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Abstract 

Cloud cover presents many challenges to the analysis of satellite imagery. While 

high temporal resolution can alleviate some of these challenges, for time 

sensitive objectives, such as crop type classification and crop yield estimation, 

the implementation of image composites may provide a big advantage.  

In this report, three tile based, Sentinel 2 monthly image compositing 

methodologies are presented. The resulting composites are then compared 

against each other and against a clearest, least cloudy image for the purposes of 

crop type classification. 

The study area is Sentinel 2 tile 32UNG, an area which saw very high cloud 

cover throughout the growing season in 2017. The initial acquired images are 

atmospherically corrected and cloud masked before composites are created for 

the months of March and July 2017 utilizing the maximum NDVI, medoid, and 

geometric median compositing methodologies. Indexes are calculated on the 

resulting composites to assist with crop type classification. 

The early (March) and late (July) growing season images are stacked and 

prepared for classification. The crop type classification in this study is 

performed using random forests, with the number of trees set at 400. The overall 

and per crop classification accuracies of the composites are compared against a 

clearest, most cloud free image from the same period. 

The composite images provided an increase of 23.5% in the total number of 

fields available for classification. The overall accuracies for this study were 

84.79%, 84.21%, 83.57%, and 81.35% for the clearest image, medoid, 

geometric median, and maximum NDVI classifications, respectively. Our 

conclusion is that these results indicate that monthly image composites can be 

beneficial for the purpose of cloud-free crop type monitoring and classification. 

The advantages of high-dimensional image composites for other classification 

purposes should be further researched. 
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1 Introduction 

In many areas of the world, high cloud cover presents many challenges to the 

analysis of satellite imagery. While high temporal resolution can alleviate some 

of these challenges, for time sensitive objectives, such as crop type classification 

and crop yield estimation, the implementation of image composites may provide 

a big advantage.  

In the following sections of this chapter, the report will introduce the 

background theory and research in the areas of remote sensing, image 

compositing and image classification and outline the scope and research 

objectives of his study. 

1.1 Background 

A general definition of remote sensing is that it is the process of “detecting and 

monitoring the physical characteristics of an area by measuring its reflected and 

emitted radiation at a distance” (USGS). For the purposes of this project, remote 

sensing will refer to the monitoring of the physical characteristics of the earth’s 

surface and the reflectance emitted by it when measured via passive remote 

sensing. Passive sensors measure the energy which is reflected from the earth’s 

surface (NRCAN). Active sensors on the other hand, such as radar, emit their 

own source of energy towards the target and reflectance radiation is then 

measured (Richards & Jia, 2006). 

Sensors on board different satellites measure different radiation at specific 

ranges, at specific spatial, temporal and radiometric resolutions. The resulting 

images thus have different characteristics depending on the sensor. 

1.1.1 Spatial Resolution  

The spatial resolution of a satellite image is concerned with the size of the area 

covered within one pixel. This is generally expressed as the size of the area 

covered by each pixel in meters. The higher the quality of the resolution is, the 

greater the level of detail of an object observed on the ground. 
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Figure 1 below shows an example of how different spatial resolutions can affect 

how objects are scene in a satellite image. 

 

Figure 1 Visual demonstration of pixel sizes. From Satellite Imaging Corporation. (2018). Spatial Resolution [Image]. 

Retrieved from https://www.satimagingcorp.com/services/resources/characterization-of-satellite-remote-sensing-

systems/ 

Satellites are usually put into four categories based on their spatial resolution: 

Table 1 Spatial resolution categories 

Category Spatial Resolution 

Low Spatial Resolution > 1000m 

Medium Spatial Resolution 100m – 1000m 

High Spatial Resolution 5m – 100m 

Very High Spatial Resolution < 5m 
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Different factors can negatively or positively influence the spatial resolution of 

an image. These factors can include:  

 The image scale factor - spatial resolution decreases as the scale factor 

increases. 

 The quality of the optical system  

 The grain structure of the photographic film  

 The contrast of the original objects 

 Atmospheric scattering effects – can lead to reduced contrast and 

resolution 

 Image motion – the relative motion between the ground and sensor can 

cause distortion. 

1.1.2 Temporal Resolution 

The temporal resolution specifies the revisiting frequency of a satellite sensor 

for a specific location. Satellite Imaging Corporation (2018) utilizes the 

following three categories: 

Table 2 Temporal resolution categories 

Category Temporal Resolution 

Low Temporal Resolution < 24 hours – 3 days 

Medium Temporal Resolution 4 – 16 days 

High Temporal Resolution > 16 days 

 

The revisit period refers to how long a satellite takes to complete an orbit of the 

earth and return to capture a new image of the same area. The temporal 

resolution of a satellite is generally inversely correlated with spatial resolution, 

where very high spatial resolution satellites tend to have a lower temporal 

resolution and vice versa. The temporal resolution thus, depends on several 

factors, including swath overlap, satellite capabilities and latitude. (Karimi, 

2004) 



Introduction 

4 

 

An overlap of the swath tends to increase the temporal resolution of a satellite, 

however this is limited to narrow strips as in an ideal orbit the overlap of swaths 

would be minimised. Due to the curvature of the earth, areas at high latitudes 

tend to have significantly higher revisit frequencies than those located at the 

equator.  

The time of day that images are captured tends to have an impact on the resulting 

image and its usage, due primarily to the position of the sun. Sun-synchronous 

orbit satellites, such as Landsat 8 and Sentinel 2, tend to capture each location 

at between 10:00 and 12:00 local sun time. This is in order to minimize the 

effects of shadows and other atmospheric impacts. 

1.1.3 Spectral Resolution 

A sensor's spectral resolution specifies the number of spectral bands in which 

the sensor can collect reflected radiation. The number of bands however, is not 

the only important aspect of spectral resolution. The position and the widths of 

bands in the electromagnetic spectrum is important as well.  

Multi Spectral Instruments record reflectance values in separate bands at 

various wavelengths. Hyperspectral Instruments can record values in hundreds 

of separate bands on very narrow wavelengths, showing subtle different 

between various objects at very high spectral resolutions. 

Figure 2 Spectral wavelengths. From Satellite Imaging Corporation. (2018). Spectral Resolution [Image]. Retrieved 

from https://www.satimagingcorp.com/services/resources/characterization-of-satellite-remote-sensing-systems/ 
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Satellite Imaging Corporation (2018) utilizes the following three categories: 

Table 3 Spectral resolution categories 

Category Number of Spectral Bands 

Low Spectral Resolution 3 Bands 

Medium Spectral Resolution 3 – 15 Bands 

High Spectral Resolution 15 – 220 Bands 

1.1.4 Radiometric Resolution 

Radiometric resolution represents the smallest difference in energy that can be 

detected by a sensor, also known as the sensitivity of the sensor. The finer the 

radiometric resolution, the more sensitive it is to detecting small differences in 

reflectance values.  

Radiometric resolution refers to the quantity of information in a pixel and 

expressed in units of bits. This is represented as a value between 0 and a selected 

power of 2 minus 1. Thus a radiometric resolution of 8 bits means the pixel has 

256 possible intensity values (0 – 255) and 16 bits can represent 65,536 different 

intensity values. Advances in technology have led to an increase in the 

radiometric resolution of most satellite systems, now making it easier to detect 

subtle changes in reflectance. 

Figure 3 Comparison of different radiometric resolutions 
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1.2 Image Preprocessing 

In order to remove outlying data for the compositing process, images first need 

to be cloud masked. While most cloud masks are not perfect, this process 

increases the likelihood that only clear, relevant pixels will be used in the 

compositing process. 

As images in a compositing process are acquired on different dates, different 

atmospheric factors affect each individual satellite image. In order to obtain 

bottom of atmosphere reflectance values, atmospheric correction must be 

implemented in this preprocessing step. In recent times, these atmospheric 

correction algorithms have evolved and are now based on “rigorous radiative 

transfer modelling approaches” (Gao, Montes, Davis & Goetz, 2009). 

Finally, as Sentinel 2 bands are collected at different spatial resolutions, a 

resampling algorithms should be applied in order to ensure that all bands 

utilized in a study are at the same spectral resolution. 

1.2.1 Cloud Masking 

Satellite imagery is available at a higher temporal resolution than ever before, 

however, many of these images inevitably capture clouds over many areas of 

interest. Clouds and cloud shadows are significant sources of noise in satellite 

images (Zhu & Woodcock, 2012) and create many problems when attempting 

to identify and classify what is on the ground.  

Cloud and cloud shadow identification and removal is an important initial step 

in most satellite image analysis tasks as their presence can cause issues with 

atmospheric correction, index calculations and land cover classification (Zhu & 

Woodcock, 2012).  

Generally, thick, opaque clouds can be more easily identified and removed from 

the image as they have very bright reflectance values when compared to the rest 

of the image. Their shadows however can still cause issues. In general cloud 

shadows are darker when compared to the average pixel in the image, however 
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this is not always the case, as shadows have a lesser impact on bright objects in 

the image such as urban areas or coastal sand. 

Secondly, thin, semitransparent, cirrus type clouds can distort the reflectance 

values observed and are much more difficult to identify and remove due to the 

fact that their signal includes the cloud, as well as the land beneath it (Gao & 

Kaufmann, 1995). Sentinel 2 however provides a separate 60m resolution SWIR 

– Cirrus band (Band 10, 1,375 nm) to assist with thin cloud identification and 

removal 

Many object and pixel based classification algorithms have been developed for 

the automatic identification and removal of clouds, as manual processes are 

extremely inefficient and time consuming.  

1.2.2 Atmospheric Correction 

Reflectance values transferred from the earth’s surface to the satellite are highly 

influenced and modified by interaction with the earth’s atmosphere (Hadjimtsis, 

Papadavid, Agapiou, Themistocelous & Hadjimitsis, 2010). In order correct for 

these influences of the atmosphere, atmospheric correction algorithms must be 

implemented in the preprocessing stages of any remote sensing analysis.  

Atmospheric correction is one of the most important preprocessing steps when 

working with remote sensing data (Hadjimtsis et al, 2010). In order to properly 

study the images acquired by satellites, an accurate removal of these 

atmospheric effects is required (Gao et al, 2009). 

Martins, Barbosa, de Carvalho, Jorge, Lobo & Novo (2017) note that the quality 

of the final product is highly dependent on the atmospheric correction method 

and as such proper care must be taken when processing images, especially when 

working with multi temporal data, as is the case of this project. 
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Atmospheric correction methods can be largely grouped into three main 

categories: 

1) Empirical methods 

2) Radiative Transfer Modelling Approaches  

3) Hybrid Approaches 

Empirical methods grew in popularity and were mainly developed during the 

1980s (Gao, Montes, Li, Dierssen & Davis, 2007). These approaches do not 

depend on knowledge of outside climatological effects, and the correction is 

performed on properties derived from the image observation (Martins et al, 

2017). Conel, Green, Vane, Bruegge, Alley & Curtiss (1987) have also 

introduced an empirical line approach which requires field measurements of 

darkest and brightest objects in the scene, and surface values for all other pixels 

are then linearly regressed from these observed dark and bright values. 

The radiative transfer modelling approaches were first realized in 1993, with 

development of ARTEM (Gao, Heidebrecht & Goetz, 1993). These approaches 

use theoretical models which simulate the absorption and scattering effects of 

atmospheric gases on radiance values (Gao et al, 2007). 

The hybrid approaches use a combination of image observed properties and 

simulated values in order to try and provide a mixed approach, based on 

empirical measurements and theoretical simulations. Sen2Cor, the atmospheric 

correction method used in this project is one such approach.  

1.3 Image Compositing 

Holben (1986) first introduced the idea of a maximum value composite using 

data from the Advanced Very High Resolution Radiometer (AVHRR) sensor. 

The goal of the composite was to create cloud-free and contaminant-free 

spatially continuous images to study vegetation dynamics. The outcome of the 

compositing algorithm introduced by Holden was that the composite images 

could be used for more concrete vegetation studies, as the compositing 

technique minimized cloud interference, atmospheric contamination, sun-angle 

and shadow effects, and increased the availability of data in the study area. 
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The idea behind Holben’s algorithm still stands today, primarily due to cloud 

contamination in satellite imagery. It is often highly difficult to acquire fully 

cloud free images for an area of study, acquired at an agreeable time. Since 

Holben’s introduction of the maximum value composite, a number of different 

methodologies have been introduced, each aiming to improve classification or 

monitoring techniques for certain remote sensing projects.  

Best available pixel composites (Griffiths, van der Linden, Kuemmerle & 

Hostert, 2013; White, Wulder, Hobart, Luther, Hermosilla, Griffiths, …, & 

Guindon, 2014) is a compositing methodology which relies on user generated 

weights to create a final composite for analysis. The compositing algorithms 

requires significant user input to decide on the final pixel of the composite. The 

user can assign different weights to variables such as distance to clouds, sun 

angle, image acquisition date or atmospheric values within each image. If 

multiple clear pixels are available to choose from, a scoring mechanism is 

implemented based on the inputted weights, and the pixel with the highest score 

will be written into the composite. This methodology has shown to be useful in 

a number of applications, primarily in forestry and land use and land cover 

change detection. One downside of this method however is its reliance on user 

input for weighing the variables. While this may not cause issues for a small 

area of interest, applications to larger scales, such as country, or continent wide 

studies may be more difficult due to variability in cloud cover, atmospheric 

conditions or land cover within the area. 

Maximum NDVI is another popular compositing approach for vegetation and 

agriculture studies (Flood, 2013). NDVI is arguably the most widely 

implemented vegetation index in remote sensing (Robinson, Allred, Jones, 

Moreno, Kimball, Naugle … & Richardson, 2017). It has wide applications in 

agriculture, forestry, and crop type classification to name a few. The 

compositing methodology behind the Maximum NDVI algorithm is rather 

straightforward. Once a suitable compositing period has been decided on and 

the images have been preprocessed for cloud removal and atmospheric 

correction, NDVI is calculated for each input image. For each pixel in the final 

composite, the NDVI value in each input image is compared, and the values 
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from the date which observed the highest NDVI value are written to the final 

composite. This compositing methodology is rather useful in studies which aim 

to classify or monitor vegetation, however it is not as useful for areas such as 

change detection in urban areas due to its reliance on NDVI. Some other 

downsides of this compositing methodology are that the final composite image 

will likely only include pixels from the spring or summer season, when NDVI 

values tend to be the highest. Due to the reliance on high NDVI values, this 

compositing methodology may also cause issues in the differentiation of green 

areas, such as fallows and forests, as the pixels for both areas will be recorded 

at their greenest. One highly positive trait of this algorithm however is cloud 

removal. Clouds tend to have lower NDVI values than the surface beneath them, 

and as such using a maximum NDVI value for compositing will have a 

secondary cloud removal effect in cases where the cloud mask failed in 

preprocessing. 

Flood (2013) introduced the idea of creating seasonal composites using the 

medoid, a multi-dimensional median. In this method, for each pixel, the medoid 

over the period is selected and written in the final composite. The medoid is an 

actual observed value within the time series, and aims to maintain the spectral 

relationship between the spectral bands. This methodology appears to be robust 

against extreme values, such as residual clouds, or fields which have been 

harvested early. The outcomes of Flood’s study were that this methodology 

appears to be more representative of the time series than the maximum NDVI 

composites, and create a smoother looking composite. 

A high-dimensional median compositing methodology is introduced by 

Roberts, Mueller & McIntyre (2017). This relies on calculating the geometric 

median of each pixel in the time series and “effectively trades a temporal stack 

of poor quality observations for a single high-quality pixel composite with 

reduced spatial noise”. One particular strength of this methodology is that 

outliers, such as residue clouds or early harvested fields do not have a large 

effect on the final composite value. As such, even though cloud masking 

algorithms tend to miss clouds and cloud edges fairly often, this methodology 

does not require a perfect input stack, and can deal with some anomalies in the 
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data. Other compositing methodologies exist, relying on median values for each 

band, or on acquisition times of the images utilized in the study, such as a ‘peak 

summer’, ‘earliest image’, or ‘latest image’ composite. 

1.4 Image Classification 

For the purposes of remote sensing, image classification is an automated process 

of extracting information and classifying pixels from a remotely sensed raster 

image. The resulting raster from the image classification process can then be 

used to create thematic maps for use in land cover and land use classifications. 

There are two types of classification depending on the interaction between the 

operator and the computer during classification: supervised and unsupervised 

(Aggarwal 2004). 

A supervised classification method is employed in this project. Supervised 

classification is a method which involves the user selecting sample pixels or 

objects in an image that represent specific classes and then instructs the image 

processing software to implement these training points as reference for the 

classification of all other pixels or objects in the image. These training sites 

(also known as reference sets or input classes) are positioned based on the 

confirmed knowledge of the operator, gained either via on site surveys or 

acquired information from third parties.  

A second decision in classification is whether to employ a pixel based or object 

based classification methodology. In a pixel based classification, each pixel is 

seen as and assessed as individual from the surrounding pixels. For the purposes 

of crop type classification this might mean that two pixels may be classified to 

different classes, even though they are within the same field.   

Figure 4 Pixel based classification process – Satellite Image – Training Points – Classified Fields 
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1.4.1 Crop Type Classification 

Land cover and land use classification is a tremendously popular concept within 

remote sensing. The development of land classification systems such as 

CORINE, USGS’s classification system and other more specific systems such 

as IPCC’s Land-Use Change and Forestry guide have led to an increase in the 

study of image classification from a remote sensing perspective. However, little 

emphasis has been placed on developing detailed crop maps (Wardlow, Egbert 

& Kastens (2007), despite the introduction of various economic processes, 

sustainable development and agriculture goals, and food security concerns. 

Only recently, the European Space Agency’s Common Agricultural Policy 

(CAP) has started relying on satellite imagery from crop monitoring and 

classification.  

Most crop type classification research in recent times has focused on the use of 

classification algorithm, intending to develop better and more accurate deep 

learning models for crop health monitoring, classification and yield estimation.  

Studies in the Ukraine (Kussul, Lavreniuk, Skakun & Shelestov, 2017) and 

Japan (Sonobe, Tani, Wang, Kobayashi & Shimamura, 2014) have also focused 

on using synthetic aperture radar (SAR) data for use in crop type classification 

with good results. 

For this project, the focus is on using only optical data from a single sensor 

(Sentinel 2) for the purposes of crop type classification. The focus of the study 

is on improving the data used as input for the classification, by creating 

composite images, instead of the current popular approach of utilizing a single 

image. 

1.4.2 Random Forests 

Breiman (2001) introduces random forests as a combination of tree predictors, 

an ensemble learning method which generates multiple classifiers and clusters 

their results. The paper concludes that random forests are an accurate and 

effective tool in classification, performing better than previous bagging or 

boosting methods. 
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Belgiu & Dragut (2016) describe the methodology behind random forests and 

their application to remote sensing classification. The random forest classifier 

draws a random subset of training samples through a replacement (bagging) 

approach. This means that certain samples may be selected more than once, 

while others may be ignored by the classifier. Breiman (2001) outlines that 

about two thirds of the samples are used to train the trees, and the remainder are 

used to test how the model performs as a cross-validation technique.  

The classifier requires two user inputs – the number of trees to be generated, 

and the number of variables to be selected and tested for the best split when 

growing the tree. Due to the law of large numbers, the classifier is less sensitive 

to the number of trees, and a large enough number, such as 500, appears to be 

large enough for remote sensing applications (Lawrence, Wood & Sheley, 

2006). The number of variables to be selected is usually set to the square root 

of the number of input variables (Gislason, Benediktsson & Sveinsson, 

2006).Figure 5 below describes the random forest classifier as discussed by 

Belgiu & Dragut (2016) 

Figure 5 Training and classification phases of random forest classifier: i = samples, j = variables, p = probability, c = 

class, s = data, t = number of trees, d = new data to be classified, value = the different values that the variable j can 

have. From “Random forest in remote sensing: A review of applications and future directions” by M. Belgiu & L. 

Dragut, 2016, ISPRS Journal of Photogammetry and Remote Sensing, 114, p. 26. 
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Random forests have been shown to perform very well when compared to other 

classification algorithms including support vector machines, maximum 

likelihood, and neural networks. Some advantages of using random forests for 

classification are that overfitting to the training data is not a problem, and that 

inaccuracies in the training data can usually be ignored when using a large 

enough number of trees (Breiman, 2001). This makes random forests an 

excellent choice as a classification algorithm for this project. 

1.4.3 Accuracy Assessment 

Crop type classification maps are a type of thematic map, similar to land cover 

and land use maps, and other thematic maps derived from remote sensing data. 

As these maps are created based on a classification algorithm which relies on 

only a small subset of training data, an accuracy assessment of the classification 

results must be performed in order to ensure that the predicted results are 

accurate and can be relied upon. 

This process of results analysis and evaluation is critical to the quality of the 

product. A comparison of the ground truth data and the classified data has to be 

carried out in order to find the accuracy of the results. While many methods 

have been described and discussed for the purposes of remote sensing (Aronoff, 

1982, 1985; Koukoulas & Blackburn, 2001), Foody (2002) mentions that the 

mostly widely used and adopted methodology is the confusion matrix, which is 

currently at the core of accuracy assessment literature. 

The confusion matrix makes it easily evident to the researcher about 

discrepancies between the training and testing data, as well as easy to spot and 

interpret differences within classes. One of the more popular measures of 

classification accuracy derived from the confusion matrix is overall accuracy, 

or the percentage of cases correctly classified. Two other popular measures are 

the producer’s and the user’s accuracies. 

Overall accuracy is the basic measure revealing how many classification 

attempts were correct in total, a simple calculation showing the proportion 

between the correctly classified points of all classes and the total number of test 

points. 
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Producer’s accuracy defines the proportion between the number of points 

belonging to a specific class X which were correctly classified as points of class 

X, excluding the points which the classifier agent omitted - false negatives, and 

the total number of ground true points under class X. This shows the overall 

accuracy of the classifier agent in context of each class separately. 

User’s accuracy defines the proportion between the number of points which 

were correctly classified as belonging to class X and the total number of points 

classified as class X – including false positives – points of classes Y and Z 

incorrectly classified as class X points. 

1.5 Problem Statement 

Satellite imagery and satellite image compositing is widely used in a variety of 

fields including forestry (Potapov, Turubanova & Hansen, 2011), oceanography 

(Breaker, Armstrong & Endris, 2010), and coastal monitoring (Sagar, Phillips, 

Bala, Roberts & Lymburner, 2018). The vast archive of available data is 

increasing at a more rapid than ever pace, with both publicly, and privately 

funded satellites now providing near daily coverage of all areas around the 

globe. With the exponentially growing data availability, there is now a strong 

need for effective and efficient processes to interpret, analyse and derive 

valuable information from this data. 

The opening up of the Landsat archive in 2008 (Woodcock, Allen, Anderson, 

Belward, Bindshadler, Cohen … & Nemani, 2008) provided scientists with free 

access to millions of images acquired by the Landsat mission (Wulder, White, 

Loveland, Woodcock, Belward, Cohen … & Roy, 2016). Since then, a large 

number of tools for processing remote sensing images from various satellites 

have been further developed, including tools for cloud detection (Hagolle, Huc, 

Pascual & Dedieu, 2010; Zhu & Woodcock, 2012; Brockmann, Paperin, Danne 

& Ruescas, 2013), atmospheric correction (Gao, et al 2009), and image 

compositing (Griffiths et al., 2013). 
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This study explores how these methods, including cloud masking, atmospheric 

correction, and image compositing, can increase the data availability for crop 

monitoring from a single image, to an entire month or growing season. This can 

be particularly beneficial for areas with high cloud coverage where a single 

image classification approach will not work for an entire area of interest due to 

interference from clouds.  

1.6 Research Objectives 

Several studies have proposed different compositing methodologies for satellite 

imagery. The Landsat archive, due to its long temporal coverage has been the 

primary interest, with focus on developing composites for various areas, 

including the contiguous United States (Roy, Ju, Kline, Scaramuzza, 

Kovalskyy, Hansen … & Zhang, 2010), the Carpathian region (Griffiths, 

Kuemmerle, Baumann, Radeloff, Abrudan, Lieskovsky ... & Hostert, 2014), and 

Canadian forests (White, Wulder, Hobart, Luther, Hermosilla, Griffiths … & 

Guindon, 2014). This study however investigates the possibility of using data 

from Sentinel 2, a much newer sensor, which provides better temporal and 

spatial resolution than Landsat 8. 

The focus of the study is optical data, provided by the Sentinel 2 pair of 

satellites, Sentinel 2A and Sentinel 2B, launched by the European Space 

Agency under the Copernicus program on 23rd June 2015, and 7th March 2017, 

respectively (European Space Agency, 2018). 

The first part of this project aims to provide a compositing workflow focused 

on creating high quality, analysis ready image composites, applicable on a tile 

level for Sentinel 2 imagery.  

The second part of the study focuses on investigating the suitability of monthly 

satellite image composites for the purpose of crop type classification.  
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In order to achieve these two aims, the following research questions are defined:  

 Which preprocessing techniques are the most important in the 

compositing process? 

 What different compositing methodologies can be applied to Sentinel 2 

data on a tile level? 

 Which remote sensing indexes are most appropriate for crop type 

classification? 

 How does the accuracy of crop type classification performed on image 

composites compare to that of a classic clearest image approach? 
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2 Data and Materials 

This section of the report introduce the study area where the case study has been 

prepared, as well as the satellite images and agricultural data acquired. The 

hardware and software utilized during this project are also presented and 

described. 

2.1 Study Area 

The study area for this project lies in south western Denmark, with its center 

point located at 9° 52’ 3.57” E, 55° 26’ 57.70” N. The area covers parts of 

Jutland and the island of Fyn and it covers the entirety of Sentinel 2 acquisition 

tile 32UNG.   

 

Figure 6 Study area outline shown within Denmark 
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This was deemed to be a suitable study area for this project as a large portion is 

used for growing varied crops, primarily Spring Barley, Winter Wheat and 

Corn. According to the CORINE Land Cover Classification System, 

approximately 57.5% of the study area is classified as ‘Agricultural Areas’. The 

further breakdown is as follows: 

Table 4 CORINE level 3 classification for study area 

CORINE 

Land Code 
CORINE Level 3 Classification 

Area 

(ha) 

Area 

(%) 

211 Non-irrigated Arable Land 598,771 49.67% 

222 Fruit Trees and Berry Plantations 1,968 0.16% 

231 Pastures 5,928 0.49% 

242 Complex Cultivation Patterns 11,674 0.97% 

243 Land principally occupied by 

agriculture, with significant areas of 

natural vegetation 

74,824 6.21% 

 Total Agricultural Area 693,165 57.5% 

 

Additionally, the area had no days with 0% cloud cover over the study period 

of spring and summer 2017, further showing the need for image compositing 

algorithms in order to make full use of remotely sensed data. 

This study provides three different compositing algorithms to achieve the image 

composites, namely maximum NDVI, geometric median and medoid. The 

images are preprocessed using open source tools for cloud masking and 

atmospheric correction, however the accuracies and performance of these 

processes are not evaluated, as this was outside the scope of this study. The 

compositing methodologies are implemented in Python and make use of various 

open source libraries. 

The resulting image composites are then used for classifying various crop types 

in the study area. Random Forests are used as the classifier of choice and the 

classification results from each composite image, as well as a ‘clearest, most 

cloud free image’ are compared based on their overall accuracy. 
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2.2 Satellite Image Data 

For this project, only Sentinel 2 optical data has been used in order to perform 

the compositing and the classification. The data for this part of the project has 

been downloaded from the European Space Agency’s SciHub download center, 

available online at https://scihub.copernicus.eu/dhus/#/home 

The data for this study area covers the entire Sentinel scene 32UNG and the 

time period for this research includes the spring (March, April, May) and 

summer (June, July, August) of 2017. The data is easily accessible via SciHub 

and can be downloaded in ESA’s .SAFE format on a tile basis. The .SAFE 

folder structure includes all 10m, 20m, and 60m bands captured by Sentinel 2 

as well as any required metadata. The scenes are downloaded as a Level-1C 

product. This product consists of 100 x 100km tiles in UTM Zone 32N 

projection. The level 1C products are resampled and orthorectified and the per 

pixel radiometric measurements are provided in top of atmosphere reflectances. 

(ESA) 

The data downloaded from SciHub includes 47 different scenes acquire between 

March 1st 2017 and August 31st 2017. Due to the launch of Sentinel 2B, a twin 

satellite to Sentinel 2A, we can see a large increase in the number of scenes 

available in July and August. The two satellites are in polar opposite sun 

synchronous orbits and aim to provide a new image of each every 2.5 days on 

average. 
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The temporal distribution of the acquisitions is as follows: 

Table 5 Temporal distribution of images 

Month Number of Scenes Acquisition Dates 

March 7 1st, 4th, 11th, 14th, 21st, 

24th, 31st  

April 6 3rd, 10th, 13th, 20th, 23rd, 

30th 

May 5 3rd, 10th, 13th, 23rd, 30th 

June 6 2n, 9th, 12th, 19th, 22nd, 

29th 

July 12 2nd, 4th, 7th, 9th, 12th, 

14th, 17th, 19th, 22nd, 

24th, 27th 

August 11 1st, 3rd, 6th, 8th, 11th, 13th, 

18th, 21st, 23rd, 26th, 31st 
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Sentinel 2 captures data in the following spectral bands, with spatial resolutions 

ranging from 10m to 60m: 

 

Figure 7 Sentinel 2 10m bands. From European Space Agency. (2018). Sentinel-2 10m spatial resolution bands 

[Image]. Retrieved from https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial 

 

Figure 8 Sentinel 2 20m bands. From European Space Agency. (2018). Sentinel-2 20m spatial resolution bands [Image]. 

Retrieved from https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial 

 

Figure 9 Sentinel 2 60m bands. From European Space Agency. (2018). Sentinel-2 60m spatial resolution bands [Image]. 

Retrieved from https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial 
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2.3 Agricultural Data 

The Danish AgriFish Agency provides a nationwide, annually updated shapefile 

consisting of digitized agricultural fields. This shapefile contains the annual 

reporting of farmers making use of subsidies provided by the European Union. 

The shapefile contains the fields, field sizes and the crops being grown on the 

field. 

The data has been clipped to include only the study area and contains a total of 

87,863 fields.  

          

Figure 10 Agricultural fields shown within the study area 

The latest shapefile, generated in 2017, has been used throughout this study. 

While the accuracy of the shapefile cannot be verified, it is assumed to be a 

fairly comprehensive and accurate representation of crops grown in the study 

area. 
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2.4 Hardware and Software 

All processing for this study has been performed on a Lenovo Thinkpad laptop 

with the following specifications: 

Table 6 Hardware specifications 

Operating System Windows 10 Enterprise 64-bit 

Processor Intel Core i7-3610QM @ 2.30GHz 

Number of Logical Processors 8 

Memory 16384MB RAM 

 

The GIS software utilized for this study includes QGIS 2.18.9 and ArcMap 10.5. 

These software packages were utilized for some data filtering and creation of 

graphics and data visualizations.  

The majority of data filtering, image compositing and image preprocessing was 

done in Python 3.6. Separate Anaconda environments were created for the 

preprocessing and image compositing steps. 

The random forest classification was performed in R utilizing the 

RandomForest package.  

The accuracy assessment and error matrix creation was performed within QGIS, 

utilizing the GRASS Plugin r.kappa. 
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3 Methodology 

This study provides three different compositing algorithms to achieve the image 

composites, namely maximum NDVI, geometric median and medoid. The 

images are preprocessed using open source tools for cloud masking and 

atmospheric correction, however the accuracies and performance of these 

processes are not evaluated, as this was outside the scope of this study. The 

compositing methodologies are implemented in Python and make use of various 

open source libraries. 

While images for the entire spring and summer seasons of 2017 have been 

downloaded, for this project, composites have been created only for the months 

of March and July, as they were deemed to provide the most detailed 

information in regards to crop growth. Additionally, some images were 

discarded due to having too many clouds or for not capturing 100% of the study 

area. The final composites were created using four acquisitions from March and 

five acquisitions from July. 

After the composites for each month have been created, four indexes were 

calculated on each resulting composite and added to stack of ten Sentinel 2 

bands creating a 14 band Geotiff for each month. 

In order to prepare the images for classification, a 28 band stack was then 

created by combining the March and July images.   

The resulting image composites are then used for classifying various crop types 

in the study area. Random forests are used as the classifier of choice and the 

classification results from each composite image, as well as a ‘clearest, most 

cloud free image’ are compared based on their overall accuracy. 
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3.1 Compositing 

This section of the report provides details of the compositing methodologies 

utilized in this study. The data, materials, implementation, and results of this 

part of the study are then presented. The following diagram explains the process 

involved in this part of the report, focused on creating the composite images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Compositing process 
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3.1.1 Preprocessing 

In order to obtain the most relevant and accurate information from the satellite 

images, a number of preprocessing techniques have been implemented in this 

study. 

Cloud Masking 

The cloud removal process in the preprocessing stages of this project uses a 

combination of three state of the art cloud masks – fmask (Zhu, Wang & 

Woodcock, 2015), Sen2Cor (Muller-Wilm, Louis, Richter, Gascon & Niezette, 

2013), and IDEPIX (Brockmann et al, 2013). The combination of these cloud 

masks creates a more aggressive cloud mask for this project ensuring near full 

removal of cloud objects. 

All scenes acquired in the data acquisition step have been cloud masked using 

the combined mask. The combined mask also includes a 20pixel buffer around 

cloud objects in order to ensure full removal of clouds. The cloud mask is 

written in Python and developed as a command line utility making it easy for 

users to process multiple scenes. The following command line can be used to 

generate a cloud mask for a single Sentinel 2 scene: 

cloud_mask s2 –i C:/scene.SAFE –o cloud_mask.tif –s 10 --cm_buffer 20 

In the above command the creation options are as follows: 

S2 – Indicates this is a Sentinel 2 scene 

-i – Path input to the ESA downloaded Level 1C .SAFE folder 

-o – Path output for the created cloud mask 

-s – Processing pixel size (10m in the case of this study) 

-cm_buffer – Buffer to be added to the resulting cloud masks (in meters) 

 

 



Methodology 

28 

 

The resulting cloud masks for March are as follows: 

 

Figure 12 March cloud masks a. March 1st 2017 b. March 11th 2017 c. March 21st 2017 d. March 24th 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. b. 

c. d. 
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The resulting cloud masks for July are as follows: 

 

 

 
Figure 13 July cloud masks a. July 4th 2017 b. July 9th 2017 c. July 14th 2017 d. July 17th 2017 e. July 19th 2017 

 
 

 

 
 

 

 

a. b. 

c. d. 

e. 
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The following figure shows the number of clear observations for each pixel in 

March: 

Figure 14 March data availability 
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The following figure shows the number of clear observations for each pixel in 

July: 

Figure 15 July data availability 

Due to pixel removal from the cloud masks, data availability decreased 

drastically. The data available will need to be further filtered at a later stage to 

be prepared for input into the random forest classification algorithm in order to 

create a mask consisting of pixels which have clear observations available in 

both March and July.  
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Atmospheric Correction 

Sen2Cor is a Level 2A processing toolbox for Sentinel 2 imagery over land and 

was developed by the European Space Agency (Muller-Wilm et al, 2013). For 

atmospheric correction, this processor integrates image observations with look-

up tables from the LibRadtran model to remove atmospheric effects (Martins et 

al, 2017). Version 2.5.5 of the processor, released March 23, 2018, was utilized 

throughout this project. 

The scenes were processed using the command line utility provided by the 

Sen2Cor package. The package provides a simple interface for users to process 

multiple scenes rapidly. Atmospheric correction on a single scene took 

approximately 30 minutes. The level 2A atmospheric correction processor can 

be run in the command line: 

L2A_Process path/to/SAFE/folder   

The following configuration parameters for atmospheric correction have been 

set using the GIPP file for user inputs. 

Table 7 Atmospheric correction user inputs 

Option Value 

Aerosol Type Rural 

Mid-Latitude Auto 

Ozone Content Best Guess from Metadata 

Water Vapour Correction True 

Water Vapour WaterMask True 

Cirrus Correction True 

Water Vapour Threshold Cirrus 0.25 

BRDF Correction False 

No BRDF correction has been performed as the terrain in the study area is 

mostly flat. 
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3.1.2 Compositing Algorithms 

Throughout this project, three different image compositing methodologies were 

implemented and compared, using three different algorithms, maximum NDVI, 

medoid, and geometric median. The algorithms were written, implemented and 

tested in Python 3.6. 

Prior to compositing, a single image stack consisting of ten bands is created for 

each input date. The 20m resolution bands are first resampled to 10m resolution. 

The stack is a ten band GeoTiff consisting of all 10m and resampled 20m 

resolution bands acquired by Sentinel 2 for each date. 

Maximum NDVI 

Maximum NDVI is a fairly common algorithm for compositing satellite images. 

In this approach, NDVI is calculated for each individual image. In cases where 

more than one clear pixel is available, the values corresponding to the date 

which had the highest NDVI value are written into the final composite. This 

process is executed in Python using the rasterio and numpy libraries. The 

resulting composite consist of actually observed values, however neighbouring 

pixels may be from different acquisition dates, thus creating some artefacts in 

the final composites. 

This compositing process is the least computationally intensive of all three 

methodologies evaluated in this study. The compositing process took 

approximately five minutes for each monthly composite created. 

Medoid 

The medoid method is a multi-dimensional median method for compositing. 

The medoid is a “measure of center” in a multi-dimensional set of points, similar 

to the median in a unidimensional space (Flood, 2013).  

In the context of remote sensing and image compositing from a time series of 

observations, the multiple dimensions working in this process are the different 

bands of the image and the different acquisition dates for every captured pixel. 
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A calculation formula for the medoid is: 

𝑥𝑚𝑒𝑑𝑜𝑖𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈{𝑥1,𝑥2,⋯,𝑥𝑛} ∑ 𝑑(𝑦, 𝑥𝑖)

𝑛

𝑖=1

 

Equation 1 Medoid 

 

This measure of center is defined as the point which minimizes the sum of the 

distances to all the points in the dataset, with the additional constraint that the 

selected point has to be an observed value (Flood, 2013) 

The medoid compositing algorithm was implemented in this project in Python 

using the rasterio, numpy and hdmedians (Roberts, 2017) packages. 

Additionally, the script was modified to be run in parallel using 

concurrent.futures in order to speed up the process. This compositing process 

was the 2nd most computationally intensive compositing algorithm, with 

composites for each month taking approximately 20 minutes to create. 

Geometric Median 

The geometric median is a similar concept to that of the medoid, a multi-

dimensional median method for compositing. The main difference between the 

two methods is that the geometric median is not necessarily an observed value. 

In order to calculate the geometric median, an artificial value, which minimizes 

the distances between points in all dimensions is created. This artificial value is 

then written into the final composite. 

The calculation formula for the geometric median is: 

𝑎𝑟𝑔𝑚𝑖𝑛

𝑦 ∈ ℝ𝑛 ∑ ||𝑥𝑖 − 𝑦||2

𝑚

𝑖=1

 

Equation 2 Geometric median 

 

The strength of both the medoid and geometric median compositing 

methodologies is that they maintain the radiometric relationship between the 

bands in the final composite. As such, we can easily calculate accurate and 

relevant indexes on the composite, despite the values being artificial, in the case 

of the geometric median. 
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This compositing algorithm was implemented in Python and is based on the 

hdmedians package (Roberts, 2017). The same parallel processing methods 

were used as in the medoid implementation in order to reduce processing time. 

This was the most computationally intensive process, with composites taking 

approximately 90 minutes to create for each month on the available hardware. 

3.2 Crop Type Classification 

The following part of the report describes the how the agricultural data and 

materials used in this study were implemented, with a focus on the classification 

process and a comparison of accuracy of the three resulting composite against 

each other, and against a ‘clearest, most cloud free’ image classification.  

 

Figure 16 Classification process 
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3.2.1 Image Preprocessing 

The random forest classification has been performed using the R package 

‘randomForest’. The package takes multiple band Geotiffs as input for the 

classification. In order to prepare the composite images for input into the 

classification package, a number of preprocessing steps, such as index 

calculations and band stacking have been performed in this stage.  

In order to increase the accuracy of the classification a number of spectral 

indexes have been calculated. These indexes have been shown in previous 

research to improve the classification accuracy. The following indexes have 

been calculated for use in this project: 

Normalized Difference Vegetation Index (NDVI) 

NDVI is probably one of the most important indexes in the monitoring and 

classification of land and agricultural areas (Robinson et al., 2017). The index 

is calculated using the following formula: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

Equation 3 NDVI 

 

For Sentinel 2 NDVI is calculated using bands 8 and 4, with the central 

wavelengths recorded at 842nm and 665nm, respectively. 

Red Edge NDI 

This index is particularly important for the calculation of green leaf area index, 

and chlorophyll content (Delegido, Verrelst, Alonso & Moreno, 2011) 

The index is calculated using the following formula: 

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 𝑁𝐷𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)
 

Equation 4 Red Edge NDI 

 

For Sentinel 2 Red Edge NDI is calculated using bands 8a and 6, with the central 

wavelengths recorded at 865nm and 740nm, respectively. 
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Normalized Difference Infrared Index (NDII) 

This index uses a normalized difference formulation. It is a reflectance 

measurement sensitive to changes in water content of plant canopies. 

The index is calculated using the following formula: 

𝑁𝐷𝐼𝐼 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

Equation 5 NDII 

 

For Sentinel 2 NDII is calculated using bands 8a and 11, with the central 

wavelengths recorded at 865nm and 1610nm, respectively. 

Normalized Difference Water Index (NDWI) 

Introduced by Gao (1996) this index is used in remote sensing of vegetation 

liquid water. 

The index is calculated using the following formula: 

𝑁𝐷𝑊𝐼 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

Equation 6 NDWI 

For Sentinel 2 NDWI is calculated using bands 8a and 12, with the central 

wavelengths recorded at 865nm and 2190nm, respectively. 

After calculation, the indexes are added to the image stack, further increasing 

the number of bands in the GeoTiff. The resulting monthly composites then 

consist of the ten 10m and resampled 20m Sentinel 2 bands, plus the four 

calculated indexes, resulting in a 14 band stack for each monthly composite. 

The two monthly composites are then stacked again, but this time only pixels 

which have clear observations in both March and July are written into the final 

stack. The final stack thus consists of a total of 28 bands. Pixels which had a 

clear observation in only one of the two months are removed from the analysis, 

in order to improve classification accuracy. 
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3.2.2 Agricultural Data Preprocessing 

The raw agricultural data downloaded from the Danish AgriFish Agency 

contains multiple similar crop types (e.g. different types of grass) which will 

need to be merged into one larger class in order to facilitate classification. After 

clipping the data to include only the fields within the project’s study area, a 

filtering process was put in place in order to remove fields that were too narrow 

or too small to rasterize for classification. This process involved applying a 

negative buffer to the fields, and then removing all fields with an area of less 

than 100m2 (one Sentinel 2 pixel size) and all fields narrower than 5m. 

Once the fields have been reduced to include only fields which can be reliably 

classified using the 10m resolution imagery, the fields were then reclassified 

into ten classes for easier classification: 

Table 8 Reclassified agricultural data 

Class Number of fields Area (based on number of pixels) 

Grass 18,295 365 ha 

Spring Barley 17,220 782 ha 

Winter Wheat 16,816 1104 ha 

Corn 5,440 295 ha 

Winter Rapeseed 4,399 327 ha 

Winter Barley 4,371 262 ha 

Winter Rye 3,647 166 ha 

Spring Oats 2,228 93 ha 

Potatoes 1,485 66 ha 

Other 5,205 292 ha 

 

The ‘Other’ class consists of all other crop types with less than 1,000 individual 

fields. 
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3.2.3 Training and Testing Data Selection 

Selection of accurate, representative and spatially distributed training data is 

paramount to the performance of the classification algorithm. For the purposes 

of this project, 25,000 training pixels have been selected to use as training data 

for the classification. These pixels were created using a stratified random 

sampling technique, ensuring that the training number of pixels is representative 

of the total number of fields for each class. 

In order to ensure a fair comparison of composites to the clearest available 

image however, the training has only been selected from pixels which have had 

a minimum of two clear observations in both March and July, as show in the 

map below.  

 
Figure 17 Pixels with two or more clear observations in March and July 
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The map below shows the point distribution of the training pixels:

 

Figure 18 Spatial distribution of training pixels 

In order to ensure that both composite and single values were classified 

correctly, the selection of the testing pixels within the image was less stringent. 

The locational constraint on testing pixels location is that at least one clear 

observation must be available in both March and July for the clearest image in 

each of those months. The second constraint was that testing points must not be 

selected from pixels which were already used for training the model. 

This testing point selection process ensures that all composites and the clearest 

image approach are treated evenly and ensures a fair comparison between all 

classification results. A total of 24,966 testing pixels were generated. As was 

the case with the training pixels, the testing pixels were generated using a 

stratified random sampling method. 
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The map below shows the spatial distribution of the testing pixels: 

  

Figure 19 Spatial distribution of testing pixels 

3.2.4 Classification Algorithm 

The classification has been performed in R using the RandomForest algorithm. 

This algorithm takes the image stack, training data, and a crop mask as input for 

the classification. The crop mask indicates which pixels in the image will be 

classified, and which will be ignored by the classification algorithm. The crop 

mask was generated to include all fields, where all the pixels within a given 

field contain at least one clear observation in both the March clearest image and 

the July clearest image. This filtering of fields was done in order to allow the 

algorithm to classify only data which has reliable values for the field in every 

composite and clear image compared in this project.  
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The map below shows the crop mask utilized in this classification:

 

Figure 20 Crop mask  

3.2.5 Classification Postprocessing 

The outputted thematic map from the classification algorithm has been further 

postprocessed in order to eliminate any stray pixels and create a smoother 

classification map. This process was implemented in QGIS using the GDAL 

sieving tool. The tool creates a user defined minimum mapping unit of eight 

pixels. This ensures that the minimum number of adjoining pixels must be at 

least eight, otherwise the pixels are reclassified based on surrounding pixels. 

This tool eliminates minor errors of stray ‘crops’ within fields. 
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4 Results 

The following sections will describe and display the results of all the 

compositing algorithms and the final crop classification maps generated from 

this project. The final subsection will focus on providing an accuracy 

assessment for each classification performed during this study. 

4.1 Compositing Results 

The main advantage of creating image composites is increased data availability. 

In the case of this study, the composite images provided an additional 10,675 

fields for classification. This is an increase of 23.5% over the clearest image 

classification approach. 

This percentage increase in data availability includes only data relevant to this 

study, i.e. agricultural fields. The overall increase in data availability is even 

higher when urban areas, forests and water are included, further showing the 

advantages of using image composites. 

The figures beginning overleaf show the final, cloud masked, clearest images 

and composite images used in this study. Clouded areas have been removed 

from the image and are displayed as blacked out areas. 
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4.1.1 Clearest Image Approach 

 

Figure 21 Clearest, least cloudy image in March (acquired March 24 2017) 
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Figure 22 Clearest, least cloudy image in July (acquired July 19 2017) 
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Figure 23 Clearest, least cloudy image classification input stack 

Figure 23 above is the final input stack utilized for the classification using the 

clearest image approach. Due to constraints in the classification algorithm, 

‘NoData’ values are not accepted for training values. The data has thus been 

further masked, and the masked out areas did not have a clear observation in 

neither March, nor July, thus further decreasing the available data. The data 

includes only the commonly clear area for both March and July.  
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4.1.2 Maximum NDVI Composite 

 

Figure 24 Maximum NDVI composite for March 
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Figure 25 Maximum NDVI composite for July 
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Figure 26 Maximum NDVI composite classification input stack 

Figure 26 above is the final input stack utilized for the classification using the 

maximum NDVI compositing approach. Due to constraints in the classification 

algorithm, ‘NoData’ values are not accepted for training values. The data has 

thus been further masked, and the masked out areas did not have a clear 

observation in neither March, nor July, thus further decreasing the available 

data. The data includes only the commonly clear area for both March and July.  
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4.1.3 Medoid Composite 

 

Figure 27 Medoid composite for March 
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Figure 28 Medoid composite for July 
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Figure 29 Medoid composite classification input stack 

Figure 29 above is the final input stack utilized for the classification using the 

medoid compositing approach. Due to constraints in the classification 

algorithm, ‘NoData’ values are not accepted for training values. The data has 

thus been further masked, and the masked out areas did not have a clear 

observation in neither March, nor July, thus further decreasing the available 

data. The data includes only the commonly clear area for both March and July.  
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4.1.4 Geometric Median Composite 

 

Figure 30 Geometric median composite for March 
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Figure 31 Geometric median composite for July 
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Figure 32 Geometric median composite classification input stack 

Figure 32 above is the final input stack utilized for the classification using the 

geometric median compositing approach. Due to constraints in the classification 

algorithm, ‘NoData’ values are not accepted for training values. The data has 

thus been further masked, and the masked out areas did not have a clear 

observation in neither March, nor July, thus further decreasing the available 

data. The data includes only the commonly clear area for both March and July.  
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4.2 Classification Results 

The following maps display the results of the random forest classification when 

applied to each composite and clearest image approach. The accuracy results 

will be discussed in the accuracy assessment section to follow. 

4.2.1 Clearest Image Approach 

 

 

 Figure 33 Clearest image classification results 
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4.2.2 Maximum NDVI Composite 

 

 

Figure 34 Maximum NDVI composite classification results 
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4.2.3 Medoid Composite 

 

 

Figure 35 Medoid composite classification results 
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4.2.4 Geometric Median Composite 

 

 

Figure 36 Geometric median composite classification results 
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4.3 Accuracy Assessment 

An accuracy assessment has been performed on the resulting classifications 

using the GRASS GIS tool r.kappa. For testing purposes, 24,966 pixels were 

selected using a stratified random sample.  

The clearest image approach achieved the highest overall accuracy of 84.79%, 

the two high-dimensional median composite approaches, medoid and geometric 

median performed very similarly with overall accuracies of 84.21% and 

83.57%, respectively. The maximum NDVI compositing approach performed 

the worst, achieving an overall accuracy of 81.35%. 

The consumer’s accuracy for each class was fairly consistent across classes and 

across compositing methodologies, with no extreme outliers. The ‘Other’ class 

performed the worst in this measure with consumer’s accuracies ranging from 

67.12% to 72.60%. This outcome was somewhat expected, as the ‘Other’ class 

contains multiple crop types. On the producer’s accuracy side, two crops 

achieved low accuracy results, Winter Rye and Spring Oats. Neither the 

composite images, nor the single image approach achieved high results in these 

classes, with the Maximum NDVI composite performing the worst and the 

single image approach performing the best. 

 These two classes cover a small portion of the total agricultural zone within the 

study area, and it is likely that the training data mask, which excluded pixels 

which did not have two or more clear observations in both March and July, 

masked out a lot of the fields containing these two crops, potentially reducing 

the amount of training data within these fields.  

The composite images produced comparable per class and overall accuracies to 

the single image approach, showing that composite images are a suitable 

alternative for crop type classification. This is especially important since 

compositing largely increased the total number of useable pixels, with very little 

compromise in classification accuracy. The error matrices for each of the 

classification approaches, clearest image, and the three composite images can 

be seen starting overleaf. 
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4.3.1 Clearest Image Approach 

Table 9 Clearest image error matrix 
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4.3.2 Maximum NDVI Composite 

Table 10 Maximum NDVI composite error matrix
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4.3.3 Medoid Composite 

Table 11 Medoid composite error matrix
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4.3.4 Geometric Median Composite 

Table 12 Geometric median composite error matrix
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5 Discussion 

This chapter provides insights to the results of this study and evaluates potential 

strengths and weakness of the methodologies implemented in this report. 

Applications of the results and limitations of this research are also provided.  

Cloud masking and atmospheric correction were identified as the two most 

important techniques during the preprocessing stages. Research in the areas of 

cloud masking and atmospheric correction are ongoing, and the two processes 

implemented in this study are a state of the art combined cloud mask, and an 

open source Sentinel 2 specific atmospheric correction tool. These tools 

provided adequate performance when preparing the images for compositing in 

this study. 

The three different methodologies compared in this study, maximum NDVI, 

medoid, and geometric median provided adequate results in terms of increasing 

the data availability. The maximum NDVI method has been previously used in 

research and has shown good results in this study as well. However, the newer, 

high-dimensional median compositing approaches provided a much higher 

increase in classification accuracy. These two compositing approaches should 

be researched further for the purposes of classification as the better accuracy 

results far outweigh the slightly longer processing times. 

Four main indexes were included in this classification. These indexes are NDVI, 

Red Edge NDI, NDII, and NDWI. All the indexes utilized in this study have 

shown to increase accuracy results in past studies  

The outcome of the study is that image composites can provide a large increase 

in the availability of data with very little compromise in classification accuracy 

when utilized for crop type classification. The differences in accuracies even 

between the best performing composite (Medoid – 84.21% OA) and the single 

image approach (84.79%) are statistically significant when testing using 

McNemar’s test (McNemar, 1947). This difference however is rather 

insignificant in a real world classification scenario.  
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In addition to the similarly in overall accuracies, the composites performed on 

par with the single image approach when compared on a per class basis.  

The primary benefit provided by the composites, far outweighs the small 

decrease in overall classification accuracy. For the purposes of this study, over 

23.5% more fields were available to classify in the monthly composites, than in 

the clearest image approach. 

From a classification perspective, the only clearly visible issues arose with the 

producer’s accuracy of two of the smaller classes in this study: Winter Rye and 

Spring Oats. These two classes had the lowest accuracies, and were primarily 

confused with two of the largest classes, Winter Wheat and Spring Barley 

respectively. While this is not an issue with the composites, it appears to be an 

issue with the training data used within this study and it should be investigated 

further. 

5.1 Limitations of the Study 

The compositing methodologies, while beneficial for this study are however not 

perfect for visualization purposes. Preprocessing steps, especially cloud 

masking, can be drastically improved in order to ensure better data preparation 

for compositing. Cloud masking and atmospheric correction are paramount to 

achieving high accuracies in any type of remote sensing classification. The 

combined cloud mask utilized in the study, while it seemed to remove the 

majority of clouds, was too aggressive in certain areas, fully removing non 

cloudy pixels which contained bright buildings with a similar spectral signature 

to that of clouds, as can be seen in figure 37 overleaf.  
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Figure 37 Cloud mask erroneously removing bright buildings 

The improvement of cloud masks and atmospheric correction methodologies is 

an ongoing topic in remote sensing, with many researchers attempting to utilize 

machine learning and deep learning approaches to solve these problems. 

A second issues with composites is the pixel homogeneity within a field. In a 

single image approach, all the pixels within a field were captured on the same 

date, and assuming the field contains a single crop, with the entire field planted 

on the same date, only minor spectral differences should be visible. In a 

composite however, pixels within the same fields may have been acquired on 

different dates, creating minor artefacts within the image. While this study has 

shown this to not be a major issue when using the composites for classification, 

the artefacts within the image make for a less visually appealing image, as seen 

in figure 38 overleaf. The geometric median composite displayed the fewest 

artefacts when compared to other compositing methodologies, perhaps 

indicating that a geometric median composite could be the most beneficial when 

utilized for classification over a larger scale. 
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Figure 38 Artefacts within composite images a. Single image b. Maximum NDVI composite c. Medoid composite d. 

Geometric median composite 

A second limitation of this study is the training data. The training and testing 

data for this project was based on open government data, which might not be 

available on a worldwide scale, thus limiting the replicability of this study. 

Within the European Union however, due to the Common Agricultural Policy 

reporting rules, this data should be available, however it may not always be 

accurate. The data is self-reported by farmers in order to apply for agricultural 

subsidies, and while The Danish AgriFish Agency expects approximately 95% 

accuracy in this self-reported data, this high level of accuracy may not be 

applicable everywhere. 

 

 

 

a. b. 

c. d. 
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5.2 Applications of the Results 

The results of this study showed fairly high accuracy results, considering only 

optical data has been used for classification. The composites performed fairly 

well when compared to the single image approach, showing only a slight 

decrease in classification accuracy, however the composites generated clear 

pixels for over 23.5% more fields than the clearest image approach. This is the 

main advantage of using composites over a single image approach, as more data 

could potentially mean that less field visits would be required for policy makers, 

potentially decreasing costs associated with controlling farmers. 

On a wider scale, the composites provide a big opportunity for monitoring and 

classification of land cover and land use in cloudy and rainy areas in certain 

periods, such as a wet season in Africa or South East Asia. The composites 

could make crop yield estimates more viable in such areas.    
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6 Conclusion 

This thesis explored how monthly satellite image composites can be used for 

the purposes of crop type classification, and how the accuracy results of these 

composites compare to a more classic, clearest, least cloudy image classification 

approach. In order to assist with the research objectives for this study, a tile 

based compositing methodology for Sentinel 2 tiles was developed, using tile 

32UNG in Denmark as a case study, where monthly composites for March and 

July 2017 were created using three different methodologies, maximum NDVI, 

medoid, and geometric median. 

The significance of utilizing composite images for the purpose of crop type 

classification has been shown. Results indicated that monthly image composites 

can be beneficial for the purposes of crop type classification. The composite 

images provided an increase of 23.5% in the total number of fields available for 

classification. The overall accuracies for this study were 84.79%, 84.21%, 

83.57%, and 81.35% for the clearest image, medoid, geometric median, and 

maximum NDVI classifications, respectively. 

Progress in remote sensing technologies, such as improvements in cloud 

masking and atmospheric correction can potentially show further increase in the 

accuracy results for crop type classification, and improvements in these sectors 

should be explored in the future.  

This study has shown the applicability of monthly image composites for 

classification at a tile based scale, however future research in tasks involving 

larger scale areas, such as land cover and land use classification tasks for entire 

countries could be beneficial to increase the popularity of the high-dimensional 

median compositing approaches which performed well in this study. 

6.1 Future Directions 

The study established that monthly composites can be utilized for the purpose 

of crop type classification. The study was however performed on only one 

Sentinel 2 tile, limiting the size of the area. Applications over larger areas, 
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containing multiple acquisition paths, where same day acquisitions for a single 

image approach are not possible would be an interesting future direction. The 

composite will smooth the values over the month, likely creating a more 

uniform data set for large scale, such as country wise classifications. 

Due to the limitations in the data availability, the final composites in this study 

had a number of pixels where no clear observations could be computed into a 

final composite, a second step into future directions could focus on gapfilling 

approaches for high-dimensional median composites. 

Lastly, high-dimensional median composites have only been recently 

introduced in remote sensing applications. Further testing for different 

classification processes, such as land cover/land use classifications or change 

detection using the medoid and geometric median approaches could prove 

valuable. 
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