vv, j = 1, 2, . . . , J − 1, (6.18)

where vv is the speed of the vessel, which is assumed constant when generating data.
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Now, in order to generate the vessel path points, the distances in (6.18) are used to
generate points around the North Pole with colatitudes

θ
(j)
0 = d(j)

RE
, j = 1, 2, . . . , J − 1, (6.19)

and longitudes
φ

(j)
0 = µ(j)

v , j = 1, 2, . . . , J − 1.

These points are converted to Cartesian coordinates and denoted p(j)
0 ∈ S2 for j =

1, 2, . . . , J−1. The points are rotated, creating the vessel path points. This is done using
the same principles as the rotations happening in Algorithm 1 used to draw samples from
a Fisher distribution. The vessel path points then becomes

p(j)
v = R

(
k(j), ψ(j)

)
p

(j)
0 , j = 1, 2, . . . , J − 1, (6.20)

where

k(j) = z × p(j−1)
v

‖z × p(j−1)
v ‖

, j = 1, 2, . . . , J − 1,

in which z =
[
0 0 1

]>
and

ψ(j) = cos−1
(
z>p(j−1)

v

)
.

Naturally, if no vessel movement is desired, vv is set to zero, yielding

p(0)
v = p(1)

v = . . . = p(J−1)
v .

Examples of generated vessel movement are seen in Figure 6.7. This is an azimuthal
equidistant projection (AEP) plot in which the center point is p(0)

v and 10 realizations
of vessel movement with a report interval tr = 10 s and a vessel speed vv = 25.9 km/h
are shown. AEP is described in Appendix M. Circles of different radii are drawn for
illustrative purposes.

6.4 Computation of satellite field-of-view
This section outlines the procedure in block 4 in Figure 6.1. The times in the set Tv
that correspond to vessel positions from which a satellite can receive AIS messages can
be found based on the FoV geometry, as shown in Figures 6.8a and 6.8b, and the vessel
positions generated in Equation (6.20). They are collected in the set

TT =
{
T (j)
v

∣∣∣ cos−1
((
s(j,0)
v

)>
p(j)
v

)
≤ Φ, cos−1

((
s(j,1)
v

)>
p(j)
v

)
≤ Φ,

. . . , cos−1
((
s(j,M−1)
v

)>
p(j)
v

)
≤ Φ, j = 0, 1, . . . , J − 1

}
,
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Figure 6.7: Illustration of generated vessel movements.

where
Φ = π

2 − e− q, (6.21)

in which e is the elevation angle and

q = sin−1
(
RE sin

(
π
2 + e

)
RE + h

)
, (6.22)

which follows from applying the law of sines to the triangle in Figure 6.8b. Notice that
| TT |= N , where N ≤ J is the number of AIS messages simultaneously received by allM
satellites in a pass. The elements in the set TT are denoted as T (n)

T for n = 0, 1, . . . , N−1.
Moreover, the vessel positions p(j)

v corresponding to the AIS transmission times T (n)
T ,

n = 0, 1, . . . , N − 1 are denoted as p(n).
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Figure 6.8: (a): The elevation angle, e, determining how far above the ideal vessel horizon the satellite
has to be in order to receive AIS signals from the vessel. (b): Triangle extracted from Figure 6.8a.

6.5 Simulation of carrier frequencies
This section outlines the procedure in block 5 in Figure 6.1. It is taken into account
that vessels alternate between the two AIS frequencies f1 and f2 when sending out their
AIS messages. The initial AIS message is sent out using a carrier frequency of

f (0)
c ∼ unif ({f1, f2}) ,

and f
(n)
c , for n = 0, 1, . . . , N − 1, is equal to f1, f2, f1, . . . if f (0)

c = f1, and equal to
f2, f1, f2, . . . if f (0)

c = f2.

6.6 Simulation of Doppler shifts

This section outlines the procedure in block 6 in Figure 6.1. The Doppler shift, ν(n,m),
experienced by the m’th satellite when receiving the n’th AIS message in a pass is
calculated using an approximation of the derivative in (2.6). For the m’th satellite, the
relative velocities are approximated as

v(n,m)
r =

∥∥∥(RE + h) · b(n,m)
2 −RE · p(n)

−

∥∥∥− ∥∥∥(RE + h) · b(n,m)
1 −RE · p(n)

∥∥∥
δ

, (6.23)

for n = 0, 1, . . . , N − 1, where ‖·‖ is the `2-norm,

b
(n,m)
1 = g1

(
T

(n)
T , i(m),p(0)

v ,Ω(m)
off

)
,
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and
b

(n,m)
2 = g1

(
T

(n)
T − δ, i(m),p(0)

v ,Ω(m)
off

)
,

in which δ > 0 is a quantity determining the accuracy of the approximation of the
derivative in (2.6). Moreover,

p
(n)
− =

{
p(n) if vv = 0

R
(
k(n), ψ(n)

)
p(n) if vv > 0, n = 0, 1, . . . , N − 2,

in which
k(n) = p(n) × p(n+1)

‖p(n) × p(n+1)‖
n = 0, 1, . . . , N − 2

and
ψ(n) = δ · vv

RE
n = 0, 1, . . . , N − 2.

In the case of the last received AIS message,

p
(N−1)
− =

{
p(N−1) if vv = 0

R
(
k(N−2), ψ(N−2)

)
p(N−1) if vv > 0.

For the m’th satellite, the Doppler shifts are then calculated from (6.23) as

ν̃(n,m) = v
(n,m)
r

c
f (n)
c , n = 0, 1, . . . , N − 1.

6.7 Simulation of satellite positions
This section outlines the procedure in block 7 in Figure 6.1. The satellite positions
at the times at which these are available, i.e. the times at which the GPS on-board
the satellite samples the satellite position, are generated. The Starling satellites are
assumed to be able to sample their position with a frequency of fp = 100 Hz. Two
satellite positions will be generated for each of the N AIS message transmission times.
The reason for generating 2N satellite points for each of the M satellites, instead of N
satellite points, is due to the nature of the spoofing detection algorithms presented later
in this thesis. These utilize two satellite positions for each AIS message transmission,
in order to calculate Doppler shifts. This is carried out using the same approximation
principle of the relative velocity as in (6.23). The above mentioned sampling frequency
is the maximum sampling frequency available with the GPS that is to be embedded
in the Starling project. Naturally, a lower sampling frequency could be used, but the
maximum frequency is chosen in order to get the minimum temporal spacing between
pairs of satellite points, since this yields better approximations of relative velocity.

The pairs of satellite positions (s̃(n,m)
α , s̃

(n,m)
β ) are generated, where

s̃(n,m)
α = g1

(
T

(n)
SAT1, i

(m),p(0)
v ,Ω(m)

off

)
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Figure 6.9: Example illustration. Geographical coodinates are included for illustrative purposes.

and
s̃

(n,m)
β = g1

(
T

(n)
SAT2, i

(m),p(0)
v ,Ω(m)

off

)
,

in which
T

(n)
SAT1 =

⌊
T

(n)
T · fp

⌋
· f−1
p (6.24)

and
T

(n)
SAT2 =

⌈
T

(n)
T · fp

⌉
· f−1
p . (6.25)

In (6.24) and (6.25), b·c and d·e are the floor and ceiling operators, respectively. The
expression in (6.24) corresponds to a mapping of T (n)

T to the greatest integer multiple of
f−1
p less than or equal to T (n)

T , and the expression in (6.25) corresponds to a mapping of
T

(n)
T to the least integer multiple of f−1

p greater than or equal to T (n)
T .

Figure 6.9 shows an example of a vessel and a satellite orbit generated according to
the descriptions thus far in this chapter. The vessel is non-moving, and hence p(0) =
p(1) = . . . = p(N−1). The plot of the satellite orbit consists of the points s̃(n)

α for
n = 0, 1, . . . , N − 1. Notice that in this figure, and in all other similar figures shown in
this thesis, the satellite is flying in a direction from the bottom of the figure towards the
top. Thus s̃(0)

α is the bottom-most satellite point in the figure and s̃(N−1)
α is the top-most

satellite point. In this simulation, N = 31 AIS messages were received. The figure is
made with p(0)

v at a colatitude π
4 , a longitude of π6 , an inclination of 70◦, an orbit offset

of π
24 , a report interval of 10 s, and a vessel speed of 0 knots.
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6.8 Simulation of alleged vessel positions
This section outlines the procedure in block 8 in Figure 6.1. For n = 0, 1, . . . , N − 1, the
generation of the positions encoded in the transmitted AIS messages that can be subject
to position spoofing is done as

ã(n) =
{

p(n) if S = 0
R(k(n), ψ(n))R(z, φdir)R(y, θs)z if S = 1. (6.26)

In (6.26),

k(n) = z × p(n)

‖z × p(n)‖
,

ψ(n) = cos−1
(
z>p(n)

)
,

y =
[
0 1 0

]>
,

and
θs = ds

RE
,

in which ds is the spoofing distance, i.e. how far away from the true position of the
vessel the alleged position lies. Moreover, S is an indication of whether the alleged
vessel positions should be generated as spoofed positions or not and φdir ∈ [0, 2π) is an
angle determining the direction in which the vessel positions are spoofed. Notice that
the underlying assumption in how the AIS vessel positions are generated is that if a
vessel is spoofing its position, all AIS messages sent out by said vessel contain spoofed
position information.

Notice that when a vessel is moving and S = 1, using (6.26) to generate the spoofed
vessel path ensures that cos−1

((
ã(n)

)>
p(n)

)
·RE = ds for n = 0, 1, . . . , N − 1, i.e. the

distance between a true vessel position and the corresponding spoofed position is equal
to the desired spoofing distance. The trade-off is that the geometry of the true vessel
path is slightly distorted in the spoofed vessel position path.
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7 | Data error modelling and the
Fisher distribution

Data simulated according to the descriptions in Chapter 6 is generated without taking
real-world measurement errors and noise into account. The modelling of such errors in
the generated data is described in this chapter.

One of the distributions used to model errors in this thesis is the Fisher distribution.
Hence, this chapter introduces the Fisher distribution and an algorithm for drawing
samples from the distribution. One of the parameters in this distribution is the concen-
tration parameter κ. Several times in this thesis, this parameter is to be chosen based
on certain criteria. These criteria are described after the distribution is introduced.

After this, the chapter describes the error modelling, starting with how errors are
modelled in the single satellite case, and finishing with a description of error modelling
in the case in which M satellites are utilized.

7.1 Fisher distribution and sampling

A well known probability distribution on the (p − 1)-dimensional sphere is the von
Mises-Fisher distribution. For the case of p = 3, it is one of the most frequently used
distributions in this thesis. The case p = 3 is explored in this section. For the general
case, see [25]. When p = 3, the distribution is often referred to as the Fisher distribution
[25, p. 168] on the unit sphere. The Fisher distribution has a probability density function
(pdf) given by

fF (x | µ, κ) = κ

4π sinh(κ) exp(κµ>x), x ∈ S2, (7.1)

where κ ≥ 0 and µ ∈ S2 are the concentration parameter and mean direction, respec-
tively. In this thesis, a Fisher distributed random vector is denoted u ∼ F (µ, κ). The
Fisher distribution has close ties to the three-dimensional normal distribution, as shown
in Appendix D.

The problem of sampling from the Fisher distribution reduces to that of knowing
how to sample a Fisher distribution with mean direction equal to a vector z = [0 0 1]>.
A rotation can then be applied to obtain samples from a Fisher distribution with an
arbitrary mean direction µ ∈ S2. Assume for now that it is know how to obatin samples
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from a variable distributed according to the pdf fF (x | z, κ). Then the problem of
sampling from a random variable distributed according to fF (x | µ, κ) with µ 6= z is to
find a rotation matrix R such that

µ = Rz.

Disregarding the normalization constant for a moment, the rotation matrix is then in-
serted in the density in (7.1), yielding

exp(κµ>x) = exp(κz>R>x) = exp(κz>y), (7.2)

where y = R>x. If the normalization constant is included, the expression in (7.2) is
a Fisher density with a change of variables corresponding to a rotation. It is seen that
this density has mean direction equal to z. Thus, when sampling the Fisher distribution
with mean direction µ, the first step is to generate a sample y ∼ F (z, κ), and then
simulate x = Ry.

It is often more convenient to work with the Fisher distribution when it is parameter-
ized using spherical coordinates. An example of the convenience of such a parameteriza-
tion will be evident in the algorithm for sampling the Fisher distribution. Changing the
variables of the distribution from Cartesian to spherical coordinates using the variable
transformation method described in Appendix C and the Jacobian determinant in (F.4)
with r = 1 yields

fF ((θ, φ) | (α, β), κ) = κ

4π sinh(κ) exp (κ (cos(θ) cos(α) + sin(θ) sin(α) cos(φ− β))) sin(θ),

(7.3)
where α ∈ [0, π] and β ∈ [0, 2π) are the spherical coordinates of the mean direction.
When (θ, φ) is distributed according to (7.3), this is written as (θ, φ) ∼ F ((α, β), κ) in
this thesis.

In the algorithm for drawing samples from the Fisher distribution, which is presented
at the end of this section, a sample (θ0, φ0) is generated from the F ((0, 0), κ) distribution
[10, p. 232], i.e. with the spherical coordinate point (0, 0) as mean direction. This mean
direction is referred to as the North Pole. The samples are then rotated such that the
new mean direction is the same as the mean direction given as input to the algorithm.

To be able to sample from the Fisher distribution, the inverse transformation method
is used. This method states that if the distribution function F is continuous and strictly
increasing, and v ∼ unif[0, 1], then the random variable y = F−1(v) has distribution
function F .

When the mean direction is equal to the North Pole, θ0 and φ0 are independent.
This is evident when evaluating (7.3) in the mean direction (α, β) = (0, β), resulting in
the pdf

f ((θ0, φ0) | (0, β), κ) = κ

4π sinh(κ)e
κ cos(θ0) sin(θ0) (7.4)

which does not depend on φ0. Marginalizing over φ0 in (7.4) yields the pdf

f (θ0 | κ) = κ

2 sinh(κ)e
κ cos(θ0) sin(θ0) (7.5)
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of θ0. Moreover, marginalizing out θ0 in (7.4) yields the pdf

f(φ0) = 1
2π , (7.6)

of φ0, i.e. φ0 has a uniform distribution on the unit circle. Using the above result, θ0
and φ0 can be drawn independently of each other, a fact which will be utilized in the
algorithm for sampling the Fisher distribution. The density f(θ0 | κ) can be seen for
a selection of κ values in Figure 7.1. In this Figure, one of the curves represents the
density for κ→ 0. Using L’Hospital’s rule in (7.5) for κ→ 0, the density tends towards
1
2 sin(θ). This corresponds to the uniform distribution on the sphere.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

θ0 (radians)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f(
θ 0
|κ

)

Density for θ0

κ= 30
κ= 15
κ= 5
κ= 1

κ→ 0

Figure 7.1: The Fisher density from (7.5) for different κ values

In order to use the inverse transformation method to sample both θ0 and φ0, the
distribution functions F (θ0) and F (φ0) are required. For θ0, 1−F (θ0) is derived instead
of F (θ0). This is done in order to simplify the calculations and does not change the end
result, since

θ0 ∼ F ⇒ F (θ0) ∼ unif[0, 1]⇔ (1− F (θ0)) ∼ unif[0, 1].

Now, the expression becomes

1− F (θ0) = κ

2 sinh(κ)

∫ π

θ0
eκ cos(θ) sin(θ)dθ.
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Using integration by substitution, and setting t = − cos(θ) and dt = sin(θ)dθ,

1− F (θ0) = κ

2 sinh(κ)

∫ 1

− cos(θ0)
e−κtdt

= − 1
2 sinh(κ)

(
e−κ − eκ cos(θ0)

)
= eκ cos(θ0) − e−κ

eκ − e−κ
(7.7)

= eκ(cos(θ0)−1) − e−2κ

1− e−2κ , (7.8)

where the equality in (7.7) comes from a rewriting of the hyperbolic sine function, and
the equality in (7.8) comes from multiplying (7.7) by e−κ

e−κ . Now, introducing v = 1−F (θ0)
and λ = e−2κ, it evident from (7.8) that

κ(cos(θ0)− 1) = log(v(1− λ) + λ), (7.9)

where log(·) is the natural logarithm. For θ0 ∈ [0, π] the trigonometric identity,

sin
(
θ0
2

)
=

√
1− cos(θ0)

2 ,

can be used to rewrite (7.9) as

−2κ sin2
(
θ0
2

)
= log(v(1− λ) + λ),

which further can be rewritten as

θ0 = 2 sin−1

√− log (v(1− λ) + λ)
2κ

 . (7.10)

The expression in (7.10) is utilized in the algorithm for drawing samples from a Fisher
distribution. Moreover, from (7.6) it is seen that

F (φ0) = φ0
2π .

With the above results, the only stochastic requirement in the algorithm for drawing a
sample from the Fisher distribution is the ability to draw realizations v and w from the
i.i.d. random variables V,W ∼ unif[0, 1].

Defining the Cartesian coordinate vector for the sample (θ0, φ0) ∼ F ((0, 0), κ) as

f0 =
[
sin(θ0) cos(φ0) sin(θ0) sin(θ0) cos(θ0)

]>
,

the mean direction vector for the sample (θ, φ) ∼ F ((α, β), κ) as

µ(α, β) =
[
sin(α) cos(β) sin(α) sin(β) cos(α)

]>
,
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and the Cartesian vector for the sample (θ, φ) ∼ F ((α, β), κ) as

f =
[
sin(θ) cos(φ) sin(θ) sin(θ) cos(θ)

]>
,

the algorithm for drawing a sample from the F ((α, β), κ) distribution is [11, p. 58-59]

Algorithm 1 Drawing a sample (θ, φ) ∼ F ((α, β), κ)
Input parameters: (α, β), κ.
Output: (θ, φ) ∼ F ((α, β), κ).

1. Set λ = exp(−2κ).

2. Draw v, w
i.i.d.∼ unif[0, 1].

3. Set colatitude θ0 = 2 sin−1
(√
− log(v (1− λ) + λ) 1

2κ

)
.

4. Set longitude φ0 = 2πw.

5. Set z = [0 0 1]> and k = z×µ(α,β)
‖z×µ(α,β)‖ .

6. Set ψ = cos−1
(
z>µ(α, β)

)
.

7. Set f = R(k, ψ)f0.

8. Calculate θ and φ from f according to (F.2).

In algorithm 1, R is Rodrigues’ rotation matrix, which rotates a point in R3 around
an arbitrary axis. This matrix is defined in Appendix F, Section F.2.

7.2 Selection of κ-values

In several of the Fisher distributions used in this thesis, κ-values are chosen such that 95%
of the drawn values are expected to fall within a certain angle from the mean direction
of the distribution. This angle is often chosen to correspond to a certain distance on
Earth. Given a distance, d, on Earth, this corresponds to an angle

θk(d) = d

RE
,

in which the restriction that d ≤ πRE , i.e. the distance is less than or equal to half
the circumference of Earth, is made. This restriction is made such that θk(d) ∈ [0, π].
In order to find the κ-value that makes 95% of values drawn from the distribution in
which it is used fall within an angle θk(d) from the mean direction of the distribution,
the expression in (7.8) is used. This yields

0 = 1− 0.95− exp(κ(cos(θk(d))− 1)− exp(−2κ)
1− exp(−2κ) , (7.11)
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Parameters for the secant method

Parameter Value

Max iterations 1000
Start guess 100
Allowable error 1.48 · 10−8

Figure 7.2: Table of parameters used in the secant method for estimating κ-values.

which is to be solved for κ. This is done using an optimization method. The secant
method is used in this thesis, and in practice, the Python module from Scipy named
”optimize.newton” is used to do this. When using this Python module, the parameters
in table 7.2 are used.

The value of the start guess has been chosen such that the method converges both
for small and large values of d. An example graph of κ-value vs. distance (d) can be
seen in Figure 7.3.

When the techniques described in this section are used to choose κ-values in Fisher
distributions, the terminology ”the κ-value is chosen such that 95% of the values from
the Fisher distribution in which it is used fall within a distance d of the mean of the
distribution” is used.

1 2 3 4 5 6 7 8 9 10
Distance (km)

0.0

0.5

1.0

1.5

2.0

2.5 1e8  vs. distance

Figure 7.3: κ-values vs. distances.
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7.3 Error modelling
If data was to be obtained in the real world, errors such as e.g. measurement errors will
be present. These errors are modelled in this section.

When a single satellite is used, the Doppler shift data error is modelled as additive
Gaussian noise, i.e. the Doppler shift with error is

ν(n) = ν̃(n) + ε(n)
ν , n = 0, 1, . . . , N − 1,

where
ε(n)
ν

i.i.d.∼ N (0, σ2
d),

in which σ2
d = 7.32 as found in Section 4.4 where GomSpace’s Doppler shift estimator

was simulated and its variance was found. Errors for the carrier frequency f
(n)
c used

for the n’th AIS message are not modelled, since it is assumed that due to the 50 kHz
spacing between the AIS channels, GomSpace should be able to, without error, determine
whether a given AIS message was sent out using the frequency f1 or f2.

The errors on the observed vessel positions are modelled according to an assumption
on the accuracy of the AIS position accuracy. This assumption is that the position
measured by the GPS embedded in a vessel falls within a 20 m radius of the vessel’s true
position. The errors are modelled using the Fisher distribution such that

a(n) ∼ F (ã(n), κa), n = 0, 1, . . . , N − 1,

where κa ≈ 6.1 · 1013, which is determined such that 95% of the values from the distri-
bution fall within a distance of 20 m from the mean of the distribution. This is done
according to the methods described in Section 7.2.

The errors on the satellite positions are modelled as a single sample of additive noise
drawn from a three-dimensional normal distribution yielding

s(n)
α = s̃(n)

α + εs, n = 0, 1, . . . , N − 1 (7.12)

and
s

(n)
β = s̃

(n)
β + εs, n = 0, 1, . . . , N − 1, (7.13)

where
εs ∼ N3(0, σ2

sI). (7.14)

In the process of working on this thesis, access to information about how errors on
the satellite positions, obtained from the GPS on-board GomSpace’s Starling satellites,
can be modelled have been sparse. The modelling in (7.12)-(7.14) are made under the
assumption that since a satellite follows a given orbit which can be estimated based on
GPS satellite position samples, the obtained satellite positions correspond to an offset
of the estimated orbit from the true orbit. This estimation of the satellite orbit is not
investigated in this thesis.
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When utilizing M satellites, the error modelling for the satellite positions for n =
0, 1, . . . , N − 1 is, for the m’th satellite,

s(n,m)
α = s̃(n,m)

α + ε(m)
s ,

and
s

(n,m)
β = s̃

(n,m)
β + ε(m)

s ,

where
ε(m)
s

i.i.d.∼ N3(0, σ2
sI),

in which σ2
s is set to 5 due to the lack of information about how to model satellite

position error. Moreover, the Doppler shift data with error is modelled as

ν(n,m) = ν̃(n,m) + ε(n,m)
ν ,

where
ε(n,m)
ν

i.i.d.∼ N (0, σ2
d).

No error is modelled for the AIS transmission times T (n)
T , n = 0, 1, . . . , N − 1.

Lastly, the packet error probability from (3.13) is modelled such that from the the N
received AIS messages, a selection of these are randomly selected and the corresponding
data removed. For the single satellite case, the data is collected in the set

E1 =
{(
ν(n),a(n), s(n)

α , s
(n)
β , T

(n)
T , f (n)

c

)}N−1

n=0
.

The packet error probability is modelled by randomly discarding tuples from the set E1
according to the packet error probability. The selection of the N received AIS messages
that are not removed are collected as the set

D1 =
{(
ν(n),a(n), s(n)

α , s
(n)
β , T

(n)
T , f (n)

c

)
| p(n)

t1 = 1, n = 0, 1, . . . , N − 1
}
,

where p(n)
t1

i.i.d.∼ Bern (1− Pp(200)), n = 0, 1, . . . , N − 1, is a sequence of realizations of
a Bernoulli random variable. In the single satellite case, N , which was the number of
elements in the set E1 is redefined to be the number of elements in the set D1.

For the case of M satellites, the assumption is that if the package is lost, none
of the satellites receive the package. The probability with which an AIS message is
received in this case is p(n)

t2
i.i.d.∼ Bern (1−M · Pp(200)), and AIS messages are randomly

discarded accordingly. Moreover, an assumption is that if a given AIS message is lost,
the succeeding AIS message can not be lost. As was the case in the single satellite
case, the number N is here redefined to be the number of AIS messages that were not
discarded according to the packet error probability.
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8 | Probability model for space-
based AIS system

This chapter introduces the probability models for the space-based AIS system and the
inference problem in this thesis. The probability models are constructed with the aid of
Bayesian networks. Four Bayesian networks are contructed. The first one is a general
one, in the sense that the succeeding networks are special cases of the first one. The
special cases are introduced since later in this thesis, these are the ones in which inference
is performed.

8.1 Inference problem
The problem in this thesis is that of determining whether a vessel is spoofing its position.
This is done based on the observable variables in the space-based AIS system. Stated
in terms of an inference problem, the problem is that of determining P (S | D), where
S is an unobserved Bernoulli variable determining whether spoofing occurs of not, and
D is the collection of observable variables from the system. To solve the problem, a
probability model for the system is developed. The dependence relationships between
the unobserved and observed variables in the system are illustrated with a Bayesian
network. Bayesian networks are defined in Section A.1 in Appendix A.

8.2 Bayesian network
The Bayesian network modelling the dependencies between the variables in the space-
based AIS system in which M satellites are used is seen in Figure 8.1. In this figure,
squared boxes are observed variables and circles are unobserved variables. The arrows
show dependence relations, e.g. the relation p(n) → a(n) means that a(n) is dependent
on p(n). Notice that the observed variables in the set

Vgen =
{
tr,
(
T

(n)
T

)N−1

n=0
,
(
f (n)
c

)N−1

n=0
,
(
s(n,0)
α

)N−1

n=0
,
(
s

(n,0)
β

)N−1

n=0
,
(
s(n,1)
α

)N−1

n=0
,
(
s

(n,1)
β

)N−1

n=0
,

. . . ,
(
s(n,M−1)
α

)N−1

n=0
,
(
s

(n,M−1)
β

)N−1

n=0

}
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are assumed known. The reason for modelling the dependence relations between the
true vessel positions, p(n), for n = 0, 1, . . . , N − 1, is that the position of a moving vessel
is dependent of its previous position. The carrier frequency offsets, ζ(n,m) are modelled
as being dependent on where the vessel truly is, and what the AIS frequency offset foff
is. The observed positions, a(n), are modelled as being dependent on where the vessel
truly is and whether the vessel is spoofing its position.

a(0)

p(0)

ζ(0,0) ζ(0,1) ζ(0,M−1)

a(1)

p(1)

ζ(1,0) ζ(1,1) ζ(1,M−1)

. . .

a(N−1)

p(N−1)

ζ(N−1,0) ζ(N−1,1) ζ(N−1,M−1). . . . . . . . .

S

foff

Figure 8.1: Bayesian network for the system consisting of a single vessel and M satellites.

Introducing the set

Cgen =
{
S, foff ,

(
a(n)

)N−1

n=0
,
(
p(n)

)N−1

n=0
,
(
ζ(n,0)

)N−1

n=0
,
(
ζ(n,1)

)N−1

n=0
, . . . ,

(
ζ(n,M−1)

)N−1

n=0

}
as the collection of variables in the Bayesian network, the joint density, f(Cgen), repre-
sented by the network factorizes as

f(Cgen) =f(S)f(foff )f(p(0))f(a(0) | p(0), S)
(
M−1∏
m=0

f(ζ(0,m) | p(0), foff )
)

N−1∏
n=1

(
f(p(n) | p(n−1))f(a(n) | p(n), S)

M−1∏
m=0

f(ζ(n,m) | p(n), foff )
)
. (8.1)

Assumptions about the terms in (8.1) are now made. The unobserved variable S is
assumed to take on values of either 1 or 0, indicating whether the alleged position is
spoofed or not, i.e. it is assumed to follow the Bernoulli probability mass function

fB(S | qS) =
{

1− qS for S = 0
qS for S = 1 (8.2)
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where qS ∈ (0, 1) is the probability that spoofing is occuring, which is assumed known.
Notice that when a value for S is drawn from a Bernoulli distribution with probability
parameter qS , this is denoted as

S ∼ Bern(qS). (8.3)

The AIS frequency offset, foff , is assumed to follow the normal density

fN (foff | 0, σ2
off ) = 1√

2πσ2
off

exp
(
−
f2
off

2σ2
d

)
,

where σ2
off is assumed known.

The true vessel position p(0) is assumed to follow the Fisher density fF
(
p(0) | savg, κsat

)
,

where

savg =
∑M−1
m=0 s

(0,m)
α

‖
∑M−1
m=0 s

(0,m)
α ‖

is an average satellite position, based on the first satellite point for each of the M satel-
lites. Moreover, κsat > 0 is assumed known. The remaining vessel positions, i.e. p(n) |
p(n−1) for n = 1, 2, . . . , N−1, are assumed to follow Fisher densities fF

(
p(n) | p(n−1), κ

(n)
v

)
where

κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.

is assumed known. From here, p(n), for n = 0, 1, . . . , N − 1 may be referred to as either
the true vessel position, or node n.

The alleged positions, a(n) | p(n), S, for n = 0, 1, . . . , N − 1, are assumed to follow
the Fisher densities fF

(
a(n) | p(n), κ

)
, where

κ =
{
κS if S = 1
κNS otherwise,

in which κS > 0 and κNS > 0 are assumed known.
Finally, the carrier frequency offset ζ(n,m) | p(n), foff for the n’th AIS message re-

ceived by the m’th satellite is assumed to follow a normal density fN (ζ(n,m) | ν(n,m)
T +

foff , σ
2
d), where

ν
(n,m)
T = v

(n,m)
r

c
f (n)
c , (8.4)

where

v(n,m)
r =

∥∥∥(RE + h) · s(n,m)
β −RE · p(n)

∥∥∥− ∥∥∥(RE + h) · s(n,m)
α −RE · p(n)

∥∥∥
f−1
p

,

and fp = 100 Hz is the highest frequency with which the GPS embeded in the Starling
satellites can sample satellite positions.
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The posterior densities for the unobserved variables in the network are

f (S | Cgen \ {S}) ∝ fB (S | qS)
N−1∏
n=0

fF
(
a(n) | p(n), κ

)
(8.5)

for the variable S, in which Cgen \ {S} denotes the set Cgen without S,

f
(
p(0) | Cgen \

{
p(0)

})
∝

fF
(
p(0) | savg, κsat

)
fF
(
a(0) | p(0), κ

)M−1∏
m=0

fN
(
ζ(0,m) | ν(0,m)

T + foff , σ
2
d

)
for the first true vessel position,

f
(
p(n) | Cgen \

{
p(n)

})
∝ (8.6)

fF
(
p(n) | p(n−1), κv

)
fF
(
a(n) | p(n), κ

)M−1∏
m=0

fN
(
ζ(n,m) | ν(n,m)

T + foff , σ
2
d

)
for the remaining true vessel positions for n = 1, 2, . . . , N − 1, and

f (foff | Cgen \ {foff}) ∝

fN
(
foff | 0, σ2

off

)N−1∏
n=0

(
M−1∏
m=0

fN
(
ζ(n,m) | ν(n,m)

T + foff , σ
2
d

))
(8.7)

for the AIS frequency offset.

8.3 Bayesian network special case with one satellite and
no AIS frequency offset

A special case of the network in Figure 8.1 can be seen in Figure 8.2 in which M = 1
satellite is used. In this special case, foff is assumed known for simplicity, and hence
the carrier frequency offsets only consist of the Doppler shifts. Moreover, since only a
single satellite is used, the satellite indexing notation is suppressed in this section.
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a(0)

p(0)

ν(0)

a(1)

p(1)

ν(1)

. . .

a(N−1)

p(N−1)

ν(N−1)

S

Figure 8.2: Bayesian network for the system consisting of a single vessel, a single satellite, and no AIS
frequency offset.

Introducing the set

C1 =
{
S,p(0),a(0), ν(0),p(1),a(1), ν(1), . . . ,p(N−1),a(N−1), ν(N−1)

}
as the collection of elements in the Bayesian network, the joint density f(C1) represented
by the network factorizes as

f (C1) = f (S) f
(
p(0)

)
f
(
a(0) | p(0), S

)
f
(
ν(0) | p(0)

)
N−1∏
n=1

f
(
p(n) | p(n−1)

)
f
(
a(n) | p(n), S

)
f
(
ν(n) | p(n)

)
. (8.8)

In (8.8), the assumptions made about the densities are the same as those made in Section
8.2, with the exception that the Doppler shifts ν(n) | p(n), for n = 0, 1, . . . , N − 1, are
assumed to follow normal densities fN (ν(n) | ν(n)

T , σ2
d), in which

ν
(n)
T = v

(n)
r

c
f (n)
c , (8.9)

where

v(n)
r =

∥∥∥(RE + h) · s(n)
β −RE · p(n)

∥∥∥− ∥∥∥(RE + h) · s(n)
α −RE · p(n)

∥∥∥
f−1
p

.
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With the assumptions made on the densities in (8.8), the posterior densities for the
unobserved variables in the network are

f (S | C1 \ {S}) ∝ fB (S | qS)
N−1∏
n=0

fF
(
a(n) | p(n), κ

)
, (8.10)

for the variable S,

f
(
p(0) | C1 \

{
p(0)

})
∝ fF

(
p(0) | s(0)

α , κsat
)
fF
(
a(0) | p(0), κ

)
fN
(
ν(0) | ν(0)

T , σ2
d

)
(8.11)

for the first true vessel position, and

f
(
p(n) | C1 \

{
p(n)

})
∝ fF

(
p(n) | p(n−1), κ(n)

v

)
fF
(
a(n) | p(n), κ

)
fN
(
ν(n) | ν(n)

T , σ2
d

)
,

(8.12)
for the remaining true vessel positions, for n = 1, 2, . . . , N − 1.

8.4 Bayesian network special case with two satellites and
no AIS frequency offset

A special case of the network in Figure 8.1 can be seen in Figure 8.3 in which M = 2
satellite are used. In this special case, foff is assumed known for simplicity, and hence the
carrier frequency offsets only consist of the Doppler shifts. Moreover, M = 2 satellites
are used.

a(0)

p(0)

ν(0,0) ν(0,1)

a(1)

p(1)

ν(1,0) ν(1,1)

. . .

a(N−1)

p(N−1)

ν(N−1,0) ν(N−1,1)

S

Figure 8.3: Bayesian network for the system consisting of a single vessel, M = 2 satellites, and no AIS
frequency offset.
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Introducing the set

C2 =
{
S,p(0),a(0), ν(0,0), ν(0,1), . . . ,p(N−1),a(N−1), ν(N−1,0), ν(N−1,1)

}
as the collection of elements in the Bayesian network, the joint density f(C2) represented
by the network factorizes as

f (C2) =f (S) f
(
p(0)

)
f
(
a(0) | p(0), S

)
f
(
ν(0,0) | p(0)

)
f
(
ν(0,1) | p(0)

)
N−1∏
n=1

f
(
p(n) | p(n−1)

)
f
(
a(n) | p(n), S

)
f
(
ν(n,0) | p(n)

)
f
(
ν(n,1) | p(n)

)
. (8.13)

In (8.13), the assumptions made about the densities are the same as those made in
Section 8.2, except for the Doppler shifts ν(n,0) | p(n), which, for n = 0, 1, . . . , N − 1, are
assumed to follow normal densities fN (ν(n,0) | ν(n,0)

T , σ2
d), where

ν
(n,0)
T = v

(n,0)
r

c
f (n)
c , (8.14)

where

v(n,0)
r =

∥∥∥(RE + h) · s(n,0)
β −RE · p(n)

∥∥∥− ∥∥∥(RE + h) · s(n,0)
α −RE · p(n)

∥∥∥
f−1
p

.

Similar arguments can be made for ν(n,1) | p(n).
The posterior densities for the unobserved variables in the network are

f (S | C2 \ {S}) ∝ fB (S | qS)
N−1∏
n=0

fF
(
a(n) | p(n), κ

)
(8.15)

for S,
f
(
p(n) | C2 \

{
p(n)

})
∝ (8.16)

fF
(
p(n) | p(n−1), κv

)
fF
(
a(n) | p(n), κ

)
fN
(
ν(n,0) | ν(n,0)

T , σ2
d

)
fN
(
ν(n,1) | ν(n,1)

T , σ2
d

)
for p(n), n = 1, 2, . . . , N − 1, and

f
(
p(0) | C2 \

{
p(0)

})
∝

fF
(
p(0) | savg, κsat

)
fF
(
a(0) | p(0), κ

)
fN
(
ν(0,0) | ν(0,0)

T , σ2
d

)
fN
(
ν(0,1) | ν(0,1)

T , σ2
d

)
for p(0).
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8.5 Bayesian network special case with two satellites and
AIS frequency offset

A special case of the network in Figure 8.1 can be seen in Figure 8.4. Here, M = 2
satellites are used. The joint density, the specification of the kind of densities in the
joint density, and the posterior densities for the unobserved variables in the network
follow the same lines as those in Section 8.2 for M = 2.

a(0)

p(0)

ζ(0,0) ζ(0,1)

a(1)

p(1)

ζ(1,0) ζ(1,1)

. . .

a(N−1)

p(N−1)

ζ(N−1,0) ζ(N−1,1)

S

foff

Figure 8.4: Bayesian network for the system consisting of a single vessel and M = 2 satellites. In this
network, foff is included as an unobserved variable.

8.6 Inference method choice: Metropolis within Gibbs sam-
pling

The inference problem in this thesis is that of determining P (S | D), which is hard to
calculate directly. The posterior density for the spoofing variable, S, for the general case
in which M satellites are utilized in the space-based AIS system is seen in (8.5).

One method to determine whether spoofing is occuring given the observable variables
is maximum a posteriori (MAP). In making inference about the spoofing variable, S,
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this method requires the calculation of the posterior probabilities

P (S = 1 | D) (8.17)

and
P (S = 0 | D) . (8.18)

The MAP decision rule would then be

ŜMAP =
{

1 if P (S=1|D)
P (S=0|D) > 1

0 otherwise.
(8.19)

To calculate the quantities in (8.17) and (8.18), the posterior density in (8.5) should be
considered. The problem is that this posterior density is the posterior density for S given
both observed and unobserved variables. To calculate the posterior density for S given
only the observed variables, the unobserved variables would have to be marginalized out
of the expression. This would require integrating out p(n), for n = 0, 1, . . . , N − 1, and
foff . This would result in having to solve several integrals, which are not easily solved.

An alternative approach to performing inference in the model is belief propagation,
which is a message-passing algorithm [5]. Such approach often requires the conversion
of the Bayesian network into a factor graph and the computation of the messages passed
along the edges in the factor graph. The computation of these messages can sometimes
be time consuming, and in some cases Monte Carlo methods are needed to compute the
messages.

Another approach would be to sample directly from the posterior density of S. The
posterior densities for S for the general case and the three special cases have the thing in
common that they are hard to sample from. If samples from these densities are available,
such samples can be used to estimate the probability of spoofing given the observable
variables in the space-based AIS system, namely the probability P (S | D). Drawing
samples from the posterior densities can be done using a statistical sampling approach.
This approach only requires choosing a suitable sampler once the model is specified.
For this reason, statistical sampling is chosen to perform inference in the probability
models. Markov chain Monte Carlo methods are used in this thesis, and the type of
sampler chosen is the Metropolis within Gibbs (MWG) sampler. The MWG sampler
and the theory behind it is described in Appendix A and B.

In short, the way the MWG sampler algorithms developed in the succeeding chapters
help determining P (S | D) is that they output samples S(g), for g = 0, 1, . . . , G − 1 of
the posterior distributions for S, where G is the number of iterations carried out in the
algorithm. These samples are used to estimate the probability that a vessel is spoofing
its position, i.e. P (S = 1 | D). This estimate is denoted Ŝ, and is given as

Ŝ = 1
G−NBI

G−1∑
k=NBI

S(k), (8.20)

in which NBI is a number of samples that are discarded, referred to as the burn-in of
the sampler. Notice that NBI refers to the discarding of the first NBI samples of S
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from the sampler algorithms. This number is chosen such that after this number of
iterations in the sampler algorithms, the sampler is believed to have converged to the
invariant distribution of the Markov chain that it creates. The MWG sampler algorithms
developed in this thesis all have properties that ensure that the estimator in (8.20) is
consistent. These properties are introduced in Section 9.2, in which a proof that the
samplers have these properties is also given.

In the simulations and tests carried out in the succeeding chapters in this thesis,
the decision of whether spoofing occurs is such that if Ŝ ≤ 0.1 in a given test, it is
determined that no spoofing is happening. If Ŝ ≥ 0.95, it is determined that spoofing
is happening. If 0.95 > Ŝ > 0.1, it is not certain whether spoofing is occuring and in a
real-world application, caution should be raised in this case. The choice of the decision
is such that a relatively high value of Ŝ is needed in order to determine that spoofing is
occuring in a given case. This is done to prevent creating a false alarm, i.e. to prevent
detection of spoofing when no spoofing is occuring.
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9 | Sampler algorithm: One satel-
lite and no AIS frequency off-
set

In this chapter, the MWG sampler algorithm for the special case in which a single satellite
is used is introduced. The probability model for this case is described in Section 8.3, in
which the posterior densities for the unobserved variables in the Bayesian network are
also described. These posterior densities are used in the MWG sampler in this chapter.

How the sampler is initialized, and how the variable updating steps in the algorithm
are carried out are described along with the sampler algorithm. After this is a proof that
the sampler is aperiodic and irreducible. This proof is based on the theory and results
concerning Markov chains on continuous state spaces, which are found in Appendix A
and B.

Finally, a description of the choice of input parameter values for the algorithm is
given. These input parameter values are to be used in the simulations and tests of the
algorithm carried out in the succeeding chapter.

9.1 Metropolis within Gibbs sampler
The MWG sampler algorithm used in this chapter is seen in Algorithm 2. This MWG
sampler utilizes a cyclic updating scheme of the variables. Cyclic updating schemes are
described in Section B.2 in Appendix B. The unobserved variables in the network in
Figure 8.2 needs to be initialized in the first iteration of the algorithm. The algorithm is
run for G iterations. These iterations are referred to as Gibbs iterations. The algorithm
outputs G samples

(
S(g)

)G−1

g=0
of the variable S. The initialization of the variables in the

0’th (first, i.e. g = 0) Gibbs iteration is done by drawing

S(0) ∼ Bern(qS),

p(0,0) ∼ F
(
a(0), κinit

)
,
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where the first superscript corresponds to n = 0 and the second superscript refers to the
0’th Gibbs iteration, and

p(n,0) ∼ F
(
p(n−1,0), κ(n)

v

)
, n = 1, 2, . . . , N − 1.

where the second superscript refers to the 0’th Gibbs iteration.
Now, the updating steps of the unobserved variables in the network are described.

Only two instances need to be considered when updating S in the sampler. Based on
the posterior density for S in (8.10), these instances are

f (S = 1 | C1 \ {S}) ∝ c1

and

f (S = 0 | C1 \ {S}) ∝ c0,

where c0 and c1 are constants. Choosing the value of S is then done by drawing u ∼
unif[0, 1] and

S =
{

1 if u ≤ c1
c1+c0

0 otherwise.

When updating p(n) for n = 0, 1, . . . , N − 1, the posterior densities in (8.11) and (8.12)
are considered. Here, it is seen that they are products of Fisher distributions and
a normal distribution, resulting in a distribution that is not easy to obtain samples
from. Therefore, Metropolis-Hastings steps are employed in these cases, with Fisher
distributions as proposal distributions. Notice that the Fisher distribution is symmetric,
which is why the proposal distribution does not appear in the Hastings ratio in the
updating steps for p(n) for n = 0, 1, . . . , N − 1.
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Algorithm 2 MWG sampler for one satellite model
Input data: a(n), ν(n), s(n)

α , s
(n)
β , f

(n)
c , T

(n)
T , tr for n = 0, 1, . . . , N − 1.

Input parameters: G, qS , κinit, κv1, κv2, κS , κNS , κMH , κsat, σ2
d.

Output data: S(g) for g = 0, 1, . . . , G− 1.

1. Initialize unobservables:

(a) Draw S(0) ∼ Bern(qS).

(b) Draw p(0,0) ∼ F
(
a(0), κinit

)
.

(c) Calculate ν(0,0)
T according to (8.9), using p(0,0), s

(0)
α , s(0)

β , and f (0)
c .

(d) For n = 1, 2, . . . , N − 1.

i) Set κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.

ii) Draw p(n,0) ∼ F
(
p(n−1,0), κ

(n)
v

)
.

iii) Calculate ν(n,0)
T according to (8.9), using p(n,0), s

(n)
α , s(n)

β , and f (n)
c .

2. For g = 1, 2, . . . , G− 1.

(a) Update S(g).

i) Set c1 = qS
∏N−1
n=0 fF

(
a(n) | p(n,g−1), κS

)
.

ii) Set c0 = (1− qS)
∏N−1
n=0 fF

(
a(n) | p(n,g−1), κNS

)
.

iii) Draw u ∼ unif[0, 1].

iv) Set S(g) =
{

1 if u ≤ c1
c1+c0

0 otherwise.

(b) Update p(n,g) by applying a Metropolis-Hastings step for n = 0, 1, . . . , N − 1.

i) Draw p(n,g)
pro ∼ F

(
p(n,g−1), κMH

)
as proposal for true vessel position.

ii) Calculate Doppler shift proposal ν
(n,g)
pro according to (8.9), using

p
(n,g)
pro , s

(n)
α , s(n)

β , and f (n)
c .

iii) Set κ =
{
κS , if S(g) = 1
κNS , otherwise.

iv) If n = 0:

Set H =
fF

(
p

(0,g)
pro | s

(0)
α , κsat

)
·fF
(
p

(0,g)
pro |a(0), κ

)
·fN
(
ν(0) | ν(0,g)

pro , σ2
d

)
fF

(
p(0,g−1) | s(0)

α , κsat

)
·fF (p(0,g−1) |a(0), κ)·fN

(
ν(0) | ν(0,g−1)

T , σ2
d

)
v) Else:

Set κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.

Set H =
fF

(
p

(n,g)
pro |p(n−1,g), κ

(n)
v

)
·fF
(
p

(n,g)
pro |a(n), κ

)
·fN
(
ν(n) | ν(n,g)

pro , σ2
d

)
fF

(
p(n,g−1) |p(n−1,g), κ

(n)
v

)
·fF (p(n,g−1) |a(n), κ)·fN

(
ν(n) | ν(n,g−1)

T , σ2
d

)
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MWG sampler for one satellite model continued

vi) Draw v ∼ unif[0, 1].
vii) Set a(n,g)

accept = min[1, H]

viii) Set p(n,g) =
{
p

(n,g)
pro if v ≤ a(n,g)

accept

p(n,g−1) otherwise.

ix) Set ν(n,g)
T =

{
ν

(n,g)
pro if v ≤ a(n,g)

accept

ν
(n,g−1)
T otherwise.

9.2 Metropolis within Gibbs sampler properties
In this section, it is shown that the Metropolis within Gibbs sampler in Algorithm 2 has
the properties that it is both irreducible and aperiodic. These properties are described
Section A.3 of Appendix A. The way these properties are shown is based on the theory
concerning Markov chains on continuous state spaces.

Let

g(g) =
[
S(g)

(
p(0,g)

)> (
p(1,g)

)>
. . .

(
p(N−1,g)

)>]>
, g = 1, 2, . . . , G− 1

be the vector consisting of the updated values of the unobserved values in the network
in Figure 8.2 after the g’th cycle in Algorithm 2.

Initially, irreducibility of the sampler is established. This is done by showing that
in a single Gibbs iteration, the vector g(g) can be drawn from anywhere in the sample
space. The updating of the variable S is constructed such that there is always a positive
probability for S being 1 and a positive probability for S being 0. Moreover, since Fisher
distributions are used to draw proposals for the updates of the true vessel positions, p(n),
proposals can be drawn from all areas of the unit sphere with positive probability. The
Hastings ratios in Algorithm 2 can not be zero, due to the nature of the products in both
numerator and denominator. Hence, there is always a non-zero probability of accepting
a given proposal, which means that in one Gibbs iteration, a vessel position can be
updated to a position anywhere on the unit sphere. This fact, along with the fact that
S has positive probability for both of its values, establishes irreducibility of a Markov
chain resulting from running the sampler in Algorithm 2.

Next, aperioidicity of the Markov chain resulting from the sampler is established. To
show aperiodicity, it suffices to show that the possibility that

g(g−1) = g(g), g = 0, 1, . . . G− 1

exists. That the value of g form one Gibbs iteration to the next has the possibility of
remaining unchanged shows that the sampler is aperiodic. To show this, the updating
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Parameter Value
qS 0.01
κinit 2437366
κv1 Case specific
κv2 Case specific
κS 975
κNS Case specific
κMH 2437366
κsat 164
σ2
d 7.32

Table 9.1: Input parameters for the MWG sampler in Algorithm 2.

steps of the unobserved variable S and the unobserved true vessel positions p(n) are
considered. Evident from the way that S is updated in the algorithm is the fact that
there is a positive probability that S(g−1) = S(g). The values of the true vessel positions
are updated using Metropolis-Hastings steps. From this, it is evident that there is a
positive probability that p(n,g−1) = p(n,g) for n = 0, 1, . . . , N − 1. With these results, it
is evident that the possibility that

g(g−1) = g(g), g = 0, 1, . . . G− 1

exists.
The fact that the MWG sampler is irreducible ensures that the estimator in (8.20)

is consistent by the strong law of large numbers for Markov chains, which is presented
in Theorem A.2.

9.3 Metropolis within Gibbs sampler input parameters
The chosen input paramter values are seen in Table 9.1. For each parameter, an argument
for choosing a particular value is given in this section.

9.3.1 Probability parameter qS
The value of qS symbolizes the prior belief that a given vessel is spoofing its position.
This value is chosen to reflect the belief that only a small number of vessels are trying
to spoof their position.

9.3.2 Concentration parameter κinit
In the MWG sampler, the parameter κinit is used in the initialization of the first true
vessel position, p(0,0). It is used as the concentration parameter in a Fisher distribution
with mean direction equal to the first observed vessel position, a(0), from which p(0,0)

is drawn. The value of the parameter is chosen such that 95% of the values from the
Fisher distribution fall within 10 km of its mean direction, as described in Section 7.2.
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9.3.3 Concentration parameters κv1 and κv2

These values are used in the Fisher distributions that describe how the true vessel po-
sitions are subsequently drawn after each other. The value of κv1 is chosen such that
95% of the values from the Fisher distribution fall within a certain distance of its mean
direction. This distance is chosen as the maximum distance a vessel can travel between
successive AIS message transmissions. When a vessel uses a report interval tr to transmit
its AIS messages, the vessel is travelling at a speed determined by the report interval
as per Table 2.1. For a given report interval in Table 2.1 the maximum speed is used,
and it is denoted vmax(tr). For the last two entries in the table, corresponding to re-
port intervals of 2 s, it is assumed that the vessels under consideration in this thesis do
not move at speeds exceeding 80 km/h. This corresponds to approximately 43.2 knots.
Hence, vmax(2) = 80 km/h.

Thus, the maximum distance travelled by a vessel between successive AIS message
transmissions is

dmax(tr) = tr ·
vmax(tr)

3600. (km/s) (9.1)

Moreover, κv2 is used when an AIS message is lost. When this is the case, the vessel has
moved approximately twice the distance between successive AIS messages compared to
if the given AIS message had not been lost. Thus κv2 is chosen such that the 95% of
the values from the Fisher distribution fall within a distance 2 · dmax(tr) from the mean
direction.

Evident from the above description, these values are dependent on the report interval,
and they are given on a case-by-case basis. The possible parameter values are seen
in Table 9.2. Whenever an MWG sampler algorithm is run, κv1 and κv2 are chosen
according to the report interval being tested.

tr κv1 κv2
10 s (14 knots) 47017094414 11754268483
6 s (23 knots) 48361766596 12090430814
2 s (80 km/h) 123393883625 30848541441

Table 9.2: Possible values of κv1 and κv2.

9.3.4 Concentration parameters κS and κNS

These two concentration parameters are used to express the size of the area around the
true vessel positions in which the alleged vessel positions are believed to lie.

The parameter κS expresses this area when spoofing is occuring, and is chosen such
that 95% of the values from the Fisher distribution in which it is used fall within 500
km of its mean direction.

On the other hand, κNS expresses the size of the area around the true vessel positions
in which the observed vessel positions are believed to lie if spoofing is not occuring. This
value is case specific, and it will often be chosen such that for a given scenario, no false
alarm is reported when no spoofing is occuring.
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9.3.5 Concentration parameter κMH

This parameter is used in the proposal distribution, which is a Fisher distribution, for
the true vessel positions. This parameter is chosen based on simulations such that all of
the average acceptance probabilities

ā
(n)
accept = 1

G

G−1∑
g=0

a
(n,g)
accept, n = 0, 1, . . . , N − 1 (9.2)

are approximately between 0.2 and 0.4. This interval is chosen based on a rule of thumb
found in [27].

9.3.6 Concentration parameter κsat
This parameter is used in the distribution of the first vessel position. Its value is chosen
such that 95% of the values of the Fisher distribution in which it is used fall within a
distance corresponding to the FoV radius of the satellite of its mean direction. This is
done since, in practice, it is known that when receiving the first AIS message, the first
true vessel position must be within the FoV of the satellite. The FoV size is calculated
based on the Equations (6.21) and (6.22). For an orbit height h = 500 km as is the case
for the Starling satellites, and an elevation angle e = 16 degrees, as shown in the link
budget in Chapter 3, the FoV radius is approximately 1219 km, corresponding to the
length of the red circle segment in Figure 6.8a.

9.3.7 Variance parameter σ2
d

As mentioned earlier, this parameter describes the variance on the carrier frequency
offset estimates as described in Section 4.4.
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10 | Sampler algorithm test: One
satellite and no AIS frequency
offset

This chapter describes the tests of the sampler in Algorithm 2, which is a sampling
algorithm designed and developed to help perform inference in the model described in
Section 8.3. This model was the one created for the variables in the space-based AIS
system in which a single satellite is used and no AIS frequency offset is included.

Initially, it is tested whether the algorithm is able to detect cases in which no spoofing
is occuring, such that no false alarms are given. A false alarm is defined as the case in
which an estimate Ŝ is greater than 0.1 in a scenario in which a vessel is not spoofing its
position. This false alarm test consists of choosing a value of κNS that ensures that no
false alarm is reported when no spoofing is occuring in a given scenario. Having found
a κNS-value and verified that using it in the sampler does not result in a false alarm for
a given data set, it is tested how far away from its true position a vessel has to spoof
its position in order for the algorithm to detect it. This last test is based on the same
scenario as that used in the false alarm test. All of the data that is used to test the
sampler algorithm in this chapter is generated according to the descriptions in Chapter
6. Simulated data is used, since no data collected by actual LEO satellites has been
available.

In order to understand the figures shown in this chapter and some of the succeeding
chapters in this thesis, the concepts of a node trace plot and an AEP plot are introduced.
Azimuthal equidistant projection is described in Appendix M. Figure 10.1a shows a
scenario in which a non-moving vessel, using a report interval of 10 s, has spoofed its
position 400 km away form its true position. The large spoofing distance is chosen for
illustrative purposes. The data from this scenario is used in the sampler in Algorithm 2,
with the input parameters from Table 9.1 and a κNS value arbitrarily chosen such that
95% of the values from the Fisher distribution in which it is used fall within a distance
of 13 km from its mean direction. A trace plot of the samples p(n,g) from the sampler
are seen in Figure 10.1b for node 0, i.e. the samples of p(0). The sampler was run with
G = 25000 iterations. It is seen that the trace starts around the alleged vessel position
and converges to an area around the true vessel position. Figure 10.1c shows an AEP
plot of the scenario from Figure 10.1b. In this figure, the true vessel position is the
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center point, and circles of different radii are drawn for illustrative purposes. Moreover,
an indication of which direction is north is given in the figure.

63. 0 ◦

54. 0 ◦
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s(n)
α
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9. 0 ◦

18. 0 ◦
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a(n)

s(n)
α
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Radius 400 km
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Radius 90 km

a(n)

p(n)

(c)

Figure 10.1: (a): Scenario example. (b): Scenario with trace plot. (c): AEP plot of the scenario
from (b).

10.1 False alarm test
It is crucial that if a vessel is not spoofing its position, no false alarm is created. To test
whether the spoofing detection works as intended in the case of no position spoofing, data
is generated where no position spoofing is occuring. The inputs for the data generation
of this data is seen in Table 10.1. The scenario of the generated data can be seen in
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tr 10 s
θp

π
4

φp
π
6

vv 0 km/s
S 0
ds 0
φdir 0
µdir 0
i 70◦
Ωoff

π
24

Table 10.1: Input data generation parameters for the false alarm test. Notice that the data generation
input parameter p(0)

v is given as a colatitude θp and longitude φp.

Figure 10.2. In the simulations carried out with this scenario, N = 31 AIS messages
were received.

In order to find the κNS-value such that no false alarm is created, an initial κNS-
value is chosen such that 95% of the values fall within a distance of 0.5 km of the mean
direction of the Fisher distribution. With this initial κNS-value, the sampler algorithm
is run for 10 times, each time with a new data set generated with the input parameters
in Table 10.1. Each run of the algorithm was carried out for G = 100000 iterations and
it is checked whether the resulting value of Ŝ, with a burn-in of NBI = 1000 samples,
is below the spoofing limit of 0.1 as mentioned in Section 8.6. The value of κNS was
incremented by 0.5 km until all 10 estimates of Ŝ fell below 0.1. The resulting κNS-value
was found at 13 km, corresponding to a κNS-value of 1442228.

In conclusion, using this κNS-value in in the sampler ensures that no false alarm is
reported in the scenario shown in Figure 10.2. This κNS-value is used in the succeeding
tests in this chapter.

10.2 Spoofing distance test
With the κNS-value found in the previous section, it is now tested how far away a vessel
can spoof its position without being detected, or, in other words, how far away it has to
spoof its position in order for it to be detected.

The same scenario as in Figure 10.2 is used in this test, and 10 different spoofing
distances ds, starting at 10 km and then incrementing by 10 km, are tested. Each of
these spoofing distances is tested NSA = 10 times with 10 equally spaced spoofing angles

φ
(k)
dir = 2π

NSA
· k, k = 0, 1, . . . , NSA. (10.1)

The reason for choosing several different spoofing angles for each spoofing distance is
done in order to test whether the direction in which a vessel is spoofing its position has
an influence on the results.
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p(n)
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Figure 10.2: Scenario for both the false alarm test and the spoofing distance test. Geographical
coordinates are plotted in degrees for illustrative purposes. Geographical coordinates are described in
Appendix F.

To illustrate the principle of this test, Figure 10.3 shows an AEP plot of the spoofed
positions with the vessel as center point for the spoofing distances 30, 60, and 90 km,
which are shown as circles of corresponding radii. The labels on the spoofed positions
in the figure are such that a 0 corresponds to φ(0)

dir, a 1 corresponds to φ(1)
dir and so on.

Running the sampler for G = 25000 iterations for each of the spoofed positions yields
the estimates Ŝ as seen in Table 10.4. Notice that all of these estimates were calculated
with a burn-in of NBI = 1000 samples. In the table, the spoofing distances ds are given
in kilometers, and the estimates Ŝ are given in percent. In the table, it is seen that the
columns corresponding to the spoofing angles φ(1)

dir and φ(6)
dir show odd behaviour, while

the remaining columns show 100% spoofing at a spoofing distance of 60 km and above.
The reason for this behaviour is now investigated. Consider the series of Figures

10.5a-10.6b. In Figure 10.5a, an AEP plot of the true vessel position and the spoofed
position corresponding to ds = 50 km and φ(4)

dir is shown. From table 10.4 it is evident
that this is a scenario where Ŝ is 1.0. Figure 10.5b, shows a trace plot of node 0 for the
simulation in which the spoofed position in question has been used in the simulation.
The trace of node 0 converges from its initialization around the spoofed position, marked
with a 4 in the figure, towards an area around the true vessel position. The shape of
this area is what is causing the behaviour for some of the spoofed positions. In the next
figure, namely Figure 10.6a, the remaining spoofed positions for ds = 50 km are plotted
for illustrative purposes. In this figure, it is evident that the spoofed positions labelled
with a 6 and a 1 fall approximately within the area that the trace plot is moving in.
The shapes and orientations of these areas are similar for all N − 1 nodes. To further
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Figure 10.3: AEP plot of the spoofed positions with p(n) as center point. A selection of the spoofing
distances ds are plotted.

tr = 10 s

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0
20 2.4 0.0 0.0 94.0 76.1 0.1 0.0 0.0 72.0 99.4
30 100 0.0 0.9 100 100 10.1 0.0 0.1 100 100
40 100 0.0 100 100 100 100 0.0 97.9 100 100
50 100 0.3 88.3 100 100 100 0.0 100 100 100
60 100 0.0 100 100 100 100 0.0 100 100 100
70 100 2.3 100 100 100 100 0.0 100 100 100
80 100 52.4 100 100 100 100 0.0 100 100 100
90 100 0.1 100 100 100 100 28.2 100 100 100
100 100 75.8 100 100 100 100 12.6 100 100 100

Figure 10.4: Table showing Ŝ for 10 different spoofing angles and 10 different spoofing distances.
Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the simulations the
number of received AIS messages was between 29 and 31.
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illustrate this point, an illustration of the same concept as in Figure 10.6a is given for
node 10 in Figure 10.6b.

The Figures 10.7a and 10.7b show trace plots of node 0 and 10, respectively, from
the run of the sampler in which the spoofed positions was the one corresponding to a
spoofing distance ds = 50 km and spoofing angle φ(6)

dir. These figures show that the trace
converges to the spoofed positions. The reason for this is that this spoofed position lies
within the area shown in Figure 10.6a. The Figures 10.8a and 10.8b show the same
thing, but for the spoofed position corresponding to the spoofed angle φ(1)

dir.
In conclusion, the tests carried out in this section show that the spoofing detection

capability is largely dependent on how far away a vessel has spoofed its position, and the
direction in which it has spoofed its position. Evident from Table 10.4 is the fact that
if the vessel in the scenario seen in Figure 10.2 is spoofing its position in the direction
of the spoofing angles φ(1)

dir and φ
(6)
dir, spoofing can not be determined with the wanted

certainty for the spoofing distances tested. Evident from Figure 10.6a is the fact that the
trace plot area stretches beyond the tested spoofing distances. Hence, spoofing detection
with the wanted certainty might be possible if the spoofing distances are large enough.
These spoofing distances would need to go beyond 100 km for the developed algorithms
to detect the spoofing. This is considered poor spoofing detection capability, which is
why this is not further examined. For the remaining spoofing directions in the table, it
is seen that they all have in common that at a spoofing distance of 60 km and above,
spoofing is detected with the wanted certainty. On the other hand, it is also evident from
the table that, for some spoofing angles, spoofing can already be detected at a spoofing
distance ds = 20 km, as evident from the last column in the table, corresponding to the
spoofing angle φ(9)

dir.
In order to see if the spoofing capabilities can be improved by utilizing two LEO

satellites, this is described and tested in the succeeding chapters.
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Figure 10.5: (a): AEP plot of the spoofed position corresponding to ds = 50 km and the spoofing
angle φ(4)

dir and p(n) as center point. (b): Addition of trace plot of node 0.
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Figure 10.6: (a): Same as Figure 10.5b with the addition of the spoofed positions for ds = 50 km for
all φ(k)

dir. (b): Same as Figure 10.6a but with trace plot of node 10 instead of node 0.
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Figure 10.7: (a): Trace plot of node 0 for the simulation in which the spoofed position was the one
corresponding to ds = 50 km and φ(6)

dir. (b): Same as Figure 10.7a, but for node 10.
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Figure 10.8: (a): Trace plot of node 0 for the simulation in which the spoofed position was the one
corresponding to ds = 50 km and φ(1)

dir. (b): Same as Figure 10.7a, but for node 10.



85

11 | Sampler algorithm: Two satel-
lites and no AIS frequency
offset

This chapter introduces the MWG sampler algorithm for the model in which two satel-
lites are used and no AIS frequency offset is included. The probability model for this
case is described in Section 8.4, in which the posterior densities for the unobserved vari-
ables in the Bayesian network are also described. These posterior densities are used in
the MWG sampler in this chapter. In the last section of this chapter, a description of
the choice of input parameters for the algorithm is given. These parameters are used in
the algorithm when it is tested in the succeeding chapter.

11.1 Metropolis within Gibbs sampler
The MWG sampler algorithm used in this chapter is seen in Algorithm 3. This sampler
uses a cyclic updating scheme of the variables. The initialization of the unobserved
variables follows the same lines as in Section 9.1, as does the variable updating steps.
Notice that in Algorithm 3, a triple superscript refers to AIS message number in the
first entry, satellite number in the second entry, and Gibbs iteration in the third entry,
e.g. ν(n,m,g)

T is the value of νT for the n’th AIS message for the m’th satellite in the g’th
Gibbs iteration.
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Algorithm 3 MWG sampler for two satellite model
Input data: a(n), ν(n,0), ν(n,1), s(n,0)

α , s(n,0)
β , s(n,1)

α , s(n,1)
β , f (n)

c , T (n)
T , tr

for n = 0, 1, . . . , N − 1.
Input parameters: G, qS , κinit, κv1, κv2, κS , κNS , κMH , κsat σ2

d.
Output data: S(g) for g = 0, 1, . . . , G− 1.

1. Initialize unobservables:

(a) Draw S(0) ∼ Bern(qS).

(b) Draw p(0,0) ∼ F
(
a(0), κinit

)
.

(c) Calculate ν(0,0,0)
T according to (8.14), using p(0,0), s(0,0)

α , s(0,0)
β , and f (0)

c .

(d) Calculate ν(0,1,0)
T according to (8.14), using p(0,0), s(0,1)

α , s(0,1)
β , and f (0)

c .
(e) For n = 1, 2, . . . , N − 1.

i) Set κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.

ii) Draw p(n,0) ∼ F
(
p(n−1,0), κ

(n)
v

)
.

iii) Calculate ν(n,0,0)
T according to (8.14), using p(n,0), s(n,0)

α , s(n,0)
β , and f (n)

c .

iv) Calculate ν(n,1,0)
T according to (8.14), using p(n,0), s(n,1)

α , s(n,1)
β , and f (n)

c .

2. Use Metropolis-Hastings within Gibbs sampling for g = 1, 2, . . . , G− 1.

(a) Update S(g) by:

i) Set c1 = qS
∏N−1
n=0 fF

(
a(n) | p(n,g−1), κS

)
.

ii) Set c0 = (1− qS)
∏N−1
n=0 fF

(
a(n) | p(n,g−1), κNS

)
.

iii) Draw u ∼ unif[0, 1].

iv) Set S(g) =
{

1 if u ≤ c1
c1+c0

0 otherwise.

(b) Update p(n,g) by applying a Metropolis-Hastings step for n = 0, 1, . . . , N − 1.

i) Draw p(n,g)
pro ∼ F

(
p(n,g−1), κMH

)
as proposal for true vessel position.

ii) Calculate Doppler shift proposal ν(n,0,g)
pro according to (8.14), using p(n,g)

pro ,
s

(n,0)
α , s(n,0)

β , and f (n)
c .

iii) Calculate Doppler shift proposal ν(n,1,g)
pro according to (8.14), using p(n,g)

pro ,
s

(n,1)
α , s(n,1)

β , and f (n)
c .

iv) Set κ =
{
κS , if S(g) = 1
κNS , otherwise.

v) If n = 0:
H =

fF

(
p

(0,g)
pro | savg , κsat

)
·fF
(
p

(0,g)
pro |a(0), κ

)
·fN
(
ν(0,0) | ν(0,0,g)

pro , σ2
d

)
·fN
(
ν(0,1) | ν(0,1,g)

pro , σ2
d

)
fF (p(0,g−1) | savg , κsat)·fF (p(0,g−1) |a(0), κ)·fN

(
ν(0,0) | ν(0,0,g−1)

T , σ2
d

)
·fN
(
ν(0,1) | ν(0,1,g−1)

T , σ2
d

)
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MWG sampler for two satellite model continued

vi) Else:

Set κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.
and

H =

fF

(
p

(n,g)
pro |p(n−1,g), κ

(n)
v

)
·fF
(
p

(n,g)
pro |a(n), κ

)
·fN
(
ν(n,0) | ν(n,0,g)

pro , σ2
d

)
·fN
(
ν(n,1) | ν(n,1,g)

pro , σ2
d

)
fF

(
p(n,g−1) |p(n−1,g), κ

(n)
v

)
·fF (p(n,g−1) |a(n), κ)·fN

(
ν(n,0) | ν(n,0,g−1)

T , σ2
d

)
·fN
(
ν(n,1) | ν(n,1,g−1)

T , σ2
d

)
vii) Draw v ∼ unif[0, 1].
viii) Set a(n,g)

accept = min[1, H]

ix) Set p(n,g) =
{
p

(n,g)
pro if v ≤ a(n,g)

accept

p(n,g−1) otherwise.

x) Set ν(n,0,g)
T =

{
ν

(n,0,g)
pro if v ≤ a(n,g)

accept

ν
(n,0,g−1)
T otherwise.

xi) Set ν(n,1,g)
T =

{
ν

(n,1,g)
pro if v ≤ a(n,g)

accept

ν
(n,1,g−1)
T otherwise.

Irreducibility and aperiodicity of the sampler in Algorithm 3 can be established using
arguments similar to those made in the one satellite case in Section 9.2 in Chapter 9.

11.2 Metropolis within Gibbs sampler input parameters
The input parameters for the MWG sampler used in this chapter are the same as those in
the one satellite case, except for one of the parameters. The parameter that is different is
κMH , which is chosen such that the average accept probabilities from (9.2) fall between
0.16 and 0.43. The input parameters used in this chapter can be seen in Table 11.1. The
case-by-case choice of κv1 and κv2 relies on Table 9.2 in Chapter 9 as was also the case
in said chapter.
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Parameter Value
qS 0.01
κinit 2437366
κv1 Case specific
κv2 Case specific
κS 975
κNS Case specific
κMH 15233535
κsat 164
σ2
d 7.32

Table 11.1: Input parameters for the two satellite MWG sampler.



89

12 | Sampler algorithm test: Two
satellites and no AIS frequency
offset

This chapter describes the tests of the sampler in Algorithm 3, which is a sampling
algorithm designed and developed to help perform inference in the model described in
Section 8.4. This model was the one created for the variables in the space-based AIS
system in which two satellites are used and no AIS frequency offset is included. All
tests carried out in this chapter are based on the scenario seen in Figure 12.1. Four true
vessel positions are shown in this figure, which, when generating data, correspond to four
different p(0)

v positions used as input for the data generation described in Chapter 6. The
colatitude and longitudes of these vessel positions are seen in Table 12.1. Whenever a
data set is generated for use in the tests in this chapter the orbit offset, Ωoff , is chosen
such that the two satellites fly in the same orbits regardless of which one of the four
vessel positions is in question. These orbits always have an inclination of 70◦ degrees.
These two orbit trajectories are also seen in the figure. This scenario is chosen to see
how different vessel positions, relative to the satellite orbits, affect the position spoofing
detection capabilities of the developed algorithm.

These four vessel positions will be used in tests where the vessel has different report
intervals, i.e. tests in which the vessel is either idle or travelling with a speed dictated
by the report interval that is being tested. In tests where the vessel is idle, p(0) = p(1) =
. . . = p(N−1). When the vessel is moving, the four vessel positions shown in Figure 12.1

θp φp

Vessel position 1 π
4

5π
48

Vessel position 2 π
4

π
6

Vessel position 3 3π
20

5π
12

Vessel position 4 7π
40

π
5

Table 12.1: Colatitude and longitude of the four vessel positions from Figure 12.1.
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Figure 12.1: Four vessel positions and two satellite orbits.
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serve as p(0)
v positions, i.e. the position from which the vessel movement starts. The

report intervals that will be tested are 10, 6, and 2 s, in which a vessel moves at speeds
according to Table 2.1. The report interval of 10 s covers both the case in which the
vessel is idle and the one in which it is moving, hence both scenarios are tested when
using this report interval.

For each tested report interval, a κNS-value is chosen as to not create a false alarm.
When such κNS-value has been chosen, it is used to test how far away from its true
position a vessel has to spoof its position in order for the algorithm to be able to detect
the spoofing.

12.1 False alarm test
In this section κNS-values are found such that no false alarm is created. Four different
κNS values are needed. Two of these are for the report interval of 10 s, where the case
in which the vessel is idle and the case in which the vessel is moving at speeds up to 14
knots are included. The next value the one needed for the 6 s report interval, and the
last value is the one needed for the 2 s report interval.

In order to describe the procedure for choosing these κNS-values, a description of
how the κNS-value for the report interval of 10 s in which the vessel is moving is given.
The same procedure is used to find the κNS-values for the remaining report intervals.

To find the κNS-value, NDS = 10 data sets are created for each of the 4 vessel
positions in Figure 12.1. Each data set is created without spoofing, and with a vessel
speed corresponding to the maximal vessel speed in the 10 s reporting interval, namely 14
knots. For each one of the vessel positions in Figure 12.1, the 10 data sets corresponding
to this position are created such that the vessel is heading in different directions

µ
(k)
dir = 2π

NDS
· k, k = 0, 1, . . . , NDS − 1. (12.1)

This is done such that the vessel is moving in different directions in each data set for
each of the vessel positions from Figure 12.1. As an example, the true vessel positions,
p(n), for n = 0, 1, . . . , N − 1, from the 10 data sets created for vessel position 2 in Figure
12.1 are seen in an AEP plot in Figure 12.2.

The sampler in Algorithm 3 was then run with each of the, in total, 40 data sets
for G = 25000 iterations each, using the input parameter values from Table 11.1, and
a κNS-value chosen such that 95% of the values in the Fisher distribution fall within a
distance of 0.5 km from its mean direction, and Ŝ was estimated for each run. This was
done several times, each time incrementing the value of κNS with 0.5 km, until all 40
estimates of Ŝ were below 0.1, i.e. until no false alarm was created in any of the 4 vessel
positions. These estimates were calculated with a burn-in of NBI = 1000 samples.

The above procedure was also carried out for the remaining report intervals. The
resulting κNS-values for the tested report intervals can be seen in Table 12.2. These
are the κNS-values that are used in the succeeding simulations when different report
intervals are used.
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Figure 12.2: AEP plot illustrating 10 vessel paths.

tr (s) κNS
10 (not moving) 19896862
10 (moving) 12036373
6 9749462
2 4333094

Table 12.2: Values of κNS that ensure that no false alarm is created for different reporting intervals.
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12.2 Spoofing distance test for 10 s report interval without
vessel movement

For each of the 4 vessel positions in Figure 12.1, the spoofing detection capabilities are
tested when the vessel is not moving. For each of the 4 vessel positions, data is generated
in the same way as the data used in the one satellite case in Section 10.2, with the same
spoofing angles. The principle is illustrated in Figure 10.3 from the one satellite case
test section. The only difference is that this test utilizes two satellites. The scenarios for
vessel positions 1− 4 are seen in the Figures 12.3a, 12.3b, 12.4a, and 12.4b, respectively.
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Figure 12.3: (a): Scenario for vessel position 1. (b): Scenario for vessel position 2.
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Figure 12.4: (a): Scenario for vessel position 3. (b): Scenario for vessel position 4.

For each of the 4 vessel positions, the estimates of Ŝ are seen in the Tables 12.5-12.8.
Notice that the tables show that for each of the 4 vessel positions, a different number
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of spoofing distances, ds, have been tested. For a given vessel positions, the spoofing
distances were incremented until spoofing was detected for all 10 spoofing angles.

Evident from all of the tables is the fact that compared to the case in which a single
satellite was used, the spoofing capabilities have been improved by using two satellites.
They have been improved in the sense that a vessel does not have to spoof its position
as far away as in the single satellite case for the spoofing to be detected.

Moreover, as was the case in the single satellite case, when a vessel is spoofing its
position in a certain direction, the spoofing capabilities suffer in the sense that a vessel
has to spoof its position further away for the spoofing to be detected. The spoofing
angles in which this is the case are dependent on the vessel position relative to the
satellite orbits. As an example, consider Table 12.7, in which the results from vessel
position 3 are shown. When the vessel is spoofing its position in the direction of φ(4)

dir

or φ(9)
dir, the spoofing capabilities suffer. As was the case in the single satellite case, this

behavior is illustrated in the Figures 12.10a and 12.10b, in which trace plots of node
0 and 10, respectively, for vessel position 3 are seen for the simulations in which the
spoofed position corresponding to ds = 25 km and φ(7)

dir was used. In these figures it is
evident that the spoofing angles φ(4)

dir and φ(9)
dir correspond to spoofed positions that fall

within the area. The areas of the trace plots in these figures have shapes similar to that
in Figure 10.5a. The shape of node trace plot areas are not always shaped like in these
two examples. An example of areas that are shaped differently is seen in the Figures
12.9a and 12.9b, in which trace plots of node 0 and 10, respectively, for vessel position 2
are seen for the simulations in which the spoofed position corresponding to ds = 25 km
and φ(7)

dir was used.
Thus, in conclusion, utilizing two satellites when the vessel is not moving has im-

proved the overall spoofing capabilities, but the problems with certain spoofing angles
making the spoofing capabilities suffer still exist. The scenario in which the spoofing
capabilities are best is the one with vessel position 2. With the way the satellites pass
this vessel position, which is illustrated in Figure 12.3b, the spoofing capabilities are
such that at a spoofing distance of 15 km, spoofing can be detected at all the tested
spoofing angles. This is evident from Table 12.6.

Considering all the tables in this section, they have in common that spoofing is
detected, for all of the spoofing angles used if the vessel is spoofing its position 30 km
away from its true position. Overall, in vessel positions 2 − 4, corresponding to Tables
12.6-12.8, it is evident that for some spoofing angles, spoofing starts being detected at
spoofing distances as low as ds = 5 km.
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tr = 10 s, no vessel movement (Vessel position 1)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.2 0.2 0.1
0.5 0.2 0.1 0.9 0.2 0.3 0.0 0.1 0.1 0.1 0.2
5 0.3 1.9 0.6 10.1 60.3 51.7 0.7 0.3 0.7 16.5
10 97.7 24.0 95.9 98.9 100 100 97.1 93.3 99.2 100
15 100 75.8 100 100 100 100 100 80.6 100 100
20 100 100 100 100 100 100 100 100 100 100

Figure 12.5: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 1. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 12 and 14.

tr = 10 s, no vessel movement (Vessel position 2)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 4.4 0.9 1.1 2.1 3.0 2.1 1.4 2.4 1.1 1.1
0.5 0.4 3.9 0.7 1.1 1.3 1.3 2.3 1.1 1.6 0.6
5 100 13.0 0.9 72.3 3.6 22.3 4.4 7.7 2.5 6.4
10 100 100 8.7 99.9 98.3 53.8 92.5 100 100 78.5
15 100 100 100 100 100 100 100 100 100 100

Figure 12.6: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 2. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 24 and 27.
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tr = 10 s, no vessel movement (Vessel position 3)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.6 1.1 1.3 0.1 5.8 1.2 9.2 0.6 3.3 2.7
0.5 0.4 0.5 0.9 17.2 0.2 0.3 2.9 0.6 43.6 7.7
5 42.3 99.9 66.6 10.0 0.6 55.6 84.9 73.0 9.6 1.9
10 97.9 100 100 56.9 15.3 94.4 100 100 90.1 35.6
15 100 100 100 98.9 94.8 100 100 100 66 35.3
20 100 100 100 100 21.1 100 100 100 100 46.0
25 100 100 100 100 84.9 100 100 100 100 42.8
30 100 100 100 100 99.5 100 100 100 100 96.0

Figure 12.7: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 3. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 22 and 24.

tr = 10 s, no vessel movement (Vessel position 4)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.6 1.6 2.4 0.8 3.4 2.2 2.2 3.0 2.1 2.2
0.5 1.3 2.3 1.0 0.6 1.2 1.2 1.0 71.2 0.8 1.3
5 46.8 1.7 4.1 2.1 23.3 100 19.5 1.3 0.4 8.2
10 92.0 31.4 100 11.4 100 100 100 1.6 100 100
15 100 100 13.4 100 100 100 100 100 100 100
20 100 100 99.5 100 100 100 100 100 100 100

Figure 12.8: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 4. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 26 and 28.
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Figure 12.9: (a): Scenario for vessel position 3. (b): Scenario for vessel position 4.
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Figure 12.10: (a): Scenario for vessel position 3. (b): Scenario for vessel position 4.

12.3 Spoofing distance test for 10 s report interval with
vessel movement

This section explores the case in which a vessel is moving at speeds corresponding to the
report interval of 10 s. For the test in this section, the spoofing angles from (10.1) are
reused. For each of the 4 vessel positions, 10 data sets are generated per spoofing distance
that is tested. To generate one of these data sets for a given vessel position and spoofing
direction is done as described in Chapter 6 with φ(k)

dir as the spoofing direction for the k’th
data set. In contrast to how the vessel movement directions were fixed when generating
data based on (12.1), they are not fixed in this section, and are chosen randomly such that
for each data set generated in this section, the input vessel movement direction, µdir, is
drawn uniformly on the interval from 0 to 2π. An example of the generated vessel paths
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and corresponding spoofed vessel paths for vessel position 2 and the spoofing distance
ds = 15 km can be seen in the Figures 12.11a and 12.11b showing AEP plots. In Figure
12.11a the true vessel paths are seen, and in Figure 12.11b both the true vessel paths
and the spoofed vessel paths are seen. In all of the data sets generated for the test in
this section, the vessel speeds have been drawn uniformly on the vessel speed interval
corresponding to the report interval of 10 s. This speed interval is seen in Table 2.1.

The spoofing detection results can be seen in Tables 12.12-12.15. The results in
these tables show that the vessel position with the poorest spoofing capabilities is vessel
position 3, where vessel position spoofing is not reliably detectable until a spoofing
distance of 35 km. As was the case in the single satellite case and the case with two
satellites without vessel movement, there are still spoofing angles in which the position
spoofing capabilities are worse than others. On the other hand, it is evident from Table
12.13 that spoofing starts being detected, for some spoofing angles, at spoofing distances
as low as ds = 5 km for vessel position 2.
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Figure 12.11: (a): The 10 generated true vessel paths for vessel position 2 for the simulations in which
a spoofing distance ds = 15 km is used. (b): The same, but with the spoofed vessel paths plotted as
well.
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tr = 10 s, vessel movement (Vessel position 1)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.1
0.5 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
5 2.2 0.0 0.0 21.5 1.0 0.2 0.3 0.2 0.0 0.0
10 33.79 87.9 0.1 1.2 95.2 67.4 4.7 0.0 91.3 99.8
15 100 86.3 0.9 100 100 100 12.9 60.3 99.9 100
20 100 99.9 100 100 100 100 100 100 100 100

Figure 12.12: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 1. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 12 and 14.

tr = 10 s, vessel movement (Vessel position 2)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.1 0.0 0.1 3.6 0.4 0.0 1.6 0.1 0.0 0.0
0.5 0.0 0.8 0.1 0.3 0.3 0.1 0.4 0.1 0.7 0.0
5 0.0 100 49.9 3.5 0.1 100 0.0 0.1 0.6 91.0
10 1.6 0.4 0.0 99.2 99.8 99.4 90.5 98.3 69.3 74.9
15 100 86.6 100 100 100 100 1.1 100 100 100
20 100 5.7 100 100 100 100 8.9 100 100 100
25 100 100 100 100 100 100 100 100 100 100

Figure 12.13: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 2. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 24 and 27.
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tr = 10 s, vessel movement (Vessel position 3)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 1.5 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0
0.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 1.2 0.1 0.0
5 0.1 6.5 34.5 0.9 0.0 0.0 14.8 13.1 0.2 0.1
10 89.0 87.6 98.9 1.2 0.0 26.5 99.8 10.4 0.1 0.2
15 100 100 100 0.5 19.3 100 100 100 48.3 0.0
20 100 100 100 100 6.5 100 100 100 99.7 5.1
25 100 100 100 100 20.6 100 100 100 100 0.1
30 100 100 100 100 71.1 100 100 100 100 0.1
35 100 100 100 100 100 100 100 100 100 100

Figure 12.14: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 3. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 22 and 24.

tr = 10 s, vessel movement (Vessel position 4)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 1.2 0.2 0.0 0.3 0.0 0.2 0.1 3.9
0.5 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 2.7
5 0.3 21.3 0.0 0.0 0.1 0.1 16.4 0.1 0.2 0.0
10 100 0.2 95.4 92.1 0.1 100 100 0.0 3.3 100
15 99.5 100 80.9 0.6 100 0.3 100 0.0 5.3 100
20 100 100 94.1 99.8 100 100 100 4.9 100 100
25 100 100 100 100 100 100 100 100 100 100

Figure 12.15: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 4. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 26 and 28.

12.4 Spoofing distance test for 6 and 2 s report interval
with vessel movement

This section covers both the case in which a vessel is moving at speeds corresponding to
the report interval of 6 s and the case in which it moves according to the report interval
of 2 s. Data for the test carried out in this section is generated in the same way as was
the case in Section 12.3. The only difference is that when the 6 s report interval is tested,
vessel speeds are drawn uniformly on the speed interval from Table 2.1 that corresponds
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to the given report interval. This is also the case when the 2 s report interval is tested.
The tables containing the estimates Ŝ for each of the 4 vessel positions for both of the
tested report intervals are found in Appendix N.

For the report interval of 6 s, the tests carried out show that if vessel position 3 is
excluded, spoofing can be detected in all spoofing angles at a spoofing distance of ds = 25
km. If vessel position 3 is included, this distance is raised such that spoofing can first be
detected at a spoofing distance of ds = 60 km. This is evident from the results for vessel
position 3, which are seen in Table N.3. In this table, it is seen that the spoofing angle
φ

(4)
dir results in poor spoofing detection capability. On the other hand, with some of the

other spoofing angles in the same table, spoofing can start being detected at a spoofing
distance as low as ds = 5 km. This is seen in the table of the spoofing angle φ(7)

dir.
For the report interval 2 s, the tests carried out show that if vessel position 3 is

excluded, spoofing can be detected in all spoofing angles at a spoofing distance of ds = 30
km. If vessel position 3 is included, this distance is raised such that spoofing can first
be detected at a spoofing distance of ds = 50 km. This is evident from the results for
vessel position 3, which are seen in Table N.7. In this table, it is seen that the spoofing
angle φ(4)

dir results in poor spoofing detection capability. On the other hand, all 4 vessel
positions has spoofing angles at which spoofing can start being detected at a spoofing
distance as low as ds = 10 km. This is evident from the Tables N.5-N.8.
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13 | Sampler algorithm and test:
Two satellites and AIS fre-
quency offset

In this chapter, the MWG sampler algorithm for the special case in which two satellites
are used and the AIS frequency offset is included is introduced. The probability model for
this case is described in Section 8.5, in which the posterior densities for the unobserved
variables in the Bayesian network are described. These posterior densities are used in
the MWG sampler in this chapter.

Finally, testing of this algorithm with data simulated according to the descriptions
in Chapter 6 is carried out, and a description of the choice of input parameters used for
the algorithm is given.

13.1 Metropolis within Gibbs sampler
The MWG sampler algorithm used in this chapter is seen in Algorithm 4. The initial-
ization of the unobserved variables follows the same lines as in Section 11.1, with the
addition that the initialization of foff is done by drawing

foff ∼ N (0, σ2
off ). (13.1)

As with the other MWG sampler algorithms presented in this thesis, the MWG sampler
in this chapter utilizes a cyclic updating scheme. The updating of the variable S and
the true vessel positions p(n) for n = 0, 1, . . . , N − 1 are done in the same fashion as in
the MWG samplers in the chapters 9 and 11.

The updating of foff is done based on the fact that its posterior density from (8.7)
is a product of normal densities. Based on this posterior density in the case of M = 2,
this yields that

f (foff | Cgen \ {foff})
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∝fN
(
foff | 0, σ2

off

)N−1∏
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fN
(
ζ(n,0) | ν(n,0)

T + foff , σ
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·
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(
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(13.2)

where
σ2
post = 2

1
2σ2
off

+ N
σ2
d

(13.3)

and

µpost =
(

1
σ2
d

N−1∑
n=0

(
ζ(n,0) − ν(n,0)

T + ζ(n,1) − ν(n,1)
T

))
σ2
post. (13.4)

From (13.2), it is evident that the posterior distribution for foff is proportional to an
unnormalized normal distribution with mean value µpost as given in (13.4) and vari-
ance σ2

post as given in (13.3). The updating of foff is done using (13.2), employing a
Metropolis-Hastings updating step. The proposal distribution from which proposal up-
dates are drawn is chosen as a normal distribution with mean equal to the value of foff
in the previous Gibbs iteration and variance σ2

MH . This distribution is symmetric and
is hence not shown in the Hastings ratios in the updating steps for foff in Algorithm 4.
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Algorithm 4 MWG sampler for two satellite model and foff
Input data: a(n), ζ(n,0), ζ(n,1), s(n,0)

α , s(n,0)
β , s(n,1)

α , s(n,1)
β , f (n)

c , T (n)
T , tr

for n = 0, 1, . . . , N − 1.
Input parameters: G, qS , κinit, κv1, κv2, κS , κNS , κMH , κsat σ2

d, σ2
post, σ2

MH ,
σ2
off .
Output data: S(g) for g = 0, 1, . . . , G− 1.

1. Initialize unobservables by doing:

(a) Draw S(0) ∼ Bern(qS).

(b) Draw f
(0)
off ∼ N (0, σ2

off ).

(c) Draw p(0,0) ∼ F
(
a(0), κinit

)
.

(d) Calculate ν(0,0,0)
T according to (8.14), using p(0,0), s(0,0)

α , s(0,0)
β , and f (0)

c .

(e) Calculate ν(0,1,0)
T according to (8.14), using p(0,0), s(0,1)

α , s(0,1)
β , and f (0)

c .
(f) For n = 1, 2, . . . , N − 1.

i) Set κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.

ii) Draw p(n,0) ∼ F
(
p(n−1,0), κ

(n)
v

)
.

iii) Calculate ν(n,0,0)
T according to (8.14), using p(n,0), s(n,0)

α , s(n,0)
β , and f (n)

c .

iv) Calculate ν(n,1,0)
T according to (8.14), using p(n,0), s(n,1)

α , s(n,1)
β , and f (n)

c .

2. Use Metropolis-Hastings within Gibbs sampling for g = 1, 2, . . . , G− 1.

(a) Update S(g) by:

i) Set c1 = qS
∏N−1
n=0 fF

(
a(n) | p(n,g−1), κS

)
.

ii) Set c0 = (1− qS)
∏N−1
n=0 fF

(
a(n) | p(n,g−1), κNS

)
.

iii) Draw u ∼ unif[0, 1].

iv) Set S(g) =
{

1 if u ≤ c1
c1+c0

0 otherwise.

(b) Update f (g)
off by:

i) Set µpost = σ2
post

σ2
d

∑N−1
n=0

(
ζ(n,0) − ν(n,0,g−1)

T + ζ(n,1) − ν(n,1,g−1)
T

)
ii) Draw f

(g)
pro ∼ N

(
f

(g−1)
off , σ2

MH

)
.

iii) Set H = exp

−
(
f

(g)
pro−µpost

)2

2σ2
post

 ·
exp

−
(
f

(g−1)
off

−µpost
)2

2σ2
post



−1

iv) Draw w ∼ unif[0, 1].
v) Set f (g)

accept = min[1, H]

vi) Set f (g)
off =

{
f

(g)
pro if w ≤ f (g)

accept

f
(g−1)
off otherwise.
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MWG sampler for two satellite model and foff continued

(c) Update p(n,g) by applying a Metropolis-Hastings step for n = 0, 1, . . . , N − 1.

i) Draw p(n,g)
pro ∼ F

(
p(n,g−1), κMH

)
as proposal for true vessel position.

ii) Calculate Doppler shift proposal ν(n,0,g)
pro according to (8.14), using p(n,g)

pro ,
s

(n,0)
α , s(n,0)

β , and f (n)
c .

iii) Calculate Doppler shift proposal ν(n,1,g)
pro according to (8.14), using p(n,g)

pro ,
s

(n,1)
α , s(n,1)

β , and f (n)
c .

iv) Set κ =
{
κS , if S(g) = 1
κNS , otherwise.

v) If n = 0:
H =

fF

(
p

(0,g)
pro | savg , κsat

)
·fF
(
p

(0,g)
pro |a(0), κ

)
·fN
(
ζ(0,0)−f (g)

off
| ν(0,0,g)
pro , σ2

d

)
·fN
(
ζ(0,1)−f (g)

off
| ν(0,1,g)
pro , σ2

d

)
fF (p(0,g−1) | savg , κsat)·fF (p(0,g−1) |a(0), κ)·fN

(
ζ(0,0)−f (g)

off
| ν(0,0,g−1)
T , σ2

d

)
·fN
(
ζ(0,1)−f (g)

off
| ν(0,1,g−1)
T , σ2

d

)
vi) Else:

Set κ(n)
v =

{
κv1 if T (n)

T − T (n−1)
T < 1.5 · tr

κv2 otherwise.
and

H =

fF

(
p

(n,g)
pro |p(n−1,g), κ

(n)
v

)
·fF
(
p

(n,g)
pro |a(n), κ

)
·fN
(
ζ(n,0)−f (g)

off
| ν(n,0,g)
pro , σ2

d

)
·fN
(
ζ(n,1)−f (g)

off
| ν(n,1,g)
pro , σ2

d

)
fF

(
p(n,g−1) |p(n−1,g), κ

(n)
v

)
·fF (p(n,g−1) |a(n), κ)·fN

(
ζ(n,0)−f (g)

off
| ν(n,0,g−1)
T , σ2

d

)
·fN
(
ζ(n,1)−f (g)

off
| ν(n,1,g−1)
T , σ2

d

)
vii) Draw v ∼ unif[0, 1].
viii) Set a(n,g)

accept = min[1, H]

ix) Set p(n,g) =
{
p

(n,g)
pro if v ≤ a(n,g)

accept

p(n,g−1) otherwise.

x) Set ν(n,0,g)
T =

{
ν

(n,0,g)
pro if v ≤ a(n,g)

accept

ν
(n,0,g−1)
T otherwise.

xi) Set ν(n,1,g)
T =

{
ν

(n,1,g)
pro if v ≤ a(n,g)

accept

ν
(n,1,g−1)
T otherwise.

Irreducibility and aperiodicity of the sampler in Algorithm 4 can be established using
arguments similar to those made in the one satellite case in Section 9.2 in Chapter 9.
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Parameter Value
qS 0.01
κinit 2437366
κv1 47017094414
κv2 11754268483
κS 975
κNS 27081840
κMH 15233535
κsat 164
σ2
d 7.32
σ2
MH 0.01
σ2
off 2432

Table 13.1: Simulation parameters for the two satellite MWG sampler in which foff is included. The
variance parameter σ2

MH has been varied in the simulations, and the value of σ2
MH shown in this table

is the one that was used in the divergence example presented in this section.

13.2 Metropolis within Gibbs sampler test
Several simulations with runs of the sampler in Algorithm 4 have been carried out in
order to test the spoofing detection capabilities of the algorithm. In all simulations,
the vessel has not been moving. Except for the introduction of the input parameters
σ2
off , σ2

MH , and σ2
post (which is dependent on σ2

d and σ2
off ), the input parameters for

the simulations have been the same as the ones in Table 11.1 in Chapter 11 with the
caveat that κNS has been arbitrarily chosen such that 95% of the values in the Fisher
distribution in which it is used fall within 3 km of its mean direction. Notice that the
values of κv1 and κv2 are chosen from Table 9.2 based on a report interval, tr, of 10 s.

The variance σ2
off has been chosen such that about 95% of the values drawn from the

normal distribution in which it is used fall within two standard deviations from the mean.
The standard deviation is chosen such that σoff = 243, where 243 is approximately half
of the maximum value of foff , as evident from (2.1).

The only parameter that has been varied in these simulations is σ2
MH . The sim-

ulations show that regardless of the choice of σ2
MH value, the values of foff diverges

when running the sampler in Algorithm 4. Data has been simulated according to the
descriptions in Chapter 6, and a value of foff of 100 Hz has been added to the generated
Doppler shift data. An example of this divergence is seen in Figure 13.1, in which the
algorithm input parameter values in Table 13.1 have been used. In this figure the AIS
frequency offset is illustrated as the horizontal green line. The scenario for this example
is shown in Figure 13.2, in which p(0) = p(1) = . . . = p(N−1), i.e. the vessel has not been
moving. Moreover, in the example, N = 26 AIS messages have been received.

When the value of foff diverges, the simulations show that the resulting samples of
the spoofing variable, S(g) for g = 0, 1, . . . , G − 1, can not be used to detect position
spoofing.
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Figure 13.1: Illustration of divergence of foff values when running the sampler in Algorithm 4.
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Figure 13.2: The scenario for the simulation example in this section. N = 26 AIS messages have been
received.
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13.3 Alternative AIS frequency offset compensation method
Since including foff in the Bayesian network, and hence in the MWG sampler, made
the Gibbs iteration values of foff diverge, a curve fitting method is proposed to obtain
an estimate of foff . Having an estimate of foff makes it possible to e.g. subtract this
estimate from the carrier frequency offset data.

The method is based on the information about foff that is contained in the Doppler
shift curve, i.e. the Doppler shift over a pass. An example of such a curve is seen in
Figure 2.7. In this figure, only Doppler shifts are plotted; the figure does not contain
foff . If foff is included, it is assumed that foff is a constant addition to the Doppler
shifts. The curve generated by the carrier frequency offset corresponds to a Doppler
shift curve to which a constant has been added.

Now, the curve to which carrier frequency offset data is proposed to be fitted is a
modified version of the sigmoid function

y(x) = 1
1 + e−x

. (13.5)

This modified function is

ζ(t) = c

1 + exp(−k(t− t0)) + y0, (13.6)

in which the parameter c scales the curve vertically, t0 translates the function in time,
k determines the steepness of the curve, and y0 translates the function values. The
reason for choosing a modified version of a sigmoid function is the similarities between
the sigmoid function and the Doppler shift curve over a satellite pass.

The sigmoid function in (13.5) has the greatest slope in t = 0, and hence when it is
translated in time by an amount t0, as is the case with the modified function in (13.6),
it has greatest slope in t = t0.

The Doppler shift curve has greatest (absolute) slope when the Doppler shift is zero.
Hence, when a frequency offset foff is added to the curve, the function value in which
the curve has greatest slope is approximately equal to foff . This principle is illustrated
in Figure 13.3, in which the curve from Figure 2.7 is shown, along with a version of the
same curve to which an foff value of 1000 Hz has been added.

Now, this method is tested for carrier frequency offset data simulated from one
satellite. This data is generated based on the descriptions in Chapter 6 with a report
interval, tr, of 10 s. Two different passes in which the vessel is not moving are tested.
These passes are seen in the Figures 13.4a and 13.5a, and are referred to as pass one
and pass two, respectively. Doppler shift data was generated for the two passes, and
for both passes a frequency offset, foff , of 200 Hz was added to the Doppler shift data,
resulting in the carrier frequency offset data. The curve fitted to the carrier frequency
offset data from pass one is seen in Figure 13.4b, and the corresponding curve for pass
two is seen in Figure 13.5b. The curve fits have been made using a non-linear least
squares method, implemented in the Scipy Python module named ”optimize.curve_fit”.
The parameters for the fitted curves are seen in Table 13.2 along with the number, N ,
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Figure 13.3: Blue curve is Doppler shift curve from Figure 2.7, and green curve is the same curve with
an foff value of 1000 Hz added.

Parameter Pass 1 Pass 2
N 33 14
t0 769.6 693.1
y0 3923.7 −3101.2
c −7444.7 6626.8
k 0.03108 −0.01415
f̂off 201.35 212.2

Table 13.2: Parameters for the curves fitted to the carrier frequency offset data for the two satellite
passes.

of AIS messages received and the estimate, f̂off of foff . These estimates are obtained
by inserting the parameters from the table into 13.6 and evaluating the function in the
estimated t0 value.

Evident from the estimated foff values from this section is the fact that the accuracy
of them depends on the pass, i.e. how many AIS messages are received in a pass, and
the geometry of the satellite orbit relative to the vessel.
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Figure 13.4: (a): Illustration of pass one. Notice that the satellite points s(n)
α are plotted for n =

0, 1, . . . , N − 1. (b): Curve fitted to carrier frequency offset data from pass one. Notice that the carrier
frequency offset data is plotted for n = 0, 1, . . . , N − 1.
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14 | Complexity analysis and data
downlink

14.1 Algorithm complexity analysis
All of the MWG sampler algorithms used in this thesis, i.e. Algorithm 2, 3 and 4, has
the same overall structure for G iterations and N AIS messages received byM satellites.
The outer loop of the algorithms is over G, and in each iteration of this loop, an inner
loop of N iterations is to be run. In each of these iterations, the number of computations
scales linearly with M . Hence, the complexity of the algorithm scales linearly in both
N , G, and M .

Two runs of Algorithm 3 in which N is different have been carried out to illustrate
the running time of the algorithm. The results can be seen in Table 14.1. Both of these
were carried out with the algorithm implemented in Python 2.7 on a computer with
specifications shown in Table 14.2.

For both all of the algorithm, the output data that needs to be stored from the
algorithms is S(g) for g = 0, 1, . . . , G− 1. In other words, G integers need to be stored.

14.2 Satellite data storage and downlink
The algorithms for spoofing detection are assumed to happen on the ground, i.e. data to
be used in the algorithms will have to be downlinked (sent down) to a ground station.
Had MWG sampler algorithms for the use of M satellites been developed, the overall
amount of data needed to be stored before being downlinked scales with N and M . The
m’th satellite would have to store the MMSI number of the vessel in question in order
to keep track of which vessel the data has been obtained from. That is, for the n’th AIS

N 66 137
G 25000 25000
Running time 521 s 1098 s

Table 14.1: Running time complexity for two different runs of algorithm 3.
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MacBook Pro
OS macOS Sierra, v. 10.12.6
Processor 2.4 GHz Intel Core i5
Memory 8 GB 1600 MHz DDR3

Table 14.2: Specifications of computer used to carry out running time simulations.

message it has to store the data in the set

Dstorage =
{
a(n), s(n,m)

α , s
(n,m)
β , ν(n,m), f (n)

c , T
(n)
T ,MMSI

}
.

The quantity f
(n)
c can take two values and can thus be represented by an integer in

storage. The MMSI number is also an integer. Thus, each satellite has to store three
three-dimensional vectors, two integers, and two floating point numbers. For a single
satellite, this amount of data scales by the number N of AIS messages received. Each
satellite will have to downlink this amount of data.
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15 | Conclusion

The way the AIS position spoofing problem has been approached in this thesis has been
to construct probability models describing the dependencies between the unobserved
and observed variables in the space-based AIS system. In these probability models,
statistical inference about whether or not spoofing was occuring in a given scenario was
performed. The statistical inference was performed using statistical sampling methods.
Specifically, Metropolis within Gibbs samplers have been used.

The spoofing detection results for the case in which a single satellite is used and the
vessel is not moving show that the spoofing detection capabilities are largely dependent
on the direction in which the vessel is spoofing its position and how far away the vessel
is spoofing its position. It was found that when the vessel was spoofing its position in
certain directions, spoofing started being detected at spoofing distances of 20 km. In
other directions, spoofing was not detected until spoofing distances of 60 km. The case
with a single satellite was only tested with a single vessel position, in which the vessel
was not moving. Based on the poor spoofing capabilities in the tested scenario, the
decision to move on to two satellites was made.

In the case where two satellites were utilized, it was also found that the spoofing
detection capabilities depended on the spoofing direction and distance. Different report
intervals, i.e. cases in which the vessel was moving, and different spoofing directions
were tested in the case of two satellites. For certain spoofing directions, spoofing started
being detected at spoofing distances of 5 km for report intervals of 10 and 6 s, and at
spoofing distances of 10 km for the report interval of 2 s. In other directions, spoofing
detection did not start until spoofing distances of 60 km for the report interval of 6 s,
and 50 km for the report interval of 2 s.

The space-based AIS system contains the AIS frequency offset, foff . This frequency
offset was included in the last model in this thesis. During the testing of the spoofing
detection capabilities when the offset was included, it was found that the way the MWG
sampler was constructed made the sampled values of foff diverge, and hence making
the algorithm unable to detect spoofing. An alternative method for estimating the value
of the frequency offset was proposed instead. This method involved fitting a modified
sigmoid curve to the observed carrier frequency offsets. It was found that this method
is highly dependent on the number of AIS messages received in the satellite pass. The
method was tested in a good and a bad pass, where these refer to passes in which the
number of received AIS messages was high and low, respectively. In the test of the good
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pass, it was found that a good estimate of the AIS frequency offset was obtained, and
in the bad pass, a poor estimate of the frequency offset was obtained.

Thus, in summary, based on the observable variables in the space-based AIS system,
AIS position spoofing can be detected when a vessel is spoofing its true position a certain
distance away. This distance is largely dependent on the given scenario and on whether
one or two satellites are utilized.
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16 | Discussion

In this thesis, real-world data has not been available. Instead, data has been simulated
as if it had been collected by LEO satellites in the space-based AIS system. Testing the
developed spoofing detection algorithms with simulated data has both advantages and
disadvantages. The advantages are that scenarios to be tested can be easily simulated
and things such as noise sources can be easily controlled. Some of the disadvantages
are that the simulated data is simulated under certain simplifying assumptions about
how real-world data would look like. When real-world data becomes available and the
developed algorithms are tested using real-world data, the spoofing detection capabilities
of the algorithms may suffer. The reason for this is that most likely, the real-world data
will contain noise from sources that have not been accounted for when generating the
simulated data. Examples of assumptions that have been made when generating data
is that Earth is a perfect sphere and that LEO satellites fly at constant altitudes. In
the real-world, Earth is not a perfect sphere, and LEO satellites slowly lose altitude
during their life-time. In regards to noise sources, access to information on how errors
on the satellite position can be modelled has been limited. In order to test the developed
algorithms with simulated data in which the satellite positon errors have been properly
modelled, more information about the way the satellite positions are obtained in the
real world is needed.

The spoofing detection results for the case in which a single satellite is used show
that the spoofing detection capabilities are largely dependent on the direction in which
the vessel is spoofing its position and how far away the vessel is spoofing its position.
This case was only tested for a single scenario in which the vessel was not moving. If
this spoofing detection method is to be implemented in a real-world application in which
only a single satellite is available, the spoofing detection capabilities would also have to
be tested in the scenario in which the vessel is moving.

In the case of two satellites, the spoofing detection capabilities are also largely depen-
dent on spoofing direction and distance. Moreover, they were also shown to be dependent
on the vessel position relative to the satellite orbits. Four different vessel positions were
tested. If the method is to be implemented in a real-world application, more scenarios
would need to be tested. The tests carried out in this thesis show a proof of concept, but
in order to get a clearer picture of the spoofing capabilities of the developed methods,
further testing would need to be done. This would include testing e.g. scenarios in which
other orbit inclinations and orbit offsets are used. Moreover, the methods would need
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to be tested using real-world data.
In the cases in which the AIS frequency offset was included, it was found that the

way the MWG sampler was constructed made the sampled values of foff diverge. This
can be due to a problem with how the probability model for this case is constructed. In
the real world, the AIS frequency offset will be present, and for the developed methods
to work in the real world, more research into how foff can be compensated for will need
to be done. This research could e.g. be to look into whether foff can be estimated from
carrier frequency offset data, and then compensated for by subtracting the estimate from
the carrier frequency offset data. This approach is pre-processing of the data used for
the sampler algorithms. The pre-processed data could then be the input for the sampler
algorithms that are built upon the probability models in which foff is not included.
Another approach could be to modify and further develop the probability model for this
case, construct an MWG sampler, and subsequently test its spoofing capabilities.

When generating carrier frequency offset data in this thesis, vessel movement is taken
into account, and this causes a slightly different Doppler shift compared to if the vessel
had not been moving. In the probability models developed in this thesis, Doppler shifts
have been modelled as if the vessel has been idle, and hence they do not take into account
the change in Doppler shift experienced when a vessel is moving. This slight discrepancy
between the generation and modelling of this data might have impacted the spoofing
detection capabilities. Thus the way carrier frequency offset data is generated and how
it is modelled in the probability models is a subject for future work. A possible path of
solving this problem could be to incorporate information about the heading and speed
of the vessel in the probability model. In a real-world application, this information can
be obtained from the received AIS messages, in which the vessel’s speed and heading is
encoded in addition to the position information.

Only cases in which either one or two satellites have been utilized have been tested.
The general probability model developed in this thesis can handle M satellites, and an
MWG sampler could be constructed to make inference in a model with M satellites.
This means that cases with three or more satellites could be tested, in order to see if
utilizing more satellites could improve the spoofing detection capabilities. Moreover, the
spoofing detection has only been based on a single satellite pass, and in the cases where
two satellites were utilized, only on the AIS messages that both satellites simultaneously
received. This means that in cases where two satellites were used, the AIS messages
received by the first satellite, but not by the second, have been discarded and vice
versa. Methods for utilizing all of the AIS messages received by both satellites could
be a subject for future work. In extension of this, spoofing detection methods in which
multiple satellite passes are taken into account are also a potential subject for future
work.

In terms of inference method choice, statistical sampling was chosen. Another option
is utilizing message-passing algorithms in order to perform inference in the probability
models. This is also a potential subject for future work.

The last subject for potential future work is that of developing a method to estimate
the true position of a vessel in the case in which position spoofing is detected. Potentially,
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the samples of the true vessel positions from the MWG samplers in this thesis can be
used for this purpose.
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A | Graph theory, Bayesian net-
works, and Markov chains

In this chapter, a Bayesian network is formally defined. When doing this, basic graph
theory is needed, and is therefore also presented. Succeeding this is an introduction to
basic measure theory. This is needed to understand the theory concerning Markov chains
with continuous state spaces. The Markov chain theory is introduced to understand the
mechanisms underlying Markov chain Monte Carlo (MCMC) methods. These methods
are used to make inference in Bayesian networks in this work.

A.1 Graph theory and Bayesian network

A graph K = (X , E) is a collection of a set of nodes, X =
{
X(0), . . . , X(n−1)

}
, and a

set of edges, E . The set of edges consists of pairs of either X(i) → X(j), X(j) → X(i)

or X(i) –X(j), where the notation ”→” and ”–” means a directed and an undirected
edge, respectively, for X(i), X(j) ∈ X , i < j. Moreover, the notation X(i) → X(j) and
X(j) ← X(i) are equivalent as are X(i) –X(j) and X(j) –X(i) [21, p. 34].

In a directed graph, all the edges are either X(i) → X(j) or X(j) → X(i). Given a
graph K where X(i) → X(j) ∈ E , X(j) is the child of X(i) and X(i) is the parent of X(j).
For an arbitrary node, X(i), i = 0, 1, . . . , n − 1, the set of parents of X(i) is denoted
paX(i) . To further develop the graph theory needed to be able to define a Bayesian
network, the concept of a graph path is defined.

Definition A.1 (Graph path)
X(0), . . . , X(k−1) form a path in the graph, K, if either X(i) → X(i+1) or X(i) –X(i+1)

for every i = 0, . . . , k − 2. Moreover, the path is directed if X(i) → X(i+1) for at least
one i [21, p. 36].

Building upon the definition of a path, the descendants and ancestors of a node in
the graph are defined.



126 A.1. Graph theory and Bayesian network

Definition A.2 (Ancestors and descendants)
In a graph K = (X , E), X is an ancestor of Y and Y is a descendant of X if a directed
path X(0), . . . , X(k−1) with X(0) = X and X(k−1) = Y exists. For a given X(i) ∈ X ,
i = 0, . . . , n− 1, the notation DX(i) is used for the set of descendants of X(i), AX(i) is
used for the set of its ancestors, and NDX(i) is used for the set of its non-descendants,
i.e. the set of nodes in X not in DX(i) [21, p. 36].

Part of the definition of a Bayesian network is that it is a graph in which no cycles
exist. It is a so-called directed acyclic graph (DAG). In order to understand this, a graph
cycle is defined.

Definition A.3 (Graph cycle)
Given a graph, K, a cycle in the graph is a directed path X(0), . . . , X(k−1) in which
X(0) = X(k−1). The graph is acyclic if it does not contain cycles [21, p. 37].

In Bayesian networks, a joint probability distribution, f , is graphically represented
using a DAG in which the nodes represent the random variables, X =

{
X(0), . . . , X(n−1)

}
,

in the joint probability distribution, and the directed edges represent their mutual de-
pendence relationships.

Definition A.4 (Bayesian network structure)
A DAG, G, with nodes representing random variables X(0), . . . , X(n−1) is called a
Bayesian network structure. The Bayesian network structure encodes the set of local
conditional independence assumptions

Il(G) =
{(
X(i) |= NDX(i) | paX(i)

)}n−1

i=0
,

where |= denotes independence between random variables [21, p. 57].

Furthermore, the set of independencies of a distribution, f , is defined.

Definition A.5 (Independecies in joint probability distribution)
For a probability distribution f over X , I(f) is defined as the set of independencies
of the form (X |= Y |Z) that hold in f [21, p. 60].

Using Definition A.5, f is said to satisfy the local independencies of G if Il(G) ⊆ I(f).
If that is the case, G is said to be an I-map (independency map) for f .
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Definition A.6 (Independency map)
Let K be any graph associated with a set of independencies I(K). Then K is said to
be an I-map for a set of independencies I if I(K) ⊆ I [21, p. 60].

As mentioned, a set of conditional independence assumptions are encoded by a
Bayesian network structure, G, and thus every joint probability distribution that G
is an I-map for have to satisfy these.

Definition A.7 (Bayesian network structure factorization)
Let G be a Bayesian network structure over the variables X(0), . . . , X(n−1). A distri-
bution f over these variables factorizes according to G if f can be expressed as

f(X(0), . . . , X(n−1)) =
n−1∏
i=0

f(X(i) | paX(i)),

where the individual factors f(X(i) | paX(i)) are referred to as conditional probability
distributions [21, p. 62].

Now, a Bayesian network is defined.

Definition A.8
A pair B = (G, f) where f factorizes over G, and where f is specified as a set of
conditional probability distributions associated with the nodes of G is called a Bayesian
network [21, p. 62].

A.2 Measure theory
Let C be a set, and let C be a non-empty collection of subsets of C. If for all A ∈ C,

A ∈ C ⇒ C \A ∈ C,

and
A(1), A(2), . . . ∈ C ⇒ ∪∞n=1A

(n) ∈ C,

that is, if C is closed under complements and countable unions it is called a σ-algebra on
C [6, p. 2]. Every σ-algebra on C contains C and the empty set, ∅, making C = {∅, C}
the simplest σ-algebra on C.
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The pair (C, C) is called a measurable space. Given (C, C), each A ∈ C is called a
measurable set [6, p. 14]. A measure on (C, C) is a mapping µ : C → [0,∞] with

µ(∅) = 0,

and
µ
(
∪∞n=1A

(n)
)

=
∞∑
n=1

µ
(
A(n)

)
, (A.1)

where the condition in (A.1) is for every countable collection {An}∞n=1 of pairwise disjoint
sets in C and is called countable additivity. The number µ(A) is referred to as the measure
of A.

A triple (C, C, µ) is called a measure space, in which (C, C) is a measurable space with
measure µ. Such a triple is called a probability space if its measure has total measure
µ(C) = 1. Such a measure is called a probability measure. A probability space is often
denoted as (Ω,H,P), where Ω is a set, H is a σ-algebra on Ω and P is a probability
measure on (Ω,H) such that P(Ω) = 1. The set Ω is the collection of possible outcomes
of an experiment. A subset H of Ω is said to occur if the experiment outcome belongs
to H. The σ-algebra H is the collection of these subsets, which are referred to as events.
The probability that an event H occurs is the number assigned to H by the probability
measure, i.e. P(H) [6, pp. 49-50].

Next, the concept of a measurable function is introduced

Definition A.9 (Measurable function)
Let (C, C) and (F,F) be measurable spaces. A function f : C → F is measurable if
f−1(B) ∈ C for every B ∈ F , where [6, p. 6]

f−1(B) = {x ∈ C : f(x) ∈ B} . (A.2)

In other words, Definition A.9 states that f : C → F is measurable if the pre-image
of each measurable set is measurable [35, p. 183].

A.3 Markov chains on continuous state spaces
This section uses the non-boldface, capital letters X and Y to denote random vectors.
Realizations of these vectors are denoted by the corresponding lower-case letters, namely
x and y. Moreover, superscripts denote elements in a sequence, i.e. X(n) is the n’th
random vector in a sequence of random vectors with corresponding realization x(n).

In the theory concerning Markov chains on continuous state spaces, it is natural to
start with the definition of a transition kernel. A transition kernel, K(A | x), gives the
conditional probability of transitioning from x ∈ Ω to a set A ∈ σ(Ω), where σ(Ω) is the
σ-algebra of the general state space Ω, which, in this section, is defined as Ω ⊆ Rd. The
transition kernel is denoted K(x,A) from here.
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Notice that since Ω ⊆ Rd in this thesis, all A ∈ σ(Ω) are measurable sets. Since this
is the case, the short-hand notation A ⊆ Ω is used to denote a measurable subset of Ω.

MCMC algorithms construct Markov chains with a given target distribution Π as
invariant distribution. The conditions under which a Markov chain with a given dis-
tribution Π as invariant distribution can be created, and hence how MCMC algorithms
can be built, are explored in this section. In the succeeding appendix, namely Appendix
B, the MCMC algorithms built based on this theory are introduced.

Unless other citations are mentioned, this appendix is based on [27, pp. 1-12].

Definition A.10 (Transition kernel)
For a state space Ω, a function

K(x(n), A) = P (X(n+1) ∈ A | X(n) = x(n))

is a transition kernel if for each x ∈ Ω, K(x, ·) is a probability measure and for each
A ⊆ Ω, K(·, A) is a measurable function [22, p. 2]. Furthermore, the n-step transition
kernel is defined as

Kn(x,A) = P
(
X(n) ∈ A | X(0) = x

)
, A ⊆ Ω. (A.3)

With the definition of the transition kernel, the definition of a Markov chain is given.

Definition A.11 (Markov chain)
A stochastic process

(
X(0), X(1), . . .

)
with state space Ω is said to be a Markov

chain with transition kernel K if for all integers n ≥ 0, all subsets A ⊆ Ω, and
all x(0), . . . , x(n) ∈ Ω,

P
(
X(n+1) ∈ A | X(0) = x(0), . . . , X(n) = x(n)

)
= P

(
X(n+1) ∈ A | X(n) = x(n)

)
= K

(
x(n), A

)
=
∫
A
K(x(n), y)dy.

Moreover, the initial distribution of a Markov chain is the distribution of X(0). Knowl-
edge of the initial distribution and the transition kernel completely specifiy a Markov
chain.

In Definition A.11, it is evident that given the present, X(n), the future, X(n+1), is
independent of the past, X(0), . . . , X(n−1). This is a property known as the local Markov
property.
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For x ∈ Ω and A(1), A(2), . . . , A(n) ⊆ Ω, iterates of the transition kernel are made as
[22, p. 4]

P (X(1) ∈ A(1) | X(0) = x) =
∫
A(1)

K(x, y(1))dy(1) = K(x,A(1))

and

P ((X(1), X(2)) ∈ A(1) ×A(2) | X(0) = x)
= P (X(2) ∈ A(2) | X(1) ∈ A(1))P (X(1) ∈ A(1) | X(0) = x) (A.4)

=
∫
A(1)

P (X(2) ∈ A(2) | X(1) = y(1))K(x, y(1))dy(1) (A.5)

=
∫
A(1)

K(y(1), A(2))K(x, y(1))dy(1), (A.6)

where (A.4) follows from the local Markov property, (A.5) follows from the definition of a
(probability) measure from (A.1), and (A.6) follows from the definition of the transition
kernel. Moreover, this yields

P ((X(1), X(2), . . . X(n)) ∈ A(1) × . . .×A(n) | X(0) = x)

=
∫
A(1)

. . .

∫
A(n−1)

K(x, y(1)) . . .K(y(n−2), y(n−1))K(y(n−1), A(n))dy(1) . . . dy(n−1).

With K1(x,A) = K(x,A), the n-step transition kernel in (A.3) can be written as

Kn(x,A) = P
(
X(n) ∈ A | X(0) = x

)
=
∫

Ω
Kn−1(y,A)K(x, y)dy.

Now, let π be a density, referred to as the target density, defined on Ω. Wanting to
simulate from the target density, the aim is to construct a Markov chain with π as an
invariant density. Let

Π(A) =
∫
A
π(x)dx, A ⊆ Ω

denote the target distribution.

Definition A.12 (Invariant density)
Let π be a density on Ω. A Markov chain with transition kernel K, is said to have π
as its invariant density if for all A ⊆ Ω,

Π(A) =
∫

Ω
π(x)K(x,A)dx.

In other words, Definition A.12 states that if X(n) ∼ π, then X(n+m) ∼ π for integers
m ≥ 1, where π is the invariant density of the Markov chain. Moreover, if the initial
distribution of a given Markov chain is π, i.e. X(0) ∼ π, the chain is said to be reversible
if
(
X(0), X(1)

)
and

(
X(1), X(0)

)
are identically distributed. More formally, reversibility

is defined as follows.
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Definition A.13 (Reversibility)
A transition kernel K is reversible with respect to π if∫

B
π(x)K(x,A)dx =

∫
A
π(x)K(x,B)dx, A,B ⊆ Ω,

which is equivalent with stating that if X(0) ∼ π, and

P
(
X(n) ∈ A,X(n+1) ∈ B

)
= P

(
X(n) ∈ B,X(n+1) ∈ A

)
for all n ≥ 0, the Markov chain is reversible with respect to π [12, p. 46].

If a Markov chain has the reversibility property with respect to π, then π is the
invariant density of the chain. MCMC methods, which are used in this thesis, are
methods that construct a Markov chain with π, the distribution of interest, as the
invariant distribution.

A condition that ensures reversibility of a Markov chain is the detailed balance
condition (DBC).

Definition A.14 (Detailed balance condition)
A Markov chain with transition kernel K fulfills the detailed balance condition with
respect to π if

K(y, x)π(y) = K(x, y)π(x)

for all states x, y ∈ Ω [12, p. 8].

The following theorem relates the DBC to reversibility and the invariant density, π.

Theorem A.1 (DBC, reversibility and invariant density)
If a Markov chain with transition kernel K fulfills the DBC with respect to π, then
the chain is reversible with π as invariant density [12, pp. 8-9].
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Proof. To prove reversibility, Definitions A.13 and A.14 are used, resulting in∫
B
π(x)K(x,A)dx =

∫
B
π(x)

∫
A
K(x, y)dydx

=
∫
B

∫
A
π(x)K(x, y)dydx

=
∫
B

∫
A
π(y)K(y, x)dydx

=
∫
A

∫
B
π(y)K(y, x)dxdy

=
∫
A
π(y)

∫
B
K(y, x)dxdy

=
∫
A
π(y)K(y,B)dy,

where the third equality follows from the DBC assumption, and the fourth equality
follows from Tonelli’s theorem, which can be utilized since the functions to be integrated
are non-negative. Hence, the order of integration can be switched. To prove that π is
the invariant density, Definition A.12 is used, resulting in

Π(A) =
∫

Ω
π(x)K(x,A)dx

=
∫

Ω
π(x)

∫
A
K(x, y)dydx

=
∫

Ω

∫
A
π(x)K(x, y)dydx

=
∫

Ω

∫
A
π(y)K(y, x)dydx

=
∫
A

∫
Ω
π(y)K(y, x)dxdy

=
∫
A
π(y)

∫
Ω
K(y, x)dxdy

=
∫
A
π(y)dy,

where, again, the fourth equality follows from the DBC assumption, the fifth equality
follows from Fubini’s theorem, and the last equality follows from the fact that∫

Ω
K(y, x)dx = 1.

Now, the aim is to construct an algorithm that constructs a Markov chain that has
a given, desired density π as invariant density. One such algorithm is the Metropolis-
Hastings algorithm, which constructs a Markov chain that fulfills the DBC with respect
to π.

In order to introduce this algorithm, what will be referred to as a proposal density
is defined. Let q(x, y) be a probability density function on Ω and let

Q(x,A) =
∫
A
q(x, y)dy, A ⊆ Ω
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be a probability measure for any x ∈ Ω. The probability measure Q(x,A) assigns
probabilities to measurable subsets A of Ω. The function q(x, y) is referred to as the
proposal density, and Q(x,A) as the proposal distribution. Given x ∈ Ω, q(x, y) is a
conditional density. Moreover, define a(x, y) as an acceptance probability, which, given x
is the probability of accepting a proposal y drawn from the proposal distribution Q(x, y).

Using the proposal density and the acceptance probability, a DBC can be set up as

π(x)a(x, y)q(x, y) = π(y)a(y, x)q(y, x), (A.7)

for all states x, y ∈ Ω. If a Markov chain fulfills the DBC, the chain is reversible and
has π as its invariant density [30, p. 235]. If π(x)q(x, y) > 0, then

a(x, y) = H(x, y)a(y, x),

where
H(x, y) = π(y)q(y, x)

π(x)q(x, y)
is known as the Hastings ratio with H(x, y) =∞ for π(x)q(x, y) = 0. If the acceptance
probability is defined as

a(x, y) = min {1, H(x, y)} , (A.8)
the DBC in (A.7) is fulfilled with respect to π. This is evident from using (A.7) as

π(x)a(x, y)q(x, y) = π(x)q(x, y) min
{

1, π(y)q(y, x)
π(x)q(x, y)

}
= min {π(x)q(x, y), π(y)q(y, x)} (A.9)

for the left-hand side, and

π(y)a(y, x)q(y, x) = π(y)q(y, x) min
{

1, π(x)q(x, y)
π(y)q(y, x)

}
= min {π(y)q(y, x), π(x)q(x, y)} (A.10)

for the right-hand side. It is evident that (A.9) and (A.10) are equal, and hence the DBC
is fulfilled with respect to π. The above derivations are the basis for the Metropolis-
Hastings algorithm described in Appendix B.

The next question is whether the invariant density, π is unique. If the Markov chain
is irreducible, it has a unique invariant density.

Definition A.15 (Irreducibility)
Let Π be the invariant distribution of a Markov chain. This chain is π-irreducible if
for all x ∈ Ω and A ⊆ Ω for which Π(A) > 0, there exists an n ≥ 1 such that for the
n-step transition kernel, Kn(x,A) > 0. Moreover, if

P (X(n) ∈ A for infinitely manyn | X(0) = x) = 1,

the chain is said to be Harris recurrent.
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Definition A.15 indicates that if a chain is π-irreducible, it can reach any region A
with Π(A) > 0 irrespective of the region in which it started, or, in other words, the
chain can reach any interesting region in a finite number of steps. Moreover, if the chain
is Harris recurrent, the chain visits all subsets A ⊆ Ω, for which Π(A) > 0, an infinite
number of times.

In MCMC methods, inference about expectations are often of interest. Consider the
empirical average

θ̂n = 1
n+ 1

m+n∑
i=m

h
(
X(i)

)
, (A.11)

where m ≥ 0 and h : Ω → R is a function such that the mean θ =
∫

Ω h(x)π(x)dx
exists. When a Markov chain statisfies certain conditions, the estimator, θ̂n, in (A.11)
is consistent by the strong law of large numbers for Markov chains.

Theorem A.2 (Strong law of large numbers for Markov chains)
Let

(
X(0), X(1), . . .

)
be a π-irreducible Markov chain with invariant density π. Then

there exists a set C ⊆ Ω such that Π(C) = 1 and for all x ∈ C,

P
(
θ̂n → θ asn→∞ | X(0) = x

)
= 1.

If the chain is Harris recurrent, then a choice of C is C = Ω.

Theorem A.2 implies consistency of the estimator in (A.11) if x ∈ C and the chain is
π-irreducible, and x ∈ Ω if the chain is Harris recurrent. Intuitively, Harris recurrence is
when the chain visits every state in Ω an infinite number of times in the limit as n→∞.
The integer,m, in (A.11) is referred to as the burn-in. This is a time in which the Markov
chain is considered to have approximately reached its invariant distribution. That the
Markov chain even converges towards a limiting distribution is the next question. In
order to answer this, the definition of periodicity of a Markov chain is needed.

Definition A.16 (Periodicity)
A π-irreducible Markov chain is said to be periodic if there exists a disjoint union
Ω = ∪ni=0A

(i) for n > 1 such that Π(A(n)) = 0 and

x ∈ A(0) ⇒ K(x,A(1)) = 1
x ∈ A(1) ⇒ K(x,A(2)) = 1

...
x ∈ A(n−1) ⇒ K(x,A(0)) = 1.

Otherwise, the chain is said to be aperiodic.
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Any π-irreducible Markov chain that allows the event X(n) = X(n+1) when X(n) ∼ π
is aperiodic.

Now, the limiting distribution of a Markov chain statisfying certain conditions can
be shown to be the invariant distribution of the chain.

Theorem A.3 (The Markov chain convergence theorem)
For a π-irreducible and aperiodic Markov chain with invariant distribution Π, there
exists a set C ⊆ Ω such that Π(C) = 1 and for all x ∈ C and A ⊆ Ω, the n-step
transition kernel converges towards Π, i.e.

Kn(x,A)→ Π(A) as n→∞.

Furthermore, if the chain is Harris recurrent, a choice of C is C = Ω.

In the succeeding appendix, algorithms that construct Markov chains that fulfill
Theorem A.3 are described.
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B | Markov chain Monte Carlo al-
gorithms

In the theory concerning Markov chain Monte Carlo (MCMC) methods, the aim is to
construct a Markov chain with a desired distribution, Π, as its invariant distribution.
If the chain converges towards this desired distribution, samples from the chain can
be considered samples from the invariant distribution. If the invariant distribution is
known (up to proportionality), but intractable, sampling from it is hard. When this is
the case, Markov chain Monte Carlo methods can be used to draw samples from the
distribution. In these methods, a requirement is the ability to evaluate the intractable
distribution. Initially, this appendix introduces the Metopolis-Hastings (MH) algorithm,
followed by the Gibbs sampler, and, eventually, the Metropolis within Gibbs (MWG)
sampler, which is the sampler used in this thesis. The MH algorithm is introduced
in order to eventually understand the MWG sampler, which is a Gibbs sampler that
incorporates the MH sampler.

Unless other citations are mentioned, this appendix is based on [27, pp. 10-16 and
pp. 20-21].

B.1 Metropolis-Hastings algorithm
The first algorithm introduced is the Metropolis-Hastings algorithm. In order to under-
stand this algorithm and its components, Section A.3 in Appendix A is a prerequisite.

Algorithm 5 Metropolis-Hastings algorithm
Let the initial state x(0) ∈ Ω ⊆ Rd be such that π(x(0)) > 0. For n = 0, 1, . . ., given x(n),
then

1. Generate a proposal y(n+1) from q(x(n), y), and u(n+1) ∼ unif[0, 1].

2. Set
x(n+1) =

{
y(n+1) if u(n+1) ≤ H(x(n), y(n+1))
x(n) otherwise.
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Notice that given x(n), y(n+1) is independent of everything else in the Metropolis-
Hastings algorithm, and that the target density π only occurs within the Hastings ratio
in the ratio π(y(n+1))

π(x(n)) . Hence it is only necessary to know the target density up to
proportionality, since the normalizing constants cancel out in this ratio. This means that
when specifying the target density, it is sufficient to do so only up to proportionality.
Finally, note that the Metropolis-Hastings algorithm is reversible with invariant density
π, since, by construction, the resulting Markov chain fulfills the DBC, as shown in
Appendix A. Moreover, it can be shown that if

q(x, y) > 0 for all x, y ∈ Ω,

the Markov chain created by the Metropolis-Hastings sampler is π-irreducible and Harris
recurrent. Finally, if this Markov chain is to be aperiodic, the event X(n) = X(n+1) has
to be possible, which in the Metropolis-Hastings sampler means that∫

Ω

∫
Ω
1[π(y)q(y, x) < π(x)q(x, y)]q(x, y)π(x)dydx > 0,

in which 1[·] is the indicator function. If the above conditions are met, the Metropolis-
Hastings algorithm statisfies Theorem A.3.

B.2 Gibbs sampler
This section uses non-boldface, upper-case letter notation to denote a random vector,
i.e. X is a random vector, and lower-case non-boldface letters to denote a realization
of this random vector, i.e. x in this case. Moreover, boldface upper-case letters denote
vectors of random vectors, e.g.

X =
[(
X(0)

)> (
X(1)

)>
. . .

(
X(k−1)

)>]>
,

which is not to be confused with the notation used for matrices elsewhere in this thesis.
Furthermore, boldface lower-case letters denote the vector of realizations of the random
vectors, i.e.

x =
[(
x(0)

)> (
x(1)

)>
. . .

(
x(k−1)

)>]>
.

The above notation holds true in the succeeding section, namely Section B.3, as well.
In the Gibbs sampler, the state space, Ω ⊆ Rd, is a product space, i.e.

Ω = Ω(0) × Ω(1) × . . .× Ω(k−1), (B.1)

where Ω(0) ⊆ Rd(0)
,Ω(1) ⊆ Rd(1)

, . . . ,Ω(k−1) ⊆ Rd(k−1) , and d(0) + d(1) + . . .+ d(k−1) = d.
Let X be the random vector

X =
[(
X(0)

)> (
X(1)

)>
. . .

(
X(k−1)

)>]>
(B.2)
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with state space Ω, following the density, π, where X(i) is the projection of x on Ω(i),
i = 0, 1, . . . , k − 1. Moreover, let X−i denote the vector

X−i =
[(
X(0)

)> (
X(1)

)>
. . .

(
X(i−1)

)> (
X(i+1)

)>
. . .

(
X(k−1)

)>]>
that is, the vector of random vectors not containing the i’th random vector, with state
space

Ω−i = Ω(0) × Ω(1) × . . .× Ω(i−1) × Ω(i+1) × . . .× Ω(k−1).

The Gibbs sampler works by simulating a single random variable, X(i) given X−i. This
can be achieved through various updating schemes. The updating scheme used in this
thesis will be introduced later in this section.

The assumption that
π(x) > 0 for all x ∈ Ω (B.3)

is made.
Now, the density of X−i is

π−i(x−i) =
∫

Ω−i
π(x(0), . . . , x(i−1), y(i), x(i+1), . . . , x(k−1))dy(i), x−i ∈ Ω−i,

and the conditional density of X(i) given x−i is

π(i)(x(i) | x−i) = π(x)
π−i(x−i)

, x(i) ∈ Ω(i).

Let K(i)(· | x−i) denote the conditional distribution of X(i) given x−i, i.e. for A ⊆ Ω(i),

K(i)(A | x−i) = P (X(i) ∈ A | x−i) =
∫
A
π(i)(x(i) | x−i)dx(i). (B.4)

In (B.4), the densities π(i)(x(i) | x−i) are referred to as the full conditionals. These are
the only densities used for simulation when using the Gibbs sampler. Since a Bayesian
network is specified in terms of a collection of conditional distributions, the Gibbs sam-
pler is well suited for inference in Bayesian networks.

As mentioned ealier, the Gibbs sampler can be used with different updating schemes.
In this thesis, a so-called cyclic updating scheme is used. Let

X(n) =
[(
X(0,n)

)> (
X(1,n)

)>
. . .

(
X(k−1,n)

)>]>
, n = 0, 1, . . . , (B.5)

be the n’th element of the Markov chain in Gibbs sampling. Given X(n), a cyclic
updating scheme in the Gibbs sampler generates the next element, X(n+1) by updating
the variables X(0,n+1), X(1,n+1), . . . , X(k−1,n+1) according to

X(0,n+1) ∼ K(0)
(
· | X(1,n), . . . , X(k−1,n)

)
X(1,n+1) ∼ K(1)

(
· | X(0,n+1), X(2,n), . . . , X(k−1,n)

)
...

X(k−1,n+1) ∼ K(k−1)
(
· | X(0,n+1), X(1,n+1), . . . , X(k−2,n+1)

)
.
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The Markov chain(
X(0,0), X(1,0), . . . , X(k−1,0), X(0,1), X(1,1), . . . , X(k−1,1), . . .

)
,

which is created in the cyclic Gibbs sampler described above is of order k − 1. Since

X(i,n+1) |
(
X(0,0), X(1,0), . . . , X(i−1,n+1)

)
∼ K(i)

(
· | X(0,n+1), . . . X(i−1,n+1), X(i+1,n), . . . , X(k−1,n)

)
,

the order of the Markov chain follows since X(i,n+1) and
(
X(0,0), X(1,0), . . . , X(i−1,n)

)
are independent given

(
X(i+1,n), . . . , X(k−1,n), X(0,n+1), . . . , X(i−1,n+1)

)
. From this, it

follows that (
X(0),X(1), . . .

)
is a Markov chain.

Using the cyclic updating scheme does not ensure reversibility of the resulting Markov
chain. But each variable updating step in the cyclic Gibbs sampler fulfills the DBC. This
is due to the fact that for any x ∈ Ω and y(i) ∈ Ω(i),

π(x)π(i)(y(i) | x−i) = π(x) π(y)
π−i(x−i)

= π(y)π(i)(x(i) | x−i), (B.6)

where y = (x(0), . . . , x(i−1), y(i), x(i+1), . . . , x(k−1)). In (B.6), Definition A.14 has been
utilized with π(i)(y(i) | x−i) as the transition kernel for the update of the i’th variable in
the Gibbs sampler. Since each of these updating steps fulfills the DBC, it can be shown
that the Markov chain in (B.5) has π as invariant density. Moreover, it can be shown that
the assumption in (B.3) implies that the cyclic Gibbs sampler is π-irreducible, Harris
recurrent, and aperiodic, and hence it fulfills theorem A.3.

B.3 Metropolis within Gibbs sampler

The last sampler in this chapter is the Metropolis within Gibbs sampler (MWG). The
Gibbs sampler itself works when all of the full conditionals of the model are specified
and easy to sample from. In some cases, one or more of the full conditionals may be
hard to draw samples from. The MWG sampler overcomes this problem. This sampler
works by updating the variables whose full conditional can be easily sampled using an
ordinary Gibbs updating step, and updates the variables whose full conditional are hard
to sample from by employing a Metropolis-Hastings update of these variables. Like in
the Gibbs sampler, the MWG sampler works with the state space as a product space as
in (B.1), with X a vector of random vectors as in (B.2), and x a realization of X.

Consider x(i) the current value of the variable X(i), which has full conditional that
is inconvenient to sample from. Instead, a Metropolis-Hastings update is employed. Let

q(i)
(
y(i) |

(
x(0), . . . , x(i−1), x(i), x(i+i), . . . , x(k−1)

))
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be a proposal density, where y(i) is a proposal for an update of x(i). Moreover, define
the Hastings ratio as

H(i)
(
x(i), y(i) | x−i

)
=
π(i)

(
y(i) | x−i

)
q(i)

(
x(i) |

(
x(1), . . . , x(i−1), y(i), x(i+1), . . . , x(k−1)

))
π(i) (x(i) | x−i

)
q(i) (y(i) |

(
x(1), . . . , x(i−1), x(i), x(i+1), . . . , x(k−1))) ,

from which the acceptance probability is defined as

a(i)(x, y(i)) = min
{

1, H(i)
(
x(i), y(i) | x−i

)}
.

If the proposal y(i) is rejected, x(i) is retained. Using the MWG sampler with a cyclic
updating scheme as the one described in the Gibbs sampler in Section B.2 ensures that
π is the invariant density of the resulting Markov chain. This follows from arguments
similar to those made in (B.6). Unlike the Metropolis-Hastings and Gibbs samplers,
the properties irreducibility and aperiodicity needed to fulfill Theorem A.3 need to be
checked for a particular MWG sampler.

The MWG samplers used in this thesis are presented in the Chapters 9, 11, and 13.
In Section 9.2 in Chapter 9, irreducibility and aperiodicity of the sampler for the single
satellite case are established. Arguments similar to those presented in Section 9.2 can
be made to establish irreducibility and aperiodicity for the remaining samplers used in
this thesis.
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C | Variable transformation method

This appendix is based on [15, pp. 86-87, 126-127]. When transforming the variables in
a joint pdf, consisting of N variables, the variable transformation method is used. In this
appendix, the case of continuous variables is considered. Notice that in this appendix,
random variables are denoted by an upper-case letter, and a realization of such a variable
is denoted by the corresponding lower-case letter.

Let
(
X(0), X(1), . . . , X(N−1)

)
be a collection of random variables with a jointly con-

tinuous distribution and pdf fX
(
x(0), x(1), . . . , x(N−1)

)
with support X ⊆ RN . More-

over, define the random variables
(
Y (0), Y (1), . . . , Y (N−1)

)
as

Y (i) = g(i)
(
X(0), X(1), . . . , X(N−1)

)
, i = 0, 1, . . . , N − 1,

where the functions

y(i) = g(i)
(
x(0), x(1), . . . , x(N−1)

)
, i = 0, 1, . . . , N − 1, (C.1)

define a one-to-one transformation from X to Y, where Y ⊆ RN is the support of(
Y (0), Y (1), . . . , Y (N−1)

)
. From here, let

x =
(
x(0), x(1), . . . , x(N−1)

)
,

X =
(
X(0), X(1), . . . , X(N−1)

)
,

y =
(
y(0), y(1), . . . , y(N−1)

)
,

and

Y =
(
Y (0), Y (1), . . . , Y (N−1)

)
.

Expressing x(0), x(1), . . . , x(N−1) in terms of the transformed variables as

x(i) = q(i) (y) , i = 0, 1, . . . , N − 1,
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which are the inverse functions of those in (C.1). The inverse transformation yields the
Jacobian determinant

det(J) = det





∂x(0)

∂y(0)
∂x(0)

∂y(1) · · · ∂x(0)

∂y(N−1)

∂x(1)

∂y(0)
∂x(1)

∂y(1) · · · ∂x(1)

∂y(N−1)

...
... . . . ...

∂x(N−1)

∂y(0)
∂x(N−1)

∂y(1) · · · ∂x(N−1)

∂y(N−1)



 ,

in which the assumption is that the partial derivatives are continuous and that the
Jacobian determinant is not equal to zero within the set Y.

Now, the aim is to find the pdf of the transformed variables, namely fY (y). Let
A ⊆ X and let B ⊆ Y denote the one-to-one transformation of the subset A. Then

p (Y ∈ B) = p (X ∈ A)

=
∫
. . .

∫
A
fX (x) dx(0)dx(1) . . . dx(N−1). (C.2)

The first equality in (C.2) follows from the fact that the events are equally likely, since
the transformation is one-to-one. Now, using a result from real analysis concerning the
change of variables in integrals, (C.2) can be rewritten as

p (Y ∈ B) =
∫
. . .

∫
B
fX
(
q(0) (y) , q(1) (y) , . . . , q(N−1) (y)

)
det(J)dy(0)dy(1) . . . dy(N−1),

which implies that the pdf of the transformed variables is

fY (y) = fX
(
q(0) (y) , q(1) (y) , . . . , q(N−1) (y)

)
det(J)

when y ∈ Y and zero otherwise.
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D | Fisher and three-dimensional
normal distribution

The Fisher distribution is related to the three-dimensional normal distribution. To see
this, consider the random vector x ∼ N3(µ, κ−1I3) with mean value µ ∈ S2, κ > 0, and
pdf

fN (x | µ, κ−1I3) = 1
(2π)

3
2

exp
(
−κ2 ‖x− µ‖

2
)
. (D.1)

The norm in (D.1) can be rewritten as

‖x− µ‖2 = ‖x‖2 + ‖µ‖2 − 2x>µ
= ‖x‖2 + ‖µ‖2 − 2 ‖x‖y>µ, (D.2)

where y = x
‖x‖ . Rewriting (D.1) into spherical coordinates using the variable transforma-

tion method from Appendix C and the Jacobian determinant from (F.4), and inserting
(D.2), yields

fN ((θ, φ), r | (α, β), κ−1I3) = r2 sin(θ)
(2π)

3
2

exp
(
−κ2 (r2 + ‖µ(α, β)‖2 − 2ry(θ, φ)>µ(α, β))

)
,

(D.3)
where r = ‖x‖,

y(θ, φ) =
[
sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

]>
,

and
µ(α, β) =

[
sin(α) cos(β) sin(α) sin(β) cos(α)

]>
,

where (α, β) are the spherical coordinates of the mean value. Conditioning (D.3) on the
radius r results in

fN ((θ, φ) | (α, β), κ−1I3, r) = fN (r, (θ, φ) | (α, β), κ−1I3)
h(r)

∝ fN (r, (θ, φ) | (α, β), κ−1I3)
∝ sin(θ) exp(κry(θ, φ)>µ(α, β)),
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where h(r) is the marginal density of r, which is constant when r is conditioned on.
In conclusion, when conditioned on r, the density in (D.3) is proportional to a Fisher
density.
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E | Von Mises distribution

An often utilized probability distribution when making statistical inference on the circle
is the von Mises distribution. The density for a von Mises distributed random variable
θ ∈ [0, 2π) is given by

fVM (θ | µ, κ) = 1
2πI0(κ) · e

κ cos(θ−µ), (E.1)

where
I0(κ) = 1

2π

∫ 2π

0
eκ cos(θ)dθ

is the modified Bessel function of the first kind and order 0 [25, p. 36]. In (E.1),
µ ∈ [0, 2π) is the mean, and κ ≥ 0 is a concentration parameter. When a random
variable is von Mises distributed, this is denoted θ ∼ VM(µ, κ) in this thesis.

The von Mises distribution is unimodal and symmetric about its mean value. Notice
that in the special case when κ = 0, the distribution reduces to the uniform distri-
bution on the circle. For increasing κ-values, the probability mass of the distribution
becomes more and more concentrated about its mode. An illustration of the von Mises
distribution for a selection of different κ-values can be seen in Figure E.1.
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Figure E.1: The von Mises distribution for different κ-values and µ = π.
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F | Spherical coordinates, rotation
matrices, and Rodrigues’ for-
mula

F.1 Spherical coordinates

This section is based on [11, pp. 18-19]. Spherical coordinates are a representation
of a point in three-dimensional space. Given a point ps in three-dimensional space,
it can be represented by the three quantities r ∈ [0,∞), θ ∈ [0, π], and φ ∈ [0, 2π).
The radial distance, r, is the point’s distance to the origin. The colatitude, θ, is the
angle between the vector ps and the z-axis. The longitude, φ, is the counter-clockwise
measured angle spanned by the x-axis and the point p∗, where p∗ is the projection of
ps onto the (x, y)-plane. This is illustrated in Figure F.1.

y

z

x

θ

θg

φ = φg

O

ps

p∗

Figure F.1: Spherical coordinates, (r, θ, φ), and geographical coordinates, (r, θg, φg), of the point ps.
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Represented in Cartesian coordinates, the point ps is

p(0)
s = r sin(θ) cos(φ), p(1)

s = r sin(θ) sin(φ), p(2)
s = r cos(θ).

The connection between the spherical coordinates and the geographical coordinates
known simply as latitude and longitude is

θg = π

2 − θ, φg = φ, (F.1)

where θg and φg are geographical latitude and longitude, respectively. To convert Carte-
sian coordinates into spherical coordinates, the formulas

r =
√(

p
(0)
s

)2
+
(
p

(1)
s

)2
+
(
p

(2)
s

)2
, θ = cos−1

(
p

(2)
s

r

)
, φ = tan−1

(
p

(1)
s

p
(0)
s

)
(F.2)

are used. Given a vector [x y z]> ∈ R3 \ {0}, there exists a one-to-one correspondence
between this vector and its spherical coordinate system representation, (r, θ, φ), i.e.

[x y z]> = r
[
sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

]>
↔ (r, θ, φ).

The Jacobian of the transformation from spherical to Cartesian coordinates is

J(r, θ, φ) =

sin(θ) cos(φ) r cos(θ) cos(φ) −r sin(θ) sin(φ)
sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)

cos(θ) −r sin(θ) 0

 , (F.3)

which has determinant
det(J(r, θ, φ)) = r2 sin(θ), (F.4)

where det(·) denotes the determinant of a matrix. The Jacobian and the Jacobian
determinant are defined in Appendix C. Using (F.4), the surface measure of a sphere
becomes

dS = r2 sin(θ)dθdφ. (F.5)

The sphere surface measure is illustrated in Figure F.2. Integrating over the ranges of θ
and φ yields the total surface measure of the sphere∫ 2π

0

∫ π

0
r2 sin(θ)dθdφ = 4πr2.
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y
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dθ

dφ

dS
r sin(θ) rdθ

r sin(θ)dφ

Figure F.2: Illustration of the surface measure dS.

F.2 Rotation matrices and Rodrigues’ formula

This section is based on [34, pp. 22-23, 465-467], [3, pp. 9-12], and [20, p. 152]. In this
thesis, rotations of R3 around an axis are needed. Specifically, rotations of R3 around
an arbitrary axis and, as a special case of this, rotations around the z-axis are needed.
In order to derive rotation of a point in R3 about the z-axis, the rotation matrix of a
point in the (x, y)-plane [

cos(β) − sin(β)
sin(β) cos(β)

]
(F.6)

is used. Notice that the rotation is counter-clockwise if the rotation angle β > 0 and
clockwise if β < 0. Now, for a given point [x y z]> ∈ R3 and a rotation angle β, let
[xr yr]> be the result of rotating [x y]> using the rotation matrix in (F.6). Then the
vector [xr yr z]> is the rotation of [x y z]> around the z-axis by an angle β. From this it
follows that the rotation of [x y z]> around the z-axis is given byxryr

z

 =

cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


xy
z

 ,
from which the rotation matrix for rotating a point in R3 around the z-axis by an angle
β is

Rz(β) =

cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


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In order to rotate a vector v ∈ R3 around an arbitrary axis k ∈ S2 by an angle ψ,
Rodrigues’ rotation formula is used. It is given by

vr = v cos(ψ) + (k × v) sin(ψ) + k(k>v)(1− cos(ψ)), (F.7)

where vr ∈ R3 is the rotated vector. The expression in (F.7) is the vector form of
Rodrigues’ formula. For a geometric derivation of the vector form of Rodrigues’ formula,
see [3, pp. 9-12]. The matrix form of Rodrigues’ formula is

vr = R(k, ψ)v,

where
R(k, ψ) = cos(ψ)I + sin(ψ)K + (1− cos(ψ))kk>,

in which

K =

 0 −k(2) k(1)

k(2) 0 −k(0)

−k(1) k(0) 0

 ,
where k(0), k(1), and k(2) are the coordinates of the rotation axis, k. For a derivation of
the matrix form of Rodrigues’ formula, see [20, pp. 151-152]. Notice that Rrod(z, ψ) =
Rz(ψ), and that Rodrigues formula is a counterclockwise rotation around the axis, k, if
ψ > 0, and clockwise if ψ < 0.

The surface measure in (F.5) is invariant under rotation. To see this, let x,y ∈ RN
and let A ∈ RN×N be a linear map such that y = Ax. With this set-up, the Jacobian
matrix of this mapping is the N ×N matrix J with entries [9, p. 96]

j(i,k) = ∂y(i)

∂x(k) , i, k = 0, 1, . . . , N − 1.

Since

y(i) =
N−1∑
m=0

a(i,m)x(m), i = 0, 1, . . . , N − 1,

and thus
∂y(i)

∂x(k) = a(i,k) i, k = 0, 1, . . . , N − 1,

it follows that for a linear map A, J = A. A rotation is a linear map with determinant
equal to one, and hence when rotating the sphere surface measure, and thus multiplying
the measure with the Jacobian determinant of the mapping, the measure is not changed.
In other words, if A is a rotation,

det(J)dS = det(A)dS = dS.

Written out the matrix form of Rodrigues’ formula is, with a rotation axis b ∈ S2,
given by [8, p. 257]

R(b, ψ) =
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 b2x + (b2y + b2z) cos(ψ) bxby(1− cos(ψ))− bz sin(ψ) bxbz(1− cos(ψ)) + by sin(ψ)
bxby(1− cos(ψ)) + bz sin(ψ) b2y + (b2x + b2z) cos(ψ) bybz(1− cos(ψ))− bx sin(ψ)
bxbz(1− cos(ψ))− by sin(ψ) bybz(1− cos(ψ)) + bx sin(ψ) b2z + (b2x + b2y) cos(ψ)

 ,
where bx, by, and bz are the (x, y, z) coordinates of b.
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G | Carrier frequency offset esti-
mator derivation

In this appendix, the derivations leading to the estimates of ζ(n)
K and ψ(n)

K that minimize
the non-linear least squares problem

f
(n)
∆ =

Ps−1∑
p=0

∣∣∣∣∣k(n,p) −
(
E(n)

)K
e
j

(
ζ

(n)
K p+ψ(n)

K

)∣∣∣∣∣
2

, (G.1)

are found. Notice that (G.1) arises from setting K = 4, as evident from Section 4.3, but
for ease of notation, K is retained in the succeeding derivations.

In (G.1), k(n,p) is the samples for a single AIS message raised to the K’th power
as described in Section 4.3, and

(
E(n)

)K
is the attenuation constant for the n’th AIS

package raised to the K’th power.
Using the relation

|z1 − z2|2 = |z1|2 + |z2|2 − 2<(z1z̄2),

in which <(·) denotes the real part of a complex number, and z̄ denotes complex conju-
gation of the complex number z, (G.1) becomes

f
(n)
∆ =

Ps−1∑
p=0

∣∣∣k(n,p)
∣∣∣2 − 2

(
E(n)

)K
<
(
k(n,p)e

−j
(
ζ

(n)
K p+ψ(n)

K

))
+
(
E(n)

)2K
. (G.2)

Minimizing (G.2) is done by maximizing the term

g
(
ζ

(n)
K , ψ

(n)
K

)
=

Ps−1∑
p=0
<
(
k(n,p)e

−j
(
ζ

(n)
K p+ψ(n)

K

))
. (G.3)

Rewriting this term into polar form, rejφ, and using the relation

<(rejφ) = r cos(φ) = r cos(arg(rejφ)),
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(G.3) becomes

g
(
ζ

(n)
K , ψ

(n)
K

)
=

∣∣∣∣∣∣
Ps−1∑
p=0

(
k(n,p)e

−j
(
ζ

(n)
K p+ψ(n)

K

))∣∣∣∣∣∣ cos

arg

Ps−1∑
p=0

k(n,p)e
−j
(
ζ

(n)
K p+ψ(n)

K

)
=

∣∣∣∣∣∣
Ps−1∑
p=0

(
k(n,p)e−jζ

(n)
K p

)∣∣∣∣∣∣ cos

arg

Ps−1∑
p=0

k(n,p)e−jζ
(n)
K p

− ψ(n)
K

 ,
(G.4)

because |e−jψ
(n)
K | = 1. From (G.4) it is seen that for fixed ζ(n)

K , g
(
ζ

(n)
K , ψ

(n)
K

)
is maximized

when the estimate of ψ(n)
K is

ψ̂
(n)
K

(
ζ

(n)
K

)
= arg

Ps−1∑
p=0

k(n,p)e−jζ
(n)
K ·p

 ,
which, when inserted into (G.4), yields

g
(
ζ

(n)
K , ψ̂

(n)
K

(
ζ

(n)
K

))
=

∣∣∣∣∣∣
Ps−1∑
p=0

(
k(n,p)e−jζ

(n)
K ·p

)∣∣∣∣∣∣ .
Hence the estimate of ζ(n)

K is

ζ̂
(n)
K = argmax

ζ
(n)
K

∣∣∣∣∣∣
Ps−1∑
p=0

(
k(n,p)e−jζ

(n)
K ·p

)∣∣∣∣∣∣ . (G.5)

In (G.5), it is seen that estimating ζ̂(n)
K is equivalent to estimating the highest value in

the magnitude spectrum of k(n,p).
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H | Frequency translation

This appendix describes signal frequency translation using a real and a complex mixer.
It is based on [14, pp. 103-105].

An important operation in signal processing is being able to frequency translate the
carrier frequency of a signal to a higher or lower frequency than the original signal. This
is done using what is called a mixer. A mixer consists of a product modulator followed by
a band-pass filter. There exist mixers for real numbers and mixers for complex numbers.
These are explored in the next sections.

H.1 Real mixer
In the case where a real valued signal is considered, the mixer uses a cosine to translate
the carrier frequency of the incoming signal. Consider the original signals

sa(t) = A cos(2πfat) (H.1)

and
sb(t) = B cos(2πfbt), (H.2)

with carrier frequencies fa and fb, respectively. Multiplying the two signals above results
in a signal with frequencies fa+fb and fa−fb. To realize this, the following trigonometric
identity

2 cos(2πfat) cos(2πfbt) = cos(2π(fa − fb)t) cos(2π(fa + fb)t)

is used. The product then becomes

sm(t) = AB

2 (cos(2π(fa − fb)t) + cos(2π(fa + fb)t)) . (H.3)

In (H.3), it is seen that the product of the two signals results in a signal with frequencies
corresponding to the sum and difference of the two frequencies of the original signals.
Depending on whether the goal is an up- or down-shift in frequency, called an up-
and down-conversion, respectively, a band-pass filter is used to get rid of the unwanted
frequency components.
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H.2 Complex mixer
A complex mixer uses a complex exponential to translate the carrier frequency. The
same principles used in the real mixer are used in the complex mixer. Consider the
complex exponential

ej2πfmt = cos(2πfmt) + j sin(2πfmt), (H.4)

with carrier frequency fm. Multiplying (H.4) and (H.1) yields

sc(t) = A(cos(2πfat) cos(2πfmt) + j cos(2πfat) sin(2πfmt)). (H.5)

Applying trigonometric identities, (H.5) can be rewritten as

sc(t) =A

2 (cos(2π(fa − fm)t) + cos(2π(fa + fm)t))

+ j (sin(2π(fa + fm)t)− sin(2π(fa − fm)t)) .
(H.6)

The real and imaginary parts of (H.6) are

<(sc(t)) = A

2 (cos(2π(fa − fm)t) + cos(2π(fa + fm)t))

=(sc(t)) = A

2 (sin(2π(fa + fm)t)− sin(2π(fa − fm)t)) ,

where <(·) and =(·) represent the real and imaginary parts, respectively. It is seen
that both the real and imaginary part consist of a difference of the frequencies and a
summation of the frequencies. As with the real valued mixer, a filter can be applied to
either keep the difference or the summation of the frequencies.

In the case where the summation of the frequencies is desired, a band-pass or a high-
pass filter can be used to eliminate the lower (difference) frequencies. This results in the
filtered signal,

sf (t) = A

2 (cos(2π(fa + fm)t) + sin(2π(fa + fm)t)) .



159

I | Digital modulation and com-
plex baseband signal represen-
tation

In this appendix, an introduction is given to the principle of digital signal modulation,
along with a description of the complex baseband representation of signals.

I.1 Digital modulation
Digital modulation is the process of modifying parameters of an analog carrier signal,
c(t), such that the carrier signal contains information about a digital information signal,
i(t). Usually, the carrier signal is a sinusoid with a relatively high frequency, fc [38, p.
50], i.e.

c(t) = A cos (2πfct) ,
where A is the carrier amplitude and fc is the carrier frequency. The signal, i(t), is
usually relatively low frequency and is referred to as a baseband signal. Base- and
passband signals are defined as

Definition I.1 (Base- and passband signals)
Let z(t) ∈ R be a signal and let W ∈ R>0. z(t) is said to be baseband if

Z(ω) ≈ 0, |ω| > W,

where ω = 2πf and Z(ω) is the Fourier transform of z(t). Furthermore, let fc ∈ R>0
such that fc > W . z(t) is said to be passband if

Z(ω) ≈ 0, |ω ± ωc| > W,

where ωc = 2πfc [23, pp. 16-17].

With Definition I.1 in place, the complex baseband representation of a passband
signal is introduced.
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I.2 Complex baseband representation

As mentioned earlier, when an information signal, i(t), has been used to modulate a
carrier signal, c(t), the resulting signal is said to be passband. Carrying out digital
signal processing (DSP) on passband signals is computationally expensive, due to the
often high sample rates used to represent said signals [23, p. 18]. The passband signal
has a complex-valued representation as a baseband signal. This representation is often
called complex baseband, and contains all the information carried in the real valued
passband signal. This complex baseband representation is often used in DSP, since it is
computationally cheaper than carrying out DSP on a passband signal. Initially, define
the pre-envelope of an absolutely integrable signal z(t) ∈ R as

z+(t) = z(t) + jẑ(t), (I.1)

where ẑ(t) is the Hilbert transformation of z(t). The Fourier transform of (I.1) is

Z+(ω) = Z(ω) + sgn(ω)Z(ω), (I.2)

where sgn(·) is the sign function,

sgn(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

From (I.2) it is seen that the Fourier transform of z+(t) vanishes for negative frequencies,
and is twice that of Z(ω) for positive frequencies, i.e.

Z+(ω) =


2Z(ω) if ω > 0,
Z(0) if ω = 0,

0 if ω < 0.

Thus, the frequency content of the pre-envelope is contained only at the non-negative
frequencies, i.e. ω ≥ 0. Even though Z+(ω) does not contain the negative frequencies of
Z(ω), no information from Z(ω) is lost. This is due to the fact that z(t) is a real-valued
signal, and thus its Fourier transform has the Hermitian symmetry property. Using the
Fourier transform shift-theorem, the complex baseband representation of z(t) can be
defined in terms of the pre-envelope.

Definition I.2 (Complex baseband representation of a passband signal)
Let z(t) ∈ R be a passband signal with Hilbert transform ẑ(t). Furthermore, let

z+(t) = z(t) + jẑ(t)

be the pre-envelope of z(t). The complex baseband representation of z(t) is defined as

zcb(t) = z+(t)e−jωct
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From Definition I.2, it is evident that the spectrum of zcb(t) is a version of that of
z+(t), shifted to the origin. In other words, it is at baseband [14, p. 727]. Furthermore,
since zcb(t) is defined in terms of z+(t), the passband signal can be recovered from zcb(t)
as

z(t) = Re[zcb(t)ejωct] (I.3)

Moreover, since zcb(t) is a complex-valued signal, its general form is

zcb(t) = zI(t) + jzQ(t), (I.4)

where zI(t), zQ(t) ∈ R are baseband signals, referred to as the in- and quadrature-phase
component of z(t), respectively [14, p. 727]. Inserting (I.4) into (I.3), z(t) can be
expressed as

z(t) = zI(t) cos(ωct)− zQ(t) sin(ωct).

Lastly, the complex baseband representation in (I.4) is in Cartesian form. The corre-
sponding polar form is

zcb(t) = a(t)ejφ(t), (I.5)

where
a(t) =

√
zI(t)2 + zQ(t)2

and
φ(t) = tan−1

(
zQ(t)
zI(t)

)
.

Finally, from (I.5) and (I.3), it is seen that z(t) can be expressed as

z(t) = Re
[
a(t)ejφ(t)ejωct

]
= a(t) cos(ωct+ φ(t)).
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J | Continuous phase modulation
and Gaussian minimum shift
keying

The information contained in an AIS message is contained in a length-256 bit-string,
which is NRZI encoded. This NRZI encoded bit-string is then modulated onto a carrier
wave. The modulation scheme used in AIS is Gaussian minimum shift keying (GMSK),
which is part of a class of modulation schemes known as continuous phase modulation
(CPM). CPM is a class of constant amplitude modulation techniques in which the phase
of the carrier wave is continuously varied to convey information. These techniques are
both power and spectrally efficient [42, p. 259]. They are power effective due to the fact
that CPM waveforms have constant amplitude, and spectrally efficient since they have
a narrow mainlobe with small sidelobes [36, p. 188]. In this appendix, intitially CPM
is introduced, and, eventually, GMSK is introduced. GMSK is a modulating scheme
in which a rectangular pulse is passed through a Gaussian filter in order to shape the
pulse. These pulses are then modulated onto a carrier wave. Eventually, NRZI encoding
is introduced.

J.1 Continuous phase modulation
CPM is a large selection of constant amplitude modulation techniques in which M -ary
data symbols shape the phase of a carrier wave. The term M -ary data symbols refers
to data symbols originating from an alphabet,M = {±1,±3, . . .± (M − 1)} consisting
of M distinct symbols. In CPM, M is often a power of 2 [42, p. 260]. The CPM signal,
i.e. the modulated carrier wave, is defined as [32, pp. 28-29]

sc(t) = A cos(ωct+ φ(t, as)), nTsym ≤ t ≤ (n+ 1)Tsym (J.1)

where as =
(
a(n)

)∞
n=−∞

is the sequence of data symbols with a(n) ∈ M, ωc = 2πfc is
the angular carrier frequency, A is the signal amplitude, and Tsym > 0 is the symbol
period, i.e. the time-duration of a data symbol. The phase of the CPM signal depends
on the sequence of data symbols, showing that CPM varies the phase of the signal to
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convey information, instead of e.g. varying the amplitude as is done in other modulation
schemes [42, p. 260]. The phase in (J.1) is defined as

φ(t, as) = 2πhm
∑
i≤n

a(i)q(t− iTsym), (J.2)

where
q(t) =

∫ t

−∞
g(τ)dτ. (J.3)

In (J.2), hm > 0 is known as the modulation index [14, p. 110]. Lastly, g(t) is a
non-negative function known as the frequency shaping function, and its integral, q(t)
is the phase shaping function. Along with hm, g(t) determines how the phase, φ(t, as),
varies in response to the data symbols, as. Usually, g(t) is zero outside the interval
0 ≤ t ≤ LTsym, where Tsym is the symbol period, and has a smooth pulse shape inside
the interval [42, p. 260]. The number L determines the number of symbol periods in
which g(t) 6= 0. If L ≤ 1, the scheme is called full-response CPM, and the pulse is
contained within a symbol period, Tsym. If L > 1, the scheme is called partial-response
CPM [42, p. 260]. Several valid choices of g(t) exists, and they should be normalized to
integrate to 1

2 [36, p. 189], ∫ ∞
−∞

g(t)dt = 1
2 . (J.4)

An illustrative example is that of using a rectangular pulse as g(t). This choice of g(t)
has support within the interval 0 ≤ t ≤ LTsym. In this case [42, p. 261],

grec(t) =
{ 1

2LTsym 0 ≤ t ≤ LTsym,
0 otherwise.

With L = 1, i.e. full-response CPM, the phase shaping function is [42, p. 261]

qrec(t) =
∫ t

−∞

1
2Tsym

dt =
{

t
2T 0 ≤ t ≤ Tsym,
1
2 t > Tsym.

J.2 Gaussian minimum shift keying

A special CPM case in which g(t) is a pulse with the shape of a Gaussian density is
considered. This Gaussian frequency shaping function is defined as [42, p. 263]

g(t) = 1
2Tsym

(
Q

(
2πBb

t− Tsym
2

log(2)

)
−Q

(
2πBb

t+ Tsym
2

log(2)

))
, 0 ≤ BbTsym ≤ 1

(J.5)
where

Q(t) =
∫ ∞
t

1√
2π
e−

τ2
2 dτ, −∞ ≤ t ≤ ∞,
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and Bb is the -3 dB bandwidth of the lowpass Gaussian filter [32, p. 58] given by

h(t) = 1√
2πσ2

e
(
− 1

2σ2
)
, (J.6)

where
σ2 = log(2)

(2πBb)2 .

The frequency shaping function (J.5) is the result of passing a rectangular pulse through
(J.6). The frequency-shaping function in (J.5) is the difference between two Gaussian
Q-functions, separated by Tsym seconds. Using this frequency-shaping function ensures
continuity of the phase in (J.2). This is evident from the fact that g(t) is a smooth
function, thus making its integral, the phase shaping function q(t) in (J.3), smooth
as well. Moreover, the phase in (J.2) is a weighted sum of time-shifted versions of the
smooth function, q(t). As time, t, progresses in (J.2), new weighted terms of q(t−nTsym)
are added. Since q(t − nTsym) always starts from zero, and smoothly progresses to 1

2 ,
no sudden phase changes occur in (J.2), and the resulting phase is continuous [42, p.
265]. Using (J.5) results in the modulation technique known as Gaussian minimum shift-
keying. GMSK is a partial-response CPM scheme with h = 1

2 . [32, p. 57]. In practice,
it is necessary to time-truncate (J.5) due to its infinite support. The approximation

g(t) =

 1
2Tsym

[
Q

(
2πBbTsym√

log(2)

(
t

Tsym
− 1

))
−Q

(
2πBbTsym√

log(2)
t

Tsym

)]
0

(J.7)

is made, in which L is chosen in accordance with the value of the bandwidth-time
product, BbTsym. The top entry in (J.7) is for

− (L− 1)Tsym2 ≤ t ≤ (L+ 1)Tsym2 (J.8)

and the bottom entry is for t values outside of this interval. Returning to the condition
in (J.4), (J.7) should be normalized by a constant, C, in order to statisfy the condition.
In practical scenarios, the constant is ignored, i.e. set equal to unity, for values BbTsym ≥
0.25 [32, p. 62]. In AIS, two such values are utilized, namely 0.3 and 0.4 [44, p. 1].

Inserting (J.3) in (J.2), interchanging the sum and the integral, and translating g(τ)
results in

φ(t, as) = 2πh
∫ t

−∞

∑
i≤n

ang(τ − iTsym)dτ. (J.9)

In (J.9) the term ψ(as, t) =
∑
i≤n

ang(τ − iTsym) is the sum of data symbols multiplied

by the GMSK frequency shaping function. An example of this, with the data symbols
being the NRZI string

as = (1,−1, 1, 1,−1,−1, 1,−1,−1,−1, 1,−1, 1,−1)
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can be seen in Figure J.1, in which the blue line is the data symbol pulse train, and the
green curve is the product between the data symbols and the GMSK frequency shaping
function with BbTsym = 0.4. Moreover, zero-padding corresponding to one bit-length at
both ends of the NRZI string has been made.
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Figure J.1: NRZI data symbols pulse train (blue) and sum of produts between data symbols and time
shifted frequency shaping functions (green).

J.3 GMSK bit error rate

In digital communication, the bit error rate (BER) is the probability that a transmitted
bit will be incorrectly received, i.e. a 0 turns into a 1 and vice versa [28, p. 188]. When
receiving and demodulating AIS signals on LEO satellites, GomSpace uses non-coherent
GMSK modulation. Using this demodulation scheme, the BER can be seen as a function
of Eb/N0 in Figure J.2. For a description of Eb/N0, see Section REF.
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Figure J.2: Plot of BER vs. Eb/N0 for non-coherent GMSK demodulation with bandwidth-time
product BbTsym = 0.5.

GMSK is based on a modulation scheme known as minimum shift keying (MSK).
The BER for non-coherent demodulation of MSK signals is [18, p. 20]

PM = 1
2erfc

(√
Eb

2N0

)
, (J.10)

in which
erfc(u) = 2√

π

∫ ∞
u

exp(−z2)dz (J.11)

is the complementary error function [14, p. 255]. Degradation of Eb/N0 is happening
when transitting from MSK to GMSK. Using computer simulations, a plot of degrada-
tion, ε, in Eb/N0 vs. BbTsym product has been generated in [26, p. 1047]. This plot has
been reprinted in this thesis, and can be seen in Figure J.3. As mentioned earlier, the
BbTsym product used when transmitting AIS signals is 0.4, but when designing an AIS
receiver, the recommendation is to design it with a BbTsym product of 0.5 [31, p. 12].
Hence, from Figure J.3, the degradation for BbTsym = 0.5 is approximately ε = 0.1 dB.
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Figure J.3: Eb/N0 degradation in dB vs. BbTsym product. Figure reprinted from [26, p. 1047].

This degradation is to be subtracted from the MSK Eb/N0, and, in conjunction with
(J.10), this yields the BER for non-coherent GMSK demodulation, namely

PG = 1
2erfc

(√
1
2

(
Eb
N0
− ε
))

(J.12)

Figure J.2 is generated using (J.12) with BbT = 0.5 and hence ε = 0.1.

J.4 Non-return-to-zero bit encoding
The encoder used to encode the length-256 bit-string in AIS is a non-return-to-zero
inverted (NRZI) encoder. The non-return-to-zero part refers to the fact that the voltage
level in the physical signal does not rest at zero at any time.

Moreover, NRZI refers to two encoders, one being non-return-to-zero space (NRZS)
and the other being non-return-to-zero mark (NRZM). In NRZS a 0 represents a change
in voltage, usually represented by −1, whereas a 1 is represented by no change in voltage,
and usually represented by a 1. NRZM is the opposite, in which a 1 represents a change
in voltage. In AIS, however, NRZS is used [31, p. 15]. An example of data encoded
using NRZS can be seen in Figure J.4.
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Figure J.4: Example of data encoded using NRZS.
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K | Self-organized time-division mul-
tiple access (SOTDMA)

The self-organized time-division multiple access (SOTDMA) scheme determines when a
vessel can transmit its AIS messages such that these messages do not overlap with those
sent out by other nearby vessels. The SOTDMA scheme divides each minute into 2250
time slots, each of duration 26.6̄ ms. The time duration of an AIS message fits into one
of these time slots. The main purpose of SOTDMA is to allow vessels to share the AIS
radio channels witout interfering with each other. An illustration of the scheme is given
in Figure K.1. A vessel reserves time slots for future transmissions with time intervals
depending on its status, i.e. its speed and whether it is on a steady or changing course.
These intervals can be found in Section 2.1, in which they are referred to as reporting
intervals and denoted tr. Vessels share a time reference, derived from GPS time, which
allows each vessel to accurately determine the starting time of a given time slot in the
SOTDMA scheme. Each transmission includes information about future reserved slots,
lending knowledge to other vessels about which time slots are reserved and which ones
are not [1]. Naturally, a vessel avoids using and reserving time slots currently in use or
reserved by other vessels.

Figure K.1: The AIS channel 1 SOTDMA scheme. Figure reprinted from [31, pp. 33-38]. Notice that
the source has named AIS channel 1 as Channel A.

The nominal start slot, NSSA, in Figure K.1 is the first time slot in which a vessel
is transmitting. When a vessel starts transmitting, NSSA is chosen. This time slot will
be used as a reference point when determining the nominal transmission slots, NTS,
i.e. the future transmission slots. The nominal increment, i.e. the ideal time between
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transmission, is determined by
NI = 2250

Rr
,

where Rr = 60
tr

is the number of reporting intervals per minute, referred to as the report
rate.

Vessels using AIS alternate between transmitting over channel 1 and channel 2.
Therefore, the ideal time between two transmissions over channel 1 is two times the
nominal increment, NI. In order to find the next future transmission slot, i.e. NTS, the
reference point, NSSA, is translated forward by 2 · NI. Here, a selection interval, SI,
centered around the nominal slot, NSA is made. The nominal slot is the centre around
which time slots are chosen for transmission. The time slot size of the selection interval,
SI, is found by

SI = 0.2 ·NI,

where, as mentioned earlier the center of the interval is NSA. Notice that for the first
transmission from a vessel, NSSA and NSA coincide. Indside the selection interval, a
transmission slot is chosen with all the possible time slots having equal probability of
being chosen [31, pp. 33-38].
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L | White Gaussian noise: sam-
pling and generation

In the first section of this appendix, continuous-time white Gaussian noise (WGN) is
defined along with the definition of bandlimited WGN. Moreover, the effects that the
sampling frequency and bandwidth have on the correlation between samples of bandlim-
ited WGN when sampling it is described. The second section describes how discrete
complex noise is generated and added to AIS signals in this thesis. Both sections are
inspired by [19, pp. 583-586].

L.1 White Gaussian noise sampling

A continuous-time wide-sense stationary zero-mean Gaussian random process, X(t),
with power spectral density

PX(f) = N0
2 , f ∈ R

where N0 ∈ R+ is a constant, and autocorrelation function

rX(τ) =
∫ ∞
−∞

PX(f)ej2πfτdf = N0
2 δ(τ), (L.1)

where δ(τ) is the unit impulse, is called continuous-time white Gaussian noise (WGN)
[19, pp. 583-584]. An illustration of the power spectral density of this noise is seen as
the horizontal solid line of value N0

2 in Figure L.1.

f

PX(f)

−fcom fcom−B B

N0
2

Figure L.1: Illustration of power spectral densities for WGN and thermal noise.
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In many communication systems, WGN is used to model the noise in the system.
The dominant noise source in communication systems is thermal noise. Experimentally,
it has been shown that the power spectral density of thermal noise within a certain
bandwidth B is well modelled using the power spectral density of WGN within the
same bandwidth. The power spectral density is illustrated in Figure L.1 as constant for
−fcom < f < fcom, and decreasing outside this frequency band.

WGN is not physically realizable, since the variance of WGN, rX(0) = ∞, due to
the nature of the unit impulse in (L.1). Passing WGN through an ideal low-pass filter
with bandwidth B yields band-limited WGN, Xl(t), with power spectral density

PXl(f) =
{
N0
2 , |F | ≤ B,
0, otherwise,

and autocorrelation function

rXl(τ) =
∫ ∞
−∞

PXl(f)ej2πfτdf

=
∫ B

−B

N0
2 ej2πfτdf

= N0
2

∫ B

−B
cos(2πfτ)df (L.2)

= N0B
sin(2πBτ)

2πBτ , (L.3)

where (L.2) follows from integrating an odd function over a symmetric interval. An
illustration of the autocorrelation of the band-limited WGN is seen in Figure L.2.
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Figure L.2: Autocorrelation function for the filtered WGN, Xl(t), with N0 = B = 1.

The zero-crossings of this sinc function are separated by 1
2B . These are illustrated by

the vertical dashed lines in Figure L.2. In communication systems, the noise is sampled
with sampling period Ts after the filtering. These samples can be represented as

Xl(nTs) = Xl[n], n ∈ Z.

If Xl(t) is sampled at the Nyquist rate, 2B, this corresponds to sampling the autocorre-
lation function in Figure L.2 at its zero-crossings. This is seen from the autocorralation
function in (L.3), which, when sampled at the Nyquist rate is

rXl [k] = rXl(kTs) = rXl

(
k

fs

)
= rXl

(
k

2B

)
,

which for k = ±1,±2, . . . is zero, and for rXl [0] = N0B. Thus, the autocorrelation
function for the filtered WGN, Xl(t), sampled at the Nyquist rate is

rXl [k] = N0Bδ[k],

where δ[k] is the Kronecker delta function.
If Xl(t) is sampled at a rate faster than the Nyquist frequency, i.e. Ts < 1

2B , corre-
lation is introduced in the noise samples. Effectively, sampling faster than the Nyquist
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frequency corresponds to sampling the autocorrelation function in (L.3) outside of its
zero-crossings, and thus introducing correlation in the obtained noise samples.

L.2 White Gaussian noise generation
This section describes the complex noise generator in Figure L.3.

Recall the continuous-time AIS signal

y(n)(t) = E(n)x(n)(t− τ (n))ej2πζ(n)t + w(n)(t) T
(n)
R ≤ t ≤ T (n)

R + TAIS , (L.4)

for the n’th AIS message from (4.9), in which w(t) is assumed band-limited circularly
symmetric Gaussian noise with variance σ2

w. This signal is the output of a low-pass
filter, which in the following derivations is assumed to be ideal. GomSpace uses the
bandwidth Bgs = 7.5 kHz in this filter, and a sampling frequency fgs = 38.4 kHz.
Considering the sampling of the AIS signal in (L.4), the sampling frequency used by
GomSpace introduces correlation into the noise in the samples. This is due to the fact
that fgs > 2Bgs. From (4.11), Ps samples of the received AIS signal are given as

y(n)(pTs) = y(n,p) = E(n)ej(2πζ(n)p+φ(n,p)+ψ(n)) +w(n,p), p = 0, 1, . . . , Ps − 1. (L.5)

The number of samples obtained by GomSpace in an AIS message is

Pgs = TAIS · fgs = 1024.

GomSpace has provided software for generating and simulating the transmission and
receival of AIS signals without noise. The continuous version of the n’th of these AIS
signals is

z(n)(t) = E(n)x(n)(t− τ (n))ej2πζ(n)t, T
(n)
R ≤ t ≤ T (n)

R + TAIS ,

and its samples are

z(n,p) = E(n)ej(2πζ(n)p+φ(n,p)+ψ(n)), p = 0, 1, . . . , Pgs − 1,

which are collected in the vector

z(n) =
[
z(n,0) z(n,1) . . . z(n,Pgs−1)

]>
.

In order to test GomSpace’s carrier frequency offset etimator, which is described in
Section 4.3, under different Eb/N0-values, an input-SNR (iSNR) is defined. Introducing
Tsym as the symbol duration, the energy per symbol can be defined as

Ẽs =
∫ T

(n)
T +Tsym

T
(n)
T

|z(n)(t)|2dt, T
(n)
T ≤ t ≤ T (n)

T + TAIS ,
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Figure L.3: Generation of carrier frequency offsets, AIS signals, noise, and carrier frequency offset
estimate.

where | · | denotes the magnitude of a complex number. Moreover, the variance of w(t)
can be defined as

σ̃2
w =

∫ B

−B
Sw(f)df = B ·N0,

where Sw(f) is the power spectral density of w(t) as shown in Figure L.4. For the
remainder of this section, the superscript n is omitted, since this section is only concerned
with the noise generation for a single AIS signal. With the above definitions, a continuous
iSNR is defined as

iSNRc = Ẽs
σ̃2
w

.

When the AIS signal is sampled, the discrete energy per symbol can be defined as

Es =
M−1∑
m=0
|z(p)|2 · Ts,

where Ms is the number of samples per symbol. An AIS message has 256 bits, and each
bit corresponds to one symbol. Hence, in the case of GomSpace,

Mgs = Pgs
256 = 4.

In this thesis, Es is calculated as

Es = 1
256

Pgs−1∑
p=0
|z(p)|2 · Ts. (L.6)

Moreover, the discrete variance can be defined using the Figures L.5 and L.6. In Figure
L.5, the frequency axis is a function of the sampling period, and in Figure L.6, the axis
has been normalized by the sampling period. This yields

σ2
w =

∫ 1
2

− 1
2

N0
2 df =

∫ B·Ts

−B·Ts

N0
2 df = N0 ·B · Ts, (L.7)
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Figure L.6: PSD for w(t).

and the discrete iSNR can be defined as

iSNR = Es
σ2
w

. (L.8)

In order to create a vector of zero-mean correlated noise samples, w̄ ∈ CPgs , the auto-
correlation function is found from (L.3) as

rw̄[k] = rw̄ (kTs) = N0
sin (2πBkTs)

2πkTs
,

which gives the autocorrelation matrix as

Rw̄ =


rw̄[0] rw[1]∗ rw̄[2]∗ . . . rw̄[Pgs − 1]∗
rw̄[1] rw̄[0] rw̄[1]∗ . . . rw̄[Pgs − 2]∗
rw̄[2] rw̄[1] rw̄[0] . . . rw̄[Pgs − 3]∗
...

...
... . . . ...

rw̄[Pgs − 1] rw̄[Pgs − 2] rw̄[Pgs − 3] . . . rw̄[0]

 ,

which, since the noise is zero-mean, is equal to the autocovariance matrix of w̄. In
the autocorrelation matrix, the asterix denotes complex conjugation. Now, the noise is
generated as

w̄ = Ls, (L.9)
where LLH = Rw, in which (·)H denotes the matrix conjugate transpose, and

s = sr + jsi,
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where
sr, si ∼ N

(
0, 1

2I
)
.

Wanting to scale the noise generated in (L.9), the noise energy per symbol is defined as

En = 1
256

Pgs−1∑
p=0
|w̄(p)|2 · Ts.

Moreover, defining a scaling constant

c = Es
En · iSNR

, (L.10)

the noise energy per symbol is scaled as

En,scale(c) = 1
256

Pgs−1∑
p=0
|
√
c · w̄(p)|2 · Ts. (L.11)

From (L.8), (L.10), and (L.11) it is evident that En,scale(c) = σ2
w, and hence, based on

(L.7), the scaled version of N0 is

N0,scale = En,scale(c)
B · Ts

. (L.12)

Lastly, the vector of correlated noise samples, w ∈ CPgs , with the desired Eb/N0 value
relative to z is

w =
√
c · w̄,

and the vector of AIS samples that is passed to GomSpace’s carrier frequency offset
estimator is

y = z +w
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Algorithm 6 Generating zero-mean correlated noise vector, w ∈ CP
Input parameters: z, Rw̄, B, iSNR, Ts.
Output: w, Eb/N0.

1. Calculate Es from (L.6).

2. Generate s = sr + jsi with sr, si ∼ NP
(
0, 1

2I
)
.

3. Calculate L from LLH = Rw̄.

4. Set w̄ = Ls.

5. Calculate En as Ts
256w̄

Hw̄.

6. Calculate c = Es
En·iSNR .

7. Calculate w =
√
c · w̄.

8. Calculate En,scale(c) according (L.11).

9. Calculate N0,scale according to (L.12).

10. set N0 = N0,scale.

11. Set Eb = Es.

Notice that setting Eb = Es in the last step of the algorithm is valid when GMSK
modulation is used. Using other modulation schemes, the relationship between Eb and
Es needs to be examined prior to carrying out the last step.
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M | Azimuthal equidistant projec-
tion

Multiple projections for projecting points on a sphere onto a two dimensional plane
exist. Each of these projections introduces some sort of distortion depending on which
projection is used. Commonly used projections preserve properties such as area, distance,
or shape [33, pp. 3-5] at the expense of distorting the others. This thesis utilizes
the azimuthal equidistant projection (AEP), which, given a center point, preserve the
distances between each projected point and the center point. Moreover, it ensures that
all the projected points are at the correct azimuth relative to the reference point.

Given a reference point A, and two points B and C, the azimuth α from B to C is
the angle between the great circle arcs AB and AC [33, p. 30], as illustrated in Figure
M.1.

α
B

C

A

Azimuth AC
AB

Figure M.1: Azimuth, α, between the great circle arcs spanned by the lines from A to C and A to B.
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(a)

Azimuthal equidistant projection

(b)

Figure M.2: (a): Points on the sphere and circles with different radii and center in the blue star. (b):
Azimuthal equidistant projection of the points and circles with blue star as center point.

Notice that distances and angles between two projected points, which are not the
reference point, are distorted. An illustration of the projection can be seen in Figure
M.2.

The procedure for using an AEP is to choose a point with geographical coordinates
(θ0, φ0) on the sphere as the center point of the projection. Geographical coordinates
are described in Section F.1. The (x, y)-coordinates of the projection of an arbitrary
point given in geographical coordinates, (θg, φg), using the AEP, are given by [33, pp.
194-195]

x = r · k · cos (θg) sin (φg − φ0)
y = r · k (cos (θ0) sin (θg)− sin (θ0) cos (θg) cos (φg − φ0)) ,

where r is the radius of the sphere,

k = c

sin(c) ,

and
cos(c) = sin(θ0) sin(θg) + cos(θ0) cos(θg) cos(φg − φ0).
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N | Spoofing distance test for 6
and 2 s report interval results

This appendix shows the results from the spoofing distance tests carried out for when
a vessel is moving at speeds corresponding to the report intervals of 6 and 2 s. The
spoofing distance tests from which the results originate are described in Section 12.4.

N.1 Report interval 6 s

tr = 6 s (Vessel position 1)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1
5 0.1 0.0 0.8 0.0 1.8 0.9 0.0 0.0 1.3 2.0
10 57.9 0.1 9.2 81.9 19.8 99.8 1.0 32.4 44.3 100
15 100 100 94.6 100 100 100 47.8 59.8 100 100
20 100 100 100 100 100 100 98.5 100 100 100
25 100 100 100 100 100 100 100 100 100 100

Figure N.1: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 1. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 20 and 23.
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tr = 6 s (Vessel position 2)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.1 0.2 1.6 2.3 0.0 0.0 0.5 0.0 0.8 0.1
0.5 1.0 1.6 0.0 0.7 0.2 0.0 0.2 0.4 0.2 0.0
5 34.2 91.6 0.3 11.6 84.2 5.2 0.0 85.2 1.0 7.3
10 100 97.6 0.0 100 99.9 99.9 22.6 0.4 96.0 68.2
15 100 100 100 100 100 100 100 84.4 100 100
20 100 100 100 100 100 100 100 100 100 100
25 100 100 100 100 100 100 100 100 100 100

Figure N.2: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 2. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 44 and 46.

tr = 6 s (Vessel position 3)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.2 0.7 0.3 0.0 0.0 0.0 0.0 0.1 0.0 0.0
0.5 0.0 0.1 0.2 0.3 0.0 0.2 0.0 0.3 0.0 0.1
5 0.0 0.1 13.1 0.0 0.0 25.8 69.7 97.0 13.3 0.3
10 67.4 100 100 0.0 0.4 1.0 100 96.1 86.5 0.1
15 99.3 100 99.7 18.0 0.3 96.7 100 100 100 35.5
20 100 100 100 100 0.0 100 100 100 99.5 21.3
25 100 100 100 100 0.0 100 100 100 100 63.8
30 100 100 100 100 0.0 100 100 100 98.7 0.6
35 100 100 100 100 2.25 100 100 100 100 98.1
40 100 100 100 100 12.6 100 100 100 100 99.7
45 100 100 100 100 100 100 100 100 100 96.2
50 100 100 100 100 92.3 100 100 100 100 100
55 100 100 100 100 75.3 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100 100

Figure N.3: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 3. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 39 and 41.
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tr = 6 s (Vessel position 4)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 4.18 0.1 0.0 0.1 0.1 9.2 0.1 0.0 0.0
0.5 0.7 1.2 0.1 0.3 0.6 17.4 27.7 18.5 0.4 0.5
5 0.0 0.3 92.5 0.0 18.8 0.5 1.8 28.8 0.4 1.2
10 100 100 0.4 21.2 89 100 2.4 72.3 5.4 0.2
15 99.9 0.4 100 1.6 100 50.1 100 100 92.8 14.2
20 100 100 81.0 91.2 100 100 100 99.7 96.3 100
25 100 100 100 100 100 100 100 100 100 100

Figure N.4: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 4. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 45 and 47.

N.2 Report interval 2 s

tr = 2 s (Vessel position 1)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0
10 2.6 15.1 75.2 99.8 38.0 98.6 0.0 0.0 2.9 0.0
15 100 100 50.9 59.4 100 97.9 100 0.2 100 100
20 100 99.4 100 100 100 100 9.5 100 100 99.9
25 100 100 71.3 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100 100 100
35 100 100 100 100 100 100 100 100 100 100

Figure N.5: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 1. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 64 and 73.
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tr = 2 s (Vessel position 2)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 1.6 0.3 0.0 0.0 0.2 0.0 0.0
5 0.0 0.1 0.0 0.2 0.0 85.5 0.0 1.2 0.0 0.0
10 100 0.0 0.0 72.4 0.7 14.4 0.0 89.5 1.4 48.7
15 94.5 99.0 93.4 94.4 75.8 55.8 100 99.3 100 100
20 100 100 100 100 100 100 100 100 100 100
25 100 100 100 100 100 100 100 100 100 100

Figure N.6: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 2. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 134 and 138.

tr = 2 s (Vessel position 3)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 20.6 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 46.8 0.0 0.0 1.3 77.6 56.4 0.0 0.0
10 0.0 99.7 0.0 0.0 0.0 92.5 100 47.1 0.0 0.0
15 100 83.5 100 59.4 0.0 100 100 100 86.3 100
20 91.3 100 100 76.9 0.0 100 100 100 100 0.0
25 100 100 100 97.9 0.0 100 100 100 91.7 0.0
30 100 100 100 100 9.8 100 100 100 98.1 0.0
35 100 100 100 99.7 0.0 100 100 100 99.6 69.0
40 100 100 100 100 100 100 100 100 80.5 100
45 100 100 100 100 87.3 100 100 100 100 76.2
50 100 100 100 100 99.5 100 100 100 100 98.5
55 100 100 100 100 99.7 100 100 100 100 100

Figure N.7: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 3. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 120 and 125.
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tr = 2 s (Vessel position 4)

ds Spoofing angles

0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0
5 0.5 0.0 0.4 0.2 0.0 1.0 0.0 0.0 13.3 0.5
10 0.7 36.7 0.0 6.8 16.2 1.5 0.0 45.2 0.0 97.5
15 0.0 0.1 100 96.3 94.2 0.0 0.0 0.0 99.4 100
20 99.3 78.2 2.2 95.3 100 100 100 1.1 99.9 100
25 100 100 0.9 100 100 100 100 81.7 100 100
30 100 100 100 100 100 100 100 100 100 100
35 100 100 100 100 100 100 100 100 100 100

Figure N.8: Table showing Ŝ for 10 different spoofing angles and different spoofing distances, ds, for
vessel position 4. Notice that ds is given in km and the estimates Ŝ are given in percent. In all of the
simulations, the number of received AIS messages was between 137 and 141.
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